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Abstract

Zero-Knowledge Succinct Non-interactive Arguments of Knowledge (zkSNARKs) lead to proofs
that can be succinctly verified but require huge computational resources to generate. Prior systems
outsource proof generation either through public delegation, which reveals the witness to the third party,
or, more preferably, private delegation that keeps the witness hidden using multiparty computation
(MPC). However, current private delegation schemes struggle with scalability and efficiency due to MPC
inefficiencies, poor resource utilization, and suboptimal design of zkSNARK protocols.

In this paper, we introduce DFS, a zkSNARK framework that is delegation-friendly for both public
and private scenarios. Prior work focused on optimizing the MPC protocols for existing zkSNARKs, while
DFS uses co-design between MPC and zkSNARK so that the protocol is efficient for both distributed
computing and MPC. In particular, DFS achieves linear prover time and logarithmic verification cost in
the non-delegated setting. For private delegation, DFS introduces a scheme with zero communication
overhead in MPC and achieves malicious security for free, which results in logarithmic overall communi-
cation; while prior work required linear communication. Our evaluation shows that DFS is as efficient as
state-of-the-art zkSNARKs in public delegation; when used for private delegation, it scales better than
previous work. In particular, for 224 constraints, the total communication of DFS is less than 500KB,
while prior work incurs 300GB, which is linear to the circuit size. Additionally, we identify and address a
security flaw in prior work, EOS (USENIX’23).
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1 Introduction

Zero Knowledge Succinct Non-interactive Arguments of Knowledge (zkSNARKs) allow a prover to attest the
knowledge of a witness that satisfies any given NP relation. The prover only needs to send a short proof to the
verifier, and without any further communication, the verifier will be convinced that the prover has a satisfying
witness, without learning anything about the prover’s secret witness. Their flexibility has led to numerous
academic [Ben+14; BCGMMW20; ZFZS20; GAZBW22] and industrial applications [20; Pru21; Wil18].
However, for many zkSNARK protocols, proof generation for complex statements incurs high compute and
memory overheads. In applications where the prover might be resource-bounded (e.g., a mobile phone), these
overheads can make it impossible to efficiently generate zkSNARK proofs, limiting the scope of applications.

To address this issue, prior work [WZCPS18; Xie+22; LXZSZ23; CLMZ23; GGJPS23] has proposed
proof delegation schemes where the prover outsources the proof generation process to third parties with
access to more computational capacity. These schemes come in two flavors: public delegation, where the
prover’s witness is revealed to the third party, and private delegation, where the prover’s witness remains
hidden. In this work, we will be primarily concerned with constructing scalable private delegation schemes.

Why hide the witness? Private delegation is motivated by applications that touch sensitive user data.
For example, in systems for private financial transactions [Ben+14] or private personal identity verifica-
tion [DFKP16; RWGM23], the witness contains sensitive information about the user’s financial habits and
identity, and revealing this data to the third party weakens the security guarantees of the system.

Prior work on private delegation. To prevent this leakage, recent work [CLMZ23; LZWZY24; GGJPS23;
OB22] has constructed private delegation schemes in which the prover leverages secure multi-party com-
putation (MPC) techniques [RLOS02; GL05; BNP08; DPSZ12] to outsource proof generation to multiple
(non-colluding) third parties, who jointly but privately compute the proof. Unfortunately, as we discuss in
Section 7, while these works are able to provide strong privacy guarantees, they are unable to scale to proving
large computations effectively. This is due to a number of reasons:
• Inefficiencies due to MPC: Despite efforts to specialize MPC techniques for the specific zkSNARKs,

the resulting private delegation schemes still incur significant communication among multiple parties and
computation overheads due to inherent inefficiencies of the choice of MPC protocol. For example, zkSAAS
[GGJPS23] uses packed secret sharing, which is not compatible with Pippenger’s algorithm [Ber02], a
common method for optimizing expensive multi-scalar multiplications.

• Inefficiencies due to poor resource utilization: Existing schemes [OB22; CLMZ23; GGJPS23] cannot
effectively scale: they are bottlenecked by the computational resources of a single machine, and cannot
take advantage of distributed computing techniques that would allow proof generation to be parallelized
across multiple machines.

• Inefficiencies from choice of zkSNARK: Existing protocols target zkSNARKs that, for various reasons,
are not well-suited for delegation. For example, zkSNARKs like Plonk [GWC19], which have been the
target of prior delegation schemes [GGJPS23; OB22], rely extensively on product check that requires
expensive communication in MPC settings.

Our goal is to address all these concerns and construct horizontally-scalable private delegation schemes
for zkSNARKs by combining distributed computations and MPC. We say that a delegation scheme is scalable
if the proving time can be reduced by endowing each party with more nodes. We scale delegation to larger
instances by adding nodes within each party, not by adding parties. We believe this is reasonable because we
envision that each party will be a non-colluding cloud provider, and it is easier to add nodes within providers
than to find new providers. Moreover, only two to three non-colluding clouds are typically available in
practice.
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1.1 Our contribution

We make progress towards this goal via several contributions.
First, we observed that previous work [OB22; GGJPS23] are unable to avoid linear communication cost

in the private delegation setting, primarily due to two drawbacks of the underlying zkSNARKs: 1. random
memory access operations, such as FFT, which create bottlenecks in distributed computing communication;
2. the presence of multi-layer multiplication gates hinders the efficiency of MPC communication, making it
difficult to reduce the overall overhead in MPC protocols.

Second, we observe that when MPC protocols can achieve security up to additive attacks [GIPST14],
applying them to zkSNARKs with a single non-linear layer simplifies the design of the delegation protocol.
This simplification arises because we can eliminate the computation-extensive check for multiplications,
as zkSNARKs are publicly verifiable and inherently prevent integrity attacks. As a result, we can achieve
malicious security for free in this setting, making the protocol both more efficient and secure without the
overhead of extra check. EOS [CLMZ23] claims to achieve a similar property, but their protocols do not
satisfy this condition, leading to vulnerabilities that could be exploited by adversaries.

Finally, we provide a systematic analysis of common zkSNARK building blocks that identifies how
suitable they are for distributed computing and different MPC techniques. Based on this analysis, we identified
two key techniques as being particularly friendly to distributed MPC computation: holography [CHMMVW20;
Set20] and multilinear sumchecks [LFKN92].

We leveraged these insights to construct DFS, a zkSNARK for Rank-1 Constraint Systems (R1CS) with
the universal setup that achieves several attractive properties:
• In the non-delegated (single machine) setting, DFS achieves linear prover time and logarithmic verification

costs, which matches the state-of-the-art linear-time prover SNARKs that are scalable to large statements.
• In the private delegation setting, we construct a new private delegation scheme for DFS that achieves zero

communication overhead in MPC and malicious security for free. This is a significant improvement over
existing schemes [CLMZ23; OB22; GGJPS23; LZWZY24], which incur linear communication overhead.
Moreover, privately delegated DFS leverages distributed computation to accelerate the local computation
of each party. As a result, the overall communication cost is logarithmic, and with the increase in the
number of computation nodes for each party, the total latency decreases linearly.

• We also apply DFS to the public delegation setting, which efficiently leverages distributed computing
resources to optimize proof generation with logarithmic communications.

We also note that while DFS’s SNARK builds upon Spartan [Set20], our techniques enable efficient
delegation of all SNARKs whose private (witness-dependent) phase requires only a single layer of multipli-
cations. This class includes not only Spartan-like zkSNARKs, but also other popular zkSNARKs such as
Marlin [CHMMVW20] and Lunar [CFFQR21].

We implement DFS and its delegation schemes in a modular Rust library, and evaluate its scalability and
performance. Our implementation supports two types of secret sharing schemes: Additive Secret Sharing
(AddSS) and Replicated Secret Sharing (RSS). We assume three parties for RSS, and two parties for AddSS.
These parties could naturally model the prominent cloud computing platforms: AWS, GCP, and Microsoft
Azure. As discussed in our scalability goal, we do not expect the need for more parties, as each party
represents a distinct non-colluding cloud platform, and such platforms are limited in practice. Instead, we
focus on deploying more nodes within each platform to accelerate proof generation.

Our experiments in Section 6 show that (a) DFS’s prover time scales linearly with the circuit size, and
verification is less than 50ms; (b) our private delegation scheme can scale to larger circuits than prior work
with lower communication and latency overheads. For 224 constraints, DFS achieves less than 500KB of
communication, while prior work [GGJPS23] incurs 300GB. (c) our public delegation scheme achieves

2



similar scalability to the prior state-of-the-art Pianist [LXZSZ23], while Pianist is not suitable for private
delegation.

Finally as an additional minor contribution, we identify a security flaw in prior work [CLMZ23] and
show that it does not achieve the claimed malicious-security guarantees.

Private Delegation with Different Schemes. DFS’s private delegation can be instantiated with different
secret-sharing schemes, each offering distinct trade-offs. Due to DFS’s single multiplication layer in the
private phase, using RSS eliminates the need for inter-party MPC communication and does not require
authenticated shares for malicious security. However, RSS is limited to honest-majority settings with three
parties. To support more parties, Shamir Secret Sharing (SSS) can be used, which also benefits from DFS’s
properties, providing similar advantages to RSS while scaling to more parties. AddSS supports dishonest-
majority settings but requires authenticated shares for malicious security, and inter-party communication
scales linearly with the instance size. Therefore, we mainly use AddSS in two-party settings, though it can be
extended to more parties if required. All of these secret-sharing schemes can be accelerated by our distributed
computation designs. Lastly, we did not consider Packed Secret Sharing (PSS) due to its inefficiency in
multi-scalar multiplication (MSM) computations and because DFS optimizes proof generation by increasing
the number of nodes within parties, rather than increasing the number of parties.
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Figure 1: System overview of DFS.

2 Technical overview

System architecture. As shown in Fig. 1, we consider a scenario where a delegator D wants to outsource
the proof generation to the parties P1, . . .PNp . We consider each party as an independent trust domain, such
as different cloud service platforms, geographically distributed computation nodes, or computing resources
managed by different organizations. Each party has multiple nodes, enabling it to parallelize its local
computations and accelerate the proof generation process.

The delegator D shares its witness w into Np shares w1, . . . ,wNp , and sending each share to the
respective party. The Np parties then run a MPC protocol to compute the proof. For efficiency, each party
internally parallelizes its computation across a cluster of nodes. For example, the i-th share wi is split into
Nw chunks w(1)

i , . . . , w
(Nw)
i , which are distributed across Nw nodes within the party Pi. The delegator also

coordinates the proof generation among different parties, but its workload is designed to be logarithmic; thus,
even users with limited resources can effectively delegate the proof.

In the public-delegation setting, all nodes are controlled by a single party, which can see the witness, and
D can ask any node to serve as the coordinator.

Threat model. We focus on designing private-delegation protocols in the presence of a malicious adversary
that can deviate from the protocol in an arbitrary way. We assume that all the nodes controlled by the same
party are part of the same “trust” domain: if this party is corrupted, then all the nodes owned by this party are
malicious. We envision that the parties in our protocol will be instantiated with different cloud computing
platforms. An attacker who corrupts a cloud platform is more likely to corrupt all the nodes on that platform,
but not the nodes on the other platforms.

Depending on the kind of underlying MPC protocol, we target two different settings: the two-party setting
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and the three-party setting, where at most one party is allowed to be corrupted in both settings. Note that our
protocol can be extended to support more parties.

To construct such a scheme, we begin by analyzing whether the cryptographic building blocks we rely on
(MPC protocols and components of zkSNARKs) achieve these goals.

2.1 Scalability of MPC

We analyze three linear secret-sharing schemes that have been commonly used in prior MPC protocols for
their efficiency properties. We first note that all linear secret-sharing schemes do not require communication
for linear operations, and thus eliminate communication overhead for these operations.
Additive secret sharing (AddSS) is an efficient linear secret-sharing scheme used by many MPC proto-
cols [DPSZ12]. AddSS supports all-but-one dishonest majority security. Multiplication for AddSS relies on
the “Beaver’s triples”, which requires cryptographic operations to generate some preprocessing material for
the parties, and requires each party to communicate n− 1 field elements to evaluate the multiplication gate.
This means that if the zkSNARK prover requires a number of multiplications that is linear in the size of the
circuit, the communication overhead from AddSS will be linear as well.
Packed secret sharing (PSS) [FY92] is a generalization of Shamir secret sharing (SSS) [Sha79] that packs
multiple secrets into a single share. The corruption threshold supported by PSS depends on the number of
packed secrets; if k secrets are packed into a single share, then the corruption threshold can be at most n− k.
PSS supports (a bounded number of) cheap multiplication operations: simply multiply the shares. However,
not all linear operations are cheap in PSS: operations on secrets within the same packed share require
unpacking, which involves reconstructing and redistributing the individual secrets, leading to additional
communication. Moreover, this also inhibits important algorithmic optimizations like using the Pippenger
algorithm [Pip80] for multi-scalar multiplication, thus incurring high computational overheads as well.
Replicated secret sharing (RSS) [MAT89] offers different trade-offs compared to AddSS and PSS. RSS only
provides security in an honest-majority setting, and furthermore incurs a 2× overhead for computing linear
gates whose output is used in further secret computations. However, when the output is made public (i.e., not
used in further secret computations), RSS can compute the linear gate with no overhead. Furthermore, unlike
AddSS and PSS, the same benefit applies to multiplication gates as well: they incur neither communication
nor computation overhead when the gate output is public. To the best extent of our knowledge, the latter
observation is novel, and might be of independent interest in other MPC applications.1 Finally, we also
observe that RSS achieves malicious security for free in our setting.

Summary. The inefficiency of PSS for common and expensive operations like MSMs makes RSS and
AddSS the most efficient choices for our private delegation scheme.

Security up to additive attacks. MPC protocols, which guarantee security up to additive attacks in the
presence of malicious adversaries, imply that the only effective attack is to add adversarial-known errors at
the output of multiplication gates. Previous work [GIPST14] has identified that a class of MPC protocols
satisfy this property. We can apply such MPC protocols to realize private delegation of zkSNARKs without
the need of checking multiplication gates that is computationally expensive, since zkSNARKs are publicly
verifiable and guarantee integrity.

If we remove the multiplication check, we need to require that there is only one layer of multiplication
gates. If there are multiple layers of multiplication gates, additive errors at the outputs of multiplication
gates may be introduced to the evaluation of subsequent multiplication gates, which brings about the cross

1In fact, the same benefit applies also to Shamir secret sharing [Sha79], but for concreteness we focus on RSS as it achieves
better efficiency.
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terms between errors and secrets. This allows the adversary to perform selective-failure attacks (i.e., it can
guess whether the equation involving the errors and secrets is zero), which leak one-bit information for each
protocol execution. Conversely, if there is only one layer of multiplication gates, the errors only affect the
integrity but not the privacy.

We find that this property can simplify the design of private-delegation protocols. Specifically, when
a zkSNARK has only one layer of multiplication gates, we can employ an MPC protocol that guarantees
security up to additive attacks against malicious adversaries to realize private delegation. At the end of
protocol execution, we can use the public verifiability of zkSNARKs and run the verification algorithm to
guarantee integrity, which eliminates the computation-expensive check of multiplication gates. In this way,
we can achieve the performance similar to semi-honest protocols, i.e., guarantee malicious security for free.

Previous work, such as EOS [CLMZ23], attempted to remove the check of multiplication gates, but failed
because their MPC protocol did not satisfy this property, resulting in privacy leakage. We will discuss this
issue in more detail in Section 2.4.

2.2 Scalability of zkSNARKs

We now analyze common building blocks used in zkSNARK constructions, focusing on SNARKs constructed
via the PIOP + PC scheme methodology [CHMMVW20; BFS20]. Chiesa et al. [CHMMVW20] introduced
a methodology for constructing zkSNARKs from two components: polynomial interactive oracle proofs
(PIOPs) [BFS20] and polynomial commitment (PC) schemes [KZG10]. The methodology works as follows:
the PC scheme is used to commit to all (indexer and prover) oracles as they are computed, and then the
PC scheme’s opening and verification algorithms are used to prove the correctness of the evaluations. It is
straightforward to see that the properties of the compiled zkSNARK is determined by the underlying PIOP
and PC schemes, so we now focus on analyzing the efficiency of these components.

We first analyze the scalability of PIOPs. There are a myriad of PIOP constructions in the literature, and
it is infeasible to analyze all of them individually. Instead, we identify core building blocks subPIOPs that
underlie most of these PIOPs, and analyze their communication and computation overhead.

Product-check PIOPs. Many popular zkSNARKs [GWC19; CBBZ23] rely on a subprotocol that checks
that the product of the entries of a vector v equals a claimed value c, i.e., that

∏
i vi = c. Observe that

proving this claim requires computing the product
∏

i vi. This is straightforward in the single-prover setting,
and in the public delegation, the computation can be distributed across nodes effectively: give to the nodes
equal-sized partitions of v, have them compute the product of their partition, and then have all nodes send
their partial products to the delegator, who then computes the final product.

In the private delegation setting, however, these strategies do not work. When the vector v consists of
secret-shared values (e.g., when the vector is the witness), computing the product requires computing a
product of n secret-shared values. Despite optimizations, the best known protocol for this task requires O(n)
inter-party communication. Not only does this violate our target of sublinear communication, but prior work
[OB22] observes that this additional communication leads to bottlenecks in performance. Moreover, the
product introduces multiple layers of multiplication gates, making it impossible to achieve malicious security
for free. Note that prior works [CBBZ23; SL20] use sumcheck to prove product relations, avoiding direct
product-checks. However, computing intermediate polynomials still involves multiple multiplication layers,
leading to unavoidable MPC overhead.

Hence, we deem product-check subPIOPs and the PIOPs that rely on them unsuitable for private
delegation.

Sumcheck PIOPs. A second class of popular zkSNARKs [CHMMVW20; Set20; CFFQR21; BCHO22]

6



relies instead on the sumcheck protocol [LFKN92], which checks that the sum of the entries of a vector v
(represented as polynomials) equals a claimed value c, i.e.,

∑
i vi = c. There are two kinds of sumcheck

protocols in the literature: univariate sumcheck and multilinear sumcheck.
Univariate sumcheck requires quasilinear proving time due its use of FFTs for polynomial multiplications

and divisions, and distributed computation of FFTs is known to require linear communication [WZCPS18],
and furthermore, provides diminishing returns as the number of nodes increases. Therefore, univariate
sumcheck is unsuitable for delegation.

For multilinear sumcheck, on the other hand, there are efficient linear-time prover algorithms for sumcheck
[VSBW13; Tha13]. Moreover, the operations performed by the prover in these algorithms are embarrassingly
parallel, and thus can be distributed across nodes effectively in delegation settings.

Finally, in the private delegation setting, when performing sumcheck over a multilinear polynomial, these
same operations are linear, and thus do not require communication in MPC. However, when performing
sumcheck over a product of multilinear polynomials, this does require communication in MPC. However,
we observe that if the sumcheck only involves a single-layer of inner-product, then the protocol can be
performed in RSS without communication. Thus, we conclude that multilinear sumcheck-based PIOPs are
ideal candidates for private delegation.
PIOPs for table lookups have emerged as a key tool for improving the efficiency of several recent zkSNARKs
[GW20; PFMBM22; GK22; EFG22; STW24; ZGKMR22; Hab22]. These protocols assert that the entries of a
vector are contained in predefined tables, and have been used to reduce the overhead of circuit operations that
have traditionally been regarded as expensive in zkSNARKs, such as bitwise operations, integer operations,
comparisons, and more. Recently, they have also been used to directly improve the efficiency of PIOP
constructions [Set20; STW24].

Unfortunately, not all lookup protocols are suitable for delegation. For example, the widely-used
plookup [GW20] protocol requires product checks, which incur high costs. Yet another class of lookup
protocols, such as Lasso [STW24; Set20], based on time-stamping and offline memory-checking [BEGKN91]
has shown excellent performance in the single-prover setting. However, previous work [BCHO22] has
indicated that offline memory-checking requires random memory access, which is not suitable for distributed
computing environments.

We observe that a recently proposed lookup protocol, LogUp [Hab22] is able to avoid these drawbacks by
relying on multilinear sumcheck. LogUp allows distributed computation to avoid additional communication
between nodes, as its operations are inherently parallelizable and can be executed locally within each node.
In Section 5 we show how to leverage this fact to distribute the prover’s computation across multiple nodes
while minimizing communication overhead.

It is important to note that all lookup protocols, including LogUp, cannot avoid multiple layers of
multiplication gates when computing intermediate polynomials. As a result, applying lookup protocols
in private delegation presents challenges. However, as we designed in Section 2.3, we can separate the
witness-dependent and witness-independent phases of the zkSNARK. By applying the lookup protocol only
to the witness-independent portion, we ensure that multiple multiplication layers do not appear in the MPC
phase, enabling more efficient private delegation.

Scalability of polynomial commitment schemes. There have been numerous constructions of PC schemes
in recent work, spanning a variety of assumptions and efficiency. Following prior work on MPC-friendly
zkSNARKs [OB22; CLMZ23], we focus on PC schemes based on pairing-friendly curves [KZG10; PST13],
as the core component of their commitment and opening algorithms, namely elliptic-curve multi-scalar
multiplications (MSMs), are linear operators. This means that committing to and opening secret-shared
polynomials does not require communication under MPC. Furthermore, because the MSM is easily partitioned
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and parallelized [Ber02; Zha+21; Lu+23], it is well-suited for distributed computing. Another popular class
of PC schemes consists of those based on error-correcting codes [BBHR18; XZS22; GLSTW23]. These
achieve attractive properties such as post-quantum security, but their algorithms require constructing and
opening Merkle trees, which are highly nonlinear operations, and are hence expensive to perform in MPC.

2.3 Delegation-friendly zkSNARKs

Our goal is to design a zkSNARK protocol that is friendly to both distributed computing and multi-party
computation, enabling it to work effectively in both public and private delegation scenarios.

Starting point: an observation about Marlin. We start by recalling an observation made in prior work on
delegating SNARKs [OB22; CLMZ23]: the Marlin zkSNARK [CHMMVW20] proved to be more efficiently
delegable than other common zkSNARKs such as Groth16 [Gro16] and Plonk [GWC19]. These works
attribute this to the fact that Marlin’s protocol can be divided into two parts: a witness-dependent portion
(non-holography), and a witness-independent portion (holography). While the witness-dependent portion
clearly requires MPC to protect witness privacy, the witness-independent portion only involves public data,
and hence can be computed without MPC. Because in practice the witness-independent portion is the most
time-consuming part of the protocol, eliminating the need to use MPC allowed prior work to derive significant
improvements.

Not all protocols satisfy the holography property, and thus the whole protocol is witness-dependent. As a
result, these protocols [CBBZ23; GWC19] unavoidably involve multiple layers of multiplication gates for
computing intermediate polynomials in private delegation, leading to increased MPC overhead.

Our approach. Marlin is a good starting point for constructing DFS. Unfortunately, as noted in Section 2.2,
Marlin relies on univariate sumcheck and is hence not suitable for scalable delegation. So instead we take
as our starting point the multilinear protocol Spartan [Set20]. Like Marlin, Spartan’s protocol can also be
divided into witness-dependent and witness-independent portions. However, Spartan’s protocol uses as a
crucial component a lookup PIOP that relies on offline memory-checking, and as noted in Section 2.2, this
protocol is not scalable. We show how to fix this issue and construct a delegation-friendly zkSNARK. DFS’s
PIOP for R1CS follows the lead of the holographic PIOPs and proves R1CS by breaking it up into three
subrelations: a “rowcheck”, a “lincheck”, and a matrix-evaluation check, shown in Fig. 2.

The protocol starts with the indexer computing polynomial encodings of the R1CS matrices. Then, the
prover computes polynomials zA, zB, zC claiming to equal the matrix vector products Az, Bz, and Cz, and
proves that these satisfy the Hadamard product relation Az ◦ Bz = Cz (this is the rowcheck step). DFS
reduces the rowcheck to a sumcheck over products of polynomials, which requires only a single layer of
multiplications between secret-shared values.

After this, the prover is then left to show that for each M ∈ {A,B,C}, zM indeed equals Mz. This is
the lincheck step, and, as illustrated in Fig. 2, it involves linear checks between the public matrix M and
the private vectors zM and z. To prove this step, DFS uses sumcheck (this time only over a single private
polynomial) to reduce the check to a claim about evaluations of polynomials encoding the matrices M .

Spartan uses offline memory-checking technique to express this claim as a specialized circuit and then
uses an external proof system to prove this circuit. However, this technique has two drawbacks. First, as we
discussed in Section 2.2, offline memory-checking may require random memory accesses, which are not
scalable. Second, the external proof system is required to be delegation-friendly, which leads to a circular
dependency. We instead express the matrix evaluations as a lookup relations, and then use the sumcheck-based
lookup algorithm LogUp [Hab22] to prove the claim directly. LogUp not only avoids the random memory
accesses required by offline memory-checking, but also performs simple and parallelizable operations over
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Private × Private Public × Private Public Only

Non-holographic Protocol
(Witness Dependent)

Holographic Protocol
(Witness Independent)

Figure 2: Protocol overview of zkSNARKs for R1CS. M ∈ {A,B,C} indicates the R1CS matrices, z indicates
the witness vector, zM indicates the result of multiplying M by z, and M̂ indicates the polynomial encoding of
M . z, zM are private, and M, M̂, x, y, p are public.

the involved polynomials before producing a sumcheck claim. We observe that this matrix-evaluation check
is witness-independent and involve only public data; thus, it can be computed without MPC.

We instantiate DFS with the PST13 polynomial commitment scheme [PST13], which is scalable and
MPC-friendly.

Distributed computation. DFS is highly efficient for distributed computing because the protocol design
deliberately avoids operations such as FFT and memory-checking, which require random memory access.
To construct a public delegation scheme, we designed distributed computation algorithms for the PIOP and
polynomial commitment that require only logarithmic communication overhead, shown in Appendix E.

2.4 Private delegation for DFS

We first identify a security issue in the recent private-delegation protocol EOS [CLMZ23] based on additive
secret sharing (AddSS). Then, we show how to fix it, and present our improved approach in the two-party
setting. In the three-party setting with at most one malicious corruption, we present a simpler and more
efficient approach to delegate the proof generation of DFS using replicated secret sharing (RSS). The
RSS-based protocol can achieve zero communication overhead and malicious security for free. When the
number of parties is two or three, and every party has a cluster of nodes, our private-delegation protocols
are more efficient than the recent protocols [OB22; GGJPS23; LZWZY24] and the improved EOS, due to
the MPC-friendly design of DFS and the optimized techniques exploiting the specific private-delegation
application.

A security issue in EOS. The recent work EOS [CLMZ23] adopts AddSS to realize private delegation
of zkSNARKs in the dishonest-majority malicious setting. It uses the technique of Beaver triples [Bea92]
to compute multiplications. In particular, given two additive secret sharings ⟨x⟩ and ⟨y⟩, the parties need
to compute an additive secret sharing ⟨z⟩ with z = x · y. Given a Beaver triple (⟨a⟩, ⟨b⟩, ⟨c⟩) with two
random elements a, b and c = a · b from a delegator D, all parties run the standard protocol to open
⟨x⟩ − ⟨a⟩ and ⟨y⟩ − ⟨b⟩ to obtain two public values µ = x− a and ν = y − b. Then, the parties compute
⟨z⟩ = µ · ν + ν · ⟨a⟩ + µ · ⟨b⟩ + [c] based on the linear property of AddSS. The proof is verified by D to
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guarantee the correctness of multiplication computation.
EOS claims that the opened values do not require authentication, thereby reducing the cost. We observe

that a malicious adversary can introduce two errors e0, e1 during the open procedure, so that µ′ = µ+ e0
and ν ′ = ν + e1 are computed. When z is reconstructed by D using the shares sent by the parties, an
additional error e2 can be introduced by the adversary. In this case, the parties actually obtain a value
z′ = z+ (e0 · b+ e1 · a+ e2). If the resulting proof passes the verification, then e0 · b+ e1 · a+ e2 = 0, else
it is not zero. This leaks one-bit information on a, b, which in turn reveals the information on secret values
x, y, due to the fact that µ = x− a and ν = y − b are publicly known. The above attack is referred to as a
selective-failure attack in the MPC setting, and can be repeated to leak more information. We have reported
this problem to the authors of EOS, and they will fix it.

MPC for DFS in the two-party setting. The crucial security issue of EOS is that the values to be opened
are not authenticated. To solve the issue, we can equip additive secret sharings with SPDZ-like information-
theoretic message authentication codes (IT-MACs) [DPSZ12; DKLPSS13], so that the values to be opened
are authenticated with IT-MACs. Furthermore, we can adopt the recent VOLE protocols (e.g., [BCGI18;
Boy+19; SGRR19; BCGIKS20a; WYKW21; Boy+22; Guo+23; RRT23]) to compress random IT-MACs into
short seeds such that the communication between D and all parties is sublinear in the number of IT-MACs.
We can use the batch-check technique [DPSZ12; DKLPSS13] to realize authenticated opening, which brings
a negligibly small communication overhead.

If we transform a Beaver triple (⟨a⟩, ⟨b⟩, ⟨c⟩) into an authenticated triple denoted by ([[a]], [[b]], [[c]]), this
will incur an expensive computation cost for all parties, according to the state-of-the-art protocols [BCGIKS20b;
DS22; Boy+22; BCCD23] for generating authenticated triples. We overcome the efficiency problem by letting
D generate partially authenticated triples (([[a]], [[b]], ⟨c⟩), i.e., c = a · b is not authenticated with IT-MACs),
where the input shares are authenticated but the output shares are not. This allows the parties to compute
an unauthenticated sharing ⟨z⟩, which is not a problem when there is only one layer of multiplications in
zkSNARKs such as DFS. Therefore, it does not allow the adversary to introduce an error, leading to a
cross term between the error and secret, and thus prevents selective-failure attacks. Our zkSNARK scheme
DFS uses the inner product instead of Hadamard product as the unique non-linear operations. In this case,
we are able to generalize the above approach to handle inner products by generating a semi-authenticated
inner-product tuple, i.e., ([[a]], [[b]], ⟨c⟩), where c is the inner product of two vectors a and b. Overall, the
approach based on semi-authenticated inner-product tuples can not only prevent selective-failure attacks but
also improve the efficiency to achieve a cheap computation, since the VOLE protocols [WYKW21; Boy+22;
Guo+23; RRT23] with low computational cost can be used.

MPC for DFS in the three-party setting. When at most one of three parties is corrupted, we use replicated
secret sharings to give a simpler and more efficient solution. Specifically, due to the linear property, all
linear operations are communication-free. In DFS, the only non-linear operations are a single layer of inner
products. We use the multiplication property of RSS to let all parties locally compute the inner-product
operation. In this case, RSS will be converted into AddSS. Different from the general MPC setting, we do
not choose to convert AddSS back into RSS. The reason behind this is that all inner-product operations only
occur in a single layer, no non-linear operation between two additive secret sharings is required. Therefore,
we achieve zero communication for inner-product operations. This idea can be applied to any non-linear
operations, as long as there is a single layer. To obtain the simulation-based security, we let all parties
randomize the resulting sharings with fresh zero sharings, so that the shares of honest parties are still uniform
under the condition that the shares could be reconstructed as the secret.

Since the inner product of two RSSs results in an AddSS, and AddSS does not provide the authentication
property (even in the honest-majority setting), we cannot guarantee the correctness of reconstruction of the
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inner-product result. Nevertheless, the reconstruction procedure does not allow the adversary to introduce
an error leading to a cross term between the error and secret. Therefore, it is not possible to perform
selective-failure attacks. We note that the above idea can also be applied to Shamir secret sharings, which
support more parties. In conclusion, our approach only allows a malicious adversary to mount additive
attacks, and guarantees privacy in the presence of malicious adversaries. Through the public verifiability of
zkSNARKs, we can guarantee the integrity, and achieve malicious security for free.

Distributed computation of private delegation. We employ distributed computing to accelerate the MPC
operations performed by each party, thereby achieving the overall speedup. This approach is highly effective
because, in DFS, most operations are linear and can be computed locally without communication between
parties. The only operation that requires the communication is the inner product. However, we have accounted
for this in the design of DFS, i.e., there is only one layer of inner-product operations during the sumcheck
for the product of multiple polynomials. In the three-party setting, we can achieve zero communication
overhead for this step, allowing all computations to be executed locally within each party. Each party can
then leverage its local cluster of nodes to parallelize local computations, thus ensuring scalability without
inter-party communications.

Another key advantage of DFS is the holography property, as illustrated in Fig. 2, which ensures that the
final phase involves purely public computation. This means that we do not need to rely on MPC to protect the
witness during this phase, allowing for public delegation instead. Since secret sharings are no longer required,
we can switch from private delegation to public delegation, enabling the use of all nodes from all parties for
distributed computation. This maximizes the utilization of computational resources. Our experiments show
that, in the non-delegation setting, the holographic portion accounts for 70% of the proof generation time.
This indicates that even in the private-delegation setting, we can accelerate the majority of computations
purely through distributed computing, without the additional overhead of MPC.
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3 Preliminaries

Notation. We use λ to denote the security parameter, and F to denote the prime field. We denote by [a . . . b]
the set {a, . . . , b} for a, b ∈ N; particularly, we use [1 . . . n] to denote the set {1, . . . , n} for some n ∈ N. We
use F to denote a finite field Zq of prime order q. We will use bold letters like x for vectors, and denote by
xi the i-th component of x with x1 the first entry. We also use colon notation to denote slices of vectors.
For example, x[i : j] denotes a vector constituting of xi, . . . ,xj . We will occasionally explicitly denote the
multilinear extension of a vector a ∈ FN using the notation a(x) ∈ F[x] where x ∈ {0, 1}logN , and for
example, a(0) = a0. We use upper-case letters A,B,C,M to denote matrices. For the matrix M ∈ Fn×m,
we denote by M(x, y) the multilinear extension of M to F[x,y], where x ∈ Flogn,y ∈ Flogm.
Algebraic background. Throughout this paper, we will work with the n-dimensional Boolean hypercube
{0, 1}n. The polynomial eq(x,y) :=

∏n
i=1(xiyi + (1− xi)(1− yi)) checks that x = y.

Definition 3.1 (Rank-1 Constraint Systems). The indexed relation RR1CS is the set of all triples

(i,x,w) =
(
(F, n,m,A,B,C), x, w

)
where F is a finite field, n and m are natural numbers, w ∈ Fm−|x|−1 is a vector over F, A,B,C are m×m
matrices over F with at most n nonzero entries, such that Az ◦ Bz = Cz, where z := (x || 1 || w). Let
s = logm and d = logn.

Sparse matrix encodings. Prior work [CHMMVW20; COS20; CFFQR21] has shown how to represent
(or arithmetize) a square matrix M ∈ FN×N with N non-zero entries via three multilinear polynomials rM ,
cM , vM , such that vM (x) = MrM (x),cM (x), where x ∈ {0, 1}logN . If we map the matrix index (i, j) to the
vector (i, j), we can define the function r̂M (x) = i and ˆcM (x) = j. Then the matrix encoding of M is the
multilinear polynomial M(i, j) =

∑
x vM (x)eq(r̂M (x), i), eq( ˆcM (x), j).

3.1 Background for zkSNARKs

A succinct preprocessing non-interactive argument of knowledge in the random oracle model (ROM) for
an indexed relation R is a tuple of algorithms ARG = (G, I,P,V) satisfying completeness, knowledge
soundness, succinctness, and zero-knowledge. The indexer I preprocesses the NP index i into index-specific
proving (ipk) and verification (ivk) keys. The prover P , on input ipk, an instance x, and a witness w such
that (i,x,w) ∈ R, outputs a proof π which can be checked by the verifier V when given ivk and x.
Polynomial interactive oracle proofs. A polynomial interactive oracle proof (PIOP) for an indexed relation
R is an interactive protocol specified by a tuple PIOP = (F, k, s, I,P,V) where F is a finite field, k is the
number of rounds, s(j) is the number of prover polynomials in the j-th round, and I, P , V are algorithms
described next.
Polynomial commitments. A polynomial commitment scheme enables a sender to commit to a polynomial
p and then later prove the correct evaluation of p at a desired point. Formally, it is a tuple of algorithms
PC = (Setup,Trim,Commit,Open,Check) satisfying completeness, extractability, and hiding properties.

3.2 Background for MPC

We will use linear secret sharing schemes (LSSSs) to realize private delegation of DFS. A t-out-of-n LSSS
enables a secret x to be shared among n parties, such that no subset of t parties is able to learn any information
on x, while any subset of t+ 1 parties can reconstruct x.
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Definition 3.2. A linear secret sharing scheme has the following algorithms and protocols:
• [x]← Share(x): A dealer D runs this algorithm to share a secret x among the parties P1, . . . ,Pn, such

that Pi gets a share [x]i for i ∈ [1 . . . n]. The sharing on x is denoted by [x] = ([x]1, . . . , [x]n).
• x← Rec([x],B): Given at least t+ 1 shares in [x], any party B (e.g., one of P1, . . . ,Pn) can reconstruct

the secret x. Although t+ 1 shares instead of n shares are sufficient to reconstruct the secret x, we still
write [x] as the input of Rec for simplifying the description.

• LINEAR COMBINATION: Given the public coefficients c0, c1, . . . , cℓ and secret sharings [x1], . . . , [xℓ],
parties P1, . . . ,Pn can locally compute [y] =

∑ℓ
i=1 ci · [xi] + c0, such that y =

∑ℓ
i=1 ci · xi + c0.

We can also define a Open([x]) protocol to open x to all parties, and Open([x]) can be constructed
by running Rec([x],Pi) for each i ∈ [1, n]. For a vector x = (x1, . . . , xm), we will use [x] to denote
([x1], . . . , [xm]). We use [x]i to denote the share held by a party Pi. We present three common LSSS
instantiations in Appendix F. We will use [[x]] to denote a secret sharing with the authentication property, i.e.,
the reconstruction of secrets can be verified (RSS and AddSS with authentication check), and ⟨x⟩ to denote
an unauthenticated secret sharing.
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4 DFS: a delegation-friendly zkSNARK

We describe our construction of DFS, a delegation-friendly zkSNARK for R1CS. DFS is an adaptation
of Spartan [Set20] that uses a different lookup argument inside the holographic lincheck to enable better
efficiency for distributed proving.
Indexing. Before we start generating our proof, we first need to efficiently encode the R1CS matrices
A,B,C. Each matrix M ∈ {A,B,C} is expressed as three multilinear polynomials rM , cM , and vM , such
that vM (x) = MrM (x),cM (x). Here, we focus on the non-zero elements of the matrix, ensuring that the
polynomials are defined only over the positions corresponding to these non-zero entries. This encoding is
handled by the indexer before the proof generation and can be reused as long as the R1CS matrices remain
unchanged. The verifier is given oracle access to rM , cM , and vM .
Proof generation. We start by defining the following polynomials:Â(x) :=

∑
y∈{0,1}s A(x,y)z(y)

B̂(x) :=
∑

y∈{0,1}s B(x,y)z(y)

Ĉ(x) :=
∑

y∈{0,1}s C(x,y)z(y)

 (1)

where x ∈ {0, 1}s, and for M ∈ {A,B,C}, M is the sparse matrix encoding defined in Section 3.
Notice that Â, B̂, and Ĉ are respectively the multilinear extensions of Az, Bz, and Cz. This means
that Az ◦ Bz = Cz only if the evaluations of the polynomial F (x) := Â(x) · B̂(x) − Ĉ(x) over the
Boolean hypercube are all zero. This is a classical zerocheck claim, and so to check it, the verifier samples a
randomness r, which reduces to proving the sumcheck

∑
x F (x)eq(x, r) = 0. At the end of the sumcheck

protocol, the verifier checks that ex = F (ρx)eq(ρx, r), where ex is the final claim of the sumcheck protocol,
and ρx is the sumcheck challenge. The verifier can evaluate the polynomial eq(x,y) in logarithmic time.
However, to evaluate the polynomial F (x), it relies on the prover for assistance.

The prover will provide claimed evaluations vM := M̂(ρx), where M ∈ {A,B,C}, and the verifier

will check if (vA · vB − vC)eq(ρx, r)
?
= ex. Next, in order to verify the authenticity of vA, vB , and vC , we

perform a batched sumcheck. The prover receives random challenges rA, rB and rC from the verifier, and
we batch A, B, and C together as Mρx (⃗y) := rA ·A(ρx, y⃗) + rB ·B(ρx, y⃗) + rC ·C(ρx, y⃗). Then, we
perform a sumcheck for:

rAvA + rBvB + rCvC
?
=

∑
y⃗∈{0,1}m

Mρx (⃗y)z(⃗y) (2)

By the sumcheck protocol, this, too, turns into a claimed evaluation ey
?
= Mρx(ρy)z(ρy), where ey is

the final claim of the sumcheck, and ρy is the sumcheck challenge. Again, the verifier needs to check the
evaluation of Mρx(ρy) and z(ρy). In order for the verifier to efficiently query z(ρy), we have the prover
send an oracle to witness extension w at the start of the protocol, and the verifier can construct z(ρy) using
w.

To evaluate Mρx(ρy), the verifier needs a fast, succinct way to evaluate A,B, and C at (ρx,ρy).
Spartan [Set20] uses offline memory-checking to express this verification as a circuit, which is then

handled by an external proof system. However, as Gemini [BCHO22] points out, the timestamp calculations
required for offline memory-checking need random memory access. While this is not a concern for the
online proving phase as timestamp calculations only happen during the offline indexing phase (i.e., during
preprocessing to generate the matrix encoding), it does make distribution of the latter step challenging when
dealing with large matrices.

A bigger issue, which crops up during proving, is that distributed proving of the external proof system
(GKR [GKR15]) used to instantiate the memory-checker in Spartan would lead to a large number of rounds
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of interaction, as Spartan invokes GKR [GKR15] on a circuit of depth O(logm), and distributed proving for
this would require O(log2m) communication rounds.

To bypass both these issues, we instead employ a lookup PIOP [Hab22] to direct prove the matrix
evaluations.

Recall that for all M ∈ {A,B,C}, we have M(i, j) =
∑

x vM (x)eq(r̂M (x), i), eq( ˆcM (x), j). Re-
call that r̂M and ˆcM output the vector of binary representations of the row and column indices of M ,
respectively. Then the evaluation claim Mρx(ρy) can be reduced to a sumcheck problem for

∑
x vM (x) ·

eq(r̂M (x),ρx) · eq( ˆcM (x),ρy), which results in evaluating vM (rz), eq(r̂M (rz),ρx), and eq( ˆcM (rz),ρy)
at a random point rz . The verifier can easily check vM using its oracle. However, the verifier still needs
to check eq(r̂M (rz),ρx) and eq( ˆcM (rz),ρy). The prover computes the multilinear polynomials such that
eqrow(x) := eq(r̂M (x),ρx) and eqcol(x) := eq( ˆcM (x),ρy) for x ∈ {0, 1}d, and send the polynomial
oracles to the verifier. And the verifier can simply query the oracles eqrow(x) and eqcol(x) at rz .

Now, the prover needs to show that their oracle to eqrow(x) and eqcol are well formed. We observe that if
we treat eq(i,ρx) as a table where i is the binary representation of the index, then eq(r̂M (x),ρx) can be
viewed as a subset of this table, where each element is indexed by the r̂M (x) values. This interpretation
allows us to consider eqrow(x) as a sequence of lookups into the table, with each lookup corresponding to
the appropriate entry based on the rM (x) indices.

We use the lookup protocol [Hab22] to check the indexed lookup relations: {(rM (x), eqrow(x))} ⊂
{(i, eq(i,ρx))} where i ∈ F, x ∈ {0, 1}d and i ∈ {0, 1}s. The verifier can be convinced that the provided
oracle to eqrow(x) is valid, since this lookup relation ensures that each entry of eqrow(x) is obtained from
the table based on the index of rM (x). Finally, the lookup protocol require the verifier to check the oracle
evaluations of the lookup sequence and the table. Note that the lookup sequence oracle can be obtained from
rM (x) and eqrow(x), which both are accessible by the verifier. And the table has a structure that allows the
verifier to construct its oracle. The same process applies for eqcol(x).

Finally, we instantiate all the polynomial oracles with multilinear polynomial commitments [PST13].
Formal construction. We present our formal protocol in Appendix D.
Efficiency. The verifier needs to participate in a constant number of sumchecks over log(m) and log(n)-
variate polynomials and all evaluations can be done in O(log(m) + log(n)) time; thus, the verifier time
and proof size are O(log(m) + log(n)), where m is the size of inputs and n is the number of non-zero
entries in the matrix. The prover work, alongside the aforementioned sumchecks, additionally requires some
polynomial operations. All of these take time linear in either the size of input or the number of non-zero
entries. The tricky part is the calculation of eqrow and eqcol. The naive solution might takes O(n logm) time,
as eq(x,y) :=

∏logm
i=1 (xiyi + (1− xi)(1− yi)) and each element could involve O(logm) multiplications.

However, we observe that each element can be derived from the previous element’s result. By leveraging
dynamic programming, we can efficiently pre-compute and store all the possible values of eq(x,y) in O(m)
time, and then construct eqrow and eqcol using the pre-compute results in O(n) time. In summary, the overall
prover time complexity is O(m+ n).
Zero-knowledge. So far, we have not discussed zero-knowledge (ZK), but extending the description so
far to achieve ZK is straightforward by leveraging prior techniques: one needs to use a masking polynomial
to make sumcheck hiding [CFS17; XZZPS19], and use a hiding version of the PST13 [PST13] polynomial
commitment scheme.
Security proof. The security of the non-holographic part follows Spartan’s approach. In particular, the
proof of Eqs. (1) and (2) follows the Theorem 5.1 in Spartan [Set20]. For the holographic part, we utilize a
lookup algorithm [Hab22] to verify the correctness of the oracle for eqrow(x). The key aspect here is that the
lookup relation ensures each entry of eqrow(x) is accurately retrieved from the structured table based on the
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index of r(x), which fulfills the requirement of the sparse matrix encoding. The table’s structure allows the
verifier to construct its oracle independently, ensuring that the prover cannot cheat by manipulating the oracle
responses. By requiring soundness from the lookup protocol, we guarantee that any incorrect entries would
be detected, thereby ensuring the soundness of the holographic verification.

Public delegation of DFS. DFS enables efficient public delegation through distributed computing. The
protocols primarily leverage the tree-like structure of the multilinear polynomials, so that each node can
recursively compute the values in the tree and then the coordinator combines the results to obtain the final
output. We present our formal protocol in Appendix E. In the final protocol, each node’s computation is
O(Nw + m+n

Nw
), where m is the size of inputs, n is the number of non-zero entries in the matrix, and Nw is

the number of nodes, and the communication cost is O(logm+ log n).
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5 Private delegation of DFS

In the private-delegation setting, a delegatorD holds a witness, andD as well as all parties P1, . . . ,PNp know
the common reference string (CRS) and preprocessing keys included in a zkSNARK scheme. We denote
every party as Pj for j ∈ [1 . . . Np], which controls Nw nodes, each denoted by E(k)j for k ∈ [1 . . . Nw]. All
computations of Pj could be performed in parallel by these nodes. In this setting, D is always honest, and
at most one party is corrupted for both the two-party and three-party settings. We prove the security of our
protocols in the presence of malicious, static adversaries. We use the standard security model in the ideal/real
paradigm [Can00; Gol04]. In our protocols, for a vector of secret sharings [[x]], each set of shares [[x]]j held
by every party Pj is split into Nw parts {[[x]](k)j }k∈[1...Nw], and each node E(k)j holds [[x]](k)j .

5.1 Building blocks

The private-delegation protocol can be built using the following building blocks. For simplicity, we omit the
number Nw of nodes controlled by every party.
• Multi-scalar multiplication: MSM([[y]],X) → [[Z]] takes as input a vector of secret sharings [[y]]

with y ∈ Fℓ, a vector of public group elements X ∈ Gℓ, and outputs a secret sharing [[Z]] with Z =∑
i∈[1...ℓ] yi ·Xi ∈ G, where “·” denotes the scalar multiplication in group G.

• Linear combination: LinearComb([[x]], c) → [[y]] takes as input a vector of secret sharings [[x]] with
x ∈ Fℓ and a vector of public elements c ∈ Fℓ+1, and outputs [[y]] with y =

∑
i∈[1,ℓ] ci · xi + c0 ∈ F.

• Inner product: InnerProd([[x]], [[y]])→ ⟨z⟩ takes as input two vectors of secret sharings [[x]] and [[y]] with
x,y ∈ Fℓ, and outputs a secret sharing ⟨z⟩ with z =

∑
i∈[1...ℓ] xi · yi ∈ F.

• Folding: Fold([[x]], r) → [[y]] takes as input a vector of secret sharings [[x]] with x ∈ Fℓ and a public
element r ∈ F, and outputs a vector of secret sharings [[y]], where y ∈ Fℓ/2 such that yi = x2i−1+r ·x2i ∈
F for i ∈ [1 . . . ℓ/2]. Here, we w.l.o.g. assume that ℓ is an even.

In addition, our private-delegation protocol will invoke two building blocks Share and Rec defined in
Section 3.2. In particular, a delegator D could run the Share procedure to share the witness with all parties.
The parties run the Rec procedure to let D obtain a proof. These building blocks may be independent of
interest to design private-delegation protocols for other zkSNARK schemes such as Marlin [CHMMVW20].

A private-delegation protocol can invoke the building blocks multiple times in any order. We use an ideal
functionality (shown in Appendix J) to define security of the protocols that only consist of these building
blocks. Building upon this, we are able to prove the security of our private-delegation protocol with these
building blocks.

Next, we show how to instantiate the building blocks using replicated secret sharing (RSS). The AddSS-
based instantiation is postponed to Appendix G.

Instantiation from RSS. The following protocol shows how to construct the building blocks in the honest-
majority setting from replicated secret sharings. The constructions of building blocks Share and Rec are
described in Section F.1. We focus on the three-party setting with at most one corrupted party, but the
protocol is natural to be extended to more parties. Note that the output by the InnerProd algorithm need to be
randomized with zero sharings. When multiple zero sharings need to be generated, D can send a set of keys
to each party in the setup phase, and then all parties generate random zero sharings with free communication
using the keys and a pseudo-random function (PRF). The detailed protocol to generate zero sharings can be
found in prior works [LN17; KPPS23; HOSS22]. The security proof can be found in Appendix J.
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Prot. 1: RSS-BASED BUILDING BLOCKS

Let m = ⌈ℓ/Nw⌉.

• MSM([[y]],X)→ [[Z]]: Given a vector of RSSs [[y]] and public group elements X ∈ Fℓ, every party Pj controls
each node E(k)j to compute in parallel: [[Z]]

(k)
j :=

∑km
i=(k−1)m+1[[yi]]

(k)
j ·Xi. Every party Pj chooses one node

to compute [[Z]]j :=
∑Nw

k=1[[Z]]
(k)
j , and then all parties output a RSS [[Z]].

• LinearComb([[x]], c)→ [[y]]: Given a vector of RSSs [[x]] and public elements c ∈ Fℓ+1, every party Pj controls
each node E(k)j to compute in parallel: [[y]](k)j :=

∑km
i=(k−1)m+1 ci · [[xi]]

(k)
j . Every party Pj chooses one node

to compute [[y]]j :=
∑Nw

k=1[[y]]
(k)
j + [[c0]]j , where [[c0]] is locally computed from the public element c0. Then, all

parties output [[y]].

• InnerProd([[x]], [[y]])→ ⟨z⟩: Given two vectors of RSSs [[x]] and [[y]], D runs the Share(0) algorithm to let the
parties obtain a fresh zero-sharing ⟨0⟩. Every party Pj controls each node E(k)j to compute in parallel: ⟨z⟩(k)j :=∑km

i=(k−1)m+1[[xi]]
(k)
j · [[yi]]

(k)
j . Every party Pj chooses one node to compute ⟨z⟩j :=

∑Nw

k=1⟨z⟩
(k)
j + ⟨0⟩j , and

then all parties output ⟨z⟩.

• Fold([[x]], r)→ [[y]]: Given a vector of RSSs [[x]] and a public element r ∈ F, let m′ = ⌈ℓ/2Nw⌉, every party
Pj controls each node E(k)j to compute in parallel [[yi]]

(k)
j :=

∑km′

i=(k−1)m′+1[[x2i−1]]
(k)
j + r · [[x2i]]

(k)
j for i ∈

[1 . . . ℓ/2]. Then, all parties output [[y]] by collecting results from all the nodes.

5.2 Our private-delegation protocol

Delegator Work. In private delegation, the proof delegator acts as the global coordinator, responsible for
collecting messages from each party and outputting the final proof. Additionally, the delegator generates the
Fiat-Shamir and the zero-knowledge randomnesses. Finally, the delegator also needs to verify proof to ensure
that no malicious attacks have compromised the integrity of the computation. Since both the output proof and
verification are succinct, the workload and communication for the delegator are logarithmic.

Private delegations for sumcheck. In DFS, all linear operations can be completed locally by each
party without additional MPC communication. The only exception is the sumcheck protocol, where the
computation of sumcheck messages involves inner-product operations that may require MPC communication.
Specifically, DFS includes two types of sumchecks involving secret shares:

∑
f · g · h, where f and g are

private polynomials and h is a public polynomial, and
∑

f · g, where f is a private polynomial and g is
a public polynomial. For the second type, since g is public, the multiplication can be handled via linear
combination linearcomb, avoiding the need for inner-product operations on secret values. However, the
first type involves the product of two private polynomials, which requires MPC communication to securely
compute the inner product. This makes the first type of sumcheck more communication-intensive compared
to the second.

Specifically, in the i-th round of sumcheck, the prover needs to compute a degree-4 polynomial p(Xi),
defined as p(Xi) :=

∑
b∈{0,1}n−i (f · g · h)(r, Xi, b), where r ∈ {0, 1}i−1 are the verifier randomnesses in

the previous rounds, and send it to the verifier. After receiving p(Xi), the verifier samples a new randomness
ri and sends it back to the prover, who then proceeds with the next round of computation. It’s important to
note that the inner product only occurs during the computation of p(Xi) in each round, and p(Xi) is directly
used as part of the proof. So the computation of p(Xi+1) relies only on f, g, h, and the public randomness ri,
and there is only a single layer of multiplication gates. As we designed in the honest-majority scenario, the
inner product will not trigger additional MPC communication, allowing each party to perform the computation
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locally without needing inter-party communication. However, in the dishonest-majority scenario, each party
needs to perform multiplications using Beaver triples. This means that inter-party communication is inevitable
and will involve linear communication overhead. Specifically, during the multiplication operations in the
sumcheck protocol, each party must engage in MPC protocols to securely compute the inner products using
the Beaver triples.

Finally, we also need to use distributed computing to accelerate each party’s local computation. This part
is similar to the distributed computing protocol used in public delegation. Each party will first distribute the
shares of f and g, along with the public polynomial h, across its local computation nodes. For simplicity, we
assume the number of nodes is a power of 2, allowing us to partition the computations by variates so that each
node receives a multilinear polynomial with fewer variables. In the sumcheck protocol, after determining
each variable ri, the process effectively performs a folding operation on the polynomial. This folding can be
done in parallel across nodes, with each node folding its local polynomial. Similarly, polynomial evaluation
can also be executed locally at each node, with the results aggregated at the end.

Notably, all operations in this process—both folding and evaluation—are linear and do not require any
MPC communication. Thus, the entire procedure can be completed efficiently through distributed computing,
ensuring scalability and speed without incurring additional communication overheads.
Mode Switching. As mentioned in Section 2, The final phase of DFS involves the holography verification,
which only contains computations on purely public data. At this stage, the protocol can seamlessly switch
from private delegation to public delegation. Specifically, the delegator can distribute the public data, such
as the R1CS matrices, across all the nodes managed by the different parties before the proof generation.
This phase can directly adopt the distributed computing protocol used for public delegation (Appendix E),
allowing for the maximization of resource utilization, further enhancing scalability and efficiency. As shown
in Section 6.1.2, even with a single node per party, DFS outperforms prior work EOS because of mode
switching.
Formal Construction. We present our formal protocols in Appendix H.
Security. The security of our private-delegation protocol is straightforward. All SNARK operations
except for inner product are linear, and thus the security is directly guaranteed. Only the inner-product
operation allows a malicious adversary to introduce an error at the inner-product result. However, the result is
reconstructed to the delegator D, and thus is not used in other operations. Therefore, the error does not reveal
the privacy, and will be detected by D through verifying the final proof. In addition, the adversary can also
introduce some errors into the reconstruction secrets. In a similar reason, the errors have no impact on privacy,
and will also be detected by D. Overall, the malicious adversary can only perform additive attacks, which
will be detected by D. Due to the single layer of non-linear operations, the privacy of witness is guaranteed.
The final proof is verified by D, and thus is valid if D does not abort. Note that our protocol also involves
multi-round of Fiat-Shamir transformations. This is secure because each subcircuit has only one layer of
multiplication, and the output is hashed for FS. Therefore, any additive attack would lead to different FS
values and, thus, invalid proofs with overwhelming probability. Formal proof is in Appendix J.
Efficiency. Consider an R1CS with m constraints and n non-zero entries, with three parties in the honest-
majority setting and two parties in the dishonest-majority setting, where each party has Nw computation
nodes. In the honest-majority scenario, there is no additional MPC communication, and each party only needs
to distribute and process the computations related to its share. Note that each party may internally coordinate
its own nodes. Thus, the computation cost for each node is O(Nw + (m+n)

Nw
). Communication is minimal due

to DFS requiring O(logm+ log n) rounds, with each round only needing to send a constant-sized message.
Therefore, the communication cost per node is O(logm + log n). In the dishonest-majority scenario, the
computation cost for each node remains O(Nw + (m+n)

Nw
), but multiplications incur linear communications,
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meaning the communication cost for each node is also O( (m+n)
Nw

). In both scenarios, the delegator, responsible
for coordinating the parties and verifying the proof, only performs a constant amount of work per round, so
the total computation and communication cost is O(logm+ log n). Finally, the proof size and verification
cost remain the same.
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6 Implementation and evaluation

We implemented DFS as a library in about 13000 lines of Rust code, building on top of the arkworks
framework [con22]. Our library contains not only a single-machine implementation of DFS’s prover, but
also public and private delegation protocols. For the zkSNARK, we implemented the LogUp and multilinear
sumcheck PIOPs, and PST13 polynomial commitments. For private delegation, our implementation supports
both AddSS and RSS protocols. To provide inter-node communication, we relied on mpi-rs, a MPI library
for Rust. The artifact can be found in DOI 10.5281/zenodo.14677896. We also plan to open-source the
library in Arkworks [con22].

6.1 Evaluation and comparison

Our goal is to determine whether DFS achieves horizontal scalability, and thus answer the following questions:
• Does the proof generation latency decrease linearly as we increase the number of nodes?
• Does the proof generation latency increase linearly as we increase the size of the instance?
• Does communication become a bottleneck when we increase the number of nodes and the instance size?

Experimental setup. We evaluated our system on the university’s computing cluster, with each machine
equipped with an Intel Xeon Scalable Cascade Lake 6248 CPU and 192GB of memory. In the delegation
scenarios, each node uses 8 vCPUs. All network link has maximum bandwidth of 100Gbps. The nodes
communicated directly with the coordinator, with logarithmic communication costs. In all scenarios, the
coordinator cost is also logarithmic. In public delegation, the coordinator could be one of the nodes; in private
delegation, the coordinator could be the delegator. We ran the delegator on a cluster node, but limited its
vCPUs and memory to simulate real-world deployments. Concretely, the delegator was limited to 1MB of
memory during the delegation We obtained experimental setups and data of prior work from their papers.
Moreover, DFS’s setup used fewer resources than prior baselines, and so our comparisons are conservative
and favor the baselines. For example, EOS [CLMZ23]’s experiments used two EC2 c5.24xlarge servers (96
vCPUs at 3.6GHz); the equivalent DFS experiments used two servers with 8 vCPUs at 2.5GHz. Both used
BLS12-381 and Arkworks. Pianist [LXZSZ23]’s experiments used m6i.16xlarge instances (64 vCPUs at
3.5GHz); the equivalent DFS experiments had to use more machines (8 vCPUs at 2.5GHz) to reach the same
total number of vCPUs. Pianist used a faster curve (BN254) and MSM (Gnark).

We assume three parties for RSS, and two parties for AddSS. We do not enforce authenticated secret
share for AddSS-based protocol to enable a fair comparison with prior semi-honest work. In contrast, our
RSS-based protocol achieves malicious security for free. We assume that each party receives their share
of the instance, witness, and computation trace before the proof generation begins. These shares are then
distributed to their respective nodes. Since this distribution can be preprocessed, we do not include this time
in the overall proof generation time. In all scenarios, the total per-party input is less than 100 GB. We gives
a detailed brakedown in Appendix A.

Proof size, verifier time and coordinator cost. The proof size and verifier time do not depend on the
particular implementation of the prover algorithm. For instance sizes ranging from 215 to 227, the proof size
is about 10 - 17 KB and the verification time is about 37 - 45 ms. Both are logarithmic to the instance size.
The number of interaction rounds is also logarithmic. In all scenarios, the coordinator’s local computation
time is less than 50 ms, communication with each node is less than 30 KB, and memory usage is less than 1
MB making our protocol viable for weak devices.
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Figure 3: Proving time of single machine setting.
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Figure 6: Comm. with RSS.

6.1.1 Single machine setting

In Fig. 10, we evaluate the latency of DFS’s prover on a single machine, comparing it against Marlin [CHM-
MVW20], which has been highlighted in prior work [OB22] to be more efficient in the private delegation.
Fig. 10 illustrates that DFS’s prover incurs significantly lower latency than Marlin. This is because DFS
avoids FFTs and also requires fewer MSM operations.

Single machine. We present the single machine proving time in Appendix B. The results show that DFS’s
prover achieves lower latency than Marlin [CHMMVW20], previously noted for its efficiency in private
delegation [OB22].

Public delegation. We present the full evaluation results in Appendix C. Compared to the state-of-the-art
public delegation protocol Pianist [LXZSZ23], both take approximately 20 seconds for 225 constraints with
512 vCPUs. The communication cost of DFS is about 21 KB, which is larger than Pianist’s 2.1 KB. However,
it is still very small and acceptable in real-world applications. Additionally, DFS provides better support for
private delegation, offering enhanced privacy and efficiency in scenarios where privacy is crucial. Pianist
achieves a constant proof size (2.8 KB) and verifier time (3.5 ms) with quasilinear proving time, whereas we
achieve logarithmic proof size (10 KB) and verifier time (40 ms) with linear proving time.

6.1.2 Private delegation

Replicated secret sharing. In Fig. 4 and Fig. 5, we report the proving time of our private delegation protocol
based on RSS. We observe that as expected, the proof time decreases linearly with the increasing number of
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Figure 9: Comm. with AddSS.

nodes per party. Moreover, even when each party has only one node, the time required is still less than that of
a single machine. This is a significant advantage of DFS, because the holography part, as the bottleneck,
does not require MPC and therefore can utilize all resources for acceleration, achieving better performance.

There are three types of communication: node-node within a party, inter-party, and node-coordinator. Our
private delegation protocols avoid intra-party communication; RSS-based protocols further eliminate inter-
party communication. Fig. 6 shows the per-node cost for communication. We see that the communication
cost grows logarithmically with the number of constraints, as expected. Moreover, since DFS achieves zero
communication cost for MPC, the communication here is only related to public operations.

Additive secret sharing. In Fig. 7 and Fig. 8, we report the proving time of DFS based on AddSS. We
observe that the performance is close to that of RSS. That is because of several reasons. First, our default
bandwidth is 100 Gbps, which is much larger than the communication cost of AddSS. If the bandwidth is 5
Mbps, AddSS may require about 100 extra seconds for 224 constraints. Second, the holographic protocol
in both AddSS and RSS is accelerated without the use of MPC. Due to implementation limitations, the
holographic protocol can only be distributed among 2n nodes, even though RSS has three parties and thus
more vCPUs. This issue could be addressed in future implementations. Finally, we do not implement
authenticated share for AddSS to enforce comparison with other semi-honest work [CLMZ23]. Fig. 9 reports
the per-node communication cost. Unlike RSS, the communication cost scales linearly with the number of
constraints. Note that this is dominated by inter-node communications for multiplication, and the coordinator
communication is still logarithmic and no more than 30 KB. Moreover, each node interacts exclusively with
another node, enabling the entire communication to be efficiently partitioned.

Finally, in both the replicated and additive cases, the delegation protocol spends about 55% time in the
holographic protocol, compare to 70% in public delegation. This is because the non-holographic part in the
private delegation uses MPC and less resources for distributed computation.

Comparison to prior work. Compared to previous private delegation protocols, our approach differs
significantly in both the threat model and system model, and we give a more detailed comparison in Section 7.
Despite these differences, the distributed private delegation scheme zkSAAS [GGJPS23] requires about
4000 seconds and 350 GB of communication for 224 constraints with 280 vCPUs. In contrast, DFS using
RSS and AddSS spend approximately 50 seconds with only 192 and 128 vCPUs. Specifically, RSS-based
DFS requires only logarithmic communication, with each machine needing no more than 30 KB and a
total communication overhead of less than 500 KB. While AddSS-based DFS, like zkSAAS, involves linear
communication, each node requires no more than 1.3 GB, with a total communication overhead of less than
20 GB. A recent prior work [LZWZY24] has achieved improvements over zkSAAS. However, this approach
is limited to data-parallel circuits and still requires linear communication, which concretely can be up to
100× worse than our method.
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Another line of work [CLMZ23; OB22] shares a similar system model with ours but does not consider
distributed computing, making them not scalable. In comparison to EOS [CLMZ23], which uses AddSS with
each party operating a single node, our protocol demonstrates improvement under the same setup. For 224

constraints, EOS requires approximately 500 seconds, whereas DFS only needs 400 seconds while using
much fewer vCPUs per machine. This improvement is due to DFS being faster than Marlin and the mode
switch of our delegation protocol in the holographic phase as described in Section 5.2.

7 Related works

Existing zkSNARKs. Existing zkSNARKs vary widely in terms of their design goals, computational
requirements, and application areas. For example, [Gro16; CHMMVW20; GWC19] are designed for succinct
verification; [Set20; GLSTW23; XZS22; CBBZ23] are designed for linear proving; [BCRSVW19; COS20;
BBHR18] are designed for post-quantum security. However, none of them are designed for private delegation,
making them less friendly for distributed computing or MPC. For instance, Marlin’s [CHMMVW20]
reliance on FFTs and Spartan’s [Set20] offline-memory checking are not efficient in distributed environments.
Plonk’s [GWC19; CBBZ23] partial product computations and Orion’s [XZS22] Merkle-tree hashing are
inefficient for MPC. These limitations underscore the need for new protocols that better support both
distributed computing and MPC. In contrast, DFS achieves linear proving time, logarithmic verification, and
efficient private delegation.

Public delegation. Public delegation protocols have been studied to enhance the efficiency and scalability of
proof generation in distributed systems without hiding the witness. DIZK [WZCPS18] is proposed to support
distributed computation for Groth16 [Gro16]. Similarly, deVirgo accelerates the GKR-based [GKR08]
protocol Virgo [ZXZS20], showing improvements over DIZK. However, Virgo’s succinct verification is
limited to structured layer-circuits, and deVirgo requires the circuits to be data-parallel for effective par-
allelization. Both DIZK and deVirgo incur linear communication costs. Pianist [LXZSZ23] solves the
issue and proposes a constant-communication solution for arithmetic circuits. However, Pianist’s prover
time is quasilinear, while DFS is linear. A recent concurrent work HyperPianist [LLZQZ24] achieves the
same complexity as public delegated DFS but targets arithmetic circuits instead of R1CS. Another work,
Gemini [BCHO22], is proposed to achieve a space-efficient prover, and has the potential to be adapted for
efficient distributed computation. However, these work [LXZSZ23; LLZQZ24; BCHO22] require the witness
to compute partial products, which introduces significant overheads in MPC. Another line of work uses
folding-based SNARKs [NDCTB24; BC23; KST22] to reduce resources overheads. However, they rely on
recursive proof composition, incurring additional overheads.

Private delegation. Private delegation protocols have been proposed to support efficient private proof
generation in distributed systems. Collaborative zkSNARKs [OB22] tested various MPC schemes on
Groth16, Marlin, and Plonk, finding that Marlin performed the best. Another work [DPPSV22] applies
MPC to Ligero. These works were the first to introduce the concept of MPC-friendliness as a criteria for
evaluating existing zkSNARKs. Building on this insight, EOS [CLMZ23] explores further optimizations for
Marlin’s performance using AddSS. As discussed in Section 2.4, EOS fails to achieve malicious security
without authenticated shares. Moreover, these works require linear communication and do not support
parallel computing. We show that under the same threat model and MPC scheme, DFS outperforms EOS in
Section 6.1.2. zkSAAS [GGJPS23] aims to enhance performance and scalability while preserving privacy by
using an honest-majority threat model and leveraging packed secret sharing (PSS) to accelerate Plonk. In
zkSAAS, each party operates a single node for parallel computation, supporting a large number of parties.
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However, Plonk’s product check is not friendly for MPC, resulting in linear communication overhead.
Moreover, zkSAAS only achieves semi-honest security and, due to its star network topology, is limited by the
resources of the central node. Despite the different threat and system model, our experiments show that DFS
performs significantly better.

Similar to zkSAAS’s setting, a recent work [LZWZY24] scales a GKR-based zkSNARK, Libra [XZ-
ZPS19]. However, they inherit weaknesses from GKR [GKR08] – Libra works with layered arithmetic
circuits. Their proof size and verifier time is linear in the size of the repeated circuit, which may be large
for certain computations. In addition, this work only scales for data-parallel circuits, while we achieve
high parallelism for general arithmetic circuits. That is because, depending on the circuit structure, GKR
may require PSS to handle operations between secrets within the same share. Moreover, [LZWZY24] still
require linear communication, while DFS’s cost is logarithmic. We also note that GKR protocol might not be
distribution-friendly for non-parallel circuit since the circuit structure affects the memory access patterns.

8 Ethics considerations and compliance with the open science policy

8.1 Ethics considerations

We attest that we have thoroughly reviewed the ethics considerations as outlined in the conference call for
papers, the detailed submission instructions, and the ethics guidelines document provided by the conference
organizers. The research team has carefully evaluated the ethical implications of our work on DFS, ensuring
that the research has been conducted in accordance with the highest ethical standards.

Our team has considered all potential ethical issues arising from this research, including the responsible
disclosure of findings, the privacy implications of the technologies developed, and the potential for both
positive and negative impacts on stakeholders. We have also proactively assessed the possible risks and
mitigated them where necessary. We believe that our research was conducted ethically and in a manner that
aligns with both the principles of beneficence and respect for persons as described in the Menlo Report.

Additionally, our next steps following publication have been carefully planned with ethical considerations
in mind. We commit to following responsible procedures for the further dissemination and application of our
findings, particularly in terms of sharing data and code in compliance with the conference’s open science
policy. We are prepared to engage with the broader community to address any ethical concerns that may arise
as the research progresses.

Finally, we have also provided this additional Ethics Considerations and Compliance with the Open
Science Policy section to ensure that all relevant ethical issues are transparent and addressed appropriately.

8.2 Compliance with the open science policy

In alignment with the Open Science Policy, we commit to making all research artifacts related to DFS openly
accessible to the community. This includes the source code and detailed experimental results used in our
study. Our goal is to promote transparency and reproducibility in the field of cryptographic research, enabling
others to validate, build upon, and further enhance our work.

We will provide all relevant resources in a public repository, ensuring that proper documentation and
instructions are included for easy replication and understanding. Additionally, we will release the DFS
implementation under an appropriate open-source license, allowing others to freely use, modify, and distribute
the work while maintaining responsible practices. By adhering to these principles, we not only comply with
the Open Science Policy but also contribute to the broader academic and research community in a manner
that fosters collaboration and innovation.
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The artifact can be found in DOI 10.5281/zenodo.14677896.
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[BCHO22] J. Bootle, A. Chiesa, Y. Hu, and M. Orrù. “Gemini: Elastic SNARKs for Diverse Environments”.
In: Proceedings of the 41st Annual International Conference on the Theory and Applications of
Cryptographic Techniques. EUROCRYPT ’22. 2022.

26

https://zenodo.org/records/14677749?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImI0NjE1ZWVkLWQ2MTgtNDEwNy1hMjFmLTg0MmQ0ZWE4MWE5NyIsImRhdGEiOnt9LCJyYW5kb20iOiIzM2QzYTM5ZjQ5ZWZkZjM2NTE1ZjllYjkzODA1NmU4ZiJ9.2y5WljMWenkgkxJCZVOilnGeMY1EkbeyZtph-2tu6W3Srh4LOGX7jxre8bZtooAkX8TRVScfV-HWA7THJ9ofpQ
https://z.cash/


[BCRSVW19] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. “Aurora: Transparent
Succinct Arguments for R1CS”. In: Proceedings of the 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques. EUROCRYPT ’19. Full version available at
https://eprint.iacr.org/2018/828. 2019, pp. 103–128.

[Bea92] D. Beaver. “Efficient Multiparty Protocols Using Circuit Randomization”. In: Proceedings of the
11th Annual International Cryptology Conference. CRYPTO ’91. 1992, pp. 420–432.

[BEGKN91] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. “Checking the correctness of memories”.
In: Proceedings of the 32nd Annual Symposium on Foundations of Computer Science. FOCS ’91.
1991, pp. 90–99.

[Ben+14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. “Zerocash:
Decentralized Anonymous Payments from Bitcoin”. In: Proceedings of the 2014 IEEE Symposium
on Security and Privacy. S&P ’14. 2014, pp. 459–474.

[Ber02] D. J. Bernstein. Pippenger’s Exponentiation Algorithm. http://cr.yp.to/papers/
pippenger.pdf. 2002.

[BFS20] B. Bünz, B. Fisch, and A. Szepieniec. “Transparent SNARKs from DARK Compilers”. In: Proceed-
ings of the 39th Annual International Conference on the Theory and Applications of Cryptographic
Techniques. EUROCRYPT ’20. 2020, pp. 677–706.

[BGIN20] E. Boyle, N. Gilboa, Y. Ishai, and A. Nof. “Efficient Fully Secure Computation via Distributed
Zero-Knowledge Proofs”. In: Proceedings of the 26th International Conference on the Theory and
Application of Cryptology and Information Security. ASIACRYPT ’20. 2020, pp. 244–276.

[BNP08] A. Ben-David, N. Nisan, and B. Pinkas. “FairplayMP: a system for secure multi-party computation”.
In: Proceedings of the 15th ACM Conference on Computer and Communications Security. CCS ’08.
2008, pp. 257–266.

[Boy+19] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl. “Efficient Two-Round
OT Extension and Silent Non-Interactive Secure Computation”. In: Proceedings of the 26th ACM
SIGSAC Conference on Computer and Communications Security. CCS ’19. 2019, pp. 291–308.

[Boy+22] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, N. Resch, and P. Scholl. “Correlated Pseudo-
randomness from Expand-Accumulate Codes”. In: Proceedings of the 42nd Annual International
Cryptology Conference. CRYPTO ’22. 2022, pp. 603–633.

[Can00] R. Canetti. “Security and Composition of Multiparty Cryptographic Protocols”. In: Journal of
Cryptology 13.1 (2000), pp. 143–202.

[CBBZ23] B. Chen, B. Bünz, D. Boneh, and Z. Zhang. “HyperPlonk: Plonk with Linear-Time Prover and
High-Degree Custom Gates”. In: Proceedings of the 42nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques. EUROCRYPT ’23. 2023, pp. 499–530.

[CDGLN18] J. Camenisch, M. Drijvers, T. Gagliardoni, A. Lehmann, and G. Neven. “The Wonderful World
of Global Random Oracles”. In: Proceedings of the 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques. EUROCRYPT ’18. 2018, pp. 280–312.
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A Computation traces

In all scenarios, the total per-party input is less than 100 GB, which includes the SRS, the R1CS matrices,
and the Beaver triples for the largest measured instance size of 225. Some of these are one-off costs (SRS,
matrices), while others are incurred per-delegation (Beaver triples, witness shares). The per-delegation cost
is at most 7.5 GiB, which does not include optimizations from EOS which would further reduce this cost
by over half. One can also reduce Beaver triple costs entirely via techniques like pseudorandom correlation
generators [BCGIKS19].

We further emphasize that DFS, like prior work, focuses on the online performance of proof generation
after the witnesses have been secret-shared, and indeed all prior work incurs a similar per-delegation
communication cost. In the private delegation setting, the computation trace of zkSaaS includes Az, Bz,
Cz due to the reliance on packed secret sharing, while EOS’s trace only includes z because their protocol
computes shares of Az, Bz, Cz on the servers directly. DFS can do the same in EOS’s setting (no distributed
proving within each party), but distributed matrix-vector multiplication seems more challenging. In the public
delegation setting, Pianist omits witness generation and distribution costs, and in fact generates the entire
witness on each machine.

B Single machine evaluation
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Figure 10: Proving time of single machine setting.

In Fig. 10, we evaluate the latency of DFS’s prover on a single machine, comparing it against Mar-
lin [CHMMVW20], which has been highlighted in prior work [OB22] to be more efficient in the private
delegation. Fig. 10 illustrates that DFS’s prover incurs significantly lower latency than Marlin. This is
because DFS avoids FFTs and also requires fewer MSM operations.
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C Public delegation evaluation
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Figure 11: Latency of public del-
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We focus on two metrics: proof generation time and communication cost. In Fig. 11 and Fig. 12, we
present the proof generation time. Note that some experiments stops earlier due to the memory constraints.
We first observe that as the number of nodes increases, the proving latency decreases approximately linearly.
Additionally, when the number of nodes is fixed, increasing the number of constraints results in a corre-
sponding linear increase in proving latency. This demonstrates the scalability of our protocol with respect
to both the number of nodes and the size of the constraints. Furthermore, our experiments show that for all
measured instance sizes, the delegation protocol spends 70% of the time in the holographic protocol, which
is consistent with the single machine scenario. It indicates that the holography part is the bottleneck of the
whole protocol, which can be accelerated without the cost of MPC.

Fig. 13 reports the per-node communication cost during the proof generation. The cost grows logarithmi-
cally with the number of constraints. Furthermore, the per-node cost (slowly) decreases as we increase the
number of nodes, since each node handles a smaller portion of the instance.
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D Formal protocol of DFS PIOP

D.1 Common PIOPs

We now recall some common PIOPs that we will use in our construction of DFS. We omit their completeness,
soundness, and zero-knowledge proofs as these can be found in prior work [Tha13; Tha22; CBBZ23].

Sumcheck PIOP. Throughout this paper, we will be tasked with checking that an n-variate polynomial
p sums to a claimed value σ over an n-dimensional Boolean hypercube {0, 1}n. This is formalized via the
following relation:

Definition D.1. The Sumcheck relation RSUM is the set of tuples

(i,x,w) = (⊥, (F, n, σ), p(x))

where σ ∈ F, and
∑

x∈{0,1}n p(x) = σ.

The PIOP below illustrates a standard way of proving this relation.

PIOP 1: PIOP for SUMCHECK
For each i in 1, . . . , n:

1. If i = 1, V sets σi := σ; otherwise, it sets σi := pi−1(ri−1).
2. P computes the sumcheck message pi(Xi) :=∑

bi+1,...,bn∈{0,1}n−i p(r1, . . . , ri−1, Xi, bi+1, . . . , bn) and sends it to V .
3. V checks that pi(0) + pi(1) = σi.
4. V samples a random point ri ∈ F and sends it to P .
Finally, V needs to check the polynomial oracle p at the evaluation point (r1, . . . , rn).

Zerocheck PIOP. Throughout this paper, we will be tasked with checking that an n-variate polynomial p
is zero at all points of an n-dimensional Boolean hypercube {0, 1}n. This is formalized via the following
relation:

Definition D.2. The Zerocheck relation RZERO is the set of tuples

(i,x,w) = (⊥, (F, n), p(x))

where ∀x ∈ {0, 1}n, p(x) = 0.

The PIOP below illustrates a standard way of proving this relation.

PIOP 2: PIOP for ZEROCHECK
P has input p, while V has oracle access to p.

1. V samples a random point r ∈ Fn and sends it to P .
2. P and V invoke the sumcheck PIOP for the claim “

∑
X∈{0,1}n p(X) · eq(X, r) = 0”.

Lookup PIOP. Another important building block is the lookup PIOP, where P has a query vector q⃗ ∈ F2n

and and a pre-shared table vector t⃗ ∈ F2m . The prover’s goal is to assert that all elements of the query vector
are contained in the table vector. In practice, the query and table vectors are represented as the evaluations of
polynomials over the boolean hypercube.

This problem is formalized via the following relation:
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Definition D.3. The Lookup relation RLU is the set of tuples

(i,x,w) = (⊥, (F, n), (p0(x), p1(x), p2(x), p3(x)))

where {(p0(x), p1(x))} ⊂ {(p2(x), p3(x))} for x ∈ {0, 1}n.

The PIOP below illustrates a standard way of proving this relation that is adapted from [Hab22].

PIOP 3: PIOP for LOOKUP
P gets as input (q, t), while V gets as input (F, n,m, d) and oracles for q and t.

1. P receives a random challenge r ∈ F from V .
2. P computes polynomials h1(X), h2(X) such that for each x ∈ {0, 1}n, h1(x) = (r + q(x))−1, and for each

x ∈ {0, 1}m, h2(x) = (r + t(x))−1. That is, h1 and h2 are multilinear extensions of (r + q(x))−1 and
(r + t(x))−1, respectively.

3. P sends h1(x) and h2(x) to V .
4. P evaluates k :=

∑
x h1(x). Then, P and V invoke two Sumcheck PIOPs: one for the claim “

∑
x h1(x) = k”,

and another for the claim “
∑

x h2(x) = k”.
5. P and V invoke a Zerocheck PIOP for the claim “(r + q(X))h1(X)− 1 = 0”.
6. P and V invoke a Zerocheck PIOP for the claim “(r + t(X))h2(X)− 1 = 0”.

This PIOP shows how to perform lookups over scalars, where each element of the query or table vectors
is a single field element. Prior work [GW20; Hab22] has shown how to batch check multiple lookup relations
with a single lookup proof.

Definition D.4 (batch lookup). The relation RBMSE is the set of all triples (i,x,w) = (⊥, (q1(x), q2(x),
t1(x), t2(x)), (q1, q2, t1, t2)) such that the set {(q1(x), q2(x))}x∈{0,1}n is a subset of {t1(x), t2(x)}x∈{0,1}m .

PIOP 4: PIOP for BATCHLOOKUP
P gets as input (q1, q2, t1, t2), while V gets as input (q1(x), q2(x), t1(x), t2(x)).

1. P receives a random challenge r ∈ F from V .
2. P computes the polynomial q∗(x) := q1(x) + rq2(x) and the polynomial t∗(x) := t1(x) + rt2(x).
3. P and V invoke a Lookup PIOP for the q∗(x) and t∗(x) polynomials. V can use r and (q1(x), q2(x), t1(x),

t2(x)) in order to get an oracle over q∗(x) and t∗(x).

D.2 Polynomial commitments

DFS uses the PST13 polynomial commitment scheme [PST13]. This construction requires a one-time,
universal trusted setup, distributing the committer and verifier keys to the appropriate parties. This setup
determines the maximum degree of the polynomials we can commit to. For the PC.Commit and PC.Open
algorithms, we omit the hiding randomness p̄ for simplicity; see [CHMMVW20] for details.

Prot. 2: MULTILINEAR POLYNOMIAL COMMITMENT

PST.Setup(1λ, n)→ (ck, rk):
1. Obtain ⟨group⟩ = (F,G1,G2,GT , e,G,H)← SampleGrp(1λ).
2. Sample random α = (α1, . . . , αn)← Fn.
3. Set Σ := [eq(α, i) ·G]i∈{0,1}n .
4. Set ck := (Σ, ⟨group⟩).
5. Set rk := ([αi ·H]i∈[1..n], ⟨group⟩).
6. Output (ck, rk).
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PST.Commit(ck, p)→ cm:
1. Parse ck as ([eq(α, i) ·G]i∈{0,1}n , G,H).
2. Output cm :=

∑
i∈{0,1}n pi · eq(α, i) ·G.

PST.Open(ck, p, z)→ πPC:
Parse: ck = ([eq(α, i) ·G]i∈{0,1}n , G,H).
1. Let y := p(z)
2. For each i in [1, . . . , n]:

(a) Compute i-th witness polynomial qi(X) such that p(X)− y =
∑n

i=1 qi(X) · (Xi − zi)
(b) Compute πi := qi(α) ·G.

3. Output evaluation proof πPC := (π1, . . . , πn).

PST.Check(rk, cm,z, v, πPC)→ {0, 1}:
Parse: rk = ([αi ·H]i∈[1..n], G,H) and πPC = (π1, . . . , πn).
1. Accept if e(cm− vG,H) =

∑n
i=1 e(πi, (αi − zi) ·H).

D.3 Full PIOP for DFS

We present our formal protocol description below. As noted in Section 4, the protocol follows the Spartan
PIOP [Set20], but uses a different lookup argument in the holographic portion. Note that for simplicity of
exposition, we assume below that the public input is empty below. Prior work [Set20] shows how to handle
the case where the public input is non-empty, and our implementation follows this approach.

PIOP 5: PIOP for R1CS

Indexer I: on input (F, n,m,A,B,C), proceeds as follows:
1. For each M ∈ {A,B,C}:

(a) Derive polynomials rM (x), cM (x), and vM (x) from M . Output these polynomials.

Initialization: P gets as input the witness z = (w), as well as A, B, and C, while V gets the polynomial oracles of
rM (x), cM (x),vM (x) for M ∈ {A,B,C}.

Protocol:
1. P sends the oracle z(x) to the V .
2. Let M̂(x) :=

∑
y∈{0,1}s M(x,y)z(y), for M ∈ {A,B,C}, and F (x) = Â(x) · B̂(x) − Ĉ(x). P and V

invoke the Zerocheck PIOP (PIOP 2) on the polynomial F . This leads to an evaluation claim of the form
ex = F (ρx) · eq(r,ρx) for a zerocheck challenge r and random point ρx ∈ Fs.

3. To answer this claim, P computes vM := M̂(ρx) for each M ∈ {A,B,C}, and sends vA, vB , vC to V .
4. V asserts that ex

?
= (vA · vB − vC) · eq(r,ρx).

5. V randomly samples rA, rB , rC ∈ F, and sends them to P .
6. P computes M̂ρx(y) := (rA ·A(ρx,y) + rB ·B(ρx,y) + rC ·C(ρx,y))z(y).
7. P and V engage in a Sumcheck PIOP for the claim “

∑
y∈{0,1}s M̂ρx(y) = (rAvA + rBvB + rCvC)”. This

leads to an evaluation claim of the form ey
?
= M̂ρx(ρy), where ρy ∈ Fs is a random evaluation point.

8. V queries the oracle vZ := z(ρy). Then, the verifier asserts that ey
?
= (rA ·A(ρx,ρy) + rB ·B(ρx,ρy) +

rC ·C(ρx,ρy)) · vZ
9. For each M ∈ {A,B,C}:

(a) P sends oracles for eqrow(x) and eqcol(x).
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(b) P and V invoke a Sumcheck PIOP for the claim
∑

v(x)eqrow(x)eqcol(x) = Mρx(ρy), resulting in a
random challenge ρz and claimed evaluation ez .

(c) V uses oracles to assert
vM (ρz)eqrow(ρz)eqcol(ρz)

?
= ez

(d) P and V invoke the batched lookup PIOP where q1(x) := rM (x), q2(x) := eqrow(x), t1 is the
polynomial interpolated from (0, 1, · · · , n), and t2(x) := eq(x,ρx).

(e) P and V invoke the batched lookup PIOP for q1(x) := cM (x), q2(x) := eqcol(x), t1 is the polynomial
interpolated from (0, 1, · · · , n), and t2(x) := eq(x,ρy).

E Formal protocols of DFS with public delegation

DFS naturally lends itself to the public delegation setting, where Nw trusted nodes collaborate to generate a
proof with the help of a central coordinator D. Note that in the public setting, we do not protect the privacy
of the witness; thus, all nodes are controlled by a single trusted party. The central coordinator is responsible
for gathering data from all nodes to produce the final proof. Note that the coordinator’s cost is logarithmic,
either one of the nodes or the proof delegator can serve as the coordinator. The witness is not hidden from
the nodes in this setting. We denote each node as Ej , for j ∈ [Nw], and the set of all nodes as E1...Nw . For
convenience, we denote nw := log(Nw).

E.1 Public delegation protocols

We describe distributed versions of the PIOPs in Section D.1. In general, whenever we have an n-variate
polynomial p(x), we can split it into Nw parts p(j)(x), each of which is n−nw-variate. For p(x) in evaluation
form, we can simply give each node 2n−nw consecutive evaluations. Each node essentially has the original
n-variate polynomial with the first nw variables fixed. E1 has the first nw variables set to (0, 0, · · · , 0), E2
has the first nw variables set to (0, 0, · · · , 1), etc.

Distributed sumcheck. For the first n− nw rounds, each node will locally perform their own sumcheck,
and the coordinator will be responsible for producing Fiat-Shamir challenges and computations of the last nw

rounds.

Prot. 3: PUBLICLY DELEGATED SUMCHECK

1. For each i in 1, . . . , n− nw:

(a) All nodes Ej compute p
(j)
i (Xi) :=∑

bi+1,...,bn−nw∈W p(j)(. . . , ri−1, Xi, bi+1, . . . , ), where W = {0, 1}n−nw−i and sends it to D.

(b) D outputs
∑

j p
(j)
i (0) and

∑
j p

(j)
i (1).

(c) D performs Fiat-Shamir and sends a random point ri ∈ F to all Ej .

2. Each node computes y(j) := p(j)(r1, r2, . . . , rn−nw
) and sends it to the coordinator.

3. D interpolates the nw-variate polynomial p∗(x) from the evaluations y(j).

4. D locally runs the non-distributed sumcheck for
∑

p∗(x) = σn−nw
, where σn−nw

is final σi from the last
loop.

Distributed polynomial evaluation. Each node has a n− nw-variate chunk of the polynomials p, and the
evaluation point z.
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Prot. 4: PUBLICLY DELEGATED POLYNOMIAL EVALUATION
1. Let z∗ := z[: nw], and zw := z[nw + 1 : n].
2. Ej computes the partial evaluation of p(j)(zw) according to their id j, and sends to the D.
3. The coordinatorD interpolates the nw variate polynomial p∗ from the evaluations (p(1)(zw), p(2)(zw), · · · , p(Nw)(zw)).

Then D outputs the evaluation p∗(z∗).

Distributed zerocheck. Each node has a n− nw-variate chunk of the polynomials p.

Prot. 5: PUBLICLY DELEGATED ZEROCHECK
1. D obtains r ∈ Fn via the Fiat-Shamir and sends it to E1...Nw

.
2. Ej computes the partial evaluation of eq(x, r) according to their id j. Ej will take evaluations from j · (n−nw)

to (j + 1) · (n− nw) to form their own eq(j)(x, r)
3. Each node defines qj(x) := p(j)(x) · eq(j)(x, r) and do a Distributed Sumcheck (Prot. 3) for the claim∑

q(x) = 0.

Distributed lookup. Each node has a n− nw-variate and m− nw-variate chunk of the polynomials q and t
respectively.

Prot. 6: PUBLICLY DELEGATED LOOKUP
1. D runs the Fiat-Shamir and sends the random challenge r ∈ F to each Ej .
2. Ej computes polynomials h(j)

1 (x), h
(j)
2 (x) such that for

x ∈ {0, 1}n−nw , h(j)
1 (x) = (r + q(j)(x))−1, and for each x ∈ {0, 1}m−nw , h(j)

2 (x) = (r + t(j)(x))−1.
3. E1...Nw

and D invoke the distributed polynomial commitment (Prot. 7) to output the commitment of h1 and h2.
4. Ej evaluates kj :=

∑
h
(j)
1 (x), and sends it to D, who sums up every k :=

∑
kj .

5. E1...Nw and D invoke two Distributed Sumcheck (Prot. 3): one for the claim “
∑

x h1(x) = k”, and
“
∑

x h2(x) = k”.
6. E1...Nw

and D invoke a Distributed Zerocheck (Prot. 5) for the claim “(r + q(x))h1(x)− 1 = 0”, result in the
evaluation point ρx.

7. E1...Nw
and D invoke a Distributed Zerocheck (Prot. 5) for the claim “(r + p2(x))h2(x)− 1 = 0”, result in

the evaluation point ρy ..
8. E1...Nw and D invoke the distributed polynomial commitment (Prot. 7) to output the opening proof for

h1(ρx), q(ρx), h2(ρy), t(ρy).

Distributed polynomial commitment scheme. Each node will receive a smaller committer key, as well a
n− nw-variate chunk of the secret polynomial.

Prot. 7: PUBLICLY DELEGATED POLYNOMIAL COMMITMENT

PST.Commit→ cm:
1. Each node computes cm(j) = PST.Commit(ck(j), p(j)).
2. The coordinator gathers and outputs cm =

∑
j∈1...Nw

cm(j)
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PST.Open→ πPC :

1. Let z∗ := z[: nw], and zw := z[nw + 1 : n].

2. For each Ej ,
(a) Compute y(j) := p(j)(zw)

(b) Compute i-th witness polynomial q(j)i (x) such that p(j)(x)− y(j) =
∑n−nw

i=1 q
(j)
i (x) · (xi− zw[i]).

(c) For each i in 1 . . . n− nw: compute π
(j)
i := q

(j)
i (α) ·G, and sends to the coordinator D.

3. For each i in 1 . . . n− nw: D gathers πw
PC[i] =

∑
π
(j)
i

4. Each node sends r(j) := p(j)(zw) to the coordinator D, which is a byproduct of the π
(j)
PC computation.

5. The coordinator D interpolates the nw variate polynomial p∗ from the evaluations (r(1), r(2), · · · , r(Nw)).

6. D obtains π∗
PC := PST.Open(ck∗, p∗, z∗).

7. D outputs πPC := πw
PC || π∗

PC.

Publicly delegated DFS. Using these building blocks, we can build DFS for the public delegation setting.

Prot. 8: PUBLICLY DELEGATED DFS

Initialization: The sparse matrix encodings rM , cM , and vM are splited into Nw parts for each M ∈
{A,B,C}. We denote the jth node’s part of a certain polynomial p as p(j). In addition, the computa-
tion trace Az,Bz,Cz and the witness z are also distributed to each node as the s − nw-variate polynomials
Â(j)(x), B̂(j)(x), Ĉ(j)(x), z(j)(x).

Protocol:
1. E1...Nw

and D invoke the distributed polynomial commitment (Prot. 7) to commit z(x) and output the commit-
ment.

2. Let F (j)(x) := Â(j)(x) · B̂(j)(x) − Ĉ(j)(x). E1...Nw
and D invoke the distributed zerocheck (Prot. 5) on

the polynomial F . This leads to an evaluation claim of the form F (ρx)eq(ρx, r) = ex for a random point
ρx ∈ Fs, as well as the zerocheck challenge r ∈ Fs.

3. For each M ∈ {A,B,C}
(a) E1...Nw

and D engage in a distributed polynomial evaluation protocol (Prot. 4) to evaluate and output
vM := M̂(ρx).

4. D runs the Fiat-Shamir and randomly samples rA, rB , rC ∈ F, and sends them to E1...Nw .
5. Each Ej individually computes M (j)

ρx (y) := (rA ·A(j)(ρx,y)+ rB ·B(j)(ρx,y)+ rC ·C(j)(ρx,y))z
(j)(y).

6. E1...Nw
andD engage in a distributed sumcheck (Prot. 3) for the claim “

∑
y∈{0,1}s Mρx(y) = rAvA+rBvB+

rCvC”. This leads to an evaluation claim of the form Mρx(ρy), where ρy ∈ Fs is a random evaluation point.
7. E1...Nw

and D invoke the distributed polynomial commitment (Prot. 7) to open z(ρy) and outputs the opening
proof.

8. For each M ∈ {A,B,C}:
(a) E1...Nw and D runs the distributed polynomial commitment (Prot. 7) to output the commitment for eqrow

and eqcol.

(b) E1...Nw
and D invoke a distributed sumcheck (Prot. 3) for the claim

∑
v(x)eqrow(x)eqcol(x) =

Mρx(ρy), resulting in a random challenge ρz and claimed evaluation ez .

(c) E1...Nw
andD runs distributed polynomial commitment scheme to output the opening proofs for vM (ρz), eqrow(ρz), eqcol(ρz).
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(d) E1...Nw and D invoke the distributed batched lookup (Prot. 6) where
q1(x) := rM (x), q2(x) := eqrow(x), t1 is the polynomial interpolated from (0, 1, · · · , n), and t2(x) :=
eq(x,ρx).

(e) E1...Nw
and D invoke the distributed batched lookup (Prot. 6) for

q1(x) := cM (x), q2(x) := eqcol(x), t1 is the same as in the previous step, and t2(x) := eq(x,ρy).

E.2 Performance analysis

Each of these distributed PIOPs only incurs O(log(m)) or O(log(n)) communication cost for each node,
where m is the size of input and n is the number of non-zero entries. In terms of the computation cost, note
that in the step 8 of Prot. 8, we cannot use use the same method as in the non-delegated scenario to compute
the chunk of eqrow(x) in each node, because the precomputed results would require O(m) space, while each
node may not have enough space to store. If we were to store the precomputed data in a distributed manner,
additional communication would be needed to retrieve the results from other nodes during the construction of
eqrow(x) for each node. This extra communication could introduce significant overhead since it might incur
random memory access.

To avoid this issue, we can use a different approach to compute eqrow(x). Recall that eq(x,y) :=∏logm
i=1 (xiyi + (1− xi)(1− yi)) =

∏logm−logNw

i=1 (xiyi + (1− xi)(1− yi)) ·
∏logm

j=logm−logNw+1(xjyj +
(1 − xj)(1 − yj)). We ask each node to precompute and store both of these two product terms, which
takes O( m

Nw
+ Nw) time. Then each node can compute its chunk of eqrow(x) by multiplying the two

precompute product terms in O( n
Nw

) time. In summary, per node cost is O(Nw + m+n
Nw

) computation and
O(log(n) + log(n)) communication.

The security, verification cost and proof size are not affected by the distributed implementation of the
prover.

F Instantiations for linear secret sharing

F.1 Replicated secret sharing scheme

The scheme of replicated secret sharing (RSS) [MAT89; CDI05] is described as below. Although we focus
on the three-party setting, we provide the description of the RSS scheme for n = 2t+ 1 parties.
• [[x]]← Share(x): On input a secret x ∈ F, a dealerD samples xT ← F for T ∈ T such that

∑
T∈T xT = x,

where T consists of all sets of t parties. Then, for each T ∈ T , D sends xT to Pi such that i /∈ T . Every
party Pi holds a set of shares denoted by [[x]]i, which consists of xT for all T ∈ T such that i /∈ T . The
sharing [[x]] is defined as ([[x]]1, . . . , [[x]]n), and involves xT ∈ F for each T ∈ T .

• x ← Rec([[x]],B): For each T ∈ T , any one party Pi with i /∈ T sends xT ∈ F to B, who computes
x :=

∑
T∈T xT .

The total number of shares is
(
n
t

)
and every party stores

(
n−1
t

)
shares, which would become very large as n

and t grow. Thus, we use RSS when only n is small. In this work, we focus on the case where n = 3 and
t = 1, the dealer samples x{1}, x{2}, x{3} ← F such that x{1} + x{2} + x{3} = x, and sends (x{2}, x{3}) to
P1, (x{1}, x{3}) to P2 and (x{1}, x{2}) to P3.

It is well-known that RSS satisfies the authentication property in the honest-majority setting. However,
our private-delegation protocol does not adopt the property, and the reconstruction protocol only needs to
receive the shares of any t+ 1 parties in order to recover the secret, which is sufficient to guarantee security
for our protocol. Following prior works such as [TFLNO16; LN17; BGIN20], RSS satisfies the multiplication
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property, i.e., all parties can locally compute an additive secret sharing ⟨z⟩ from two replicated secret sharings
[[x]] and [[y]].

Instantiation 3: Shamir secret sharing [Sha79]. In this instantiation, we also set n = 2t+ 1.
• [x] ← Share(x): On input a secret x ∈ F, a dealer D samples x1, . . . , xt ← F, and then uses Lagrange

interpolation to compute a polynomial f(X) ∈ F[X] of degree at most t, such that f(0) = x and f(i) = xi

for i ∈ [1, t]. For each i ∈ [1, n], D sends xi = f(i) to Pi.
• x← Rec([x],B): Every party Pi sends its share xi to B, who reconstructs the secret x as follows:

1. Use the first t+ 1 shares to compute the unique degree-t polynomial f(·) using Lagrange interpolation.

2. Check xi = f(i) for all i ∈ [t+ 2, n]. If the check fails, then abort; otherwise, compute x = f(0).

Following prior MPC works such as [TFLNO16; LN17; BGIN20; GPS21], the Rec and Open procedures
for RSS and SSS guarantee that that honest parties can reconstruct the correct secrets if they do not abort,
even if at most t parties are malicious. If multiple secrets need to be shared, the communication could be
significantly reduced using a pseudo-random generator (PRG). Since t out of n shares are uniformly random,
they can be generated by PRG and the pre-agreed seeds, where these seeds can be created in the setup phase
and reused across multiple different sharings.

F.2 Additive secret sharing scheme

For additive secret sharings (AddSS), we consider t = n − 1. The classic AddSS scheme is described as
follows:
• ⟨x⟩ ← Share(x): On input a secret x ∈ F, a dealer D samples a share ⟨x⟩i ← F for i ∈ [1..n] such

that
∑

i∈[1..n]⟨x⟩i = x, and then sends ⟨x⟩i to Pi for i ∈ [1..n]. The resulting sharing is defined as
⟨x⟩ = (⟨x⟩1, . . . , ⟨x⟩n).

• x← Rec(⟨x⟩,B): For i ∈ [1..n], Pi sends its share ⟨x⟩i to B, who computes x :=
∑

i∈[1..n]⟨x⟩i.
Additive secret sharing does not guarantee the correctness of values to be reconstructed. This can be solved
using standard authenticated sharings, i.e., additive secret sharings equipped with information-theoretic
message authentication codes (IT-MACs). For example, SPDZ-like IT-MACs [DPSZ12; DKLPSS13] is in
the form of M = x ·∆ ∈ F, where x is a secret, ∆ is a key and M is an MAC tag. Moreover, pseudorandom
correlation generator (PCG) [BCGI18; BCGIKS19] can be used to generate vector oblivious linear evaluation
(VOLE) correlations, which would in turn be used to preprocess SPDZ-like authenticated sharings with
sublinear cost.

Additive secret sharing does not guarantee the correctness of values to be reconstructed. This can be
solved using authenticated sharings, i.e., additive secret sharings equipped with information-theoretic message
authentication codes (IT-MACs). In this work, we focus on SPDZ-like IT-MACs [DPSZ12; DKLPSS13] in
the form of M = x ·∆ ∈ F, where x is a secret, ∆ is a key and M is an MAC tag. In particular, an SPDZ-like
authenticated sharing on x ∈ F is defined as [[x]] = (⟨x⟩, ⟨M⟩, ⟨∆⟩), i.e.,

x =

n∑
i=1

⟨x⟩i ∈ F, M =

n∑
i=1

⟨M⟩i ∈ F, ∆ =

n∑
i=1

⟨∆⟩i ∈ F.

Due to the linearity of additive secret sharings, SPDZ-like authenticated sharings are additively homomorphic.
The Open procedure on [[x]] is easy to be constructed by running Open(⟨x⟩). Note that Open(⟨x⟩) requires
O(n2) communication and one round. This can be reduced to O(n) communication complexity at the
cost of two rounds. In particular, the parties P1, . . . ,Pn first run Rec(⟨x⟩,P1), and then P1 sends x to
other parties. To guarantee the correctness of x, a checking procedure, based on IT-MACs, needs to be
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performed. Following the SPDZ protocol [DPSZ12; DKLPSS13], this procedure can be done in a batch,
which enables the communication cost to be independent of the number of values opened. Specifically,
given authenticated sharings [[x1]], . . . , [[xℓ]] and opened values x1, . . . , xℓ, the parties P1, . . . ,Pn execute the
following BatchCheck

(
([[xi]])i∈[1,n], (xi)i∈[1,n]

)
procedure to check the correctness of these opened values.

1. All parties compute (χ1, . . . , χℓ) := H(x1, . . . , xℓ), where H : Fℓ → Fℓ is a random oracle.

2. The parties compute y :=
∑ℓ

j=1 χj · xj ∈ F and ⟨M[y]⟩ :=
∑ℓ

j=1 χj · ⟨M[xh]⟩, and then set ⟨σ⟩ :=
⟨M[y]⟩ − y · ⟨∆⟩.

3. Every party Pi commits to ⟨σ⟩i, and then opens it after all shares on ⟨σ⟩ are committed, where the
commitments can be computed with a random oracle (see, e.g., [HSS17; CDGLN18; YWZ20]). Then,
every party Pi checks that

∑n
i=1⟨σ⟩i = 0, and aborts if the check fails.

Following prior works [DPSZ12; DKLPSS13; KOS16; KPR18], the probability that there exists some xi
opened incorrectly, is bounded by (qH + 2)/|F|, where qH is the number of queries to random oracle H and F
is exponentially large.

F.3 Pseudorandom correlation generators

We adopt the pseudorandom correlation generator (PCG) [BCGI18; BCGIKS19] to generate vector oblivious
linear evaluation (VOLE) correlations, which would in turn be used to generate SPDZ-like authenticated
sharings. While the notion of PCG is general, we focus on PCG for generating random VOLE correlations.
A probabilistic polynomial time (PPT) algorithm G is called a VOLE correlation generator, if G takes as
input 1λ and outputs a pair (R0 = (u,v), R1 = (w,∆)) such that u ∈ Fℓ, v ∈ Fℓ and ∆ ∈ F are uniformly
random, and w = v + u ·∆ ∈ Fℓ holds. Such generator G is reverse sampleable [BCGIKS19], i.e., there
exists an algorithm RSample, in which given Rb for b ∈ {0, 1}, it sets R′

b := Rb and outputs R′
1−b such

that (R′
0, R

′
1) is computationally indistinguishable from (R0, R1)← G(1λ). In the following, we recall the

definition of PCG [BCGIKS19] for VOLE.

Definition F.1. Let G be a reverse-sampleable VOLE correlation generator and RSample be the reverse
sampling algorithm for G. A pseudorandom correlation generator (PCG) for G is a pair of algorithms
(PCG.Gen,PCG.Expand) with the following syntax:

• PCG.Gen(1λ) is a PPT algorithm that takes as input 1λ, and outputs a pair of seeds (k0, k1).

• PCG.Expand(b, kb) is a polynomial-time deterministic algorithm that takes as input a bit b ∈ {0, 1} and a
seed kb, and outputs Rb such that Rb = (u,v) if b = 0 and Rb = (w,∆) if b = 1.

The pair of algorithms (PCG.Gen,PCG.Expand) should satisfy the following properties:

• Correctness and pseudorandomness. The VOLE correlation obtained via

{(R0, R1) | (k0, k1)← PCG.Gen(1λ),

Rb ← PCG.Expand(b, kb) for b ∈ {0, 1}}

is computationally indistinguishable from G(1λ).
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• Security. For any b ∈ {0, 1}, the following two distributions are computationally indistinguishable

{(kb, R1−b) | (k0, k1)← PCG.Gen(1λ),

R1−b ← PCG.Expand(1− b, k1−b)} and

{(kb, R1−b) | (k0, k1)← PCG.Gen(1λ),

Rb ← PCG.Expand(b, kb), R1−b ← RSample(b,Rb)}

Using the recent PCG constructions [Boy+19; SGRR19; WYKW21; Boy+22; Guo+23; RRT23], the
PCG scheme for random VOLE correlations can be constructed with the seed size sublinear to the length ℓ
of vectors, i.e., |k0| = Oλ(log

2 ℓ) and |k1| = Oλ(log ℓ). The computational complexity of PCG.Gen(1λ) is
Oλ(log

2 ℓ), and that of PCG.Expand(b, kb) is Oλ(ℓ). According to the known implementations [SGRR19;
Boy+19; WYKW21; RRT23], the computation of both PCG.Gen(1λ) and PCG.Expand(b, kb) is streamable
and concretely efficient. The PCG as described above works for the two-party case. In the multi-party setting,
every pair of parties (Pi,Pj) for i, j ∈ [1, n], i ̸= j would generate a VOLE correlation such that every
party Pi obtains the same ui ∈ Fℓ and ∆i ∈ F among all VOLE correlations. Note that the existing PCG
schemes w.r.t. VOLE satisfy programmability defined in [BCGIKS19], i.e., PCG.Gen takes additional inputs
(ui,∆j) and outputs a pair of seeds that are expanded to a VOLE correlation with fixed ui,∆j . Based on
the programmability, we are able to construct PCG for VOLE in the multi-party setting (see [BCGIKS19]
for details). Building upon multi-party PCG for VOLE, we show the construction of a multi-party PCG
scheme (PCG.Genspdz,PCG.Expandspdz) for generating a vector of SPDZ-like authenticated sharings, while
guaranteeing the security.

• PCG.Genspdz(1
λ) runs n(n− 1) executions of PCG.Gen(1λ) to generate (k1, . . . , kn) such that the size of

every seed ki is Oλ((n− 1) log2 ℓ). In particular, PCG.Genspdz(1λ) executes as follows:

1. For each i ∈ [1, n], sample ui ← Fℓ and ∆i ← F. Optionally, compute u :=
∑

i∈[1,n] u
i.

2. For each i, j ∈ [1, n] with i ̸= j, run PCG.Gen(1λ,ui,∆j) to generate a pair of seeds (k(i,j)0 , k
(i,j)
1 ).

3. For each i ∈ [1, n], output ki =
(
{k(i,j)0 }j ̸=i, {k

(j,i)
1 }j ̸=i

)
. Optionally, output u.

• PCG.Expandspdz(i, ki) runs 2(n − 1) executions of PCG.Expand to generate Pi’shares on a vector of
SPDZ-like authenticated sharings [[u]]. For each i ∈ [1, n], PCG.Expandspdz(i, ki) performs the following:

1. For each j ̸= i, run PCG.Expand
(
0, k

(i,j)
0

)
to generate R

(i,j)
0 =

(
ui,v(i,j)

)
such that w(i,j) =

v(i,j) + ui ·∆j ∈ Fℓ, and PCG.Expand
(
1, k

(j,i)
1

)
to generate R

(j,i)
1 =

(
w(j,i),∆i

)
such that w(j,i) =

v(j,i) + uj ·∆i ∈ Fℓ.
2. Compute Mi := ui ·∆i −

∑
j ̸=i v

(i,j) +
∑

j ̸=iw
(j,i) ∈ Fℓ.

Through the programmability, we guarantee that ui and ∆j are reused among all VOLE correlations
associated with i or j, but v(i,j) and w(i,j) are independent for each pair (i, j). For correctness, we have∑

i∈[1,n]

Mi =
∑

i∈[1,n]

ui ·∆i +
∑

i∈[1,n]

∑
j∈[1,n],j ̸=i

(
w(i,j) − v(i,j)

)
,

=
∑

i∈[1,n]

ui ·∆i +
∑

i∈[1,n]

∑
j∈[1,n],j ̸=i

ui ·∆j = u ·∆ ∈ Fℓ,

where
∑

i∈[1,n]∆
i = ∆ ∈ F.
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G Building blocks for private delegation from additive secret sharing

In the following protocol, we describe the private-delegation protocol in the dishonest-majority setting using
additive secret sharings equipped with SPDZ-like IT-MACs. In Πauthss

PrivDeleg, we describe the private-delegation
protocol in the dishonest-majority setting using additive secret sharings equipped with SPDZ-like IT-MACs.
For two vectors a and b, we use a⊙ b to denote their inner product. This protocol invokes SPDZ algorithms
to compress the communication of generating IT-MACs to the sublinear complexity, where the algorithms
can be constructed using the recent PCG schemes such as [WYKW21; Boy+22]. All BatchCheck procedures
can be deferred to the end of protocol execution, but must be performed before verifying the resulting proof.
This is similar to the SPDZ-like MPC protocols [DPSZ12; DKLPSS13]. We include the formal security proof
in Appendix J.

Prot. 9: ADDSS-BASED BUILDING BLOCKS

Let m = ⌈ℓ/Nw⌉.

• MSM([[y]],X)→ [[Z]]: Given a vector of authenticated secret sharings [[y]] and public group elements X ∈ Fℓ,
for each j ∈ {0, 1}, Pj controls each node E(k)j to compute in parallel as follows:

[[Z]]
(k)
j :=

km∑
i=(k−1)m+1

[[yi]]
(k)
j ·Xi.

For each j ∈ {0, 1}, Pj chooses one node to compute [[Z]]j :=
∑Nw

k=1[[Z]]
(k)
j , and then all parties output an

authenticated secret sharing [[Z]].

• LinearComb([[x]], c)→ [[y]]: Given a vector of authenticated secret sharings [[x]] and public elements c ∈ Fℓ+1,
for each j ∈ {0, 1}, Pj controls each node E(k)j to compute in parallel:

[[y]]
(k)
j :=

km∑
i=(k−1)m+1

ci · [[xi]]
(k)
j .

For each j ∈ {0, 1}, Pj chooses one node to compute [[y]]j :=
∑Nw

k=1[[y]]
(k)
j + [[c0]]j , where [[c0]] is locally

computed from the public element c0. Then, all parties output [[y]].

• InnerProd([[x]], [[y]])→ ⟨z⟩: Given two vectors of authenticated secret sharings [[x]] = (⟨x⟩, ⟨∆⟩, ⟨x ·∆⟩) and
[[y]] = (⟨y⟩, ⟨∆⟩, ⟨y ·∆⟩), the delegator D and two parties P0,P1 execute as follows:

1. In the preprocessing phase, D runs PCG.Gen(1λ) to generate a pair of short keys (k0, k1), and then sends kj
to Pj for each j ∈ {0, 1}. Then, for each j ∈ {0, 1}, Pj runs PCG.Expand(j, kj) to generate ([[a]], [[b]]) such
that [[a]] = (⟨a⟩, ⟨∆⟩, ⟨a ·∆⟩) and [[b]] = (⟨b⟩, ⟨∆⟩, ⟨b ·∆⟩). Here, the computation of running PCG.Expand
is distributed among all the Nw nodes of each party Pj .

2. In the preprocessing phase, both parties run Rec(⟨a⟩,D) and Rec(⟨b⟩,D) to let D obtain a ∈ Fℓ and b ∈ Fℓ.
Then, D computes c := a⊙ b ∈ F, and runs Share(c) to let the parties obtain ⟨c⟩.

3. Both parties run Open(⟨x⟩ − ⟨a⟩) to obtain g ∈ Fℓ and Open(⟨y⟩ − ⟨b⟩) to get h ∈ Fℓ. During the Open
procedure, the computation of shares on ⟨g⟩ = ⟨x⟩ − ⟨a⟩ and ⟨h⟩ = ⟨y⟩ − ⟨b⟩ is distributed as follows:

– For each j ∈ {0, 1}, Pj controls each node E(k)j to compute ⟨g⟩(k)j = ⟨x⟩(k)j − ⟨a⟩(k)j .

– For each j ∈ {0, 1}, Pj controls each node E(k)j to compute ⟨h⟩(k)j = ⟨y⟩(k)j − ⟨b⟩(k)j .
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For each j ∈ {0, 1}, Pj divides g and h into Nw parts, and each node E(k)j holds g(k) and h(k).

4. Both parties locally compute ⟨z⟩ := g ⊙ h+ g ⊙ ⟨b⟩+ h⊙ ⟨a⟩+ ⟨c⟩ as follows:

(a) For j ∈ {0, 1}, Pj makes each node E(k)j compute

⟨z⟩(k)j := g(k) ⊙ h(k) + g(k) ⊙ ⟨b⟩(k)j + h(k) ⊙ ⟨a⟩(k)j .

(b) For j ∈ {0, 1}, Pj chooses one node to compute

⟨z⟩j :=
Nw∑
k=1

⟨z⟩(k)j + ⟨c⟩j .

5. P0 and P1 execute the procedure BatchCheck(([[x]]− [[a]], [[y]]− [[b]]), (g,h)) to check that g = x−a ∈ Fℓ

and h = y − b ∈ Fℓ. Both parties abort if the check fails. Recall that the distributed computation for the
BatchCheck procedure among all nodes of every party has already described in Section F.2.

• Fold([[x]], r) → [[y]]: Given a vector of authenticated secret sharings [[x]] and a public element r ∈ F, let
m′ = ⌈ℓ/2Nw⌉, for each j ∈ {0, 1}, Pj controls each node E(k)j to compute in parallel as follows:

[[yi]]
(k)
j :=

km′∑
i=(k−1)m′+1

[[x2i−1]]
(k)
j + r · [[x2i]]

(k)
j for i ∈ [1, ℓ/2].

Then, both parties output [[y]] by collecting the shares from all the nodes.

H Detailed protocol for private delegation for DFS

In this section, we describe the private-delegation protocol for DFS, where a delegator D delegates the
generation of a zkSNARK proof to Np untrusted parties, and D will obtain the proof at the end of protocol
execution. Note that the delegator is trusted and will perform the logarithmic number of operations to
accelerate the proof generation. Recall that every party controls Nw nodes. For convenience, we denote
np := log(Np) and nw := log(Nw).

This private-delegation protocol invokes the algorithms and procedures shown in Section 5.1 to securely
compute the operations implied in the proving algorithm. Whenever we have an n-variate polynomial p(x),
if it is a private polynomial, then all parties hold a secret sharing [[p(x)]], where each party Pj holds a share
[[p(x)]]j . In particular, the sharing [[p(x)]] consists of the secret sharings on the evaluations of polynomial
p(x) at different points, i.e., [[p(x)]] is a vector of linear secret sharings. Therefore, both evaluation and
interpolation of private polynomial p(x) are corresponding to the linear-combination operation of a private
vector and another public vector. Given a vector of linear secret sharings [[p(x)]], all parties can run the
LinearComb algorithm defined in Section 5.1 to compute secret sharings on the evaluation or interpolation of
polynomial p(x) without any communication. The computation of every party can be accelerated using the
worker nodes to perform the computation in a distributed and parallel way.

Initialization. In the initialization phase, in addition to processing the index information for the zkSNARK
itself, we also need to generate and distribute the witness shares to each party. Each party will then distribute
its share of the witness, along with the non-zero elements of the matrix, across its local nodes for distributed
computation. In the dishonest-majority scenario, Beaver triples must be prepared for each party to securely
handle the multiplications involved in the inner-product computations. However, there is not needed for
Beaver triples in the honest-majority scenario, since no MPC communication is required between parties
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during the computation of the inner-product. We additionally distribute the computation trace Az, Bz and
Cz before the proof generation.

Private delegation of sumcheck. In the sub-protocol, the delegator will open the sumcheck messages (see
step 2 of PIOP 1) to all parties. Our zkSNARK scheme DFS needs to handle two cases of sumchecks:

• Case 1: private data is multiplied (step 2 of PIOP 5);

• Case 2: public data is multiplied by private data (step 7 of PIOP 5).

In the case of purely public data (step 9 of PIOP 5), since it does not involve any private information, MPC is
not required, and we can simply invoke the public-delegation protocol in Appendix E. Here, we focus on
describing the protocols for the first two sumcheck cases that involve private data.

We first present the first case (step 2 of PIOP 5), which involves the product of three polynomials:
f(x), g(x) and h(x) such that

∑
b∈{0,1}n f(b) · g(b) · h(b) = σ. In this case, f(x) and g(x) are private

polynomials, while h(x) and σ are public. For convenience of presentation, we assume that h(x) has been
distributed among the parties and their nodes in the same way as f(x) and g(x). All parties hold two vectors
of secret sharings [[f(x)]] and [[g(x)]] along with a public h(x).

Prot. 10: PRIVATE DELEGATION OF SUMCHECK FOR CASE 1

1. D samples a random masking polynomial τ(x) (which has only n non-zero entries), and outputs its commitment
and the sumcheck claim στ =

∑
b∈{0,1}n τ(b).

2. D performs the Fiat-Shamir transform to generate a random challenge ρ ∈ F, and then sends it to all parties. (Be-
low, the protocol will produce the sumcheck messages for checking

∑
b∈{0,1}n f(b) · g(b) · h(b) + ρ · τ(b) =

σ + ρ · στ ).

3. For each i ∈ [1, . . . , n], D and all parties P1, . . . ,PNp
execute as follows:

(a) For each Xi ∈ {0, 1, 2, 3}, the parties run the LinearComb algorithm to compute the following two vectors
of secret sharings:

[[f(Xi)]] :=[[f(r1, . . . , ri−1, Xi, bi+1, . . . , bn)]]

[[g(Xi)]] :=[[g(r1, . . . , ri−1, Xi, bi+1, . . . , bn)]]·
h(r1, . . . , ri−1, Xi, bi+1, . . . , bn),

where (bi+1, . . . , bn) ∈ {0, 1}n−i are enumerated to form two vectors f(Xi) ∈ F2n−i

and g(Xi) ∈
F2n−i

.
(b) For each Xi ∈ {0, 1, 2, 3}, all parties execute the inner-product procedure

InnerProd([[f(Xi)]], [[g(Xi)]])→ ⟨z(Xi)⟩.

(c) For each Xi ∈ {0, 1, 2, 3}, the parties run the procedure Rec(⟨z(Xi)⟩,D) to let D obtain z(Xi). It is easy
to see that z(Xi) = ∑

(bi+1,...,bn)∈{0,1}n−i

(f · g · h)(r1, . . . , ri−1, Xi, bi+1, . . . , bn).

Then, D outputs z(Xi) +
∑

(bi+1,...,bn)∈{0,1}n−i ρ · τ(r1, . . . , ri−1, Xi, bi+1, . . . , bn).
(d) D performs the Fiat-Shamir transform to generate a random point ri ∈ F, and then sends it to all parties.
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(e) The parties run the folding algorithm Fold([[f(x)]], ri) to obtain [[f(r1, . . . , ri−1, ri,x)]], and update
[[f(x)]] as [[f(r1, . . . , ri−1, ri,x)]]. Then, they run Fold([[g(x)]], ri) to update [[g(x)]] as [[g(r1, . . . , ri−1, ri,x)]].
All parties also perform the folding operation with the inputs of public polynomial h(x) and ri to update
h(x) as h(r1, . . . , ri−1, ri,x).

4. D also outputs an opening proof for τ(r) where r = (r1, . . . , rn).

We now present the second case (step 7 of PIOP 5), which involves the product of two polynomials: f(x)
and g(x) such that

∑
b∈{0,1}n f(b) · g(b) = σ. In this case, f(x) is a private polynomial, while g(x) and σ

are public. To simply the description, we assume that g(x) has been distributed among the parties and their
nodes (i.e., each party holds a copy of g(x)). This case is simple, since it does not involve multiplication of
private data. All parties hold a vector of secret sharings [[f(x)]] as well as a public polynomial g(x).

Prot. 11: PRIVATE DELEGATION OF SUMCHECK FOR CASE 2

1. D samples a random masking polynomial τ(x) (which has only n non-zero entries), and outputs its commitment
and the sumcheck claim στ =

∑
b∈{0,1}n τ(b).

2. D performs the Fiat-Shamir transform to generate a random challenge ρ ∈ F, and then sends it to all parties.
(Below, the protocol will produce the sumcheck messages for checking

∑
b∈{0,1}n f(b) · g(b) + ρ · τ(b) =

σ + ρ · στ .)

3. For each i ∈ [1, . . . , n], D and all parties P1, . . . ,PNp
execute as follows:

(a) For each Xi ∈ {0, 1, 2}, the parties run the LinearComb algorithm to compute the secret sharing
[[z(Xi)]] := ∑

(bi+1,...,bn)∈{0,1}n−i

[[f(r1, . . . , ri−1, Xi, bi+1, . . . , bn)]]

· g(r1, . . . , ri−1, Xi, bi+1, . . . , bn)

(b) For each Xi ∈ {0, 1, 2}, all parties run the reconstruction procedure Rec([[z(Xi)]],D) to let D obtain
z(Xi), such that z(Xi) = ∑

(bi+1,...,bn)∈{0,1}n−i

(f · g)(r1, . . . , ri−1, Xi, bi+1, . . . , bn).

Then, D outputs z(Xi) +
∑

(bi+1,...,bn)∈{0,1}n−i ρ · τ(r1, . . . , ri−1, Xi, bi+1, . . . , bn).
(c) D performs the Fiat-Shamir transform to generate a random point ri ∈ F, and then sends it to all parties.
(d) All parties run the folding algorithm Fold([[f(x)]], ri) to obtain [[f(r1, . . . , ri−1, ri,x)]], and update

[[f(x)]] as [[f(r1, . . . , ri−1, ri,x)]]. The parties also perform the folding operation with the inputs of
public polynomial g(x) and ri to update g(x) as g(r1, . . . , ri−1, ri,x).

4. D outputs an opening proof for τ(r) with r = (r1, . . . , rn).

Private delegation of zerocheck. We build a private-delegation protocol for zerocheck (step 2 of PIOP 5),
based on the private-delegation protocol of sumcheck (Prot. 10). All parties hold three vectors of linear secret
sharings [[f(x)]], [[g(x)]] and [[h(x)]], such that f(b) · g(b) + h(b) = 0 for all b ∈ {0, 1}n.

Prot. 12: PRIVATE DELEGATION OF ZEROCHECK
1. D performs the Fiat-Shamir transform to generate a random vector r ∈ Fn, and then sends it to all parties
P1, . . . ,PNp .

2. Polynomial eq(x, r) (defined in Section 3) can be divided into Nw parts, where each part includes 2n/Nw
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terms. Each node E(k)j of every party Pj computes the k-th part. Party Pj can collect all parts to obtain
eq(x, r).

3. D and all parties execute the private-delegation protocol of sumcheck shown in Prot. 10 (resp., Prot. 11) to gener-
ate the sumcheck messages for checking

∑
b∈{0,1}n f(b) · g(b) · eq(b) = 0 (resp.,

∑
b∈{0,1}n h(b) · eq(b) =

0), where f , g and h are private polynomials.

Private delegation of polynomial evaluation. All parties hold linear secret sharings [[p(x)]] on a private
polynomial p(x) along with a public evaluation point z ∈ Fn. Delegator, who interacts with the parties, aims
to output p(z) ∈ F.

Prot. 13: PRIVATE DELEGATION OF POLYNOMIAL EVALUATION
1. All parties P1, . . . ,PNp

run the LinearComb and Fold algorithms to compute secret sharings [[p(z)]] for a
private polynomial p(x) and a public evaluation point z.

2. The parties run the reconstruction procedure Rec([[p∗]],D) to make D obtain a polynomial p∗(x). Then, D
computes and outputs the polynomial evaluation p∗(z∗) ∈ F.

Private delegation of polynomial commitments. The private-delegation protocol of the Commit and Open
algorithms on a polynomial commitment scheme is simple, since all operations are linear. In the commitment
phase, all parties input a vector of secret sharings [[p(x)]] and a pair of public committed keys (ck, ck∗); the
delegator D holds (ck, ck∗) and outputs a commitment on the private polynomial p(x). In the open phase,
the parties have [[p(x)]] and a public evaluation point z, and D holds a masking polynomial τ(x) and another
public evaluation point z∗; D would output the opening proof on p(z).

Prot. 14: PRIVATE DELEGATION OF POLYNOMIAL COMMITMENTS

PST.Commit(ck, [[p(x)]])→ cm
1. All parties P1, . . . ,PNp run the MSM([[p(x)]], ck) algorithm to obtain a secret sharing [[cm0]].
2. The parties execute the Rec([[cm0]],D) procedure to let D obtain cm0.
3. D samples a random masking polynomial τ(x), and produces a commitment cm1 = MSM(τ(x), ck).
4. D computes and outputs cm = cm0 + cm1.

PST.Open((ck, ck∗), ([[p(x)]], τ(x)), (z,z∗))→ πPC

1. All parties P1, . . . ,PNp
run the LinearComb and Fold algorithms to compute [[y]] with y = p(z).

2. For each i ∈ [1 . . . n], the parties run the LinearComb and Fold algorithms to compute the i-th witness
polynomial [[qi(x)]], where all n witness polynomials satisfy p(x)− y =

∑n
i=1 qi(x) · (xi − zi).

3. For each i ∈ [1 . . . n], all parties run MSM([[qi(x)]], ck) to compute a secret sharing [[πi]].

4. For each i ∈ [1 . . . n], the parties run the Rec([[πi]],D) procedure to let D obtain πi. Then, D sets
π0
PC = (π1, . . . , πn).

5. D generates the opening proof on the masking polynomial by running π1
PC ← PST.Open(ck∗, τ(x),z∗).

6. D outputs the opening proof πPC := π0
PC + π1

PC.

Private delegation of DFS. Using the sub-protocols described as above, we design an efficient private-
delegation protocol for DFS, which is shown as below. Without loss of generality, we assume that the CRS
and preprocessing keys (ipk, ivk) have been produced, which are omitted for simplicity in the description of
this protocol. Delegator D employs all parties P1, . . . ,PNp (where each party holds Nw nodes) to generate
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a proof that proves validity of zA = A · z, zB = B · z, zC = C · z and zA ◦ zB = zC . Following prior
works [CLMZ23; OB22; GGJPS23; LZWZY24] about private delegation of zkSNARKs, we also assume that
D has run the Share procedure to make the parties obtain [[z]], [[zA]], [[zB]] and [[zC ]] in the setup phase. The
communication of the setup phase can be further reduced by letting D only share z and all parties compute
[[zA]], [[zB]] and [[zC ]] by running the LinearComb algorithm. At the end of protocol execution, D outputs a
proof that consists of the outputs of sub-protocol executions.

Prot. 15: PRIVATE DELEGATION OF DFS

Setup: All parties P1, . . . ,PNp hold secret sharings [[z]], [[zA]], [[zB ]] and [[zC ]]. Recall that Â, B̂, and Ĉ are the
multilinear extensions of zA, zB and zC , respectively. Let A, B and C be the matrix encodings of matrices
A,B,C. For each M ∈ {A,B,C}, the sparse matrix encodings rM , cM , and vM are splited into Nw parts,
which allow the nodes of every party to perform distributed computation. Let s be the logarithm of the number of
constraints.

Protocol:
1. D and all parties P1, . . . ,PNp

execute the privately delegated polynomial commitment sub-protocol (Prot. 14)
to let D output a commitment on the private polynomial z(x).

2. Let F (x) := Â(x) · B̂(x)− Ĉ(x). D and the parties execute the privately delegated zerocheck sub-protocol
(Prot. 12) on the input of polynomial F . At the end of the sub-protocol execution, D outputs the sumcheck
messages for an evaluation claim of the form F (ρx)eq(ρx, r) = ex for a vector of random points ρx ∈ Fs as
well as a zerocheck challenge r ∈ Fs.

3. For each M ∈ {A,B,C},D and the parties execute the privately delegated polynomial evaluation sub-protocol
(Prot. 13) to output vM = M(ρx).

4. D performs the Fiat-Shamir transform to generate three random challenges rA, rB , rC ∈ F, and then sends
them to the parties.

5. Let Mρx(y) := (rA ·A(ρx,y)+rB ·B(ρx,y)+rC ·C(ρx,y)) ·z(y). D and all parties engage in a privately
delegated sumcheck sub-protocol (Prot. 11) for the claim

∑
y∈{0,1}s Mρx(y) = rA · vA + rB · vB + rC · vC .

Through the sub-protocol execution, D and the parties obtain a vector of random points ρy ∈ Fs.
6. D and the parties invoke the privately delegated polynomial commitment sub-protocol (Prot. 14) to output the

opening proof of z(ρy).
7. For each M ∈ {A,B,C}, D and all the nodes from all parties execute the last step (i.e., the step 8) of the

public-delegation sub-protocol Prot. 8.
8. D outputs a proof π by collecting the proof components from all sub-protocol executions. D invokes the

verification algorithm of the zkSNARK scheme DFS to verify the validity of π, and aborts if the verification
fails.
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I USENIX Security ’25 Artifact Appendix

I.1 Abstract

This artifact appendix provides a roadmap for evaluators to test the functionality of our implementation. The
artifact is based on the Arkworks framework and offers both single-prover and distributed setups.

I.2 Description & Requirements

I.2.1 Security, privacy, and ethical concerns

We attest that we have thoroughly reviewed the ethics considerations as outlined in the conference call for
papers, the detailed submission instructions, and the ethics guidelines document provided by the conference
organizers. The research team has carefully evaluated the ethical implications of our work on DFS, ensuring
that the research has been conducted in accordance with the highest ethical standards.

Our team has considered all potential ethical issues arising from this research, including the responsible
disclosure of findings, the privacy implications of the technologies developed, and the potential for both
positive and negative impacts on stakeholders. We have also proactively assessed the possible risks and
mitigated them where necessary. We believe that our research was conducted ethically and in a manner that
aligns with both the principles of beneficence and respect for persons as described in the Menlo Report.

Additionally, our next steps following publication have been carefully planned with ethical considerations
in mind. We commit to following responsible procedures for the further dissemination and application of our
findings, particularly in terms of sharing data and code in compliance with the conference’s open science
policy. We are prepared to engage with the broader community to address any ethical concerns that may arise
as the research progresses.

Finally, we have also provided this additional Ethics Considerations and Compliance with the Open
Science Policy section to ensure that all relevant ethical issues are transparent and addressed appropriately.

I.2.2 How to access

The artifact can be found in DOI 10.5281/zenodo.14677896.

I.2.3 Hardware dependencies

A local machine with the following specifications is sufficient for functionality testing:

• At least 10-core CPU

• 16 GB RAM

I.2.4 Software dependencies

• Operating System: Ubuntu 20.04+ (recommended) or MacOS

• Rust Compiler: nightly toolchain (v1.75+)

• GNU Bash: Required for running scripts
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I.2.5 Benchmarks

None.

I.3 Set-up

I.3.1 Installation

Follow the instructions in the README.md file to set up the environment and dependencies. Note that we are
using nightly toolchain for Rust.

I.3.2 Basic Test

To verify the basic functionality of the artifact, follow these steps:

Setup and Compilation.

cargo build --release --examples

Running Functional Tests. Execute the following commands:

cargo test --release

I.4 Evaluation workflow

I.4.1 Major Claims

(C1): For public delegations, DFS achieves logarithimic communication overheads.
(C2): For private delegations, DFS achieves logarithimic communication overheads for RSS-based imple-

mentations, and linear communication overheads for AddSS-based implementations.

I.4.2 Experiments

To run the experiments for example/rss snark, example/ass snark and example/snark, use the following
commands:

./setup.sh

./work.sh

Before running the setup.sh, inst folder folder must be created in the corresponding directory to store the
generated files. The work.sh script will then run the tests.

mpirun− n∗ can be used to specify the number of cores to run. If it is changed, other parameters such as
log-num-parties must also be changed accordingly.

I.5 Version

Based on the LaTeX template for Artifact Evaluation V20231005. Submission, reviewing and badging
methodology followed for the evaluation of this artifact can be found at https://secartifacts.
github.io/usenixsec2025/.
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J Ideal functionalities and security proofs of our protocols

Discussion on multi-round Fiat-Shamir transform. In our private-delegation protocol shown in Figure 15,
there are O(logm) rounds between the delegator D and parties for Fiat-Shamir transform, where m is
the number of constraints in R1CS. In each round, the parties send a part of components (included in the
proof) to D, and then D sends the random Fiat-Shamir challenges to the parties. In the following, we will
discuss that no selective-failure attack is allowed, even though the multi-round Fiat-Shamir transform is
used. For our protocol, each sub-circuit has only one layer of multiplications, and the output is hashed for
Fiat-Shamir transform. Therefore, any additive attack would lead to different Fiat-Shamir challenges, which
makes the proof invalid with overwhelming probability. In addition, our protocol avoids cross-terms between
adversarial-chosen errors and secret values, which further prevents any possible selective-failure attack.

J.1 Ideal functionality for building blocks

In this section, we define the ideal functionality to model the security of the protocols that only consist of
these building blocks. Delegator D is able to obtain the unopened components in a proof by calling the
output command, and can get the opened components in the proof from all parties after they execute the
public-delegation phase. Here, to simplify the description, we refer the elements as “opened” components,
even if they are computed from the values that have been opened in the public-delegation phase. This
functionality only guarantees the privacy, and allows the adversary to introduce some errors into the values to
be opened or output. Note that the delegator can verify the proof to assure the correctness, after it receives
the whole proof.

Func. 1: IDEAL FUNCTIONALITY FOR BUILDING BLOCKS

This functionality interacts with an honest delegator D, the parties P1, . . . ,Pn and an adversary who corrupts at
most t parties. Then, this functionality operates as follows:

• Upon receiving (share, id, w) from D and (share, id) from all parties (i.e., Pi for all i ∈ [1 . . . n]), where id is a
fresh identifier and w ∈ F, store (id, w).

• Upon receiving (msm, {idi}i∈[1...ℓ], id,X) from all parties, where X ∈ Gℓ is public and idi for all i ∈ [1 . . . ℓ]
are present in memory, retrieve (idi,yi) for each i ∈ [1 . . . ℓ]. Then run MSM(y,X)→ Z and store (id, Z).

• Upon receiving (linearcomb, {idi}i∈[1...ℓ], id, c) from all parties, where c ∈ Fℓ+1 is public and idi for all
i ∈ [1 . . . ℓ] are present in memory, retrieve (idi,xi) for each i ∈ [1 . . . ℓ]. Then run LinearComb(x, c) → y
and store (id, y).

• Upon receiving (innerprod, {idi}i∈[1...ℓ], {id′i}i∈[1...ℓ], id) from all parties, where idi, and id′i for all i ∈ [1 . . . ℓ]
are present in memory, retrieve (idi,xi) and (id′i,yi) for each i ∈ [1 . . . ℓ]. Then, run InnerProd(x,y)→ z and
store (id, z).

• Upon receiving (fold, {idi}i∈[1...ℓ], {id′i}i∈[1...ℓ], r) from all parties, where idi for all i ∈ [1 . . . ℓ] are present in
memory and r ∈ F, retrieve (idi,xi) for each i ∈ [1 . . . ℓ]. Then run Fold(x, r) → y, and store (id′i,yi) for
each i ∈ [1 . . . ℓ/2].

• Upon receiving (rec, id) from all parties and D, where id is present in memory, retrieve (id, z), wait for the
adversary to input an error e, then send z + e to D. Ignore any subsequent (open, id) commands.
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J.2 Proof for RSS-based DFS

Theorem J.1. RSS-based protocol (Prot. 1) securely realizes the ideal functionality defined in Func. 1 in the
presence of a static, malicious adversary who corrupts at most one party.

Proof. It is easy to construct a probabilistic polynomial time (PPT) simulator, who invokes a PPT adversary
as a subroutine. Then, we analyze that the ideal-world execution is computationally indistinguishable from
the real-world execution via a series of hybrids.

Hybrid 1 This is the real world execution.

Hybrid 2 In this hybrid, we replace the input sharing step with the simulation strategy. By the privacy prop-
erty of the secret sharing scheme, this does not change the output distribution of the environment.

Hybrid 3 In this hybrid, we use the simulation strategy for the open and output commands to extract the
error e from the adversary. This change is purely conceptual as the functionality allows the
adversary to introduce errors. This is the ideal world execution.

J.3 Proof of AddSS-based DFS

Theorem J.2. AddSS-based protocol (Prot. 9) securely realizes the ideal functionality defined in Func. 1 in
the presence of a static, malicious adversary.

Proof. It is easy to construct a PPT simulator, who invokes a PPT adversary as a subroutine. Then, we
analyze that the ideal-world execution is computationally indistinguishable from the real-world execution via
a series of hybrid games.

Hybrid 1 The real world execution with private input values.

Hybrid 2 In this hybrid, we replace the honest parties’ output from PCG.Expand with uniform random
values. By the security of PCG this action brings negligible change to the output behavior of the
environment Z .

Hybrid 3 In this hybrid, we replace the honest parties’ checking in the BatchCheck step with the simulation
strategy. By the property of the random oracle and that the honest parties’ global keys are uniformly
random, the statistical difference between previous hybrid is bounded by (qH + 3)/|F|.

Hybrid 4 In this hybrid, we extract the error e from A in the open and output commands and sends them to
the ideal functionality. The change in this step is only conceptual.

Hybrid 5 In this hybrid, we replace the d values of the input command and g,h in the innerprod command
with uniformly random values. Since the honest parties’ secret masks are uniformly random, this
step does not change the output distribution of Z . This is the ideal world execution.
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