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Abstract

The Fiat–Shamir transformation is a fundamental cryptographic technique widely used to
convert public-coin interactive protocols into non-interactive ones. This transformation is crucial
in both theoretical and practical applications, particularly in the construction of succinct non-
interactive arguments (SNARKs). While its security is well-established in the random oracle
model, practical implementations replace the random oracle with a concrete hash function,
where security is merely assumed to carry over.

A growing body of work has given theoretical examples of protocols that remain secure
under the Fiat–Shamir transformation in the random oracle model but become insecure when
instantiated with any white-box implementation of the hash function. Recent research has shown
how these attacks can be applied to natural cryptographic schemes, including real-world systems.
These attacks rely on a general diagonalization technique, where the protocol exploits its access
to the white-box implementation of the hash function. These attacks cast serious doubt on the
security of cryptographic systems deployed in practice today, leaving their soundness uncertain.

We propose a new Fiat–Shamir transformation (XFS) that aims to defend against a broad
family of attacks. Our approach is designed to be practical, with minimal impact on the efficiency
of the prover and verifier and on the proof length. At a high level, our transformation combines
the standard Fiat–Shamir technique with a new type of proof-of-work that we construct.

We provide strong evidence for the security of our transformation by proving its security in
a relativized random oracle model. Specifically, we show diagonalization attacks on the stan-
dard Fiat–Shamir transformation that can be mapped to analogous attacks within this model,
meaning they do not rely on a concrete instantiation of the random oracle. In contrast, we prove
unconditionally that our XFS variant of the Fiat–Shamir transformation remains secure within
this model. Consequently, any successful attack on XFS must deviate from known techniques
and exploit aspects not captured by our model.

We hope that our transformation will help preserve the security of systems relying on the
Fiat–Shamir transformation.
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1 Introduction

The Fiat–Shamir (FS) transformation [FS86] is a powerful technique in cryptography. Initially
introduced as a method for deriving digital signatures from identification schemes, today, the FS
transformation is widely used to convert public-coin interactive protocols into non-interactive ones.
This transformation plays a crucial role in both theory and practice, particularly in the construction
of succinct non-interactive arguments (SNARKs).

The basic idea of the Fiat–Shamir transformation is to replace the verifier’s randomness with a
cryptographic hash function computed over everything the verifier has seen so far in the interaction.
This allows the prover to generate the random coins by itself and thus removes the need to interact
with the verifier (see [CY24] for details on this transformation). A rigorous soundness analysis of
this transformation in the standard model remains an open challenge to this day.

Pointcheval and Stern [PS96] showed that the Fiat–Shamir transformation is sound in the ran-
dom oracle model, where the cryptographic hash function is treated as a truly random function,
yielding unconditional security. However, deploying the scheme in practice requires instantiating the
random oracle with a concrete hash function (e.g., BLAKE2, SHA-256). There has been extensive
research on proving the security of the Fiat–Shamir transformation for specific protocols using hash
functions based on standard assumptions (e.g., [CCR16; KRR17; CCRR18; HL18; CCHLRRW19;
PS19; BKM20; JJ21; HLR21; CJJ21; HJKS22; KLV23]). While these approaches offer theoretical
security guarantees, their practical applicability is limited, and they often lack concrete efficiency.
Hence, it is typically assumed that the soundness proven in the random oracle model carries over to
the scheme when instantiated with a real-world concrete hash function. Nearly all SNARK-based
systems today depend on this assumption for their security.
Attacks on instantiations of Fiat–Shamir. Several works highlight the risks of replacing the
random oracle with a concrete hash function, regardless of how the hash function is implemented.
Canetti, Goldreich, and Halevi [CGH04] showed the existence of cryptographic schemes that are
secure in the random oracle model but are insecure in the standard model. The key issue is that
an adversary with full (white-box) access to the hash function—rather than just oracle access—can
exploit this additional knowledge to compromise security. Similar attacks have been shown for
interactive protocols that, while secure in their original form, become insecure after applying the
FS transformation, regardless of the specific hash function used [Bar01; GK03].

This line of work has been further extended to demonstrate the risks of the Fiat–Shamir transfor-
mation in more natural cryptographic schemes. Bartusek et al. [BBHMR19] showed that the stan-
dard approach for constructing hash-based proofs (in the style of [Kil92; Mic00; BCS16; CY21a])
becomes insecure when the FS transformation is applied. More recently, Khovratovich, Rothblum,
and Soukhanov [KRS25] presented an attack that breaks the Fiat–Shamir security of a widely used,
practical proof system. Specifically, their attack targets schemes based on the popular GKR proto-
col [GKR15]. This result is particularly alarming, as it threatens the security of various recent proof
systems, including some deployed in practice to secure blockchain networks [ZGKPP17; WTSTW18;
XZZPS19; ZLWZSXZ21; Pol24].

The attacks described above are sometimes referred to as diagonalization attacks. These at-
tacks exploit the fact that the proof systems in question are designed to handle general-purpose
computations. Specifically, they construct a proof instance where the circuit being proved evaluates
the Fiat–Shamir hash function itself. As suggested in [KRS25], a natural countermeasure is to
restrict the expressiveness of the circuits that the protocol supports, ensuring they cannot compute
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the Fiat–Shamir hash function (or, equivalently, using hard-to-compute hash functions for the FS
transformation). While this approach is theoretically appealing, it is highly impractical. In real-
world applications, hash functions are designed to be simple and efficient, whereas proof systems
are built to verify large and complex circuits. Moreover, regardless of practical considerations, it
remains unclear whether restricting the expressiveness of circuits provides any meaningful security
benefits.
Defending against white-box attacks. We propose a new Fiat–Shamir transformation (denoted
as XFS for extended FS) that aims to defend against a broad family of attacks, including most of the
white-box attacks mentioned above. In particular, we demonstrate how it circumvents the recent
practical attack on GKR [KRS25], and adapting this attack to break our construction appears
nontrivial. Our approach is designed to be practical, with minimal impact on the efficiency of
the prover and verifier and on the proof length. At a high level, our transformation combines the
standard Fiat–Shamir technique with a new type of proof-of-work that has a strong security notion.
We further present a practical construction of this proof-of-work.

While the overarching goal is to formally prove the security of our transformation in the stan-
dard model, doing so remains challenging without making assumptions about both the hash function
and the interactive proof being compiled. Towards this end, we introduce an idealized model that
abstracts the core principles of diagonalization attacks without assuming a white-box implementa-
tion. Within this model, we demonstrate that the standard Fiat–Shamir transformation is insecure,
whereas our proposed XFS transformation achieves provable security. This result suggests that any
successful attack would need to diverge significantly from existing techniques. However, it remains
an open question whether our framework truly captures all attack strategies in the standard model.

In the following sections, we describe our transformation in detail and outline our security
analysis.

1.1 A new Fiat–Shamir transformation

Our XFS transformation builds upon the original Fiat–Shamir paradigm by integrating a new variant
of a “proof-of-work”, to which we also give a concretely efficient instantiation. The key idea is that
the proof-of-work increases the complexity of the Fiat–Shamir hash function, making it resistant
to diagonalization attacks. However, since the verifier is provided with the solution upfront, the
verification complexity remains unchanged. In this sense, the non-deterministic complexity of the
hash remains low, while the deterministic complexity of the hash is high.

In more detail, given a protocol transcript tr up to round i, we first hash tr to get a puzzle z for
the proof-of-work (using the Fiat–Shamir hash, or possibly a separate dedicated hash). Then, the
prover solves the puzzle to get a solution s. Only after obtaining s do we apply the Fiat–Shamir
hash function to both the transcript tr and the solution s to derive verifier randomness.

Informally, a proof-of-work ([DN92]) is a pair of algorithms (Solve,Check) such that one can
sample puzzles of certain hardness ℓ, and then Solve provides a solution in time ℓ (a solution can
be efficiently checked by Check). Our security notion requires that any algorithm that runs in time
significantly less than ℓ can solve the puzzle only with negligible probability (even if it has a long
preprocessing phase before the puzzle is sampled). Note that this is different from the proof-of-work
that is used in Bitcoin.1 See Section 6 for further details and a construction of our proof-of-work

1In the proof-of-work used in Bitcoin, the solution is some s that hashes to an output that begins with log ℓ many
0’s. Such a scheme can be solved in constant time with probability 1/ℓ simply by guessing.
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variant.
Our XFS transformation is formally defined in Section 3, and we give an informal description

below.

Construction 1.1 (XFS). Let (P,V) be a 3-message interactive argument (i.e., a Sigma protocol)
for a language L, and let (Solve,Check) be a proof-of-work. Given a hash function h, we derive our
non-interactive argument as follows:

• Prover: Given x and w,

1. Compute the prover’s first message m1 = P(x,w).
2. Compute the puzzle for the proof-of-work z = h(x,m1).
3. Solve the proof-of-work s = Solve(z).
4. Set the pad τ = 0|⟨V⟩|, where |⟨V⟩| is the circuit size of V (see remark about this below).
5. Derive randomness for the verifier ρ = h(τ,x,m1, s).
6. Compute the response of the prover m2 = P(x,w, ρ).
7. Output (m1, s,m2).

• Verifier: Given x and (m1, s,m2),

1. Compute the puzzle for the proof-of-work z = h(x,m1).
2. Set the pad τ = 0|⟨V⟩|.
3. Derive randomness for the verifier ρ = h(τ,x,m1, s).
4. Accept if and only if the puzzle is correct Check(z, s) = 1 and the underlying verifier accepts

V(x,m1, ρ,m2) = 1.

We would like to highlight a few key points about our construction.

• (Preprocessing): In our formal construction, we allow the prover to first choose a circuit C that
represents the language (i.e., x is in the language if and only if there exists a witness w such that
C(x,w) = 1). In such a case, the verifier will get a short digest of the circuit computed by a
trusted indexer. This generalization is used by some of the attacks (e.g., [KRS25]).

• (Proof-of-work hardness): In order for the above protocol to be secure, the hardness parameter
ℓ for the proof -of-work must be larger than the circuit complexity of the circuit C representing
the language (as explained in the preprocessing case). See Section 6 for a simple construction of
our proof-of-work.

• (Multi-round): The construction above is defined for 3-message protocols. It is desirable to have
a generalization of XFS to multi-round protocols, similar to the generalization of the standard
Fiat–Shamir transformation to multi-round protocols (observe that for standard FS, the stronger
notion of round-by-round soundness is required). However, for simplicity, we focus on the 3-
message case, which is challenging on its own, and leave the multi-round case for future work.

• (Black-box with respect to circuits): We emphasize that our construction treats all circuits as
black-boxes, including the prover and verifier circuits, as well as a circuit C potentially provided
during the preprocessing phase. In particular, the construction does not rely on any ability to
identify when a circuit is computing the hash function h, nor does it modify the given circuits in
any way. Consequently, our transformation remains fully functional even if an adversary submits
an obfuscated version of its circuit.
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• (Padding): In Item 4 of the prover code (and similarly in the verifier code), the computation of
the padding τ plays a crucial role. The padding is used in our main proof, as it disallows the
verifier V to make queries to the Fiat–Shamir hash function, as this is longer than the code of
the verifier. (In fact, if the verifier is an AND of many Vi’s, then it suffices for the pad to be
longer than each Vi.)
Typically, the verifier is a small program that is under our complete control, unlike the circuit
C. Thus, it is reasonable to assume that in natural protocols, the verifier will not compute the
Fiat–Shamir hash (or will not compute it on specific restricted prefixes). In this case, we can
remove the padding or pad the Fiat–Shamir hash only with the restricted prefix. See Section 5.1,
specifically Remark 5.4, for further discussion.

Applicability. Our transformation serves as a replacement for the FS transformation and is
applicable in the same settings (namely, public-coin protocols). Other transformations (e.g., [Pas03;
Fis05; RT24]) for removing interaction have more limited applicability. For example, Fischlin’s
transformation [Fis05] is secure only for protocols that satisfy special soundness, even when analyzed
in the random oracle model. In contrast, diagonalization attacks apply to protocols over a rich and
expressive circuit family, which typically do not satisfy special soundness. We remark that white-
box attacks on Fischlin’s protocol remain largely unexplored, making it an interesting open question
to identify suitable attack strategies against this transformation.

1.2 On the white-box security of our transformation

We cannot hope to prove security of our transformation in the standard model without making
assumptions about both the hash function and the interactive proof being compiled. Instead, our
goal is to give a formal proof of security in a suitable model. Towards that end, we need to first
understand why and where exactly security proofs in the random oracle model (ROM) break down.

In the ROM, the Fiat–Shamir transformation is shown secure using the following logic [CY24;
PS96; Mic00; CY21a; CY21b]. First, you fix some interactive protocol (either a proof system or
an argument system). Then, you introduce the random oracle and apply the Fiat–Shamir transfor-
mation. That is, the interactive protocol has no knowledge about the random oracle. Even if the
interactive protocol was defined in the random oracle model, the FS transformation will introduce
a new oracle independent of the one used for the protocol. In this case, the prover, the verifier of
the protocol, and the circuit C (chosen by the malicious prover in a preprocessing phase) do not
have access to the random oracle for the Fiat–Shamir transformation.

This completely breaks down when instantiating the random oracle with any white-box im-
plementation. In particular, now the random oracle is replaced with a small circuit that can be
computed by the verifier or the circuit C. Indeed, this is exactly what the white-box attacks exploit.
A relativized world. To address these attacks, we consider compiling protocols in a relativized
world [CT10; CCS22; CCGOS23; CGSY24; BCG24]. In this model, all parties have oracle access to
the random oracle used in the Fiat–Shamir transformation. Specifically, we assume a single random
oracle f , which is accessible to the (potentially malicious) prover, the verifier, and the circuit C
representing the underlying language. The circuit C includes f -gates, granting direct access to the
random oracle f . Notably, this setup mirrors the structure exploited in the recent attack on the
GKR scheme [KRS25], which we discuss further in Section 2.

If one applies the standard Fiat–Shamir transformation, diagonalization attacks can be carried
out within the relativized model described above—meaning they do not require an explicit instan-
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tiation of the random oracle. In contrast, we prove unconditionally that our XFS variant of the
Fiat–Shamir transformation remains secure within this model when applied to a Sigma protocol
with an appropriate knowledge definition.

We consider preprocessing 3-message protocols (Sigma protocols) for circuit family C with oracle
gates to f , that have round-by-round knowledge soundness (our proof requires a slightly stronger
version of round-by-round knowledge, see Definition 4.1 for the precise definition). In this settings,
we prove the following theorem.

Theorem 1.2 (Informal). Consider the following ingredients in the relativized ROM:

• Let C be a family of circuits, where qC is a bound on the number of oracle gates.
• Let (ISP,PSP,VSP) be a preprocessing Sigma protocol for a family of circuits C in the random oracle

model, with (straightline) round-by-round knowledge soundness error κSP, and indexer complexity
qI.

• Let (Solve,Check) be a strong proof-of-work with soundness error εPOW where Check performs at
most qPOW queries.

Then, for every security parameter λ ∈ N, and ℓ ∈ N, the XFS transformation yields a SNARK for
C with adaptive knowledge error κARG such that

κARG(λ, t) = O (t · κSP(λ, t1) + t · εPOW(λ, ℓ, t, t2)) .

where t1 := t+ qI, and t2 := qPOW · (qC + qI).

A precise formulation of the relativized model appears in Section 4, and the formal statement
and proof of the theorem can be found in Section 5. We leave a formal analysis of the multi-round
case for future work.
Discussion. There are inherent limitations to constructing relativized SNARKs in the random
oracle model, as discussed in [BCG24]. Our construction does not attempt to bypass these limita-
tions. Instead, we assume the existence of a relativized interactive argument scheme and prove the
security of the XFS transformation under this assumption. Our security proof demonstrates that
any attack that can be mapped to the relativized setting will fail against XFS. Consequently, any
successful attack on XFS must deviate from known techniques and exploit aspects not captured by
our model.

Furthermore, while our transformation is provably secure in the relativized model, this does
not rule out the possibility of attacks in the standard model when the adversary has a white-
box implementation of the Fiat–Shamir hash. In such cases, an attacker could exploit structural
weaknesses of the hash function or the underlying proof system in ways that our model does not
capture. Therefore, while our transformation provides a strong layer of defense against known
diagonalization techniques, it should be applied with the necessary caution.
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2 Our Techniques

We give a high-level overview of the Fiat–Shamir transform, the known attacks, how our transforma-
tion mitigates these attacks, and how we formally model and prove security of our transformation.

• In Section 2.1, we give an illustrative example of known attacks.
• In Section 2.2, we describe how our transformation mitigates these attacks.
• In Section 2.3, we explain the security of our transformation.
• In Section 2.4, we describe how the recent on the GKR protocol fit into our model of security.

2.1 An illustrative example of known attacks

In this section, we describe a simple protocol, mainly inspired by Barak’s protocol [Bar01], that
essentially captures all known attacks on the Fiat–Shamir transformation.
A toy protocol. We describe a toy Sigma protocol which illustrates standard attacks on Fiat–
Shamir. In this protocol, a prover provides a circuit C : {0, 1}n × {0, 1}m → {0, 1}r+1 which is
preprocessed into a digest ψ and an input/output pair (x,y), and claims that he knows a witness
w so that C(x,w) = y. This will be a trivial protocol that ends in the prover sending C and w

to the verifier. In real protocols for which Fiat–Shamir is unsound, this step is replaced by more
sophisticated protocols for showing that the committed circuit and witness satisfy C(x,w) = y. In
more detail, the protocol works as follows:

1. (Preprocessing): The preprocessing algorithm receives a circuit C and outputs a short digest ψ
of this circuit. The honest prover is given C, and the verifier is given ψ. (This digest may contain
a hash of C, but can also contain other information about the circuit, such as its depth, etc.)

2. (Prover): The honest prover sends a succinct commitment of the witness m1 = Com(w) to the
verifier.

3. (Verifier): The verifier replies with a random challenge ρ← {0, 1}r.

4. (Prover): The honest prover sends C and w to the verifier.

5. (Verifier’s decision): The verifier accepts if ψ is the digest of C, it holds that m1 = Com(w), and
either C(x,w) = y, or C(x,w) = (0∥ρ).

If there exists a witness w so that C(x,w) = y, then the honest prover will send this, and it
will be accepted by the verifier. Furthermore, the protocol has small soundness error: a malicious
prover that chooses C, x, y, and w cannot predict the verifier’s challenge ρ. However, as we will
see, this protocol is not secure after applying the Fiat–Shamir heuristic.
Attacking Fiat–Shamir. Applying the Fiat–Shamir transformation using a hash function h to
the above sigma protocol yields the following non-interactive protocol:

1. (Preprocessing): The preprocessing algorithm receives a circuit C and outputs a digest of this
circuit ψ. The honest prover is given C, and the verifier is given ψ.

2. (Prover): The honest prover generates a succinct commitment of the witness m1 = Com(w) and
sends (m1, C,w) to the verifier.
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3. (Verifier): The verifier computes ρ = h(ψ,x,y,m1), and accepts if and only if ψ is the digest of
C, it holds that m1 = Com(w), and either C(x,w) = y, or C(x,w) = (0∥ρ).

We now describe an attack where the prover chooses a circuit C̃ and input/output pair (x,y) so
that C̃(x,w) ̸= y for every w, and yet the prover causes the verifier to accept with probability 1:

• The input will be x = 0n and the output will be y = 1r+1.

• The circuit C̃(x,w) is as follows: On input x and w, parse (ψ,y) = w, and compute m1 =
Com(ψ,y) and ρ = h(ψ,x,y,m1). Output (0∥ρ).

• The malicious prover computes m1 = Com(ψ,y), and sends (m1, C̃,w = (ψ,y)).

Since the output of C̃ always begins with 0, there will be no w so that C̃(x,w) = y = 1r+1, and
so (C̃,x,y) aught to be rejected. However, observe that C̃(x,w) = C̃(x, (ψ,y)) = (0∥ρ) where
ρ = h(ψ,x,y,m1) is the challenge that the verifier will compute. Therefore, the verifier will always
accept.

2.2 How our transformation mitigates these attacks

The main issue described in the previous section is that the circuit C̃f can compute the Fiat–Shamir
next verifier message function, as this function is simply an evaluation of the hash function. A naive
mitigation attempt, also suggested in [KRS25], is to make the Fiat–Shamir hash function so com-
putationally hard that the circuit cannot evaluate it. However, this approach has two fundamental
drawbacks:

• Practicality: The verifier evaluates the hash function, implying that its complexity exceeds that
of the hash function, which in turn exceeds the complexity of the circuit. In practice, we aim
for a succinct verifier that is significantly more efficient than the circuit itself. This becomes
particularly challenging when considering recursive compositions of proofs.

• Soundness: Regardless of practical considerations, certain subtleties arise when attempting to
argue soundness. Recall that the hash function in the Fiat–Shamir transformation receives in-
puts (e.g., ψ,x,y,m1) that are influenced by the prover. Thus, ensuring the soundness of the
transformation requires the hash function to be hard over all possible distributions of these inputs
for any prover. This imposes a significantly stronger requirement on the hash function—one that
is not met merely by guaranteeing that the hash function has high circuit complexity.

Our transformation addresses both challenges using a suitable variant of a proof-of-work scheme.
Proofs of work to the rescue. Our new transformation requires the prover to submit a solution
to a proof-of-work in the Fiat–Shamir “next verifier message” function. A proof-of-work is a scheme
with two algorithms, Solve and Check, where Solve receives a random puzzle z and outputs a solution
s and Check checks that s is a valid solution for z.2 Moreover, for a parameter ℓ, the puzzle should
take ℓ > |C̃| time to solve (so that computing the solution should be hard for the circuit C̃) but
can be verified in time o(ℓ) (so that the verifier can check it efficiently).

The security notion we use is as follows: for a security parameter λ, and any pair of circuits
(A1,A2) where A1 has size poly(λ, ℓ) and A2 has size o(ℓ), the following experiment outputs 1 with
probability at most negl(λ),

2Some proof-of-work schemes additionally require a setup function, which is omitted in this high-level explanation.
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1. A1 outputs a state aux.
2. A random puzzle z is chosen.
3. A2(aux, z) outputs s.
4. Output 1 if and only if Check(ℓ, z, s) = 1.

See Section 3 for a formal definition of strong proof-of-work.
To see how adding a proof-of-work protects our transformation against attacks, we turn back to

the toy protocol.
Our transformation applied to the toy protocol. We apply the XFS transformation, described
in Section 1.1, to the toy protocol. We assume that, after C is chosen, both the prover and the
verifier know |C| so that we can choose a hardness parameter ℓ > |C| for the proof-of-work. Note
that this is without loss of generality, as the preprocessing algorithm can add this to the digest ψ.
For this intuitive overview, we omit the padding string τ .

1. (Preprocessing): The preprocessing algorithm receives a circuit C and outputs a digest ψ of this
circuit. The honest prover is given C, and the verifier is given ψ.

2. The honest prover:

(a) Generates m1 = Com(w),
(b) Computes z = h(ψ,x,y,m1)
(c) Solves s = Solve(ℓ, z),
(d) Outputs (m1, s, C,w).

3. The verifier:

(a) Computes z = h(ψ,x,y,m1),
(b) Computes ρ = h(ψ,x,y,m1, s),
(c) Accepts if all of the following hold:

i. ψ is the digest of C,
ii. m1 = Com(w),
iii. Check(ℓ, z, s) = 1,
iv. Either C(x,w) = y, or C(x,w) = (0||ρ).

In order to mount an attack like the one previously discussed, the circuit C̃ needs to internally
compute h(ψ,x,y,m1, s), which requires knowing a solution s. While C̃ can compute the puzzle
z = h(ψ,x,y,m1), it cannot solve it by itself, as the hardness parameter of Solve is set to be greater
than the size of C̃.

The only option, then, is to provide the circuit with inputs (x,w) so that allow it to compute s.
However, as C̃ has size less than ℓ, this is a challenging task for the prover. Observe that the prover
must first choose (C̃,x,y,w), and only then it learns the puzzle z = h(ψ,x,y,Com(w)) where ψ
is derived from C̃. If the hash function is sufficiently unpredictable, then this generalizes to the
following game: the prover searches for a value aux before knowing z, so that solving z takes time
less than ℓ given aux. This is precisely the security notion that we require for the proof-of-work.
How to formally argue security? Up to this point, we have only an intuitive explanation of
why our transformation protects against attacks such as the one described in the toy protocol. In
order to meaningfully argue soundness of this heuristic, we turn back to the random oracle model
(ROM). We discuss our modeling of such protocols in the next section.

8



2.3 On the security of our transformation

We prove that our version of the Fiat–Shamir transformation is secure within the model of relativized
proof systems. This result implies that any successful white-box attack must rely on techniques that
fall outside the scope of this model and thus significantly deviate from existing attack approaches.

We focus our attention on three-message protocols (Sigma protocols). In the random oracle
model, the Fiat–Shamir transformation is typically defined as follows: Given a Sigma protocol
(which may have either information-theoretic or computational soundness) for some language L, or
more generally for a relation defined by a circuit C(x,w), where x represents the instance and w

the witness, we introduce a random oracle f to compile the Sigma protocol into a non-interactive
one.

This transformation is secure in the random oracle model. The key reason is that the initial
Sigma protocol does not have access to the random oracle f . The diagonalization attack described
in the toy protocol exploits precisely this gap, allowing the circuit C to access f and predict the
verifier’s next message. This explains why the Fiat–Shamir transformation remains secure in the
random oracle model but loses its security in the standard model.
Modeling attacks in the ROM. Our goal is to capture these attacks in a relativized model.
Thus, we begin with a relativized Sigma protocol in the random oracle model, with oracle f . That
is, all parties have access to f . In particular, we allow the circuit C to include f -gates. In an
f -gate, the input wires specify an input x to the gate, and the output wires specify y such that
f(x) = y. Then, the Fiat–Shamir (FS) transformation is applied using the same oracle f as the FS
hash function.

If one applies the standard Fiat–Shamir (FS) transformation, then the diagonalization attacks
can be implemented within the model without requiring an explicit instantiation of the random
oracle. Indeed, observe that the prover and the circuit C̃ attacking the toy problem rely solely on
the ability to evaluate the hash function h. Using our XFS variant of the FS transformation, we
(unconditionally) establish the security of the transformation in this model.
Sketching our proof. We show that adaptive (straightline) knowledge soundness of our scheme
reduces to adaptive (straightline) round-by-round knowledge soundness of the original Sigma pro-
tocol, assuming the Sigma protocol meets natural security requirements.3 Recall that straightline
round-by-round knowledge soundness says that if the prover can convince the verifier with proba-
bility greater than κ, then an extractor can extract a witness from the prover’s first message along
with the trace of its queries to the random oracle.

As a first step, our proof follows a similar structure to existing proofs for the Fiat–Shamir
transformation in the ROM (i.e., [CY24, Chapter 10]). We reduce a prover P attacking the argument
after applying our Fiat–Shamir transformation to a prover P attacking the Sigma protocol with
roughly the same probability. In order to choose (Cf ,x,y,m1, s,m2) as its message, the prover P
must query x = (x,y,m1, s) to receive the challenge ρ, as otherwise it will not be able to convince
the SP verifier on a random challenge that it does not know. We guess which one of its queries this
is and plant the random verifier challenge ρ← {0, 1}λ in the oracle response (recall that P expects
this challenge to come from f). Let f [(x, ρ)] be the “programmed oracle” which answers as f at all
points except x, where it answers with ρ. Our goal is to show that if P is run with this oracle rather

3In more detail, in addition to adaptive straightline round-by-round knowledge soundness, we require that the
circuit digest ψ to act as a commitment to C, and a natural notion saying that the extractors for the circuit and
witness do not change their output when more queries are appended to the prover random-oracle trace. See Section 4
for precise definitions.
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than the real function f , the verifier’s behavior does not change. Once this is shown, it concludes
our proof.

In the standard Fiat–Shamir proof, this step is trivial since neither the verifier nor the circuit
has access to the oracle f . However, in our case, both may make f -queries. We handle separately
the queries made by the verifier and those made by the circuit.

First, note that the verifier is an “honest” algorithm selected by the designer of the Sigma
protocol. We ensure that it does not query the programmed point by incorporating a suitable
padding mechanism. By adding sufficient padding to the query, i.e., f [(0|⟨VSP⟩|∥x, ρ)], we can ensure
that the verifier cannot directly make such queries (as they are larger than its description). We
formally define these pads as prefix-avoiding and prove their existence in the ROM. Moreover, we
present more practical and efficient alternatives to the simple padding scheme described above (i.e.,
the long zero string). However, for the sake of clarity in this exposition, we continue to use this
basic padding scheme. A more detailed discussion on alternative padding methods can be found in
Section 5.1.

We are left with showing that C can not make queries to the oracle. In contrast to the verifier,
the circuit is chosen by the malicious prover and can consist of any arbitrary, adversarially crafted
code. Moreover, the circuit is run on the witness w, which can be generated in time that is much
longer than the hardness of the puzzle. To address this, we leverage the proof-of-work mechanism.
Observe that the puzzle z is generated by evaluating f(ψ,x,y,m1). The digest ψ commits the prover
to the circuit C and, by round-by-round knowledge of the Sigma protocol, m1 is “committing” to w
in the sense that it can be used to extract w. Thus, the prover is essentially committed to x, y, C
and w before knowing the puzzle. Since our claim is that Cf (x,w) = y (i.e., the circuit runs only
on inputs x and w), the prover cannot pass to the circuit any information about the solution s to
the puzzle z (as this would violate security of the proof-of-work). In other words, Cf cannot make
the query x = (x,y,m1, s) as it contains s.

The formal proof is very subtle and takes many careful steps. See Section 5 for the full proof
details.

2.4 Protecting the GKR protocol

Khovratovich, Rothblum, and Soukhanov [KRS25] show attacks on the application of Fiat–Shamir
to a natural protocol in common use, namely the GKR protocol [GKR15] (adapted to nondetermin-
istic computations with large witnesses). These attacks are especially dangerous, as, unlike prior
attacks on Fiat–Shamir, they work directly on a natural and widely used protocol. We briefly discuss
the GKR protocol, the attack, and evidence towards it being mitigated by our transformation.
Overview of GKR. In the GKR protocol, the prover wants to prove that C(x,w) = y. The
verifier is provided with x, y, and a digest ψ of C which includes a succinct representation of C.
The prover begins by sending a commitment of w. In fact, this will be a special commitment
known as a multilinear PCS, which allows the verifier (with the aid of the prover) to evaluate the
low-degree extension of w at any point.4 The verifier then chooses a random challenge ρ which
defines a random claim about the low-degree extension of y. Following this, an interactive protocol
is run that uses C (through its digest ψ) to reduce the claim on y to claims about the low-degree
extensions of x and w. The verifier checks these by computing the low-degree extension of x itself

4Recall that the (multilinear) low-degree extension of a string w ∈ {0, 1}m is the unique m-variate multilinear
polynomial that agrees with w on the Boolean hypercube.
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and using the PCS to verify the claim about w.
The attacks. [KRS25] provide a number of clever attacks that utilize properties of the GKR
protocol to cause it to become unsound once it is transformed using Fiat–Shamir. The main attack,
of which all other attacks are variants, utilizes the following observation about the GKR protocol:
there exists y so that, given ρ, an alternate output yρ ̸= y can be found such that the claims on
the low-degree extensions of yρ and y are identical. Thus, by choosing y as the output, a circuit C̃
that can predict ρ can compute and output yρ. Then, the remainder of the GKR proof is run on
the false output y, but about a true claim, so that the GKR verifier ends up accepting.

All that remains is to enable C̃ to predict the challenge ρ. This is done in a similar manner to
the toy protocol: the circuit C̃ receives as its input w (and x), computes the PCS commitment of
w, and runs the Fiat–Shamir hash on the outputs.
Protection using our transformation. The GKR protocol cannot be described as a relativized
protocol as this would require a succinct representation of C̃, and hence of the random oracle. As
a result, we cannot directly prove the security of the GKR protocol after applying our XFS variant
of Fiat–Shamir. However, our unconditional result yields evidence of its security in the standard
model.

The main capability being exploited in the attack is that the circuit C̃ computes the Fiat–
Shamir hash function. In fact, the succinct representation of the circuit C̃ plays no part in the
attack. Thus, we can map the attack to a protocol where the circuit C̃ is simply run directly on its
claimed inputs, as is directly captured by the toy protocol. Indeed, following our transformation,
the circuit C̃ would, in order to compute the challenge ρ, need to solve a puzzle that depends on
its own description, which it cannot do. Hence, in order to attack the XFS transformation applied
to the GKR protocol, one must explicitly exploit the fact the structural properties of the GKR
protocol (such as the succinct representation or the precise PCS implementation), which seems
more challenging to mount, especially without resulting in a very contrived attack.
Attacks not captured by our model. While our construction successfully captures the recent
attacks on GKR, contrived protocols still exist for which our transformation is unsound:

• Barak’s [Bar01] non-blackbox zero-knowledge argument begins with the prover sending a com-
mitment which is capable of holding the description of the verifier circuit. A bound t on the
verifier running time is known prior to the interaction, which results in an argument that is
zero-knowledge against malicious verfiers that run in time t. The simpler version of the protocol
sets t to be a fixed polynomial in the input size (which results in zero-knowledge against t-time
verifiers). We can securely apply XFS to this version of the protocol by setting the proof-of-work
hardness ℓ to be greater than t. However, in the more advanced version of his protocol, Barak
sets t to be super-polynomial in order to achieve zero-knowledge against all polynomially bounded
verifiers. This would require us to set the proof-of-work to have ℓ to be super-polynomial, which
is impractical.

• Bartusek et. al [BBHMR19] show an attack on the application of the Fiat–Shamir transformation
to Kilian’s succinct argument. Kilian’s argument is based on committing to a PCP using Merkle
commitments with a collision-resistant hash (CRH). [BBHMR19] give a CRH which allows for
attacking the FS transformation by (among other things) adding to the CRH a SNARK proof
that the Fiat–Shamir hash function has a specific input/output pair. This contrived attack is not
covered by our model, as we do not allow for proving general statements about the Fiat-Shamir
hash function (without the verifier performing the queries needed to verify the statement).
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It remains an open problem to adapt the XFS transformation to protect against these additional
attacks.

2.5 A simple construction of a strong proof-of-work

We have described the need in our construction for a strong proof-of-work. Informally, this is a pair
of algorithms (Solve,Check) such that Solve solves a randomly chosen puzzle of certain hardness
ℓ, and Check verify the validity of a solution quickly. The security notion that we need in our
construction considers the following experiment: prior to the puzzle being chosen, a preprocessing
algorithm is allowed to run for a long time and output an auxiliary state aux. Then, after the puzzle
z is sampled, a second online algorithm is given z and aux and runs in time less than ℓ (say, in time
ℓ/4). The proof-of-work is secure if the adversary in this experiment can solve the puzzle only with
negligible probability. See Definition 6.1 for the precise definition. It is instructive to notice that
the proof-of-work that is used in Bitcoin (finding an input that hashes to log ℓ many 0’s) does not
satisfy this requirement. Indeed, such a scheme can be solved in constant time with probability 1/ℓ
simply by guessing the solution.

Below we describe a simple strong proof-of-work with negligible soundness error, and outline
its proof. In Section 6.2, we introduce a further optimized construction that is better suited for
practical applications.

This shows a practical way to implement the proof-of-work required for the XFS transformation.
Our construction is based on computing a Merkle tree. Roughly speaking, given a random puzzle
z, the solver Solve computes a Merkle tree root rt of the message [(z, 1), . . . , (z, ℓ)]. Then, it hashes
the root rt along with the puzzle z to get random subset of λ leafs to open. The solver provides a
valid opening (i.e., an authentication path) for each sampled leaf. The root and the openings are
the solution. Checking a solution is natural, one checks the validity of all the authentication paths
and that each leaf contains the appropriate value (z, i).

In more detail, we use the notation of a Merkle tree commitment scheme (in the ROM), as
defined in [CY24, Chapter 18]. Specifically, a Merkle commitment scheme has the standard three
algorithms, MT = (MT.Commit,MT.Open,MT.Check), to commit, open and check an opening.
Given the notation of the Merkle tree, our construction works as follows.

Construction 2.1 (Strong PoW). Let MT = (MT.Commit,MT.Open,MT.Check) be a Merkle tree
as defined in [CY24, Chapter 18]. We build a strong proof-of-work (Solve,Check) as follows.

Solvef (ℓ, z):

1. Compute the message m of length ℓ/2, where m[i] = (z, i).
2. Compute the Merkle commitment: (rt, td)← MT.Commitf (m).
3. Compute ρ← f(z, rt), and interpret ρ as a subset I ⊆ [ℓ/2] of size λ.
4. Compute pf ← MT.Openf (td, I).
5. Output s = (rt, pf).

Checkf (ℓ, z, s):

1. Parse s as s = (rt, pf) (if it cannot be parsed then reject).
2. Compute ρ← f(z, rt), and interpret ρ as a subset I ⊆ [ℓ/2] of size λ.
3. Compute the message m of length ℓ/2, where m[i] = (z, i).
4. Set m[I] such that m[i] = (z, i) for all i ∈ I.
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5. Verify that MT.Checkf (rt, I,m[I], pf) = 1.

Notice that the solver above runs in time ℓ (since the tree has ℓ/2 leaves and thus ℓ nodes). We
prove the security of this construction. In particular, we show that

Theorem 2.2. Any algorithm with query complexity t1 for the preprocessing phase, and query
complexity t2 ≤ ℓ/4 for the online phase, solves a random puzzle with probability at most t1+t2+1

2λ
.

We give a quick sketch of the main idea behind the proof. The preprocessing adversary performs
t1 arbitrary queries. However, the random puzzle z will not be an answer to any of then, except with
probability t1

2λ
. The online algorithm is limited to making t2 ≤ ℓ/4 queries and thus can compute

at most half of the leaves of the tree (as the queries from the preprocessing phase are not useful
in constructing the Merkle authentication paths). Thus, a random subset of size λ will be fully
contained in the leaves that the algorithm computed only with probability 2−λ. The algorithm can
resample the random subset at most t2 times (actually much less). Finally, the algorithm, if failed,
can output a random solution in hope for a final success. Thus, the overall success probability can
be bounded by t1+t2+1

2λ
.

See Section 6 for further details and a construction of our proof-of-work variant.
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3 A new Fiat–Shamir transformation

In this section we formally define strong proofs-of-work, and define our XFS transformation.
We define a variant of proof-of-work that are secure even if the adversary has a large prepro-

cessing time prior to the puzzle being sampled. See Section 6 for discussion and construction of this
primitive in the ROM.

Definition 3.1 (Strong proof-of-work). A tuple (Setup, Samp,Solve,Check) is a strong proof-of-
work (PoW) if the following properties hold:

• Completeness. A PoW scheme has is perfectly complete if for every ℓ, λ ∈ N,

Pr

Check(pp, z, s) = 1
pp← Setup(1λ, ℓ)

z ← Samp(pp)
s← Solve(pp, z)

 = 1 .

• Soundness. A strong PoW scheme has (t1, t2, εPOW)-soundness if for every λ, ℓ ∈ N, and adversary
A = (A1,A2) such that A1 is a t1-time algorithm and A2 is a t2-time algorithm:

Pr

Checkf (pp, z, s) = 1

pp← Setup(1λ, ℓ)
aux← A1(pp)
z ← Samp(pp)

s← A2(pp, aux, z)

 ≤ εPOW(λ, ℓ, t1, t2) .
• Bounded solving time. For every λ, ℓ ∈ N, pp in the image of Setup(1λ, ℓ), and z in the image of
Samp(pp), Solve(pp, z) runs in time ℓ.

We turn to formally define our transformation in the standard model. The transformation is
the relativized model in given in Construction 5.5.

Construction 3.2 (XFS in the standard model). Given a 3-round interactive protocol (I,P,V),
and a strong proof-of-work (Setup, Samp, Solve,Check) and a hash function h:

• G(1λ, ℓ): Output pp← Setup(1λ, ℓ).

• I(i): Output ψ ← I(i).

• P(i,x,w):

1. Compute digest: ψ ← I(i)
2. Get prover first message: m1 = P(i,x,w).
3. Derive puzzle randomness: r = h(ψ,x,m1).
4. Compute puzzle: z = Samp(pp; r).
5. Solve puzzle: s← Solve(pp, z).
6. Set the pad τ = 0|⟨V⟩|, where ⟨V⟩ is the circuit representation of the verifier.
7. Derive verifier message: ρ = h(τ, ψ,x,m1, s).
8. Get second prover message: m2 = P(i,x,w, ρ).
9. Output π = (m1, s,m2).

• V(ψ,x, π = (m1, s,m2):
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1. Derive puzzle randomness: r = h(ψ,x,m1).
2. Compute puzzle: z = Samp(pp; r).
3. Set the pad τ = 0|⟨V⟩|.
4. Derive verifier message: ρ = h(τ, ψ,x,m1, s).
5. Accept if V(ψ,x,m1, ρ,m2) = 1 and Check(pp, z, s) = 1.

Remark 3.3. In the case that the proof-of-work does not require a setup (which is the case with
hash-based solutions), such as our construction in Section 6 with the random-oracle replaced with
a CRH, the protocol after transformation will not include a setup phase.

Definition 3.4 (Non-contrived verifier). We say that an SP verifier VSP is non-contrived with
respect to CRH family H and padder Padder if there exists a simulator S such that for any PPT
adversary A the following two distributions are computationally indistinguishable:VSP(h, ψ,x,m1, ρ,m2)

∣∣∣∣∣∣∣∣∣∣
h← H
τ ← Padder(h)
(ψ,x,m1, aux)← A(h, τ)
ρ← {0, 1}λ
m2 ← A(aux, ρ)

 ,

and Sh|τ (τ, ψ,x,m1, ρ,m2)

∣∣∣∣∣∣∣∣∣∣
h← H
τ ← Padder(h)
(ψ,x,m1, aux)← A(h, τ)
ρ← {0, 1}λ
m2 ← A(aux, ρ)

 ,

where h|τ is identical to h except that it outputs ⊥ when given as input a string beginning with τ .
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4 Relativized proof systems

We describe how relativized Sigma protocols and SNARKs are modeled in the random oracle model
(ROM). Every algorithm with oracle access to a function f in the image of U(λ) is implicitly assumed
to receive 1λ as an additional input.
Notation. For a list µ = {(x, y)} and a function f , we define the µ programmed derivative of f ,
f [µ] as follows:

f [µ] :=

{
y if (x, y) ∈ µ
f(x) otherwise

.

We begin by describing relativized Sigma-protocols in the ROM. For simplicity, we focus on
Boolean circuits; however, it is straightforward to generalize all the results in this section to arbitrary
circuits. We give a notion of round-by-round knowledge, which additionally includes the indexer.
For technical reasons related to our main proof, our notion differs slightly from similar definitions
found in the literature. However, most known constructions naturally satisfy this definition.

Definition 4.1 (Relativized SP in the ROM). A triplet of algorithms (ISP,PSP,VSP) is a relativized
SP in the ROM for a family of Boolean circuits C if the following properties hold:

• Completeness. For every C ∈ C, x, w, and oracle f ∈ U(λ), for which Cf (x,w) = 1, it holds
that

Pr

Vf
SP(ψ,x,m1, ρ,m2) = 1

∣∣∣∣∣∣∣∣∣
m1 ← Pf

SP(C,x,w)
ρ← {0, 1}λ

m2 ← Pf
SP(aux, ρ)

ψ ← IfSP(C)

 = 1 .

• Adaptive (straightline) round-by-round knowledge. There exists a polynomial-time extractor ESP

such that the following holds:

1. For every malicious t-query SP prover P,

Pr


C ∈ C
∧ Cf (x,w) = 0

∧ Vf
SP(ψ,x,m1, ρ,m2) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
(C,x,m1, aux)

tr1←− Pf

ρ← {0, 1}λ
m2 ← Pf (aux, ρ)
w← ESP(C,x,m1, tr1)

ψ ← IfSP(C)


≤ κSP(λ, t) .

2. For every malicious t-query SP prover P and every t-query algorithm A,

Pr


C ∈ C
∧ w ̸= w′

∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
(C,x,m1, aux)

tr1←− Pf

⊥ tr2←− Af (aux)
w← ESP(C,x,m1, tr1)
w′ ← ESP(C,x,m1, tr1||tr2)

 ≤ κSP(λ, t) .
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• Adaptive (straightline) indexer-knowledge. There exists an polynomial-time extractor EI, such
that the following conditions holds:

1. For every malicious t-query adversary A,

Pr

 C ̸= C ′

∧ IfSP(C) = ψ

∣∣∣∣∣∣∣∣
f ← U(λ)
(ψ, aux)

tr←− Af

C ′ ← EI(ψ, tr)
C ← Af (aux)

 ≤ κI(λ, t) .

2. For every malicious t-query adversaries A1,A2,

Pr

 C ̸= C ′

∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
(ψ, aux)

tr1←− Af
1

C ← EI(ψ, tr1)

⊥ tr2←− Af
2(aux)

C ′ ← EI(ψ, tr1||tr2)

 ≤ κI(λ, t) .

We now define relativized SNARKs in the ROM. In fact, as we do not have a succinctness
requirement, we define the more general notion of non-interactive arguments of knowledge (NARKs),
but use the name SNARK for simplicity.

Definition 4.2 (Relativized SNARK in the ROM). A triplet of algorithms (I,P,V) in the random
oracle model is a relativized SNARK in the ROM for a family of Boolean circuits C if the following
properties hold:

• Completeness. For every C ∈ C, x, w, and oracle f ∈ U(λ), for which Cf (x,w) = 1, it holds
that

Pr

[
Vf (ψ,x, π) = 1

∣∣∣∣ π ← Pf (C,x,w)
ψ ← If (C)

]
= 1 .

• Adaptive (straightline) knowledge. For every malicious t-query argument prover P̃,

Pr

 C ∈ C
∧ Cf (x,w) = 0
∧ Vf (ψ,x, π) = 1

∣∣∣∣∣∣∣∣
f ← U(λ)
(C,x, π)

trP←−− P̃f

ψ ← If (C)
w← E(C,x, π, trP)

 ≤ κARG(λ, t) .
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5 On the security of our transformation

In this section, we prove the security of our transformation for relativized proof systems (see Sec-
tion 4) in which all parties and circuits have access to the random oracle which is used for the
transformation.

• In Section 5.1, we describe a prefix-avoiding padder – a simple primitive that we use in our
construction.

• In Section 5.2, we express our transformation in the context of relativized proof systems and state
our main theorem.

• In Section 5.3, we give a detailed proof of our main theorem.

5.1 Prefix avoiding padders

We begin by describing a notion of prefix avoidance, representing the capability of the prover to
make the verifier sample within a restricted prefix. We give a general definition with respect to an
oracle machine M. In our main proof, we use a padder where the machine M is the verifier of the
Sigma protocol VSP.

Definition 5.1. A oracle algorithm M is εPAD-prefix-avoiding with respect to padder Padder if for
every λ ∈ N and t-query adversary A,

Pr

(τ, γ) ∈ trPAD ∪ trM

∣∣∣∣∣∣∣∣∣
f ← U(λ)
(γ,m)← Af

τ
trPAD←−−− Padderf (γ)

y
trM←−−Mf (m)

 < εPAD(λ, t) .

We observe that any algorithm M has a padder, and there are several different alternative. Let
⟨M⟩ be any succinct description on the machine M (e.g., a Rust code representation).

• Any M is 0-prefix-avoiding with respect to the padder Padderf (γ) that outputs τ = 0k for k that
the size of the circuit describing M. This is since M simply cannot make a query that is larger
than its circuit description.

• If M be be written as an AND of several smaller Mi’s (which is usually the case with verifiers)
then the above holds for k that is size of the largest Mi.

• For the same reasons, any M that makes queries of length at most ℓ is 0-prefix-avoiding with
respect to the padder Padderf (γ) that outputs τ = 0ℓ. Note that ℓ is always bounded by the
circuit size of M, but in practical schemes, it may be significantly smaller.

• One can also design a padder that ignores the input γ. This has a big advantage, since this
padder only depends on the oracle f as thus can be computed one and for all in a preprocessing
phase, and the value τ can be reused in all executions of the protocol. To design such a padder,
one needs to take a long enough pad that will avoid the queries of M, for any possible input.

The observations above are captured in the following simple lemma.

Lemma 5.2. Let M be oracle algorithm that makes at most q queries and code description ⟨M⟩.
Then the following holds:
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1. M is 0-prefix-avoiding with respect to the padder Padderf (γ) = 0ℓ, where ℓ is a bound on the
length of queries made by M. Note that it always holds that ℓ ≤ |⟨M⟩|.

2. Let M be an algorithm that gets ℓ bits as input. Then, M is O(q/22λ)-prefix-avoiding with respect
to the padder Padderf (γ) = (f(⟨M⟩, γ, 1), . . . , f(⟨M⟩, γ, k)), where k satisfies k · λ = ℓ+ 2λ.

Remark 5.3. The second padder in Lemma 5.2 satisfies a stronger security notion (with the same
error). Here, we allow the adversary to choose the machine M adaptively after performing queries
for the random oracle. More formally, the stronger notion that these padders satisfy is: Padder is
εPAD-avoiding if for every λ, q ∈ N and t-query adversary A that outputs circuits C that make at
most q queries,

Pr

(τ, γ) ∈ trPAD ∪ trM

∣∣∣∣∣∣∣∣∣
f ← U(λ)
(M, γ,m)← Af

τ
trPAD←−−− Padderf (M, γ)

y
trM←−−Mf (m)

 < εPAD(λ, t, q) .

Intuitively, this notion says that no one can even design a machine M (or more concretely, a verifier
VSP for a Sigma protocol) and a set of inputs to it so that it makes queries to the restricted area of
the random oracle generated by Padder. This gives us strong security guarantees against a malicious
prover which adaptivly designed a Sigma protocol as a function of the oracle f . For simplicity, our
transformation has the Sigma protocol fixed in advanced, but the definition and proof can all be
easily augmented to this setting.

Remark 5.4 (Prefix avoiding verifiers). In our proof, we replace the machine M in the above
prefix-avoiding definition with the verifier VSP in order to claim that the verifier does not query in
the zone reserved for the Fiat–Shamir hash function.

Typically, verifiers are small programs designed to perform specific, prescribed actions, in con-
trast to the circuit C, which is large and capable of executing arbitrarily chosen malicious compu-
tations. Therefore, it is reasonable to assume that there are known regions of the random oracle
that the verifier will not query, regardless of the messages it receives from the prover.

In this case, τ can be chosen in advance by the padder as a preprocessing step, without requiring
any additional inputs (which is practically much more efficient). Moreover, in real-world protocols,
the verifier may have access to arbitrary information about the circuit C and other information.
To account for this, we provide a simulator-based definition, which asserts that the verifier can be
simulated by an unbounded simulator with access to all the information in the game except for the
restricted region of the random oracle.

The definition for a specific verifier VSP and padder Padder follows: for every λ, t ∈ N and SP
prover P that makes at most t queries there exists an unbounded simulator S such that the two
distributions below have statistical distance at most ε(λ, t):Vf

SP(ψ,x,m1, ρ,m2)

∣∣∣∣∣∣∣∣
f ← U(λ)
(ψ,x,m1, aux)

tr←− Pf

ρ← {0, 1}λ
m2 ← Pf (aux, ρ)

 ,
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and 
S(τ, f |τ , ψ, ψ′,x,m1, ρ,m2, C,w, trI, trC , trPAD)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
τ

trPAD←−−− Padderf

(ψ,x,m1, aux)
tr←− Pf

ρ← {0, 1}λ
m2 ← Pf (aux, ρ)
(C,w)← ESP(ψ,x,m1, tr)

ψ′ trI←− IfSP(C)

b
trC←−− Cf (x,w)


,

where f |τ is identical to f except that it outputs ⊥ if given as input a string beginning in τ .
Our proof of security works (with slight adaptations) assuming the verifier and padder have this

property.

5.2 Our transformation in the ROM

We can now describe our Fiat–Shamir transformation for relativized SPs in the ROM. For simplicity,
we assume that the verifier randomness complexity and the size of the random puzzles are both λ
bits.

Construction 5.5 (XFS in the ROM).

• If (C): Output ψ ← IfSP(C).

• Pf (C,x,w):

1. Compute digest: ψ ← IfSP(C).
2. Run the SP prover: (m1, aux)← Pf

SP(C,x,w).
3. Compute the puzzle: z = f(ψ,x,m1).
4. Solve s← Solvef (ℓ, z).
5. Set τ ← Padderf (ψ,x,m1, s).
6. Derive SP challenge: ρ := f(τ, ψ,x,m1, s).
7. Run the SP prover: m2 ← Pf

SP(aux, ρ).
8. Output the argument string π := (m1, s,m2).

• Vf (ψ,x, π):
1. Parse the argument string π as a tuple (m1, s,m2).
2. Compute the puzzle: z = f(ψ,x,m1).
3. Set τ ← Padderf (ψ,x,m1, s).
4. Derive SP challenge: ρ := f(τ, ψ,x,m1, s).
5. Check: Vf

SP(ψ,x,m1, ρ,m2) = 1.
6. Check: Checkf (ℓ, z, s) = 1.

Theorem 5.6. Assume we have the following ingredients:

• Let C be a family of circuits, where qC is a bound on the number of oracle gates.
• Let (ISP,PSP,VSP) be a relativized SP in the ROM for a family of circuits C, with round-by-round

knowledge soundness error κSP, index-knowledge κI, and indexer query complexity qI (see Defini-
tion 4.1).
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• Let (Solve,Check) be a strong PoW in the ROM with soundness error εPOW and checking query
complexity qPOW (see Definition 6.1).

• Let Padder be prefix avoiding for VSP with error εPAD and query complexity qPAD (see Definition 5.1).

For every security parameter λ ∈ N, and ℓ ∈ N, the system compiled in Construction 5.5 is relativized
SNARK in the ROM for C with adaptive knowledge error κARG (see Definition 4.2) such that

κARG(λ, t) ≤ (t+ 1) · κSP(λ, t) + (t+ 1) · εPOW(λ, ℓ, t, t2) + 2κI(λ, t1) + εPAD(λ, t1) .

where t1 := t+ qI + qPAD + 1, and t2 := qPOW · (qC + qI).
The construction running times are:

• Indexer: TI = TI.
• Prover: TP = TP + TI + TPOW.slv + TPAD +O(1).
• Verifier: TV = TV + TPOW.chk + TPAD +O(1).
• Extractor: TE = TE.

where (TI, TP, TV, TE) are the indexer, prover, verifier and extractor times of the SP, (TPOW.slv, TPOW.chk)
are the solving and checking times of the proof-of-work, and TPAD is the padder running time.

5.3 Security proof of our construction

We prove the theorem by a reduction from a malicious SNARK to a malicious SP prover. The
majority of our proof is in proving Lemma 5.7, where we show a reduction for admissible adversaries.
An argument adversary P̃ is admissible if whenever P̃ outputs (C,x, π = (m1, s,m2)):

Admissible:

1. The following queries are contained in its trace: (ψ,x,m1), and (τ, ψ,x,m1, s) where ψ ←
IfSP(C) and τ ← Padderf (ψ,x,m1, s),

2. Letting tr be the trace up to the query (ψ,x,m1), and trP be the full trace of P̃, it holds that
C = EI(ψ, tr), and ESP(C,x,m1, tr) = ESP(C,x,m1, trP), and

3. Letting tr be the trace up to the query (τ, ψ,x,m1, s), it holds that C = EI(ψ, tr).

Following the proof of the lemma, we conclude the proof of Theorem 5.6 by showing how to handle
adversaries which are not admissible.

Lemma 5.7. Let ESP be the SP extractor for (ISP,PSP,VSP). There exists an argument extractor E
and an SP prover P such that for every query bound t ∈ N, malicious t-query admissible argument

21



prover P̃,

Pr


C ∈ C
∧ y = 0
∧ b = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
(C,x, (m1, s,m2))

trP←−− P̃f

ψ ← If (C)
w← E(C,x,m1, trP)
b← Vf (ψ,x, π)
y ← Cf (x,w)



≤ t · Pr


C ∈ C
∧ y = 0
∧ b = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
(C,x,m1, aux)

tr←− Pf (P̃)
ρ← {0, 1}λ
m2 ← Pf (aux, ρ)
w← ESP(C,x,m1, tr)

ψ ← IfSP(C)

b← Vf
SP(ψ,x,m1, ρ,m2)

y ← Cf (x,w)


+ t · εPOW(λ, ℓ, t, t2) + εPAD(λ, t1) .

Above, t1 := t+ qI + qPAD + 1 and t2 := qPOW · (qC + qI).

Proof. Throughout this proof, we define several probability experiments. In these experiments, will
use a special notation to denote the case when two algorithms are forced have the same output by
the probability statement (e.g., x1 ← A1 and x2 ← A2 where the probability experiment posits
that x1 = x2). If the distinction in the algorithm that generates the output is unimportant, we
replace one of the outputs with · (e.g., x← A1 and (·)← A2).

For simplicity of the proof, we furthermore assume that for z ∈ {0, 1}λ and any s, the proof-of-
work check function Checkf (z, s) does not make queries of length |(ψ,x,m1)|. This can be enforced
by sufficient domain separation of the random oracle for the proof-of-work or, alternatively, by
another padder. We note that for the proofs-of-work that we construct, at most a constant number
of padding bits are necessary.

The argument extractor E of our compiled scheme is defined as follows.

Construction 5.8. The argument extractor E receives as input an instance x, argument string π,
query-answer trace tr, and works as follows.

E(C,x, π, trP):
1. Parse π = (m1, s,m2).
2. Compute the witness: w← ESP(C,x,m1, trP).
3. Output w.

We define algorithms describing running the malicious prover for i queries. For an index i ∈ N,
we define P̃0→i and P̃i→t as follows:

• P̃f
0→i:

1. Simulate P̃ up until the i-th query. If P̃ has already finished running, then let x = ⊥.

2. Outputs the i-th query x and its state auxP̃ .

• P̃f
i→t(auxP̃ , ρ):
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1. Simulate (C,x, (m1, s,m2)) ← P̃f using auxP̃ to continue the execution from the i-th query
given oracle response ρ.

2. Output (C,x, (m1, s,m2)).

The construction of the SP prover P works as follows.

Construction 5.9. The SP prover P is parameterized by the query bound t and receives an
argument prover P̃ as a black box, and works as follows.

• First SP prover message: Pf (P̃).
1. Sample an index i← [t] at random.
2. Run (x, auxP̃)

tr←− P̃f
0→i.

3. Parse x = (τ, ψ,x,m1, s) (if it cannot be parsed in this way, then output (C,x,m1, aux) =
(⊥,⊥,⊥,⊥)).

4. Compute C ← EI(ψ, tr).
5. Output (C,x,m1, aux = (i, (τ, ψ,x,m1, s), auxP̃)).

• Second SP prover message: Pf (aux = (i, (τ, ψ,x,m1, s), auxP̃)), ρ).

1. Run (C ′,x′, (m′
1, s

′,m′
2))← P̃

f
i→t(auxP̃ , ρ).

2. Output m′
2.

We first write the argument probability in terms of the Sigma protocol and the proof-of-work:

Pr


C ∈ C
∧ y = 0
∧ b = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
(C,x, (m1, s,m2))

trP←−− P̃f

ψ ← If (C)
w← E(C,x,m1, trP)
b← Vf (ψ,x, π)
y ← Cf (x,w)



= Pr



C ∈ C
∧ y = 0
∧ b = 1
∧ bPOW = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
(C,x, (m1, s,m2))

trP←−− P̃f

ψ ← IfSP(C)
z ← f(ψ,x,m1)

τ ← Padderf (ψ,x,m1, s)
ρ← f(τ, ψ,x,m1, s)
w← ESP(C,x,m1, trP)

b← Vf
SP(ψ,x,m1, ρ,m2)

bPOW ← Checkf (z, s)
y ← Cf (x,w)


Let EPOW be the event that C ∈ C and one of IfSP(C) or Cf (x,w) makes the query (τ, ψ,x,m1, s).
Similarly, let EPAD be the event that one of Vf

SP(ψ,x,m1, ρ,m2) and Padderf (ψ,x,m1, s) makes the
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query (τ, ψ,x,m1, s). Then the above probability is bounded from above by:

Pr



C ∈ C
∧ y = 0
∧ b = 1
∧ bPOW = 1

∧ EPOW

∧ EPAD

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
(C,x, (m1, s,m2))

trP←−− P̃f

ψ ← IfSP(C)
z ← f(ψ,x,m1)

τ ← Padderf (ψ,x,m1, s)
ρ← f(τ, ψ,x,m1, s)
w← ESP(C,x,m1, trP)

b← Vf
SP(ψ,x,m1, ρ,m2)

bPOW ← Checkf (z, s)
y ← Cf (x,w)


+ Pr[EPOW] + Pr[EPAD] .

We argue that the first probability is bounded by t times the probability of P succeeding in
the knowledge experiment. Following this, we will show that Pr[EPOW] ≤ t · εPOW(λ, ℓ, t, t2) and
Pr[EPAD] ≤ εPAD(λ, t1), which proves the lemma.

Claim 5.10.

Pr



C ∈ C
∧ y = 0
∧ b = 1
∧ bPOW = 1

∧ EPOW

∧ EPAD

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
(C,x, (m1, s,m2))

trP←−− P̃f

ψ ← IfSP(C)
z ← f(ψ,x,m1)

τ ← Padderf (ψ,x,m1, s)
ρ← f(τ, ψ,x,m1, s)
w← ESP(C,x,m1, trP)

b← Vf
SP(ψ,x,m1, ρ,m2)

bPOW ← Checkf (z, s)
y ← Cf (x,w)


≤ t·Pr


C ∈ C
∧ y = 0
∧ b = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
((C,x,m1), aux)

tr1←− Pf (P̃)
ρ← {0, 1}λ

m2
tr2←− Pf (P̃, aux, ρ)

ψ ← IfSP(C)
w← ESP(C,x,m1, tr1 ∪ tr2)

b← Vf
SP(ψ,x,m1, ρ,m2)

y ← Cf (x,w)


.

Proof. Our goal is to, step by step, reduce the left-hand-side of the claim to a format which will,
eventually, (up to a factor of t) be equivalent to the Sigma protocol experiment with prover P(P̃).

The Sigma protocol is a two-part algorithm, and so our first step is to consider P̃ structurally
as having two parts. Recall that, since P̃ is admissible (Item 1), it always makes the query
(τ, ψ,x,m1, z) where ψ = IfSP(C) and τ = Padderf (ψ,x,m1, s). Thus we can consider first part
of P̃ its computation before making the query (τ, ψ,x,m1, z), and its second par as being every-
thing after this query has been made.

Formally, let i ∈ [t] be the random variable representing the index of the query (τ, ψ,x,m1, z)
in the query-trace trP of P̃. Then we can rewrite the left-hand-side of the probability in the claim
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statement as:

Pr



C ∈ C
∧ y = 0
∧ b = 1
∧ bPOW = 1

∧ EPOW

∧ EPAD

ψ = IfSP(C)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
((τ, ψ,x,m1, s), auxP̃)← P̃f

0→i

ρ← f(τ, ψ,x,m1, s)

(C, ·, (·, ·,m2))← P̃f
i→t(auxP̃ , ρ)

z ← f(ψ,x,m1)

(·)← Padderf (ψ,x,m1, s)
w← ESP(C,x,m1, trP)

b← Vf
SP(ψ,x,m1, ρ,m2)

bPOW ← Checkf (z, s)
y ← Cf (x,w)



≤ Pr



C ∈ C
∧ y = 0
∧ b = 1

∧ EPOW

∧ EPAD

ψ = IfSP(C)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
((τ, ψ,x,m1, s), auxP̃)← P̃f

0→i

ρ← f(τ, ψ,x,m1, s)

(C, ·, (·, ·,m2))← P̃f
i→t(auxP̃ , ρ)

w← ESP(C,x,m1, trP)

b← Vf
SP(ψ,x,m1, ρ,m2)

y ← Cf (x,w)


,

Where the second inequality holds by removing the padder and the restrictions on the proof-of-
work. As the SP prover P(P̃) uses EI, we need to add it into the experiment. Since we have no
requirements on EI, this does not change the probabilities. However, note that since P̃ is admissible,
(Item 3), for C ′ ← EI(ψ, tr1), it holds that C ′ = C. Thus, the above probability is equal:

Pr



C ∈ C
∧ y = 0
∧ b = 1

∧ EPOW

∧ EPAD

∧ ψ = IfSP(C)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
((τ, ψ,x,m1, s), auxP̃)

tr1←− P̃f
0→i

C ← EI(ψ, tr1)
ρ← f(τ, ψ,x,m1, s)

(·, ·, (·, ·,m2))
tr2←− P̃f

i→t(auxP̃ , ρ)
w← ESP(C,x,m1, tr1 ∪ tr2)

b← Vf
SP(ψ,x,m1, ρ,m2)

y ← Cf (x,w)


.

Our next goal is to change ρ from being sampled as the output of the random oracle, to being
uniformly random. We begin by differentiating the use of the random oracle by ISP, C, and VSP

from that of P̃. Since EPOW and EPAD hold, we have that ISP, C, and VSP do not make the query
(τ, ψ,x,m1, s). Thus we can resample it uniformly and give them a programmed oracle without
changing the probability that the verifier accepts, or that the circuit outputs 0. Thus, the above is
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equal to:

Pr



C ∈ C
∧ y = 0
∧ b = 1

∧ EPOW

∧ EPAD

∧ ψ = I
f [µ]
SP (C)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
((τ, ψ,x,m1, s), auxP̃)

tr1←− P̃f
0→i

C ← EI(ψ, tr1)
ρ← f(τ, ψ,x,m1, s)

(·, ·, (·, ·,m2))
tr2←− P̃f

i→t(auxP̃ , ρ)
ρ∗ ← {0, 1}λ
µ = {((τ, ψ,x,m1, s), ρ

∗)}
w← ESP(C,x,m1, tr1 ∪ tr2)

b← V
f [µ]
SP (ψ,x,m1, ρ,m2)

y ← Cf [µ](x,w)


.

Since f is uniformly random, this is equivalent to ISP, C, and VSP running with f , and P̃i→t receiving
an independent random sample. Additionally, as we have no more use for them, we can remove the
requirement that EPOW and EPAD hold. This, the above is bounded by:

Pr



C ∈ C
∧ y = 0
∧ b = 1

∧ ψ = IfSP(C)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
((τ, ψ,x,m1, s), auxP̃)

tr1←− P̃f
0→i

C ← EI(ψ, tr1)
ρ← {0, 1}λ

(·, ·, (·, ·,m2))
tr2←− P̃f

i→t(auxP̃ , ρ)
w← ESP(C,x,m1, tr1 ∪ tr2)

b← Vf
SP(ψ,x,m1, ρ,m2)

y ← Cf (x,w)


.

Finally, the only thing left is that we cannot compute the random variable i. However, by sampling
j ← [t], we choose j = i with probability t. This is exactly what P(P̃) does. Thus, the above
probability is bounded from above by:

t·Pr



C ∈ C
∧ y = 0
∧ b = 1

∧ ψ = IfSP(C)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
j ← [t]

((τ, ψ,x,m1, s), auxP̃)
tr1←− P̃f

0→j

C ← EI(ψ, tr1)
ρ← {0, 1}λ

(·, ·, (·, ·,m2))
tr2←− P̃f

j→t(auxP̃ , ρ)
w← ESP(C,x,m1, tr1 ∪ tr2)

b← Vf
SP(ψ,x,m1, ρ,m2)

y ← Cf (x,w)


.

Finally, we complete the proof by observing that, by definition of P(P̃), the above probability is
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equal:

t · Pr


C ∈ C
∧ y = 0
∧ b = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
((C,x,m1), aux)

tr1←− Pf (P̃)
ρ← {0, 1}λ

m2
tr2←− Pf (P̃, aux, ρ)

ψ ← IfSP(C)
w← ESP(C,x,m1, tr1 ∪ tr2)

b← Vf
SP(ψ,x,m1, ρ,m2)

y ← Cf (x,w)


.

We now prove that EPOW occurs with small probability.

Claim 5.11. Pr[EPOW] ≤ t · εPOW(λ, ℓ, t, t2).

Proof. Out goal in this proof is to reduce the probability that EPOW occurs to an attacker for the
proof-of-work experiment (up to a t factor). We begin by opening up the expression EPOW, and
removing from the probability statement and experiment any parts that will not be crucial. Note
that by removing requirements from the probability statement we can only increase the probability.
Thus,

Pr[EPOW] ≤ Pr


C ∈ C
∧ bPOW = 1
(τ, ψ,x,m1, s) ∈ trI ∪ trC

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
(C,x, (m1, s,m2))

trP←−− P̃f

ψ
trI←− IfSP(C)

z ← f(ψ,x,m1)

τ ← Padderf (ψ,x,m1, s)
w← ESP(C,x,m1, trP)

bPOW ← Checkf (z, s)

⊥ trC←−− Cf (x,w)


Recall that in the proof-of-work security game, the adversary has two stages, where the puzzle is
sampled in between them. Looking forward, the preprocessing stage of the adversary will run P̃
up to the query (ψ,x, ρ), and the solution-finding stage will be to run ψ and C (since if they make
a query that includes a valid solution, it will braek the proof-of-work z). Recall that since P̃ is
admissible, specifically by Item 1, such a query always exists in the trace of P̃. Towards this end,
we split the prover into two.

Formally, let i ∈ [t] be the random variable representing the index of the query (ψ,x,m1). Then
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the above probability can be rewritten as:

Pr



C ∈ C
∧ y = 0
∧ bPOW = 1
(τ, ψ,x,m1, s) ∈ trI ∪ trC

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
((ψ,x,m1), auxP̃)

tr1←− P̃f
0→i

z ← f(ψ,x,m1)

(C, ·, (·, s,m2))
tr2←− P̃f

i→t(auxP̃ , z)

(·) trI←− IfSP(C)

τ ← Padderf (ψ,x,m1, s)
w← ESP(C,x,m1, tr1 ∪ tr2)

bPOW ← Checkf (z, s)

y
trC←−− Cf (x,w)


In order to launch our attack on the proof-of-work, we will need to run the circuit C on w, but since
we will only want to run P̃ up to query i (and not until the end), we only have ψ. Thus, we will
add the index extractor to convert ψ into C and the witness extractor to generate w. By Item 2,
these extractors must succeed. Thus, the above probability is equal:

Pr



C ∈ C
∧ y = 0
∧ bPOW = 1
(τ, ψ,x,m1, s) ∈ trI ∪ trC

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
((ψ,x,m1), auxP̃)

tr1←− P̃f
0→i

C ← EI(ψ, tr1)
w← ESP(C,x,m1, tr1)
z ← f(ψ,x,m1)

(·, ·, (·, s,m2))
tr2←− P̃f

i→t(auxP̃ , z)

(·) trI←− IfSP(C)

τ ← Padderf (ψ,x,m1, s)

bPOW ← Checkf (z, s)

y
trC←−− Cf (x,w)


We now switch to sampling z from the uniform distribution rather than as an output of f . By
assumption, Checkf (z, s) does not query f at (ψ,x,m1) (see the beginning of proof of the Lemma),
and so, rather than giving it access to f programmed at (ψ,x,m1) it remains with access to f .

Pr



C ∈ C
∧ y = 0
∧ bPOW = 1
(τ, ψ,x,m1, s) ∈ trI ∪ trC

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
((ψ,x,m1), auxP̃)

tr1←− P̃f
0→i

C ← EI(ψ, tr1)
w← ESP(C,x,m1, tr1)
z ← {0, 1}λ
µ = {((ψ,x,m1), z)}
(·, ·, (·, s,m2))

tr2←− P̃f
i→t(auxP̃ , z)

(·) trI←− I
f [µ]
SP (C)

τ ← Padderf [µ](ψ,x,m1, s)

bPOW ← Checkf (z, s)

y
trC←−− Cf [µ](x,w)


The above is bounded by the probability that there is some (τ ′, ψ′,x′,m′

1, s
′) ∈ trI ∪ trC where s′ is
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a valid solution to z. In other words, the above is bounded by the probability:

Pr



C ∈ C
∧ y = 0
∧ bPOW = 1
∃(τ ′, ψ′,x′,m′

1, s
′) ∈ trI ∪ trC

∧ Check(z, s′) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
((ψ,x,m1), auxP̃)

tr1←− P̃f
0→i

C ← EI(ψ, tr1)
w← ESP(C,x,m1, tr1)
z ← {0, 1}λ
µ = {((ψ,x,m1), z)}
(·, ·, (·, s,m2))

tr2←− P̃f
i→t(auxP̃ , z)

(·) trI←− I
f [µ]
SP (C)

τ ← Padderf [µ](ψ,x,m1, s)

bPOW ← Checkf (z, s)

y
trC←−− Cf [µ](x,w)



≤ Pr


C ∈ C
∧ ∃(τ ′, ψ′,x′,m′

1, s
′) ∈ trI ∪ trC

Checkf (z, s′) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
((ψ,x,m1), auxP̃)

tr1←− P̃f
0→i

C ← EI(ψ, tr1)
w← ESP(C,x,m1, tr1)
z ← {0, 1}λ
µ = {((ψ,x,m1), z)}
(·) trI←− I

f [µ]
SP (C)

y
trC←−− Cf [µ](x,w)


.

Now, rather than using the random variable i, we guess it at random by choosing j ← [t] uniformly
at random. Since i = j with probability 1/t, the above is bounded by:

t·Pr



C ∈ C
∧ ∃(τ ′, ψ′,x′,m′

1, s
′) ∈ trI ∪ trC

Checkf (z, s′) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
j ← [t]

((ψ,x,m1), auxP̃)
tr1←− P̃f

0→j

C ← EI(ψ, tr1)
w← ESP(C,x,m1, tr1)
z ← {0, 1}λ
µ = {((ψ,x,m1), z)}
(·) trI←− I

f [µ]
SP (C)

y
trC←−− Cf [µ](x,w)


We now use the soundness of the proof-of-work to bound the above probability by defining an
algorithm A = (A1,A2) with oracle access to f for solving puzzles:

Af
1 :

1. Sample j ← [t].
2. Execute ((ψ,x,m1), auxP̃)

tr1←− P̃f
0→j (if the j-th query cannot be parsed in this way then abort).

3. Compute C ← EI(ψ, tr1).
4. Compute w← ESP(C,x,m1, tr1).
5. Output aux = (C,ψ,x,m1,w).

29



Then, given a randomly sampled puzzle z ← {0, 1}λ, the algorithm A2 solves the puzzle z as follows:

Af
2(aux = (C,ψ,x,m1,w), z):

1. Define µ = {((ψ,x,m1), z)}.
2. Execute (·) trI←− I

f [µ]
SP (C) and (·) trC←−− Cf [µ](x,w) (if C makes more than qC queries, then stop

it before it makes the next query, and output ⊥).
3. For each query x in trI ∪ trC do:

(a) Parse x as (τ ′, ψ′,x′,m′
1, s

′) (if it cannot be parsed then move to next query).
(b) If Checkf (ℓ, z, s′) = 1 then output s′ (and halt).

4. Output ⊥.

Observe that the query complexity of A1 is at most t, and the query complexity of A2 is at most
t2 := qPOW · (qC + qI). Finally, by definition of A, and by soundness of the proof-of-work we have
that the probability statement prior to the algorithm definition is bounded by:

t · Pr

 Checkf (ℓ, z, s) = 1

∣∣∣∣∣∣∣∣
f ← U(λ)
aux← Af

1

z ← {0, 1}λ

s← Af
2(aux, z)

 ≤ t · εPOW(λ, ℓ, t, t2) .

Finally, we bound the probability that Vf
SP(ψ,x,m1, ρ,m2) makes the query (τ, ψ,x,m1, s):

Claim 5.12. Pr[EPAD] ≤ εPAD(λ, t1).

Proof. Consider the following adversary A for the prefix-avoidance experiment,

1. Run (C,x, (m1, s,m2))
trP←−− P̃f .

2. ψ ← IfSP(C).
3. τ ← Padderf (ψ,x,m1, s).
4. ρ← f(τ, ψ,x,m1, s).
5. Output γ = (ψ,x,m1, s) and m = (ψ,x,m1, ρ,m2).

And the following machine Mf ,

1. Given m = (ψ,x,m1, ρ,m2).
2. Run Vf

SP(ψ,x,m1, ρ,m2).

Observe that A runs in time t1 = t+qI +qPAD +1. Moreover, whenever (τ, ψ,x,m1, s) ∈ trV ∪ trPAD,

30



it holds that (τ, γ) is in the combined trace of Padder and M. Thus, by prefix-avoidance,

Pr[EPAD] ≤ Pr


(τ, ψ,x,m1, s) ∈ trV ∪ trPAD

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
(C,x, (m1, s,m2))← P̃f

ψ ← IfSP(C)

τ
trPAD←−−− Padderf (ψ,x,m1, s)

ρ← f(τ, ψ,x,m1, s)

⊥ trV←−− Vf
SP(ψ,x,m1, ρ,m2)



= Pr

 (τ, γ) ∈ trV ∪ trPAD

∣∣∣∣∣∣∣∣∣
f ← U(λ)
(γ,m)← Af

τ
trPAD←−−− Padderf (γ)

b
trM←−−Mf (m)

 < εPAD(λ, t1) .

We can now conclude the theorem for all adversaries.

Proof of Theorem 5.6. For every query bound t ∈ N, malicious t-query argument prover P̃, we show
that

Pr


C ∈ C
∧ y = 0
∧ b = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
(C,x, π)

trP←−− P̃f

ψ ← If (C)
w← E(C,x, trP)
b← Vf (ψ,x, π)
y ← Cf (x,w)



= Pr


C ∈ C
∧ y = 0
∧ b = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
(C,x, π = (m1, s,m2))

trP←−− P̃f

ψ ← If (C)
w← ESP(C,x,m1, trP)
b← Vf (ψ,x, π)
y ← Cf (x,w)



≤ t · Pr


C ∈ C
∧ y = 0
∧ b = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
(C,x,m1, aux)

tr←− Pf (P̃)
ρ← {0, 1}λ
m2 ← Pf (aux, ρ)
w← ESP(C,x,m1, tr)

ψ ← IfSP(C)

b← Vf
SP(ψ,x,m1, ρ,m2)

y ← Cf (x,w)


+ εPAD(λ, t1) + t · εPOW(λ, ℓ, t, t2) + 2κI(λ, t1) + κSP(λ, t) + εPOW(λ, ℓ, t1, 0) .

Above, t1 := t + qI + qPAD + 1 and t2 := qPOW · (qC + qI). Define the event E that P̃ acts in an
admissible manner. I.e., whenever P̃ outputs (C,x, π = (m1, s,m2)):
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• The following queries are contained in its trace: (ψ,x,m1), and (τ, ψ,x,m1, s) where ψ ← IfSP(C)
and τ ← Padderf (ψ,x,m1, s),

• Letting tr be the trace up to the query (ψ,x,m1), and trP be the full trace of P̃, it holds that
C = EI(ψ, tr), and ESP(C,x,m1, tr) = ESP(C,x,m1, trP), and

• Letting tr be the trace up to the query (τ, ψ,x,m1, s), it holds that C = EI(ψ, tr).

We begin with the left-hand side. By the total probability theorem, the left-hand probability equals

Pr


C ∈ C
∧ y = 0
∧ b = 1
∧ E

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
(C,x, π = (m1, s,m2))

trP←−− P̃f

ψ ← If (C)
w← ESP(C,x,m1, trP)
b← Vf (ψ,x, π)
y ← Cf (x,w)


+ Pr


C ∈ C
∧ y = 0
∧ b = 1

∧ E

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ← U(λ)
(C,x, π = (m1, s,m2))

trP←−− P̃f

ψ ← If (C)
w← ESP(C,x,m1, trP)
b← Vf (ψ,x, π)
y ← Cf (x,w)


The fist term is bounded by Lemma 5.7, since when the event E occurs then the adversary behaves
in an admissible manner. We focus on bounding the second term. There are two cases. Let the
output of the adversary be denoted by (C,x, π = (m1, s,m2)).
Case 1. Assume that the query (ψ,x,m1) is not contained the trace trP . For the argument verifier
to accept, it must be that s is a valid solution to the puzzle z = f(ψ,x,m1). However, the puzzle z
has not been sampled yet, while the solution in already fixed in the preprocessing phase. Thus, from
the soundness of the puzzle (with a preprocessing adversary that simulates the above and output s
as the auxiliary state, and a second adversary that simply outputs s while making 0 queries), we
get that

Pr[Checkf (ℓ, z, s) = 1] ≤ εPOW(λ, ℓ, t1, 0) .

Case 2. Assume that the query (τ, ψ,x,m1, s) is not contained in the trace trP . In this case, the
SP response message is fixed, while the SP challenge ρ = f(τ, ψ,x,m1, s) has not been sampled yet.
The argument verifier checks that Vf

SP(ψ,x,m1, ρ,m2) = 1. Thus a malicious prover can be easily
converted to an SP malicious prover, simply by simulating to to the end before the challenge phase.
Therefore, the term is bounded by

Pr

 C ∈ C
∧ Cf (x,w) = 0

∧ Vf
SP(ψ,x,m1, ρ,m2) = 1

 ≤ κSP(λ, t) .

Case 3. Both (ψ,x,m1) and (τ, ψ,x,m1, s) are contained in the trace, but one of the following
holds, where tr is the trace up to the query (ψ,x,m1), tr′ is the trace up to (τ, ψ,x,m1, s), and trP
be the full trace of P̃:
• C ̸= EI(ψ, tr), or
• C ̸= EI(ψ, tr

′), or
• ESP(C,x,m1, tr) ̸= ESP(C,x,m1, trP).
The first two items occur with probability bounded by κI(λ, t) by indexer knowledge of the Sigma
protocol (for a total of 2κI(λ, t)), and the final item is bounded by κSP(λ, t) by knowledge soundness
of the Sigma protocol.
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Overall, we get that

κARG(λ, t) ≤ (t · κSP(λ, t) + t · εPOW(λ, ℓ, t, t2) + εPAD(λ, t1)) + (2κI(λ, t1) + κSP(λ, t) + εPOW(λ, ℓ, t1, 0))

≤ (t+ 1) · κSP(λ, t) + (t+ 1) · εPOW(λ, ℓ, t, t2) + 2κI(λ, t1) + εPAD(λ, t1) .
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6 Strong proofs of work in the ROM

We define strong proofs of work in the random oracle model.

Definition 6.1 (Strong PoW in the ROM). A pair of algorithms (Solve,Check) is strong proof-of-
work in the random oracle model if the following properties hold:

• Completeness. A PoW scheme is perfectly complete if for every ℓ, λ ∈ N,

Pr

Checkf (ℓ, z, s) = 1

f ← U(λ)
z ← {0, 1}λ

s← Solvef (ℓ, z)

 = 1 .

• Soundness. A PoW scheme has soundness error εPOW if for every λ, ℓ, t1, t2 ∈ N, and adversary
A = (A1,A2) such that A1 is a t1-query algorithm that outputs t2 bits of auxiliary state and A2

is a t2-query algorithm:

Pr

Checkf (ℓ, z, s) = 1

f ← U(λ)
aux← Af

1

z ← {0, 1}λ

s← Af
2(aux, z)

 ≤ εPOW(λ, ℓ, t1, t2) .
• Query bound. For every λ, ℓ ∈ N and f in the image of U(λ), Solvef (ℓ, z) makes at most ℓ queries

to f .

One can observe, that constructions of our notion of proof-of-work follow from various works
including work on sequential proofs of work (e.g., [MMV13; CP18; DLM19]). However, our notion
is weaker. In the next section we give a simple and practically efficient construction that satisfies
the above definition.

6.1 A simple construction in the ROM

In this section, we give a simple construction of a strong proof-of-work with small soundness error.
This shows a practical way to implement the proof-of-work required for the XFS transformation.
See Section 2.5 for an overview of the construction and its proof.

For the construction, we use the notation of a Merkle tree commitment scheme (in the ROM),
as defined in [CY24, Chapter 18]. Specifically, a Merkle commitment scheme has three algorithms,
MT = (MT.Commit,MT.Open,MT.Check), described as follows. The algorithms receive query access
to a random oracle f ∈ U(λ) and have the following syntax.

• Commit. The algorithm MT.Commit receives as input a message vector m ∈ Σℓ, and computes
a Merkle commitment rt ∈ {0, 1}λ and corresponding opening trapdoor td ∈ {0, 1}O(λ·ℓ). This
algorithm is deterministic.

• Open. The algorithm MT.Open receives as input opening trapdoor td and a subset I ⊆ [ℓ], and
computes an opening proof pf that authenticates the values at the locations in I.

• Check. The algorithm MT.Check receives as input a Merkle commitment rt, subset I ⊆ [ℓ],
claimed values a ∈ ΣI , and opening proof pf, and computes a bit indicating whether the opening
proof pf authenticates a as values for the locations in I with respect to rt.
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Construction 6.2 (Strong PoW). Let MT = (MT.Commit,MT.Open,MT.Check) be a Merkle tree
as defined in [CY24, Chapter 18]. Let n = ℓ/2. We build a strong proof-of-work (Solve,Check) as
follows.

Solvef (ℓ, z):

1. Compute the message m of length n, where m[i] = (z, i).
2. Compute the Merkle commitment: (rt, td)← MT.Commitf (m).
3. Compute ρ← f(z, rt), and interpret ρ as a subset I ⊆ [n] of size λ.
4. Compute pf ← MT.Openf (td, I).
5. Output s = (rt, pf).

Checkf (ℓ, z, s):

1. Parse s = (rt, pf) (if it cannot be parsed then reject).
2. Compute ρ← f(z, rt), and interpret ρ as a subset I ⊆ [n] of size λ.
3. Set m[I] such that m[i] = (z, i) for all i ∈ I.
4. Verify that MT.Checkf (rt, I,m[I], pf) = 1.

Observe that a solution to a puzzle in this construction has length n · logm bits.

Theorem 6.3. For any t2 ≤ ℓ/4, the proof-of-work above has soundness error

εPOW(λ, ℓ, t1, t2) ≤
t1 + t2 + 1

2λ
.

Proof. Consider the trace of queries tr1 (of length t1) in the first phase. Since the puzzle z is sampled
uniformly at random, the probability that is a (z, i) is in any of queries in tr1 is at most t1

2λ
. We

continue the proof condition on this not having any such query.
Consider the leaf queries, that have the form (z, i), for some i ∈ [n]. For every j ∈ [t2], let Ej be

the event that the j-th query is of the form I = f(z, rt), for which the trace at that time (denoted
by trj) contains all queries of the form (z, i) for every i ∈ I. The trace can contain at most t2 such
queries. Thus, we get that trj contains at most α fraction of the leaves where

α :=
t2
n
≤ ℓ

4n
≤ 2n

4n
=

1

2
.

Thus, we get that Pr[Ej ] ≤ 2−λ. Let E := ∨j∈[t2]Ej , then Pr[E] ≤ t2
2λ

.
Finally, if E did not occur, then the algorithm does not contain a valid opening for all locations

in I. Thus, the probability of outputting a valid opening (without performing any other queries),
is at most 2λ. Overall, the total probability is bounded by:

εPOW(λ, ℓ, t1, t2) ≤
t1
2λ

+
t2
22λ

+
1

2λ
=
t1 + t2 + 1

2λ
.

6.2 An optimized construction

An optimization to the above construction was suggested in [Nao25]. We give a formal description
of this alternative construction that is practically more efficient, but where the solver algorithm per-
forms ℓ queries in expectation (rather than in worst-case), and the solution length is also measured
in expectation. Set n and m be such that n ·m = ℓ (or O(ℓ) if it does not divide). A typical setting
would be n = 2λ.
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Construction 6.4 (Practical strong PoW). Let n,m ∈ N be parameters. We build a strong
proof-of-work (Solve,Check) as follows.

Solvef (ℓ, z):

1. Find the shortest set of strings (s1, . . . , sn) such that for every i ∈ [n], yi = f(z, si) begins
with logm zeros.

2. Output s = (s1, . . . , sn).

Checkf (ℓ, z, s):

1. Parse s = (s1, . . . , sn) (if it cannot be parsed then reject).
2. Verify that s1, . . . , sn are all distinct.
3. Compute yi = f(z, i, si).
4. Verify that for all i ∈ [m], yi begins with logm zeros (and reject otherwise).

Theorem 6.5. For any t2 ≤ ℓ/4− n, the proof-of-work above has soundness error

εPOW(λ, ℓ, t1, t2) ≤
t1
2λ

+
1

20.64n
.

The solver has expected query complexity ℓ. Moreover, for any constant c > 1, the solver provides a

correct solution using c · ℓ queries with probability at least 1− e−n· (c−1)2

2c .

A typical setting of the above theorem is to use n = 1.55λ. In this case, we get that the error
is bounded by t1+1

2λ
. Moreover, the expected encoding size of a solution is n · logm = 1.55λ ·

log(ℓ/1.55λ). For λ = 256 and large values of hardness up to 225, the solution has has expected
length 1.55 · 256 · log(225/1.55 · 256) < 6500 bits, which less than 0.8 KiB. With these parameters,
the solver will find a solution in time 1.3ℓ, with error approximately 2−20.

Proof of Theorem 6.5. Consider any adversary A = (A1,A2). We begin by describing an adversary
A′

2 such that (A1,A
′
2) success with the same probability. We construct A′

2 to behave like A2 with
the following assumptions:

• A′
2 never performs a duplicate query.

• A2 verifies its solutions at the end.
• A′

2 performs exactly t′2 := ℓ/4 queries.
• A′

2 performs only queries that begin with the given puzzle z.

It is straightforward to construct A′
2. We prevent duplicate queries by storing previous answers.

We explicit run the Check at the end of the execution (this takes n queries), and then if needed run
arbitrary distinct queries (that begin with z) to get to ℓ/4 queries. Finally, any query that does not
begin with z can be answered randomly (using internal randomness), without affecting the success
probability (since Check never uses these queries).

We continue the proof with (A1,A
′
2). Consider the trace of queries tr1 (of length t1) in the first

phase (queries performed by A1). Let E1 be the event that there exist i ∈ [n] and γ ∈ {0, 1}λ so
that (z, i, γ) ∈ tr1. Since the puzzle z is sampled uniformly at random from {0, 1}λ after A1 has
run, Pr[E1] ≤ t1

2λ
. We continue the proof conditioned on the event E1.

Consider queries in the second phase (performed by A′
2). For every j ∈ [t′2], let Xj be the

indicator random variable that the answer to the j-th query begins with logm zeros. As this query
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was not issued before (it must begin with z, thus it is not in tr1 and there are no duplicate queries),
we get that Pr[Xj = 1] = 1/m. Let X =

∑
j∈[t′2]

Xj . Notice that these random variables are
independent, and that E[X] = t′2/m = ℓ/4m = n/4.

Let E2 be the event that at the end of the second phase, for every i ∈ [n], the trace contains
a query of form (z, si) such that f(z, si) begins with logm zeros. Then, by a Chernoff bound
(Lemma 6.6) for δ = 3, we have that

Pr[E2] ≤ Pr[X ≥ n]
= Pr[X ≥ (1 + δ)E[X]]

≤ e−
δ2

2+δ
·n
4

= e−
9n
20

≤ 2−0.649n

Overall, the total probability is bounded by:

εPOW(λ, ℓ, t1, t2) ≤ Pr[E1] + Pr[E2|E1] ≤
t1
2λ

+
1

20.649n
.

The solver algorithm Solve simply queries candidate solutions s in an arbitrary order. It is easy
to see that the solver will have a expected runtime of ℓ. We show that the moreover part. Let
t := c · ℓ be the query complexity Solve. For any subset I ⊆ [t] of size n let EI be the event that
Xi = 1 for all i ∈ I. We have that E[X] = 1/m · t = cℓ/m = cn. Then, for δ = 1 − 1/c, we have
that n = (1− δ)E[X]. Using a Chernoff bound (Lemma 6.6), the error of the algorithm is bounded
by:

Pr[X < n] = Pr[X < (1− δ)E[X]]

≤ e−
cnδ2

2

= e−
cn(1−1/c)2

2

= e−n· (c−1)2

2c .

Lemma 6.6 (Chernoff bound). Let X1, . . . , Xn be independent binary random variables such that
Pr[Xi = 1] = pi for every i ∈ [n]. Let X :=

∑
i∈[n]Xi and µ := E[X] =

∑
i∈[n] pi. Then,

• Pr[X ≥ (1 + δ)µ] ≤ e−
δ2

2+δ
·µ, for all δ > 0.

• Pr[X ≤ (1− δ) · µ] ≤ e−
δ2

2
·µ, for all 0 < δ < 1.
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