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Abstract—The works of Garg et al. [S&P’24] (aka hinTS) and
Das et al. [CCS’23] introduced the notion of silent threshold
signatures (STS) - where a set of signers silently perform local
computation to generate a public verification key. To sign a
message, any set of t signers sign the message non-interactively
and these are aggregated into a constant-sized signature.
This paradigm avoids performing expensive Distributed Key
Generation procedure for each set of signers while keeping the
public verification key constant-sized.

In this work, we propose the notion of committee-based
silent threshold signature (c-STS) scheme. In a c-STS scheme,
a set of signers initially perform a one-time setup to generate
the verification key, and then a subset of signers are randomly
chosen for an epoch to perform the threshold signing while
the other signers are not authorized to sign during that epoch.
This captures existing systems like Ethereum Altair and Dfinity
where only a specific committee is authorized to sign in a
designated epoch. The existing STS schemes cannot be extended
to the committee setting because the signature verification only
attests to the number of signing parties, not which committee
they belong to.

So, we upgrade hinTS to the committee setting by proposing
Dyna-hinTS. It is the first c-STS scheme and it requires a one-
time silent setup and generates a one-time public verification
key that does not vary with the committee. Assuming a set of
1024 signers (with corrupt 682 signers), hinTS generates an
aggregated signature in 1.7s whereas Dyna-hinTS generates it
in 0.35s within a committee of 80 signers. This yields a 4.9×
improvement over hinTS for signature generation at the cost of
increasing signature verification time by 4% over hinTS. Dyna-
hinTS supports general access structure, weighted signatures
and improves existing multiverse threshold signatures.

1. Introduction

Threshold signatures [33, 34] allows a set of N signers
to sign a message such that any t ≤ N signers are necessary
and sufficient to create a valid signature for the set. Due
to the fundamentally decentralized nature they have gained
significant traction recently in the blockchain setting for
applications such as cross-chain bridges [2, 63, 65, 68, 61],
threshold wallets [6, 3], state proofs [35, 25], multiparty
credential transactions [7], distributed randomness [5, 1],

optimizing Byazantine consensus protocols [45, 69] and
many more. Indeed, given their vast application space, NIST
initiated the standardization [23] of threshold signatures in
early 2023.

In earlier application efforts, threshold signatures have
been widely employed [55, 5, 1] in settings with a fixed set
of N signers and where any t signers can sign the message.
Security holds as long as adversary corrupts f < t parties.
In this setting, the signers need to perform distributed key
generation (DKG) [46] to set up their shared secret keys
(in a Shamir-secret sharing fashion) and a common public
verification key VK. To sign a message m, any t signers
generate partial signatures using their individual secret key
shares, and these partial signatures are aggregated into a
single signature. A higher f is essential to protect against
strong adversary, but that also necessitates a larger t > f ,
resulting into higher cost in the aggregation (which scales
with t).

Dynamic Committee-based Signatures: In practice
large-scale blockchain systems [8, 49, 41] are increasingly
adopting the idea of randomly selecting rather short-lived
committees. This evades the dependency t > f and yields
protocols with enhanced efficiency without sacrificing se-
curity. In this setting, among N signers in the system, a
smaller committee Com of n≪ N signers are selected at
random (using, for example, a trusted source of randomness,
such as randomness beacon service [5]) as the valid set
of signers for each predefined epoch. To sign messages
in this epoch, any t ≤ n parties from Com generate the
signature. Now, an adversary that corrupts f < N parties
needs to control at least t parties within the committee to
forge a signature. Nevertheless, as long as the adverdsary’s
choice is independent of the randomness used to choose
the committee1 this event occurs with negligible probability.
In effect, the aggregator’s computation (proportional to t)
becomes significantly more efficient, as a much smaller t ≤ n
can be afforded, while security holds against much higher
f ≫ t.

In the committee setting, since the set of signers change
more frequently, a fresh DKG protocol is required to run
at every epoch (whenever a new committee is chosen). As

1. This is justified as long as the randomness is generated via a
randomness beacon (or similar procedure), that has pseudorandom output.



DKGs [46, 51] are more expensive, this incurs substantial
overhead. To avoid DKGs in threshold signatures, Ethereum
Altair uses the BLS multi-signature scheme [22] in the
committee setting 2. In that each validator node within
a committee uses its independent secret key to generate
signatures, that are aggregated – the aggregated signature is
then checked with respect to the aggregated verification key,
computed from the individual verification keys of the same
committee of validators. Crucially, it necessitates storing all
individual public keys (whereas threshold signatures need to
store only a single public key). Storing data on the blockchain
incurs gas cost. In particular, Garg et al. [44] showed that
storing 1024 BLS public keys consumes 60 million EVM
gas, which is roughly $1200 in October 2024.

To resolve this DKG vs large-storage dilemma, two
recent works [44, 30] introduced the idea of silent threshold
signatures (STS), in that the signers sample their keys
independently (without DKG), similar to multi-signatures,
yet similar to threshold signature, storing a short O(1)-sized
aggregated public key suffices for verification. Unfortunately,
the notion is not suitable in the dynamic committee setting.
This is because STS guarantees that, if an aggregated
signature verifies correctly, then any ≥ t out of all N
parties signed correctly. This does not convey whether the
signers belong to a specific subset/committee. Therefore, any
corruption of f ≥ t parties leads to forgery – in absence
of no committee-specific verifiability, a subset of t corrupt
signers is able to produce valid signatures. This leads to a
natural question:

Can we construct an efficient threshold signature
(with a short verification key) that supports

dynamic committees without requiring a
per-committee setup?

We answer the above question in the affirmative by building
upon the works of [44, 30].

1.1. Our Contributions

Committee-based STS: We propose the new notion
of committee-based silent threshold signature (c-STS) by
extending the idea of STS to support dynamic committees. In
c-STS, each party in the universe of all N signers generates
their individual secret and public key independently and
then performs a one-time non-interactive pre-processing to
compute a short (O(1)-size) aggregated public verification
key VK that is posted on the blockchain. At every predefined
epoch e, a set of n signers are chosen (pseudo-)randomly
(from the N signers) as the signing committee Com. To sign
a message m in the epoch e, any t ⩽ n signers within Com
non-interactively produce an aggregated short signature σ that
verifies w.r.t. verification key VK, committee Com and epoch
e. The security of c-STS guarantees that an adversary (that
initially/statically corrupts f = O(N) of the signers)cannot

2. In the Ethereum Altair update, a set of 512 validator nodes is
randomly [10] chosen as the sync committee [4] for signing every 27
hours from a set of around million among the Ethereum validator nodes [9].

forge a signature on a message m in an epoch e. This is
ensured with overwhelming probability since

1) the adversary fails to corrupt t signers from any signing
committee (since the committee members would be
sampled randomly), and

2) the adversary cannot forge the signatures of honest
signers from the committee.

Dyna-hinTS: We propose Dyna-hinTS, the first
committee-based silent threshold signatures, based on BLS
signatures [22] and the Plonk proof system [43] in the
common reference string (crs) model. On a high level, we
extend the STS construction of [44, 30] to the committee
setting without incurring substantial verification cost. We
follow the notation and exposition of [44] (aka hinTS)3 –
hence the name Dyna-hinTS is chosen. The setting is similar
to hinTS, except that we use a random beacon to select a
committee of signers in each epoch and commit to it. During
the signing phase, Dyna-hinTS follows the hinTS protocol.
In addition, we reuse the KZG commitment to the signers,
used in the SNARK proof of the same, to generate proof that
the set of signers belongs to the committee. This additional
proof adds an insignificant overhead of 0.77ms (or 4%) on
the verifier side while augmenting hinTS to support dynamic
committees. Upgrading hinTS to the committee setting allows
Dyna-hinTS to reduce the reconstruction threshold by 8.5×
when 2/3rds of the signers are corrupt while guaranteeing the
same level of security. This yields a concrete improvement
of 4.9× in signature generation time - which includes partial
signature generation and aggregation.

Additionally, we propose a generic technique to reduce
the one-time setup cost drastically – this applies not only to
Dyna-hinTS, but to existing STS [44, 30] as well. The setup
cost of prior STS protocols [44, 30] scale quadratically with
the number of signers. We observe that the computation of the
terms, that contribute to the quadratic cost, does not involve
any secret information and can be delegated to untrusted
parties. Once these untrusted parties respond their output
can be efficiently verified. This results in a significant 30×
improvement of the setup computational cost. Our optimized
setup takes 66 seconds to generate the individual keys and
hinTS by each signer, verify the hinTS of all signers and
then compute the public verification key.

Empirical Comparison: We implement Dyna-hinTS
in Rust and compare it against hinTS and BLS multi-
signatures. We run all three protocols with N = 1024
signers. We consider multiple corruption thresholds where
the adversary can corrupt up to f = 79, N

3 ,
N
2 and 2N

3
signers. In each of these settings, a committee size of size
n = 128, 128, 95, 82 (following a hypergeometric distribu-
tion) is chosen respectively using a random beacon and
Dyna-hinTS only requires t = 80 signers to generate a
signature for all four setting. Whereas, BLS multi-signature
and hinTS always require t = f + 1 parties to sign a
message. This yields a concrete improvement of 0.09×,

3. We remark that, the constructions of Garg et al. [44] and Das et al. [30]
are essentially same with some minor differences. Except when specifics
are mentioned, by hinTS we mean either (or both) of these constructions.
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2.6×, 4× and 4.9× respectively for the different values of
f . Our signing protocol is the same as BLS signatures and
each signer takes roughly 1.5 ms (regardless of the signer’s
weight) to generate the partial signature. The aggregator takes
357ms to aggregate t = 80 partial signatures. Verifying the
signature takes 15.77 ms and costs 501K (or) gas on-chain.
In comparison, verifying a hinTS signature costs 15.06 ms
and consumes 441K gas.

Extension: Similar to hinTS and [30], Dyna-hinTS also
supports weighted signatures and works over a more general
access structure among the signers, now with support for
dynamic committees. It also enables dynamic thresholds -
i.e. the threshold t can vary for different messages, even if
they are signed by the same committee. It allows signers to
dynamically join/leave the signing set. In such a case the
public verification key can be updated without any commu-
nication/computation among the existing signers. Finally,
we show that Dyna-hinTS supports multiverse threshold
signatures (MTS) [16] with minimal changes and can be
used to remove the universe setup phase in MTS schemes.
We discuss these extensions in Appendix H.

1.2. Related Works

We provide a comprehensive comparison of Dyna-hinTS
with other threshold signing protocols in Tab. 1 and we
elaborate further next.

DKG-based Signatures: The most popular paradigm of
threshold signatures involves sharing the secret key among
the signers using a DKG protocol [46]. There has been enor-
mous progress in this paradigm due to constant improvements
to the DKG protocol in terms of communication [40, 17, 47],
computation [66, 40], round complexity [48, 52, 47, 20],
and many works have explored constructions assuming
asynchronous [12, 32, 54] networks. As discussed earlier,
DKGs are inherently problematic for committee setting, as
per committee DKG is just not scalable in reality.

Multi-signatures: In this approach [22, 59, 60], the
signers post their public keys on the blockchain or a public
bulletin board – this is a one time silent setup. To sign a
message, t participants need to provide their partial signatures
w.r.t. to an aggregated public key that is computed from
the signers’ public keys. This paradigm can be extended
to yield committee-based threshold signatures due to one
time silent setup. However, there are two limitations in this
extension. Firstly, the size of the signature grows linearly
with the number of signers4 and secondly, it requires storing
the signers’ public keys on-chain. The first limitation was
addressed by the compressed Σ protocol works of [15, 14]
that use bulletproofs [24] to prove that the aggregated
public key correctly generated and the signature size grows
logarithmic with the number of signers at the cost of
increasing the verification time to be linear in the number
of signers. However, they still incur the on-chain storage
overhead as BLS multi-signatures. The second limitation

4. This happens even when the partial signatures are aggregated, yet it
should be accompanied by the bit-vector denoting the set of signers.

is a major downside since it incurs a lot of gas to store
public keys on-chain. For example, the hinTS paper [44]
pointed out that it costs approximately $1200 (equivalently
60 million EVM) to store 1024 BLS public keys on-chain.
The work of compact certificates [58] constructed threshold
signatures with constant public key size at the cost of making
the verification time linear in the number of signers and
logarithmic-sized signature, increasing the signature size by
an order of magnitude.

Silent Threshold Signatures: The work of [44, 30]
addressed the storage cost limitation by introducing silent
threshold signatures where the public keys are stored on-
chain in a succinct fashion using a KZG commitment [53].
From high level, the construction generates an efficient
SNARK proof of correct computation of the aggregated
public key. As a result, the signature size and the verifier
runtime are independent of the number of signers. However,
the proof only attests to the fact that there are at least t
signers. Hence, the hinTS (and also [30]) can tolerate f < t
corruptions among the signing set. Whereas, Dyna-hinTS
tolerates a much larger fraction of signer corruptions while
keeping the reconstruction threshold low. This occurs since
we dynamically switch the active signing committee using a
randomness beacon. Concretely, consider N = 1024 signers
and assume that there are f = 2N

3 = 683 corrupt signers.
Then hinTS requires 684 signers to sign a message whereas
Dyna-hinTS requires only 80 signers to guarantee the same
level of security. This yields a 8.5× reduction in the number
of signing parties of Dyna-hinTS and 4.9× improvement in
signature aggregation time over hinTS. The improvements
would be even better when to [30] since [30] fares worse
compared to hinTS. We note that in Dyna-hinTS there is
probability, that the corruption set contains more than t
parties for a given committee. This probability is zero for
hinTS. However, due to random selection of committee,
Dyna-hinTS’s design ensures that the probability (which
follows a hypergeometric distribution) stays small enough –
our choice of parameters ensure this probability is fixed to
2−40. This is a standard statistical error which is permitted
by other works like [41].

We compare with Multiverse Threshold Signa-
tures (MTS), Threshold ECDSA and Schnorr Signatures,
and accountable threshold signatures in Appendix.A due
to lack of space in the main body. We also discuss
how Dyna-hinTS yields an improved MTS over the
state-of-the-art MTS scheme of [16].

2. Preliminaries

We denote the computational and statistical security
parameters by κ and µ. negl(κ) as the negligible function
in κ. We denote [N ] as the set {1, 2, . . . , N}. F is a finite
field of order p and G1, G2, GT are groups of order p with
a non-degenerate pairing e : G1 × G2 → GT . g1 , g2 are
uniformly sampled generators of G1 and G2 respectively.
gT = e(G1,G2). For a given a ∈ F, we denote ga1 and ga2
over groups G1 and G2 as [a]1 and [a]2 respectively. H is
a multiplicative subgroup of F. H = {ω, ω2, ..ω|H| = 1}

3



Protocols Supports Dynamic Aggregated Signature Verification Verification Setup
Committees? Size (Bytes) Time Key Size (bits) Type

Threshold ECDSA/Schnorr[37, 56, 26] × 64 2 G1 mul O(κ) DKG (Each epoch)
Schnorr Multisignatures [59, 60] ✓ O(κ) + min(N,n log2 N) nG1 add, 2P O(Nκ) Silent setup (One time)

BLS Multisignatures [22] ✓ 224 nG1 add, 2P O(Nκ) Silent setup (One time)
Compact Certificate [58] × 24576 816G1 add, 544G1 mul O(κ) Silent setup (One time)

Compressed Σ protocol [15, 14] ✓ O(κ log2 n) O(n) G1 mul, 2 P O(Nκ) Silent setup (One time)
Das et al. STS [30] × 536 15 G1 mul, 15 P O(κ) Silent setup (Each epoch)

hinTS [44] × 688 8 G1 mul, 10 P O(κ) Silent setup (Each epoch)
Dyna-hinTS (This work) ✓ 1040 13 G1 mul, 10 P O(κ) Silent setup (One time) + Beacon

TABLE 1: Comparison of threshold signing protocols, where N = total # of signers, n = committee size, κ = security
parameter, P = the # of pairings and G1 mul = scalar multiplication in additive group G1.

i.e ω is a generator. N is the total number of parties and
|H| = N + 1. T(x) =

∏|H|
i=1(x − ωi) is the vanishing

polynomial on H. Since H is a multiplicative subgroup
T(x) = x|H| − 1. Lagrange polynomials on H are defined
by Li(x) =

ωi

|H| .
x|H|−1
x−ωi and Li(0) = |H|−1 for i ∈ [N ].

Our construction of the threshold signature is based on
the BLS signature [22] defined as follows.

Definition 1 (BLS Signature). Let H : {0, 1}∗ → G2 be a
random oracle. The BLS signature consists of the following
algorithms.

• BLS.Gen: It samples a random sk←$ F and output a
public/secret key pair as (pk = [sk]1, sk).

• BLS.Sign(m): It signs as σ = H(m)sk.
• BLS.Verify(pk,m, σ): It verifies the validity of the

signature by e(pk,H(m)
?
= e([1]1, σ).

Definition 2 (Polynomial Commitment). We use the KZG
polynomial commitment [53]. In this scheme, the CRS
is ([1]1, [τ ]1, . . . , [τ

D]1, [τ ]2) for some random τ and a
maximum degree D. The commitment to a polynomial
f(x) = a0 + a1 · x + · · · + an · xn is σ = [f(τ)]1, which
can be computed as

∏n
i=0[τ

i]ai
1 . To open the polynomial at

x∗, one computes the quotient polynomial Q(x) = f(x)−x∗

x−x∗ .
The opening proof is openr = [Q(τ)]1. To verify the proof,
one checks e(σ, [1]2)

?
= e(openr, [τ − x∗]2).

If the prover wants to open ℓ commitment σ1, . . . , σℓ

at the same place x = x∗, we have the following
batching optimization. Let π1, . . . , πℓ be the corresponding
opening proof. The verifier can pick a random r and
check e(σr

1σ
r2

2 · · ·σrℓ

ℓ , [1]2)
?
= e(πr

1π
r2

2 · · ·πrℓ

ℓ , [τ − x∗]2).
In particular, the random challenge r can be picked non-
interactively by the Fiat-Shamir heuristic, and the prover
only needs to send one group element π = πr

1π
r2

2 · · ·πrℓ

ℓ as
the batched proof.

Our IPA protocol relies on the generalized sum-check
lemma. We refer the readers to Theorem 1 of [62] for proof.

Lemma 1 (Generalized Sumcheck [62]). Let A(x) =∑|H|
i=1 ai · Li(x), B(x) =

∑|H|
i=1 bi · Li(x). It holds that

A(x) ·B(x) =

∑
i ai · bi
|H| +X(x) · x+ Z(x) · T(x),

where both X⃗ and Z⃗ are polynomials with degree ⩽ |H|−2

defined as

X(x) =
∑
i

ai · bi ·
Li(x)− Li(0)

x
,

Z(x) =
∑
i

ai · bi ·
L2
i (x)− Li(x)

T(x)
+

∑
i ̸=j

ai · bj ·
Li(x) · Lj(x)

T(x)

Here T(x) =
∏|H|

i=1(x−ωi) is the vanishing polynomial on
H.

Definition 3 (Randomness Beacon). A randomness beacon
RB [31] is defined using a tuple of four algorithms:

• Gen(1κ) → (vk, sk) : Takes as input the security
parameter κ and outputs a key pair (vk, sk), where
vk is the public verification key and sk is the secret key.

• Eval(sk, x)→ (y, πRB) : Takes as input the secret key
sk and input x and outputs a random string y ∈ {0, 1}κ
and a proof πRB attesting to correct computation of y.

• Ver(vk, x, y, πRB) → 1/0: Takes as input the verifica-
tion key vk, input x, output y, and proof πRB, and
outputs a bit denoting whether the proof verifies or not.

A tuple of algorithms denoted as RB = (Gen,Eval,Ver) is
a randomness beacon if it fulfills:

• Correctness. For any κ ∈ N, any (vk, sk)← Gen(1κ),
and any input x, if (y, πRB) ← Eval(sk, x) then
Ver(vk, x, y, πRB)→ 1.

• Unpredicatability. For any κ ∈ N, (vk, sk) ←
Gen(1κ), and any set of n valid input-output pairs
{xi, yi, π

RB
i }i∈[n], a PPT adversary A cannot predict

the output on an unqueried input x′. For ∀n ∈ N, the
following holds:

Pr
[
y′ == y′′

∣∣(x′, y′, π′)← A(vk, {xi, yi, π
RB
i }i∈[n])

∧(y′′, π′′)← Eval(sk, x′)
]
≤ negl(κ),

where (x′, y′′) has not been computed by RB.

In Appendix. B we present additional preliminaries that
we need for our security proof.

3. Technical Overview

We initiate our technical discussion by recalling the BLS
multi-signature protocol and the protocol of hinTS [44] as
we build on top of them. And then we present our results.

BLS Multi-signature: In a BLS [22] multi-signature pro-
tocol, the signers perform a silent setup to sample BLS [22]
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public-secret key pairs (pki, ski), where pki = gski , and
some additional information that we will gradually discuss.
Suppose there are N signers. Now if a set S of signers want
to sign a message m, then they generate their partial signa-
tures as σi = H(m)ski . These signatures are aggregated into
σ =

∏
i∈S σi and can be verified against aPKS =

∏
i∈S pki.

However, constructing aPKS requires storing all N public
keys on the blockchain, which is expensive.

The hinTS Protocol: To address this problem, the work
of hinTS [44] proposed a way to succinctly store all the
public keys in a short verification key VK. This VK will be
used to verify the correct computation of aPKS using a suc-
cinct non-interactive argument (SNARK). In more detail, the
aggregator proves the well-formedness of aPKS as follows.
Let
−→
SK(x) be the polynomial that encodes all the secret

keys (sk1, . . . , skn). VK is a polynomial commitment [53]
to the secret key vector

−→
SK(x). The signers generate it in

a distributed fashion by providing hinTS to an aggregator.
The aggregator runs a public algorithm on the public keys
and hinTS to compute VK.

When the set S of signers sign a message m, the signature
would verify w.r.t. aPKS. So, the aggregator computes the
aggregated public key aPKS as:

aPKS =
∏
i∈S

pki =
∏
i∈S

gski = gΣi∈Sski = gaSKS .

The aggregator needs to prove that aPKS is correctly
computed from the polynomial commitment to

−→
SK(x). To

perform this, the aggregator encodes the set of signers as−→
B S(x) = (b1, b2, . . . , bN ) where bi = 1 if i ∈ S, else bi = 0.
The aggregator also computes a polynomial commitment to−→
B S(x). Then the aggregator proves two statements: (1) the
Hamming weight of (b1, . . . , bn) is t; and (2) the inner
product between (sk1, . . . , skn) and (b1, . . . , bn) is aSKS.
The first statement is computed using a Plonk-based SNARK
for threshold t and polynomial commitment to

−→
B S(x). [44]

used sum-check arguments of [62] (cf. Lemma 1) for proving
the second statement.
−→
SK(x)

−→
B S(x)− aSKS = ZS(x) · T(x) + XS(x) · x,

where T(x) is the vanishing polynomial over the multiplica-
tive subgroup H (Ref. to Sec. 2). The aggregator computes
polynomial commitments to X(x) and Z(x) from the hinTS.
Then, the verifier verifies the above argument given the
polynomial commitments to

−→
SK(x),

−→
B S(x), aPKS, X(x)

and Z(x). The verification is performed in the exponent
via pairings. The final succinct signature consists of the
aggregated public key aPKS, aggregated signature σ, the
commitment to

−→
B S(x), and two proofs πWT

S (that Hamming
weight of

−→
B S(x) is t) and πIPA (that proves the correct

computation of aPKS).
Committee-Setting: In hinTS [44] (and also [30]), any

set of t signers can generate partial signatures, which are then
aggregated into the final signature. The set S of signers is
encoded in the polynomial commitment to

−→
B S(x). However,

if we restrict the signers to a specific committee Com

instead of allowing the entire set of participants, it becomes
impossible to determine whether the aggregated signature
includes signatures from signers outside Com, due to the
succinctness of the polynomial commitment to

−→
B S(x).

Dyna-hinTS: Let us denote the size of the committee as
n. The naive solution is to send the committee vector as part
of the signature and then prove that

−→
B S(x) is a subset of this.

But that blows up the signature size by min(n log2 N,N)
bits, i.e. the number of bits required to encode the committee.
So instead, the aggregator encodes the committee of signers
as
−→
B Com(x) = (b1, b2, . . . , bN ) where bi = 1 if i ∈ Com,

else bi = 0 and provides a succinct polynomial commitment
to
−→
B Com(x). Now, the aggregator needs to prove that (1)−→

B S(x) is a subset of
−→
B Com(x); and (2)

−→
B Com(x) encodes

the committee Com.
To prove the first statement, the aggregator encodes the

set S of signers in Com that is not in S as
−→
B S(x) =

−→
B Com(x) −

−→
B S(x) = (b1, b2, . . . , bN ) where bi = 1 if i ∈

Com \ S, else bi = 0. To perform the proof, the aggregator
computes the polynomial commitment to

−→
B S(x) from the

polynomial commitments to
−→
B Com(x) and

−→
B S(x) as[−→

B S(x)
]
=

[−→
B Com (x)

][−→
B S(x)

] .

Then the aggregator proves that the Hamming weight of[−→
B S(x)

]
is n − t using a SNARK proof. The aggregator

includes
[−→

B Com(x)
]

and the SNARK proof as part of the
signature.

Next, the aggregator needs to prove that
−→
B Com(x) en-

codes the committee Com. Before going into the proof
let’s consider how the committee is sampled. We assume
that all the parties have access to a randomness beacon
that periodically outputs a random value y ∈ {0, 1}κ along
with a proof of correct computation πRB. Given y, we apply
a random oracle to expand it to n log2 N bits and then
select n committee members (each denoted by log2 N bits)
from the set of N signers. This extended output represents
the committee

−→
B Com(x). The aggregator commits to as[−→

B Com(x)
]

using a polynomial commitment. The aggregator
attaches (y, πRB,

[−→
B Com(x)

]
) as part of the signature. To

verify the correct computation of
[−→

B Com(x)
]

the verifier
recomputes the above computation. This requires verification
of one beacon proof, one hash computation and n group
multiplications while keeping the signature size independent
of the committee size n. This step can be reused by multiple
signatures that are supposed to be generated by the same
committee. That would effectively reduce the work that is
proportional to the committee size amortized over multiple
signatures.

To summarize, our work extends the work of hinTS [44]
and [30] to work in the setting where signers are restricted
to specific committees. We do this by adding two steps on
top of the signature of [44] while keeping the signature size
independent of the committee size.
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4. Dyna-hinTS Construction

In this section, we present the Dyna-hinTS protocol that
provides the first silent threshold signatures in the committee
setting. We provide the definition of c-STS in Appendix C.
We assume that there are N signer parties. For simplicity,
the weight of each signer wi is assumed to be 1 but it
can be extended for a general weight wi ∈ N. At each
predefined epoch e a designated committee Come is chosen
using a randomness beacon output y, where the beacon is
run on input e. Each committee contains n signers. To sign
a message m, t signers from the committee provide their
partial signatures σi which are publicly aggregated into the
final signature σ. We present our protocol in Figs. 1 and 2.
It proceeds in three phases:

Preprocessing Phase: Each party Pi samples ski ←$ F
and computes pki =

[
ski

]
1
. We refer to Sec. 2 for the

notations. In addition, each party generates the hinTS
as follows. Pi computes the Lagrange basis polynomials
L1(x), L2(x), ..Ln+1(x) where Li(x) =

ωi

|H| .
x|H|−1
x−ωi over the

multiplicative subgroup H = {ω, ω2, .., ωn, ωn+1} ⊂ F and
uses this to compute the following as hinTSi:[
ski ·Li(τ)

]
1
,
[
ski · L

2
i (τ)−Li(τ)

T(τ)

]
1
,
{[

ski · Li(τ)Lj(τ)
T(τ)

]
1

}
i ̸=j

,[
ski · Li(τ)−Li(0)

τ

]
1
,
[
ski · (Li(τ)− Li(0))

]
1
,

where T(x) is the vanishing polynomial over H. Party Pi

sends (pki, hinTSi) to the aggregator.
The aggregator checks the validity of the hinTSi of

each party Pi. It samples a γ ← F, performs a random
linear combination (in the exponent) on each part using
γ, γ2, . . . , γN+4 and then using a single pairing check to
verify the entire hinTSi. The detailed protocol can be found
in Fig. 3. We also use Pippinger’s method [18] for optimizing
the computation of N + 3 multi-scalar exponentiation used
in the random linear combination yielding concrete boost
in the preprocessing phase. The aggregator keeps track of
the parties whose hinTS did not verify in the set E and sets
pki = 1 (as a result of ski = 0) for all the Pi ∈ E. The
aggregator also sets the weight of all those corrupt parties
as wi = 0, removing them from being included in the set
of valid signers. Then the aggregator computes the succinct
verification key VK =

([−→
SK(τ)

]
1
,
[−→
W(τ)

]
1
,
[
T(τ)

]
2

)
as the

polynomial commitments to the secret keys, their weights,
and evaluation of the vanishing polynomial on roots of unity.
This computation is performed by multiplying individual
parts of the public hinTSi sent by each party. The aggregator
posts VK on the public bulletin board.

Committee-Selection-Verification Phase: At each epoch
e, the public beacon outputs a random value y and a
proof of correct computation πRB. The committee Come

for this epoch is chosen by deriving randomness from y. The
aggregator computes the initial committee. It then removes
the list of corrupted parties (whose hinTS did not verify)
from the committee. It then denotes the list of parties in the
committee whose hinTS verified as

−→
B Come

. It then generates
a polynomial commitment to Come as

[−→
B Come

]
2

using the

crs. The list of corrupt parties is denoted as ECome
. The

aggregator posts (
[−→

B Come

]
2
, πCome

) on the bulletin board,
where πCome

= (y, πRB, ECome
). Anyone can publicly verify

the committee by redoing the aggregator computation.
Threshold Signing, Aggregation and Verification: To

sign a message m, each party of Come generates the partial
signature σi = (H(m, e))ski using their secret key ski. Each
party also generates a proof of correct signing by generating
a proof πeq-DL

i that (
[
1
]
1
,H(m, e)) and (pki, σi) share the

same exponent. We use the NIZK proof from [50] for this
purpose to replace the expensive pairing-based check for
verifying each partial signature. Note that we include the
epoch e inside the hash (of the BLS signature) to bind the
signature to epoch e. The same partial signature cannot be
reused for a different epoch e′. This will be crucial for
our security (discussed later in the proof) in the committee
setting.

Upon obtaining the partial signatures and the proofs
of correct signing, the aggregator verifies each proof and
discards the partial signatures whose proofs did not verify.
Next, the aggregator considers the valid partial signatures
and denotes the set of valid signers as S. Then, it computes
aggregated signature σ, aggregated public key aPKS and
the commitment

[−→
B S(τ)

]
2

to the signers. In addition, the
aggregator computes the proof of correct computation of
aPKS as πIPA(details discussed in Sec. 3). It also computes
the proofs - (πWT

S , πWT
S

) that S is a subset of Come. The
overview of these two proofs is discussed in Sec. 3. The
details of the proofs can be found in Fig. 2, and Fig. 6, 7
respectively. The aggregator sets the final signature as σ,
aPKS,

[−→
B S(τ)

]
2
, πIPA, πWT

S and πWT
S

, and sends it to the
verifier.

The verifier verifies the proofs of correct computation of
aPKS and the proofs that S is a subset of Come using VK.
Once these two proofs verify, the verifier verifies the BLS
signature as e(aPKS,H(m, e))

?
= e(

[
1
]
1
, σ). This completes

the full description of our protocol.
We prove the security of our protocol by proving the

following theorem in Appendix E.

Theorem 1. Assuming RB is a randomness beacon, H
is a random oracle, NIZK is a non-interactive ZK proof of
equal exponent [50], there are N signers out of which a PPT
adversaryA initially/statically corrupts f signers maliciously.
We assume that n parties are in a committee and t partial
signatures are required to sign a message, then the protocol
in Figs. 1 and 2 satisfies (N, f, n, t)-correctness (Def. 7)
and (N, f, n, t)-unforgeability (Def. 8), except with negl(κ)
probability and statistical error

(
f
i

)
·
(
N−f
n−i

)
/
(
N
n

)
.

We set the total number of signers as N = 1024,
statistical error as 2−40 (similar to [41]) and the recon-
struction threshold as t = 80 so that a message needs
partial signatures from t parties in a committee. Based on
that we consider four different corruption scenarios where
f = 79, N

3 ,
N
2 ,

2N
3 and observe that the committee size varies

as n = 128, 128, 95 and 82 respectively by following the
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Notations: There are N parties in the universe. Each committee has n parties where at least t parties from the
committee sign each message. RB is a randomness beacon that periodically outputs (y, πRB). Li(x) is the Lagrange
basis polynomial over the multiplicative subgroup H = {ω, ω2, .., ωN , ωN+1} ⊂ F, and T(τ) is the vanishing polynomial
over H.
Public Parameters: crs = (H,

[
τ
]
1
,
[
τ2
]
1
, ..,

[
τN

]
1
,
[
τ
]
2
,
[
τ2
]
2
, ..,

[
τN

]
2
), where τ ←$ F is secret and H : {0, 1}∗ →

G2 is a hash function modeled as a random oracle. NIZK = (Prove,Ver) over statement (
[
a
]
1
,
[
b
]
1
,
[
ac
]
2
,
[
bc
]
2
) is a

NIZK proof system for proof of equal (secret) exponent c [50].

KeyGen(1κ): Each party Pi (i ∈ [N ]) samples ski ←$ F and computes pki =
[
ski

]
1
.

HintsGen(crs, ski, N ): Each party Pi (for i ∈ [N ]) computes hinTSi which consists of
[
ski · Li(τ)

]
1
,

[
ski ·

L2
i (τ)−Li(τ)

T(τ)

]
1
,

{[
ski · Li(τ)Lj(τ)

T(τ)

]
1

}
i ̸=j

,
[
ski · Li(τ)−Li(0)

τ

]
1
,

[
ski ·(Li(τ)−Li(0))

]
1
. Party Pi sends (pki, hinTSi)

to the aggregator Agg.
Preprocess(crs, {pki, hinTSi}i∈[N ]): The aggregator Agg computes the verification key VK as follows:

1) Computes the set of parties whose hints did not verify as E ← Hints-Verify(N, {pki, hinTSi}i∈[N ]}) (Fig. 3).
2) Agg sets pki = 1, ski = 0 and weight wi = 0 for i ∈ E, and wi = 1 for i /∈ E. Set

−→
W = {wi}i∈[N ].

3) For each i ∈ [N ] \ E, the aggregator sets
[
Zi

]
1
,
[
Xi

]
1

and
[
Xi · τ

]
1

as follows:[
Zi

]
1
=

[
ski · L

2
i (τ)−Li(τ)

T(τ)

]
1
·

∏
j∈[N ]\(i∪E)

(
skj ·

[Li(τ)Lj(τ)
T(τ)

]
1

)
,

[
Xi

]
1
=

[
ski · Li(τ)−Li(0)

τ

]
1
,
[
Xi · τ

]
1
=

[
ski · (Li(τ)− Li(0))

]
1

4) The aggregator sets aggregation key AK = (E,
−→
W, {

[
Zi

]
1
,
[
Xi

]
1
,
[
Xi · τ

]
1
}i∈[N ]\E).

5) Agg computes VK =
([−→

SK(τ)
]
1
,
[−→
W(τ)

]
1
,
[
T(τ)

]
2

)
where

[−→
SK(τ)

]
1
=

∑
i∈[N ]

[
ski.Li(τ)

]
1
,

[−→
W(τ)

]
1
=∑

i∈[N ]

[
wi.Li(τ)

]
1
,

[
T(τ)

]
2
=

∑
i∈[N+1]

[
τ − ωi

]
2
. Agg posts VK =

([−→
SK(τ)

]
1
,
[−→
W(τ)

]
1
,
[
T(τ)

]
2

)
on the

public bulletin board.

Committee-Selection: At epoch e ∈ N, the beacon RB outputs (y, πRB). Parse y ∈ {0, 1}n log2 N as the committee
Come consisting of n committee members.

5) Agg considers the list of parties in Come whose hints failed to verify as ECome
= Come ∩E. Agg removes those

parties from the committee and updates Come = Come \ ECome
.

6) Compute the commitment
[−→

B Come
(τ)

]
2

to the vector of parties for the committee as
[−→

B Come
(τ)

]
2

=∏
i∈Come

[
Li(τ)

]
2
.

7) The aggregator sets the proof as πCome
= (y, πRB, ECome

) and commitment to the committee as
[−→

B Come
(τ)

]
2
.

Post
[−→

B Come
(τ)

]
2

and πCome
on the bulletin board.

Committee-Verification(crs, e,
[−→

B Come
(τ)

]
2
, πCome

) : Verify the commitment to the committee
[−→

B Come
(τ)

]
2
:

8) Parse the proof πCome
= (y, πRB, ECome

).
9) Check RB.Ver(pkRB, e, y, πRB) == 1.

10) Parse y ∈ {0, 1}n log2(N) as the committee Come and verify that it consists of n committee members. Update
Come = Come \ ECome

.
11) Verify that

[−→
B Come

(τ)
]
2
=

∏
i∈Come

[
Li(τ)

]
2
.

Figure 1: One-time Non-interactive Preprocessing Phase and Committee-Selection at epoch e
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Partial-Sign(crs, ski,m, e): To sign message m, party Pi (∈ Come) computes partial signature σi and a proof of
partial signing πeq-DL

i as:

σi = (H(m, e))ski , πeq-DL
i ← NIZK.Prove((

[
1
]
1
, pki,H(m, e), σi), ski).

The party sends (σi, π
eq-DL
i ) to the aggregator.

SignAgg(crs,AK,m, {σi, π
eq-DL
i }i∈S, e):

12) PartialVerify: Agg performs by verifying the partial signatures sent by the signers in set S. For i ∈ S : If
NIZK.Ver((

[
1
]
1
, pki,H(m), σi), ski, π

eq-DL
i ) = 0 then remove Pi from signing set as S = S \ i.

13) Agg computes the aggregated signature σ, aggregated public key aPKS and the commitment
[−→

B S(τ)
]
2

to the
signers as

σ =

(∏
i∈S

σi

)−|H|

, aPKS =

(∏
i∈S

pki

)−|H|

,
[−→

B S(τ)
]
2
=

[∑
i∈S

Li(τ)
]
2
.

14) Agg computes the proof of correct computation of aPKS and
[−→

B S(τ)
]
2

by proving the following equation,
−→
SK(x)

−→
B S(x) − aSKS = ZS(x) · T(x) + XS(x) · x. The aggregator computes the commitment to the quotient

polynomials as
[
ZS

]
1

and
[
XS

]
1
. Furthermore, to prove that XS(x) has a degree of ≤ N − 1, the aggregator

computes
[
XS · τ

]
1
. [

ZS
]
1
=

∏
i∈S

[
Zi

]
1
,

[
XS

]
1
=

∏
i∈S

[
Xi

]
1
,

[
XS · τ

]
1
=

∏
i∈S

[
Xi · τ

]
1
.

The aggregator sets the proof as πIPA = (
[
ZS

]
1
,
[
XS

]
1
,
[
XS · τ

]
1
).

15) Aggregator proves that S is a subset of Come by proving that
[−→

B S(τ)
]
2

has weight t and
[−→

B S(τ)
]
2
=

[−→
B Come

]
2[−→

B S(τ)
]
2

has weight t = n− (t+ |ECome
|), where

[−→
B Come

]
2

has weight n− |ECome
|.

• It sets
−→
B S = {bi}i∈[N ], where bi = 1 for i ∈ S, otherwise bi = 0. It sets

−→
B S = {b′i}i∈[N ], where b′i = 1 for

i ∈ Come \ S, otherwise b′i = 0. It sets aux = (
[−→

B Come

]
2
, |ECome

|,aPKS,
[−→

B S(τ)
]
2
, πIPA).

• It computes the proofs (using Fig. 6, 7) as πWT
S = Prove(

[−→
B S(τ)

]
2
,
[−→
W(τ)

]
1
, t, N , aux;

−→
B S,
−→
W) and πWT

S
=

Prove(
[−→

B S(τ)
]
2
,
[−→
W(τ)

]
1
, t, N , aux;

−→
B S,
−→
W) respectively.

16) Outputs (σ,aPKS,
[−→

B S(τ)
]
2
, πIPA, πWT

S , πWT
S

).

Verify(m, (
[−→

B Come

]
2
, |ECome

|, σ,aPKS,
[−→

B S(τ)
]
2
, πIPA, πWT

S , πWT
S

), t,VK, e) :

17) Parse VK =
([−→

SK(τ)
]
1
,
[−→
W(τ)

]
1
,
[
T(τ)

]
2

)
.

18) Verify aggregated public key aPKS and
[−→

B S(τ)
]
2

by checking e(
[−→
SK(τ)

]
1
, [
[−→

B S(τ)
]
2
) · e(aPKS, [1]2)

−1 ?
=

e(
[
ZS

]
1
,
[
T(τ)

]
2
) · e(

[
XS

]
1
, [τ ]2).

Also, verify that XS(x) has a degree of ≤ N − 1 by checking e(
[
XS

]
1
, [τ ]2) = e(

[
XS · τ

]
1
, [1]2).

19) Verify that the signer set S is a part of Come. Set aux = (
[−→

B Come

]
2
, |ECome

|,aPKS,
[−→

B S(τ)
]
2
, πIPA). Check

Verify(
[−→

B S(τ)
]
2
,
[−→
W(τ)

]
1
, t, N , aux, πWT

S )=1 and Verify(

[−→
B Come

]
2[−→

B S(τ)
]
2

,
[−→
W(τ)

]
1
, t, N , aux, πWT

S
)=1.

20) Verify BLS signature as e(aPKS,H(m, e))
?
= e(

[
1
]
1
, σ).

If any of the above checks fail then return 0, else return 1.

Figure 2: Committee-Based Threshold Signing Protocol at epoch e
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Public Parameters: crs = (H,
[
τ
]
1
,
[
τ2

]
1
, ..,

[
τN

]
1
,
[
τ
]
2
,[

τ2
]
2
, ..,

[
τN

]
2
), where τ ←$ F is secret and H : {0, 1}∗ → G2

is a hash function modeled as a random oracle.
Hints-Verify(N, {pki, hinTSi}i∈[N ]) : Repeat the following
steps for each party Pi for i ∈ [N ]:

• Parse hinTSi =
[
ski ·Li(τ)

]
1
,
[
ski · L

2
i (τ)−Li(τ)

T(τ)

]
1
,
{[

ski ·
Li(τ)Lj(τ)

T(τ)

]
1

}
i ̸=j

,
[
ski · Li(τ)−Li(0)

τ

]
1
,
[
ski · (Li(τ) −

Li(0))
]
1
.

• Compute
[
Li(τ)

]
2
,

[L2
i (τ)−Li(τ)

T(τ)

]
2
,

[Li(τ)−Li(0)
τ

]
2
,[

(Li(τ)− Li(0))
]
2

and
{[Li(τ)Lj(τ)

T(τ)

]
2

}
j∈[N ]\i using the

crs.
• Sample γ ← Fp and perform random linear combination to

verify hinTSi as follows:

e
([
ski·Li(τ)

]γ
1
·
[
ski·L

2
i (τ)−Li(τ)

T(τ)

]γ2

1
·
[
ski·Li(τ)−Li(0)

τ

]γ3

1
·[

ski·(Li(τ)−Li(0))
]γ4

1
·

∏
j∈[N ]\i

[
ski·Li(τ)Lj(τ)

T(τ)

]γj+4

1
,
[
1
]
2

)
?
= e

(
pki,

[
Li(τ)

]γ1

2
·
[L2

i (τ)−Li(τ)

T(τ)

]γ2

2
·
[Li(τ)−Li(0)

τ

]γ3

2
·[

(Li(τ)− Li(0))
]γ4

2
·

∏
j∈[N ]\i

[Li(τ)Lj(τ)

T(τ)

]γj+4

2

)
If the above equation does not verify for party Pi then set
E = E ∪ i.

Return E as a set of parties whose hints did not verify.

Figure 3: Hints Verification Algorithm

hypergeometric distribution according to Thm. 1. We discuss
more about this in the next section.

5. Performance Analysis

We implement Dyna-hinTS in Rust and compare it
with the Rust implementations of BLS multisignature and
hinTS[44]. We open source our code at https://github.com/
dynaHintsRepo/dynaHints.git.

Experimental Setup: All three protocols have three
algorithms - the signer algorithm, the aggregator algorithm,
and the verifier algorithm. We implement all three protocols
using a single-threaded implementation and using the same
configuration. More specifically, the signer and aggregator
algorithms are run on a Google Cloud Platform (GCP)
instance with an Intel Xeon 2.8GHz CPU with 32 cores and
32 GB RAM. We run the verifier’s algorithm on a Macbook
Air with Apple M2 chip, 8 GB RAM, and 8 cores. For a
fair comparison of all schemes, we only consider the single-
threaded implementation of all three protocols, and there
are obvious opportunities for massive parallelism. We use
the arkworks [13] library for Elliptic Curve operations and
hash-to-curve operations. We use the Crate vrf library [11]
to implement the VRF protocol for committee generation
and use BLS-12381 curve to implement the BLS signatures.
Each element in G1, G2 and F is of size 48 bytes, 96 bytes,

and 32 bytes respectively. The gas cost estimations are based
on the pre-compiled gas costs from EIP-2537 [67].

Parameter Selection: For our benchmarking purposes,
we set the total number of signers as N = 1024 and the
reconstruction threshold as t = 80, so that a message needs
partial signatures from t parties in a committee. Based on
these two fixed values, we consider three different corruption
scenarios by varying f and see how the committee size n
varies s.t. Thm. 1 yields 2−40 statistical error:

• f = N
3 − 1 parties are statically corrupt. In this case,

we observe that the committee size can be 128.
• f = N

2 − 1 parties are statically corrupt. In this case,
we observe that the committee size can be at most 95.

• f = 2N
3 + 1 parties are statically corrupt. In this case,

the committee size can be at most 82.
Higher committee size allows for better liveness since n− t
signers can remain inactive during the signing process. How-
ever, for BLS multisginatures and hinTS the reconstruction
threshold is always f +1. So, we extensively benchmark for
different corruption scenarios and compare in Table. 2. In
Appendix. F and Figs. 8, 9 and 10 we further show that t in
Dyna-hinTS gradually increases with increasing f whereas
it grows linearly for BLS multisignatures and hinTS. This
yields a massive aggregation time boost, as shown in Table. 2.

5.1. Signature Verification

We compare the signature size, verification time, and
gas cost of the three protocols. Table 2 reports the veri-
fication complexity of the schemes in terms of signature
size, algebraic operations, CPU time, and gas cost. BLS
multisignature works in the committee setting. It performs
this by encoding the identity of the signers using a bit vector
and so the signature size scales linearly with the number of
signers since the signature size is 1 G2 group element and
N bits. As a result, the aggregated signature becomes linear
in the total number of signers. Similarly, the verification
time and gas cost scales linearly with the number (i.e. t)
of signers that signed. Concretely, the signatures obtained
from BLS multisignature is 224 bytes (128 bytes to represent
the signers and one G2 element of 96 bytes) and it is very
efficient for smaller values of N and t, but this grows linearly
with N and t. The major downside of multi-signature is the
gas cost of storing the public verification key. It takes 60
million gas (as per [44]) to store the BLS multi-signatures
public keys of 1024 signers. This is equivalent to $1200
(computed using [67], as of October 2024). This cost grows
with the number of signers.

On the other hand, hinTS and Dyna-hinTS both have
constant-sized verification keys, constant-sized signatures,
and constant verification time, independent of N and t.
The storage gas cost is 390K, equivalent to $7.8, and it
remains fixed independent of the number of signers. In terms
of signature verification, hinTS requires additional pairing
checks to verify the SNARK for the correct computation
of the aggregated public key – the signature consists of
9 G1 group elements and 5 field elements for the Plonk

9
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Protocols Corruption Reconstruction Storage Signature Size Partial Signature Verification Time Verification
Threshold f Threshold t Gas Cost Aggregation Time Gas Cost

BLS Multisig
f = 79

80 60 M (or $1200) 224 B 0.75 ms 3.15 ms 209K
hinTS [44] 80 390K (or $7.8) 688 B 338 ms 15.06 ms 441K

Dyna-hinTS 80 390K (or $7.8) 1040 B 357 ms 15.77 ms 501K
BLS Multisig

f ⩽ N
3

= 340
341 60 M (or $1200) 224 B 3.09 ms 3.15 ms 209K

hinTS [44] 341 390K (or $7.8) 688 B 958.48 ms 15.06 ms 441K
Dyna-hinTS 80 390K (or $7.8) 1040 B 357 ms 15.77 ms 501K
BLS Multisig

f ⩽ N
2

= 510
511 60 M (or $1200) 224 B 4.68 ms 3.15 ms 209K

hinTS [44] 511 390K (or $7.8) 688 B 1460 ms 15.06 ms 441K
Dyna-hinTS 80 390K (or $7.8) 1040 B 357 ms 15.77 ms 501K
BLS Multisig

f ⩽ 2N
3

= 682
683 60 M (or $1200) 224 B 6.59ms 3.15 ms 209K

hinTS [44] 683 390K (or $7.8) 688 B 1776 ms 15.06 ms 441K
Dyna-hinTS 80 390K (or $7.8) 1040 B 357 ms 15.77 ms 501K

TABLE 2: Comparison of BLS multisignature, hinTS and Dyna-hinTS, where the total number of signers is set to N = 1024
and Dyna-hinTS’s security has an additional statistical error of 2−40.

proof, and 1 G2 group element as the signature. Concretely,
it turns out to be 688 bytes. To verify this signature it
takes 10 pairings and 8 G1 group multiplication to verify a
signature. Concretely, it takes 15ms on an Apple M2 chip
Macbook Air, demonstrating reasonably fast verification, and
consumes 441K gas. But, hinTS does not support dynamic
committees. As a result, the signature aggregation time
of hinTS drastically increases with the number of signers.
Meanwhile, Dyna-hinTS supports committees and results in
a lower reconstruction threshold t. When f = 682 signers are
corrupt, both BLS multi signature and hinTS aggregate 683
partial signatures whereas Dyna-hinTS only aggregates 80
partial signatures yielding a 4.9× improvement in signature
generation time.

We obtain this improvement by marginally increasing
the signature verification time by 0.7ms (or 4%) over hinTS
and also increasing the signature size. This is because we
require an additional KZG commitment to verify that the
set of signers belongs to the committee. This increases our
signature size, w.r.t. hinTS, by 4 G1 elements and 5 field
elements. In terms of computation, we merge this check
with the Hamming weight check for the set of t signers
limiting the overhead within < 1 ms (or 4%) over hinTS
verification. In terms of gas cost for verification, both hinTS
and Dyna-hinTS verifiers need to perform 2 pairings to verify
the BLS signature and 6 pairings to verify the SNARK
proofs from Fig. 2. Additionally, hinTS [44] uses techniques
from [19] to batch verify multiple opening proofs of KZG
commitments using 2 more pairings and 8 G1 multiplication.
We need 5 additional group multiplications to combine the
KZG commitment openings (used in the committee proof)
into a single pairing check.

5.2. Committee Selection/Verification Cost

Both BLS multisignatues and Dyna-hinTS work in the
committee setting. At each epoch e, the committee is chosen
using the output of a beacon protocol. We implement the
beacon using a verifiable random function (VRF) run on input
e. We used [11] crate to implement the committee generation
using the VRF output. The verifier of the signature verifies the
committee using the VRF proof. This takes roughly 1.45 ms.

In addition, Dyna-hinTS requires a KZG commitment to the
identity of the committee members. To compute/verify this
commitment involves n group multiplications and requires
0.47 ms. We report these numbers in Tab. 3. The total time
to verify the committee is around 1.98 ms in Dyna-hinTS.
This cost gets amortized over multiple signatures that are
generated in the same epoch by the same committee (but
possibly a different set of signers). Furthermore, the cost of
VRF proof verification can be reduced to < 1ms if we use
optimized VRF protocols, like the one by Chainlink [39].

Total Committee VRF proof Polynomial Com
# of Signers size verification time Computation time

256 64 1.44 ms 0.26 ms
512 64 1.47 ms 0.26 ms
512 128 1.45 ms 0.28 ms

1024 82 1.45 ms 0.38 ms
1024 95 1.45 ms 0.40 ms
1024 128 1.45 ms 0.47 ms

TABLE 3: Verification of Committee time for Dyna-hinTS

5.3. Setup Cost

hinTS and Dyna-hinTS both use a one-time silent setup,
where each signer together with their public keys broadcast
a linear-sized auxiliary material (informally called the hints),
whose computation takes O(N) group multiplication and
O(N logN) field operations. Then the Aggregator verifies
all such hints sent by the signers in the universe. This step
consists of two subprotocols. Firstly, the aggregator needs to
compute KZG commitments to O(N2) Lagrange coefficient
polynomials. Then using these polynomial commitments, the
aggregator verifies the hints of each signer by performing
random linear combinations using Pippenger’s algorithm [18]
and then performs a pairing check. Generating KZG commit-
ments to O(N2) Lagrange coefficient polynomials is very
expensive as it scales quadratically with N . In Appendix. G,
we show it can be delegated to untrusted parties and the
aggregator can simply perform random linear combinations
to verify these commitments using N pairing checks. After
performing the above optimizations, we obtain the total setup
cost for N = 1024 signers as 66 seconds. We provide the
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detailed cost analysis of our optimized setup protocol in
Fig. 11.
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6. Conclusion

The concept of silent threshold signature (STS) merged
the benefits of multi-signatures (no DKG) and threshold
signatures (low storage and efficient verification). However,
in effect, it missed an important feature, namely the support
for dynamic committees, which is gaining more popularity
for scalability and security. In this work, we add support for
the dynamic committee to the silent signature paradigm, and
that too, incurring very little overhead on the existing STS.
We provide rigorous empirical evidence (and comparison
with prior works) to establish practicality.
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Appendix A.
Additional Related Works

Multiverse Threshold Signatures: The work of [16] in-
troduced the notion of multiverse threshold signatures (MTS)
where there is an initial set of signers. A verifier defines

a universe as a subset of signing parties and a security
threshold for the universe. The multiverse encompasses
all such universes, which may overlap and have varying
security thresholds. A signing party can sign a message
regardless of the universes it belongs to, while an aggregator
can collect a threshold number of partial signatures from a
universe and generate a compact aggregate signature. This
signature remains independent of the universe’s size and can
be verified using the corresponding universe’s verification
key. In Dyna-hinTS, we can consider each committee as a
universe and require the signers to sign as H(m)ski instead
of H(m, e)ski , where e is the committee identifier and ski
is the secret key share of the signer. This makes the partial
signatures committee-agnostic and yields an MTS scheme
in a straightforward manner. The aggregator aggregates the
partial signatures from the signers into a valid signature and
that can be verified against the universe’s verification key. We
also improve over the MTS scheme of [16] since we can non-
interactively setup the universe’s verification key. In [16], the
signers need to interact among themselves and the aggregator
to setup the universe’s verification key when they are assigned
to a particular universe. Whereas, in the MTS scheme of
Dyna-hinTS, the aggregator can compute the universe’s
verification key without any interaction from the signers.
Anyone can publicly verify that the verification key was
correctly computed. This gets rid of any interaction among
the signers during setting up of the universe’s verification
key and hence improves over the MTS scheme of [16].

Threshold ECDSA/Schnorr Signatures: There is a
long line of works in threshold ECDSA [37, 56, 55, 36] and
threshold Schnorr [26, 64, 60, 29, 28, 20, 57]. They require
at least two rounds of interaction between the signers to
generate the final signature. In fact, it is impossible [38] to
make them non-interactive without making the signature size
grow with the number of signers. In contrast, our signing
protocol is non-interactive in nature. Additionally, all of these
signing protocols, except [20], use a DKG protocol to setup
the secret shares and the public key, hence, suffering the
same limitations as the DKG-based signature protocols and
do not support committee-based signing. The protocol of [20]
uses an additive sharing to compute the public verification
key and as a result, it requires all the parties to remain
active for signing. The recent work of [27] extended the
FROST protocol [55] for threshold Schnorr to work for
committees. In that, an initial committee runs a DKG to setup
the public key and perform the threshold signing. When a
new committee is selected there is a key re-sharing between
the members of the old and new committee. This added
communication is expensive in practice as it involves peer-
to-peer communication over WAN networks. In contrast,
Dyna-hinTS switches committees without any interaction
between the committee members.

Accountable Threshold Signatures: Boneh and
Komlo [21] puts forward the idea of privately accountable
threshold signature, which lets a designated party with a
private key to find out the set of signers from an aggre-
gated signature. This is somewhat in between full public
accountability of multi-signatures, and no accountability of
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threshold signatures. Our construction does not have any such
accountability of signers. However, it specifies the committee
within the universe of signers, which is publicly checkable.

Appendix B.
Additional Preliminaries

In this section, we present the additional preliminaries
from Sec. 2.

Definition 4 (Algebraic Group Model). We work in the
Algebraic Group Model (AGM), introduced by [42]. In such a
model, adversaries are considered algebraic. That is, for any
b ∈ {0, 1}, whenever the adversary outputs a group element
hb ∈ Gb, it must also output a vector v⃗ that explains hb. In
particular, it must hold that hb = ⟨v⃗, inpb⟩, where inpb stands
for the vector of group elements from Gb that the adversary
takes as input. Similar to [42], we also assume the following
q-DLOG problem is hard for algebraic adversaries.

Definition 5 (q-DLOG Assumption). For any positive integer
q and algebraic adversary A, it holds that

Pr

x′ = x

∣∣∣∣∣∣
x←$ F

x′ = A
(
[1]1, [x]1, . . . , [x

q]1,

[1]2, [x]2, . . . , [x
q]2

) = negl(n).

Assuming the q-DLOG assumption, the following lemma [42]
simplifies the security analysis in AGM.

Lemma 2. Let [f1(x1, . . . , xℓ)], . . . , [ft(x1, . . . , xℓ)] be a
sequence of group elements (in either G1 or G2) given to an
algebraic adversary A as input, where x1, . . . , xℓ ← F.
Let (g1, g2, h1, h2) be the output of A. If it holds that
e(g1, h1) = e(g2, h2), with 1 − negl(n) probability, the
adversary A must know the corresponding polynomials
g1(x1, . . . , xℓ) =

∑t
i=1 αi · fi, h1(x1, . . . , xℓ) =

∑t
i=1 βi ·

fi, g2(x1, . . . , xℓ) =
∑t

i=1 γi · fi, h2(x1, . . . , xℓ) =∑t
i=1 θi · fi such that

g1(x1, . . . , xℓ) · h1(x1, . . . , xℓ) =

g2(x1, . . . , xℓ) · h2(x1, . . . , xℓ)

holds as a multivariate polynomial identity.

Appendix C.
Definition of Committee-based Silent Threshold
Signature

The work of [44] introduced the notion of silent threshold
signatures (STS). In an STS scheme, parties publish “hints”
together with their public key non-interactively in a silent
manner. Given all the hints, a public algorithm, denoted as
the aggregator, verifies the validity of the hints. Furthermore,
a succinct verification key will be deterministically computed
from the hints. Later on, to sign a message m, the signing
parties provide partial signatures with proof of correct
computation. The aggregator verifies the partial signatures
and aggregates the signatures into a succinct signature that
can be verified against the succinct verification key.

We expand the above definition to work for the committee
setting, i.e. the set of signers should hail from a specific
committee instead of the entire set of signers. Moreover, this
committee keeps changing with time at every predefined
epoch. Unforgeability requires that for each epoch only
the valid committee of signers sign a particular message.
Formally, we have the following.

Definition 6 (c-STS). A Silent Threshold Signature con-
sists of the following algorithms Σ = (Setup,KGen,
HintGen,Preprocess,ComSelect,Sign,Agg,Verify):

• crs← Setup(1κ): On input the security parameter κ,
the Setup algorithm outputs a common reference string
crs.

• (pk, sk)← KGen(1κ): On input the security parameter
κ, the KGen algorithm outputs a public/secret key pair
(pk, sk).

• hinTS ← HintGen(crs, sk, N): On input the crs, the
secret key sk, and the number of parties N , the HintGen
algorithm outputs a hint hinTS.

• (AK,VK) ← Preprocess(crs, {hinTSi, pki}i∈[n]): On
input the crs, all pairs {hinTSi, pki}i∈[N ], the
Preprocess algorithm computes an aggregation key AK
and a (succinct) verification key VK.

• Come ← ComSelect(e,N, n): On input epoch e, the
number of parties N , and committee size n, the
ComSelect algorithm selects a committee Come ⊂ [N ]
of n signing parties for epoch e.

• σi ← Sign(ski,m, e) : On input some secret key ski,
some message m, and epoch e, the Sign algorithm
outputs a partial signature σi if i ∈ Come, else return
⊥.

• 1/0 ← PartialVerify(m,σi, pki, e) : On input a mes-
sage m, a partial signature σi, a public key pki, and
epoch e, it returns 1 if and only if the partial signature
is verified correctly and generated by a signer from
Come.

• σ ← Agg(crs,AK, {σi}i∈B , e) : On input the crs,
an aggregation key AK, a set of signatures {σi}i∈B ,
and epoch e, the Agg algorithm outputs a (succinct)
signature σ.

• 1/0 ← Verify(m,σ, t,VK, e) : On input a message m,
a signature σ, a threshold t, the verification key VK,
and epoch e, it verifies the signature.

Moreover, the c-STS scheme must have the following effi-
ciency requirements:

• The aggregated verification key vk and the aggregated
signature σ should be constant size.

• The verification time Verify should be constant.

We define the properties of correctness and unforgeabil-
ity below. Both of these properties are defined against a
malicious adversary who may send arbitrary messages (for
the hints and partial signatures) on behalf of the corrupted
parties, whereas the honest parties are controlled by the
challenger.
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Definition 7 (Correctness). The c-STS scheme satisfies
(N, f, n, t)- correctness if, for any adversary A, the output
of the Correctness − Game defined in Figure 4 is 1 with
probability ⩾ 1− negl(κ) for every epoch e ∈ N.

1) The challenger runs crs← Setup(1κ) and gives crs to
A.

2) The adversary picks N and a subset of f(< N) parties
to corrupt A← A(crs).

3) For all i ∈ [N ] \ A, the public key and hint are sam-
pled honestly (pki, ski) ← KGen(1n) and hinTSi =
HintGen(crs, ski, N).

4) For all i ∈ A, the adversary returns a public key pki
and a hint hinTSi to the challenger.

5) The public pre-processing is invoked by the challenger as
(AK,VK) ← Preprocess(crs, {hinTSi, pki}i∈[N ]) and
the output are given to A.

6) At epoch e, the challenger obtains the committee Come

← ComSelect(e,N, n) and gives it to A.
7) To sign a message m of its choice the adversary performs

the following:
a) The adversary requests a subset of honest parties

B1 ⊆ Come \ A for partial signatures, which are
returned by computing σi ← Sign(ski,m, e) on a
given message for all i ∈ B1. This process can be
repeated by the adversary multiple times on the same
message m.

b) The adversary prepares the partial signatures
{σi}i∈B2 for some subset of malicious parties B2 ⊆
A. Let B′

2 ⊆ B2 be the subset of maliciously
generated signatures that verifies under PartialVerify.

c) The challenger computes the aggregated signature
as σ ← Agg(crs,AK, {σi}i∈B , e), where B = B1

∪B′
2 is the set of all partial signatures that verifies.

8) The output of this game is 1 if, for all t ⩽ |B ∩ Come|,
we have Verify(m,σ, t,VK, e) = 1.5

Figure 4: Correctness− Game

In the correctness game, the aggregation
process (Step. 7c) by the challenger takes |B| partial
signatures that verify. To perform aggregation only t < |B|
valid partial signatures are needed. So, the aggregator
aggregates the valid partial signatures in B′

2 and the first
t− |B′

2| partial signatures in B1 to compute the aggregated
signature σ.

Definition 8 (Unforgeability). The c-STS scheme (N, f, n, t)-
unforgeability if, for any adversary A, the output of the game
in Figure 5 is 1 with probability ⩽ negl(n) for every epoch
e ∈ N.

1) The challenger runs crs← Setup(1κ) and gives crs to
A.

2) The adversary picks N and a subset of f(< N) parties
to corrupt A← A(crs).

3) For all honest parties i ∈ [N ]\A, the public key and hint
are sampled honestly by the challenger (pki, ski) ←
KGen(1κ) and hinTSi = HintGen(crs, ski, N).

4) For all i ∈ A, the adversary picks a public key pki and

5. Note that, since σ is the aggregation of |B| honest signatures, it should
verify all threshold t ⩽ |B|.

the corresponding hint hinTSi.
5) The challenger preprocesses {hinTSi, pki}i∈[N ] as

(AK, vk)← Preprocess(crs, {hinTSi, pki}i∈[N ]) which
are given to A.

6) At epoch e, the challenger obtains the committee Come

← ComSelect(e,N, n) and gives it to A.
7) The adversary may make a partial signature query with

a message m and an honest party i ∈ Come \A – the
query is returned by computing σi = Sign(sk,m, e).
This is run as many times as desired by A.

8) Finally, the adversary shall output a challenge message
m∗ and an aggregated signature σ∗. Let B∗ be the
subset of honest parties queried by the adversary to
sign m∗.

9) The adversary wins the forgery game at epoch e if there
exists a threshold t such that either

a) The adversary corrupts an entire committee, i.e. t ⩽
|A ∩ Come|, or

b) The adversary forges a signature on message
m∗, i.e. t > |(B∗ ∪A) ∩ Come| and
Verify(m∗, σ∗, t,VK, e) = 1.

If the adversary wins the game then the output of the
game is 1, otherwise the output is 0.

Figure 5: Forgery − Game

Definition 9 (Silent Weighted Threshold Signature). In
the weighted-setting there is a predefined weight vector
(w1, w2, . . . , wN ) associated with all N parties. For every
message m and an aggregated signature σ aggregating
from {σi}i∈S , one claims that a subset of parties with
cumulative weight

∑
i∈B wi have signed the message. The

formal definition for the weighted setting is essentially
analogous to the definition for the threshold case except
for the last step of the correctness and forgery games.

• Correctness: The output of this game is 1 if and only if,
for all t ⩽

∑
i∈B wi, we have Verify(m,σ, t,VK, e) =

1.
• Forgery: The adversary wins the forgery game if

there exists a threshold t >
∑

i∈B∗∪A wi such that
Verify(m,σ, t,VK, e) = 1, in which case, the output of
the game is 1.

Appendix D.
Protocol for Hamming Weight Test on Commit-
ted Vectors

We present the protocol for Hamming Weight Test on
Committed Vectors in this section due to lack of space in
the main body. Our protocol can be found in Fig. 6, 7.

Appendix E.
Proof of Theorem 1

We analyze the correctness and unforgeability properties
of Dyna-hinTS by proving Theorem 1 as follows:

Correctness: We consider the correctness of the scheme
against a malicious adversary A (similar to the correctness
analysis of [44]). An adversarial signer Pi breaks the
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Input:
[−→

B (τ)
]
2
,
[−→
W(τ)

]
1
, t, N .

Witness:
−→
B = {b1, b2, .., bN},

−→
W = {wi}i∈[N ]\E ∪ {wi =

0}i∈E .

Statement: t =
∑

i∈N bi · wi, where
[−→

B (τ)
]
2
=

∑
i∈[N ]

[
bi ·

Li(τ)
]
2
,
[−→
W(τ)

]
1
=

∑
i∈[N ]

[
wi.Li(τ)

]
1
.

Prove:(
[−→

B
]
2
,
[−→
W(τ)

]
1
, t, N , aux;

−→
B ,
−→
W):

• Computes the partial sum polynomial as

ParSum−→
B (x) =

N+1∑
i=1

(

i−1∑
j=1

bj · wj)Li(x). (1)

Commit to ParSum−→
B (x) as

[
ParSum−→

B (τ)
]
1
.

• To verify
[
ParSum−→

B (τ)
]
1

check that:

ParSum−→
B (x · ω)− ParSum−→

B (x)−

(
−→
W(x)− t · Ln+1(x))

−→
B (x)

?
= T(x)Q1(x) (2)

and ParSum−→
B (ω) = 0 which is the same as checking

L1(x)ParSum−→
B (x) = Q3(x)T(x) (3)

and
−→
B (ωN+1) = 1 which is the same as checking

LN+1(x) · (1−
−→
B (x)) = Q4(x)T(x) (4)

• Prove
−→
B is a binary vector compute the quotient polynomial

Q2(x) such that
−→
B (x)(1−

−→
B (x)) = T(x)Q2(x), (5)

• A random challenge v is generated as

v = H
([−→

B
]
2
,
[−→
W(τ)

]
1
, t, N, aux,

[
ParSum−→

B (τ)
]
1

)
• Batch all the quotient polynomials into one Q(x):

Q(x) = Q1(x) + v ·Q2(x) + v2Q3(x) + v3Q4(x) (6)

and compute the commitment to it
[
Q(τ)

]
1
.

• A random challenge r is generated as

r = H
([−→

B
]
2
,
[−→
W(τ)

]
1
, t, N, aux,

[
ParSum−→

B (τ)
]
1
,
[
Q(τ)

]
1

)
.

• Compute the opening proofs of the committed polynomials
at the point x = r i.e compute ParSum−→

B (r),
−→
W(r),

−→
B (r)

and Q(r). Denote the batch opening proof of all the proofs
and openings at x = r as openr .

• Compute the value of ParSum−→
B (r · ω) and the opening

proof called openr·ω .
• Output proof π = {

[
ParSum−→

B (τ)
]
1
,
[
Q(τ)

]
1
,ParSum−→

B (r),
−→
W(r),

−→
B (r),Q(r), openr, openr·ω}.

Figure 6: Hamming Weight test on committed vectors (Cont.
in Fig. 7)

Verify:(
[−→

B
]
2
,
[−→
W(τ)

]
1
, t, N , aux, π):

• Parse the proof π as:

π = {
[
ParSum−→

B (τ)
]
1
,
[
Q(τ)

]
1
,ParSum−→

B (r),
−→
W(r),

−→
B (r),Q(r), openr, openr·ω}

• Compute challenges r and v as

r = H
([−→

B
]
2
,
[−→
W(τ)

]
1
, t, N, aux,[

ParSum−→
B (τ)

]
1
,
[
Q1(τ)

]
1
,
[
Q2(τ)

]
1
,
[
Q(τ)

]
1

)
,

v = H
([−→

B
]
2
,
[−→
W(τ)

]
1
, t, N, aux,[

ParSum−→
B (τ)

]
1
,
[
Q1(τ)

]
1
,
[
Q2(τ)

]
1

)
• Verify openr and openr·ω .
• Using Eq. 6 check that the identities (2),(3),(4),(5) satisfy

at x = r i.e

Q(r) · T(r) = (ParSum−→
B
(r · ω)− ParSum−→

B
(r)−

(
−→
W(r)− t · Ln+1(r))

−→
B (r)) + v · (

−→
B (r)(1−

−→
B (r)))+

v2(L1(r)ParSum−→
B
(r)) + v3(LN+1(r) · (1−

−→
B (r))) (7)

• If the above two checks succeed then output 1, else output
0.

Figure 7: Hamming Weight test on committed vectors (Cont.
from Fig. 6)

correctness of the scheme in either of the two following
cases:

• It provides incorrect hinTSi in HintsGen() and the
aggregator fails to detect it in the Hints-Verify() al-
gorithm (Fig. 3). An incorrect hinTSi passes the verifi-
cation check for a single value of γ′. Since γ is chosen
at random for each party, we know that γ = γ′ with
probability 1

Fp
.

• it provides an invalid partial signature σi in Partial-
Sign() but the aggregator fails to detect it in Step.12.
This occurs when (

[
1
]
1
,H(m, e)) and (pki, σi) does

not share the same discrete logs and yet the proof
πeq-DL
i verifies. Such an adversary can be used to

break the soundness of NIZK where πeq-DL
i is the

response to the NIZK challenger for the statement
(
[
1
]
1
, pki,H(m, e), σi). Let ϵNIZK be the soundness

error of NIZK. Then the adversary’s advantage is upper
bounded by ϵNIZK.

Summing over all N
3 corrupt parties, the adversary breaks the

correctness of the protocol with probability N
3 (

1
Fp

+ϵNIZK) =

negl(κ) where Fp = O(2κ) and ϵNIZK = negl(κ).
Unforgeability: We consider the unforgeability (accord-

ing to Game 5) of the scheme against a malicious adversary
A that corrupts upto f(< N) parties from the set of N
parties. In the unforgeability game, the adversary wins if (1)
it manages to corrupt an entire committee, or (2) it forges a
signature for a committee where less than threshold partial
signatures are known to the adversary.

We analyze the probability of the first event occurring.
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There are N signers out of which we assume that f are
statically corrupt by the adversary. Assuming the output
of RB is unpredictable and H is a random oracle then
the beacon chooses a random committee of n parties. A
committee is considered to be completely corrupt if t parties
are corrupt. The total number of possible committees is

(
N
n

)
,(

n
r

)
denotes choosing r items without replacements from n

items. The probability that there are X = i corrupt parties
in a committee is:

Pr[X = i] =

(
f
i

)
·
(
N−f
n−i

)(
N
n

) .

A committee is considered to be corrupt when i ⩾ t. The
probability of this occurring is:

Pr[X ⩾ t] =

n∑
i=t

(
f
i

)
·
(
N−f
n−i

)(
N
n

)
This equation yields a statistical error of 2−41 on parameters
N = 1024, f = 341, n = 128 and t = 80 that we use for
evaluating our protocol.

Next, we prove that the adversary is unable to forge a
signature for an epoch e if less than t partial signatures from
the committee Come are known to the adversary. To prove
unforgeability we prove some helper lemmas and then use
them for our proof.

Lemma 3. Suppose that at the end of the Forgery − Game
defined in Figure 5, the adversary A outputs a message and
signature pair (m∗, σ∗) such that Verify(m∗, σ∗, t,VK) =
1. Then, with 1 − negl(κ) probability, we can extract
(multivariate) polynomials ParSum−→

B (x),
−→
B (x), Q(x),

Q1(x), Q2(x), X(x, {ski}i), X∗
x(x, {ski}i), Z(x, {ski}i),

and aSK(x, {ski}i) from A such that the following identities
hold.6

ParSum−→
B (ω) = 0,

−→
B (ωN+1) = 1, (8)

ParSum−→
B (x · ω)− ParSum−→

B (x)−

(
−→
W(x)− t · Ln+1(x))

−→
B (x)

?
= T(x)Q1(x) (9)

−→
B (x)(1−

−→
B (x)) = T(x)Q2(x), (10)

Q(x) · T(x) = (ParSum−→
B (r · ω)− ParSum−→

B (x)−

(
−→
W(x)− t · Ln+1(x))

−→
B (x)) + v · (

−→
B (x)(1−

−→
B (x)))+

v2(L1(x)ParSum−→
B (x)) + v3(LN+1(x) · (1−

−→
B (x))) (11)

−→
SK(x) ·

−→
B (x)− aSK(x, {ski}i) = Z(x, {ski}i) · T(x)

+X(x, {ski}i) · x, (12)
X(x, {ski}i) · x = X∗(x, {ski}i). (13)

Proof of Lemma 3. The commitments output by the adver-
sary A in the signature is a linear combination of the group
elements that A takes as input since A is an algebraic adver-
sary. The output of A consists of multivariate polynomials
depending on τ, {ski}i∈B∗ , and (discrete log of) H(mi).We
argue that these equations hold w.r.t. τ .

6. We only treat the ski from honest parties as variables. The secret keys
of corrupt parties are known to the adversary A.

The opening proofs for the polynomial commitments
verify. By Lemma 2, we know that, with 1 − negl(κ)
probability, A must know a set of polynomials such that
(1) ParSum−→

B (ω) = 0; (2) B(ωN+1) = 1; and (3) and
equation Eq. 7 verifies. By Schwarz-Zippel, with all but
poly(κ)/|F| = negl(κ) probability, the following polyno-
mial identity holds and assuming H is a random oracle,
equations 2, 3, 4, 5 hold.

Furthermore, the following pairing equations hold.

e(
[−→
SK(τ)

]
1
, [
[−→

B S(τ)
]
2
) · e(aPKS, [1]2)

−1 ?
=

e(
[
ZS

]
1
,
[
T(τ)

]
2
) · e(

[
XS

]
1
, [τ ]2),

and
−→
SK(x)

−→
B S(x)− aSKS = ZS(x) · T(x) + XS(x) · x,

By Lemma 2, the adversary A must know polynomials−→
B (x) =

−→
B S(x), X(x) = XS(x), X∗(x), and Z(x) =

ZS(x), which satisfy the polynomial identities
−→
SK(x) ·

−→
B (x)− aSK = Z(x) · T(x) +X(x) · x,

X(x) · x = X∗(x).

Next, we argue that ParSum−→
B (x),

−→
B (x), Q1(x), and

Q2(x) are independent of the honest parties’ ski and H(m)
where m is queried by the adversary for partial signatures.
We prove this by contradiction. T(x) is independent of ski.
The group elements that A takes as input are all linearly
dependent in ski in the exponent. If

−→
B (x) depended on ski,

then
−→
B (x) ·(1−

−→
B (x)) would be a quadratic equation in ski,

and as a result the equation
−→
B (x)(1−

−→
B (x)) = T(x) ·Q2(x)

would not hold since Q2(x) would be quadratic in ski, and
the adversary would have to compute a quadratic equation
(in ski) in the exponent given only linear equations (in ski)
in the the exponent. Both

−→
B (x) and Q2(x) are single variate

polynomials depending only on τ and independent of ski,
except with negligible probability. By a similar argument,
if Q1(x) depends on ski, then T(x) ·Q1(x) contains a term
ski · T(x). But, all inputs of A that depend on ski, in the
exponent, only have degree ⩽ H − 1 in terms of τ . As
a result, the well-formedness check (Eq. 2) of ParSum()
would never satisfy. Therefore, both ParSum(x) and Q1(x)
are single variate polynomials depending only on τ , except
with negligible probability. Finally, we argue that Z(x) and
X(x) is independent of H(mi) since computing H(mi)

τ is
computationally hard. Hence, Z(x) and X(x) depends on
τ and ski. This argument extends to X∗(x) since the last
equation holds.

Lemma 4. The terms in polynomial X(x, {ski}i) that
depends on ski has degree ⩽ |H| − 2 in terms of x.

Proof of Lemma 4. By lemma 3, we know that X(x) · x =
X∗(x). All the inputs to the adversary that depends on ski
have degree ⩽ H− 1 in terms of τ (for example, the terms
in hinTSi). In particular, the terms in X∗(x) that depends on
ski have degree ⩽ H− 1 in terms of τ . Hence, the terms in

17



X(x, {ski}i) that depends on ski will have degree ⩽ |H|−2
in terms of τ .

Lemma 5. For polynomial
−→
B (x), it must hold that∑N

i=1

−→
B (ωi) · wi = t.

Proof of Lemma 5. By lemma 3, we have the polynomial
identity

−→
B (x) · (1 −

−→
B (x)) = T(x) · Q2(x). At x ∈ H,

T(x) = 0 since it is the vanishing polynomial on H. Hence,−→
B (x) is either 0 or 1 on x ∈ H. By lemma 3 we know that
ParSum−→

B (ω) = 0 and ParSum−→
B (x ·ω)−ParSum−→

B (x)−
(
−→
W(x)− t ·LN+1(x)) ·

−→
B (x) = T(x) ·Q1(x) hold. Moreover,

ParSum−→
B (ω · x)− ParSum−→

B (x) is bi ·wi everywhere (by
plugging values in Eq. 2), except for x = ωN+1 where it is
ParSum−→

B (ωN+2)−ParSum−→
B (ωN+1) = 0−t (from Eq. 1).

By summing over for all x ∈ H, we get ParSum−→
B (ωN+1) =∑N

i=1

−→
B (ωi) · wi = t.

Lemma 6. Let the set B∗ and A be as defined in the
unforgeability game, if the signature σ

′
verifies under aPK,

e(aPK,H(m)) = e([1]1, σ
′) , then, with 1− negl(κ) proba-

bility, the equation aSK({ski}i) =
∑

i∈B∗ ski ·vi+v0 holds
for some vi’s.

Proof of Lemma 6. We know that the signature verifies
e(aPK,H(m))=e([1]1, σ

′), hence, σ′ = H(m)aSK. Now, the
group elements that the adversary sees and are related to
H(m) are H(m)ski for i ∈ B∗ and H(m)ski (returned as
output from the signing oracle). Hence, this lemma follows
from lemma 2. This lemma states that aSK depends only
on the honest parties’ ski’s that have signed m, and does
not depend on τ or other honest parties’ ski.

Next, we prove the unforgeability of our scheme
given lemmas 3, 4, 5, and 6. Suppose that the adver-
sary A wins the unforgeability game. By definition, there
exists a threshold t > |(B∗ ∪A) ∩ Come| such that
Verify(m∗, σ∗, t,VK, e) = 1.

Since the adversary’s signature verifies, lemma 3 states
−→
SK(x) ·

−→
B (x)− aSK(x, {ski}i) = Z(x, {ski}i) · T(x)

+X(x, {ski}i) · x,

And, aSK =
∑

i∈B∗ ski · vi + v0 by lemma 6.
Now, we extract the set B′ = {i ∈ [N ] :

−→
B (ωi) = 1}

from
−→
B (x). Let aSK′ = (

∑
i∈B′ ski)/|H|. There also exists

an honestly sampled quotient polynomial X ′(x, {ski}i) and
Z ′(x, {ski}i) (for aSK′) satisfying
−→
SK(x) ·

−→
B (x)− aSK′ = Z′(x, {ski}i) · T(x) +X ′(x, {ski}i) · x.

The adversary can efficiently compute Z ′ and X ′. Subtracting
the two equations we get

aSK′ − aSK = (Z − Z′) · T(x) + (X −X ′) · x.

To forge a signature, the adversary computes two polynomials
∆X(x, {ski}i) and ∆Z(x, {ski}i) such that

aSK′ − aSK = ∆Z(x, {ski}i) · T(x) + ∆X(x, {ski}i) · x. (14)

Since the total weight in B′ is t (due to lemma 5), which
satisfies t >

∑
i∈t>|(B∗∪A)∩Come| wi (definition of forgery),

there must exist some honest party with index j (∈ Come)
such that j ∈ B′ and j /∈ B∗, i.e. honest party j is in
the committee and the adversary forged its partial signature.
Therefore,

aSK′ − aSK =
( ∑

i∈B′

ski

)
/|H| −

( ∑
i∈B∗

ski · vi + v0
)

=skj/|H|+ L({ski}i ̸=j).

where L(·) is affine combination of {ski}i ̸=j whose coeffi-
cients depend on ({vi}i∈B∗ , v0).

We argue that Eq. 14 implies a contradiction: By
Lemma 4, the terms in ∆X(x) that depends on skj have
degree ⩽ |H| − 2. Therefore, the terms in ∆Z(x) · T(x) +
∆X(x) · x that depends on skj can never be c · skj for some
constant c. In particular, it can never equal skj/|H|. Thus,
the following equation will not hold

aSK′ − aSK = ∆Z(x, {ski}i) · T(x) + ∆X(x, {ski}i) · x

This concludes that the adversary wins the unforgeability
game with negligible probability.

Appendix F.
Comparison of Reconstruction Threshold vs
Corruption Threshold

In this section, we analyse the relationship between
the minimum reconstruction threshold and the corruption
threshold for BLS multi-signatures, hinTS, and Dyna-hinTS.
We repeat this experiment for varying number of total signers
N = 1000, 2000 and 4000 in Fig. 8, 9 and 10 respectively.
Assuming f among N signers are corrupt, the minimum
reconstruction threshold t in Dyna-hinTS is computed via
the following formula:

The minimum value of t s.t.

(
f
t

)(
N
t

) ⩽ 2−40.

Whereas, for BLS multi-signatures and hinTS, t = f+1. As
a result, t grows slowly in Dyna-hinTS yielding a massive
boost in aggregation time when a larger fraction of of signers
are corrupt.

Appendix G.
Setup Cost

We evaluate the fixed costs of running the setup for each
protocol. We assume that there is a network delay of 120ms
when the signers send their public keys to the aggregator or
post them on the blockchain. In BLS multisignature, each
signer samples a public and secret key pair and broadcasts
the public keys. These public keys are stored in a smart
contract on the blockchain. Sampling the key pair is very
fast since it takes less than < 1ms and the signers broadcast
it incurring a network delay of 120ms.
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Figure 8: Comparison of (f vs t) for Dyna-hinTS, BLS
multisignatures and hinTS when total # of signers N =
1000

0 500 1,000 1,500 2,000
0

500

1,000

1,500

2,000

# of corruptions f

M
in

.R
ec

on
st

ru
ct

io
n

th
re

sh
ol

d
t Dyna-hinTS

BLS multi-signatures, hinTS

Figure 9: Comparison of (f vs t) for Dyna-hinTS, BLS
multisignatures and hinTS when total # of signers N =
2000

hinTS and Dyna-hinTS both use a silent setup, where
each signer together with their public keys broadcast a linear-
sized auxiliary material (informally called the hints), whose
computation takes O(n) group multiplication and O(n log n)
field operations. Then the Aggregator verifies all such hints
sent by the signers in the universe. This step consists of two
subprotocols. Firstly, the aggregator needs to compute KZG
commitments to O(n2) Lagrange coefficient polynomials.
Then using these polynomial commitments, the aggregator
verifies the hints of each signer by performing random linear
combinations using Pippenger’s algorithm [18] and then
performs a pairing check. We benchmark this extensively
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Figure 10: Comparison of (f vs t) for Dyna-hinTS, BLS
multisignatures and hinTS when total # of signers N =
4000

and observed that it takes 10 sec for each index i on a single-
threaded implementation. The Aggregator then performs one-
time preprocessing using the public keys and hints to generate
the aggregated public verification key VK and the additional
aggregation key AK. The verification key VK consists of 3
group elements and it is posted on the blockchain, costing
390K gas. The setup need not be repeated for changes in
the access structure and can be performed once considering
networks of different powers of two sizes.

Optimization: We extensively benchmarked the setup
cost for different values of N since it is the main bottleneck
in the paradigm of silent threshold signatures and it affects
Dyna-hinTS, hinTS [44], and [30]. We observe that for 1024
signers the key generation phase, the hints verification, and
the generation of the public verification key are extremely fast
and take around 30 seconds for all 1024 signers. However,
this accounts for less than 1% of the cost. Whereas, 99% of
the setup time is spent in computing the KZG commitments
to the Lagrange coefficients. We propose how to delegate
this computation to untrusted parties such that they can be
verified very efficiently. In Fig. 3, the aggregator needs to
compute KZG commitments to the Lagrange coefficients for
i ∈ [N ].[
Li(τ)

]
2
,
[L2

i (τ)−Li(τ)
T(τ)

]
2
,
[Li(τ)−Li(0)

τ

]
2
,
[
(Li(τ)−Li(0))

]
2
,

(15)
and the cross-term commitments{[Li(τ)Lj(τ)

T(τ)

]
2

}
j∈[N ]\i

.

The computation of the first four types of commitments is
very fast since it involves computing only 4 commitments
for each i and requires around 16 ms for each signer. This
is done by the aggregator. Next, the computation of the
cross-term commitments requires around 737 ms for each

19



signer and accounts for 98% of the total time as it grows
quadratically with the number of signers.

We reduce this cost by delegating its computation to
untrusted parties. To do this, the aggregator locally computes[L1(τ)

T(τ)

]
1
, . . .

[LN (τ)
T(τ)

]
1

and reuses
[
L1(τ)

]
2
, . . .

[
LN (τ)

]
2

from the above computation. The aggregator asks an
untrusted party to compute the cross-term commit-
ments for index i. When the untrusted party returns[Li(τ)L1(τ)

T(τ)

]
2
, . . .

[Li(τ)LN (τ)
T(τ)

]
2
, the aggregator samples a

γ ∈ F and verifies it using random linear combination (via
Pippinger’s method) and a pairing check as

e
([Li(τ)

T(τ)

]
1
,Πj∈[N ]\i

[
Lj(τ)

]γj

2

) ?
=

e
([
1
]
1
,Πj∈[N ]\i

[Li(τ)Lj(τ)
T(τ)

]γj

2

)
(16)

Performing this verification is fast and takes around 15 ms
for each party. In total, we reduce the cost to around 35 ms 7

from 737 ms, getting a 21× improvement.
Assuming there are M untrusted parties then the aggre-

gator delegates the computation of the cross-terms of indices
i = 1 . . . N

M to the first party, indices i = N
M + 1 . . . 2N

M
to the second party, and so on where the jth untrusted
party computes the cross-term commitment for indices
i = (j−1)N

M + 1 . . . jN
M . Once the untrusted parties return

the cross-term commitments, the aggregator verifies them
using a random linear combination (via Pippinger’s method)
and a pairing check according to Eq. 16.

After performing the above optimizations, we obtain the
total setup cost for N = 1024 signers as 66 seconds. We
provide the detailed cost analysis of our optimized setup
protocol in Fig. 11.

Appendix H.
Further Extensions

• General Access Structure: Dyna-hinTS supports gen-
eral access structure (such as weighted). The SNARK
proof in σ should convince the verifier that the set of
signers are authorized according to the general access
structure, and belong to the same committee. To perform
the proof, the aggregator will use the SNARK proof to
prove that the witness encoded in

−→
B (x) satisfies the

access structure Λ, where Λ is represented as a circuit
C : {0, 1}N → {0, 1}, and the aggregator proves that
C
(−→

B (ω), . . . ,
−→
B (ωN )

)
= 1.

• Dynamic Threshold: Dyna-hinTS can support dynamic
threshold more efficiently than the above general access
structure approach. To accommodate this change, there
is no change in the setup, the committee selection
or the partial signature protocols. The only change
that occurs is in the signature aggregation protocol,
where the aggregator generates the SNARK proof w.r.t.
the threshold tj for each message mj . This supports
different thresholds even in the same committee.

7. Roughly 20×N ms is spent on computing the 4N commitments in
Eq. 15 and the N commitments used in Eq. 16.
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Figure 11: Cost Analysis of our Setup Protocol for varying
number of signers.

• Silent Dynamic Participation: Another useful require-
ment could be silent dynamic participation, where each
signer can dynamically join/leave the system of signers
in Dyna-hinTS. In any STS scheme (including ours and
hinTS) the set of signers can generate hints for a large
value of N and send these to the aggregator. Suppose
there are N ′ < N signers. When a new signer joins, the
aggregator assigns the index N ′ + 1 to that signer. The
new signer generates the hints for value N and sends
these to the aggregator. The aggregator updates the
public verification key. The existing set of signers does
not need to perform any computation/communication
due to the silent setup. When a party leaves the system,
the aggregator sets the index of that signer as null and
includes it in the set E. The public verification key
does not need to be updated. Later when a new signer
joins, the aggregator assigns this empty index to that
signer. The system can support up to N signers. When
the number of signers exceeds N , the existing set of
signers needs to compute additional hints for the new
indices after N .

• Multiverse Threshold Signatures: Dyna-hinTS can be
extended to construct an MTS scheme. Each committee
is considered as an universe U where the universe U is
chosen by the verifier and the reconstruction threshold
is tU . When the universe is chosen, the aggregator uses
the crs to compute the KZG commitment

[−→
B U (τ)

]
2

to
universe U . This is the verification key for the universe
U . It can be verified by the verifier by recomputing
the KZG commitment. This is a non-interactive setup
process for each universe, whereas the MTS scheme of
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[16] requires interaction between the signers and the
aggregator. To sign a message m, each signer generates
the signature as σi = H(m)ski and a proof πeq-DL

i of
correct signing. The aggregator verifies the partial sig-
natures and aggregates tU valid partial signatures from
signers in universe U . Let

[−→
B S(τ)

]
2

denote the KZG
commitment to the signing set in U . The aggregator
computes a proof that tU signers from universe U have
signed, i.e. S ⊆ U by proving

[−→
B S(τ)

]
2

has Hamming

weight tU and

[−→
B U (τ)

]
2[−→

B S(τ)
]
2

has weight |U | − tU .
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