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ABSTRACT

Highly-optimized assembly is commonly used to achieve the best
performance for popular cryptographic schemes such as the newly
standardized ML-KEM and ML-DSA. The majority of implementa-
tions today rely on hand-optimized assembly for the core building
blocks to achieve both security and performance. However, recent
work by Abdulrahman et al. takes a new approach, writing a read-
able assembly implementation first and leaving the bulk of the
optimization work to a tool named SLOTHY based on constraint
programming. SLOTHY performs instruction scheduling, register al-
location, and software pipelining simultaneously using constraints
modeling the (micro-)architectural details of the target platform.

In this work, we extend SLOTHY and investigate how it can
be used to migrate already highly hand-optimized assembly to a
different microarchitecture, while maximizing performance. As a
case study, we optimize state-of-the-art Arm Cortex-M4 implemen-
tations of ML-KEM and ML-DSA for the Arm Cortex-M7.

Our results suggest that this approach is promising: For the
number-theoretic transform (NTT) - the core building block of
both ML-DSA and ML-KEM - we achieve speed-ups of 1.97x and
1.69%, respectively. For KEccak—- the permutation used by SHA-3
and SHAKE and also vastly used in ML-DSA and ML-KEM - we
achieve speed-ups of 30% compared to the M4 code and 5% com-
pared to hand-optimized M7 code. For many other building blocks,
we achieve similarly significant speed-ups of up to 2.35%. Overall,
this results in 11 to 33% faster code for the entire cryptosystems.
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1 INTRODUCTION

Modern implementations of cryptographic algorithms strive to
achieve the best possible performance on a given platform, while
at the same time being protected against timing side-channels or
more powerful attacks. For these reasons, handwritten assembly is
commonly employed in cryptographic implementations. However,
this comes at the cost of the implementation being less portable as
it is often specialized for a certain platform. If such specialization
includes heavy microarchitectural optimization, it often results in
relatively poor performance on different microarchitectures.

Recent work by Abdulrahman et al. [2] proposes an alternative
path: A readable ‘clean’ assembly implementation is written first
which is then optimized by a super-optimization tool performing
register allocation, instruction scheduling, and software pipelining.
The tool proposed in their work — named SLOTHY - uses constraint-
solving (instantiated with CP-SAT from Google’s OR-Tools [42])
to model both the architectural and microarchitectural details. It
has been used to transform clean implementations targeting the
Arm Neon and Arm Helium instruction sets into fast implementa-
tions for two different microarchitectures each. All the resulting
implementations exceed or match the performance of their hand-
optimized assembly counterparts.

However, the approach taken in [2] currently relies on a clean
implementations written by the authors, requiring full control over
the structure of the input source code. Thus, it remains an open
question whether their tool can also be applied to existing hand-
optimized implementations. In particular, in this work we study if
heavily hand-optimized assembly for one microarchitecture can be
automatically optimized for a different microarchitecture and yield
satisfactory performance.

A prime example of such heavily hand-optimized assembly are
implementations of the recently published post-quantum cryptogra-
phy (PQC) standards ML-KEM and ML-DSA which were the results
of a multi-year standardization effort by the US National Institute
of Standards and Technology (NIST). Early on in the process, NIST
asked the submission teams as well as the community to study high-
speed software implementations — which in most cases resulted
in handcrafted assembly implementations. A particularly popular
platform for PQC is the Arm Cortex-M4 — a 32-bit microcontroller.
It was also recommended by NIST as the primary microcontroller
optimization target [5] sparking a vast number of research projects
studying the performance of various post-quantum algorithms. The
pqm4 library [30] compiles most of the state-of-the-art PQC im-
plementations for the Arm Cortex-M4 into a single repository and
provides a common benchmarking framework.
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Both ML-KEM [3, 6, 14, 26, 45] and ML-DSA [3, 22, 23, 25] were
the subject to a series of research papers studying highly efficient
Arm Cortex-M4 implementations. At the same time, with each new
publication and its implementation, the number of hand-optimized
routines commonly increased resulting in a myriad of functions
written in assembly for both ML-KEM and ML-DSA. In total, state-
of-the-art implementations of ML-KEM and ML-DSA make use
of 3633 and 3009 lines of assembly, respectively. As this code was
written for the Arm Cortex-M4 microarchitecture implementing
the Armv7E-M architecture, the code can also run on other mi-
croarchitectures implementing the same or newer versions of the
architectures. For example, the Arm Cortex-M7 also implements the
Armv7E-M architecture, while the Cortex-M33, and Cortex-M35P
implement the newer Armv8-M. Consequently, all these cores can
run the optimized Cortex-M4 implementations. However, whether
those implementations perform well is unclear.

A particularly interesting microarchitecture for our case study is
the Arm Cortex-M7! as it implements the exact same instruction set
as the Cortex-M4 and it is, hence, conceivable that optimal Cortex-
M4 code also performs well on the Cortex-M7. Yet, in reality, this
is not the case and Cortex-M4 code often performs poorly on the
Cortex-M7. This is primarily due to the Arm Cortex-M7 being
a dual-issue central processing unit (CPU) with a substantially
more complex pipeline design than the Cortex-M4. For certain well-
scheduled workloads, the Arm Cortex-M7 can execute 2 instructions
per cycle (IPC). Code not optimized for the dual-issuing capability
often runs at only 1 IPC and, thus, performance often falls short by
a factor of two or even more. While optimal performance of 2 IPC is
not always achievable, careful scheduling respecting the latencies
of the individual instructions and restrictions concerning which
instructions can execute in parallel can result in much faster code.

In this work, we undertake a case study, evaluating if SLOTHY
can be used to aid with the process of migrating hand-optimized
assembly code between different microarchitectures while maximiz-
ing the performance with ML-KEM and ML-DSA as examples. We
chose to pick the Arm Cortex-M4 and Cortex-M7 as our hardware
targets because they (a) offer a wide variety of hand-optimized
assembly routines, (b) share the same instruction set architecture
(ISA), and (c) differ significantly in their microarchitectural prop-
erties. As we integrate our work directly into the SLOTHY tool,
it can be used for any (micro-)architecture already supported by
SLOTHY, and further (micro-)architectures can be added easily.

Our contributions are the following:

o We extend the SLOTHY superoptimizer to support a much
broader class of assembly programs. This includes extending
the loop capabilities, resulting in much more powerful soft-
ware pipelining than before. We also augment SLOTHY to
automatically replace specific instruction patterns that may
perform well on one microarchitecture but not on another.

e We add support for the Armv7-M architecture to SLOTHY,
complementing existing support for AArch64 and Armv8-M.
Alongside this, we provide a microarchitectural model of the
Cortex-M7. As Arm does not provide any documentation on

The Cortex-M?7 is a popular microarchitecture, with commercial chips available from
all major vendors. However, it has not been as well studied as the Cortex-M4 in the
cryptography literature yet.
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this matter, we base our model on our own experiments as
well as on 3rd party reverse engineering.

e We present a KEccak implementation that is 30% faster than
a hand-optimized Cortex-M4 implementation running on the
M7 and 5% faster than the existing hand-optimized Cortex-
M7 [4] assembly.

e We apply SLOTHY to all assembly routines present in state-
of-the-art ML-KEM and ML-DSA implementations. Besides
Keccak which is dominating the performance of both ML-
KEM and ML-DSA, this covers scheme-specific functions
such as the number-theoretic transforms. For the vast major-
ity of sub-routines, we get significant performance improve-
ments. We achieve up to 2.3x performance improvement for
certain sub-routines, resulting in full-scheme speed-ups of
up to 32% for ML-DSA, and up to 27% for ML-KEM when
comparing to implementations from pqm4.

Code. Our modifications to SLOTHY (integrated into its source
tree) are available at https://github.com/slothy-optimizer/slothy
under MIT license. Our benchmarking framework pqm?7 can be
found at https://github.com/mupq/pqm?7.

Related Work. The literature that relates to our work can be di-
vided into two groups. On the one hand, there exists a vast amount
of prior work from the domain of software optimization and super-
optimization. Work that considers superoptimization that may also
take the selection of instructions into account has been studied for
a long time [28, 37]. More recently, [44] presents a superoptimizer
operating on LLVM IR level, making use of satisfiability modulo the-
ories (SMT) solving to find missing opportunities for replacement
patterns. [31] presents “CryptOpt”, a tool that produces formally
verified high-speed cryptographic code for x86-64 CPUs using ran-
dom program search. Techniques from the domain of deep learning
are employed by the authors of [35], who formalize the search for
fast sorting algorithms as a single-player game, being played by a
deep reinforcement learning agent. The area of superoptimization
through constraint programming or Integer Linear programming
(ILP) that excludes the instruction selection has received lots of
interest in the 1990s, for example in [7, 8, 20]. The most recent and
most relevant publication to this work is [2], presenting the tool
SLOTHY, which makes use of constraint programming to simul-
taneously address instruction scheduling, register allocation, and
software pipelining. It has been applied to several examples from
the domain of cryptographic software.

The other group of related literature concerns high-speed imple-
mentations of PQC on embedded devices — most notably the Arm
Cortex-M4 microcontroller. For ML-KEM, an initial implementation
was provided by the Kyber submission team [45]. Later, Botros et
al. [14] wrote a faster implementation focusing on the performance
of the number-theoretic transform. Alkim et al. [6] improved this
implementation by proposing a faster Montgomery multiplication.
The implementation was further improved by Abdulrahman et
al. [3]. Most recently, Huang et al. [26] proposed a yet faster NTT
using Plantard multiplication. ML-DSA has a similar history of
heavy hand-optimization on the Cortex-M4. An initial implementa-
tion was proposed by Krausz et al. [23] which was later improved
by Greconici et al. [22]. This was again improved by Abdulrahman
et al. [3], with the most recent performance improvements being
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part of [25] by Huang et al. A first evaluation of PQC schemes on
an Arm Cortex-M7 CPU has been done in [24], targeting the round-
3 variants of DiLiTHIUM and FALCON. The initial implementation
of Keccak used within most PQC implementations on the Arm
Cortex-M4 is provided by [17] and already tailored to Armv7-M. It
was improved by [4], applying the lazy rotation technique from [11]
to the Cortex-M4, while also introducing hand-optimized Keccak
code for the Cortex-M7.

Structure. We structure our paper by starting off with a descrip-
tion of relevant background information on PQC, software optimiza-
tion, and the tool SLOTHY in Section 2. We move on to a description
of our extensions to SLOTHY in Section 3, and continue explaining
our case study using the modified tool with workloads from the
PQC-domain in Section 4. Following, we present the results of our
efforts in Section 5 before concluding our work in Section 6.

2 PRELIMINARIES

In this section, we introduce the relevant background on the crypto-
graphic algorithms (ML-KEM, ML-DSA, and Keccak) and introduce
the Arm Cortex-M7 microarchitecture and compare it to the much
more popular Arm Cortex-M4 microarchitecture. We follow the
notation used in the NIST PQC standards [39, 40].

2.1 ML-KEM

The key encapsulation mechanism (KEM) KYBER [13] has been spec-
ified by NIST in Federal Information Processing Standard (FIPS)
203 [39] under the name ML-KEM. Its IND-CCA2 property is guar-
anteed by applying a tweaked Fujisaki-Okamoto (FO) transform
to the underlying IND-CPA secure public-key encryption (PKE)
scheme. The hardness of the scheme is based on the module learn-
ing with errors (MLWE) problem, which allows to scale the security
level by varying the module rank k. The three available security
levels are called ML-KEM-512, ML-KEM-768, and ML-KEM-1024.
ML-KEM operates over the polynomial ring Ry = Z4[X]/(X™ + 1),
where n is 256 and the modulus g is the 12-bit prime 3329 making
polynomial arithmetic a core part of the scheme.

2.2 ML-DSA

Similarly, the digital signature scheme DirrTHIUM [19] has been
standardized in FIPS 204 [40] and named ML-DSA. Just as ML-KEM,
ML-DSA relies on the MLWE problem. In addition, it is based on a
variant of the module short integer solution (MSIS) problem. Its con-
struction is based on the Fiat-Shamir with aborts pattern [34] and
believed to fulfill the SUF-CMA security property — even against
quantum adversaries. The scheme operates over a similar polyno-
mial ring as ML-KEM, namely Ry = Z4[X]/(X" + 1) with n = 256
but a larger 23-bit g chosen as 8380417. The security level can be
adjusted by varying the lattice dimensions k and ¢ leading to the
three security levels ML-DSA-44, ML-DSA-65, and ML-DSA-87.

2.3 Polynomial Arithmetic

With both, ML-KEM and ML-DSA operating over the polynomial
ring Ry = Z4[X]/(X™ + 1), polynomial arithmetic is a core part
of the schemes. Especially polynomial multiplications are gener-
ally expensive; their naive implementation using the school-book
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method comes with a time complexity of O(n?). To counteract this
inefficiency, the specification of both schemes prescribes the use
of the number-theoretic transform (NTT), a variant of the discrete
Fourier transform (DFT) defined over finite fields. After transform-
ing the input polynomials into the NTT domain, the polynomial
multiplication comes down to a pointwise multiplication with com-
plexity of O(n) followed by an inverse number-theoretic transform
(INTT) to retrieve the result: f - g = INTT(NTT(f) o NTT(g)),
where f,g € Ry. Key to the efficiency is that the transformation
itself can be computed efficiently in O(nlogn) time using a fast
Fourier transform (FFT) algorithm, shifting runtime away from
the actual multiplication towards the switch to a different domain.
Thus, the NTT and its inverse are the most critical and also most
costly operations when considering the performance of the poly-
nomial arithmetic in ML-KEM and ML-DSA. Note that in the case
of ML-KEM, where only n | (¢ —1) butnot 2n | (¢ — 1), the NTT is
called “incomplete” and thus, the multiplication inside NTT-domain
amounts to the multiplication of linear polynomials over Zg. The
umbrella-term to refer to both, this, and the pointwise multiplica-
tion inside NTT-domain is called “base multiplication”, or short
basemul.

In order to understand some of our performance results, it is
crucial to revisit the core operation, that is part of the FFT-based
NTT and INTT algorithms: The “butterfly” operation. It comprises
one addition, one subtraction, and one modular multiplication with
a constant. Figure 1 depicts the most common types, the Cooley—
Tukey (CT) [16] and Gentleman-Sande (GS) [21] butterflies, and
can be found in Appendix A.

2.4 KEeccak

Next to the polynomial arithmetic being a core part of ML-KEM and
ML-DSA, both schemes make heavy use of hashing using functions
from the sponge-construction based SHA-3 family [38]. It comprises
the fixed-length functions SHA3-{224, 256, 384,512} as well as the
extended output functions (XOFs) SHAKE, denoted by SHAKE-
{128, 256}. Both the fixed-length functions and the XOFs are based
on the KEccAk permutation [12], more precisely the Keccak-f1600
function that operates on a 1600 bit state over a course of 24 rounds,
where in each round, a sequence of five transformations is applied:
@, p, 7, x, 1).

All of these five steps mostly consist of bitwise logical opera-
tions, such as the “exclusive or” XOR, or rotations. As we abstain
from making any algorithmic changes to the hash function’s im-
plementation itself, we omit a more detailed description of the
algorithm except for mentioning one optimization technique that
will be relevant for the interpretation of our results.

Lazy Rotations. The concept of lazy rotations was introduced
n [11]: The idea behind it is to trade a larger number of explicit
rotations for fewer in a later step of the KEccax permutation, as well
as a number of inline barrel shifts applied to the second operand of
logical instructions, that come at no performance penalty on many
Arm CPUs (e.g., Cortex-M4, many AArch64 cores). This concept was
applied to Armv7-M in [4], where the author shows performance
gains for the Arm Cortex-M4, but conjecture that the approach will
be detrimental to the performance on Arm Cortex-M7 due to its
different pipeline structure.
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2.5 Arm Cortex-M7 and Arm Cortex-M4

The Arm Cortex-M family is a series of microcontroller CPUs de-
signed as low-power embedded devices. Both, the Cortex-M4 and
Cortex-M7, implement the Armv7-M ISA with the additional digi-
tal signal processor (DSP) extension. The combination is referred
to as Armv7E-M. Armv7-M offers sixteen 32-bit general-purpose
registers (GPRs), r0 to r15, where r13 is designated as the stack
pointer, r14 as the link register, and r15 as the program counter.
In addition, there is potentially a floating point unit (FPU), which
adds 32 floating-point registers (FPRs) s0 to s31 with a width of 32
bits each. While on both CPUs the presence of the FPU is optional,
most commercially available Cortex-M7 devices implement it.

Some notable features that are shared between both microarchi-
tectures are:

Barrel Shifter The barrel shifter allows shifting or rotating
the second input to many logical and arithmetic instructions
before the operation is executed without any additional la-
tency to the instruction.

Thumb-2 The Thumb-2 instruction set allows for a more com-
pact code size by enabling a shorter 16-bit encoding for some
instructions. While this feature aids with code size, it may
cause performance penalties due to accesses to the instruc-
tion memory not being 4-byte aligned.

In the following, we will introduce some key differences between
the two microarchitectures.

2.5.1  Arm Cortex-M4. The Arm Cortex-M4 offers a simple 3-stage
pipeline with most instructions taking a single clock cycle, except
branches and load instructions, which may take longer [9]. The
load instruction 1dr typically takes two clock cycles to complete,
however, n subsequent 1dr instructions can pipeline their address
and data phases taking only n + 1 clock cycles to complete.

2.5.2  Arm Cortex-M7. The Arm Cortex-M7 has a more complex 6-
stage pipeline and offers dual-issuing capabilities [18]. This means
that the Cortex-M7 can issue two instructions in every clock cycle.
In contrast to the Arm Cortex-M4, no detailed information about
the CPUs’s performance characteristics is available by Arm itself.
However, attempts to reverse-engineer the pipeline structure and
to gather details about the Cortex-M7 have been made by indepen-
dent individuals [27, 41]. General information about the pipeline
structure was revealed in [18], which we will describe here, while
we defer the exact microarchitectural specifics to Section 3.1.
The most important takeaways from [18] are:

o There are two 32-bit load-pipes.

o There are two arithmetic logic unit (ALU)-pipes, where only
one is capable of barrel shifting (aLU0), while the other one,
ALU1, is “skewed”.

o There is a single multiply-accumulate (MAC)-pipe capable
of computing a 32 X 32 + 64 bit product per cycle.

o There is a single 64-bit store-pipe (skewed).

e There is one FPU-pipe for ALU operation, and another one
capable of multiplication and division.

For a pipe to be considered “skewed”, it means that an instruction
can be sent to such pipes in an earlier stage of the execution, mak-
ing its result also available one stage earlier than usual, allowing
another pipe to consume it within the same cycle.

Abdulrahman et al.

2.6 Software Optimization

We introduce the background on automated software optimization
underlying the SLOTHY superoptimizer that we extend in this
work. When optimizing the performance of a piece of code, there
are multiple different aspects to take into account.

Instruction Selection. In almost any case, there exist multiple
ways to implement the same functionality using a different se-
quence of instructions. Compilers commonly start this process
from a higher level language that gets translated into assembly,
oftentimes relying on heuristics to deliver acceptable results with a
restricted time budget. For high-speed implementations, developers
frequently write assembly code themselves and, doing so, handle the
instruction selection on their own. Due to a more comprehensive
understanding of the optimization target’s semantic and a less re-
strictive time budget, humans can often find better-suited sequences
than compilers do. In addition, by hand-writing the code, devel-
opers can ensure security properties such as secret-independent
timing — those are crucial for cryptographic implementations, but
not enforced by most compilers.

Instruction Scheduling. The order in which instructions are sched-
uled on a CPU can have a significant impact on the performance.
Reasons for this may be an instruction’s latency characteristics
or throughput limitations. Especially on processors with multiple
execution units, a sensible ordering of instructions can lead to a
higher utilization of the available resources, and thus, faster code.
Even though out-of-order (OoO) execution is a common feature
in powerful CPUs that allows for ad-hoc instruction rescheduling,
there exists a large set of microarchitectures for which the order
within the source still matters, especially in-order microarchitec-
tures. Fixed-instruction superoptimization aims at finding an optimal
instruction scheduling without altering the set of instructions em-
ployed.

Register Allocation. The number and size of available registers
determines how much data can be kept at hand, avoiding spills to
memory. The choice of register allocation also impacts the flexibil-
ity of instruction re-scheduling. Register renaming is the process of
changing the choice of register allocation, and is typically consid-
ered alongside instruction (re-)scheduling. OoO microarchitectures
conduct both on the fly; on in-order microarchitectures, however,
they have to be done in software.

Software Pipelining. As introduced in [32, 43], software pipelin-
ing is a technique to overlap two or more iterations of a loop in
order to aid with data dependencies or exhaustion of processing
resources and to increase instruction level parallelism. It is typi-
cally applied when a given loop iteration cannot progress and a
stall would occur. Then, instructions from the next iteration may be
issued in the current iteration, provided they are independent of the
current iteration’s data stream. A limiting factor to this technique is
the size of the register file: More parallelism can only be introduced
if there are enough registers available to hold the data required for
the additional instructions.

2.6.1 SLOTHY. The tool SLOTHY [2] automates the process of
instruction scheduling, register allocation, and software pipelin-
ing. It does so by constructing a constraint-programming problem
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based on the input assembly and models of the target architecture
and microarchitecture. Notably, it considers instruction schedul-
ing, register allocation, and software pipelining simultaneously.
SLOTHY deploys CP-SAT from Google’s OR-Tools [42] to solve
the constraint problem, yielding optimal solutions based on the
provided microarchitectural model.

Why SLOTHY. In this work, we decide to use and extend SLOTHY
as a starting point for our migration process for multiple reasons.
Given the large amount of hand-optimized Cortex-M4 code for
ML-KEM and ML-DSA, automated optimization for a different mi-
croarchitecture promises fast implementations with limited manual
effort. First, we deem the scheduling of instructions, as well as the
allocation of registers as the most crucial parts of the optimiza-
tion process for the Arm Cortex-M7. We argue that the selection
of instructions — which SLOTHY is incapable of - is a task hu-
mans generally excell at, especially on simpler reduced instruction
set computer (RISC) architectures like Armv7E-M. In particular,
the routines of ML-KEM and ML-DSA we care about have been
steadily improved in the aforementioned publications and are now
readily available as a starting point for our optimization process.
Second, we believe that many of the sub-routines we will consider
are amenable to a complete search, i.e., finding an optimal solution
based on the given microarchitectural model.

Prerequisites. For SLOTHY to be able to run on a certain piece
of assembly code, the user is required to provide two models: The
architectural model for the target ISA is used to parse the source
code, provide basic information about the ISA, and to deliver in-
formation about the instructions’ data flow, declaring inputs and
outputs. In addition, SLOTHY requires a microarchitectural model in
order to represent the target CPU’s intricacies in terms of latencies,
throughput, use of execution units, and other performance-relevant
characteristics such as forwarding paths, hazards, or slot restric-
tions. Note that both models can be built lazily, meaning that only
the instructions and features that are relevant for the optimization
process need to be defined.

Heuristics. As it was noted in the original paper on SLOTHY [2,
Section 7.4], there exist certain limits to the complexity of the
optimization problems that SLOTHY can solve optimally. These
limits depend on a number of different factors, e.g., the number
of instructions, the register pressure, the complexity of additional
constraints, esp. for data or structural hazards. To counteract this
limitation, SLOTHY offers multiple different types of heuristics.
Most importantly, the “splitting heuristic”, where SLOTHY only
considers a (small) “sliding window” of instructions at a time.

Address Offset Fixup. The address offset fixup is a feature of
SLOTHY that tries to maximize the possibilities for re-ordering of
load and store instructions that use an immediate offset to access
memory. Oftentimes, it is possible to change the order of two load
instructions using the same address register even if one of them
does modify the address register. It works by first ignoring the
exact offsets and then, after the optimization process, reconsidering
them to semantically match the input again. This increases the
flexibility in case one of the instructions increments the output
pointer, overwriting it and thus, posing as a natural barrier for re-
ordering of other memory operations to the same pointer. Ignoring
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the offsets is implemented by removing the address register as an
output from load or store instructions that would increment the
address, thus, removing the dependency on the address register
and allowing for more freedom in the scheduling.

3 EXTENDING SLOTHY

We provide several extensions and improvements to SLOTHY to
enable and aide its use for automatic migration of code from Cortex-
M4 to Cortex-M7.

3.1 New Models

First, we add support for the Armv7E-M architecture to SLOTHY.
This is necessary for SLOTHY to parse the input code from the
pqm4 library and to generate the output code for the Cortex-M7.

Next, we build a microarchitectural model for the Cortex-M7,
which is a prerequisite for the optimization process. In the following,
we summarize the state-of-the-art public knowledge about the
Cortex-M7 pipeline details and its performance characteristics that
are relevant to the examples we consider in this work. We also
describe how to model these constraints in SLOTHY. The following
microarchitecture details are based on our own microbenchmarks
and we point to prior third party profiling [18, 27] confirmed by
our benchmarks.

We initially experimented with deriving a model from the mi-
croarchitecture model present in LLVM.? Unfortunately, we found
the LLVM model to be too inaccurate to obtain satisfactory results.
For example, the model restricts issuing of store instructions to one
of the two issue slots, which we have found to be incorrect in our
microbenchmarks and also contradicts the findings in [27].

ALU. The CPU offers two ALU units meaning that most oper-
ations on the ALU can dual-issue and complete with a latency of
1 cycle. One ALU offers a Barrel shifter at an earlier stage, and in-
structions that use this barrel shifter require the shifted operand to
be available one cycle earlier than usual. Modeling this in SLOTHY
is straightforward, as the routine to infer the latency called dur-
ing construction of the constraint model receives the source and
destination instructions as inputs.

Multiplications. The Cortex-M7 has a single MAC unit, so mul-
tiplications do not dual-issue. The latency of multiplications is 2
cycles, except for MAC-chains, where the latency into the accu-
mulator is reduced to 1. We model this in SLOTHY by setting the
default latency to 2 cycles, and adding a special case for cases where
both the consumer and producer of a value are MAC instructions.
An additional restriction for multiplications is that they cannot
dual-issue with store instructions. In SLOTHY, we model this by
making store instructions also occupy the MAC unit.

Bit-Field & DSP. Some bit-field instructions like pkhtb, pkhbt,
and ubfx can only be issued on the ALU unit with the barrel shifter.
Moreover, neither bit-field, nor DSP instructions can dual-issue
with respect to each other. We express this in SLOTHY’s model by
adding a “fictional” execution unit for DSP instructions, which is
used in addition to an ALU unit for the respective instructions.

Zhttps://github.com/llvm/llvm- project/blob/78a871abf7018f4a288b773¢9c89f99cd5c66b9c/
llvm/lib/Target/ ARM/ARMScheduleM7.td


https://github.com/llvm/llvm-project/blob/78a871abf7018f4a288b773c9c89f99cd5c66b9c/llvm/lib/Target/ARM/ARMScheduleM7.td
https://github.com/llvm/llvm-project/blob/78a871abf7018f4a288b773c9c89f99cd5c66b9c/llvm/lib/Target/ARM/ARMScheduleM7.td
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Memory. By default, loads have a latency of 2 clock cycles. How-
ever, due to the skewed design of the pipes (see Section 2.5.2) the
latency is reduced to just one cycle, in case the destination is an
arithmetic or logical instruction without a barrel shift. With two
load units, LOADO and LOAD1I, they can even dual-issue — but only
if they target different memory banks, i.e., even and odd indexed
words. We model this using the following “best-effort” approach:
We assume that all pointers are aligned to 8 bytes. Then, based
on the immediate offset inside the load instruction, we evaluate
which of the memory banks is targeted by assessing whether the
index of the word is even or odd. If the index of the word is even,
we assign the load to the LOADO unit, otherwise to the LOAD1 unit.
Instructions that load or store n words at a time have a latency of
n + 1 clock cycles. Thanks to the skewed store-pipe, store instruc-
tions can store results with zero cycles latency, meaning within the
same clock cycle. To evade load-after-store hazards, we augment
the model with a constraint that, for each time a load happens after
a store within the same memory region, mandates an offset of 8
clock cycles between the two instructions. This value has proven
itself empirically and accounts for, e.g., transferring elements from
the store buffer into random access memory (RAM).

Floating-Point. The only floating-point instructions relevant to
us — namely just different varieties of vmov — go down the FPU
ALU pipe. For the variant moving the value of an FPR to a GPR, the
latency is 1, while the vmov variants moving from a GPR to an FPR
have a latency of 3.

3.2 Instruction Splitting & Fusion

When considering two different microarchitectures, there com-
monly exist patterns of instructions that perform well on one, but
suboptimal on the other. For example, when it is desired to load
multiple 32-bit words from memory, the 1dm instruction can be
used on an Armv7-M CPUs. On the Arm Cortex-M4, this instruction
takes n + 1 clock cycles to load n words. This is exactly the same
performance as one would get by issuing several individual 1dr
instructions in a row. On the Cortex-M7, however, using 1dm may
be detrimental to the performance even though a sequence of 1dr
instructions and the 1dm would also take the same time to complete.
This is due to the M7’s dual-issuing capabilities, the Cortex-M7 can
already start to compute, e.g., arithmetic operations on the output
of one 1dr from the sequence, while the other 1dr instructions are
still pending. This is not possible when using the 1dm instruction,
which would stall the pipeline until all words are loaded. To address
this issue, we introduce a splitting and fusion feature to SLOTHY.
This allows the merging of multiple instructions into fewer, or —
more useful in our case - the splitting of one instruction into mul-
tiple. Using this feature, we can split 1dm instructions into multiple
1dr instructions, which can be scheduled in parallel to, e.g., addi-
tions, in the following code, making better use of the entirety of
the CPU’s resources. Let us consider the output of two SLOTHY
optimization runs in Listing 1 for an illustration of the power of this
feature. The input to both runs has been one 1dm instruction loading
eight registers, followed by eight uadd16 instructions that add the
register r1 onto the loaded data. This would be a performance-wise
valid approach on the Cortex-M4. Naively optimizing this code for
the Cortex-M?7 yields the output given in Listing 1a, which does not
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improve over the original input as there is no meaningful way to
alter the scheduling. By enabling the splitting feature, SLOTHY can
generate the code in Listing 1b, which splits the 1dm instruction
into multiple 1dr instructions, which can be scheduled in parallel
to the uadd16 instructions. By considering the comment at the top
of SLOTHY’s outputs, we can see that the expected number of clock
cycles based on our microarchitectural model has been reduced
from 12 clock cycles to just 9 — a 33% improvement. We confirm
this by benchmarking both snippets on-device. Each column in the
comments next to the output source code represents one clock cycle.
An asterisk symbolizes the issuing of the respective instruction,
meaning two “stacked” asterisks indicate that two instructions are
dual-issued.

A note on security: It’s the developers responsibility to ensure
that the fusion they add to SLOTHY is (a) semantically correct
and (b) does not alter the program in a way that introduces side-
channel leakage. If it would be desired to implement an “unsafe”
replacement, a possible, future addition to SLOTHY could be the
ability to mark registers as either public or secret, and to enforce
that the fusion may not interact with secret registers in a way that
would introduce leakage.

3.3 Re-Worked Loop Handling

SLOTHY supports the ability to parse loops in the input assembly
in order to enable the use of software pipelining. This is necessary
since the pre- and post-amble need to be sensibly embedded into the
optimized code and modifications to the counter need to be made.
However, SLOTHY has so far only been able to operate on loops
that used a static counter register that gets decremented by one in
each iteration using subs with a following conditional branch in-
struction bne. This instruction pair is subsequently not considered
as part of the loop kernel, as the so called “loop boundary” which
SLOTHY is blind to during the optimization process.

There exist two reasons why we decided to take on SLOTHY’s
abilities to detect and handle loops during the optimization process.

(1) While the authors of [2] could work with the aforemen-
tioned limitation in their “clean” code, we found that the
code present in the pqm4 library makes use of a multitude of
different structures for loops, which would not be recognized
by SLOTHY. A prominent example for this is that the loop
counter is not a dedicated register but the last iteration of the
loop is instead inferred based on the value a pointer, which
gets incremented with each iteration.

(2) When tuning code for the highest performance, every in-
struction counts. For this reason, hiding multiple instructions
as part of the loop boundary from SLOTHY and thus, loosing
opportunities for scheduling, limits performance gains. A
logical consequence was to merge the loop boundary into
the loop and to make it part of the constraint model that
SLOTHY is building.

Every architectural model can now be extended with multiple
different loop classes with SLOTHY picking a suitable one for the
code at hand. The most general form of loop we add to the Armv7-
M model only requires a start label as well as a branch instruction
back to the label to be present in the input source. Based on that,
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we extended SLOTHY to automatically infer details about the struc-
ture of the loop, enabling it to take all instructions, including the
branch, into account when scheduling. The information we infer
automatically, for example, includes by how much the loop counter
is modified in each iteration. This is an important piece of informa-
tion, as the loop counter needs to be modified accordingly ahead of
time in case software pipelining is deployed and thus, one iteration
of the loop gets “unrolled”.

The performance advantage of this technique can be easily un-
derstood based on an example. While Arm Cortex-M7 has the capa-
bility to dual-issue instructions, it can only issue one multiplication
in each clock cycle as there is only one execution unit for these
available. However, many of the functions related to polynomial
multiplications are dominated by instructions occupying the MAC
unit, meaning that in case there are more multiplications than any
other type of instruction, there will inevitably occur stalls due to
resource hazards. Having one or more additional instructions from
the loop boundary that can be used to balance out the multiplica-
tions can potentially save multiple cycles per iteration.

Limitation. Two limitations to the loop handling still remain.
First, when making use of the address offset fixup feature in combi-
nation with a loop, that relies on a pointer that gets incremented
using a load or store instruction, it is required to manually an-
notate the input source code to inform SLOTHY that the load or
store instruction used for the increment needs to appear before
the flag-setting instruction (e.g., cmp). The reason for this is that
the address offset fixup removes the address-output from the load
or store instruction to allow for the flexible reordering during the
fixup. However, this also removes the dependency between the
incrementing instruction and the flag-setting instruction, meaning
they could be swapped - resulting in incorrect code. Second, the
loop handling is not yet capable of determining the counter register
on its own, we require the order of arguments to the cmp instruc-
tion to follow the convention of the first register being the one that
gets incremented, while the second marks the end-value.

3.4 Further Changes

0-Latency. A new capability we added to SLOTHY is the ability to
model instructions that have a latency of 0, which was unsupported
before but is a feature for certain instructions on the Cortex-M?7.

Assembly Directives. With respect to parsing, we also extended
the support for assembly directives, adding the ability to resolve
(recursive) .if .else directives and to interpret definitions
made through the . equ directive.

3.5 Security Considerations

In order to rule out timing side channels in it’s output, SLOTHY
relies on the input code being constant-time to begin with. For
example, memory accesses must be secret-independent and no
variable time instructions may be used on secret data. For the latter,
special care has to be taken when using the splitting and fusion
feature: It is the microarchitectural model-developer’s responsibility
to ensure that the replacement patterns they define are constant-
time on their target microarchitecture. All replacement patterns
provided in this work fulfill this property. In case no splitting or
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fusion is applied, SLOTHY acts as a fixed-instruction superoptimizer.
As no branches or additional memory accesses are introduced, the
code will remain constant-time.

For, e.g., power side channels, the situation is different: In this
case, leakage heavily relies on microarchitectural details of the
pipeline. Such pipeline leakage commonly depends on the the or-
dering of the instructions as well as assignment of registers [36].
Thus, SLOTHY’s optimization may introduce additional pipeline
leakage. However, addressing this issue is out of scope for this work.
As mentioned in [2, Section 5.1], a possible solution could involve
modeling a device’s leakage characteristics as part of SLOTHY’s
microarchitectural model and incorporating this information in the
construction of the optimization problem.

4 CASE STUDY

In this section, we will describe the process of deploying SLOTHY,
including our extensions, for the task of optimizing the ML-KEM
and ML-DSA implementations for the Arm Cortex-M7. We will start
by explaining our starting point for the process, giving context to
the functions we are considering, and then describe the changes
we made to the input assembly files to make them compatible with
SLOTHY.

As a starting point for the optimization process, we use the
assembly files that are present in the pqm4 library [30] (as of Jan
16, 2025, commit 4 9ce5bea).

4.1 Target Routines

Next, we will introduce the routines that are subject to our optimiza-
tion efforts. As the most time-consuming operations within both
ML-KEM and ML-DSA are actually symmetric primitives based
on the KEccak permutation, we start by looking at KEccaxk as
even small speed-ups in KEccak often have more impact on the
performance of the full scheme.

4.1.1  Keccak. Only a single assembly implementation of Keccak
is part of pqm4 and it is shared among the other cryptosystems
using it. Currently, it is an implementation specifically tuned for the
Arm Cortex-M4, presented in [4], which is based on [17] adapting
recent techniques from [11]. The implementation from [17] was
previously used in pgm4. Next to these implementations targeting
the Arm Cortex-M4, a hand-optimized implementation for the Arm
Cortex-M7 was introduced in [4] as well.

In this work, we decide to play out one advantage of SLOTHY:
The ability to swiftly evaluate how amenable different implemen-
tations of the same algorithm are to the optimization for a certain
target platform. We, hence, evaluate all three implementations.

For all three implementations, we target the core of the algo-
rithm, the KEccaxk-f permutation KeccakF1600_StatePermute. In
the following, we will suffix the original implementation from [17]
with “xkep”, the Cortex-M4-tuned implementation from [4] with
“adomnicai_m4”, and the Cortex-M7-tuned implementation from [4]
with “adomnicai_m?7”.

4.1.2 ML-KEM. The assembly functions contained in pqm4 for
ML-KEM can be split in three groups:

Polynomial Multiplication Most crucial to the polynomial
multiplication are the functions for the NTT and INTT. They
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are responsible for transforming between the NTT-domain
and “regular” domain. Alongside these, we have a set of
basemul functions targeting the multiplication inside the
NTT-domain. Multiple variants to these exist: Functions
that carry the prefix “frombytes”, implicitly unpack the wire-
representation of the polynomial before performing the mul-
tiplication itself. Functions containing either combination
of {16,32} in their name belong to the speed-optimized im-
plementation that makes use of the “better accumulation”
strategy [15].

Polynomial Arithmetic Next to the polynomial multiplica-
tions, we consider functions for polynomial addition and
subtraction poly_add and poly_sub. A function implement-
ing the Barrett reduction is also part of the code.

Polynomial Sampling Functions prefixed with “matacc” aid
with the acceleration of the sampling of the public matrix
Ae RI(;Xk whilst multiplying it with a vector of polynomi-
als on the fly. Again, functions carrying a suffix containing
{16, 32} are deploying a performance optimization pattern
using caching in memory.

It is important to note that pqm4 contains both a stack- and a
speed-optimized implementation. Some of the functions we tar-
get are only used in one of the two. For example, all sub-routines
containing {16, 32} are only used in the speed-optimized implemen-
tation, while the stack-optimized implementation uses a more stack
friendly variant not using the “better accumulation”.

4.1.3 ML-DSA. For ML-DSA, we can see a similar picture:

Polynomial Multiplication Routines computing the NTT,
INTT, and basemul using the ML-DSA-prime 8380417 be-
long to the most performance critical routines and are thus
subject to our optimizations. Proposed in [3], some of the
transformations and basemuls in ML-DSA can be replaced by
more efficient ones, making use of smaller moduli 257 or 769.
In the case of the Fermat number 257, the transformation is
then called Fermat number transform (FNT), instead of NTT.
If a basemul routine contains the term “asymmetric”, it is de-
signed to make use of an optimization technique introduced
in [10], which re-uses part of the result from the NTT/FENT
during the basemul.

Other Routines Just as for ML-KEM, a routine for Barrett
reduction is part of the implementation. In addition, the
function caddq is used to transform polynomial coefficients
that are reduced to a representative that may be negative, to
one that is in the range [0, g).

Similar as for ML-KEM, there is a speed- and a stack- optimized
implementation. However, those use mostly the same assembly.
Although it has been shown to be inferior in performance to the
769 arithmetic [26], we also consider the 257 arithmetic as it has
been part of pqm4 up until very recently’. However, we exclusively
deploy the 769 arithmetic for our full scheme implementations.

4.2 Changes to Input Assembly

Although large parts of the transition to the Cortex-M?7 are auto-
mated, some manual changes to the input assembly files have been

31t was changed in 1a04a91
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necessary or helpful with easing the process. We deem all of these
changes as minor but still explain them in the following.

First, we split files from pqm4 in such a way, that always only one
global function remains per file. This eases experimentation across
multiple optimization runs. Further, we renamed some functions
and symbols in the input assembly to avoid naming collisions or to
make the function names more descriptive.

In rare cases, the LLVM assembler, used for a self-test feature of
SLOTHY?#, would not accept the “short” notation of an instruction
being forced into the 32-bit wide encoding, e.g., add.w r0, #<
imm> would cause an error, while add.w r0, r0, #<imm> passed
just fine. In these cases, we manually expanded the short notation
into the long one. The other way around, sometimes, when giving
the “long” notation of an instruction and simultaneously forcing it
to the 32-bit encoding would cause an error as well, e.g., neg.w r0
, r0 would fail, while neg r0, r0 would work while still being
encoded as a 32-bit instruction.

The majority of changes are due to limitations in SLOTHY’s
abilities of parsing the assembly source and in order to circum-
vent major engineering efforts. We had to rename some constants
defined through the .equ directive, as SLOTHY does not support
overwriting these in case they get re-defined within a function.
Also, SLOTHY does not support parsing macros which take other
macro names as arguments. We resolved this by directly invoking
the appropriate macro. Further, we sometimes switched the order
of arguments in the cmp instruction at the end of a loop to allow
SLOTHY to automatically infer the loop structure as we identify
the counter register based on the ordering of the arguments. As
a last point on the parsing, we removed the use of the . rept di-
rective from three input files as it (a) complicates the parsing, esp.
for general cases in combination with other directives, (b) does not
add much value, and (c) is trivial to replace (i.e., just deleting the
directive). Note that this change makes the input code the slightest
bit less performant as the inlining spared some loop handling (e.g.,
comparisons and branches), while at the same time reducing the
code size as a side effect.

Further, we added SLOTHY tag annotations to the input assembly
files to give certain hints to SLOTHY, e.g., about the interaction
with the memory or about the loop structure. Lastly, we push more
callee-save registers to the stack at the beginning of some functions
— in case not all have been pushed anyways — in order to avoid
restrictions with respect to renaming and unlock more flexible
scheduling.

4.3 SLOTHY Configuration

After integrating the input assembly files into SLOTHY, the opti-
mization process could be started. This requires to provide a con-
figuration on the parameters used during optimization - at least
providing the target platform, input file, and the region or loop of
the file to be optimized.

However, there are several configuration options that may im-
pact the performance. In the following, we go over the performance-
relevant parts of the configuration for the critical routines.

“The self-test feature within SLOTHY assembles the code before and after optimization
and executes it in the Unicorn emulator on random inputs to check that it produces
the same outputs. While using this feature is not strictly necessary, it is very helpful
in finding mistakes in the architecture model and SLOTHY itself as early as possible.
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4.3.1 ML-DSA NTT & INTT. For the NTT and INTT in ML-DSA
using g as 8380417, the number of instructions per loop varies
between 33 and 86 and we are able to optimize all of the loops
without the use of heuristics and with software pipelining enabled,
terminating within approximately one hour (on an Apple M1).

In contrast, the implementation of the FNT and its inverse con-
tain some loops that cover up to 407 instructions, which is beyond
SLOTHY’s capabilities for optimization without the use of the split-
ting heuristic. We use a splitting factor between 6 and 8, with a
step size between 10 and 15%. In addition, we set a timeout of 180
seconds that interrupts the solver and continues with the solution
found at that point. Further, we make use of our new fusion-feature
in order to split v1dm instructions, loading multiple FPRs at once,
into a sequence of v1dr instructions.

As the 769 NTT and INTT are based on to the ML-KEM imple-
mentations using 3329 as the modulus and thus require very similar
configuration, we skip the description here and refer the reader to
the next subsection.

4.3.2 ML-KEM NTT & INTT. The code for the (inverse) NTT in
ML-KEM consists of loops with 113-304 instructions. In case of
our model for the Arm Cortex-M7, we found that the optimization
of the ML-KEM NTT and INTT is not feasible without the use of
the splitting heuristics. Therefore, we configure it to split the code
into 3-6 parts, moving the window by 10-20% in each step with
a timeout of 360 seconds. In the case of ML-KEM, we use fusion
to split 1drd instructions, loading two GPRs at once, into pairs of
1dr instructions, and do just the same for v1dm instructions as we
did in the FNT.

4.3.3 Keccak. Since high-performance implementations of Kec-
CAK such as the ones presented in [4] commonly rely on heavy
loop-unrolling, the number of instructions to consider in the op-
timization of KEccAk is significantly higher than for the NTTs.
The Cortex-M4-tuned implementation from [4] consists of 1521
instructions in its main loop, which by far exceeds the threshold for
SLOTHY to be able to optimally solve the problem. Thus, we again
deploy the splitting heuristic and configure it to split the code into
22 parts, with a step-size of 5%. Moreover, we allow SLOTHY to take
two passes over the code using the heuristic, to further facilitate
the interleaving. We disable software pipelining as it would (1) be
too complex to solve in this case and (2) blow up the code size
significantly.

While optimizing the Cortex-M4 Keccak code from [4], SLOTHY
identified a useless instruction buried deeply in the KEccak imple-
mentation’s macros storing to the same memory location twice.
While it is very hard to spot this instruction manually, SLOTHY will
by default flag such useless instructions. We removed the useless
instruction.

4.3.4  Other Functions. For all other functions, optimization is more
straightforward and we can optimize the main loop of each func-
tion without the use of heuristics. One exception are the “matacc”
functions within ML-KEM. Those include branches to external
functions (SHAKE) as well as conditionals for sampling values < ¢
using rejection sampling. Neither sub-routine calls, nor conditionals
are currently supported by SLOTHY and adding support does not
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promise much room for improvement as there is close to no flexibil-
ity in scheduling these instructions. Thus, we limit the optimization
to only the arithmetic part of these function.

4.4 Implementation Security

All code used as input to optimizations in this work has secret-
independent timing. The same holds for all resulting code as SLOTHY
does not introduce branches or secret dependent memory accesses.

Further, we ensure that our splitting or fusion replacement patterns

only apply transformations that do not introduce secret dependent

timing and are thus, safe to use.

5 RESULTS

In this section, we present the performance of the target functions
on the Arm Cortex-M7 before and after optimization. For reference,
we also present cycle counts on the Arm Cortex-M4 and from prior
work.

The development board we used is a Nucleo-F767Z| which fea-
tures a STM32F767Z1 microcontroller. It has 2048 KiB of flash mem-
ory, 512 KiB of SRAM of which 128 KiB are tightly-coupled memory
(DTCM). It runs at a frequency of up to 216 MHz offering a signifi-
cant boost over common Cortex-M4 microcontrollers such as the
STM32F407VG.

To perform component benchmarks and tests, we make use of
the pqmx [1] framework that comes with SLOTHY. For scheme
benchmarks and tests, we extend the popular benchmarking frame-
work pqm4 [29]. For both, we add support for the STM32F767ZI
as well as the QEMU Cortex-M7 platform mps2-an500. The former
allows for realistic benchmarking on actual hardware, while the
latter allows running functional tests without the actual hardware,
easing development and allowing to perform tests in a continuous-
integration environment.

As usual on microcontrollers, we run the devices at a reduced
frequency of 24 MHz to eliminate wait states when fetching in-
structions from flash memory. We only use the DTCM memory as
it offers better performance and 128 KiB of memory is sufficient for
all of our benchmarks. Like pqm4, we make use of libopencm3 [33]
easing setup of serial communication, clock configuration, and use
of the hardware random number generator. For SHA-3 and SHAKE,
we use the code available in pqm4 except for the KeccakF1600 per-
mutation itself which we replace as detailed in the following. With
this setup we were able to reproduce cycle counts reported in prior
work [4] up to only 5 clock cycles difference.

For obtaining cycle counts prior to optimization on the Arm
Cortex-M4, we make use of the common STM32F407-DICOVERY
board with an STM32F407VG and use the default configuration
in pqm4. For pqm4 comparison, we use pqm4 as of Jan 16, 2025
(Commit 49cebbea).

For all benchmarks, we use the Arm GNU toolchain version
13.3.Rell.?

5.1 Component benchmarks
To demonstrate the effectiveness of SLOTHY, we first present re-

sults for the individual functions that were optimized. For stable

Sarm-none-eabi-gcc from https://developer.arm.com/downloads/-/arm-gnu-
toolchain-downloads
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Table 1: KEccak benchmarking results before and after opti-
mizations. We report speed in clock cycles (cc) and code size
(cs) in in kilobytes.

mpl Before Before M7 After M7 Speed-
P M4 cc cc IPC s cc IPC s up
[17] 13368 | 6262 1.59 6.6 | 5376 1.85 6.6 | 1.16X

M4 [4] 9397 | 6691 1.37 6.0 | 5149 1.77 6.0 | 1.30X
M7 [4] | 12399 | 5573 1.79 2.9 | 5322 1.87 3.3 | 1.05X

benchmarking, we run the code in a loop 100 times, and repeat the
experiment 100 times reporting the median cycle counts.

KEeccak. Our results for KEccak are shown Table 1. Prior to
optimization, the best performing implementation is the hand-
optimized Cortex-M7 implementation presented in [4]. Note that
this implementation already achieves 1.79 IPC, which is close to
optimal. Nonetheless, SLOTHY manages to find a 5% improvement,
resulting in 1.87 IPC. Surprisingly, however, this is not the fastest im-
plementation we found: Optimizing the Cortex-M4 implementation
presented in [4] results in even fewer cycles. This implementation
has a lower IPC of 1.77, yet it achieves better performance than
the 1.87 IPC implementation. This is primarily due to the use of
lazy rotations as described before in Section 2. This confirms that
SLOTHY can outperform manual hand-optimization even when
starting with code written for another microarchitecture. We also
tried to run SLOTHY on a previous version of KEccax from [17],
but it did not result in an implementation outperforming the other
two after optimization. Code size remains mostly unaffected by
our optimizations. Some differences are expected due to occasional
switching between 16-bit and 32-bit instruction encoding because
of other register choices by SLOTHY. The differences between the
input implementations are due to varying degrees of unrolling.

ML-DSA. Table 2 contains the performance benchmarks of the
core polynomial arithmetic in ML-DSA. For polynomial arithmetic
modulo the ML-DSA prime, we see the Cortex-M4 code performing
very poorly, achieving only around 1 IPC or even less. SLOTHY
finds vastly better code for these functions with speed-ups rang-
ing from 1.75X to 1.97X. For small polynomial multiplication, we
evaluate both the 257 and 769 arithmetic proposed in [3] (with
the former only being applicable to ML-DSA-44 and ML-DSA-87).
SLOTHY achieves significant speeds-up for all those functions. We
see particularly good speed-ups for the pointwise multiplications
of 2.35x and 2.14x. The reader may be surprised to see a speed-up
of larger than two. However, this can be explained by the particu-
larly poor performance of the original code achieving only 0.74 IPC
and 0.78 IPC. This poor performance is mainly due to consecutive
multiplications depending on each other. As multiplications cannot
dual-issue and have a latency of two cycles, this leads to an extra
stall and at worst 3 unused issue slots. This effect occurs in other
places as well but is particularly pronounced for these pointwise
multiplications. In addition, this choice keeps the comparability
of the results to prior work such that differences all relate to opti-
mizations by SLOTHY. We also see small speed-ups for the Barrett
reduction and conditional addition. Code size increases by a factor
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of almost 2 for all examples that make use of software pipelining.
It also increases moderately in the cases where an 1dm gets split
into multiple instructions. Small variations in the code size are also
expected due to switching between 16-bit and 32-bit instruction
encoding.

ML-KEM. We present the component results for ML-KEM in Ta-
ble 3. Similar to ML-DSA, the Cortex-M4 code for the NTT and iNTT
performs poorly on the Cortex-M7, not exceeding 1.04 IPC. SLOTHY
finds code that performs 1.62x and 1.64x faster. We achieve similar
speed-ups for the various base multiplications deployed in ML-
KEM, as well as the Barrett reduction. For the Barrett reduction,
we see a vast increase in IPC as well, however, this is partly due to
the splitting of 1dm instruction which improves the IPC more than
the performance. Lastly, we see only very small improvements for
the matacc functions. These functions inline the sampling of the
matrix A into the computation of the rejection sampling and base
multiplication resulting in complex assembly including multiple
loops with function calls. We can only apply SLOTHY to a share
of this computation, namely the base multiplication which greatly
limits the speed-ups we see. Note that these functions also perform
function calls to KEccak to sample the matrix. We exclude the cy-
cles spent in KEccak in the benchmarks here to ease interpretation.
Code size changes similarly as for the ML-DSA.

5.2 ML-DSA results

We report the full scheme results for NIST security level 3 in Table 4.
The results for the other parameter sets can be obtained from Ta-
ble 5 in Appendix C For fairness reasons we mainly compare our
implementation to two others: One referred to as ‘pqm4’ which is
the current implementation in pqm4 (Commit 4 9ce 5bea) includ-
ing the Cortex-M4 Keccak implementation. This is the KEccak
implementation that was used to obtain our fast Cortex-M7 im-
plementation. We also compare to a second implementation called
‘pqm4”*” which is the same implementation but using the Cortex-M7
Keccak from [4]. This can be seen as the state-of-the-art prior to
our work. Compared to ‘pqm4’, we achieve speed-ups of 11% to
33%. Compared to ‘pqm4*’, we achieve speed-ups of 2% to 21%. We
also present the results from [24] which benchmarks Cortex-M4
implementations on the Cortex-M7. However, these results were ob-
tained from an older Cortex-M4 implementation and do not include
Keccak optimized for the M7; hence, the performance is slower
than the state of the art. As a reference, we also report Cortex-M4
cycles obtained from pqm4. Compared to those our Cortex-M7
implementations require 1.58X to 1.82x fewer cycles.

5.3 ML-KEM results

Table 4 contains our full scheme results for ML-KEM’s NIST security
category 3. Results for all parameter sets can be found in Table 6
in Appendix C. We present the same comparisons as for ML-DSA
except that there are no previous results published on the Cortex-
M7. Compared to the ‘pqm4‘ implementation (M4-optimized code
and M4 Keccak), we achieve speed-ups of 22% to 27%. Compared to
the ‘pqm4*‘ implementation (M4-optimized code and M7 KEccaAk),
we achieve speed-ups of 9% to 14%. Comparing to cycles on the less
powerful Cortex-M4, we require 1.66X to 1.74x fewer cycles.


https://github.com/mupq/pqm4/commit/49ce5bea56c2a00da2671a54949d9f214936ca21
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Table 2: ML-DSA components results. We report performance of the input code in clock cycles on both the Cortex-M4 and the
Cortex-M?7 prior to optimization. Performance after optimization is reported for the Cortex-M7. Code size before and after
optimization is reported in bytes.

Function Before M4 Before M7 After M7 Speedu
clock cycles | clock cycles IPC code size | clock cycles IPC code size P P
NTT 8145 8139 0.95 860 4141 1.87 1704 1.97x%
iNTT 8683 8207 0.95 1052 4547 1.72 1498 1.80X
Basemul 1914 2080 0.82 132 1063 1.61 212 1.96X
Basemul Acc. 2511 2166  1.03 164 1235 1.80 268 1.75%
NTT 769 4446 4013 1.04 1692 2418 1.75 1702 1.66X
iNTT 769 4575 4194 1.00 2008 2555  1.69 2060 1.64%
Pointmul 769 1025 1053 0.79 124 448 1.87 228 2.35%
Basemul asym. 769 1700 1887 0.82 124 1007 1.56 220 1.87X
FNT 257 5480 5130 0.99 1864 3903 1.34 2090 1.31x
iFNT 257 5552 4988 1.04 1680 3411  1.56 1738 1.46X
Pointmul 257 1155 1311 0.74 136 612 1.59 256 2.14X
Basemul asym. 257 1184 862 1.19 76 608 1.69 140 1.42x%
Barrett reduction 1439 989 1.37 190 833 1.62 340 1.19x
caddq 1183 668 1.64 140 636 1.72 150 1.05%

Table 3: ML-KEM components results. We report performance of the input code in clock cycles on both the Cortex-M4 and the
Cortex-M7 prior to optimization. Performance after optimization is reported for the Cortex-M7. We split functions by whether
they are used in the speed- or stack-optimized ML-KEM implementation or both. Code size before and after optimization is
reported in bytes. For the matacc functions, we report cycle counts excluding the Keccaxk function calls.

Function Before M4 Before M7 After M7 Speedup
clock cycles | clock cycles IPC code size | clock cycles IPC code size
NTT 4444 4011 1.04 1692 2380 1.78 1704 1.69%
iNTT 4617 4247 1.00 2176 2586 1.68 2236 1.64%
= | Barrett reduction 1391 1213 0.90 292 717 1.84 652 1.69%
poly add 722 412 0.63 68 386 1.46 134 1.07X
poly sub 722 412 0.63 68 360 1.57 136 1.14x%
basemul 16 32 1184 862 1.19 76 605 1.70 138 1.42%
basemul 32 32 1568 1053 1.22 92 797 1.61 172 1.32%
basemul 32 16 2087 2207 0.82 144 1059 1.71 254 2.08%
frombytes + basemul 16 32 2468 2272 0.90 156 1251 1.64 278 1.82%
= frombytes + basemul 32 32 3236 2401 0.96 170 1378 1.68 306 1.74%
g, | frombytes + basemul 32 16 3688 3712 0.83 228 1895 1.63 420 1.96x
<€ | matacc_asm_cache_16_32 8454 6203  1.01 506 5449 1.15 506 1.14x
g matacc_asm_cache_32_32 9158 6542 1.00 530 5867 1.11 534 1.12%
matacc_asm_cache_32_16 9551 7646  0.94 634 5967 1.20 634 1.28%
matacc_asm_opt_16_32 7939 5281 1.06 422 5269 1.07 418 1.00x
matacc_asm_opt_32_32 8433 5517 1.06 450 5291 1.11 446 1.04x
matacc_asm_opt_32_16 8779 6610 0.99 550 5560 1.17 550 1.19%
basemul_asm_acc 2787 2847 0.79 164 1633 1.45 308 1.74%
| basemul_asm 2403 2721 0.73 148 1440 147 274 1.89%
§ frombytes_mul_asm_acc 3364 3648 0.81 212 1864 1.38 406 1.96x
%;f frombytes_mul_asm 2980 3392  0.76 188 1793 1.43 348 1.89%x
& matacc_asm_acc 8833 7093 0.94 546 5757 1.15 546 1.23%
matacc_asm 8513 6946 0.92 514 5604 1.14 514 1.24%
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Table 4: ML-DSA & ML-KEM full scheme results for NIST security strength category 3. The ‘pqm4’ implementation refers to
the current implementation in pqm4 including the Keccak which is the Cortex-M4 implementation described in [4]. ‘pqm4™’
refers to the same implementation but using the Cortex-M7 KEccak permutation from [4]. The ‘pqm4’ Cortex-M4 results are
directly taken from the pqm4 tables. We report the mean of 5000 executions.

CPU impl KeyGen Sign Verify

M7 Ours 1446421  (x1.00) 3412174  (x1.000 1380098  (x1.00)
g - M7 pqm4 1808627  (x1.25) 4489455 (x1.32) 1753730 (x1.27)
a E 8 M7 pgm4* 1591914 (x1.10) 4064951 (x1.19) 1552298 (x1.12)
s M7 [24] 2566000 (x1.777 6009000 (x1.76) 2453000 (x1.78)

M4 pqm4 2516006  (x1.74) 6193171 (x1.82) 2415944 (x1.75)
< M7 Ours 1985399  (x1.00) 15439643 (x1.00) 3527430  (x1.00)
8 E w M7 pgqm4 2526270 (x1.27)y 17213084 (x1.11) 3925753  (x1.11)

1%}
o g ©° M7 pqm4* 2252520 (x1.13) 16650119 (x1.08) 3726781 (x1.06)
2 E M4 pqm4 3412622 (x1.72) 24421526 (x1.58) 5732397  (x1.63)
CPU impl KeyGen Encaps Decaps
=3 M7 Ours 372064 (x1.000 385371 (x1.000 417224 (x1.00)
gi § ) M7 pqm4 462147 (x1.24) 469808 (x1.22) 511840 (x1.23)
S % & M7 pqm4” 414551  (x1.11) 420946  (x1.09) 462237  (x1.11)
= E M4 pqm4 642096 (x1.73) 658754 (x1.71) 707827  (x1.70)
S M7 Ours 371048 (x1.00) 386586 (x1.00) 423908  (x1.00)
F—Q § % M7 pqm4 469856  (x1.27) 482068 (x1.25) 526182 (x1.24)
w
NE S M7 pqm4* 422102 (x1.14) 433121 (x1.12) 476824 (x1.12)
= M4  pqmd 644195 (x174) 664654 (x172) 714194  (x1.68)
6 CONCLUSION REFERENCES

In this paper, we have shown that migrating highly hand-optimized
code to a new microarchitecture with SLOTHY is feasible and can
yield significant performance improvements. As we demonstrated
based on the ML-KEM and ML-DSA code from pqm4 and Keccak
from [4], with only little to no manual modifications to the source, it
is possible to obtain fast implementations for the target of our case
study, the Arm Cortex-M7. While building the architectural and
microarchitectural models has been time-consuming, this is a one-
time-effort that can be approached lazily. Note that for platforms,
where the CPU designer provides a software optimization guide,
this task would be vastly simplified.

Beyond the general result from our study, we were able to dis-
prove a conjecture from [4], claiming that lazy rotations are not
beneficial for KEccak on the Cortex-M7, while at the same time
providing the currently fastest, open-source KEccak implementa-
tion for the Cortex-M7. We also identified a useless instruction in
the state-of-the-art Cortex-M4 implementation in KEccak.

Moreover, we provide the first open-source implementation of
ML-KEM and ML-DSA specifically tuned for the Arm Cortex-M?7,
with many subroutines delivering near-optimal performance with
close to 2 IPC. This, together with our improved Keccak imple-
mentation, yields performance gains of up to 32 % compared to the
original pqm4 code on the Cortex-M7.
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BUTTERFLY OPERATIONS

Figure 1 shows a depiction of the two most common butterfly
operations.
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B INSTRUCTION SPLITTING & FUSION C FULL SCHEME RESULTS

Listing 1 compares two SLOTHY-optimized code snippets, one with Tables 5 and 6 provide the full results for the scheme benchmarks
splitting, the other without. for KyBER and DILITHIUM.
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// Expected cycles: 12 // Expected cycles: 9
ldm r0, {r2-r9} [ K 1dr r10, [r0, #01 // *........
uaddl6 r8, r8, rl // ...k, uaddl6 r2, rl0, rl // .*.......
uaddlé r5, r5, rl // ..... e ldr rl1l, [r0, #281 // .x.......
uaddlé r7, r7, rl // ...... K uaddl6e r9, rll, rl // ..x......
uaddlé r6, r6, rl // ....... K. 1dr rl4, [x0, #41 // ..x......
uaddlé r4, r4, rl // ........ * . uaddlée r3, rld, rl // ...x.....
uaddle r3, r3, rl // ......... .. ldr r4, [r0, #8] VA
uaddl6e r2, r2, rl // ..., * . uaddl6 r4, rd, rl // ....x....
uaddlée r9, r9, rl // ... .. * ldr r8, [r0, #12]1 // ....%....
uaddlée r5, r8, rl // ..... * ...
0, #241 // ..... * ..
(a) SLOTHY-optimized code without splitting. ijédféé s ,[ - i; ;‘fzﬂ ;? ...... .
ldr r6, [r0, #16]1 // ...... ..
uaddlé r6, r6, rl // ....... * .
ldr r7, [r0, #201 // ....... * .
uaddl6 r7, r7, rl // ........%

(b) SLOTHY-optimized code with splitting.

Listing 1: Example for SLOTHY’s splitting feature.

Table 5: ML-DSA full scheme results. The ‘pqm4’ implementation refers to the current implementation in pqm4 including the
KEeccaxk which is the Cortex-M4 implementation described in [4]. ‘pqm4™’ refers to the same implementation but using the
Cortex-M7 KEccAK permutation from [4]. The ‘pqm4’ Cortex-M4 results are directly taken from the pqma4 tables. We report
the mean of 5000 executions.

CPU impl KeyGen Sign Verify

M7 Ours 813378  (x1.00
M7  pgqm4 1017840 (x1.25

2127982  (x1.00) 813339  (x1.00)
2821229 (x1.33) 1032625 (x1.27)

)
)

I M7 pqm4* 902168  (x1.11) 2564933  (x1.21) 923587  (x1.14)
M7 [24] 1437000  (x1.77) 3658000 (x1.72) 1429000 (x1.76)
M4 pqm4 1425492  (x1.75) 3822701 (x1.80) 1421600 (x1.75)
M7 Ours 1446421  (x1.00) 3412174  (x1.000 1380098  (x1.00)
= M7 pqm4 1808627  (x1.25) 4489455 (x1.32) 1753730 (x1.27)
E 3 M7 pqm4* 1591914  (x1.10) 4064951 (x1.19) 1552298  (x1.12)
M7 [24] 2566000  (x1.77) 6009000 (x1.76) 2453000  (x1.78)
M4 pqm4 2516006 (x1.74) 6193171 (x1.82) 2415944 (x1.75)
M7 Ours 2449052  (x1.00) 4509525  (x1.000 2401930 (x1.00)
M7 pqm4 3063089  (x1.25) 5926412 (x1.31) 3040658 (x1.27)
S M7 pqm4* 2687624  (x1.10) 5424423 (x1.200 2677843 (x1.11)
M7 [24] 4368000 (x1.78) 8157000 (x1.81) 4287000 (x1.78)
M4 pqm4 4274513  (x1.75) 8204023 (x1.82) 4193228 (x1.75)
M7 Ours 1029294  (x1.00) 7633106 (x1.000 1983998  (x1.00)
<« M7 pqm4 1314162  (x1.28) 8512457 (x1.12) 2215408 (x1.12)
¥ M7 pqm4* 1170583  (x1.19) 7787117  (x1.02) 2097750  (x1.06)
M4 pqm4 1799062 (x1.75) 12134284 (x1.59) 3242333 (x1.63)
5 M7 Ours 1985399 (x1.00) 15439643 (x1.000 3527430 (x1.00)
:% w M7 pqm4 2526270 (x1.27) 17213084 (x1.11) 3925753  (x1.11)
E © M7 pqm4* 2252520 (x1.13) 16650119 (x1.08) 3726781 (x1.06)
M4 pqm4 3412622 (x1.72) 24421526 (x1.58) 5732397  (x1.63)
M7 Ours 3327940 (x1.000 20661879 (x1.000 6091186 (x1.00)
~ M7 pqm4 4262581 (x1.28) 23991841 (x1.16) 6824998 (x1.12)

o0

M7  pqm4* 3790676 (x1.14
M4  pgm4 5820537 (x1.75

21699864 (x1.05) 6450158  (x1.06)
33357899 (x1.61) 9911514  (x1.63)
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Table 6: ML-KEM full scheme results. The ‘pqm4’ implementation refers to the current implementation in pqm4 including the
KEeccak which is the Cortex-M4 implementation described in [4]. ‘pqm4™’ refers to the same implementation but using the
Cortex-M7 KEccaK permutation from [4]. The ‘pqm4’ Cortex-M4 results are directly taken from the pqm4 tables. We report
the mean of 1000 executions.

CPU impl KeyGen Encaps Decaps

M7 Ours 226715  (x1.00 228740  (x1.00) 253999  (x1.00)

)

~ M7 pqm4 283897  (x1.25) 281338  (x1.23) 313772 (x1.24)

b M7 pqm4* 253159 (x1.12) 251441  (x1.10) 283602 (x1.12)
M4 pqm4 392423  (x1.73) 390881 (x1.71) 428167  (x1.69)

T M7 Ours 372064  (x1.00) 385371  (x1.00) 417224  (x1.00)
% ® M7 pqm4 462147  (x1.24) 469808  (x1.22) 511840 (x1.23)
E =~ M7 pqm4” 414551  (x1.11) 420946  (x1.09) 462237  (x1.11)
M4 pqm4 642096  (x1.73) 658754  (x1.71) 707827  (x1.70)

M7 Ours 590805  (x1.00) 601298  (x1.00) 639868  (x1.00)

3 M7 pqm4 729330 (x1.23) 732494  (x1.22) 784625  (x1.23)

S M7 pqm4”* 651372  (x1.10) 653261  (x1.09) 705017  (x1.10)
M4 pqm4 1018976 (x1.72) 1031565 (x1.72) 1094008 (x1.71)

M7 Ours 225529  (x1.00) 229598  (x1.00) 258008  (x1.00)

~ M7 pqm4 285456  (x1.27) 285014  (x1.29) 318696  (x1.29)

b M7 pqm4” 255300 (x1.13) 256111 (x1.12) 289345 (x1.12)
M4 pqm4 392224  (x1.74) 392864  (x1.71) 430202  (x1.67)

5 M7 Ours 371048  (x1.00) 386586  (x1.00) 423908  (x1.00)
g % M7 pqm4 469856  (x1.27) 482068  (x1.25) 526182  (x1.24)
E ~ M7 pqm4* 422102  (x1.14) 433121 (x1.12) 476824  (x1.12)
M4 pqm4 644195 (x1.74) 664654  (x1.72) 714194  (x1.68)

M7 Ours 592612  (x1.00) 607109  (x1.00) 653197  (x1.00)

P M7 pqm4 744941  (x1.26) 754554  (x1.24) 809372  (x1.24)

= M7 pqm4”* 668936  (x1.13) 676800  (x1.11) 731518  (x1.12)

)

M4 pqm4 1020202 (x1.72) 1037953 (x1.71) 1100982  (x1.69)
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