
Context-Dependent Threshold Decryption

and its Applications

Dan Boneh1, Benedikt Bünz2,4, Kartik Nayak3,4, Lior Rotem5, and Victor Shoup6

1Stanford University
2N.Y.U.

3Duke University
4Espresso Systems

5The Hebrew University
6Offchain Labs

September 9, 2025

Abstract

In a threshold decryption system a secret key is split across a number of parties so that any
threshold of them can decrypt a given ciphertext. We introduce a new concept in threshold
decryption called a decryption context, which is an additional argument that is used during
decryption. The context ensures that decryption shares that are generated for a ciphertext
using different contexts are isolated from each other and cannot be jointly used to decrypt the
ciphertext. For example, suppose the decryption threshold is t. Further, suppose that less than t
decryption shares are generated for a ciphertext c under one context, and less than t decryption
shares are generated for c under a different context. Then this set of shares is insufficient to
decrypt c even if the total number of shares exceeds t. This new concept has several important
applications, most notably for implementing an encrypted mempool in a consensus protocol.
We give two CCA-secure threshold decryption constructions that support context. One is based
on ElGamal encryption, and the other is generic showing how to add context to any CCA-secure
threshold decryption system without changing the encryption algorithm.

Contents

1 Introduction 1

2 Preliminaries 6
2.1 Threshold decryption . 6

2.1.1 Robustness. 7
2.1.2 Security. 10

3 A construction 12

4 The linear one-more Diffie-Hellman assumption 15

5 Security analysis of Ehtdh1 16

6 A generic construction 20
6.1 The construction . 21
6.2 Robustness . 23
6.3 Security . 26

7 Applications 28
7.1 Encrypted atomic broadcast . 28

7.1.1 A simple framework for a general class of atomic broadcast protocols. 29
7.1.2 Piggybacking decryption shares. 30

7.2 Encrypted auction systems . 31

8 Stronger notions of security 32
8.1 Adaptive corruptions . 32
8.2 Simulation CCA security . 33

9 Conclusions and future work 36

References 37

A A Threshold IBE Scheme 41

1 Introduction

Before talking about threshold decryption and the various security notions we will introduce, it
is best to review threshold signature schemes, where similar notions have been more extensively
studied.

In a threshold signature scheme, we have N parties, each of which holds a signing key. We
restrict ourselves to schemes where the signing protocol is non-interactive. In such a scheme, users
make signing requests to individual parties, and in response to a request to sign a message m,
a party will give a signature share on m back to the user (without interacting with the other
parties). Any t such signature shares on a message m may be combined to compute a signature on
m. Here, t is the reconstruction threshold of the scheme.

The traditional notion of threshold security captures a form of security against chosen message
attack (or CMA security). This notion of security is defined in terms of a chosen message attack
game in which the adversary can ask for signature shares from parties on various messages of its
choice. The adversary may also corrupt up to t − 1 parties (either statically or adaptively) to
obtain their signing keys. Security means that it is infeasible for an adversary to forge a signature
on a message that is “protected”. Here, a message m is said to be “protected” if no honest (i.e.,
non-corrupt) party generated a signature share for m. Let us call this low-threshold CMA
security.

A stronger notion of security, which we shall call high-threshold CMA security, has been
studied in the literature under different names [52, 5, 4]. This notion of security is defined by an
attack game that is exactly the same as above, except that the definition of a “protected” message is
broadened to include a larger class of messages. Namely, a message m is “protected” if |L∪Sm| < t,
where L is the set of corrupt parties and Sm is the set of honest parties that have generated a
signature share for m.

High-threshold CMA security is quite natural, as it mimics the security property enjoyed by
the “trivial” threshold scheme in which a “threshold signature” is just a collection of t regular
signatures. It is also needed in the analysis of many protocols, such as consensus protocols, that
rely on a “quorum intersection argument” (see, e.g., [20]). In the static corruption model, proving
high-threshold CMA security typically requires protocol modifications and/or stronger assumptions.

The notion of high-threshold CMA security under static corruptions was introduced in [52],
motivated by the need for this property in [20]. That paper also presented and analyzed a threshold
signature scheme satisfying this property based on RSA. More recently, the paper [5, 4] reintroduced
this same security property and showed that the standard BLS threshold signature scheme [14, 7]
satisfies this property under a certain kind of “one-more Diffie-Hellman” assumption (this same
result for BLS signatures was also proved in [42]).

It is not hard to show that under adaptive corruptions, low and high threshold CMA security
are equivalent.1 Under static corruptions such an equivalence is not known to be true, except when
N is very small (see Theorem 1 in [4]). So the notion of high-threshold CMA security is mainly of
interest only in the static corruption model.

Throughout this paper, we treat key generation as a trusted, centralized process. In a real sys-
tem, key generation will typically be implemented by a distributed key generation (DKG) protocol

1Proof sketch. Convert a “high” attack into a “low” attack” as follows: guess which one of the messages m
submitted as a signing request will be chosen by the adversary in its forgery; convert each signing request to a party
Pℓ on m to a corruption of Pℓ.

1

that emulates this process. In such a system, the DKG protocol, as well as the protocols that
use the signature scheme, may well withstand fewer than t − 1 corruptions. For example, in the
asynchronous setting, we typically have N = 3f + 1, where at most f parties may be corrupted,
and t = 2f + 1. Nevertheless, the signature scheme itself retains its unforgeability property even
if any t − 1 signing keys are leaked. In particular, the above high/low equivalence under adap-
tive corruptions (which requires that the threshold signature scheme withstand t− 1 corruptions)
continues to hold.

Threshold decryption. Now we turn to threshold decryption. In a threshold decryption scheme,
we have N parties, each of which holds a decryption key. We restrict ourselves to schemes where
the decryption protocol is non-interactive. In such a scheme, users make decryption requests to
individual parties, and in response to a request to decrypt a ciphertext c, a party will give a
decryption share of c back to the user (without interacting with the other parties). Any t such
decryption shares on a ciphertext c may be combined to compute the plaintext encrypted by c.

One can define corresponding notions of low and high threshold security for a threshold de-
cryption scheme. Both of these notions capture a form of security against chosen ciphertext attack
(CCA security). These notions of security are defined in terms of a chosen ciphertext attack game in
which the adversary can ask for decryption shares from parties on various ciphertexts of its choice.
The adversary may also corrupt up to t− 1 parties (either statically or adaptively) to obtain their
decryption keys.

Low-threshold CCA security says that a ciphertext c remains “protected” (i.e, the adversary
learns nothing about the message that c encrypts) if no honest party generates a decryption share
for c. This is essentially the definition of security in [54] (who only considered static corruptions).

High-threshold CCA security says that a ciphertext c remains “protected” if |L∪Dc| < t, where
L is the set of corrupt parties and Dc is the set of honest parties that have generated a decryption
share for c.

Note that [54] also introduces the notion of “associated data” (or a “label”) that is an input
to the encryption algorithm. Such “associated data” is public information that can be used to
further protect a ciphertext, for example, by specifying a “decryption policy” for the ciphertext
that can be used to protect against a rogue decryption request. Indeed, associated data is essential
for most applications of threshold decryption.2 For the purposes of this immediate discussion on
defining security, we can assume that the encryption algorithm embeds the “associated data” in the
ciphertext c itself. We will make this more explicit when we present formal definitions in Section 2.

We show in Theorem 4 that, under adaptive corruptions, low and high threshold security are
equivalent. Under static corruptions such an equivalence is not known to be true, except when N
is very small.

Threshold decryption with decryption context. While the notion of high-threshold CCA
security seems very natural, there is very little discussion of it in the literature. Perhaps one reason
for the lack of research in this area is that this type of security does not by itself seem to enable
any compelling applications. However, we propose an enhanced version of this notion that does.

2In the non-threshold setting, associated data can be encrypted along with the plaintext, or processed by a
symmetric cipher in a hybrid construction. But in the threshold setting, this simply does not work, as by the time
the associated data is checked, the plaintext is already revealed.

2

This enhanced version of high-threshold CCA security works as follows. In addition to a ci-
phertext c and decryption key share, the decryption algorithm (i.e., the algorithm that generates
a decryption share) takes as input an application-specific decryption context dc. Security now

means that a ciphertext c remains “protected” provided |L∪D(dc)
c | < t, for all decryption contexts

dc. Here, D
(dc)
c is the set of honest parties who have generated a decryption share for c using de-

cryption context dc. We refer to a threshold decryption scheme that supports a decryption context
as a context-dependent threshold decryption. Traditional threshold decryption schemes are
context-free.

To see an example, let L = ∅ and t ≥ 2, and let c be a valid ciphertext. Suppose that some
t − 1 parties provide decryption shares for c using a decryption context dc1. Separately, another
set of t − 1 parties provide decryption shares for c using a different decryption context dc2. Now,
despite the presence of 2t − 2 ≥ t shares, it is not possible to decrypt c. This is because no set
of t parties decrypted with the same context. In contrast, in a context-free threshold decryption
system, these 2t− 2 shares would be more than enough to decrypt c. As we will see, the ability to
isolate decryption shares by their context is required for security in many applications.

We stress that the notions of a decryption context (which is selected at the time of decryption
and given as input to the decryption algorithm) and associated data (which is selected at the time of
encryption and given as input to both encryption and decryption algorithms) are unrelated notions.

Applications. An important application for context-dependent threshold decryption is an en-
crypted mempool in decentralized systems [50, 3]. In many existing blockchains, transactions are
submitted in the clear and they are publicly visible in the mempool before they are committed on
chain. This leads to the MEV problem [32] where transactions can be front-run. One mitigation
used in practice [45, 56, 39] is an encrypted mempool: transactions are submitted encrypted to
a public key of a threshold decryption scheme. Once a block has enough votes to be added to
the blockchain, a quorum of parties publish decryption shares for the transactions in the block.
This protects transactions in the mempool, but delays block finalization due to the added round of
communication for collecting decryption shares. This overhead can be eliminated by asking honest
validators to publish a decryption share concurrently with voting for a block. This way, if the
decryption threshold and the voting threshold are set to the same value t, then once a block has
enough votes to be committed on chain, all of the transactions in it have enough decryption shares
to be decrypted. But this is insecure. The problem is that one set of honest validators may vote for
a block B1 and another set of honest validators may vote for a block B2. As a result, a transaction
in the intersection of B1 and B2 might accumulate t public decryptions shares, even though neither
block has t votes. This transaction will be decrypted before it is committed on chain, which violates
the main goal of an encrypted mempool.

Context-dependent threshold decryption completely solves this problem: honest validators set
the decryption context to be the hash of the block that they are voting for. This prevents mixing
decryption shares for a transaction in B1 with decryption shares for the same transaction in B2. As
we will see in Section 7, it ensures that a transaction can only be decrypted if it is in a block that
is guaranteed to be committed on chain. We also show in Section 7.2 how a decryption context is
needed in a sealed-bid auction system.

To further motivate the need for a decryption context, let us consider another simple application:
Bob wants to build a dead man’s switch for his password. To do so, Bob encrypts his password

3

under some public key and posts the resulting ciphertext publicly. The corresponding secret key is
shared among N trustees with a reconstruction threshold of t. Once a day Bob sends a ping to all
N trustees. Every trustee that receives a ping does nothing that day. However, if a trustee fails to
receive a ping on a certain day, it sends a decryption share for Bob’s ciphertext to his heirs. This
way, when Bob becomes incapacitated, and does not send any pings, the trustees will release their
decryption shares, and Bob’s password will be revealed to his heirs. Importantly, the password
should not be revealed as long as every day more than N − t trustees receive the ping.

While this system may seem like a natural design, it is horribly insecure. If on Monday only
t/2 trustees do not receive the ping, then t/2 decryption shares are released. If on Wednesday a
different set of t/2 trustees do not receive the ping, then another t/2 decryption shares are released.
Now the heirs have a total of t shares and can decrypt the password, even though, on every day
more than N − t trustees received the ping. This violates the goals of the system.

A decryption context is an easy solution to this problem. The trustees can use the current
day’s date as the decryption context when publishing a decryption share. This way the password
is revealed only if t or more parties do not receive the ping on a single day. In particular, the set
of t shares released in the preceding paragraph are insufficient to decrypt Bob’s ciphertext — there
is no set of t shares that were generated with the same decryption context.

More generally, a decryption context chosen at the time of decryption ensures that at least t
parties must agree to decrypt the provided ciphertext under the specified context — otherwise,
no information about the encrypted message is revealed. It is a cheap and simple way to ensure
consensus among the parties during decryption.

Our results. We begin in Section 2 by giving precise definitions for secure context-dependent
threshold decryption, both high-threshold and low-threshold.

In Section 3 we construct our first context-dependent high-threshold decryption system. The
system is a variant of the ElGamal-based threshold scheme called TDH1 from [54]. We call this new
scheme Ehtdh1. The encryption algorithm of Ehtdh1 is essentially identical to that of TDH1 — the
only difference is that we use a more general symmetric encryption algorithm. The decryption and
combiner algorithms are then modified to incorporate a decryption context. We prove the security
of this system (in the random oracle model) in Section 5 using a falsifiable complexity assumption
we call the linear one-more Diffie-Hellman, or LOMDH, which is essentially the same assumption
that has been used to analyze high-threshold BLS signatures in [5, 42]. We note that it does not
seem possible to prove that the original TDH1 scheme is itself context-free high-threshold secure
under the LOMDH assumption — our modifications in the decryption and combiner algorithms
seem essential to achieve any type of high-threshold security under this assumption.

We also show that the LOMDH assumption is implied by the decisional Diffie-Hellman (DDH)
assumption. It follows that Ehtdh1 is high-threshold CCA secure under the DDH (in the random
oracle model). However, LOMDH is a computational assumption, and so Ehtdh1 may also be secure
in groups where the DDH assumption is false.

In Section 6 we construct a second context-dependent high-threshold decryption system. This
construction is generic: it compiles any context-free low-threshold decryption system into one that
is context-dependent and high-threshold secure. An important property of this compilation is
that it does not modify the key generation or encryption algorithms of the underlying threshold
scheme. This is particularly useful when the trustees want to add a decryption context to a legacy
encryption system, without modifying how clients encrypt their data. The key ingredient that

4

makes this possible is threshold identity-based encryption [10].
In Section 7 we present two applications for context-dependent high-threshold decryption. One

to encrypted atomic broadcast (an encrypted mempool) and the other to encrypted sealed-bid
auctions. These primarily serve as examples where a decryption context enhances and simplifies
the design of the system.

Our definitions and constructions only deal with static corruptions, with security being defined
using a game-based definition. In Section 8 we present two stronger definitions of security. The
first strengthens our core definition from Section 2 by allowing for adaptive corruptions. We leave
it as future work to prove security of our schemes, or other schemes, under adaptive corruptions.
Second, we present a simulation-based security definition that is compatible with the universal
composability framework [22], and discuss the security of our constructions in that setting.

We conclude with a number of directions for future work, in particular, extending our con-
structions to support the recent notion of threshold decryption with silent setup [41] and batch
decryption [28].

Additional related work. The basic notion of threshold decryption dates back to Desmedt [35,
36] and De Santis et al. [34]. Since then, many works constructed threshold decryption schemes
from various assumptions and with different security guarantees. For conciseness, we focus here on
CCA-secure threshold decryption schemes.

Shoup and Gennaro [54] were the first to construct a CCA-secure threshold decryption scheme,
relying on the computational Diffie-Hellman assumption in the random oracle model. Subsequently,
Fouque and Pointcheval [40] thresholdized the Naor-Yung paradigm for CCA security, by consider-
ing its instantiation based on Paillier encryption [49]. Canetti and Goldwasser [23] achieved CCA
security in the standard model, by thresholdizing the Cramer-Shoup encryption scheme [31]. The
latter construction relies on correlated randomness among decrypting parties, which requires either
interactive decryption or pre-storing this randomness, bounding the number of possible decryp-
tions. This restriction was lifted by Cramer, Damg̊ard, and Ishai [30], but their solution is only
efficient when N is small. Later on, Boneh et al. [13] constructed the first distributed pseudoran-
dom functions without random oracles, which can be used to derandomize the Canetti-Goldwasser
construction for any number of parties. Boyen, Mei, and Waters [18] and Boneh, Boyen, and
Halevi [8] were the first to construct a CCA-secure threshold decryption scheme in the standard
model, building on the IBE-to-CCA paradigm of Canetti, Halevi, and Katz [24]. Many subsequent
works constructed CCA-secure threshold decryption schemes from various assumptions; see, for
example [38, 57, 47, 11, 37] and the references therein for a non-exhaustive account.

Most threshold decryption schemes, including the ones mentioned above, are proven secure
against static corruptions. There are, however, a few works constructing CCA-secure threshold
decryption schemes that remain secure even against an adversary that can adaptively obtain secret
keys. Jarecki and Lysyanskaya [44] and Abe and Fehr [1] presented adaptively-secure variants of
the Canetti-Goldwasser threshold decryption scheme. However, both schemes inherent the limita-
tions of the Canetti-Goldwasser scheme, requiring either interactive decryption or only supporting
a bounded number of decryptions. Libert and Yung [48, 47] and Libert et al. [46] gave the first
adaptively-secure non-interactive construction in bilinear groups. Recently, Devevey et al. [37]
presented adaptively-secure, non-interactive constructions based on the Decision Composite Resid-
uosity (DCR) and the Learning-With-Errors (LWE) assumptions. More recently, [33, 53] presented
very simple, practical, adaptively-secure, non-interactive constructions based on the DDH assump-

5

tion in the random oracle model.
Finally, the application of threshold decryption to encrypted mempools gives rise to several

new concepts in threshold decryption, in addition to the new decryption context studied in this
paper. One example is the need to trace corrupt validators who sell their decryption shares. This
leads to the concept of accountable threshold decryption due to Boneh, Partap, and Rotem [15].
Another example is the need to threshold decrypt multiple transactions in a block. This leads to
the concept of batch threshold decryption, due to Choudhuri, Garg, Piet, and Policharla [28], and
developed further in [2, 29, 17, 55, 12]. We discuss this further in Section 9.

2 Preliminaries

2.1 Threshold decryption

We state here a definition for a very general notion of public-key threshold decryption scheme that
includes the new notion of a decryption context.

Definition 1. A public-key threshold decryption scheme E = (G,E,D,C) is a tuple of four
efficient algorithms:

• G is a probabilistic key generation algorithm that is invoked as

(pk, pkc, sk1, . . . , skN)←$ G(N, t, f)

to generate N shares of a secret key with reconstruction threshold t and corruption bound
f , where N ≥ t > f . It outputs a public key pk, a combiner public key pkc, and N
decryption key shares sk1, . . . , skN .

• E is a probabilistic encryption algorithm that is invoked as

ctxt←$ E(pk,m, ad),

where pk is a public key output by G, m is a message, and ad is associated data.

• D is a (possibly) probabilistic decryption algorithm that is invoked as

ds i ←$ D(ski, ctxt, ad, dc),

where ski is one of the decryption key shares output by G, ctxt is a ciphertext, ad is associated
data, dc is a decryption context, and ds i is a decryption share for ctxt using ski.

• C is a deterministic combiner algorithm that is invoked as

m← C(pkc, ctxt, ad,J , {dsj}j∈J , dc),

where pkc is the combiner public key, ctxt is a ciphertext, ad is associated data, J is a subset
of {1, . . . , N} of size t, each dsj is a decryption share of ctxt, and dc is a decryption context.
The algorithm either outputs a plaintext m, the special symbol reject, or a special message
blame(J∗), where J∗ is a nonempty subset of J .

Intuitively, the message blame(J∗) indicates that the provided decryption shares dsj for j ∈ J∗

are invalid.

6

• Correctness: as usual, decryption should correctly decrypt a properly constructed ciphertext;
specifically, for all possible outputs (pk, pkc, sk1, . . . , skN) of G(N, t, f), all messages m, all
associated data ad, all decryption contexts dc, all possible outputs ctxt of E(pk,m, ad), all
t-size subsets J of {1, . . . , N}, and all possible outputs dsj of D(skj , ctxt, ad, dc) for j ∈ J ,
we have

C
(
pkc, ctxt, ad, J , {dsj}j∈J , dc

)
= m.

In the above definition, messages lie in some finite message space M , ciphertexts in some finite
ciphertext space Ctxt, associated data in some finite space AD, and decryption contexts lie in
some finite space DC. We say that E is defined over (M ,AD,Ctxt,DC). Also, just as for a
secret sharing scheme, a threshold decryption scheme may impose constraints on the parameters
N , t, and f (such as an upper bound on N and on the relationship between N , t, and f). For
any particular scheme, we will refer to allowable parameters as those (N, t, f) tuples that are
allowed by the scheme.

Remark 1 (Context-dependent and context-free schemes). If the decryption context space
DC contains more than one element, we say E context dependent. Otherwise, we say E is
context free, and, by convention, we may naturally omit dc from the inputs to the algorithms D
and C, and simply say that E is defined over (M ,AD,Ctxt).

Remark 2 (Corruption parameter f). The parameter f will be used in the security game
as a bound on the number of secret keys that the adversary can request from the challenger at
the beginning of the game. For our concrete construction in Section 3, we can set f = t − 1.
For our generic construction in Section 6, we need to set f < t − 1 if the underlying legacy low-
threshold CCA-secure decryption scheme has a lower reconstruction threshold than than the designed
reconstruction threshold of the context-dependent high-threshold CCA-secure decryption scheme.

2.1.1 Robustness.

Beyond security for the scheme, a threshold decryption scheme should also be robust against a
malicious decryption server that is trying to disrupt the decryption process. We define two such
robustness properties that any practical threshold decryption scheme should provide. Our approach
to defining robustness closely follows that of [16].

Suppose a combiner receives a collection {dsj}j∈J of t decryption shares on a given cipher-
text/associated data pair (ctxt, ad). By Definition 1, the combiner will output either a plaintext
m ∈M ∪ {reject}, or a special message blame(J∗), where J∗ is a nonempty subset of J .

• If the output of the combiner is blame(J∗), then we would like it to be the case that all of the
decryption shares dsj for j ∈ J∗ are “bad”, in the sense that they were incorrectly generated
by misbehaving decryption servers. A threshold signature scheme that guarantees that this
(effectively) always happens is said to provide accurate blaming.

• Otherwise, if the output of the combiner is a plaintext m, we say that the collection of shares
{dsj}j∈J is valid for (ctxt, ad). We say that the threshold decryption scheme is consistent if
it is infeasible to come up with any other valid collection of decryption shares that combines
to yield a plaintext m′ ̸= m.

7

A threshold decryption scheme is robust if it satisfies both properties.
In practice, robustness allows a combiner who is trying to decrypt a ciphertext to proceed as

follows. If the combiner algorithm outputs blame(J∗), then the combiner can discard the “bad”
shares in J∗, and seek out t−|J∗| “good” shares from among the remaining decryption servers. As
long as there are t correctly behaving servers available, the accurate blaming property guarantees
that the combiner can repeat this process until it gets a valid collection of shares, and the consistency
property guarantees that when this happens, the resulting plaintext is the same that it would get
from any other valid collection of decryption shares.

Also note that the consistency property, together with the correctness property in Definition 1,
guarantees that if a ciphertext is a correctly generated encryption of a message, then any valid
collection of decryption shares when combined will yield the original message. We now define these
two properties formally.

The accurate blaming property is defined via the following attack game.

Attack Game 1 (accurate blaming). For a given threshold decryption scheme E = (G,E,D,C),
defined over (M ,AD,Ctxt,DC) and a given adversary A, we define the following attack game.

• The adversary sends to the challenger polynomially-bounded allowable parameters (N, t, f).

• The challenger runs (pk, pkc, sk1, . . . , skN)←$ G(N, t, f) and sends all this data to the adver-
sary.

• The adversary sends to the challenger an index j∗ ∈ {1, . . . , N}, a ciphertext ctxt, associated
data ad, and decryption context dc.

• The challenger runs ds ←$ D(skj∗ , ctxt, ad, dc) and sends ds to the adversary.

• The adversary outputs
(J , {dsj}j∈J).

• We say the adversary wins the game if

– j∗ ∈ J ,

– dsj∗ = ds, and

– C(pkc, ctxt, ad,J , {dsj}j∈J , dc) = blame(J∗), where j∗ ∈ J∗.

We define A’s advantage with respect to E, denoted blmPKEadv[A,E], as the probability that A wins
the game.

Definition 2 (accurate blaming). We say that a threshold decryption scheme E provides accu-
rate blaming if for all efficient adversaries A, the quantity blmPKEadv[A,E] is negligible.

Remark 3. One could think of a definition in which the adversary can ask the challenger to partially
decrypt many ciphertexts, and then break accurate blaming with respect to one of the challenger’s
responses. It is not hard to see that our definition is polynomially-equivalent to this more general
definition via a standard query-guessing reduction.

Remark 4. One could also consider the notion of perfect accurate blaming, requiring that for
any (even computationally unbounded) adversary A, its advantage blmPKEadv[A,E] is 0. Looking
ahead, our construction in Section 3 will satisfy this stronger notion. Our generic construction in
Section 6 can also satisfy this perfect notion, depending on the underlying building blocks.

8

The consistency property is defined via the following attack game.

Attack Game 2 (consistent threshold decryption). For a given threshold decryption scheme
E = (G,E,D,C), defined over (M ,AD,Ctxt,DC) and a given adversary A, we define the fol-
lowing attack game.

• The adversary sends to the challenger polynomially-bounded allowable parameters (N, t, f).

• The challenger runs (pk, pkc, sk1, . . . , skN)←$ G(N, t, f) and sends all this data to the adver-
sary.

• The adversary outputs

(ctxt, ad,J1, {ds1j}j∈J1 , dc1,J2, {ds2j}j∈J2 , dc2),

where ctxt ∈ Ctxt, ad ∈ AD, J1 and J2 are subsets of {1, . . . , N} of size t, {ds1j}j∈J1 and
{ds2j}j∈J2 are collections of decryption shares, and dc1 and dc2 are decryption contexts.

• We say the adversary wins the game if

– C(pkc, ctxt, ad,J1, {ds1j}j∈J1 , dc1) = m1 ∈M ∪ {reject},
– C(pkc, ctxt, ad,J2, {ds2j}j∈J2 , dc2) = m2 ∈M ∪ {reject}, and
– m1 ̸= m2.

We define A’s advantage with respect to E, denoted conPKEadv[A,E], as the probability that A wins
the game.

Definition 3 (consistent threshold decryption). We say that a threshold decryption scheme
E is consistent if for all efficient adversaries A, the quantity conPKEadv[A,E] is negligible.

One approach to achieve robustness (as given, for example, in [54]), is to introduce a decryption
share validation algorithm V , which is invoked as V (pkc, ctxt, j, dsj , ad, dc) and returns either
accept or reject. We say a decryption share dsj is valid for a given ctxt (with respect to j,
ad, and dc) if V (pkc, ctxt, j, dsj , ad, dc) = accept, and otherwise we say it is invalid.

The combiner algorithm on input

(pkc, ctxt, ad,J , {dsj}j∈J , dc)

first runs the decryption share validation algorithm on (pkc, ctxt, j, dsj , ad, dc) for each j ∈ J , and
if any of these outputs reject, the combiner outputs blame(J∗) for the set J∗ ⊆ J of offending
indices. Otherwise, the combiner must output some message m ∈M ∪ {reject}.

To satisfy the robustness requirement, it is necessary and sufficient that

• any output of the decryption algorithm is (effectively) always valid,

• it is infeasible to create two quorums of valid decryption shares that combine to different
messages.

9

2.1.2 Security.

In a traditional threshold decryption scheme, as defined, for example, in [54], the security definition
intuitively says following:

if an adversary is able to obtain any information about an encrypted message, then
some honest party must have generated a corresponding decryption share.

The above notion may be referred to as low-threshold security. Traditionally, a low-threshold
scheme also insists that t = f + 1, but this is not strictly necessary. Indeed, our definition of low-
threshold security more generally allows t > f +1 but retains the same security property. This can
be seen as the analog of “ramp secret sharing” for threshold decryption [6, 27]. Such a scheme only
weakens the robustness properties of the scheme, since the reconstruction threshold t is greater
than f + 1. Such a scheme provides no additional security, since an encrypted message is still
guaranteed to remain private only if no honest party generates a corresponding decryption share.

The notion of high-threshold security actually ensures a stronger security property. Suppose
that the set of corrupt parties is L, where |L| ≤ f and ∆ := t − |L| > 0. Intuitively, the security
definition says that:

if an adversary is able to obtain any information about an encrypted message, then at
least ∆ honest parties must have generated a corresponding decryption share under the
same decryption context.

We first formally define high-threshold security, and then define low-threshold security as a
restriction thereof. Our definitions here only model static corruptions (while adaptive corruptions
are modeled in Section 8.1).

Attack Game 3 (high-threshold CCA security). For a public-key threshold decryption scheme
E = (G,E,D,C) defined over (M ,AD,Ctxt,DC), and for a given adversary A, we define two
experiments.

Experiment b (b = 0, 1):

• Setup: the adversary sends polynomially-bounded allowable parameters (N, t, f), and a subset
L ⊆ {1, . . . , N}, where |L| ≤ f and ∆ := t− |L| > 0, to the challenger.

The challenger does the following:

– initialize an empty associative array

Map : Ctxt×AD → 2DC×{1,...,N}\L,

– run
(pk, pkc, sk1, . . . , skN)←$ G(N, t, f),

– send pk, pkc, and {skℓ}ℓ∈L to A.

• A then makes a series of queries to the challenger. Each query can be one of two types:

10

– Encryption query: each encryption query consists of a triple

(m0,m1, ad) ∈M2 ×AD,

where the messages m0,m1 are of the same length.

The challenger does the following:

∗ compute ctxt←$ E(pk,mb, ad),

∗ if (ctxt, ad) /∈ Domain(Map), then initialize Map[ctxt, ad]← ∅,
∗ send ctxt to A.

– Decryption query: each decryption query consists of a tuple

(ctxt, ad, dc, i) ∈ Ctxt×AD ×DC × {1, . . . , N} \L

such that either

(D1) (ctxt, ad) /∈ Domain(Map), or

(D2) (ctxt, ad) ∈ Domain(Map), (dc, i) /∈ Map[ctxt, ad], and

|{j : (dc, j) ∈ Map[ctxt, ad]}| < ∆− 1

The challenger does the following:

∗ if (ctxt, ad) ∈ Domain(Map), then update

Map[ctxt, ad]← Map[ctxt, ad] ∪ {(dc, i)},

∗ compute D(ski, ctxt, ad, dc) and send this to A.

• At the end of the game, A outputs a bit b ∈ {0, 1}.

If Wb is the event that A outputs 1 in Experiment b, define A’s advantage with respect to E as

hthCCAadv[A,E] :=
∣∣∣Pr[W0]− Pr[W1]

∣∣∣.
Definition 4 (high-threshold CCA security). A public-key threshold decryption scheme E
is high-threshold CCA secure if for all efficient adversaries A, the value hthCCAadv[A,E] is
negligible.

To define low-threshold security, we first define a modified version of Attack Game 3 in which
we simply drop the disjunct (D2) in the precondition of the decryption queries. This restricts the
actions of the adversary and therefore characterizes a weaker form of security. We denote the
adversary’s advantage in this game lthCCAadv[A,E].

Definition 5 (low-threshold CCA security). A public-key threshold decryption scheme E is
low-threshold CCA secure if for all efficient adversaries A, the value lthCCAadv[A,E] is negli-
gible.

11

Remark 5. In defining low-threshold security, the decryption context plays no role. This can be seen
formally by observing that once we eliminate the disjunct (D2) from the decryption precondition,
decryption contexts do not have any material impact on the attack game. Informally, the reason is
that an encrypted message is no longer guaranteed to remain private as soon as one honest party
generates a corresponding decryption share with respect to any decryption context — whether or
not additional honest parties generate such shares with the same or different contexts is irrelevant.
Therefore, we may as well assume that such a threshold decryption scheme is context free.

Remark 6. The above definition is more general than the traditional definition [54], in that it
allows t > f + 1, which (as remarked above) would be the analog of “ramp secret sharing”. For a
traditional low-threshold scheme, we would have t = f + 1.

Remark 7. The above definitions of CCA security are defined in terms of attack games, each with
two experiments. As is standard (see Section 2.2.5 of [16]), we can also define a “bit guessing”
versions of these attack games, in which the challenger chooses b ∈ {0, 1} at random, and runs
Experiment b. The corresponding advantage is defined to be the distance between 1/2 and the
probability that b = b, and is denoted hthCCAadv∗[A,E] (respectively, lthCCAadv∗[A,E]), and the
two-experiment advantage is always equal to twice the bit-guessing advantage.

3 A construction

We present here a construction that is a variant of the TDH1 scheme in [54], which we call Ehtdh1.
The encryption algorithm of Ehtdh1, is essentially identical to that of TDH1 — the only difference
is that we use a more general symmetric encryption algorithm. The decryption and combiner
algorithms are just slightly tweaked to incorporate decryption contexts.

While our general definition of a threshold decryption scheme requires the specification of both
a reconstruction threshold t and a corruption bound f , the scheme Ehtdh1 actually makes no use of
the parameter f , and we can in fact assume that f = t− 1.

Note that THD1 was proved CCA secure in [54] in the random oracle model under the compu-
tational Diffie-Hellman (CDH) assumption. The paper [54] did not consider high-threshold CCA
security or decryption contexts (although it did consider associated data). It does not seem possible
to prove the security of Ehtdh1 in the high-threshold setting under the same assumption as [54]. How-
ever, we can prove it is secure (again, in the ROM) under the linear one-more Diffie-Hellman
(LOMDH) assumption, which is a falsifiable assumption that can be justified in the generic group
model (GGM), and which is the same assumption used to analyze high-threshold BLS signatures.
See Section 4 for a formal definition and GGM analysis of the LOMDH assumption.

The scheme Ehtdh1 = (G,E,D,C) is parameterized in terms of a message space M , associated
data space AD, and decryption context space DC, and makes use of the following:

• a group G of prime order q generated by G ∈ G; we write G additively, with O ∈ G denoting
the identity element;

• a symmetric cipher Es (which will be assumed semantically secure) with deterministic en-
cryption algorithm Es, deterministic decryption algorithm Ds, message space M , key space
K, and ciphertext space C; we write c ← Es(k,m) to encrypt m and obtain the ciphertext
c, and m← Ds(k, c) to decrypt c and obtain m;

12

• various hash functions (which will be modeled as random oracles):

– for key derivation, Hkd : G×G→K,

– for encryption group derivation, Hegd : G×G×AD ×C → G,

– for encryption challenge derivation, Hecd : G3 → Zq,

– for decryption group derivation, Hdgd : AD ×DC × (G×G× Zq × Zq ×C)→ G,

– for decryption challenge derivation, Hdcd : G7 → Zq.

In what follows, it will be convenient to define the Diffie-Hellman operator G × G → G,
defined by DH(xG, yG) := xyG.

Key generation. The key generation algorithm G works as follows. It generates x ∈ Zq at
random, and generates a random t-out-of-N Shamir sharing (x1, . . . , xN) of x. It also generates a
random t-out-of-N Shamir sharing (z1, . . . , zN) of 0. It then computes

X ← xG

and for i = 1, . . . , N it computes

Xi ← xiG and Zi ← ziG.

Finally, it outputs (pk, pkc, sk1, . . . , skN), where

• pk := X ,

• pkc := (X ;X1, . . . ,XN ;Z1, . . . ,ZN), and

• ski := (xi, zi) for i = 1, . . . , N .

Encryption. The encryption algorithm E takes as input a public key pk = X ∈ G, a message
m ∈M , and associated data ad ∈ AD, and runs as follows.

r ←$ Zq, R ← rG, U ← rX , k ← Hkd(R,U) ∈K, c← Es(k,m) ∈ C
r′ ←$ Zq, R′ ← r′G
Y ← Hegd(R,R′, ad, c), V ← rY, V ′ ← r′Y
e← Hecd(Y,V,V ′) ∈ Zq, r

′′ ← r′ + re ∈ Zq

output ctxt := (R,V, e, r′′, c)

Intuition. The first line of the encryption algorithm computes a hybrid ElGamal ciphertext (R, c),
where X is the public key, R is the encryptor’s ephemeral public key R, and the symmetric
ciphertext c is computed by deriving a symmetric encryption key k from U = DH(R,X) — including
the group element R in the hash Hkd is not strictly necessary, but allows for a tighter security
reduction. The remaining lines compute a zero-knowledge proof (e, r′′) that V = DH(R,Y). Here,
Y is a group element derived from the hash function Hegd, and the challenge e for the underlying
Sigma protocol is derived from the hash function Hecd. The exact way in which the inputs to
these hash functions are defined follows the same logic as in the TDH1 scheme in [54] to ensure
non-malleability.

13

Decryption. The decryption algorithm D as run by party Pi takes as input a secret key ski =
(xi, zi) ∈ Zq × Zq, a ciphertext ctxt = (R,V, e, r′′, c) ∈ G × G × Zq × Zq × C, associated data
ad ∈ AD, and decryption context dc ∈DC, and runs as follows. First, it checks that

e = Hecd(Y,V,V ′), where
R′ = r′′G − eR, Y = Hegd(R,R′, ad, c), V ′ = r′′Y − eV. (1)

If this check fails, it outputs reject. Otherwise, it proceeds as follows:

Xi ← xiG, Zi ← ziG // these may also be stored as part of the secret key ski
S ← Hdgd(ad, dc, ctxt) ∈ G
Wi ← xiR+ ziS
x′i, z

′
i ←$ Zq, X ′

i ← x′iG, Z ′
i ← z′iG, W ′

i ← x′iR+ z′iS
ei ← Hdcd(S,Xi,Zi,Wi,X ′

i ,Z ′
i,W ′

i)
x′′i ← x′i + eixi ∈ Zq, z′′i ← z′i + eizi ∈ Zq

output ds i := (Wi, ei, x
′′
i , z

′′
i)

Intuition. The check (1) verifies the proof that V = DH(R,Y). In what follows, the group element
S is derived via a hash function (to be modeled as a random oracle) in a way that depends not
only on c and ad, but also on the decryption context dc. Then, the group element Wi = xiR+ ziS
is formed, and what follows is the construction of a standard zero-knowledge proof (ei, x

′′
i , z

′′
i) that

Wi was formed correctly.

Decryption share validation. A decryption share ds i from Pi is validated with respect to
pkc = (X ;X1, . . . ,XN ;Z1, . . . ,ZN), ctxt = (R, e, r′′, c), ad, and dc by first checking if (1) holds. If
this does not hold, then ds i is valid if and only if it is equal to reject. Otherwise, ds i is valid if
and only if (Wi, ei, x

′′
i , z

′′
i) satisfies

ei = Hdcd(S,Xi,Zi,Wi,X ′
i ,Z ′

i,W ′
i), where

S = Hdgd(ad, dc, ctxt),
X ′
i = x′′i G − eiXi, Z ′

i = z′′i G − eiZi, W ′
i = x′′iR+ z′′i S − eiWi.

(2)

Intuition. The check (2) is essentially just a verification of the zero-knowledge proof that Wi was
formed correctly.

Combining decryption shares. Suppose we are given a quorum {dsj}j∈J of decryption shares,
together with pkc = (X ;X1, . . . ,XN ;Z1, . . . ,ZN), ctxt = (R, e, r′′, c), ad, and dc. We first run the
decryption share validation algorithm above to determine if all decryption shares are valid. If not,
we output blame(J∗), where J∗ is the subset of J for which dsj is invalid for all j ∈ J∗. Otherwise,
if all decryption shares are equal to reject, we also output reject. Otherwise, each decryption
share dsj is of the form (Wj , . . .), and we compute

U ←
∑
j∈J

λ
(J)
j Wj ,

where {λ(J)
j }j∈J is the collection of interpolation coefficients that recovers the secret from a t-

out-of-N Shamir sharing from the shares specified by the index set J . Finally, we compute k ←
Hkd(R,U) ∈K and output m← Ds(k, c) ∈M .

14

Intuition. Since the share validation algorithm ensures that each Wj is of the form xjR+ zjS, we
have

U =
∑
j∈J

λ
(J)
j Wj =

∑
j∈J

λ
(J)
j (xjR+ zjS) =

∑
j∈J

λ
(J)
j xjR+

∑
j∈J

λ
(J)
j zjS = xR.

4 The linear one-more Diffie-Hellman assumption

We give here a formal definition of the linear one-more Diffie-Hellman (LOMDH) assump-
tion. This is a trivial generalization of an assumption introduced in [42] (and later [5]) to prove
the security of high-threshold BLS signatures [14]. The assumption states that it is infeasible for
an adversary to win the following attack game. In this game, a challenger first chooses s1, . . . , sk
and t1, . . . , tℓ at random from Zq, and gives to the adversary the group elements

Si := siG ∈ G (i = 1, . . . , k)

and
Tj := tjG ∈ G (j = 1, . . . , ℓ).

Next, the adversary makes a sequence of linear DH-queries. Each such query consists of a matrix

of scalars {κi,j} ∈ Z[k]×[ℓ]
q , to which the challenger responds with the group element∑

i,j

κi,jsitjG =
∑
i,j

κi,jDH(Si, Tj).

At the end of the game, the adversary outputs a list of pairs, each of the form

(V, {κi,j}) ∈ G× Z[k]×[ℓ]
q .

The adversary wins the game if for one such output group/matrix pair, we have

(i) {κi,j} is not in the linear span of the input matrices, and

(ii)

V =
∑
i,j

κi,jsitjG =
∑
i,j

κi,jDH(Si, Tj)

We shall refer to the group elements S1, . . . ,Sk in the attack game as row elements and
T1, . . . , Tℓ as column elements. Each pair in the adversary’s output list asserts a relation as
in condition (ii) above. The adversary only wins the game if such an assertion holds that is not
trivial, in the sense of condition (i) above.

Note that the attack games defined in [42, 5] are the same as the above game with the restriction
that k = 1 and the output list has length 1. The paper [5] shows that in this restricted setting,
in the generic group model (GGM), the adversary’s wins this game with probability O(M2/q),
where M is a bound on the total number of queries. It is entirely straightforward to generalize this
analysis to the more general setting where we lift the restrictions on k and the length of the output
list, and M is a bound on the number of queries plus the length of the output list.

We believe our formulation of the LOMDH assumption is quite natural and has several advan-
tages. First, it allows one to prove the security of high-threshold BLS signatures with a very tight

15

security reduction. Second, it has more applications — not the least of which is our analysis of a
high-threshold decryption scheme.

It turns out that the LOMDH assumption is implied by the decisional Diffie-Hellman (DDH)
assumption:

Theorem 1. The DDH assumption implies the LOMDH assumption.

Proof (sketch). This follows almost immediately from Exercise 10.12 in [16], which says that under
the DDH the distribution ({Si}i, {Tj}j , {DH(Si, Tj)}i,j) is computationally indistinguishable from
({Si}i, {Tj}j , {Ri,j}i,j) for random Ri,j .

This theorem, combined with Theorem 2 below, implies that our scheme Ehtdh1 is high-threshold
CCA secure under the DDH (in the random oracle model). However, LOMDH is a computational
assumption, and so Ehtdh1 may also be secure in groups where the DDH assumption is false.

5 Security analysis of Ehtdh1

Theorem 2. If all hash functions are modeled as random oracles, if Es is semantically secure, and
if the LOMDH assumption holds, then Ehtdh1 is high-threshold CCA secure.

Proof. We make an argument based on a sequence of games, starting from the bit-guessing version
of Attack Game 3 (see Remark 7), adapted to model all hash functions as random oracles, so that
the adversary also queries the challenger to obtain the value of the random oracles at inputs of its
choosing. Call this Game 0. Let L be the set of corrupt parties as chosen by the adversary and let
∆ := t− |L| > 0.

In each Game j, we denote by pj the probability that the adversary guesses the hidden bit b of
the challenger.

Game 1. We now make a purely conceptual modification to Game 0, changing the way the key
generation works. After the adversary specifies the set L, we choose a set L′ ⊇ L of size exactly
t− 1. We generate x and xj for j ∈ L′, and then compute the remaining xi’s by interpolation:

xi ← λ(i)x+
∑
j∈L′

λ
(i)
j xj ,

for appropriate interpolation coefficients λ(i) and {λ(i)
j }j∈L′ . Similarly, we generate zj at random

for j ∈ L′ and then compute the remaining zi’s by interpolation:

zi ←
∑
j∈L′

λ
(i)
j zj .

Let us call this Game 1. We have p1 = p0.

Looking ahead, in the reduction to LOMDH, the LOMDH adversary will run with full knowledge
of {xj}j∈L′ and {zj}j∈L, while the group elements X and {Zj}j∈L′\L will play the role of column
elements in the LOMDH attack, and various group elements R and S corresponding to ciphertexts
produced by the encryption oracle will play the role of row elements. To this end, we want to
be able to simulate decryption queries that are not related to any encryption queries, knowing

16

only {xj}j∈L′ and {zj}j∈L, as well as the group elements X and {Zj}j∈L′\L. The next few games
prepare the groundwork for this simulation.

Now consider a ciphertext ctxt = (R,V, e, r′′, c) generated by the encryption oracle with as-
sociated data ad and a ciphertext ctxt = (R,V, e, r′′, c) submitted to the decryption oracle with
associated data ad. Clearly, the check (1) holds for (ctxt, ad), so let R′ = r′′G − eR as in (1). If
this check does not hold for (ctxt, ad), the decryption will result in reject. So suppose this check

does hold, and let R′
= r′′G − eR as in (1). Then with overwhelming probability, we must have

(R,R′, ad, c) = (R,R′
, ad, c) =⇒ (ctxt, ad) = (ctxt, ad). (3)

Note that the tuples (R,R′, ad, c) and (R,R′
, ad, c) are the inputs to Hegd. This fact is proven in

[54] for the TDH1 scheme, and the proof carries over without change here.

Game 2. Based on the above, we modify Game 1 so that if for a given decryption query (ctxt, ad)
we have (1) but not (3) for some (ctxt, ad) ∈ Domain(Map), the challenger returns reject without
processing the ciphertext any further. We call this Game 2. The quantity |p2 − p1| is negligible.

Game 3. We next modify Game 2 to program Hegd and Hdgd in a certain way. Without loss of
generality, we may assume that whenever the adversary makes a decryption query, the random
oracle queries to Hegd and Hdgd needed to process the decryption query have already been made
directly by the adversary — if not, we simply modify the adversary to do so, as all of the inputs
to these random oracle queries can be computed based on public data. Now suppose the adversary
directly queries Hegd at an input (R,R′, ad, c) that has not previously been queried, either directly
by the adversary or indirectly through an encryption query. Then the challenger programs Hegd

by generating y ∈ Zq at random and setting Hegd(R,R′, ad, c) := X + yG. Furthermore, if any
future encryption query evaluates Hegd at (R,R′, ad, c), the attack game aborts (and the adversary
outputs some arbitrary value) — this happens with negligible probability. Additionally, suppose
the adversary directly queries Hdgd at an input (ad, dc, ctxt) such that (ctxt, ad) /∈ Domain(Map)
at the time of the query. Then the challenger programs Hdgd by generating s ∈ Zq at random and
setting Hdgd(ad, dc, ctxt) := sG. Furthermore, if (ctxt, ad) is ever added to Domain(Map) by an
encryption query, the attack game aborts — again, this happens with negligible probability. We
call this Game 3. The quantity |p3 − p2| is negligible.

Game 4. We next modify Game 3 so that we replace the generation of the zero-knowledge proof
(e′′i , x

′′
i , z

′′
i) in each decryption is replaced by the usual zero-knowledge simulator. This simulation

involves programming the random oracle Hdcd and may fail with negligible probability. We call
this Game 4. The quantity |p4 − p3| is negligible.

Game 5. We next modify Game 4 so that (as promised) we can simulate decryption queries that
are not related to any encryption queries, knowing only {xj}j∈L′ and {zj}j∈L, as well as the group
elements X and {Z}j∈L′\L. Suppose the adversary makes a decryption query (ctxt, ad, dc, i) and
(ctxt, ad) /∈ Domain(Map). Let ctxt = (R,V, e, r′′, c) and assume that the check (1) holds with R′,
Y, V ′ also as in (1). Also let S = Hdgd(ad, dc, ctxt). By the rule imposed in Game 3 and random
oracle programming done in Game 4, we have Y = X + yG where y is known to us. Also by the
random oracle programming done in Game 4, we have S = sG where s is known to us. By the
soundness of the proof that V = DH(R,Y), with overwhelming probability, we have and therefore

V = DH(R,Y) = DH(R,X + yG) = DH(R,X) + yR,

17

which means we can compute DH(R,X) as V − yR.
So to carry out the simulated decryption, we need to compute

Wi = DH(R,Xi) + DH(S,Zi)

= DH
(
R, λ(i)X +

∑
j∈L′

λ
(i)
j xjG

)
+ DH

(
S,

∑
j∈L′

λ
(i)
j Zj

)
=

(
λ(i)DH(R,X) +

∑
j∈L′

λ
(i)
j xjR

)
+
(∑

j∈L
λ
(i)
j zjS +

∑
j∈L′\L

λ
(i)
j DH(S,Zj)

)
= λ(i)(V − yR) +

∑
j∈L′

λ
(i)
j xjR+

∑
j∈L

λ
(i)
j szjG +

∑
j∈L′\L

λ
(i)
j sZj ,

which we can do given the data provided. The rest of the output produced by the decryption
oracle comes from the zero-knowledge simulator introduced in Game 4. We call this Game 5. The
quantity |p5 − p4| is negligible.

Game 6. We next modify Game 5 so that in the encryption queries, we replace the zero-knowledge
proofs (e, r′′) with simulations. Since the proofs here are slightly nonstandard, we specify exactly
how this is done.

1. We choose e, r′′ ∈ Zq at random.

2. We compute R′ ← r′′G − eR.

3. We check if Hegd has been evaluated at (R,R′, ad, c) — if so, we abort and if not, we program
Hegd so that Hegd(R,R′, ad, c) := Y := yG for random y ∈ R.

4. We set V := yR = DH(R,Y) as required (so the statement we are proving is, in fact, true)
and set V ′ := r′′G − eV.

5. We then check if Hecd has been evaluated at (Y,V,V ′) — if so, we abort and if not, we
program Hecd so that Hegd(Y,V,V ′) := e.

These simulations may fail, but only with negligible probability. We call this Game 6. The quantity
|p6 − p5| is negligible.

Note that in Game 6, no two encryption queries will attempt to add the same pair (ctxt, ad) to
Domain(Map).

Game 7. We next modify Game 6 so that in each encryption query, we replace the symmetric key
k, which is normally computed as Hkd(R,U), by a random element of the symmetric key space K.
Let us call the Game 7. The quantity |p7−p6| is bounded by the probability of the following failure
event:

the adversary evaluates the random oracle Hkd at one of these inputs (R,U) in Game 7.

We shall show below that this probability is bounded by the advantage of a certain adversary
in breaking the LOMDH assumption, which implies that this probability is negligible. Moreover,
under the semantic security assumption for Es, it follows that |p7 − 1/2| is negligible, and we
conclude that |p0 − 1/2| is negligible as well.

18

The LOMDH adversary. To complete the proof, we describe the above-mentioned LOMDH adver-
sary. The LOMDH runs Game 7 above, with the following modifications. The LOMDH adversary
will generate at random xj ∈ Zq at random for j ∈ L′ and zj ∈ Zq for j ∈ L. The group elements
X and {Zj}j∈L′\L are column elements obtained from the challenger in the LOMDH attack game.
The row elements in the LOMDH attack game will be mapped to

• the group elements R that would normally be generated at random in each encryption query
in Game 7, and

• the outputs of S that would normally be generated as the output of random oracle queries of
the form Hdgd(ad, dc, ctxt) where (ctxt, ad) ∈ Domain(Map) at the time of the random oracle
query.

Note that by the rules imposed in Game 3, these Hdgd queries will be made explicitly by the CCA
adversary prior to any decryption query. Also note that by the rules imposed in Game 6, each
such query Hdgd(ad, dc, ctxt) will correspond to the unique encryption query that added (ctxt, ad)
to Domain(Map). Also note that by the rules imposed in Game 6, the encryption queries can be
processed with the given information, that is, knowing just the corresponding group element R
obtained from the LOMDH.

Now consider a decryption query (ctxt, ad, dc, i). In Game 4, we already introduced rules to pro-
cess such a query when (ctxt, ad) /∈ Domain(Map), so let us assume that (ctxt, ad) ∈ Domain(Map).
Let ctxt = (R,V, e, r′′, c). By design, R and S = Hdgd(ad, dc, ctxt) are column elements from the
LOMDH challenger. By the same calculation we made in Game 5, we have

Wi = λ(i)DH(R,X) +
∑
j∈L′

λ
(i)
j xjR+

∑
j∈L

λ
(i)
j zjS +

∑
j∈L′\L

λ
(i)
j DH(S,Zj).

So to compute Wi, our LOMDH adversary makes an appropriate query to the LOMDH challenger
to obtain

λ(i)DH(R,X) +
∑

j∈L′\L

λ
(i)
j DH(S,Zj). (4)

At the end of the CCA attack game, our LOMDH adversary runs through all queries of the ran-
dom oracle Hkd. For each such query Hkd(R,U), of R is one of the column elements corresponding
to an encryption query, the LOMDH adversary adds an pair to its output list corresponding to the
relation U = DH(R,X).

We argue that the probability that our LOMDH adversary wins is precisely the probability that
the failure event defined above occurs. This amounts to showing that each output relation U =
DH(R,X) asserted by the LOMDH adversary is nontrivial. To see this, for each i ∈ {1, . . . , N}\L,
which may be used as in index in a decryption query, define the vector

v⃗i := {λ(i)
j }j∈L′\L ∈ ZL′\L

q .

By basic properties of polynomial interpolation, we see that any collection of at most ∆ − 1 of
these vectors is linearly independent. Now consider a given encryption query that adds (ctxt, ad)
to Domain(Map), and let ctxt = (R, . . .), so that R is a column element given by the LOMDH
challenger. Further, consider a given decryption context dc, and let S = Hdgd(ad, dc, ctxt), which
is also a column element given by the LOMDH challenger. Then any collection of at most ∆ − 1

19

LOMDH query matrices, for queries of the form (4), cannot be linearly combined in such a way to
zero out all the columns corresponding to the column elements Zj for j ∈ L′ \L. This implies that
all of the assertions made by our LOMDH adversary are nontrivial.

That completes the design and analysis of our LOMDH adversary. Note that in the LOMDH
attack game, there will be at most ∆ ≤ t column elements; however, the number of row elements
is only bounded by the number of encryption queries plus the number of queries to Hdgd, so there
may be a significant (though still poly-bounded) number of these. Also, the number of pairs in the
output list is bounded by the number of queries to Hkd. Note that each matrix submitted to the
LOMDH adversary is actually very sparse, consisting of at most ∆ nonzero elements.

That completes the proof of the theorem.

6 A generic construction

In this section we show how to transform any (context-free) low-threshold CCA-secure decryption
scheme into a context-dependent high-threshold CCA-secure decryption scheme. This resulting
threshold decryption scheme has the same public key and encryption algorithm as the original
scheme. This is be useful in legacy systems where the encryption algorithm cannot be changed,
but where a context-dependent high-threshold CCA-secure decryption scheme is needed.

The key ingredient in our transformation is identity-based encryption (IBE) [51, 10]. Recall
that an IBE scheme is a tuple of four algorithms IBE = (G,K,E,D), where G() → (mpk,msk)
outputs the master public key mpk and master secret key msk; K(msk, id) → skid outputs the
secret key for the identity id; E(mpk, id,m)→ ctxt encrypts the message m for the identity id; and
D(skid, ctxt)→ m or reject decrypts the ciphertext ctxt using the secret key skid.

In our settings we will need a threshold IBE scheme [10] where the master secret key msk is
secret shared among N parties. The following definition reviews the syntax of such a scheme.

Definition 6. A threshold IBE scheme defined over (ID,M) is a tuple of four efficient algorithms
IBE = (G,K,E,D) where

• G is a probabilistic key generation algorithm that is invoked as

(mpk, pkc,msk1, . . . ,mskN)←$ G(N, t)

to generate the IBE master public key mpk and a t-out-of-N sharing of a master secret key
msk. It outputs a master public key mpk, a combiner key pkc, and N master key
shares msk1, . . . ,mskN .

• K is a (possibly) probabilistic keygen algorithm that is invoked as

skid,i ←$ K(mski, id)

where mski is one of the master key shares output by G, id ∈ ID is the identity of the
requested secret key, and skid,i is a secret key share for skid generated using mski.

• E is a probabilistic encryption algorithm that is invoked as

ctxt←$ E(mpk, id,m),

where mpk is a master public key output by G, id is an identity, and m ∈M is a message.

20

• D is a deterministic decryption algorithm that is invoked as

m← D(pkc, id,J , {skid,j}j∈J , ctxt),

where pkc is a combiner key, id ∈ ID is an identity, J is a subset of {1, . . . , N} of size t, for
j ∈ J the quantity skid,j is a secret key share of skid, and ctxt is a ciphertext. The algorithm
either outputs a plaintext m, the special symbol reject, or a special message blame(J∗),
where J∗ is a nonempty subset of J .

The correctness guarantee for IBE is that for every N, t, subset J ⊂ {1, . . . , N} of size t, identity
id ∈ ID, and message m, it holds that

Pr [D(pkc, id,J , {skid,j}j∈J , ctxt) = m] = 1

where (mpk, pkc,msk1, . . . ,mskN) ←$ G(N, t), ctxt ←$ E(mpk, id,m), and skid,i ←$ K(mski, id) for
i ∈ J .

We will define robustness and security for a threshold IBE scheme in Sections 6.2 and 6.3,
respectively, after we present the transformation from (context-free) low-threshold decryptipm to
context-dependent high-threshold decryption.

In the full version, we also present a construction of a threshold IBE scheme from the Boneh-
Franklin IBE [10] satisfying all the necessary properties.

6.1 The construction

Let IBE = (G,K,E,D) be a threshold IBE scheme defined over (ID,M), as in Definition 6. Let
E = (G,E,D,C) be a context-free threshold decryption scheme defined over (M ,AD,Ctxt), as
in Remark 1.

We construct a derived context-dependent threshold decryption scheme, denoted E′ =
(G′, E′, D′, C ′), with context space DC. We assume that Ctxt × AD × DC ⊆ ID so that a
tuple (ctxt, ad, dc) can be used as an IBE identity.

The threshold decryption scheme E′ is presented in Fig. 1. As promised, the public key pk
and the encryption algorithm E′ are identical to the ones in the underlying threshold decryption
scheme.

As presented, the key generation algorithm takes an additional parameter t†, which represents
the reconstruction threshold for the low-threshold scheme E, and must satisfy f < t† ≤ t. Moreover,
it must be the case that (N, f, t†) are allowable parameters for E. If E is a traditional threshold
decryption scheme, then one would set t† = f + 1, but other parameter configurations are possible
(see Remark 6).

This extra parameter does not match our definitions for the syntax, robustness, and security of
threshold decryption. There are two ways of dealing with this issue. The first is to restrict ourselves
to t† = f + 1, which likely covers the most important use cases. The second is to generalize our
definitions so that in addition to the parameters (N, t, f), the key generation algorithm may take
an additional, scheme-specific parameter (such as t†) which must satisfy certain constraints (such
as f < t† ≤ t). To be more general, we take the second approach. However, the reader may feel
free to proceed assuming t† = f + 1.

21

• Algorithm G′(N, t, f, t†) runs keygen for the threshold decryption scheme and IBE:

1 : (pk, pkc, sk1, . . . , skN)←$ E.G(N, t†, f)

2 : (mpk, pkc′,msk1, . . . ,mskN)←$ IBE.G(N, t)

3 : output pk′ ← pk, pkc′′ ← (pkc, pkc′), sk′i ← (ski,mpk,mski) for i = 1, . . . , N.

• Algorithm E′(pk′,m, ad) is the same as for the threshold decryption scheme

1 : output E.E(pk,m, ad)

• Algorithm D′(sk′i, ctxt, ad, dc) uses sk
′
i = (ski,mpk,mski) and works as follows:

1 : dsi ←$ E.D(ski, ctxt, ad) // decrypt ctxt using ski to get a decryption share

2 : adc← (ctxt, ad, dc) // the augmented decryption context

3 : ctxti ←$ IBE.E(mpk, adc, dsi) // encrypt the share dsi using adc as the identity

4 : skdc,i ←$ IBE.K
(
mski, adc

)
// release one key share for the identity adc

5 : output ds ′i := (dc, ctxti, skdc,i)

• Algorithm C ′(pkc′′, ctxt, ad, dc,J , {ds ′j}j∈J) uses pkc′′ = (pkc, pkc′) and does:

1 : abort if dc ̸= dcj for some j ∈ J // recall that ds′j = (dcj , ctxtj , skdc,j)

2 : adc← (ctxt, ad, dc) // the augmented decryption context

3 : for j ∈ J :

4 : dsj ← IBE.D(pkc′, adc,J , {skdc,i}i∈J , ctxtj) // decrypt ctxtj using a quorum of key shares

5 : if dsj = blame(J∗)

6 : then output blame(J∗) and exit

7 : if dsj = reject

8 : then output reject and exit

9 : J† ← a canonical subset of J of size t†

10 : m← E.C(pkc, ctxt, ad,J†, {dsj}j∈J†) // combine all the PKE decryption shares

11 : output m

Figure 1: The context-dependent threshold scheme E′ built from a context-free threshold scheme
E and an IBE scheme IBE.

22

6.2 Robustness

In this section we prove the robustness of the derived threshold decryption scheme E′ defined in
Section 6.1. The scheme is robust if the underlying threshold decryption scheme E is robust, and
in addition, the threshold IBE scheme IBE satisfies a notion of robustness that we now define.

The notion of robustness for threshold IBE is defined analogously to robustness for threshold
decryption. Concretely, a robust threshold IBE scheme should satisfy two conditions: accurate
blaming and consistency. Intuitively, accurate blaming requires that the decryption algorithm
never blames parties due to honestly-generated secret key shares. It is defined using the following
attack game.

Attack Game 4 (accurate blaming). For a given IBE scheme IBE = (G,K,E,D) over (ID,M)
and a given adversary A, we define the following attack game.

• The adversary sends to the challenger polynomially-bounded allowable parameters (N, t).

• The challenger runs (mpk, pkc,msk1, . . . ,mskN) ←$ G(N, t) and sends all this data to the
adversary.

• The adversary sends to the challenger an index j∗ ∈ {1, . . . , N} and an identity id ∈ ID.

• The challenger runs sk←$ K(mskj∗ , id) and sends sk to the adversary.

• The adversary outputs
(J , {skid,j}j∈J , ctxt).

• We say the adversary wins the game if

– j∗ ∈ J .

– skid,j∗ = sk.

– D(pkc, id,J , {skid,j}j∈J , ctxt) = blame(J∗), where j∗ ∈ J∗.

We define A’s advantage with respect to E, denoted blmIBEadv[A, IBE], as the probability that A
wins the game.

Definition 7 (accurate blaming). We say that a threshold decryption scheme E provides accu-
rate blaming if for all efficient adversaries A, the quantity blmIBEadv[A, IBE] is negligible.

The consistency property is also defined via a security game.

Attack Game 5 (consistent threshold IBE). For a given threshold IBE scheme IBE =
(G,K,E,D) over (ID,M) and a given adversary A, we define the following attack game.

• The adversary sends to the challenger polynomially-bounded allowable parameters N and t,
where 0 < t ≤ N .

• The challenger runs (mpk,msk1, . . . ,mskN) ←$ G(N, t) and sends all this data to the adver-
sary.

23

• The adversary outputs

(ctxt, id,J1, {skid,j}j∈J1 ,J2, {sk′id,j}j∈J2),

where ctxt ∈ Ctxt, id ∈ ID, J1 and J2 are subsets of {1, . . . , N} of size t, {skid,j}j∈J1 and
{sk′id,j}j∈J2 are collections of secret key shares.

• We say the adversary wins the game if

– D(id,J1, {skid,j}j∈J1 , ctxt) = m1 ∈M ∪ {reject},
– D(id,J2, {sk′id,j}j∈J2 , ctxt) = m2 ∈M ∪ {reject}, and
– m1 ̸= m2.

We define A’s advantage with respect to IBE, denoted conIBEadv[A, IBE], as the probability that A
wins the game.

Definition 8 (consistent threshold IBE). We say that a threshold IBE scheme IBE is consis-
tent if for all efficient adversaries A, the quantity conIBEadv[A, IBE] is negligible.

Both the accurate blaming and the consistency properties can be strengthened to consider
“perfect” robustness, requiring that blmIBEadv[A, IBE] and/or conIBEadv[A, IBE] are equal to 0 for
any adversary A, respectively. We will prove that our generic construction satisfies computational
accurate blaming and consistency. However, if E has perfect accurate blaming and IBE satisfies
perfect accurate blaming and consistency, then the proof can be easily extended to show that the
resulting high-threshold context-dependent threshold decryption scheme E′ has perfect accurate
blaming as well.

In our proofs, we will implicitly assume that t† = f+1 to syntactically match Definitions 2 and 3,
but both these definitions and our proofs readily extend to accommodate this extra parameter.

Equipped with the above definitions, we now prove that our generic construction satisfies both
robustness properties defined in Section 2.1.1. We start, in Lemma 1, by proving that it satisfies
accurate blaming.

Lemma 1. If E satisfies accurate blaming per Definition 2 and IBE satisfies accurate blaming and
consistency per Definitions 7 and 8, respectively, then E′ satisfies accurate blaming per Definition 2.

Proof. Let A be an adversary participating in the accurate blaming attack game of E (At-
tack Game 1). We claim that there are adversaries B1,B2,B3 such that

blmPKEadv[A,E′] ≤ blmIBEadv[B1, IBE] + conIBEadv[B2, IBE] + blmPKEadv[B3,E],

and the lemma follows.
To see why, it will be convenient to explicitly recall Attack Game 1 for E′ with the adversary

A. At the beginning of the game, A sends parameters N, t and f . In response, the challenger runs
(pk, pkc, sk1, . . . , skN) ←$ E.G(N, t, f) and (mpk, pkc′,msk1, . . . ,mskN) ←$ IBE.G(N, t), and sends
pk′ ← pk, pkc′′ ← (pkc, pkc′), and sk′i ← (ski,mpk,mski) for i = 1, . . . , N to the adversary. The
adversary A then queries the challenger on an index j∗ ∈ {1, . . . , N}, a ciphertext ctxt, associated
data ad, and decryption context dc. In response, the challenger computes ds ←$ E.D(skj∗ , ctxt, ad)
and ctxtj∗ ←$ IBE.E(mpk, adc, ds), where adc = (ctxt, ad, dc). The challenger then runs sk ←$

IBE.K(mskj∗ , adc) and returns ds ′ := (dc, ctxtj∗ , sk) to A.

24

Finally, the adversary outputs
(J , {ds ′j}j∈J),

where for every j ∈ J , ds ′j := (dc∗, ctxtj , skj). The adversary wins if j∗ ∈ J , ds ′j∗ = ds ′, and
E′.C(pkc, ctxt, ad,J , {ds ′j}j∈J , dc) = blame(J∗), where j∗ ∈ J∗. Suppose that these three condi-
tions are satisfied.

By construction, C ′ outputs blame(J∗) either in Step 6 as the output of IBE.D, or in Step 11
as the output of E.C. Suppose C ′ outputs blame(J∗) in Step 6, and call this event Blm1. This
case immediately reduces to the accurate blaming of IBE, since the winning condition ds ′j∗ = ds ′

implies in particular that skj = sk and sk was honestly generated by the challenger as the output of
IBE.K(mskj∗ , adc). Therefore, there exists an adversary B1 that wins the accurate blaming game
for IBE whenever Blm1 occurs.

Now suppose that C ′ outputs blame(J∗) in Step 11 and call this event Blm2. Let dsj∗ be
the result of decrypting the IBE-ciphertext ctxtj∗ in the partial decryption computed by the
challenger, using the key shares {ds ′j}j∈J outputted by the adversary. That is, let dsj∗ ←
IBE.D(pkc′, adc,J , {skj}i∈J , ctxtj∗). We consider a partition of Blm2 to two complementing events:

• When dsj∗ ̸= ds occurs, we construct an adversary B2 breaking the consistency of IBE. The
adversary B2 invokes A and simulates Attack Game 1 to it in the natural way, using the IBE
keys that it gets from the challenger in the IBE consistency game and sampling the keys to E on
its own. When A outputs (J , {ds ′j}j∈J), B2 computes honestly-generated key shares for adc

for every i ∈ J by running ŝkj ←$ IBE.K(mskj , adc
∗) and then computes the honest decryption

of ctxtj∗ with these key shares by running d̂sj∗ ← IBE.D(pkc′, adc,J , {ŝkj}i∈J , ctxtj∗). By

the correctness of IBE, it must hold that d̂sj∗ = ds, implying d̂sj∗ ̸= dsj∗ . Therefore, by
outputting

(ctxtj∗ , id = adc,J1 = J , {skj}j∈J ,J2 = J , {ŝkj}j∈J),

B2 wins the consistency game of IBE.

• If dsj∗ = ds, then we can construct an adversary B3 breaking the accurate blaming of E. The
adversary B3 invokes A and simulates Attack Game 1 to it in the natural way, using the E
keys that it gets from the challenger in the threshold decryption accurate blaming game and
sampling the keys to IBE on its own. It also forwards the partial decryption query of A to its
own challenger, and then uses the response and knowledge of the IBE keys to respond to A’s
queries. When A returns an output (J , {ds ′j}j∈J where ds ′j := (dc, ctxtj , skj) for j ∈ J , B3

outputs
(J , {dsj}j∈J),

where dsj := IBE.D(pkc′, adc,J , {skj}i∈J , ctxtj) for every j ∈ J . Since A wins in the accurate
blaming game for E′, it holds that j∗ ∈ J ∩J∗. Moreover, we are in the case where dsj∗ = ds,
it holds that B3 also wins the accurate blaming for E.

Overall, we have that conIBEadv[B2, IBE]+blmPKEadv[B3,E] = Pr [Blm2], and the lemma follows.

Lemma 2 below proves that our generic construction satisfies consistency.

Lemma 2. If E satisfies consistency per Definition 3, then E′ satisfies consistency per Definition 3.

25

Proof. Let A be an adversary taking part in the consistency game of E′ (Attack Game 2). We show
that there exists an adversary B taking part in consistency game of E for which

conPKEadv[B,E] = conPKEadv[A,E′],

and then the consistency of E′ follows from the consistency of E. The adversary B is defined as
follows:

1. Invoke A and get parameters (N, t, f, t†). Forward these parameters to the challenger.

2. Receive (pk, pkc, sk1, . . . , skN) from the challenger. Sample (mpk, pkc′,msk1, . . . ,mskN) ←$

IBE.G(N, t) and send (pk′, pkc′′, sk′1, . . . , sk
′
N) to A, where pk′ = pk, pkc′ = (pkc, pkc′), and

sk′i = (ski,mpk,mski) for i = 1, . . . , N .

3. A outputs (ctxt, ad,J1, {ds1j}′j∈J1
, dc1,J2, {ds2j}′j∈J2

, dc2), where ds ′1j =

(dc1, ctxt1j , sk1,dc,j) for j ∈ J1 and ds ′2j = (dc2, ctxt2j , sk2,dc,j) for j ∈ J2. For
i ∈ {1, 2} and j ∈ J i, B computes ds i,j ← IBE.D(pkc′, adc,J i, {ski,dc,j}j∈Ji , ctxtij).
If any of these invocation results in an output blame(J∗), then B aborts. Other-

wise, B computes mi ← E.C(pkc, ctxt, ad,J†
i , {ds i,j}j∈J†

i
) for i ∈ {1, 2} and outputs

(ctxt, ad,J†
1, {ds1j}j∈J†

1
, dc1,J

†
2, {ds2j}j∈J†

2
, dc2). Here, for i ∈ {1, 2}, the set J†

i is the

canonical subset of size t† of J as computed by C ′.

Observe that whenever A wins its game, so does B, and the lemma follows.

6.3 Security

We next prove security of the derived threshold decryption scheme E′ defined in Section 6.1. The
scheme is high-threshold CCA secure if the underlying threshold decryption scheme E is low-
threshold CCA secure and the IBE scheme IBE is semantically secure. We have already defined the
notion of low-threshold CCA security for E. Let us now define the notion of semantic security we
will require for IBE. As usual, this is done via a game.

Attack Game 6 (IBE Semantic Security). For a threshold IBE scheme IBE = (G,K,E,D),
defined over (ID,M), and for a given adversary A, we define two experiments.

Experiment b (b = 0, 1):

• Setup: the adversary sends polynomially-bounded allowable parameters N and t, where 0 <
t ≤ N , and a subset L ⊆ {1, . . . , N}, where ∆ := t−|L| > 0, to the challenger. The challenger
computes (mpk, pkc,msk1, . . . ,mskN) ←$ G(N, t), and sends mpk, pkc, and {mskℓ}ℓ∈L to the
adversary.

• A then makes a series of queries to the challenger. Each query is one of two types:

– Key query: each key query consists of a pair (id, i) ∈ ID×{1, . . . , N}\L. The challenger
computes the secret key sk← K(mski, id), and sends sk to A.

– Encryption query: a query consists of a triple (id,m0,m1) ∈ ID ×M2, where m0 and
m1 are messages of the same length. The challenger computes ctxt ←$ E(mpk, id,mb)
and sends ctxt to A.

26

We require that for every identity used in an encryption query, the adversary issues at most
∆− 1 key queries for that identity.

• At the end of the game, A outputs a bit b ∈ {0, 1}.

If Wb is the event that A outputs 1 in Experiment b, define A’s advantage with respect to IBE as

SSadv[A, IBE] :=
∣∣∣Pr[W0]− Pr[W1]

∣∣∣.
Definition 9 (IBE Semantic Security). A threshold IBE scheme is semantically secure if
for all efficient adversaries A, the value SSadv[A, IBE] is negligible.

We can now prove security of the construction E′ from Section 6.1. This is captured in the
following theorem.

Theorem 3. If E is (context-free) low-threshold CCA secure and IBE is semantically secure, then
E′ is a context-dependent high-threshold CCA secure.

Proof. Let A be an efficient adversary attacking E′ in the high-threshold CCA security attack game.
We prove that there exist efficient adversaries B and C such that

hthCCAadv∗[A,E′] ≤ SSadv[B, IBE] + lthCCAadv∗[C,E] + CollA. (5)

Here, we are using the bit-guessing advantages for the low-threshold and high-threshold decryption
schemes E and E′, as discussed in Remark 7. In addition, CollA is a certain ciphertext collision
probability, which we will show is negligible under the assumption that E is low-threshold CCA
secure (in fact, just semantically secure).

We present a sequence of games, Game 0, Game 1, Game 2. In each Game j, pj denotes the
adversary’s guessing probability, that is, the probability that the adversary correctly guesses the
hidden bit b of the challenger.

Game 0. This is the bit-guessing version of Attack Game 3, for the encryption scheme E′ and
adversary A. Since future games will change how encryption and decryption queries are answered,
we explicitly write how they are answered in this game:

• Encryption queries: On input (m0,m1, ad), the challenger computes ctxt ←$ E.E(pk,mb, ad)
and replies with ctxt. If (ctxt, ad) /∈ Domain(Map), then it also initializes Map[ctxt, ad]← ∅.

• Decryption queries: On input (ctxt, ad, dc, i) that meets either the precondition (D1) ∨ (D2),
the challenger computes the E-decryption share ds i ←$ E.D(ski, ctxt, ad, dc), sets the aug-
mented decryption context adc ← (ctxt, ad, dc), encrypts ctxti ←$ IBE.E(mpk, adc, ds i),
and derives the identity key skdc,i ←$ IBE.K

(
mski, adc

)
. It then replies to A with

ds ′i := (dc, ctxti, skdc,i). If (ctxt, ad) ∈ Domain(Map), then the challenger also updates
Map[ctxt, ad]← Map[ctxt, ad] ∪ {(dc, i)}.

Game 1. In this game, we modify the adversary so that if a ciphertext/associated-data pair
(ctxt, ad) associated with an encryption query ever matches that of a previous decryption query,
then the adversary immediate aborts. We have

|p1 − p0| ≤ CollA, (6)

27

where CollA is the probability that this “collision abort” rule is triggered in Game 1. We know that
CollA is negligible assuming E is low-threshold CCA secure. This is a standard fact that holds for
any semantically secure public-key encryption scheme. In fact, for most schemes (such as those in
[54]), this holds unconditionally, as the encryption algorithm produces ciphertexts with very high
entropy.

Game 2. In this game, we modify how decryption queries are answered. On a query of the form
(ctxt, ad, dc, i) ∈ Ctxt × AD ×DC × {1, . . . , N} \ L, the challenger first checks if (ctxt, ad) ∈
Domain(Map). If not, then it answers the query as in Game 0. If (ctxt, ad) ∈ Domain(Map), then
the challenger computes ctxti ←$ IBE.E(mpk, adc, 0) instead of ctxti ←$ IBE.E(mpk, adc, ds i). That
is, the challenger encrypts the message 0 to identity adc using IBE, instead of encrypting ds i.

It is fairly straightforward to see that |p2−p1| is negligible assuming IBE is semantically secure.
Specifically, there exists an adversary B, with essentially the same running time as A, such that

|p2 − p1| = SSadv[B, IBE]. (7)

Adversary B runs in the obvious way, running A, but supplying its challenger triples (adc, ds i, 0),
and outputting whatever A outputs. We note that the point of introducing the “collision abort”
in Game 1 was to ensure the decryption precondition (D1) ∨ (D2) enforced in the Attack Game 3
implies that in Attack Game 6, the requirement that “for every identity used in an encryption
query, the adversary issues at most ∆− 1 key queries for that identity” is always met.

It also is fairly straightforward to see that |p2 − 1/2| is negligible assuming E is low-threshold
CCA secure. Specifically, there exists an adversary C, with essentially the same running time as A,
such that

|p2 − 1/2| = lthCCAadv[C,E]. (8)

Adversary C runs in the obvious way, exploiting the fact that in Game 2, when processing decryption
queries, the challenger only needs to decrypt ciphertexts when the more restrictive precondition
(D1) holds, in accordance with the rules of the low-threshold decryption attack game.

(5) follows immediately from (6), (7), and (8).

7 Applications

7.1 Encrypted atomic broadcast

A core primitive underlying blockchain is atomic broadcast, which allows a group of parties to
agree on a sequence of transactions submitted by clients. An adversary who controls the network
and some of the parties can censor and re-order these transactions, potentially obtaining monetary
gains at the expense of other clients. To effectively carry out such an attack, the adversary typically
needs to know the contents of the transactions submitted by these other clients. Thus, one way
to mitigate against such an attack is to allow clients to submit encrypted transactions. Such an
encrypted transaction should only be decrypted after it has been added to the sequence of agreed
upon transactions.

To implement this idea, one could use a public-key encryption scheme that supports threshold
decryption, so that parties release their decryption share of an encrypted transaction only after that
transaction has been added to the sequence of agreed upon transactions. Unfortunately, this simple
approach adds an extra round of communication to the protocol. The goal of this section is to show

28

how to use a context-dependent high-threshold decryption scheme to do this without incurring an
extra round of communication. We focus on ubiquitous leader-based atomic broadcast protocols
that operate in the partially synchronous model, such as PBFT [25], HotStuff [43], Tendermint [19],
ICC [21], and Simplex [26].

To this end, we first present a simple framework that allows us to capture the aspects of these
(and other) protocols that are relevant to our particular task, while ignoring (the many) details
that are not relevant. Then we show how we can “piggyback” the transmission of decryption shares
with other protocol messages, so that transmitting these decryption shares does not increase the
latency in the optimistic case (where the leader is honest and the network is synchronous). As
we will see, using a CCA-secure context-dependent high-threshold decryption scheme, provides the
confidentiality property we want. We will also see that using a high-threshold for decryption is not
enough by itself — to achieve confidentiality, we need to use the decryption context mechanism in
a particular way.

7.1.1 A simple framework for a general class of atomic broadcast protocols.

As mentioned above, we first present a simple framework that allows us to capture the aspects of
several atomic broadcast protocols that are relevant to our particular task, while ignoring details
that are not relevant. This framework applies to a number of protocols, including PBFT, HotStuff,
Tendermint, ICC, and Simplex. We stress that our goal here is not to fully describe and analyze
these protocols, but rather, to identify the common characteristics of these protocols that are
relevant to our task. The reader who is familiar with any one of these protocols should be able to
easily convince themselves that this framework applies to that protocol. We assume that there are
n parties running the protocol, and that f is a bound on the number of these parties that may be
corrupt. We denote by f ′ the number of parties that are actually corrupt in a given execution of
the protocol.

In this framework, an atomic broadcast protocol proceeds by building a (directed) tree of locked
blocks. Each such block is a node in this tree, and has a unique parent. We assume a canonical
genesis block that is the root of the tree. Each block also contains a payload, which is a sequence of
transactions, some of which may be encrypted. The same transaction may appear in more than one
block. At any given point in time, the parties running the protocol may have somewhat different
views of the tree of locked blocks; however, each such view will be a subtree of this tree also rooted
at the same genesis block.

Within this tree of locked blocks, the protocol identifies a path of committed blocks. At any
given point in time, the parties running the protocol may have somewhat different views of the
path of committed blocks. However, each such view will be a subpath of this path, also rooted at
the genesis block. The ordered sequence of transactions produced by the protocol is derived from
the payloads of the blocks along the path of committed blocks.

Now, different protocols may use different mechanisms for building the tree of locked blocks
and identifying the path of committed blocks, and we shall not concern ourselves with the details
of these mechanisms, except as follows. Namely, we assume that a voting mechanism is used to
identify committed blocks. Specifically, at various points in time, a party may cast a commit vote
for a block in its view of the tree of locked blocks. The exact logic by which the protocol uses
these commit votes to identify committed blocks is not relevant, except that we require that the
following condition holds:

29

Commit Inclusion Condition: if at least n − f − f ′ honest parties vote to commit a block B,
then B must eventually be included on the path of committed blocks.

This condition is typically used to prove the safety property of the atomic broadcast protocol. How
this condition is enforced depends on the specific logic of the protocol.

7.1.2 Piggybacking decryption shares.

We assume that encrypted transactions are encrypted using a CCA-secure context-dependent
threshold decryption scheme with decryption threshold t := n− f . We assume that we can derive
a decryption context from any given block in the tree of locked blocks in such a way that different
blocks in the tree yield different decryption contexts. This can easily be achieved by deriving the
decryption context for a given block by hashing its payload and any other necessary data to dis-
tinguish that block from other blocks in the tree. For many protocols, such a decryption context
is readily at hand in the form of a “block hash”.

We then augment the atomic broadcast protocol as follows: for a given block B in the tree
of locked blocks, a party will broadcast its decryption share of every encrypted transaction in the
payload of B using the decryption context derived from B, when:

• that party casts a commit vote for a block B, or

• that party identifies B as a committed block.

In addition, whenever a party has identified a block B as a committed block, it will wait for n− f
corresponding decryption shares to decrypt any and all encrypted shares in the payload of B.

Confidentiality. It should be clear that from the security properties of the threshold decryption
scheme, and the Commit Inclusion Condition, we have the following confidentiality property:

if an adversary learns anything about the plaintexts of the encrypted transactions in
the payload of a block B, then B must eventually be included on the path of committed
blocks.

To see this in more detail, suppose the adversary obtains enough decryption shares to obtain any
information about the plaintexts of any encrypted transactions in a block B. By the security
properties of the threshold decryption scheme, the adversary must have obtained at least t− f ′ =
n − f − f ′ such shares from honest parties, with the same decryption context. So consider the
point in time when the last such share was generated by an honest party. Suppose that at this
time, some honest party has already identified B as a committed block. Then we know that B is
already on the path of committed blocks. Otherwise, all of these n− f − f ′ shares must have been
piggybacked with commit votes for B. But then, by the Commit Inclusion Condition, that B must
eventually be included on the path of committed blocks.

The need for a decryption context. We stress that the use of a block-specific decryption
context is essential to realize the confidentiality property. This is because the same encrypted
transaction c may be included in different payloads of blocks in the tree of locked blocks. If we
piggyback decryption shares for c as above, but do not use decryption contexts, then an adversary
could obtain a few decryption shares for c from one block B1, and a few more from another block

30

B2, so that these shares can be aggregated together to decrypt c, and yet neither B1 nor B2 will
ever be included in the path of finalized blocks. However, with decryption contexts, the adversary
cannot aggregate decryption shares from disparate blocks in this way. That is the key feature of
decryption contexts that is essential here.

Latency. This piggybacking technique can increase the latency of the protocol by one round of
communication in the worst case. However, the latency will typically not increase at all in optimistic
case. This is certainly true for the protocols PBFT, HotStuff, Tendermint, ICC, and Simplex, as
the reader familiar with any of these protocols may easily verify.

7.2 Encrypted auction systems

To illustrate the versatility of context-dependent threshold decryption we describe one more ap-
plication, this time in the context of sealed-bid auctions. For brevity we will keep the discussion
informal.

Consider an encryption-based sealed-bid auction system. Bidders submit encrypted bids, en-
crypted with respect to some public key pk. The corresponding secret decryption key is shared
among N trusties so that t decryption shares are needed to decrypt a given encrypted bid. Bidders
submit their encrypted bids by posting them on a public bulletin board, and bids are accepted up
to some preset deadline T . After time T the trustees post on the bulletin board the decryption
shares for all submitted bids. Anyone can then decrypt the set of submitted bids and determine the
winner. The system is not meant to provide privacy for losing bids; the intent is that all submitted
bids will be made public once the auction is over. We assume that the bulletin board is append-only
and censorship resistant so that bids cannot be censored or changed after they are posted.

Here we focus on the sealed-bid aspect of the system. In particular, let us modify the mechanism
a bit so that the deadline T is chosen dynamically based on certain conditions, such as the contents
of the bulletin board, or some external source of randomness. For example, in a candle auction
the deadline T is sampled dynamically from a distribution so that bidders do not know ahead of
time the exact time when the auction will end (historically, the auction ended when a candle flame
expired, hence the name). This is intended to prevent all the bids from coming in at the last
minute.

Now, suppose the auction system is implemented using a context-free threshold decryption
scheme. Suppose that at time T1 some set of t/2 trustees are fooled into believing that the auction
is over. Consequently, they incorrectly post their decryption shares to the bulletin board. Shortly
after, they realize their mistake, but they can no longer remove the decryption shares from the
bulletin board. Later, at time T2 > T1, some other set of t/2 trustees are fooled into believing
that the auction is over. They also post their decryption shares to the bulletin board. With a
context-free threshold decryption scheme, this will cause all bids to become available in the clear.
The problem is that neither at time T1 nor time T2 was there a quorum of trustees who believed
that the auction was over, and yet the bids are decrypted.

This problem can be easily avoided using a context-dependent scheme. When the trustees
compute a decryption share, they use their perceived deadline T as the decryption context. Now
the bids will be decrypted only when t or more trustees believe that the auction ended at time T .
The bids remain secure even if the problematic situation described in the previous paragraph takes
place.

31

8 Stronger notions of security

In this section, we briefly sketch stronger definitions of CCA security than that presented in Sec-
tion 2.1.2. We first consider adaptive corruptions. Then we give a simulation based definition.

8.1 Adaptive corruptions

Attack Game 3 models static corruptions in that the adversary must select the set L of corrupt
parties at the very beginning of the attack game. We can modify the game to model adaptive
corruptions as follows.

The setup stage is exactly as in Attack Game 3. In particular, the adversary specifies a set of
corrupt parties L in the setup stage. In addition, we add a new type of query called a corruption
query, in which the adversary specifies the index ℓ of an honest party to corrupt. The challenger
adds ℓ to the set L and gives skℓ to the adversary. For low-threshold security, such a corruption
query is only allowed if it would not make the size of L exceed the corruption bound f . For high-
threshold security, corruption queries must also satisfy another precondition, which we specify in
(9) below.

Encryption queries are processed just as in Attack Game 3. Decryption queries are processed
just as in Attack Game 3, except that for high-threshold security, the precondition (D2) will be
modified, as specified in (9) below. For low-threshold security the adversary cannot issue decryption
queries for any of the challenge ciphertexts it obtains in response to encryption queries, or more
precisely, precondition (D2) in Attack Game 3 is deleted, as in the static corruption setting.

As mentioned above, for high-threshold security, corruption and decryption queries must satisfy
a certain precondition. This precondition is that processing the query would not cause the following
condition to hold:

for some (ctxt, ad) ∈ Domain(Map) and for some dc, we have

|L|+
∣∣{j ∈ [N] \L : (dc, j) ∈ Map[ctxt, ad]}

∣∣ ≥ t. (9)

We do not claim that the schemes presented in this paper are secure against adaptive cor-
ruptions. Our proofs of security under the stated assumptions cannot be easily modified to prove
security against adaptive corruptions. However, it seems plausible that these schemes, as presented,
may be secure against adaptive corruption under stronger (but still reasonable) assumptions.

Context-free low vs. high threshold security. When considering adaptive corruptions in the
context-free setting (i.e., when the context space DC contains at most one element), we observe
that low-threshold security and high-threshold security are equivalent notions. This is captured in
the following theorem.

Theorem 4. Let E be a context-free threshold decryption scheme, and let us require that f = t− 1
in Attack Game 3. Then if E is low-threshold CCA secure under adaptive corruptions, it is also
high-threshold CCA secure under adaptive corruptions.

Proof. We wish to show that for every adversary A that breaks the high-threshold security of E
there is an adversary B that breaks its low-threshold security with adaptive corruptions. To that
end, we consider modified attack games, in which the adversary is restricted to issuing a single

32

encryption (challenge) query. This notion is referred to as 1CCA security in [16, Ch. 12]. It is well-
known that this change incurs a multiplicative loss in security that is bounded by the number of
encryption queries issued by the adversary; in particular, it is polynomially-bounded for polynomial-
time adversaries. Boneh and Shoup [16, Th. 12.1] gave a proof in the setting of CCA-secure public
key encryption, which readily extends to the threshold case as well.3

Now, let A be an adversary for the high-threshold setting as above. The adversary B is defined
similarly to A with one modification: after A issues its single encryption query with associated
data ad∗ and obtains a challenge ciphertext ctxt∗, it may issue decryption queries with ctxt∗ and
ad∗ to obtain partial decryptions (as it is a high-threshold adversary). Instead, whenever A issues
a query of the form (ctxt∗, ad∗, i), the low-threshold adversary instead issues a corruption query
for party i. Then, using ski, B can compute the response to the query (ctxt∗, ad∗, i) on its own.
Note that B never issues a decryption query of the form (ctxt∗, ad∗, i) after getting the challenge
ciphertext. Hence, whenever A breaks the high-threshold security of E, B breaks its low-threshold
security.

Theorem 4 is specific to the setting of context-free threshold decryption and adaptive cor-
ruptions. Both of these restrictions seem necessary:

• The adversary B from the proof corrupts parties adaptively, after observing the challenge
ciphertext. Hence, it is not an admissible adversary for the static corruptions attack game,
as defined in Section 2.1.2. It is not hard to come up with examples of threshold decryp-
tion schemes that are low-threshold secure but are not high-threshold secure in the static
corruptions setting.

• The notions of adaptive low-threshold and adaptive high-threshold security are also different
when considering context-dependent threshold decryption. The reason is that with a decryp-
tion context, the adversary can obtain decryption shares for the same challenge ciphertext
from more than t parties. For example, for some u > 1 it can obtain u · (t − 1) decryption
shares from u · (t−1) distinct parties under u different decryption contexts. These decryption
queries cannot be reduced by the adversary B to corruption queries since this would require
u · (t − 1) key corruptions, which is forbidden by the attack game. In fact, any CCA-secure
threshold decryption scheme that simply ignores the context is an example that separates
high-threshold security from low-threshold security in the context-dependent setting. For
such a scheme, any t decryption shares for the challenge ciphertext using different decryp-
tion contexts suffice to decrypt the challenge ciphertext, so the scheme is not high-threshold
secure. On the other hand, the scheme is context-dependent low-threshold secure since, as
discussed in Section 1, context dependence has no effect in the low-threshold setting: any
context-free CCA-secure threshold decryption is also context-dependent low-threshold secure
as well because the adversary cannot issue decryption queries for the challenge ciphertext.

8.2 Simulation CCA security

We now sketch an alternative to the game-based definition of security in Section 2.1.2. This defini-
tion is a simulation-based definition that models threshold decryption as a service, and which may
make it much easier to analyze systems that use threshold decryption. The definition presented here

3The one difference is that in the high-threshold setting, the reduction also has to forward partial decryption
queries for the challenge ciphertext to its own challenger.

33

is closely related to that in [23], but with some differences and generalizes. Our definition is general
enough to allow us to model any combination of high/low-threshold security and static/adaptive
corruptions. To define this notion of security, we describe both a real-world and an ideal-world
attack game.

The real world. In the real-world attack game, the challenger runs the setup stage just as in
Attack Game 3, so that L is the set of corrupt parties and Map is an initially empty associative
array. There are also encryption, decryption, and corruption queries.

• Every encryption query consists of a pair (m, ad) ∈ M × AD. The challenger does the
following:

– compute ctxt←$ E(pk,m, ad),
– if (ctxt, ad) /∈ Domain(Map), then initialize Map[ctxt, ad]← ∅,
– send ctxt to the adversary.

• Each decryption query consists of a tuple

(ctxt, ad, dc, i) ∈ Ctxt×AD ×DC × [N] \L.

The challenger does the following:

– if (ctxt, ad) ∈ Domain(Map), then update

Map[ctxt, ad]← Map[ctxt, ad] ∪ {(dc, i)},

– compute D(ski, ctxt, ad, dc) and send this to the adversary.

• Each corruption query specifies an index ℓ ∈ [N] \ L. Provided |L| < f , the challenger adds
ℓ to L and sends skℓ to the adversary.

The ideal world. The ideal-world attack game is defined relative to a simulator Sim. The setup
phase is the same as in the real world, except that instead of invoking G(N, t, f), the challenger
invokes Sim on input (setup, N, t, f,L) to obtain (pk, pkc, {skℓ}ℓ∈L).

An encryption query is processed the same as in the real world, except that instead of invoking
E(pk,m, ad), the challenger invokes Sim on input (enc, |m|, ad), where |m| is the length on m, to
obtain ctxt. The ciphertext/associated-data pair (ctxt, ad) returned by must be distinct from that
associated with any previous encryption or decryption query.

A decryption query is processed the same as in the real world, except that instead of invoking
D(ski, ctxt, ad, dc), the challenger invokes Sim on input (dec, i, ctxt, ad, dc, leakage). The value
leakage will be discussed below.

A corruption query is processed the same as in the real world, expect that skℓ is obtained by
invoking Sim on input (cor, ℓ, leakage). The value leakage will be discussed below.

We now discuss the value leakage given to the simulator in processing decryption and corruption
queries. Consider an encryption query with corresponding message m and ciphertext/associated-
data pair (ctxt, ad). Initially, we shall say that this encryption query is protected. Such a query

34

may later become unprotected when the values Map or L change in processing either a decryption
or corruption query. Specifically, it becomes unprotected when

|L|+
∣∣{j ∈ [N] \L : (dc, j) ∈ Map[ctxt, ad]}

∣∣ ≥ t,

for some dc. In processing either a decryption or corruption query, the value leakage is set to the set
of all triples (ctxt, ad,m) corresponding to encryption queries that have just become unprotected.
Note that for a decryption query, this set has size at most 1.

Definition of security. We say a threshold decryption scheme is simulation CCA secure
if there is an efficient simulator Sim such that no efficient adversary can effectively distinguish
between the real-world attack game and the ideal-world attack game with Sim.

Random oracles. If the threshold scheme is based on a random oracle, then we augment both
the real-world and ideal-world attack games as follows. In the real world, the challenger processes
random oracle queries faithfully. In the ideal world, all random oracle queries are forwarded to
Sim.

Static corruption. The above definition models adaptive corruptions. To model static corrup-
tions, we simply disallow corruption queries. The adversary can still corrupt a set of parties in the
setup stage.

Low-threshold security. The above definition models high-threshold security. To model low-
threshold security, we simply change the definition of when an encryption query becomes un-
protected. Specifically, an encryption query with corresponding ciphertext/associated-data pair
(ctxt, ad) becomes unprotected whenever the adversary makes a decryption query (ctxt, ad, dc, i)
for some dc and i ∈ [N] \L.

Relation between game-based and simulation-based CCA security. It is fairly obvious
that simulation-based CCA security implies game-based CCA security (this holds for all variants,
low/high and static/adaptive). While the converse does not hold in general, it is easy to build a
simulation-based CCA secure scheme E′ from any game-based CCA scheme E — in the random
oracle model. This is a standard type of “hybrid” construction. The scheme E′ encrypts a message
m with associated data ad by choosing a random key k, computing c ← F (k) ⊕ m, and then
encrypting k using the encryption algorithm for E with associated data (ad, c). Here, F is modeled
as a random oracle. Moreover, it is straightforward to prove that the scheme Ehtdh1 in Section 3
is itself simulation-based CCA secure under the LOMDH assumption, provided the underlying
symmetric encryption scheme Es encrypts m as c ← F (k) ⊕m, where (again) F is modeled as a
random oracle.

Relation to universal composability. While our simulation-based definition is not explicitly
given in the universal composability framework [22], it is compatible with it, and can easily be used
to analyze complex systems within that framework. The essential point is the that adversary in
our definition plays the role of the environment in the UC framework, while our simulator plays
the role of the ideal world adversary in the UC framework.

35

Applications. Simulation CCA security better models a system where all ciphertexts may even-
tually be decrypted, but we want to ensure that information about their contents leaks only under
the right conditions. For example, we already discussed the application of high-threshold context-
dependent decryption to encrypted atomic broadcast in Section 7.1. Simulation-CCA security is a
more natural notion of security to use in this application. Indeed, using it, one could implement
an ideal functionality for atomic broadcast that works (roughly speaking) as follow:

• An honest party may submit a private transaction tx to the functionality.

• Instead of encrypting tx , the ideal functionality generates a “simulated ciphertext” ctxt, which
does not depend on tx (other than perhaps its length). The value simply ctxt plays the role
of an “opaque handle” for tx that is given to the adversary.

• At some point in time, the adversary may choose to specify to the functionality that the
transaction with the handle ctxt should be appended to the common output sequence of
transactions. Only at this point in time does the functionality leak tx to the adversary. Note
that this may occur before any honest party outputs this transaction, but its location in the
common output sequence is nevertheless fixed at this time.

9 Conclusions and future work

Our work introduces new security notions for CCA secure threshold decryption, as well as a new
decryption context capability. This opens up new directions for future work, specifically, support-
ing these new capabilities in recently-introduced variants of threshold decryption. We give three
examples.

Batch decryption. Choudhuri et al. [28] recently introduced the notion of batched threshold
decryption. Their work considers the setting in which multiple ciphertexts need to be decrypted, as
is the case in the applications discussed in Section 7. At a high level, they propose a mechanism by
which each decrypting party can compute a single decryption share for a subset of the ciphertexts,
whose size does not grow with the number of decrypted ciphertexts. If enough decryption shares
are gathered for the same subset of ciphertexts, they can be decrypted. Ciphertexts outside this
subset remain undecrypted and the underlying plaintexts remain hidden. This is similar in spirit to
our notion of context-dependence, but with a few differences that make the notions incomparable.
First, the only contexts considered by Choudhuri et al. is the subset of ciphertexts to be decrypted,
whereas we support arbitrary contexts. Second, in their work, encryptions are done with respect to
an epoch, and only one batch of ciphertexts can be decrypted in each epoch. On the other hand, in
order to decrypt B ciphertexts in our notion of context-dependent high-threshold decryption, each
decrypting party must compute B separate decryption shares and communicate all of them to the
combiner, making our constructions less communication efficient.

It is thus an interesting open question whether one can get the best of both worlds: a context-
dependent high-threshold decryption, in which it is possible to produce short decryption shares for
batches of ciphertexts.

Silent setup. Garg et al. [41] constructed a threshold decryption scheme with “silent setup”, in
which key generation is done locally by the decrypting parties. Concretely, each decrypting party

36

generates their own pair of secret and public keys. Later, the public keys of the “active” parties
can be publicly aggregated to yield short public encryption and aggregation keys. Garg et al. only
consider semantic security, and it is an interesting direction for future work to construct a high-
threshold decryption with silent setup, both in the context-free and context-dependent settings.

More general access structures. All the definitions and constructions in this paper generalize
to support more general access structures beyond threshold structures. The general techniques
developed for implementing an access structure as a monotone span program [16, Ch. 22.5] should
apply here directly.

Acknowledgments

This work on partially supported by NSF, the Simons Foundation, and a grant from Protocol Labs.

References

[1] Abe, M., Fehr, S.: Adaptively secure feldman vss and applications to universally-composable
threshold cryptography. In: Franklin, M. (ed.) CRYPTO 2004. pp. 317–334. Springer (2004)

[2] Agarwal, A., Fernando, R., Pinkas, B.: Efficiently-thresholdizable batched identity based
encryption, with applications. Cryptology ePrint Archive, Paper 2024/1575 (2024), https:
//eprint.iacr.org/2024/1575

[3] Bebel, J., Ojha, D.: Ferveo: Threshold decryption for mempool privacy in BFT networks.
Cryptology ePrint Paper 2022/898 (2022), https://eprint.iacr.org/2022/898

[4] Bellare, M., Crites, E.C., Komlo, C., Maller, M., Tessaro, S., Zhu, C.: Better than adver-
tised security for non-interactive threshold signatures. In: Dodis, Y., Shrimpton, T. (eds.)
CRYPTO 2022. LNCS, vol. 13510, pp. 517–550. Springer (2022). https://doi.org/10.1007/978-
3-031-15985-5 18

[5] Bellare, M., Tessaro, S., Zhu, C.: Stronger security for non-interactive threshold signatures:
BLS and FROST. Cryptology ePrint Archive, Paper 2022/833 (2022), https://eprint.iacr.
org/2022/833

[6] Blakley, G.R., Meadows, C.: Security of ramp schemes. In: CRYPTO ’84. Lecture Notes in
Computer Science, vol. 196, pp. 242–268. Springer (1984)

[7] Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the Gap-
Diffie-Hellman-Group signature scheme. In: PKC 2003. pp. 31–46. Springer (2002)

[8] Boneh, D., Boyen, X., Halevi, S.: Chosen ciphertext secure public key threshold encryption
without random oracles. In: Proceedings of the 2006 The Cryptographers’ Track at the RSA
Conference on Topics in Cryptology. p. 226–243. CT-RSA’06, Springer-Verlag (2006)

[9] Boneh, D., Bünz, B., Nayak, K., Rotem, L., Shoup, V.: Context-dependent threshold de-
cryption and its applications. Cryptology ePrint Archive, Paper 2025/279 (2025), https:

//eprint.iacr.org/2025/279

37

https://eprint.iacr.org/2024/1575
https://eprint.iacr.org/2024/1575
https://eprint.iacr.org/2022/898
https://eprint.iacr.org/2022/833
https://eprint.iacr.org/2022/833
https://eprint.iacr.org/2025/279
https://eprint.iacr.org/2025/279

[10] Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Proc. of
CRYPTO 2001. Lecture Notes in Computer Science, vol. 2139, pp. 213–229. Springer (2001).
https://doi.org/10.1007/3-540-44647-8 13

[11] Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen, P.M.R., Sahai, A.:
Threshold cryptosystems from threshold fully homomorphic encryption. In: CRYPTO 2018.
p. 565–596. Springer (2018). https://doi.org/10.1007/978-3-319-96884-1 19

[12] Boneh, D., Laufer, E., Tas, E.N.: Batch decryption without epochs and its application to
encrypted mempools. Cryptology ePrint Archive, Paper 2025/1254 (2025), https://eprint.
iacr.org/2025/1254

[13] Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs and their
applications. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology – CRYPTO 2013. pp.
410–428. Springer (2013)

[14] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: ASIACRYPT
2001. LNCS, vol. 2248, pp. 514–532. Springer (2001). https://doi.org/10.1007/3-540-45682-1 -
30

[15] Boneh, D., Partap, A., Rotem, L.: Accountability for misbehavior in threshold decryption via
threshold traitor tracing. In: CRYPTO 2024. LNCS, vol. 14926, pp. 317–351. Springer (2024).
https://doi.org/10.1007/978-3-031-68394-7 11

[16] Boneh, D., Shoup, V.: A Graduate Course in Applied Cryptography (version 0.6) (January
2023), available at https://toc.cryptobook.us/

[17] Bormet, J., Faust, S., Othman, H., Qu, Z.: BEAT-MEV: Epochless approach to batched
threshold encryption for MEV prevention. ePrint 2024/1533 (2024)

[18] Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based tech-
niques. In: ACM CCS ’05. p. 320–329 (2005). https://doi.org/10.1145/1102120.1102162

[19] Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus (2018),
arXiv:1807.04938, http://arxiv.org/abs/1807.04938

[20] Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: practical asyn-
chronous byzantine agreement using cryptography (extended abstract). In: Proceedings of the
Nineteenth Annual ACM Symposium on Principles of Distributed Computing. pp. 123–132
(2000)

[21] Camenisch, J., Drijvers, M., Hanke, T., Pignolet, Y., Shoup, V., Williams,
D.: Internet computer consensus. In: PODC ’22. pp. 81–91. ACM (2022).
https://doi.org/10.1145/3519270.3538430

[22] Canetti, R.: Universally composable security. J. ACM 67(5), 1–94 (2020)

[23] Canetti, R., Goldwasser, S.: An efficient Threshold public key cryptosystem secure against
adaptive chosen ciphertext attack. In: Stern, J. (ed.) EUROCRYPT ’99. Lecture Notes in Com-
puter Science, vol. 1592, pp. 90–106. Springer (1999). https://doi.org/10.1007/3-540-48910-X 7

38

https://eprint.iacr.org/2025/1254
https://eprint.iacr.org/2025/1254
https://toc.cryptobook.us/
http://arxiv.org/abs/1807.04938

[24] Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption.
In: EUROCRYPT 2004. pp. 207–222. Springer (2004)

[25] Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM Trans.
Comput. Syst. 20(4), 398–461 (2002). https://doi.org/10.1145/571637.571640

[26] Chan, B.Y., Pass, R.: Simplex consensus: A simple and fast consensus protocol. In:
TCC 2023. Lecture Notes in Computer Science, vol. 14372, pp. 452–479. Springer (2023).
https://doi.org/10.1007/978-3-031-48624-1 17

[27] Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure computation
from random error correcting codes. In: EUROCRYPT 2007. Lecture Notes in Computer
Science, vol. 4515, pp. 291–310. Springer (2007)

[28] Choudhuri, A.R., Garg, S., Piet, J., Policharla, G.: Mempool privacy via batched threshold
encryption: Attacks and defenses. In: USENIX Security 2024 (2024)

[29] Choudhuri, A.R., Garg, S., Policharla, G.V., Wang, M.: Practical mempool privacy via one-
time setup batched threshold encryption. Cryptology ePrint Archive, Paper 2024/1516 (2024),
https://eprint.iacr.org/2024/1516

[30] Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Proceedings of the Second International
Conference on Theory of Cryptography. p. 342–362. TCC’05, Springer-Verlag (2005).
https://doi.org/10.1007/978-3-540-30576-7 19

[31] Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In: CRYPTO 1998. p. 13–25. Springer-Verlag (1998)

[32] Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L., Juels, A.: Flash
boys 2.0: Frontrunning in decentralized exchanges, miner extractable value, and consensus
instability. In: IEEE Computer Society Press. pp. 910–927 (2020)

[33] Das, S., Ren, L., Yang, Z.: Adaptively secure threshold ElGamal decryption from DDH.
Cryptology ePrint Archive, Paper 2025/1477 (2025), https://eprint.iacr.org/2025/1477

[34] De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function se-
curely. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory
of Computing. p. 522–533. STOC ’94, Association for Computing Machinery (1994).
https://doi.org/10.1145/195058.195405

[35] Desmedt, Y.: Society and group oriented cryptography: A new concept. In: CRYPTO 1987.
p. 120–127. Springer-Verlag (1987)

[36] Desmedt, Y.: Threshold cryptosystems. In: AUSCRYPT ’92. pp. 1–14. Springer Berlin Hei-
delberg (1992)

[37] Devevey, J., Libert, B., Nguyen, K., Peters, T., Yung, M.: Non-interactive CCA2-secure
threshold cryptosystems: Achieving adaptive security in the standard model without pairings.
In: PKC 2021. LNCS, vol. 12710, pp. 659–690. Springer (2021). https://doi.org/10.1007/978-
3-030-75245-3 24

39

https://eprint.iacr.org/2024/1516
https://eprint.iacr.org/2025/1477

[38] Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: TCC’05. p. 188–209.
Springer (2005). https://doi.org/10.1007/978-3-540-30576-7 11

[39] Dziembowski, S., Faust, S., Luhn, J.: Shutter network: Private transactions from threshold
cryptography. ePrint 2024/1981 (2024), https://eprint.iacr.org/2024/1981

[40] Fouque, P.A., Pointcheval, D.: Threshold cryptosystems secure against chosen-ciphertext at-
tacks. In: ASIACRYPT 2001. p. 351–368. Springer-Verlag (2001)

[41] Garg, S., Kolonelos, D., Policharla, G., Wang, M.: Threshold encryption with silent setup. In:
Reyzin, L., Stebila, D. (eds.) CRYPTO 2024. Lecture Notes in Computer Science, vol. 14926,
pp. 352–386. Springer (2024)

[42] Groth, J.: Non-interactive distributed key generation and key resharing. Cryptology ePrint
Archive, Paper 2021/339 (2021), https://eprint.iacr.org/2021/339

[43] Jalalzai, M.M., Niu, J., Feng, C.: Fast-hotstuff: A fast and resilient hotstuff protocol (2020),
arXiv:2010.11454, http://arxiv.org/abs/2010.11454

[44] Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography: introducing concur-
rency, removing erasures. In: EUROCRYPT’00. p. 221–242. Springer (2000)

[45] Labs, O.: Osmosis project (2021), https://docs.osmosis.zone/

[46] Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability: Simulation-
sound quasi-adaptive NIZK proofs and cca2-secure encryption from homomorphic signatures.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. pp. 514–532. Springer (2014)

[47] Libert, B., Yung, M.: Non-interactive CCA-secure threshold cryptosystems with adaptive se-
curity: New framework and constructions. In: Theory of Cryptography 2012. LNCS, vol. 7194,
pp. 75–93. Springer (2012). https://doi.org/10.1007/978-3-642-28914-9 5

[48] Libert, B., Yung, M.: Adaptively secure non-interactive thresh-
old cryptosystems. Theoretical Computer Science 478, 76–100 (2013).
https://doi.org/https://doi.org/10.1016/j.tcs.2013.01.001

[49] Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: EU-
ROCRYPT 1999. p. 223–238. Springer-Verlag (1999)

[50] Reiter, M., Birman, K.: How to securely replicate services. ACM TOPLAS 16(3), 986–1009
(1994)

[51] Shamir, A.: Identity-based cryptosystems and signature schemes. In: Proc. of CRYPTO
’84. Lecture Notes in Computer Science, vol. 196, pp. 47–53. Springer (1984).
https://doi.org/10.1007/3-540-39568-7 5

[52] Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 207–220. Springer (2000). https://doi.org/10.1007/3-540-45539-6 15

[53] Shoup, V.: Back to the future: simple threshold decryption secure against adaptive corrup-
tions. Cryptology ePrint Archive, Paper 2025/1578 (2025), https://eprint.iacr.org/2025/
1578

40

https://eprint.iacr.org/2024/1981
https://eprint.iacr.org/2021/339
http://arxiv.org/abs/2010.11454
https://docs.osmosis.zone/
https://eprint.iacr.org/2025/1578
https://eprint.iacr.org/2025/1578

[54] Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack.
J. Cryptol. 15(2), 75–96 (2002)

[55] Suegami, S., Ashizawa, S., Shibano, K.: Constant-cost batched partial decryption in threshold
encryption. ePrint 2024/762 (2024), https://eprint.iacr.org/2024/762

[56] de Valence, H.: The Penumbra protocol (2021)

[57] Wee, H.: Threshold and revocation cryptosystems via extractable hash proofs. In: EURO-
CRYPT’11. p. 589–609. Springer-Verlag (2011)

A A Threshold IBE Scheme

In this section we present a threshold variant of the Boneh-Franklin identity-based encryption
(IBE) scheme [10], satisfying the conditions needed for the construction in Section 6. The scheme
TBF = (G,K,E,D) is parameterized in terms of an identity space ID, and a message space M
which we assume to be an abelian group with a group operation ◦ (for example M = {0, 1}n for
some n with ◦ being the xor operation ⊕). The construction makes use of the following building
blocks:

• a bilinear group (G1,G2,GT ,G1,G2, e) of prime order q, where G1 is generated by G1 ∈ G1,
G2 is generated by G2 ∈ G2, and e : G1 ×G2 → Gt is a non-degenerate bilinear map;

• two hash functions (which will be modeled as random oracles):

– for identity group derivation, Hid : ID → G1,

– for encryption key derivation, Hkd : GT →M .

The threshold IBE scheme TBF is essentially the standard Boneh-Franklin IBE scheme, where the
master secret key is shared among the parties using a t-out-of-N Shamir secret sharing. It is defined
as follows.

• Algorithm G(N, t) computes the master public key and master secret keys:

1 : x←$ Zq // sample a master secret key

2 : a1, . . . , at−1 ←$ Zq // sample polynomial coefficients for Shamir secret sharing

3 : for i ∈ [N] :

4 : mski ← x+

t∑
j=1

aj · ij // mski is the ith secret share of x

5 : pki ← mskiG2 // pki is the ith public key, used for robustness

6 : X ← xG2 // X will be the master public key is in G2

7 : mpk← X
8 : pkc← (pk1, . . . , pkN)

9 : output (mpk, pkc,msk1, . . . ,mskN)

41

https://eprint.iacr.org/2024/762

• Algorithm K(mski, id) uses mski to derive a key share for id:

1 : Uid ← Hid(id) // hash id to G1

2 : Sid,i ← mski Uid // compute the ith component of the identity key for id in G1

3 : output skid,i := Sid,i

• Algorithm E(mpk, id,m) uses mpk = X to encrypt m to identity id:

1 : Uid ← Hid(id) // hash id to G1

2 : r ←$ Zp // sample randomness for encryption

3 : R ← rG2
4 : Y ← e(Uid, rX) // compute a group element in GT to derive a one-time pad key

5 : k ← Hkd(Y) // derive a one-time pad key

6 : c← k ◦m // ◦ denotes the group operation in M

7 : output ctxt := (c,R) ∈M ×G2

• Algorithm D(pkc,J , {skid,j}j∈J , ctxt) decrypts a ciphertext ctxt = (c,R) with a combiner
key pkc = (pk1, . . . , pkN) and identity key components skid,j = Sid,j :

1 : J∗ ← ∅ // initialize a set of malformed key shares

2 : for j ∈ J :

3 : if e(Hid(id), pkj) ̸= e(skid,j ,G2)
4 : then J∗ ← J ∪ {j} // if the pairing check fails, add j to the set of malformed shares

5 : if J∗ ̸= ∅
6 : then output blame(J∗)

7 : Sid ←
∑
j∈J

λ
(J)
j Sid,j // interpolate the id’s identity key with Lagrange coefficients {λ(J)

j }j∈J

8 : Y ← e(Sid,R) // compute a group element in GT to derive a one-time pad key

9 : k ← Hkd(Y) // derive a one-time pad key

10 : m← c ◦ k−1 // undo the one-time pad in M

11 : output m

Robustness. Observe that the construction satisfied both properties needed for robustness: ac-
curate blaming (Definition 7) and consistency (Definition 8). The key derivation algorithm K is
deterministic, and for every combiner key pkc, identity id, and i ∈ {1, . . . , N}, it always outputs the
same key share skid,i. The pairing check done by D always passes for this honestly-generated key
share, since e(Hid(id), pki) = e(skid,i,G2) = e(Hid(id),G2)mski . This establishes accurate blaming.
Moreover, this pairing check fails for all other key shares sk′id,i ̸= skid,i. Hence, if two collections
of key shares {skid,j}j∈J1 and {sk′id,j}j∈J2 for an identity id and two subsets J1 and J2 result in
decryption of a ciphertext ctxt into messages m1 and m2, then by the correctness of Lagrange
interpolation, it must be that m1 = m2.

Security. The semantic security of the threshold Boneh-Franklin IBE relies on a slight strength-
ening of the LOMDH assumption presented in Section 4, that we call the Linear One More
Bilinear Diffie Hellman (LOMBDH) Assumption. The LOMBDH assumption is defined via
a the following attack game.

42

In this game, a challenger first chooses s1, . . . , sk, t1, . . . , tℓ, and r1, . . . , rn at random from Zq,
and gives to the adversary the group elements

Si := siG1 ∈ G1 (i = 1, . . . , k)

and
Tj := tjG1 ∈ G1 (j = 1, . . . , ℓ)

and
Rj := rjG2 ∈ G2 (j = 1, . . . , n).

Next, the adversary makes a sequence of linear DH-queries. Each such query consists of a matrix

of scalars {κi,j} ∈ Z[k]×[ℓ]
q , to which the challenger responds with the group element∑

i,j

κi,jsitjG =
∑
i,j

κi,jDH(Si, Tj).

At the end of the game, the adversary outputs a list of triples, each of the form

(V, {κi,j , }, w) ∈ GT × Z[k]×[ℓ]
q × {1, . . . , n}.

The adversary wins the game if for one such output group/matrix pair, we have

(i) {κi,j} is not in the linear span of the input matrices, and

(ii)
V = e(G1,G2)rw·

∑
i,j κi,jsitj

We say that the LOMBDH assumption holds in (G1,G2,GT ,G1,G2, e) if no probabilistic
polynomial-time adversary can win in the above game with non-negligible probability.

The following theorem establishes the semantic security of TBF per Definition 9 in the random
oracle model, relying on the LOMBDH assumption.

Theorem 5. If Hid and Hkd are modeled as random oracles, and if the LOMBDH assumption holds
in (G1,G2,GT ,G1,G2, e), then the threshold identity-based encryption scheme TBF is semantically
secure.

The proof of Theorem 5, as it is almost identical to the proof of Theorem 4.1 in the full version [5]
of Bellare et al. [4].

43

	1 Introduction
	2 Preliminaries
	2.1 Threshold decryption
	2.1.1 Robustness.
	2.1.2 Security.

	3 A construction
	4 The linear one-more Diffie-Hellman assumption
	5 Security analysis of Ehtdh1
	6 A generic construction
	6.1 The construction
	6.2 Robustness
	6.3 Security

	7 Applications
	7.1 Encrypted atomic broadcast
	7.1.1 A simple framework for a general class of atomic broadcast protocols.
	7.1.2 Piggybacking decryption shares.

	7.2 Encrypted auction systems

	8 Stronger notions of security
	8.1 Adaptive corruptions
	8.2 Simulation CCA security

	9 Conclusions and future work
	References
	A A Threshold IBE Scheme

