Threshold FHE with Efficient Asynchronous
Decryption

Abstract. A Threshold Fully Homomorphic Encryption (ThFHE) scheme
enables the generation of a global public key and secret key shares for
multiple parties, allowing any threshold of these parties to collaboratively
decrypt a ciphertext without revealing their individual secret keys. By
leveraging the homomorphic properties of FHE, this scheme supports
the distributed computation of arbitrary functions across multiple par-
ties. As distributed execution of cryptographic tasks becomes popular,
the demand for ThFHE schemes grows accordingly. We identify three ma-
jor challenges with existing solutions. (i) They often take unrealistic as-
sumptions with regards to the network model, assuming the threshold of
parties to participate in decryption is known a-priori, available through-
out multiple communication rounds, and is consistent between parties.
(ii) They incur a super-linear overhead on the underlying FHE public
parameters. Both issues pose challenges on scaling with the number of
parties. (iii) The require heavyweight Zero-Knowledge Proofs (ZKPs)
during decryption, thereby introducing a significant computational over-
head in order to tolerate malicious behavior.

In this work, we introduce a ThFHE scheme that faces the above three
challenges, and is designed to scale with the number of parties N.

Our scheme operates within the well-established asynchronous commu-
nication model. At the same time, upon decryption, the ciphertext only
incurs a linear gN + t additive overhead on the ciphertext modulus size.
Additionally, when allowed to rely on non Post Quantum (PQ)-secure
additively homomorphic encryption schemes, we provide a method with
an O(1) overhead, independent of N. Lastly, we propose a preprocessing
technique, that allows the parties to batch and preprocess all necessary
ZKPs in an offline phase, before the encrypted inputs and evaluation
circuit are determined. In turn, this enables the system to effectively
manage traffic spikes, by exploiting idle periods to preform the ZKPs.
We build on a ring-based FHE scheme, specifically using the BGV scheme
for clarity and concreteness. Nonetheless, the techniques also apply to
BFV, CKKS, and TFHE schemes.

1 Introduction

Fully Homomorphic Encryption (FHE) [RAD78, Gen09a], which enables the
computation of arbitrary functions directly on encrypted data without requir-
ing decryption, has seen widespread use in privacy-preserving computation and
other cryptographic applications. These include secure authentication [CDC24],
federated learning [HAG"23], CNN inference [KG23] among others. Notably,

FHE has proven particularly useful in the design of secure multiparty computa-
tion protocols (MPC), where parties jointly compute a functionality over their
private inputs [DPSZ12, LATV12,LPSY19,0SV20]. A popular approach in the
use of FHE for MPC is to follow this template [Gen09b]:

1. Distributed Key Generation (DKG). The parties collaboratively compute a
single FHE public key pk, with the corresponding secret key sk being secret-
shared among them, such that each party P; holds a share sk;.

2. Broadcast Encrypted Inputs. Each party encrypts their private input indi-
vidually using the public key pk, resulting in the input of party P;, denoted
as pt;, being encrypted into a ciphertext ct;.

3. Homomorphic FEvaluation. Each party, individually, homomorphically eval-
uates the input ciphertexts ct;, obtaining an encryption of the output ctoyt-

4. Threshold Decryption. The parties jointly decrypt ctoyt using their individual
shares sk; to obtain the output of the desired circuit.

Notably, in some settings, parties who send encrypted inputs may not hold any
shares of the private key. Similarly, since the homomorphic evaluation step in-
volves public computation, a separate network may be responsible for this step
as well. In this work, we mainly focus on boosting threshold decryption.

The above high-level template has been instantiated in many variants. One
of its most appealing properties is the ability to decouple the complexity of the
MPC protocol from the complexity of the functionality to be computed. The
functionality only affects the homomorphic evaluation, which occurs offline, and
potentially even off-loaded to another distributed network. Another advantage
is that the initial and final steps are agnostic to the functionality and can be
performed by parties who do not need to be aware of the specifics of the function-
ality, as long as they agree to participate in the DKG and decryption processes.

The aforementioned template was utilized by Asharov et al. [AJLAT12] to
reduce the round complexity of MPC. Subsequently, it was extended in the
context of multi-key FHE [LATV12, CM15, MW16], a primitive that enables
completely non-interactive key generation (in a semi-honest setting).

In previous solutions, all parties involved in the key generation were also re-
quired to participate in the decryption process. However, Boneh et al. [BGGT 18]
proposed deviating from this requirement by introducing threshold fully homo-
morphic encryption (ThFHE). In ThFHE schemes, decryption can proceed as long
as a sufficiently large subset of honest parties—defined by a threshold parameter
t—comes together. They also demonstrated that ThFHE can be used to construct
a powerful primitive they term a “universal thresholdizer,” which can incorpo-
rate threshold functionality into virtually any cryptographic functionality.

The focus of ThFHE is on the concept of distributed decryption with minimal
interaction. Specifically, it requires that each decrypting party sends only a single
message. By collecting messages from more than ¢ honest parties, it should be
possible to recover the encrypted message.

Ideally, the system should work under an asynchronous communication chan-
nel. In the context of threshold decryption, this introduces challenges. First, par-
ties computing their individual decryption messages, termed decryption shares,

may not be aware of the availability of other parties or which specific set of
t+1 decryption shares will be used for decryption. Second, different parties may
collect a different subset of ¢4 1 decryption shares, as messages can arrive out of
order.! We call this the asynchronous decryption setting, where parties need not
synchronize for successful decryption. Implementing such synchronization would
significantly increase complexity and reduce robustness.

In order to illustrate the challenge with thresholdizing lattice-based schemes,
we consider below a standard Learning-With-Errors (LWE) BGV scheme. How-
ever, a similar discussion can be provided for other FHE schemes such as TFHE,
and BFV, CKKS, also in their ring (RLWE) and module (MLWE) variants. For
ease of exposition, consider encrypting a plaintext m € Z,, using an LWE BGV
ciphertext of the form (a,b) with ciphertext modulus ¢, where a € Zy, b € Z,,
using the equation b =a-s+m + p-e mod ¢, where e < xg is some “noise”
term and s € Zjy is the secret key. To support any threshold parameter ¢, known
solutions, starting with [BGG 18], adapt Shamir-style threshold secret sharing
of the secret FHE key s, denoted [s] = (s1, ..., Sn). One can trivially produce a
secret sharing of the value m + p - e by computing [ds] =b—a - [s] =[m+p-€].
Indeed, by opening the value [ds] all parties can then take modulo p to obtain
m. However, introduces two issues. First, this procedure also reveals the value of
e, which combined with the ciphertext and the message, exposes information on
the secret key s. Additionally, each decryption share ds; = b — a - s;, gives away
a linear equation on the secret key share of the corresponding party. Therefore,
after n threshold decryptions, all secret shares are trivially reconstructed.

Notably, some works attempted to mitigate the challenge of thresholdizing
lattice-based schemes by restricting the access structure. For example, [CLOT 13,
BGG™18], and a variant by [DDEK*23] wherein (%) is bounded. However, this
compromises security, as fewer parties increase the risk of silent collusion. This
diverges from our focus on scaling with the threshold and number of parties,
aiming for distributed, collusion-resistant solutions. In [ABGS23], the secret key
is additively shared, requiring all parties in decryption. Unfortunately, this is
not robust for large-scale networks due to potential failures.

One approach to resolve the two issues above, taken by [DDEK 23], is to add
a pre-processing phase in which the parties derive an additional secret shared
noise term [E] that statistically hides the error. This technique is known as noise
flooding. Thus, the parties may now open [ds] = b—a-[s]+p-[E] = [m+p-(e+E)].
Unfortunately, generation of a secret share requires Peer-to-Peer channels, in
which a threshold of parties send unique secret shares to each party privately.
In particular, each party computes, receives and processes N messages, and so
this approach does not scale well with the number of parties.

In this work, we follow a different approach originally proposed in [BGGT18].
There, each decrypting party adds a locally sampled error to its decryption share:
ds;, =b—a-s;+p-E;, with E; < xg sampled independently. While this prevents
exposing equations on the secret key shares, reconstructing the plaintext becomes

! This can be resolved by implementing a consensus mechanism, which will further
increase network latency.

unclear. Upon reconstruction, decryption shares are multiplied by corresponding
Lagrange coefficients, which can be arbitrarily large. As a result, parties obtain
m+p-e+p-Y ;A E; mod g, from which m cannot be reliably extracted.

To resolve this issue, [BGG18] shows that by “clearing the denominator” of
the Lagrange coefficients, which essentially means multiplying all coefficients by
the least common multiple (LCM) of their denominators (see [Sho00,ABV*12]),
it is possible to bound the noise increase by a factor of (N!)2. To manage this
noise increase, the ciphertext modulus must be increased accordingly, approxi-
mately by O(Nlog N) bits. This comes in addition to ¢/2 bit increment from
noise flooding, where o is the statistical security parameter. In turn, the ring
and module degrees should be adjusted, in order to maintain security. More of
the same, the above penalty prevents scaling by the number of parties N.

Alternatively, to bypass the complications arising from large Lagrange co-
efficients, some works such as [MTPBH21, MBH23] abandon the asynchronous
model altogether. Indeed, if the threshold of parties to be sending decryption
shares is known in advance, the Lagrange coeflicients can be precomputed, and so
ds; = b—a-\;s;+p-E; becomes a t-out-of-t additive sharing on m+p-e+p ", E;.
However, as mentioned, the synchronous model compromises on the latency of
the system, and is challenging to realize and maintain.

1.1 Owur Contribution

Given the significance of threshold functionalities in modern cryptography, we
investigate the following question:

Is it possible to develop a ThFHE scheme under an asynchronous broadcast
communication channel, that scales with respect to the number of parties?

In this work, we answer in the affirmative. Since DKG is one-time, in this
work we are focused on boosting threshold decryption. For completeness, we
offer a potential instantiation of DKG in Appendix C, implemented over a con-
sensus channel. In particular, while messages are received in the same order for
all parties, the subset of participating parties may arbitrarily change in each
communication round and is post-determined. This poses a few challenges that
we discuss, both for correctness and UC security.

Below, we break down our optimizations for threshold decryption into four
milestones. The corresponding techniques are introduced in Section 1.3. A com-
parison with prior schemes is provided in Table 1.

Our first result demonstrates that in RLWE based FHE schemes, it is possible
for the ciphertext moduli to grow only linearly by the number of parties O(N).
Concretely for N = 360, the method in [BGGT18], would incur an increse of 5086
bits to the ciphertext modulus while our scheme will incur a 593 bits increase.
This also has implications on the needed ring degree for security. In short while
still a large overhead this improvement makes the denominator clearing approach
feasible for hundreds of parties.

Our second result is that by utilizing key-switching, it is possible to decouple
the parameters for threshold decryption from those of the homomorphic evalu-
ation, further minimizing the overhead of the threshold decryption phase. This

means that complex homomorphic operations are carried over with parameters
of the typical (non-threshold) FHE underlying scheme. In particular, the number
of parties does not affect the complexity of bootstrapping.

Our third result demonstrates that by adding a pre-processing round, it
is possible to alleviate the need for the verification of Zero-Knowledge Proofs
(ZKPs) of correctness of the decryption shares. In case the adversary inputs a
false decryption share, failure is detected, and only in this case proof verification
may be used to detect malicious parties. Intuitively, the idea is that instead of
recovering the function output, parties derive the encryption noise. This not only
allows recovery of the underlying plaintext, but also allows parties to verify its
validity. Additionally, this also suggests that a single party may be responsible
for combining the decryption shares and deriving the encryption noise, which
can be used as a witness of correct decryption.? The latter improves the amor-
tized decryption computational cost by V. In addition, since the pre-processing
round is independent of the inputs and function to be evaluated, the ZKPs of
this round can be batched, which in turn significantly reduces the overhead of
handling malicious behavior. The output of this pre-processing phase may then
be used for multiple, potentially parallel, online threshold decryption rounds.

Lastly, we show that when relying on non-Post Quantum (PQ) assump-
tions?, it is possible to reach an O(1) additive overhead. This is done by uti-
lizing a threshold additively homomorphic encryption scheme with such over-
head for decryption. For instance, Tiresias [FMM*23] based on Paillier [Pai99],
or [BDO23,BCD"24] based on the Class-Groups encryption scheme by [CLT18]
in the CL framework [CL15].

1.2 Comparison with Prior Work

A comparison of the properties of our work with some previously mentioned
works is presented in Table 1 below.

In our native RLWE protocol, we follow a similar approach to the work
in [BGGT18], of multiplying the noise terms by a denominator clearing factor
A, in order to ensure correctness of decryption. As mentioned, we improve upon
their choice of A, which results with an asymptotic improvement in the cipher-
text modulus, and in turn the decryption share size as well.

In comparison, the approach taken by [BS23] is to let the decryptors enumer-
ate over all possible choices of the subset of parties to participate in the online
phase. As a result, the noise terms additively scale with N. However, each de-
cryptor sends O((ZX)) decryption shares, which does not scale well (N,t). We
note [DDEK 23] also describe a variant threshold decryption for the case where

2 In fact, this can be used to prove correctness of decryption toward the client, who may
not have the computational and communicational capacity to verify the decryption
shares of all parties in the network. Nonetheless, it would still have to rely on the
entities responsible for the homomorphic computation itself.

3 That is, based on problems efficiently solvable by quantum computers (BQP), e.g.
factoring.

(]Z) is small. This affects the computational complexity of the online decryption
phase, yet the decryption shares remain compact. However, in this work we focus
on scaling with N and therefore compare with their second variant. The size of
decryption shares was improved in [CCK23] to scale with O(N 43). Despite the
improved result being polynomial with N, in practice for hundreds to thousands
of parties this factor is quite large.

As mentioned, a key challenge with thresholdizing FHE schemes is to achieve
asynchronous decryption. That is, during the online threshold decryption phase,
each party that sends its decryption share does not know in advance the set of
participants that will be online. In [MBH23], it is shown that if the set of de-
cryptors is pre-determined, the decryption share size may grow logarithmically
with N. Notably, this work also proposes a DKG protocol for an RLWE-based
encryption scheme, that generates the public key and secret decryption shares,
which only requires an Asynchronous Reliable Broadcast (ARB) channel. How-
ever, their protocol is provided in the semi-honest model, and heavyweight ZKPs
may be needed to make secure against malicious adversaries. In addition, their
DKG does not specify how to generate the homomorphic evaluation keys.

We also mention [ABGS23], who utilize a lattice-based threshold encryption
scheme for digital voting. Their scheme uses additive N-out-of-N sharing, so
the participant set is fixed and decryption shares are compact. Nevertheless, as
t = N —1, the system cannot scale with N from a more practical perspective, as
it is not resilient to dropouts. On the other hand, they provide a scheme that is
secure against malicious adversary, by using proper ZKPs that can be efficiently
batched for multiple statements, which we adopt in this work.

Lastly, we discuss the scheme proposed in [DDEK 23] in the context of large
N and t. Their scheme incorporates a DKG protocol that generates not only
the public key and decryption shares but also the bootstrapping key, enabling
a threshold fully homomorphic encryption (TFHE) scheme. Furthermore, their
protocol is secure against malicious adversaries and achieves robustness, avoid-
ing zero-knowledge proofs (ZKPs). Instead, they employ Reed-Solomon error
correction over a Galois ring. However, their approach has a key limitation: the
decryption threshold is restricted to t < N/3 for correctness. This poses a sig-
nificant practical issue. While our protocol also requires ¢ < N/3, this constraint
arises solely from broadcast assumptions. In practice, attacks on the broadcast
channel necessitate network forking, making them detectable and difficult to ex-
ecute. Another drawback of their scheme lies in the offline phase, where parties
generate a sharing of a fresh secret [E]. This step relies on a robust multiplication
protocol from [ACD™19], which enables threshold secret sharing over binary se-
crets, allowing parties to locally derive a sharing of [E]. However, this approach
does not scale efficiently with N. It entails numerous communication rounds,
where parties secret-share elements, jointly sample challenges, and reconstruct
values to verify correctness, leading to significant overhead.

In this work, we also utilize preprocessing techniques in order to enhance the
performance during the online threshold decryption phase. However, our offline
phase consists of a single broadcast round where parties send a batch of cipher-

text along with a batched ZKP. This makes the offline phase both intuitive and
efficient, yet allows the online phase to not involve heavyweight ZKPs. Our work
also provides a DKG protocol based only on an asynchronous broadcast consen-
sus channel. It generates the public FHE encryption key, the secret decryption
shares, as well as all the necessary public evaluation key parameters.

Sch Async| Modulus Dec. Share | Setup |Online|Offline
cheme Dec. Increase Size ZKPs | Phase
[BGGT 18] v/ | O(Nlog(N))] O(Nlog(N)) [Trusted] SH X
[BS23] v | O(log(N)) | O(log(N) (fj)) Trusted| SH X
[CCK23] v/ | O@log(N)) | O(log(N)N*®)| Trusted| SH X
[MBH23] X O(log(NN)) O(log(NV)) ARB SH X
[DDEK*23] v 0(1) 0(1) P2P Light | Heavy

Ours (PQ) v | O(N) O(N) ARB | Light | Light

Ours v O(1) o(1) ARB | Light | Light

Table 1: Comparison to Existing ThFHE Schemes. N is the number of par-
ties, ¢ is threshold. Our protocols refer to the version presented in Section 6
Protocol 2, that leverages preprocessing techniques, depending on whether the
construction plausibly maintains Post Quantum (PQ) security. In the setup col-
umn, schemes that rely on a trusted setup are marked ‘trusted’. Otherwise, P2P
and ARB refer to the underlying communication channel for implementing the
scheme. In this context, P2P stands for secure Peer-to-Peer channels while ARB
stands for Asynchronous Reliable Broadcast. Specifically, P2P channels are used
in [DDEK™23] during the offline preprocessing phase. In all schemes, the de-
cryption shares are broadcast. Schemes in the semi-honest (SH) setting require
generic heavywight ZKPs in order to handle malicious adversaries. Schemes are
considered to have lightweight ZKPs, when those can be efficiently batched and
offloaded to a preprocessing phase. In particular, the online threshold decryp-
tion phase does not involve verification of decryption shares. Finally, we mark
which scheme use a pre-processing phase. The preprocessing in [DDEK 23] is
considered heavyweight, as it involves robust multiplication over P2P channels,
in order to secretly share each bit of the decryption error, using [ACD¥19]. In
comparison, our pre-processing is a single broadcast round, with batched ZKPs,
which scales more efficiently with V.

1.3 Technical Overview

Achieving asynchronous threshold encryption schemes for schemes not based
on lattices (e.g., Tiresias [FMM™'23] based on Paillier [DJN10], Discrete Log-
arithm [DF91], or Class Groups [BDO23]) is typically straightforward. This is
because the linear relations directly carry over. However, this is not the case for
lattice-based schemes. As mentioned earlier, in the lattice world, the presence of
encryption noise poses some challenges.

One approach to address this issue, which we adopt and enhance, is “denomi-
nator clearing” [Sho00, ABV™12,BGG*18]. This technique involves treating the
error as a multiple of a specific value A which effectively removes all denom-
inators in the reconstruction coefficients. Following our running example, the
ciphertext now admits b = a-s+m+ A-p-e, the decryption share error term is
also multiplied by A, and sods; =b—a-s; + A-p- E. Then, upon reconstruc-
tion, the parties retrieve m + p(Ae + >, AN;E;) mod q. Importantly, A\, are
now all integral, and so if ¢ is large enough, the plaintext m can be extracted.
For this reason, it is best to have A as small as possible, which will translate
to tighter public parameters for the threshold encryption scheme, and improve
performance. However, inevitably, A does grow with the number of parties V.

The state-of-the-art approach [BGG'18] for arbitrary threshold yields A =
(N2, leading to an increase in the bit-length of the ciphertext modulus by
approximately log A = O(Nlog N). We observe that the high cost associated
with the above method is mainly due to the dependence on the assumption
of LWE (Learning with Errors). This is because the ring Z lacks a variety of
small elements. In contrast, multidimensional rings, such as polynomial rings,
contain many elements with small norms—often including at least one element of
norm one for each party in relevant scenarios (e.g., considered in this work). By
selecting these small-norm elements as interpolation points for Shamir Secret
Sharing, we can achieve a solution where the magnitude is A < 22V, With a
more detailed analysis, using symmetry and fundamental algebraic properties,
we can further reduce this factor to ~ 217,

Specifically, we select our interpolation points as +x* and set our denominator
clearing factor to A = (22 —1)-(z4—=1) -+ (#% —1)- (22 —1)--- (x5 —1). At first
glance, it may seem that there are not enough terms to cancel the denominator
of the Lagrange coefficient; however, the identity 22 — 1 = (x + 1)(z — 1), along
with some combinatorial analysis, demonstrates that it effectively clears the
denominator. When assessing the overall impact on error size, we must bound
terms of the form (z — 1) - (22 — 1)--- (2N — 1). To achieve this, we adopt an
elegant mathematical result from [Wri64]. We refer to Section 4 for details.

Notably, for at least a random subset of parties, we observe that the magni-
tudes are significantly smaller than what we can formally prove. In Section D,
we provide both experimental and heuristic analyses based on mathematical
conjectures regarding Sudler products, suggesting that the average factor is ap-
proximately O(2%12). This may significantly improve parameter estimation; in
particular, the scheme can be instantiated with realistic parameters for up to
a thousand parties. Unfortunately, we were unable to prove this heuristic, and
there are technical challenges preventing us from fully taking advantage of it.

To make our threshold scheme maliciously secure, we turn the above secret
sharing scheme over the ring into a publicly verifiable secret sharing (PVSS)
scheme by attaching each secret share sk; of the secret key sk with a public
verification key vk; = com(sk;), which can be thought of as a commitment to
the secret key. Upon decryption, each party sends its decryption share ds; along
with a zero-knowledge proof IT8(ct,ds;, vk;;sk;,) that proves its correctness.

Optimizations. The approach described above suffers from several factors: (i)
the size of the input ciphertexts is depend on the number of parties N, which in
turn affect the cost of homomorphic evaluation; (ii) the protocol is heavily built
on ZKP, and each decryptor must prove their partial decryption and verify at
least t proofs; and (iii) each party is required to perform their own recombination
of shares, but, in certain applications, it might be more effective for one party
to perform the computation. Below, we outline our approach to address these
weaknesses (see Section 6 for details).

The first point (i) can be resolved by applying a key-switch right before
threshold decryption. Namely, the input ciphertext and homomorphic evaluation
phase carry over with parameters independent of IV, resulting with a ciphertext
ct such that cty+cty -sk = pt+p-e mod q. We then apply a key-switch in order
to get a ciphertext of the form ctj + ct} sk =pt+ A-p-e mod Q, wherein Q
now depends on N.

For (ii), our key idea is to derive an encryption of the randomizer u corre-
sponding to the ciphertext ct’. Threshold decryption is then applied to obtain
the randomizer u rather than the underlying plaintext pt of ct’ directly. An hon-
est party can use the randomizer u not only to derive the plaintext pt, but also to
verify that ct’ is well-formed. Specifically, let (pky, pk;) be the associated public
key and assume ct, = upk, + peg,ct] = upky + pt + pe;. Then an honest party
can compute peg = ct, — upkg, and pt + pe; = ct] — upk,, extract eg,e; and
pt and check that the noises ey, e; are within bounds. Nevertheless, the cipher-
text ct’ may result from a homomorphic evaluation rather than fresh encryption,
and tracking the randomizer through operations such as modulus switching, key
switching, or bootstrapping is tricky. We therefore propose computing the ran-
domizer directly from ct’.

To do that, we leverage the fact that the ciphertext ct’ for decryption is a
result of a key-switching operation. Since key-switching involves a subset-sum
of the key-switching keys ks, we can express the randomizer u of ct’ as a known
subset-sum of the randomizers of the key-switching keys uys. Mathematically,
u = ugsct], where ct’ = (ct{, ct}) is the ciphertext before the key-switch. There-
fore, during the DKG the parties also generate encryptions of uys, and only the
parameters for those ciphertexts depend on V.

However, this approach incurs a security issue: computing the randomizer
u in the clear exposes a linear equation on uys, which together with the key-
switching keys may compromise the secret key. To mitigate this, we propose to
statistically hide the randomizer u of the ciphertext ct’ in an offline phase with
noise flooding. Concretely, in an offline phase, ¢t +1 parties broadcast encryptions
of zeros ¢t = E(0, ;) along with E(d;) and a zk-proof that ties the two. The
existence of one honest party ensures that @ =), ; statistically hides u?,
and the proofs ensure correctness of decryption. Then, instead of decrypting

E(u) = E(us)-ct}, the parties decrypt E(u+), and validate it against ct’+3 ", ct.

4 A rushing adversary cannot cancel out the honest parties contribution to %, due to
the ZKPs.

While this approach still involves ZKPs, it enjoys several benefits. First, the
ZKPs are offloaded to an offline phase, making the online phase closer to being
real-time. Second, the ZKPs prove statements over encryptions of zeros, inde-
pendent of the inputs and circuits to be evaluated. Consequentially, they can be
generated during idle periods of the system, and can be utilized during peak time.
Third, these ZKPs can be batched (see e.g. [ABGS23]), which can significantly
decrease the amortized overhead. Fourth, since the value v+ 4 can be effectively
perceived as a succinct proof of correct decryption, only one party has to com-
bine the decryption shares during the online phase, which takes O(N) time. As
a result, when the network is receiving a batch of > N of threshold decryption
requests, the amortized cost of decryption per party is O(1), independent of N.

Finally, as for (iii), we observe that the encryptions of the randomizers can
be instantiated with any threshold additively homomorphic encryption (TAHE)
scheme. By utilizing TAHE schemes with ciphertext size independent of NV,
(e.g. [BDO23] based on Class-Groups and [FMM™*23] based on Paillier), we
achieve O(1) communication complexity per party.

Nevertheless, the drawback of the above approach is that it does not support
identifying corrupted parties. We therefore require parties to provide ZKPs for
partial decryption as before. If any of the verification steps in the key-switching-
based solution fails, the protocol examines these ZKPs to identify the cheaters.

2 Preliminaries

2.1 Notation

The computational and statistical security parameters are denoted by x and o,
respectively. We use poly(z) and negl(z) to represent generic polynomial and
negligible functions in z, respectively. For an integers mi, ms € Z, we denote by
[my1,me] := {ma,...,ma}, and [my] := [1, m;] for brevity. For a € Z, we denote
by [a], the unique integer in Z, with [a], = a mod ¢. For a polynomial g(x) =
SR gia' € Zla] we denote [lgl, = 3> Jgil and gl = maxoci<aes o |gil
0<i<degg

Given a polynomial ¢(z), we define a new norm ||g|| . 4 = |lg mod @|| . Public
encryption of a plaintext pt with public key pk is denoted by ct = E(pk, pt) and
decryption of a ciphertext ct using secret key sk by D(sk,ct). In a slight abuse
of notation, we denote by E«(pt, a,e) the affine function a - sk + pt + e.

2.2 Communication and Security Model

Communication. Our protocol is implemented over an asynchronous reliable
broadcast (ARB) channel. Our DKG protocol is realized over a consensus pro-
tocol that is implemented on top of the ARB channel. In particular, the honest
parties receive messages in the same order. Therefore, they can reach an agree-
ment on the set of valid ¢ + 1 messages sent in a previous round and the corre-
sponding set of participants. This is written implicitly in the description of our
DKG protocols.

10

Adversarial Model. The adversary statically corrupts up to ¢t < N parties, where
t 4+ 1 parties are required for threshold decryption. In addition, the adversary
can proactively and adaptively block or delay messages. Due to theoretical limi-
tations, the adversary may delay or block up to f < N/3 in each communication
round. The adversary also has access to the headers of any communication be-
tween honest parties and ideal functionalities, and for ease of exposition, we
assume this implicitly throughout without explicitly stating it each time.

We note that in case f > N/3, the adversary may fork the network into two
disjoint components. This may result with a key-recovery attack. For instance,
if the same preprocess round is used for two threshold decryption online rounds,
the adversary will get linear equations over the secret key. Also, ift+1 < N — f,
the adversary can DOS the system by blocking f parties. Therefore, typically
one sets t = |2N/3] and f = [N/3].

2.3 Homomorphic Commitments

Commitments are a cryptographic primitive that allows a party to commit to
a specific value while keeping that value hidden. We refer to Appendix A for a
formal definition based on [Gro09]. A commitment scheme is considered homo-
morphic if the message space MS,,, randomness space RSpp, and commitment
space CSpp are equipped with an algebraic structure, often abelian groups. In
this case, com serves as a homomorphism between MS,, x RS, and CS,,,. Here,
pp denotes the public parameter.

2.4 Zero Knowledge Proofs (ZKPs)

A Zero Knowledge Proof (ZKP) is a cryptographic technique that enables one
party (the prover) to convince another party (the verifier) that a given statement
is true, without disclosing any additional information beyond the truth of the
statement itself. For formal definitions of ZKPs, we refer to [GO94].

In our ThFHE protocol, all statements can be framed as linear equations over
a polynomial ring Rg and a set of range claims. Namely:

LB ={(Y;z) e RY) | Az =Y Mllz|w < B},
where A is a matrix over R¢. For instance, the relation of a public-private key-
pair b = as + e can be expressed with = (s,e) and A = (a, 1), and the norms
of the secret key s and noise e can be bounded. The same applies to public
or symmetric encryption, the decryption shares, the key-switching key and the
relinearlization key.

There are efficient constructions for proving a batch of such statements,
with logarithmic proof size [DPLS19]. While their scheme is based on Bullet-
proofs [BBB118] which is not PQ-secure, the work in [ABGS23] can be used al-
ternatively. It only supports statements over Zg wherein « has ternary {—1,0,1}
coefficients, but this can be easily generalized by introducing the number of

11

modulations mod @ as a witness (as internally done in [DPLS19]), and decom-
posing each witness in a ternary basis (similarly to the bit-decomposition used
in [DPLS19)).

2.5 Polynomial Rings, Ring LWE, and Public-Key Encryption

2.5.1 Polynomial Rings. For a monic, irreducible polynomial ¢ € Z[z]| one
can define a number field K = Q[z]/® along with the corresponding polynomial
ring R = Z[z]/®. In cryptographic applications, it is common to consider the
setting of cyclotomic fields where K = Q[x]/(®,(x)) where &, (z) is the n-th
cyclotomic polynomial. Specifically, the case where n = 2¢, i.e., powers of two,
is frequently used, and in this case @, (z) = 2™ + 1 is a typical choice.

For an integer () € Z, we can consider the modular ring Rg = R/QR.
The elements of Rg can be represented as polynomials a(x) = Z;L;Ol ajzl of
degree n — 1, with coefficients a; € Zg. This is referred to as the coefficient
representation of the polynomial. When we refer to a ring element a, we usually
mean its polynomial representation as a collection of coefficients a = {a; }?:_01.
For a ring R, we denote by R* the group of units (invertible elements) in R.

2.5.2 Ring LWE (RLWE). At a high level, the Ring Learning with Errors
(RLWE) assumption states that, for a suitably chosen @ and distribution x, the
following problem becomes computationally infeasible to solve in polynomial
time relative to n. Consider the following experiment:

— Generate a set of uniform ring elements a(¥) € R, where i € [m]. These

elements are obtained by uniformly sampling the coefficients of a polynomial.
— Select a ring element s € R¢ (referred to as the ”secret”).
— Sample ring elements e(*) € R from the distribution x for i € [m].

Define b®) = a(s + ¢ and consider the sequence of samples (a¥),b®),. For
m = poly(n), distinguishing this sequence from one where the b(@) are uniformly
sampled is computationally indistinguishable, provided that the distinguishing
process has polynomial complexity poly(n).

2.5.3 Public-Key Encryption. We use the BGV HE scheme [BGV14] and
provide an overview of its construction in Figure 6 (Appendix A). Note that while
we do not specify -(z) all sampled values including p and m can be chosen as
polynomials (in Z[z] and Z[x]/p respectively). This work details the adaptation
of our ThFHE protocol to implement a threshold version of the BGV scheme.
Additionally, our approach can be extended to support other schemes such as
FV [FV12] and CKKS [CKKS17], which have similar structures for secret, public,
and re-linearization keys. For instance, the re-linearization key in F'V is defined
as |k = (ag, [—ao - s + eg + s%]¢). Furthermore, our method can also be adapted
to include Torus-FHE, with details provided in Appendix F.

12

2.6 Shamir Secret Sharing over Polynomial Rings

A Secret Sharing Scheme is a cryptographic method for distributing a secret
among multiple parties such that the secret can only be reconstructed when a
sufficient number of shares are combined. Our scheme employs Shamir Secret
Sharing over polynomial rings, which is applicable to any commutative ring. We
denote by)\i 5= I g :31 the Lagrange interpolation coefficient at point
a’'eS\{a

B withset S CR using\; }E S. That is to say, for every polynomial f of degree ¢
over R and a proper set S (see below) of ¢ + 1 interpolation points, the following
equation holds f(8) = > cg)\gﬁf(a). We will use this over polynomial rings,
and so the polynomial ring elements a(z), 3(x) € R = Z[x]/P(z) may themselves
be represented as a polynomials.

Since the Lagrange coefficient formula involves fractions, in order for them
to be well-defined and for reconstruction to be possible, the set of interpolation
points must be an exceptional set [ACDT19]:

Definition 1 ([ACD"19] (Exceptional Set)). A setZ = {ay,...,an} CR
of ring elements is an exceptional set if for each o; # a; € R* have that

o; — oy € R*. The size of an exceptional set is defined as Bt := maux(”ai-c

k € {£1},i € [N]).

A (¢, N) Shamir secret sharing over a polynomial ring R may be defined as
follows. Let Z = {ay,...,an} be an exceptional set. Given a secret s € R, the
dealer samples r; + R and computes the polynomial f(X) = s+ 22:1 ri X7
R — R. It then sends to each party P;, associated with a unique non-zero
element «; from the exceptional set Z, its share, defined as [s]; = f(«a;). To
reconstruct the secret s, a subset S € (f[i_ﬂl
the shares they possess, namely:), o)‘51,0 - §; = S.

Hoo,@ :

) can use Lagrange interpolation on

2.7 Verifiable Secret Sharing (VSS)

A secret sharing scheme is termed Verifiable Secret Sharing (VSS) if it satisfies
two properties: (i) fairness, which ensures that a malicious dealer cannot gener-
ate verified shares that lead to different secrets for different subsets of parties.
In other words, all subsets reconstruct the same secret; (ii) secrecy , which guar-
antees that no information about the secret is revealed during the protocol. We
adapt these definitions from [Fel87, Sha79]. For a more comprehensive under-
standing of Shamir secret sharing over a ring, we refer the reader to [Feh98].

Definition 2 ([Fel87]). A Verifiable Shamir secret sharing scheme is consid-
ered fair if, for every polynomial-time dealer D, it is impossible to produce shares
s; such that) ;¢)\g,isi # D icy /\g:isi for two different sets S, S’ € (t[f]l) con-
sisting only of verified shares.

Definition 3 ([Sha79]). We say that a secret sharing scheme is t-secret if
for any set of corrupted parties U such that |U| < t, any two secrets s,s' € R
and independent random coins, the distributions of the resulting private shares
{sitiev and {s.}icv, are statistically indistinguishable.

13

2.8 Publicly Verifiable Secret Sharing (PVSS)

A VSS scheme is public if any party can check the validity of the sharing and
reconstruction phase. Typically, the dealer publishes encrypted shares of a secret
so that parties holding the corresponding decryption keys may later reconstruct
it. The encryptions are attached with proper ZKPs that enable verification of
their validity by any party, including parties that did not receive any share. Both
dealing and reconstruction are non-interactive, which is useful for distributed
key generation (DKG) protocols, especially under asynchronous broadcast-only
communication channels [CD24]. In the context of threshold decryption it is
enough to have public verifiability on the sharing as the secret itself is never
fully reconstructed. Thus we only present the parts of the formalism which will
be relevant to this paper.

Definition 4. (PVSS [CD24]) A PVSS scheme includes the following:

— Setup: pp + Setup(1%,aux) outputs public parameters pp given a security
parameter and auziliary data, specifying the number of parties N, recon-
struction threshold t, and the space of secrets C R. In addition, each party
P; € P is associated with a public encryption key pk;, attached with a ZKP
H;k of knowledge of a corresponding secret decryption key sk;.

— Secret distribution: ({ct;}icny, { Fk }eefe]s Hshare) < Dist(pp, s), computes a
secret sharing [s| of s, and outputs encrypted shares ct; = Ep,([s]i), com-
mitments on the secret polynomial F', along with a proof that they are correct
Hpare. The verification key of party © is then homomorphically evaluated as
vk; = >0, Fra¥ = com(f(;)).

— Decryption Share: [s]; < DecShare(pp, sk, ct;), outputs a secret share [s]; =
Dek, (ct;). It can be self-verified as it opens the commitment vk, = com([s];).

— Reconstruction: (s") < Rec(pp,{[s]i}ics) reconstructs the secret given a set
S of t + 1 decryption shares.

We refer the reader to [CD17,CD24] for further details about the game based se-
curity definitions of a PVSS scheme. We will used the IND1 variant from [CD17]
as presented in Appendix A.

3 System Overview

In this section, we cover in a high-level the components of a distributed system
that is based on a ThFHE scheme. The system, depicted in Figure 1, is composed
of four entities: (i) clients, (ii) evaluators, (iii) decryptors, and (iv) a distributed
ledger. Essentially, the clients, each holding some private data pt;, want to ag-
gregate their inputs and learn a common output y = f(pty,...). The evaluators
are responsible for the computation of f, which might also be private.> The
decryptors are responsible for decoding and retrieving the output y.

5 The evaluators may be realized by a service provider, in which case f may be a
private IP.

14

Clients

Evaluators

(Ledger)

Fig.1: A potential design of a distributed system based on ThFHE scheme, as
described in Section 3.

First, the set of decryptors D participate in a Distributed Key Generation
(DKG) protocol. This is a distributed setup protocol that is responsible for gen-
eration of a public encryption key pk, a verifiable threshold secret sharing of
the corresponding private key [sk], [pk], as well as an evaluation key evk used for
homomorphic evaluation. After the DKG is done, the clients {C;}; encrypt their
private inputs ct!, = E(pk, pt;) using the public key pk, and broadcast it, e.g. by
posting it on a distributed ledger. This of course, keeps their data private. Then,
each currently available evaluator E; uses the evaluation key evk to homomorphi-
cally aggregate and evaluate the function f, deriving ctiut = EV(evk, ctiy, f), and
broadcasts it on the ledger.® Then, the decryptors invoke a one-round threshold
decryption protocol that works as follows. Each currently available decryptor Dy,
applies a majority vote to determine the output ciphertext to decrypt ctout. Each
decryptor uses its secret key share ski to compute and post a decryption share
dsi = PD(ctout;ski), and potentially adds a ZKP of correctness of the decryp-
tion share, which binds the decryption share dsi to (vkg, ctoyt). The decryption
shares are then aggregated to derive the plaintext results y. Since this is public
computation, it can be conducted by the evaluation parties and posted on the
ledger, from which clients may retrieve the majority output.

Keeping the above system in mind, we recognize that large-scale applications
should tolerate congestion spikes, potentially by exploiting idle periods for pre-
processing. To this end, we also propose a pre-processing routine, independent of
client encrypted inputs, that can be executed by the decryptors in idle periods.
Upon receiving decryption requests, that pre-processed can be used to enhance
the performance of the threshold decryption phase. In particular, the decryption
output can be verified without verifying each decryption share ZKP. As a result,
instead of letting each evaluator to compute each plaintext, this work can be
evenly split among them, yielding an amortized cost of O(|D|/|E|) for combining
the decryption shares.

5 Alternatively, a service provider may verifiably compute ctoy, by attaching a
SNARK [BCCT12] proof of correct computation.

15

3.1 Ideal ThFHE Functionality

In this section, we present the ideal threshold FHE functionality Fryrye, which is
outlined in Functionality 1. The functionality is composed of two sub-routines:
key generation, which is realized by a DKG protocol, and decryption, realized by
an asynchronous threshold decryption protocol. In addition we give an additional
functionality Free - (Functionality 2) which is analogues to Fryege but uses a

decryption which reveals the encryption randomizer.

FUNCTIONALITY 1. (ThFHE- Frusz)

PARAMETERS: a set of N parties P = {P,};c|n}, & threshold ¢t < N/3, an ad-
versary A controlling a subset of the parties P4 C P (|Pa| < t), an encryption
scheme (G, E, D) with an affine key-homomorphism.
BEHAVIOR:
1. Setup: Upon receiving a command (keygen, sid, P;) from party P; € P,
send to A and record (keygen,sid, P;). After recording ¢ + 1 requests for
a given sid, generate a key triplet (pk,evk;sk) < G(1%), and send pk, evk
to A.
— Upon receiving (bias, sid, d, €) from A, set sk < § - sk + £, update the
public key pk and evk accordingly.
— Record (sid, pk, evk; sk) and send (pk, evk, ||d]|co, ||€||sc) to all parties.
2. Decryption: Upon receiving a command (decrypt, ssid, ct, P;), for ssid =
(sid,...), and P; that is not recorded, if there is a record of (sid;...,sk),
send to A and record (ssid, ct, P;). Upon recording ¢+ 1 requests, compute
the plaintext pt = D(sk, ct). Then, broadcast pt to all parties.

CCA Security. As FHE schemes cannot be CCA secure, if an adversary manages
to decrypt an adversarially chosen ciphertext, it may extract the secret key sk.
However, the functionality decrypts only after £+ 1 parties request decryption of
a ciphertext, which must include one honest party. Therefore, as long as honest
parties validate that the ciphertexts are safe to decrypt, this will not lead to a
chosen ciphertext attack. In the system described above, input ciphertext should
be attached with zk-proofs of well-formedness, and a threshold of ¢.+1 evaluators
should be required to accept a ciphertext for decryption. Note that indeed, if the
adversary controls more than t. evaluators, or more than t decryptors, it will be
able to extract sk.

RKA Security. Our functionality allows the adversary to add a multiplicative
and additive bias to the secret key. This is a requirement of our asynchronous
DKG protocol, see discussion in Section E.5. In turn, we require the encryption
scheme to be key-homomorphic, which ensures semantic security even under
Related Key Attacks (RKAs) [AHI10].

In the following sections, we focus on realizing the decryption part of the
functionality.

16

4 Shamir Secret Sharing Over Rings

In this section, we present an adaptation of Shamir’s Secret Sharing scheme
[Sha79] over finite prime fields. Our adaptation is somewhat captured in [DS-
DFY94], who generalized Shamir Secret Sharing to carry over polynomial rings
and modules. We adapt their approach, in order to make it compatible with
asynchronous lattice-based ThFHE schemes. Intuitively, under this setting, as ob-
served in [BGGT18], it is also important to keep the interpolation points and
coeflicients small. Essentially, the secret sharing scheme over R should mini-
mize the norm of the following parameters:

— The size Bz of the exceptional set of interpolation points Z (see Lemma 2).
This affects the security proof of threshold decryption.

— The denominator clearing factor A, the Lagrange coefficients at zero Ay, and
the products AA (see Corollary 1 and Lemma 4). This is essential for both
the correctness and security of the threshold decryption algorithm.

Remark 1. Our proposed instantiation exploits the specific structure a the power-
of-two cyclotomic ring Rq = Zg[z]/P2n(x) where @o,(z) = ™ + 1. Nonetheless,
the vast majority of RLWE-based schemes work over cyclotomic rings.”

4.1 Instantiation of Z

Next, we propose a concrete instantiation for the set of interpolation points Z and
later for the denominator clearing factor A. We assume N < n, which we argue
to be reasonable for most settings (e.g., typically security requires n > 1000,
and N < 1000). Also for ease of exposition, we take N =0 mod 6. The set of
interpolation points is then fixed as T = {(—1)‘a7 : (i,5) € {0,1} x [§ —1]}.
Looking ahead, each party P;; will be associated with the interpolation point
(—1)'27. Given Lemma 1, we show that Z is an exceptional set of minimal size
in Lemma 2.

Lemma 1 ([ACD"19]). Let @5, (z) = 2" + 1 be the power-of-two cyclotomic
polynomial. Let g € Z[z] be a polynomial of bounded degree deg(g) < M(n — 1)
for M > 1. Then ||g||oo,q5 < Mgl -

This lemma allows us to essentially operate within Z[X] and subsequently
estimate the norms in our ring.

Lemma 2. If Q) is odd, then T is an exceptional set of size Bz = 1.

Proof. According to Definition 1, our goal is to prove that the difference between
any two points (4,7) # (¢',4’) in Z is invertible. To achieve this, we examine the
following cases.

— If j = j', we obtain an element of the form #+2x7. Since @ is odd, 2 is
invertible. Also 27 is invertible in R, as 27 - 2”77 = 2" = —1 mod &y, (7).

" Our instantiation can be generalized to work with normed, Z-graded rings [Mar93].

17

— If (WLOG) j > j/, and i = i/, we have +(2/ —27") = 42 (27=7" — 1) which
requires us to verify that z7=7 — 1 is invertible. o
— Similarly, if j > 5’ and i # ¢’, we need to show that 777 + 1 is invertible.

It remains to show that the expressions 27/ + 1 for all j € [N/2] are invertible.
Indeed, as (x — 1)(1 +z + -+ 2" 1) = 2" — 1 = —2, we get that the inverse
of (z — 1) is exactly —275(3_1"_; z). By replacing z in this equation with —z
we obtain that x + 1 is invertible as well. Lastly, by substituting x < z7, we
can conclude that =7 4 1 is always invertible. As for the size of Z, we have
H:I:nciHm,Q5 = 1. Furthermore, { (:I:gci)_leﬂ5 = H¥:1c"_iH00745 =1, as required.

O

4.2 Instantiation of A

Next, we propose a denominator clearing factor A with respect to Z defined
above. Recall that its purpose is to cancel out the denominator terms of all
Lagrange interpolation coefficients. Therefore, we first show that indeed A-)\a 1,0
are all integral over Z[z], and bound their norms. This is done in Theorem 1, a
crucial technical theorem in this paper. Then, we use techniques from [ACD*19]
in order to bound their norms in the cyclotomic ring R.

First, let us briefly discuss the rationale the lead us to the selection of A.

Seemingly, the first choice that comes to mind is Ay = (?:1 22¢ —1)2. The idea
being that, the term x¢ — 1 may appear only twice per each Lagrange coefficient,
as we must have |j — j'| = e and ¢ = ¢’. Similarly, the term z° + 1 only appears
for |[j —j/| =eand i # 7.

This can be further refined by recognizing that the term +2¢—1 may appear

twice only when e < %, as otherwise |j — j'| = e has only one solution. This

leads to Ay = (il x%¢ —1)((?:1 x%¢ — 1), since only the lower half of the
possible exponents should appear twice in the multiplication.

Finally, we observe that even after removing the last N/12 terms from Ay,
there are still enough terms left over in order to cancel-out all denominators.
Essentially, we exploit that fact that the terms of the form x®+1 can be canceled
out by both x2¢ — 1 and z*¢ — 1. Formally,

Theorem 1. Let A = 2] (z?¢—1) [[(2% —1). Then for every subset
€3] JElF]

S c {0,1} x [— 1] such that 1 < |S| < N and every distinguished el-

ement (ig,j0) € S, (1) AAEgio,jo),O € Zlz] C Q[z] is a polynomial; and (2)
S SN

)‘A)\(io,jo)yoHl <247,

Proof. Recall that the Lagrange interpolation coefficient at the point 0 with the

set S can be expressed as follows:

> i > J
g (71)(%]‘)55\{(1'04'0)} 2 (19)€S\{(ig.jo) }
A(io»jo),o - 1 (—1)iwd — (—1)iogio

(1,5)€S\{(40,40) }

18

e> N/4 e> N/4 2e>N/3 e>NI/6 e>N/6 2e>NI/3
T — T ——

— N—_
LT T T T [: [TTITTTETTTIT]

1) Jo J N2 1) Jo J N2 A 7 Jo J NI2
(a) Stage 2a (b) Stage 2¢ (c) Stage 2¢

Fig. 2: Double cancellation analysis.

First, if (1 — 49, jo) € S, the corresponding term in the denominator would
be 42z70, which is canceled-out with the factor 2 in A. We therefore assume
WLOG that it is not the case. In addition, we disregard the numerator, as it
has no bearing on the integrality of the expression, and is of norm one. Indeed,
if we denote,

I, : = H (1‘26 _ 1)’ II.: = H pI—Jo + (_1)io+i+1
e€[§ —1] (4,5)€S\{(40,50) }:3>7o
HQ L= H (I2e — 1), H< M = H S(}jo_j —|— (—1>i0+i+1
e€[¥] (2,5)€S\{(d0,50) }:i <jo
Then, we have:
S A 2111115

— A€ —
iA)‘(zo,go),o T I z 11
where ¢ := > j. To prove the first statement of the theorem
(1,5)€5\{(40.40) }:5>Jjo
(1), we need to show that we can cancel all terms in both IT. and I, using
II, and II5. First, we will provide a summary of our approach, followed by an
explanation of its effectiveness. Our method operates in two stages:

1. If a term x® £ 1 appears in the product I1., we cancel it with the corre-
sponding term x2¢ — 1 = (2¢ — 1)(2¢ + 1) in II;.

2. If a term z€ =41 appears in the product I1-, we proceed differently depending
on the value of e and the outcome from stage (1).
(a) Ife > %, we cancel it using the term z2¢ — 1 from IT;.
(b) Ife < %, we cancel it using the term x2¢ — 1 from I15.

(c) If & < e < I, and the term x — 1 in II; has not been canceled yet,

we cancel it there; otherwise, we cancel the term z4¢ — 1 in IT;.

Next, we prove that no term in the numerator is used twice.

1. At the beginning of stage 1, no terms have been canceled yet. Moreover, note
that in both 115 and II., each term x°+ 1 may appear only once, when the
terms are not factored. For instance, we cannot have (z2 — 1)2, but we may
have (22 — 1)(z* — 1) = (22 — 1)?(2? + 1). Lastly, since 1 < e < & — 1, the
term 22¢ — 1 is indeed present in I7;.

2. Next, we show that there are no double cancellations at stage 2.

19

(a) For demonstration, consider Figure 2(a). Since e > I, the equation
|j — jo| = e has at most one solution for j € [§]. Because there is a

solution with j > jg (in blue), there is no solution with j < jo (j/ in

turquoise). Thus, the term x2¢ — 1 from II; was not used in stage (1).
Furthermore, as each term in I1~. appears at most once, we do not cancel
the same numerator term more than once in this stage.

(b) By this stage, we have not utilized any terms from II5. Additionally,
since I1~ has no duplicates, we cannot cancel the same term twice.

(c) We show that 2*¢ —1 could not have been canceled in any of the previous
stages. First, assume it was canceled in stage (1), as in Figure 2(b). Then
22¢ £ 1 appeared in IT (5’ in turquoise), and therefore, jo > 2e > N/3.
But since 241 appears in ITs (j in blue), we know that N/2—jo > e >
N/6. Combining the two, we get N/2 = jo+ (N/2—jo) > N/3+ N/6 =
N/2, a contradiction. Otherwise, assume the term z4¢ — 1 from II; was
already used at stage (2). This is depicted in Figure 2(c). It must have
been used at stage (2a), as in stage (2b) only terms from I15 are used. In
particular, the term 22¢ £ 1 must have appeared in IT~ (j in turquoise),
which means that N/2 — jo > 2e > N/3. In addition, we know that
the term 22¢ — 1 in II; was already canceled. If it was canceled with
an element from I7. (5" in turquoise), then jo > e > N/6, and we get
N/2=N/2—jo+jo> N/3+ N/6 = N/2, a contradiction.

Therefore, we deduce that it was canceled by an element from II~. But
since there is only one element in I~ of the form x¢+ 1 and of the form
2¢ — 1, the term z2¢ — 1 can be used to cancel out both of them.

Next, we turn to the evaluation of the norm required to prove (2). First,
observe that multiplying by ¢ does not affect the #;-norm of a polynomial. We
will establish a bound on the norm by counting the number of terms and utilizing
the sub-multiplicativity of the ¢;-norm.

If a term was canceled in Stages 1, (2a), or (2b), the total number of numera-

tor terms may only decrease. These cancellations take the form (z2¢ — 1) — 2¢ £ 1

or ¢ + 1 — 1, where we use the notation — to indicate “turns into”.

Finally, if a term was canceled in stage (2c), it could introduce a single term
to the numerator as follows: 2#¢ — 1 — (22¢ 4 1)(2® £ 1). This can happen for at
most % — % — 1 terms. Therefore, the total number of terms we have in L1112

VDI

is at most % + % + % — % —1= %N— 1. Each term is of the form ¢+ 1, which
3

has a ¢1-norm of 2. This allows us to bound the norm by % Recalling that

A = 2I1, 15, the overall bound is 21N, O

In what follows, we state the necessary upper bounds to complete our con-
struction. The proofs are are provided in Section E.1.

Lemma 3. [|A|_ < 1.25N

2

‘ z

Corollary 1. With the same notations as above, we have (1) | Al 4 < 1.23

S
and (2) || A - AUMO)’OHW,%

w

n

2,3
< Aoty

20

N .

)

Uu{0}

Lemma 4. For any U € ([1;[]) we have that H)\O (i0,0)

‘ <9t
1,6

5 Threshold Decryption

Our Protocol. We refer to Appendix C for a proposal of a DKG protocol that
UC realizes the setup phase of Functionality 1. In what follows, we focus on
threshold decryption. First, we note that the encryption process also has to be
adjusted. The encryption process is similar to the classic HE scheme, but instead
of adding the error term e < xg, the encrypting party adds A - e. That is, the
error term is multiplied by the denominator clearing factor from Section 4.
Furthermore, to align with our Shamir secret sharing scheme from Section 4,
we re-index the set of decrypting parties by using elements of {0,1} x [§ —1].
Namely, P = {Po,0, P10, Po1,Pi1,--- 7Po,%—1a Pl,%_l}. The error domains for
encryption and distributed decryption, denoted yg and xp, are both uniform
distributions over a sphere defined by the norm |||, 4 with radii rg,7p, re-
spectively. Protocol 1 formally presents the construction of our ThFHE scheme.
Notably, the probability of zero flooding is negligible due to the statistical se-
curity parameter o in the condition on xp. We denote by I7®"° a zk proof of
correct encryption and IT9 a zk proof of correct decryption share generation.

PROTOCOL 1 (ThFHE Construction (Imruz))

1. Key Generation: The parties execute IIpkg (Protocol 5). Each party

P; € P receives the secret share sk; of sk, the public key pk = (a,b) where

a < Rg and e < xe, and b = E«(0, a, pAe), and the set of verification keys

{vk; = COMasync(sk;)}p;ep of all parties. The protocol may also output a

homomorphic evaluation key evk.

2. Encryption(pt):

(a) Sample 3, &g, €1 < XE-

(b) Compute ctg = Es(pt,b,pAéy) and cty = E5(0,a,pAé1) and set ct =
(Cto7 Ctl).

(c) Generate a non-interactive ZK proof IT*"°(ct; pt, §, €9, €1) of correct en-
cryption and broadcast (ct, IT°"¢).

3. Distributed Decryption(ct):

(a) Upon receiving the ciphertext ct = (cto, ct1), each party P; € P:

— Samples e; <+ xp and computes the decryption share
ds; = cty - sk; + pAei.

— Computes a ZK proof II{(ct,ds;, vk;;sk;, e;) proving the correct-
ness of ds; and broadcasts (ds;, Hfs).

(b) Upon receiving (ds;, II$°) from another party Pj, each party P; verifies
the proof H;’S(ct, ds;,vk;). If invalid, ignore the message, and otherwise
record it.

(¢) Upon recording ¢ + 1 decryption shares from a subset S; of parties,

computes and broadcasts pt = cto — > /\iiods]- mod p.
JES;

21

The correctness and security of the above construction are stated in Theo-
rems 2,3 below, and their proofs are in Appendix E.7.

Theorem 2. Assume that the distributions xg, xp are supported on balls of radii
TE, D respectively, with respect to the ||-|| . 4 norm. If ct is an encryption of pt
with error of size at most B and plaintext modulus p, then threshold decryption
with e (Protocol 1) will output pt if% > nN(NTQW (rp2iN 4+ B-1.25V),

Theorem 3. Assume that the distributions xg, xp are supported on balls of radii
TE, Tp Tespectively, with respect to the ||||ooq3 norm. If rp > n2t2°rg then g
(Protocol 1) UC-realizes the ideal functionality Frnrge.

Remark 2. Letting xg = axxe for a ring element o € R which is coprime to g, it
holds that RLWE with noise sampled from xg is equivalent to RLWE with noise
sampled from xg. A formal proof is given in Section E.2. In our case, A and
@ share no common roots over C, as the roots of A are roots of unity of order
strictly smaller than the roots of unity of @. Therefore, (Ap, q) = (2p,q) = 1.

6 Leveraging Preprocessing Techniques

Our Construction. Consider a ciphertext ct’ = (ct(, ct]) that satisfies:
cty + ct} - sk = pt + pe’ mod Q

with some small noise ¢/. We now convert ct’ into a “committed” ciphertext ct
such that (i) ct is still the encryption of pt. For ease of exposition, we consider
that ct can be decrypted using the same sk; (ii) the encryption of the randomizer
u associated with ct can be homomorphically evaluated. A threshold of parties
could decrypt this u, which “decommits” the ciphertext ct and allows extraction
and validation of the underlying plaintext.

For (i), we consider the key switching key ks from sk to itself as an encryption
of sk, namely ks = (uksb + pels + sk, uksa + pek®) for uys, ef, ek < yg, and set:

ct = (ksoct] + ctg, ksict))

We have:
ct; = (uksct))a + peksct]
and
cto = (ursct))b + (pefs + sk)ct) + ct))
= (uksct))b+ pt + ((pef + sk)ct| + pe’ — ct)sk)
= (uksCt})b + pt + (pefSct] + pe’)
Denote u = wuksct], e; = efct}, and ey = (efct] + ¢’). Then ct can be

presented as (ub+peg+ pt, ua+pey). Note that the noise e’ is bounded due to the
correctness of ct’. However, the added noise terms ek*ct} and ef*ct] would be too
large, which affects the correctness of decryption. Therefore, we need to reduce

22

the size of these products to ensure that the decryption of ct’ yields the desired
plaintext pt. There are two popular techniques for achieving this [BV11, GHS12].
We choose the approach that involves decomposing ct; into small coefficients as
it maintains the size of the ciphertext modulus. We refer the reader to [KPZ21,
Appendix B.1] for more details on how to apply this existing technique.

Regarding to (ii), the nice feature of the transformation described above is
that it allows for the homomorphic evaluation of the randomizer u associated
with ct to be computed based on the encryption of the randomizer wuys, since
u = uys - ctj. Therefore, it is sufficient to provide E(uys), where E is a thresh-
old additively homomorphic encryption scheme. The decryptors then compute
E(u) = ct; ® E(us), which is the encryption of the randomizer u.

As discussed, the value u is secret. We now mask the encryption of u as
follows. During the offline phase, each party P; € P samples u; < xg from
a noise distribution yg which is supported on balls of radii 7g. The radii 7
is chosen to statistically hide u. It then computes the encryption of zero with
randomizer ; as ¢t = (b + pely, a + pel) where €}, e} «+ xg, and the en-
cryption of u; as &; = E(pk, u;). Subsequently, it publishes ', (:At; along with
a ZKP HCt(cAtl;&L; u;, e}, et), demonstrating the correctness of &17&; and the
well-formedness of u;. Upon receiving a threshold of ¢ + 1 such pairs with valid
proofs, the parties output the homomorphic sums ct = > ct;, ct, = > &Z

Next, during the online phase, the decryptors first apply a key-switch to get
ct from ct’, and homomorphically evaluate E(u). Then, they compute E(u) @ ct,,
and use this ciphertext for threshold decryption. After some party successfully
combines the decryption shares and obtains u + 1, it can validate it with ct & ct
and derive the plaintext pt.

Protocol 2 presents our optimized ThFHE scheme. It leverages a semi-honest
decryption, which differs verification of decryption shares which is only executed
upon failure, to detect malicious parties a posteriori. We assume that the key
switching ks and the encryption of the associated randomizers wuys as ct, =
E(@) are computed during DKG. They can be computed in the same manner
as computing the relinearization keys. We denote by IT®" a zk proof of correct
encryption, by I1%" a proof of a correct encryption with regards to the message
0, and IT% a zk proof of correct decryption share generation.

The correctness and security of the optimized protocol is stated in Theo-
rems 4,5 below, and its proof is in Appendix E.8. To simplify the proof we assume
TAHE realizes Frane (Functionality 3). Similar functionalities (up to idiosyn-
crasies arising in the setup phase) have been proven both for Paillier [FMM™*23]
and Class-Groups [BDO23] based TAHE. The functionality the optimized pro-
tocol achieves is a analogues to Frypgg but uses a randomizer based decryption
instead of the regular decryption algorithm, We give the details of the function-
ality Frene > (Functionality 2) in Appendix E.8.

Theorem 4. Assume ct’ is an encryption of pt with error of size at most B

and plaintext modulus p, the key-switching key ks has error of size at most Bys
and ciphertext moduli Q. Then threshold decryption with Protocol 2 will output

23

PROTOCOL 2 (Optimized ThFHE C’onstruction)

1. Key Generation:

(a) P; has the Shamir secret share sk; of sk for a TAHE scheme with
encryption algorithm E. All parties hold the corresponding public
key pk, and the set of verification keys {vky}p, cp.

(b) All parties have the public key (a, b) of an RLWE-based FHE scheme,
a homomorphic evaluation key evk, as well as a key-switching key
ks from the corresponding RLWE secret key to itself.

(c) All parties have the corresponding encryption of the randomizers
for ks, ct'® = E(pk, ts).

2. Encryption(pt):

(a) Sample 3,¢ép,€1 < XE-

(b) Compute cto = Ez(pt,b,péo) and ct; = Ez(0,a,pé1) and set ct =
(Ct()7 Ct1).

(c) Generate a non-interactive ZK proof IT°"°(ct;pt, 3, €0, €1) of correct
encryption and broadcast (ct, IT").

3. Offline Phase(B):

(a) Each party P; € P samples a batch of B randomizers @; < Xxe, for 7 €
[B]. It computes the encryption of zero as ct”” = (ﬁ{b—&—é::g, 4l a+ébm)
where &57,é%7 < X, and the encryption of 4] as ct, = E(pk,a]).

(b) P; € S publishes (ct"",ct,”),c(p) along with a B-batched ZK proof
Hz_zero — Hzem(&zﬂ'; &ZT; uz—’ 66,7-’ e’;,T)TE[B]'

(¢) Upon receiving (ctT’i',cAtTyi/)Te[B] along with , ITZ™, P; € S verifies
the proof. If the proof is invalid, it ignores the message. Otherwise, it
records it.

(d) Upon recording a threshold of ¢ + 1 such messages, each party sets
& =Y, & and &t =Y, &. 7, and outputs (&, &t)) e ().

4. Distributed Decryption(ct’, 7):

(a) Upon receiving a ciphertext ct’ = (ctg, ct]), each P; € P decomposes
ct} and performs a key switch, deriving ct = (ksoct} -+ ctg, ksict}). It
also computes E(u) = ct} ® ct.

(b) Then, it computes E(u) @ ct,,, and computes a corresponding decryp-
tion share ds; along with a ZK proof IT&.

(¢) Upon receiving t + 1 decryption shares, party P- reconstruct a plain-
text w*. It uses it to open ct +ct .

— Upon success, it broadcasts u* to all parties, who will proceed to
similarly extract pt.

— Upon failure, it verifies the ZK proofs IT% of decryption shares
to identify the malicious parties and broadcasts their identities,
and awaits for t + 1 decryption shares with valid proofs.

pt if% > 27(B +1logy(n)Bks) and and the plaintext size of the TAHE scheme is
of size at least N - 2™ -2°(Q).

Theorem 5. If AHE is semantically secure additively homomorphic encryption
and TAHE UC-realizes ideal functionality Frare - then Protocol 2 UC-realizes
the ideal functionality of the decryption in Fmege in the Fpra-hybrid model.

24

7 Parameter Selection and Efficiency Estimates

In this section, we provide concrete parameter choices and runtime estimates for
the optimized variant of our threshold decryption protocol. Our analysis assumes
the use of modulus switching before threshold decryption, thereby minimizing
the error size. The smallest achievable modulus size ¢ depends on the encryption
scheme, primarily influenced by the ¢;-norm of the secret key and the expansion
factor of the ring. In practical settings, it typically falls within the range of 2% to
264 Another crucial factor affecting the total decryption error is the ring degree,
which varies based on noise growth, the computed circuit, and computational
security. For simplicity, we fix the computational security level at 128 bits, the
statistical security parameter at 40 and impose an upper bound of 2'3 on the
polynomial ring degree.

Plausibly Quantum Secure Construction. In this case, we use our RLWE-based
encryption with our denominator-clearing factor as the ThFHE. The adjusted
modulus, denoted by @, must accommodate log,(/N) noise growth from the
subset sum, and must be further adjusted according to Theorems 2 and 3. Using
this information, we compute the required value of) that supports threshold
decryption given ¢, n, and estimate the minimal polynomial degree n for Kk = 128,
based on lattice security estimates [ACC™*21]. The highest available @ in these
estimations is of size 880 bits. To illustrate how the parameters scale with NV,
Table 2 presents values for a fixed setting of log,(q) = logy(n) = 10.

Number of Parties log, (@) log, (1) Ciphertext Size (KB)
30 122.13 13 125.05
60 168.63 13 172.67
120 257.63 14 527.62
240 431.63 14 883.97
360 603.97 15 2473.85
480 775.63 15 3176.97

Table 2: Parameter choices and ciphertext size for logy(q) = logy(n) = 10.
Original ciphertext size is 1.28KB.

In terms of computational complexity, naive implementation requires O(t?)
ring multiplications to compute the Lagrange interpolation coefficients. How-
ever, more efficient interpolation algorithms exist (see [BSCKL21]), reducing
the complexity to O(t - polylog(t)) ring operations. Using NTT, the complexity
of a single ring multiplication is O(7 log(7) log®(Q)), leading to an overall com-
plexity of O(t - polylog(t)7log(n) log®(Q)). When using a SIMD FHE scheme to
encrypt the randomizers, such as our BGV variant, the randomizers from mul-
tiple ciphertexts for decryption can be combined upon threshold decryption to
compensate for increased ring degree 7.

25

Additionally, we present the dependency on log,(¢) and log,(n) in Figures 3
and 4. The weak dependence on both parameters suggests that the parameters
of the evaluation and threshold decryption schemes are essentially decoupled.

¢ Growth With Number of Parties (log2(n)=11) Comi Growth With Number of Parties (log2(q)=10)

3500

3000

200 2500

2000

& 2000

1500 1500

Decryption Share Size (KB)

Decryption Share

1000 1000

500

100 200 300 400 500 100 200 300 400 500
Number of Parties (N) Number of Parties (N)

Fig. 3: Fixed degree n. Fig. 4: Fixed modulus gq.

Non-Quantum Secure Construction. For our instantiation, we leverage Class
Group cryptosystems [BCD24] due to their transparent setup, though Paillier-
based cryptosystems [FMM™23] would yield comparable results. The optimized
threshold decryption scheme relies on additive homomorphic operations over
integers. As a result, multiple error coefficients can be packed in a single cipher-
text, reducing the overhead. The number of ciphertexts for threshold decryption
required to encrypt a single FHE randomizer, is approximately equal to the ratio
between the number of randomizers and the plaintext modulus. In Class Group-
based encryption, the plaintext modulus ga can be fixed. We adopt the setting
A = paqa with pa = ga to balance computational efficiency and communica-
tion overhead. Using ciphertext size estimates from [BCIL23], for a security level
of k = 128, this configuration results in ciphertexts of 4111 bits and plaintext
slots of 913.5 bits. The corresponding communication costs are summarized in
Figure 5 and are virtually independent of the number of parties.

Non-Quantum Secure Construction. For our instantiation, we leverage Class
Group cryptosystems [BCD'24] due to their transparent setup, though Paillier-
based cryptosystems [FMM™23] would yield comparable results. The optimized
threshold decryption scheme uses additive homomorphic operations over inte-
gers, allowing multiple error coefficients to be packed in a single ciphertext and
reducing overhead. The number of ciphertexts needed to encrypt a single FHE
randomizer is approximately the ratio of randomizers to the plaintext modu-
lus. In Class Group encryption, the plaintext modulus ga can be fixed; we set
A = paga with pa = ga to balance computational and communication costs.
Using estimates from [BCIL23], at security level x = 128, this gives ciphertexts
of 4111 bits and plaintext slots of 913.5 bits. Communication costs, summarized
in Figure 5, are virtually independent of the number of parties.

26

Decryption Share Size (KB)
1000

903 977 1051
- 800

] 267 304 341 378 a15 452 488 525
- 600

o 134 152 171 189 207 226 244

-400
IZDO

8 16 24 32 40 48 56 64
The Final Modulus Bit-Size: log2(q)

14
o
@
&
a
8
&

682 756

The Polynomial Ring Degree Bit-Size: log2(n}

=l
=

Fig.5: Heatmap of communication costs using Class Group TAHE.

Regarding computation time, we estimate that for a large number of parties,
the reconstruction phase will dominate the overall cost. Based on the estimations
in [BCIL23], performing a variable-time exponentiation on a key-sized number
(approximately 913.5 bits) takes around 71 ms on a standard laptop (Intel(R)
Core(TM) i7-8665U CPU @ 1.90GHz). In the threshold scheme, the exponent
for reconstruction scales with N parties, and takes the form N! -)\g’j, which
appears to have a bit length of O(N -log(N)). However, this can be optimized to
an exponent size of O(N) per decryption share by factoring out common terms,
as |[N!-)\g)j = (IJV) TLiepp s i = dl - [lies @ The first factor has size O(N), and
the last factor is common across shares. While the middle term appears to have
size (n—t)!, in practice, many common factors with (zjv) cancel out, significantly
reducing the effective size.

Additionally, we employ multi-exponentiation [Pip80], which allows simulta-
neous squaring for all bases and restricts multiplications to only the necessary
cases. Since the algorithm involves roughly twice as many squarings as multipli-
cations, this yields an additional speedup factor of approximately 3 (depending
on the running time of squaring vs multiplying in the group). Consequently, the

total computational cost can be estimated as:

1 . N
t -(ng(q)(Jra)) L. Tom(a) T
=~ (6] (0]
Dec Shares 62144 62194
#Ciphertexts Evaluation Time Per Share

Since only a single party is required to perform this operation per ciphertext,
the cost can be amortized over N ciphertexts. For instance, with N = 120,
t = 80, logy(g) = 16, and logy(n) = 10, decryption of 120 ciphertexts takes
approximately 26.76 seconds. In throughput, this corresponds to around 4.48
ciphertexts per second. Assuming the original scheme supports batching, we can
achieve a throughput of approximately 4587 plaintexts per second.

27

References

ABGS23.

ABVT12.

ACCT21.

ACD™19.

AHI10.

AJLAT12.

ATZ23.

BBB*18.

BCCT12.

BCD*24.

BCIL23.

BDO23.

BGGT18.

Diego F Aranha, Carsten Baum, Kristian Gjgsteen, and Tjerand Silde.
Verifiable mix-nets and distributed decryption for voting from lattice-
based assumptions. In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, pages 1467-1481, 2023.
Shweta Agrawal, Xavier Boyen, Vinod Vaikuntanathan, Panagiotis Voul-
garis, and Hoeteck Wee. Functional encryption for threshold functions
(or fuzzy IBE) from lattices. In Marc Fischlin, Johannes Buchmann, and
Mark Manulis, editors, PKC, 2012.

Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser,
Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin
Lauter, et al. Homomorphic encryption standard. Protecting privacy
through homomorphic encryption, pages 31-62, 2021.

Mark Abspoel, Ronald Cramer, Ivan Damgard, Daniel Escudero, and
Chen Yuan. Efficient information-theoretic secure multiparty computa-
tion over via galois rings. In Theory of Cryptography Conference, pages
471-501. Springer, 2019.

Benny Applebaum, Danny Harnik, and Yuval Ishai. Semantic security
under related-key attacks and applications. Cryptology ePrint Archive,
2010.

Gilad Asharov, Abhishek Jain, Adriana Lépez-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold the. In EU-
ROCRYPT, 2012.

Christoph Aistleitner, Niclas Technau, and Agamemnon Zafeiropoulos.
On the order of magnitude of sudler products. American Journal of Math-
ematics, 145(3):721-764, 2023.

Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wauille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE symposium on security and privacy
(SP), pages 315-334. IEEE, 2018.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In Proceedings of the 3rd innovations in the-
oretical computer science conference, pages 326-349, 2012.

Lennart Braun, Guilhem Castagnos, Ivan Damgard, Fabien Laguillaumie,
Kelsey Melissaris, Claudio Orlandi, and Ida Tucker. An improved thresh-
old homomorphic cryptosystem based on class groups. Cryptology ePrint
Archive, 2024.

Cyril Bouvier, Guilhem Castagnos, Laurent Imbert, and Fabien Laguil-
laumie. I want to ride my bicycl: Bicycl implements cryptography in class
groups. Journal of Cryptology, 36(3):17, 2023.

Lennart Braun, Ivan Damgard, and Claudio Orlandi. Secure multiparty
computation from threshold encryption based on class groups. In Annual
International Cryptology Conference, pages 613-645. Springer, 2023.
Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim,
Peter M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from
threshold fully homomorphic encryption. In Hovav Shacham and Alexan-
dra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS,
pages 565-596. Springer, Heidelberg, August 2018.

28

BGV14.

BS23.

BSCKL21.

BV11.

CCK23.

CD17.

CD24.

CDC24.

CGGI16.

CKKS17.

CL15.

CLO™13.

CLT18.

CM15.

DDEK™23.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully Ho-
momorphic Encryption without Bootstrapping. ACM Transactions on
Computation Theory (TOCT), 6(3):13:1-13:36, 2014.

Katharina Boudgoust and Peter Scholl. Simple threshold (fully homomor-
phic) encryption from lwe with polynomial modulus. Asiacrypt, 2023.
Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. Elliptic
curve fast fourier transform (ecfft) part i: fast polynomial algorithms over
all finite fields. arXiv preprint arXiv:2107.08473, 2021.

Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryp-
tion from ring-LWE and security for key dependent messages. In Phillip
Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 505-524.
Springer, Heidelberg, August 2011.

Jung Hee Cheon, Wonhee Cho, and Jiseung Kim. Improved universal
thresholdizer from threshold fully homomorphic encryption. ePrint, 2023.
Ignacio Cascudo and Bernardo David. Scrape: Scalable randomness at-
tested by public entities. In International Conference on Applied Cryp-
tography and Network Security, pages 537—556. Springer, 2017.

Ignacio Cascudo and Bernardo David. Publicly verifiable secret sharing
over class groups and applications to dkg and yoso. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 216-248. Springer, 2024.

Georgiana Crihan, Luminita Dumitriu, and Marian Viorel Craciun. Pre-
liminary experiments of a real-world authentication mechanism based on
facial recognition and fully homomorphic encryption. Sciences, 2024.
Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabacheéne.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1
seconds. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part I, volume 10031 of LNCS, pages 3-33. Springer,
Heidelberg, December 2016.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homo-
morphic encryption for arithmetic of approximate numbers. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASTACRYPT 2017, Part I, volume
10624 of LNCS, pages 409-437. Springer, Heidelberg, December 2017.
Guilhem Castagnos and Fabien Laguillaumie. Linearly homomorphic en-
cryption from. In Cryptographers’ Track at the RSA Conference, pages
487-505. Springer, 2015.

Ashish Choudhury, Jake Loftus, Emmanuela Orsini, Arpita Patra, and
Nigel P. Smart. Between a rock and a hard place: Interpolating between
MPC and FHE. In ASIACRYPT, 2013.

Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Practical fully
secure unrestricted inner product functional encryption modulo p. In
International Conference on the Theory and Application of Cryptology
and Information Security, pages 733—764. Springer, 2018.

Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key lev-
eled FHE from learning with errors. In Rosario Gennaro and Matthew
Robshaw, editors, CRYPTO, 2015.

Morten Dahl, Daniel Demmler, Sarah El Kazdadi, Arthur Meyre, Jean-
Baptiste Orfila, Dragos Rotaru, Nigel P Smart, Samuel Tap, and Michael
Walter. Noah’s ark: Efficient threshold-fhe using noise flooding. In Pro-
ceedings of the 11th Workshop on Encrypted Computing € Applied Ho-
momorphic Cryptography, pages 35-46, 2023.

29

DF9I1.

DJN10.

DPLS19.

DPSZ12.

DSDFY94.

Feh98.
Fel87.

FMM™23.

FVi2.
Gen09a.
Gen09b.

GHS12.

GO94.
Gro09.

HAG™23.

Joy23.

KG23.

KPZ21.

LATV12.

LPR13.

Yvo Desmedt and Yair Frankel. Shared generation of authenticators and
signatures. In CRYPTO, 1991.

Ivan Damgard, Mads Jurik, and Jesper Buus Nielsen. A generalization of
paillier’s public-key system with applications to electronic voting. Inter-
national Journal of Information Security, 9:371-385, 2010.

Rafaél Del Pino, Vadim Lyubashevsky, and Gregor Seiler. Short discrete
log proofs for the and ring-lwe ciphertexts. In PKC, 2019.

Ivan Damgard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Annual
Cryptology Conference, pages 643—-662. Springer, 2012.

Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to
share a function securely. In Proceedings of the twenty-sixth annual ACM
symposium on Theory of computing, pages 522-533, 1994.

Serge Fehr. Span programs over rings and how to share a secret from a
module. Master’s thesis, ETH Zurich, 1998.

Paul Feldman. A practical scheme for non-interactive verifiable secret
sharing. In SFCS. IEEE, 1987.

Offir Friedman, Avichai Marmor, Dolev Mutzari, Yehonatan C Scaly, Yu-
val Spiizer, and Avishay Yanai. Tiresias: Large scale, maliciously secure
threshold paillier. Cryptology ePrint Archive, 2023.

Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. ePrint, 2012/144, 2012.

Craig Gentry. A fully homomorphic encryption scheme. In 50th Annual
Symposium on Foundations of Computer Science, 2009.

Craig Gentry. A fully homomorphic encryption scheme. Stanford univer-
sity, 2009.

Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation
of the AES circuit. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 850-867. Springer, Heidel-
berg, August 2012.

Oded Goldreich and Yair Oren. Definitions and properties of zero-
knowledge proof systems. Journal of Cryptology, 7(1):1-32, 1994.

Jens Groth. Homomorphic trapdoor commitments to group elements.
Cryptology ePrint Archive, 2009.

Neveen Mohammad Hijazi, Moayad Aloqaily, Mohsen Guizani, Bassem
Ouni, and Fakhri Karray. Secure federated learning with fully homomor-
phic encryption for iot communications. IEEFE IoT Journal, 2023.

Marc Joye. Tthe public-key encryption revisited. ePrint 2023/603, 2023.
Dongwoo Kim and Cyril Guyot. Optimized privacy-preserving cnn infer-
ence with fully homomorphic encryption. TIFS, 2023.

Andrey Kim, Yuriy Polyakov, and Vincent Zucca. Revisiting homomor-
phic encryption schemes for finite fields. In Mehdi Tibouchi and Huaxiong
Wang, editors, ASTACRYPT 2021, Part 111, volume 13092 of LNCS, pages
608-639. Springer, Heidelberg, December 2021.

Adriana Loépez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-
fly multiparty computation on the cloud via multikey fully homomorphic
encryption. In ACM symposium on Theory of computing, 2012.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
lwe cryptography. In EUROCRYPT, 2013.

30

LPSY19.

Mar93.

MBH23.

MTPBH21.

MW16.

0OSV20.

Paig99.

Pip8&0.
RADTS.

RRJT22.

Sch99.

Sha79.

Sho00.
‘Wri64.

Yehuda Lindell, Benny Pinkas, Nigel P Smart, and Avishay Yanai. Effi-
cient constant-round multi-party computation combining bmr and spdz.
Journal of Cryptology, 32:1026-1069, 2019.

Tom Marley. Graded rings and modules. Some notes based on a five-week
course, 1993.

Christian Mouchet, Elliott Bertrand, and Jean-Pierre Hubaux. An effi-
cient threshold access-structure for rlwe-based multiparty homomorphic
encryption. J. Cryptol., 36(2):10, 2023.

Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe Bossuat, and
Jean-Pierre Hubaux. Multiparty homomorphic encryption from ring-
learning-with-errors. PoPETSs, 2021.

Pratyay Mukherjee and Daniel Wichs. T'wo round multiparty computation
via multi-key FHE. In FEUROCRYPT, 2016.

Emmanuela Orsini, Nigel P Smart, and Frederik Vercauteren. Over-
drive2k: efficient secure mpc over from somewhat homomorphic encryp-
tion. In RSA, 2020.

Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Advances in Cryptology-EUROCRYPT 99: International
Conference on the Theory and Application of Cryptographic Techniques
Prague, Czech Republic, May 2-6, 1999 Proceedings 18, pages 223-238.
Springer, 1999.

Nicholas Pippenger. On the evaluation of powers and monomials. STAM
Journal on. Computing, 9(2):230-250, 1980.

R L Rivest, L, Adleman, and M L Dertouzos. On data banks and privacy
homomorphisms. Foundations of Secure Computation, 1978.

Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and
Dominique Schroder. Roast: robust asynchronous schnorr threshold signa-
tures. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 2551-2564, 2022.

Berry Schoenmakers. A simple publicly verifiable secret sharing scheme
and its application to electronic voting. In Annual International Cryptol-
ogy Conference, pages 148-164. Springer, 1999.

Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612-613, 1979.

Victor Shoup. Practical threshold signatures. In EUROCRYPT, 2000.
EM Wright. Proof of a conjecture of sudler’s. The Quarterly Journal of
Mathematics, 15(1):11-15, 1964.

31

https://link.springer.com/content/pdf/10.1007/3-540-48910-X_16.pdf
https://link.springer.com/content/pdf/10.1007/3-540-48910-X_16.pdf

A Standard Definitions

For completeness, some standard definitions in the literature are provided in this
section.

Definition 5 ([Gro09]). A non-interactive commitment scheme consists of a
pair of PPT algorithms (setup, com). The setup algorithm pp < setup(1”, aux),
where Kk is a security parameter and aux is some auxiliary input, outputs the pub-
lic parameters for the commitment scheme. The public parameters pp also deter-
mine the message space MS,,, randomness space RSy, and commitment space
CSpp. The commitment algorithm comy, defines a function MSy, X RSpp —
CSpp. For a message x € MS,,, the algorithm draws v < Xpp from a distribution
supported on RSy, and computes a commitment C' = compp(z;7). Whenever
the public parameters are clear from the context we write com instead of comy,.

A commitment scheme usually has hiding and binding properties as follows:

— Computational hiding. For every PPT adversary A, every pp < setup(1”, aux)
and every xg,x1 € MSpp:

‘Pr[A(mo, x1,com(zp; 7)) = b — ;‘ < negl(k),

where the probability is under b — {0,1}, r < xpp and uniformly random
coins of A.
— Computational binding. For every PPT adversary A:

(o, x1,70,71) + A(setup(1”,aux))
<
' {com(mogro) =com(zy;r) Axog £ x1| — negl(x)
where the probability is under the random coins of A and setup. The above
assumes o, t1 € MSp, and 19,71 € RSpp.

Definition 6. ([CD17]) IND1-secrecy: We say that a PVSS is INDI1-secret if
for any polynomial time adversary Apyi, corrupting at most t — 1 parties, Apyiy
has negligible advantage in the following game played against a challenger:

1. The challenger runs setup as the dealer and sends the public information
to the adversary.

2. Apyi, creates secret keys for the corrupted parties and send the corresponding
public keys to the challenger.

3. The challenger chooses values xy,x1 at random in the space of secrets. Fur-
thermore it chooses b < {0,1} uniformly at random. It runs Dist(xp) and
sends all public information to A.

4. Apriy outputs b’ € {0,1}

32

PARAMETERS: The noise distribution y., The key distribution xs, the plaintext
space Rp, the key space Rg and 8 = |log,(Q)].

keygen(1™) — (sk, pk, Ik)
— Sample s < xs
— Sample a, a;c(p) + Rq and e, ejcg) < Xe
— Output (sk, pk, Ik) where sk = s, pk = (a,[—a-s+¢€]q), and Ik = {lki,...,lkg}
where Ik; = (ai, [—ai - s + e; + 2%5%]g) for (ai,e;)

E(pk,m) — ct
" — Sample u < xs and e1, e2 < Xe
— Let po = pk[0], p1 = pk[1]
— Compute co = [po-u+e1 + L%J -m]g and ¢1 = [p1 - u+ e2]Q
— Output (co,c1)
D(sk,ct) = m
— Let co = ct[0], c1 = ct[]]
— Compute v = [co +¢1 - s]g
— Output [—5— - v]p
L&)

EV(Ik,C,cty,...,cty) — ct
— Output E(pk,C(mu, ..., mk)) where m; is the plaintext of ct;. Note that the
multiplication involves reducing the size of the ciphertext (re-linearization),
which is achieved by using the Ik.

Fig. 6: BGV-based HE Construction. The fully HE scheme enables the computation
of addition and multiplication on ciphertexts. Since any function can be expressed
as a combination of XOR and AND gates, HE allows for the evaluation of arbitrary
functions on encrypted data. Thus, we use EV() to present the homomorphic evaluation
on any circuit C.

Definition 7 (RLWE). Let ®5,(x) = 2™ + 1 be the power-of-two cyclotomic
polynomial of degree n, let R = Z[x]/(P2n(x)) be the corresponding cyclotomic
ring and let ¢ € N be a prime, denoting Ry = Zg[x]/(Pan(x)). Let xe, xs be
distributions over R,.

For a ring element s € R, consider the distribution As over R? defined as
{(a,sa+e mod q)}, where a <~ U(Ry) is sampled uniformly, e is sampled from
Xe. Then the (decisional) RLWE problem with respect to parameters (n, q, Xs, XE)
is to distinguish As from the uniform distribution U (Rg), given an a-priori un-
bounded number of samples, where s is drawn from xs.

B PVSS over Polynomial Rings

In this section, we turn the secret sharing scheme over Rg above to be verifiable.
Looking ahead, we will use the verifiability property in order to derive verification
keys for the parties during DKG, which can be used to prove correctness of the
decryption shares during threshold decryption. Essentially, verification keys can
be thought of as a commitments to the individual parties secret shares. At the

33

same time, they bind the parties to use their shares upon threshold decryption,
as well as hide the underlying shares. Moreover, using a homomorphic encryption
scheme also assists with distributed generation and validation of the verification
keys, as shown in Appendix C.

Importantly, in our instantiation, secret shares sk; need not be small, and
only the secret key sk has a bounded norm. Therefore, taking an encryption of
zero com’(sk;; e;) = Eq, (0, a, ;) with bounded error as a verification key is not
binding. Namely, for any given a and a given value of the commitment, the adver-
sary can compute for each e; an sk; that will satisfy the relation. To this end, we
offer a commitment of the form com(sk;; e;, €}) := (E, (0,a, ¢;), Es; (0,a’,€})) =
(ask; + e;,a’,a'sk; + €}), where e; and e} are small. Here, a and a' are public
parameters of the commitment scheme, which can be shared among all parties,
and in particular can be used for multiple commitments.

Formally, we consider the following commitment scheme COM;gync
(setup, com). First, setup(1”,17,aux) outputs the ciphertext power-of-two
ring degree n, a prime modulus @ such that @, is irreducible mod @, and
noise distribution xg with support re such that the RLWE problem over Rq
is x-computationally hard. It then sets MS = Rg as the message space,
RS ={e € R: |lelq < max(re, V@ - 2-179/27)1 as the randomness space,
and CS = R?Q as the commitment space. Then, it samples (a,a’) + RzQ from
the random oracle @. The commitment com : MS x RS + CS is then defined
as com(s; (e,e')) = (as+e,a’s+¢'). Note that this alone will not actually be a
commitment and must be accompanied by a proof of of encryption with a secret
s and small errors e, e’ denoted IT°™. Its security is stated below:

Lemma 5. If II°®™ is computationally zero-knowledge and statistically (or
computationally) sound COMasyne s computationally hiding and statistically (or
computationally) binding.

Proof. Computational hiding follows directly from the RLWE assumption and
the zero-knowledge property of the zk-proof. As for statistically binding, we
bound the probability that there exist two solutions s1, e1, €} and s, ea, €5 such
that com(sy;e1,e]) = com(sa; ez, e)) and 51 # sa. Since @ is prime and Py,
is chosen irreducible mod @, Rq is a field. Therefore, these equations imply

that a = $1=%2) and o/ = 12520 which implies & = (el:ejl). Since a,a’ are
(e1 61) (e2 62) a (e2 52)
random, a/a’ is uniform over Rq, a set of |[Rg| = Q" ring elements. However,
ler — el oo.ar lez — bl .6 < V@ - 2-9/2n " and therefore, e; — ¢} and ey — €}
can take up to Q"2 -279/2 values, and so the ratio takes up to Q™ - 27 values.
Therefore by union bound, the chance that there exist such solutions is at most
279, which is statistically negligible. From the soundness of the zk-proof the
sender of the commitment must use errors bounded as above. ad

Building on COMggync, Protocol 3 establishes PVSS. We first prove that it is
a VSS via proofs of fairness and t-zero-knowledge are provided in Appendix E.3.
As all proofs in the protocol are publicly verifiable the overall protocol is a PVSS
similar to the simple optimized approach [Sch99].

34

PROTOCOL 3 (PVSS for RLWE - IIpyss(s))

1. Dist(s):

— The dealer D samples e,e’ < xe. Then, it samples ¢ coefficients
fi,...,ft < Rq and calculates the secret share s; = f(a;) =
s+ 22:1 fra® of each party P;, associated with the interpolation
point «; € Z.

— It then computes Fi, = COMagync(fx) for k € [t] as well as Fy =
COMasync(fO)-

— It also computes ct; = Epy, (s:), an encryption of the share s; = f(a)
of each party.
— It also computes the verification key of each party as vk; = >, Fpak,

— It then broadcasts {Fi}reco,y and {cti};cn) along with a ZK proof
HPVSS({Fk}ke[O’t], {Cti}ie[Nﬁ S, {fk}kE[t]) which includes the pI‘OOfS
I1;°™ for each commitment Fj, along with proofs IT; ™" (ct;, vks; $;)
that ct; is an encryption of s; = f(«;), committed under vk;.

2. VerifyDist: Each party P; € P then

— Verifies the proofs I7;;°™.

— Computes the verification key of each party vk; = >, Fkoz? and ver-
ifies the proofs IT;°™ " If any verification fails, ignore the message.

— Decrypts its share s; = D, (ct;).

C Asynchronous DKG

In this section, we present three DKG protocols. The first one follows a straight-
forward approach, and is used for two purposes. First, it captures most of the
technicalities with regards to the structure of the evaluation key, and recalls the
techniques of gadget decomposition. Second, it demonstrates the challenginess of
designing a protocol over an asynchronous broadcast consensus channel, wherein
the resulting public parameters for the FHE scheme are weakly affected by V.
It is presented in Section C.1. Then, Section C.2 realizes the key generation
for Protocol 1, our first ThFHE construction from Section 5. Lastly, Section C.3
realizes the key generation for Protocol 2, our optimized ThFHE construction
from Section 6 that leverages preprocessing techniques.

C.1 First Approach
As stated in Protocol 1, the DKG should generate the following output:

1. A secret share skp of the secret ThFHE decryption key sk for each party.

2. The corresponding public key pk = (a,b) where a € Rg, and b = ask+ Ae €
Rq and e is “small”.

3. The set of verification keys {vkp} of all parties, where vkpr = com(skp-) are
homomorphic commitments over the corresponding key shares, where com
is statistically hiding and computationally binding. Specifically, com can be
instantiated with COMggync from Section B.

35

4. Additionally, the protocol outputs a relinearization key lk, which is essen-
tially a key switching key from sk? to sk, and can be thought of as an en-
cryption of a decomposition of sk under sk. For ease of exposition, we do
not describe generation of the bootstrapping key which takes a similar form.

We use a powers of w gadget decomposition for the relinearization key lk.
The gadget vector g, = (Qu™?,...,Quwt=*) ¢ Ré is a row vector of ring
elements. The corresponding “decomposition operator” g;}éo(s) : R — R re-
turns the decomposition of the fraction s/Q € Qz]/P,(x) in base w, tak-
ing the first 4 digits. Formally, if s/Q = > ,2, s,Qw~¢ where for each ¢

Iselle < [0/2], 8274(5) = (51, 50). Note that gl ()| < w/2. In ad-

dition, ng’go o g;,lfo (s) — sH < Qu~% /2. Essentially, both w/2 and Qw~*0 /2
must be small for correctness of key-switching. Nonetheless, we use this gadget
decomposition technique since from the resulting key-switching and relineariza-
tion keys for the top level of the moduli ladder, the keys for all the other levels are
derived by a modulo-switch (or rescaling in CKKS) operation that is performed
locally.

As we have seen in Section 5, the ciphertext moduli @ is adjusted exponen-
tially in order to allow for threshold decryption. This stems from the fact that
the Lagrange coefficients are multiplied by the encryption noise terms that must
be kept small. A similar issue arises during DKG. Specifically, when computing
the relinearization key lk, = Eskggskg,ag,e'ek. A naive approach would involve
computing the key-switching key ks, = Egcgrsk, ay, ellfs, then let each party mul-
tiply by its secret share sk;, and finally interpolate ¢ + 1 shares to effectively
multiply by sk. However, this runs into the aforementioned issue, namely, the
encryption error overflows). One approach to resolve this could be to start from
ks = Eskgesk, ag, Ae‘gs and use Corollary 1 to bound the noise of the interpolated
relinearization key.

In Protocol 4, we follow the above approach. Namely, encryption noise is
multiplied by A, and in particular, the public parameters of the underlying
FHE scheme for homomorphic circuit evaluation will depend on the number of
parties N. As a result, it cannot be used for our optimized construction, where
we only allow the size of the ciphertext for decryption to scale with V. Therefore,
we propose in the next section another DKG protocol that avoids this issue, and
then augment to fully support the optimized construction.

Protocol. The key generation aims to produce the secret key sk, the public key
pk, and the relinearization key lk, with each key following a specific formula
depending on the FHE scheme used. For simplicity, we assume the secret key sk
is randomly sampled from the same domain as the encryption error xg, which is
a common choice. The public key pk is generally expressed as (a, ask+e¢), where a
is a constant and e is noise. The relinearization key Ik, = (ay, Esk(g[ﬁ]st, ag, Aey)
encrypts a decomposition of sk?. A tensor product of two ciphertext encrypted
under sk, results with a ciphertext encrypted under (sk,skz). Given lk, a key-
switch back to sk is enabled. Protocol 5 presents our construction for generating

36

PROTOCOL 4 (DKG: First Attempt)

Setup: Each party P; € P retrieves a,{as}ecjo,¢0] < R from the Ran-
dom Oracle O. In addition, each party samples a public-private key pair
and computes a corresponding ZKP for the underlying PVSS scheme.
1. Round 1: Each party P; € P
(a) Samples s;, e, {€ie}ecioeo) < XE-
(b) Calculates b; = Es, (0,a, Ae;) and bf = Es, (w” “s;, ar, Aei) for £ €
[0, £o].
(c) Generates a ZK proof II;(b;, {bf}ee[o,eo]; siyei, {ei e }ec(o,eo]) Of correct
encryption of s; and its powers of w decomposition.
(d) Calls protocol IIpyss.Dist(s;) to verifiably share its secret s;.
(e) Broadcasts (bi, {b }ec(0,e0), i, {vi,j }ie(n)) to all parties.
(f) Generates and broadcasts a proof IT;(b;, F; o; s;) that binds b; to the
committed s; of the PVSS.
2. Round 2: Upon receiving a subset S; C P of t + 1 valid messages with
verified proofs and verified ITpyss.VerifyDist(), each party P; € P
(a) Computes b = 37 g bj, b o= >ies; b§ for £ € [0,40], ski =
> ies, Sii and vk = 37, ¢ v for each j° € [N]. Denote pk =
(a,b).
) Samples {uie, €; ¢, €0 eco,00) < XE-
(c) Sets al, = Auip-a+ A€}, and by, = 0+ Au; o - b+ Aef,.
(d) Computes (alék,m blzk,i) = sk; - (ag, be) + (a?,h b?,£)~
) Generates a corresponding ZK proof
Hik({(alek,ia bfk,z‘)}le[o,@o]aVkii ski, {(ui,e, €70, €7 0) }eefo,eo))-
(f) Broadcasts ({(alzk,iv blék,i)}ee[o,eo], Hék)~
Output: Upon receiving a subset S2 C P of ¢t + 1 valid messages with
verified proofs, each party P; € P
(a) Calculate ke =3,)\i%(afkyj, bii. ;) for each £ € [0, £o].
(b) Output (pk, Ik, {vk;},cini;ski).

these keys in a distributed setting, when the adversary controls up to ¢ of the
parties.

The protocol is implemented over an asynchronous consensus channel, im-
plemented over an asynchronous reliable broadcast channel. In particular, all
honest parties retrieve all messages in the same order, and therefore, there is
agreement on the set S; of the first ¢ + 1 valid messages received in each round.

At a high level, our approach follows a (¢ + 1)-out-of-(¢ + 1) key generation
protocol, as described in [AJLAT12], where a subset S of ¢ 4+ 1 parties is in-
volved, with each party selecting a random secret s;. Each party P; acts as a
dealer, distributing its additive share s; among all N parties using the PVSS
protocol from Section B. These additive shares are then combined by each party
in order to compute its secret share of sk := » ¢ s;. By using a PVSS scheme,
the distributed shares and ensured to be correct, and also, a homomorphic com-
mitment on the underlying secret shares vk; can be homomorphically evaluated
and validated for each party.

37

In addition to sending a PVSS over s;, each party also sends b; =
E, (0,a, Ae;) from which the public key b =) ¢ b; can be derived. It is tied
to the underlying secret sk that is shared with PVSS by a proper ZKP.

To compute the relinearization key {lk¢}¢c(o,¢,], each party P; broadcasts in
addition to b;, the terms bf = Es, (g[€]ss, ae, Ae;). Summing over all parties
in Sy, the parties compute b* = > g bf which is a key-switch from sk to itself.
Then, in the second round, each party multiplies b’ by its secret share sk;, and
homomorphically masks it with an encryption of zero (a®,b"). After receiving
t + 1 such shares, they can be combined by a Lagrange interpolation to get lkg,
the relineaization key. Here, it is important that all noise terms are multiplied
by the denominator clearing factor A, as otherwise, the noise term in Ik will not
have a bounded error.

In Appendix E.4, we provide a concrete analysis of the noise growth during
the DKG of the above Protocol 4. Security analysis is only provided for the
following protocols which result with a significantly reduced noise growth.

Theorem 6. Assume A adaptively blocks up to f < N/3 parties in each com-
munication round, and statically corrupts up to t < N parties. Then Protocol /
outputs a well-formed tuple (pk, Ik, {vk;};e(ny; [sk]) wherein:

— The public key pk = (a,b) where b = ask + Ae corresponds to the shared

secret key [sk].

_ |\5k|\oo7¢(n), HeHoo’gp(n) <t+1re.

— The corresponding verification keys vk; = com(sk;) are well-formed.

The relinearization keys lk; = (ag,b*) are well-formed, namely b* = a,sk +
Guto [0)sK* + elk.
~ Kooy < 208+ V212704l g, + (¢ + D2y + D438

00, P,
exp(N), wherein ~y is the expansion factor of R (v = n for powers of two
cyclotomic rings).

We refer to Corollary 1 for theoretical bounds on |4 4 and

AAS H
H (1),0 00, P,

that in any case, this terms grow exponentially with the number of parties N.
This is addressed in the following section.

While the above theorem considers a malicious adversary, it does not ensure
zero-knowledge. We stress that we do not include a UC simulation for this proto-
col. This is primarily because we find it hard to UC-simulate the relinearization
key, in the asynchronous framework. However, we do believe the protocol to be
secure, as the ZKPs enforce the adversary to be semi-honest, and the transcript
of the protocol only involves ZKPs and ciphertexts of a CPA-secure encryp-
tion scheme. Nevertheless, the DKG protocols that we propose to use in our
constructions (Protocols 1,2) are proven secure with a UC-simulation.

, and Appendix D for a tighter experimental analysis. We note

C.2 DKG of Protocol 1

Nevertheless, the above approach results with an overwhelming factor expo-
nential with N for the noise of the relinearization key. As a result, the public

38

parameters for the underlying FHE scheme become prohibitively large, since
the ciphertext moduli should be increased accordingly, and then the ring degree
should also be adjusted to maintain security. In this section we resolve this is-
sue, and then in the next Section C.3 we extend the protocol to support our
optimized threshold decryption, as described in Section 6.

Essentially, our idea is to first describe a protocol wherein the set S; of
t + 1 parties who participated in the first communication round of the DKG, is
effectively online for the second round as well. This way, the subset of parties S,
participating in the second round is effectively pre-determined (Ss = S7), which
allows the parties to know the Lagrange coefficients in advance. Therefore, they
can derive locally an additive sharing over sk, namely, {)\EBSkz‘}ieSy Each party

then multiplies ks by its additive share)\ibski, and summing up results with a
well-formed relinearization key with a small ¢ + 1 factor overhead on the noise
term.

ROAST. Specifically, we use a trick proposed by ROAST [RRJ*22], a wrap-
per around FROST, a threshold Schnorr protocol, that provides robustness and
asynchronity. Specifically, their protocol consists of two communication rounds
and local output: (i) a presign round, wherein a post-determined subset Sy of t+1
parties send nonces r;; (ii) an online round wherein effectively the same subset
of t+ 1 parties send there partial signature z; of the form z; = a; + /\f(l) -b;; and
(iii) combining the partial signatures which involves computing z = ;. 2;. In
a nutshell, by predicting the set Sy = 57 of parties that will partial sigantures,
combining the shares can be done more efficiently, and only consists of additions.

We observe that the DKG Protocol 4 already takes a similar form, where in
the first round a post-determined subset of parties S; samples the public key
b= s, bi, but then in the second round, we want parties to expect a pre-

determined subset Sy of parties and multiply the ciphertext (ai, bi) by)\2% - sky,
so that in the output phase summing over So will result with a homomorphic
multiplication by sk which is bounded overall. We may therefore apply the exact
same transformation, which we briefly cover below.

Essentially, ROAST translate the execution with pre-determined subset of
participants, into execution of multiple sessions of the same protocol that run
concurrently with the same subset of participants. Specifically, session sid + 1
may run in parallel with session sid. ROAST keeps track of two sets: Rgq is the
set of responsive parties, and M is the set of known malicious signers. Once a
party becomes a member of M, all messages from that party will be ignored.

The ROAST protocol begins with session sid = 0 wherein parties are re-
quested to send their nonces, and M and every Rgqg are initially the null set.
Upon receiving a request to begin the protocol with sid = 0, the parties respond
with their first round message r(()O) only; this will be different for every session
sid > 0. After receiving the responses for a given session id sid, they are placed

into Rsiq. Once | Rsiq| = t+1 messages are received, parties from Rgq respond with
their second round message zgs'd)(Rsid), along with a first round message nonce

rESidH) for the next session. Essentially, parties “piggyback” the next session’s

39

nonce with the current session’s signature share. Importantly, z;(Rsq) means

that the parties expect to retrieve shares zi(s'd) from each party in Rgq. However,
to avoid starvation, another protocol is instantiated in parallel, in case one of
the parties in Rgq goes off-line, in which case potentially a future session will
terminate before that party goes back online. In any case a party sends an invalid
message, e.g., not well-formed, does not pass verification, or sends two messages
for the same session and round, it is placed into M and ignored thereafter.
Crucially, parties P; ¢ Rsq who respond with (J_,rj(»s'dﬂ)) are also placed
into Rsd+1. This is important for guaranteed output delivery, allowing parties
to go back online and catch-up, and allowing each party to participate in each

round. However, along with sending this message, party j is required to send the

responses zj(-Sid) for every sid’ for which j € Rgqy did not send its response. This

avoids the issue of parties going offline and online back and forth and preventing
any session from finalizing.

Finally, upon receiving a response z](.s'd)(Rsid) from each party in Rgq,
each party can aggregate the signature shares and derive the signature z =
ZjeRsid ZJ<SId)'

By construction, every session will either succeed, add malicious actors to
M, or will never terminate because a party in Rgqg will be missing indefinitely.
However, assuming the adversary controls < N —t parties, and that every honest
party eventually goes back online, the adversary can stall up to n —t sessions by
not responding. This is because whenever it does respond, we require it to also
fill-in all previous sessions in which it was not available.

Therefore, in what remains, Protocol 6 is described under the assumption
that the set S; is post-determined but So is (effectively) predetermined, and
equals S7. The changes with respect to Protocol 4 are highlighted in light blue.

The proof for the following theorem is provided in Appendix E.5.

Theorem 7. Protocol 5 UC-realizes the distributed key generation phase of
Freme (Functionality 1).

C.3 DKG of Protocol 2

Finally, in order to comply with the optimized construction, Protocol 6 augments
Protocol 5 by distributively generating the additional required evaluation keys.
Specifically:

TAHE
ki

1. Each party P; outputs a secret share s of a secret decryption key sk™HE

with respect to some TAHE scheme E, and all parties output the corresponding
public key pk™HE. This can be assumed to be generated by a DKG protocol
of the underlying TAHE scheme E chosen, and we assume it to be available
at setup for ease of exposition.

2. All parties output a key-switching key ks from the corresponding RLWE key
to itself. This is already a by-product of generating the relinearization key
and does not require further changes to the protocol.

40

PROTOCOL 5 (DKG of Protocol 2 (Ilpkc))

Setup: Each party P; € P retrieves a,{as}ecjo,¢0] < R from the Ran-
dom Oracle O. In addition, each party samples a public-private key pair
and computes a corresponding ZKP for the underlying PVSS scheme.
1. Round 1: Each party P, € P
(a) Samples s;, e, {€ie}ecioeo) < XE-
(b) Calculates b; = Es,;(0,a,e;) and b = E, (w” “s;,ae,e:0) for £ €
[0, £o].
(c) Generates a ZK proof II;(b;, {bf}eg[wo]; siyei, {ei e }ec(o,eo)) Of correct
encryption of s; and its powers of w decomposition.
(d) Calls protocol IIpyss.Dist(s;) to verifiably share its secret s;.
(e) Broadcasts (bi, {bf }ec(0,e0), i, {vi i }ie(n)) to all parties.
(f) Generates and broadcasts a proof IT;(b;, F; o; s;) that binds b; to the
committed s; of the PVSS.
2. Round 2: Upon receiving valid messages from a set S; of ¢ + 1 parties,
each party P, € S; :
(a) Computes b = > . g bj, b = > jes b5 for ¢ € [0,00], sk; =
> jesw Siiand vky = 37 . v; 5 for each j° € [N]. Denote pk = (a, b)
and ks; = (ag, b).

(b) Samples {ui,e, €] ¢, € s}eefo,eo) ¢+ XE-

(c) Sets al, =uic-a+e;,and b, =0+ €/, +uie-b.

(d) Computes (af i, bik:) = AZhski - (ae,b) + (af ¢, b0,).

(e) Generates a corresponding ZK proof

Hék({(alek,ia bfk,i)}[e[o,éo]v\/ki; sk, {(wie, e/i/,lv 62,@)}26[0,201)-
(f) Broadcasts ({(alzk,iv blék,i)}ZE[O,Zo]a Hék)‘
Output: Upon receiving valid messages from each party P; € S; , each
party P; € P
(a) Calculates kg =3 g (afk’j,bﬁw) for each £ € [0, o).

(b) Outputs (pkv Ik, {ij}jE[N];Ski)'

3. In addition, all parties output the corresponding encryption of the random-
izers for ks, ctks = E(kaAHE,uks). This can be computed alongside the com-
putation of ks, and the two are tied by a proper ZKP.

The proof for the following theorem is provided in Appendix E.6.
Theorem 8. Protocol 6 UC-realizes the distributed key generation phase of
Frnrme (Functionality 1).

D Discussion on Theorem 1 and Experimental Analysis
In Theorem 1, we establish a bound on the size of AAao,jo),O' In this section,

we provide further insights into this result and propose potential improvements
based on heuristics supported by experimental results.

41

PROTOCOL 6 (DKG of Protocol 2 (Ilpkc))

Setup: Each party P, € P retrieves a,{ar}ecio,] + Rq from
the Random Oracle O. In addition, each party samples a public-
private key pair and computes a corresponding ZKP for the un-
derlying PVSS scheme. In addition, each party participates in

TAHE.ITpkg, a DKG protocol for a TAHE scheme, and retrieves ski™E, its

private decryption share, and the corresponding public key pk™HE,

1. Round 1: Each party P, € P

(a) Samples si, e, {€ie}ec(o,e0] < XE-

(b) Calculates b; = Es;(0,a,e;) and b5 = Es, (w" *si,ar,e:0) for £ €
[0, €o].

(c) Generates a ZK proof IT;(bi, {bf }ec(0,00); Sis €, {€i,0 }eeo,e0)) Of correct
encryption of s; and its powers of w decomposition.

(d) Calls protocol Ilpyss.Dist(s;) to verifiably share its secret s;.

(e) Broadcasts (bs, {b¢}ee(o0,e0), iy {vi,; }ie[n]) to all parties.

(f) Generates and broadcasts a proof IT;(b;, F; o; s;) that binds b; to the
committed s; of the PVSS.

2. Round 2: Upon receiving valid messages from a set S; of ¢ + 1 parties,
each party P; € Si :

(a) Computes b = > g bj, b = > jes b§ for £ € [0,4o], ski =
> egw Siaand vk =37 g, v; v for each j* € [N]. Denote pk = (a, b)
and ks = (ae, b°).

(b) Samples {u; ¢, €}, e s }eejo,e0] < Xe and {Tie, € 4, € ¢ }oefo,e0] < XE -

(c) Sets agﬁg = uye - a+ e, and b?y[= 0+ €y + uie - b,
and @i = Uie-a+ &y, bio = ANjw' sk &y +uip-b,
and cth®, = E(pk™™, (a1, £)) - It also sets
sets ks; ¢ = {(Fli,bl_)i,g)} for each £ € [0, 4o]

(d) Computes (afm-7 bﬁ(,i) =)\i})ski - (ae, bz) + (a?,g, bgz).

(e) Generates a corresponding ZK proof
Hlk({(alzk,iv bllk,i)}ée[o,éo] s ksi7 Ctzs,i) Vki; Skia {(ui,fa e;/,b 6;’,()}56[0,50])'

(f) Broadcasts ({(allk,ivbfk,i)}ée[o,éo]: kSthqkf,i 7H;k)-

Output: Upon receiving valid messages from each party P; € S; , each

party P; € P

(a) Calculates ksg =}, ksi,¢ and G = >jes;

(b) Calculates ke =37 g (ali.;» bik ;) for each € € [0, Lo].

(c) Outputs (pk, Ik, ks, ct' {vk;}ieny; ski).

ks
Ctu,i .

We observe three points that Theorem 1 does not take into account, that can
each lead to an overestimation of the parameters: (i) it does not take advantage
of any ring structure, meaning it is a general result applicable to polynomials

42

with integer coefficients; (ii) the lemma analyzes the worst-case subset of parties
S C P is chosen. These observations suggest that there is potential for improving
the result; (ili) The proof relies on the sub-multiplicativity of the ||-||; norm,
assuming equality holds in all cases.

The first question that arises is whether, given the proven upper bound and
the worst-case scenario, we can also establish a lower bound for the worst-case

scenario. Specifically, for t = & and S which consists of z7 for j = 0 to %, the

2
term A’)‘(%,o),o leaves us with expression of the form (HJN:/lej +1) -Hj:/f(:EQjH -

1), which suggests a lower bound of the order of magnitude of 27V/2,

Regarding point (i), note that the infinity norm of a polynomial is bounded
by its maximum absolute value on the complex unit circle. However, when con-
sidering the norm in the canonical embedding (refer to [LPR13] for details), we
move from maximizing over the entire unit circle to a maximum over a discrete
set of points on the unit circle, specifically the roots of the cyclotomic polyno-
mial. A lower bound, possibly derived using results from Sudler’s product (see
the introduction of [ATZ23] for a survey on this topic), similar to [Wri64], could
be used to refine the result. That being said, as n grows larger, due to continuity,
the difference between the two approaches is likely not significant.

Another observation is that during threshold decryption, but before perform-
ing recombination, the parties could check that the size of the added error is not
too large before proceeding with the computation. This would ensure that, even
if there exist “bad” subsets that cannot be used for decryption, it would only
lead to a delay or a denial of service. Indeed, no secret information is revealed
upon failure. Formally, Theorem 3 holds even when the conditions for correctness
of decryption in Theorem 2 do not hold.

Therefore, one could select a lower @) such that only a portion of the autho-
rized subsets of parties are capable of decryption. Assuming the attacker cannot
delay messages and the subset is chosen randomly, there is some success proba-
bility for decryption. If the first t + 1 decryptors do not consist a proper subset,
the parties can simply wait for more shares. Simulations we conducted, depicted
in Figure 7 suggest that for a random subset of decryptors, the average size of
the added error is approximately 2‘3—5 -N.

More importantly, the assumption that the subset S is random is not valid
in the presence of malicious parties, who could influence the distribution of
the subset. An adversary controlling f > n — ¢ of the parties may skew the
distribution, making it less likely that a valid subset is found. However, we
assume in this work that f < n—t for secure broadcast channels and guaranteed
output delivery, in which case such attacks are not feasible. In addition any such
improvement may blunted by the factor 1.25N appearing in Theorem 2 and the
factor 2¢ appearing in Theorem 3.

E Omitted Proofs

E.1 Missing Upper Bounds Proofs
Lemma 3. [|A| < 1.25N

43

500 1 === Linear Fit
----- Proven Bound
——&— Average Case Result
400 4
300 1
o
3
o
o
200
100 4
0 -

: : T . : v
100 200 300 400 500 600
Number of Parties (N)

Fig. 7: Bit-length of the adjusted Lagrange coefficient norms HA/\§ scale

il o)
with the number of parties V. The blue trend averages over 10 samples of subsets
of parties of size |S| = t + 1, where ¢ = |N/3|. Each sample considers the
interpolation point of maximal norm. The green line depicts the proven upper

bound.

44

Proof. According to [Wri64], we have HHee[N] x® — 1H < 1.2V, Replacing

with 22, we get that || I1]| = HHee[N/2—1] x%° — 1H < 1.227! and similarly
o0
1] = HHee[N/G] z2¢ — IH < 1.2% . Therefore, as A = 211, I, we conclude
(o)
that [| A < 1.2% . O

Corollary 1. With the same notations as above, we have (1) ||All 4
Nzl 23N and (2) HA A2 < N2 21N

(t0,50)5 OH

Proof. The degree of A is calculated as follows:

N N 10, 1_ 10
2 2 ———1 1)— =_—_N?>--N< _—N?
e[;l]“Le[ZN]Z JH G DT =5 3V =5

deg(A 2
DA, < BESIAlL

HAH . The last inequality requires n > 2, Wthh holds since n > N > 6.

Next, the degree of A -)\(i o equals the degree of the numerator minus the
degree of the denominator. The degree of the numerator is the degree of A plus
> jnes J'- The degree of the denominator is } -,/ ;g max({j, j'}). Therefore,
the degree is given by:

Therefore, by Lemma 1, ||A||oo,<;l>n

deg(A)— Y j—4 <deg(d)
(@.3)€S:5>5"
Similarly, applying Lemma 1 we get that HA)\ o), 0”00745n <]?Y— ’]) OH
O
N vu{o} ¢
Lemma 4. For any U € ([t]) we have that) 0,(030) |1 <2t
Proof. We have
Uu{0} _ (‘Uiﬂfj - (_1)i/33j, _ CaNid (1N g
HAo,(m‘) HL‘P - H (—1)7 1z’ = H (-1’ (=1)'z
(i,5")eu 1.0 (i,5") eV 1.0
< C1Yiad (1) AT < 9t
< IT e = n'a)|| <2,
(i,5")€eU
Where the second equality is due to 279 = —z"7" mod &, and the first in-
equality is due to the sub-multiplicativity the norm. ad

E.2 Security of RLWE with Noise from A - xg

In this section we formally prove Remark 2. We refer to Definition 7 for the
formal definition of the decisional RLWE assumption.

45

Proof. Given a distinguisher D,, between U (Rﬁ) and As o where the noise e is
sampled from axg, we construct a distinguisher D; between U (Rg) and As 1
where the noise e is sampled from yg. Specifically, D; invokes D,, internally, and
simulates its sample requests. Specifically, whenever D; queries a sample, D,,
transfers it and retrieve a sample (a,b) € R, that depending on the challnger’s
secret bit b, is either drawn from U (Rg) or from Agq. Then, Dy returns to D,
the simulated sample (a-«,b-a). At the end, D; outputs whatever D, outputs.

Now, since (o, ¢) = R, « is invertible in R,. Therefore, ald(Rq) = U(R,),
which means old(RZ) = U(R?), and aAs; = Asq. Namely, our simula-
tor correctly transfroms samples from the RLWE challenger with param-
eters (n,q,Xs, xe) to samples from the RLWE challenger with parameters
(n,q, s, @xe), and therefore the distinguisher D; achieves the exact same ad-
vantage as Dy,.

E.3 Security Proof of ITpyss (Protocol 3)

Theorem 9. Protocol 3 is fair and t-zero-knowledge if \/Q > %2%]\7 Xt X g X

21+0/2n.
Proof. Fairness: Assume by contradiction that there exists S,S' € (t[f]l)
such that s = . g AS;8i # YycsAgyse = s By the verification of

the secret shares in Ilpyss.VerifyDist(), we know that G; := ZZ:O Frpak =
com(s;; e, e}) holds for each i € [N], where €}, e} are bounded. Applying La-
grange interpolation using S and S’ respectively suggests that com(s; eg ef) =
Yics iGi = Yyeg AoyGe = com(s'sef ef). Multiplying by A, we ob-
tain com(As; Aej; Aey) = com(As’;Aegl;Aef'). By Corollary 1, the ad-
3N
4 b

justed Lagrange coefficients have bounded norm HA . A&iHOO 5 S %2 and

Aes, Ae§, Aef', Aef’ are the sums of ¢ fresh noises multiplied by such adjusted
3

Lagrange coefficients. Therefore ||Aeg||oo o(n) < %241\[X t X rg, and similarly

for Aef, Ae§’, Ae?’. Tmposing %Q%N Xt xrg < /Q27179/2" we get a contra-
diction to the binding property of COMagync.

Zero-knowledge: Note that the distribution over s € Rg given a subset
of t shares is uniform. It remains to simulate the public output of the dealer.
However, the latter consists of computationally hiding commitments and a zk

proof.

IND1-secrecy (Definition 6): Assume by contradiction that the adversary is
able to gain an advantage in the game then it can either break the RLWE
assumption (distinguish-ing the public keys, the commitments or the encryption
from uniform) or distinguish between the simulated and real execution of the zk
protocols both of which we assume are impossible.

E.4 Correctness Proof of Theorem 6

We begin by analyzing the correctness of Protocol 4.

46

Proof. The secret decryption key is defined as sk := Zje s, Sj» where Sy C P
consists of the first ¢ + 1 parties who sent a valid message in round 1. Note
that this is well-defined, since the protocol is implemented on top of a consensus
channel, providing agreement on the ordering of messages. Furthermore, denote

e = Zjesl e;j. Then:

b:= ij: Z(astrAej):aZsj+AZej:ask+Ae

JES1 JEST JEST JES1

This demonstrates the correctness of the public key pk = (a,b).
Now, we prove that the relinearization key adheres to the expected format.
First, denote e’ := > jes, € for every £ € [0, £o]. Then:

= Z bg = Z (wE s + ags; + Aejp) = wh sk + agsk + Aey
JESL JESL

= Esk(wL*ZSk, ag, Aey)

Therefore, {(ag,b*)}, is an encryption of the decomposition of sk under sk,
and can be thought of as a key-switching key from sk to itself.

Finally, we compute the f-entry of the relinearization key. We denote by
up = Zjesz(A/\i%)“Mve;z = Zjesz(A/\f%) €€y = ZjeSQ(A)\jS%) . Note
that due to Corollary 1, the adjusted Lagrange coefficients have bounded
norms and therefore {ug, €),€e/}s are all bounded. Additionally, we denote

0._ 5210 .
ag == cs,)\] oa j 20 = > jes, \job; - Therefore, we get:

af i = Z)\Soa|k] = Z /\i%(skjag + Aujpa + A€ ,)

JES2 JES
— SQ S2 / Sz
=ay E A7 osk; + E (A)\jjo)eﬂ +a E (A)\j,o)u]'/
JES2 JES2 JES2

= aysk + e + uga

= AT =) AT (skib! + Auyeb + Ael)

JES2 JES2
_ 3l 2 52 Sz
— 0 S A%k + S (AN 4+ b S (AN
JES2 JES2 JES2

= blsk + e)
Therefore,
b = wE sk + (agsk 4+ Aeg)sk + e + ug(ask + Ae) =
= whlsk? + afsk + [Aegsk + € +ugde — e)sk] = Eq(wh " sk?, afy, el),

where el = Aeysk + €} +ugAe — €)sk is bounded. This structure precisely aligns
with the required format for the relinearization key.

47

E.5 Security Proof of Theorem 7

Proof. For the security proof, we observe all broadcast messages within our DKG
construction are either in encrypted form or are transmitted via fundamental
building blocks such as VSS and ZK proofs. These messages, based on the secu-
rity property of these building blocks, do not reveal any information about the
underlying secret. Additionally, we guarantee that any subset of ¢ parties cannot
reconstruct the original secret due to the application of the Shamir secret sharing
scheme. Consequently, without collusion of ¢ 4+ 1 parties, neither the secret key
nor any inputs of other parties can be revealed. Moreover, potential malicious
adversaries can be thwarted through the utilization of VSS and ZK Proofs.

Formally, we prove that Protocol 5 UC realizes the DKG phase of Function-
ality 1. We construct our UC simulation by applying a sequence of three hybrids
Ty, T1,Ts, starting from T, the view of the adversary in the real execution of
the protocol, and ending up with 77, the UC simulation.

— Hybrid 1: Let T1 be the same as Ty, except for the broadcast message in

Round 1. Upon receiving pk = (a,b), ks = {(ak*,b5%)}s, Ik = {(af,,b})} from
Frorue, the simulator sets for each honest party P; € P, b; = b+Eg, (0, a, Ae;)
and bk, = bl + E, (wl"s;, ar, Aey) for each £ € [0, £p]. It then simulates the
corresponding ZKPs I1;, IT.
Upon receiving from the adversary A the subset S; of parties that participate
in round 1, and the messages from each party in S; controlled by A, the
simulator proceeds as follows. First, it sets 0 = |S1|, and extracts (s;,e€;)
from the ZKP of b; of each malicious party.® It then sets ¢ = >jes, (85,€5)
and sends (bias, d,¢) t0 Fryrue-

— Hybrid 2: Let T be the same as 17, except the broadcast message in Round
2. The simulator retrieves |k from the ideal functionality. It then computes
lka =230,)\?})ski -(ag, b*), the part of the adversary of the relinearization
key, where U; C Sp is the subset of parties controlled by the A. It then
samples (afkyi,bﬁ(’i) < Rg uniformly at random for each honest party in
S1, and broadcasts it. For one honest party ¢* € Si, it broadcasts instead
k—lkeAd =3 csnun (aﬁ(’i, bﬁ(}i). The simulator simulates the corresponding

ZKPs II¥ of each honest party.

First, we claim that the transcript of the first round for hybrids Ty, 7T} is
indistinguishable. Indeed, the PVSS execution is identical, the ZKPs are by
definition zero-knowledge and therefore their simulation is indistinguishable from
an honestly generated proof. Lastly, the ciphertexts are indistinguishable since
E is CPA-secure. Then, the transcript of the first round for hybrids Ty, 75 is
identical, and so it remains to show that their second round is indistinguishable.
Again, the ZKPs are indistinguishable by definition. Also, by CPA security, the
ciphertexts sent are indistinguishable. Finally, due to the soundness of the ZKPs

8 We only require the ZKP of b; to be UC-extractable. This does not significantly
affect performance, since the proofs for the relinearization keys need not be UC-
extractable.

48

that are received from A, we know that the output Ik’ equals to lk plus an
encryption of 0 with a bounded noise. This concludes the proof.

E.6 Security Proof of Theorem 8

The UC-simulation of this protocol is very similar to the one described above.
We will only discuss the difference below.

Essentially, the simulation of Protocol 6 must also simulate the parts colored
in yellow, responsible for generating ks, ct®*. This is done as follows. We assume
evk received from Fhe o contains another key-switching key ks and a corre-
sponding. Similarly to the simulation of Ik, the simulator retrieves ks, ct<* from
the ideal functionality, and samples random values for the honest parties, that
sum up to ks — ks4 and c_tzs — ctl;f 4 This cancels-out the contribution of the
adversary, up to encryptions of zeros with bounded noise. Thus the final ct*® is
an encryption of a random value known to the simulator.

Finally, it remains to show that adding ct*® to evk is secure. This follows from
the CPA-security of TAHE.E, suggesting it is indistinguishable from an encryption
of zeros.

E.7 Security Proof of Theorem 3

Proof. Let ct be a well formed ciphertext i.e. ct = (cty, cty) where cta = pt+4cty -
sk+A-eand [le]l o < B.If @ > nN[22](rp2iN + B-1.23N) > nN[N?/n]2iV:

S’if _ sz,
pt = Ct2 — Z ’\(i'fj’),odsi’vj/ = Ct2 — Z A(i’,Jj'/),O(Ctl . Sk,‘//J/ +pA6i/7j/))
(i’,3")E€Si,; (i,3")€S4,5
e
Si i
= cty — ctysk +p Z /\(i",Jj/),OAei/aj/
(i',5) €85

/—/cg
= pt + p(Ae) + pe = pt + p(Ae + &)

Our goal now is to prove that é is small enough to enable decryption. Ac-
< NEoiN
— 3n

cording to Corollary 1, we have HA)\Z, i) OH which, by regu-
s) 00, P

lar norm bounds, implies HA)‘k(gi/,j’),Oei’ﬁj’ < an%2%N. Utilizing the tri-

’oo,@n
angle inequality, this yields [|€] 4 < anN%jZ%N. Similarly, we find that
||AeHOO’¢n < Bng—:IQ%N. Consequently, in every coefficient, pt + pé does not
modulate by @, and thus, taking mod p results in pt as needed.

Next, we demonstrate the security of threshold decryption. Consider a subset
U C P where |U| = ¢. We proceed to outline a Simulator S:

1. S simulates the DKG phase by calling the UC simulator described in Sec-
tion C. As a result, S gets:

49

(a) The public key pk.
(b) The secret decryption shares of the adversary {sk; ;} jjev

2. S then simulates threshold decryption as follows:

(a) Upon receiving a ciphertext ct to decrypt S calculates decryption shares
for the corrupted parties ds; ; = sk; ; - ct; + €; ; where e; ; < Xxp.

(b) S sends (decrypt,ssid, ct, P; ;) to Fmeye for each party. It then receives
pt.

(c) for every (i,5) ¢ U it calculates

dsg = NNt) + (3 N kot + Aoy
(Z'J/)EU

It uses the simulator of I79 to create “fake” proofs Hf;
(d) S sends (ds; j, IT) to A

(e) Upon receiving dsm,] * from a corrupted party the simulator verifies
the correctness of the decryption share (this can be done by verifying
the proof or by subtracting c; - sk; ; and check that only a small error
remains.) If the verification is successful it send continue to the ideal
functionality. Else it sends (abort, P; ;) for a party that failed the check.
It also broadcasts to every party in U (cheater, P, ;).

We want to prove that the ideal and real executions are indistinguishable. The
messages in the real execution are (pk, {sk;;} @ e, {(dsi,j7nf7§)}(i,j)¢U)~ The
first two messages are indistinguishable since we rely on the security of the
Fprc. Note that ctyg = pt + sk - cty + e, thus we have

ds; ; =)\(I)J’L(Ji”{j(.))}(sk -ct; +e) Z)\UZUJ{O)} (ird) skZ/ gr)cts + Ae;
(l’ JHeu

_ vu{o} UU{O}

=(Z A(i’,j/),()skz/ i)cts + Aeg j + AN () €
(i7,5')eUU{0}

UU{O})

= Ski’thl =+ A(ei’j —+)\0 (7, j)

By Lemma 4 we have that H)\ < 2t If rp > 2'29nrg, the statistical

distance between e; ; + ,\OUE{JQ)}

indistinguishability as needed. We want to show that the output is the same i.e.
that we have correct decryption in the ideal word. The adversary U may choose
any subset of the parties S to preform decryption, which is

Uu{o} H

e and ei; is at least 27 which gives statistical

50

s
D N odsig

(i',5")€S

S S
= Z Al jn),098 57 + Z A j1),008 5
(¢,j")eSNU (¢,j")esSNUe

= Z /\8,7j,),0(ski/7j/ct1 + Aei/,j/) + Z)\(5;,,].,)70(ski/,j/ct1 + Aei/J/ + AN

(#,5")esnU (i',5")esSnUe
— S L S Uu{0}
=skectit > Aot T DL ANignode e
(7,5")€S (i’,5")eSNUe

Taking cto — Z(i/,j,)es)\;S’j/,odSi’7j/ giVeS
vu{o
pt+ > AN et Y AN A Set+ e (1)
(i",9")€S (i',3/)eSNU*

Bounding each term similarly to the proof of correctness gives

3 s N? 4y
AXGir 1,067 .5° < TDnN%%
(i',5')es s
We also have
N2
Z A/\a/,jf),o/\gz}{?j},)e < TEnN[T“ 93Nt
(i’,§")ESNU° e

The last term Ae in Equation (1) is negligible. Note that the second term
and the third term are negligible in the first term, which is the one present in
the real world as well. Therefore, we can conclude that except with negligible
probability, if correct decryption occurs in the real world, it also occurs in the
simulation.

E.8 Security Proof of Theorem 5

Before starting the proof we present the threshold decryption with preprocess
functionality Fhepe - (Functionality 2).

We also present functionality for a TAHE scheme Frape (Functionality 3)
which will be used for modeling the TAHE in the protocol.

We are now ready to move the proof:

Proof. The correctness of Protocol 2 is straightforward given Theorem 2 and
the correctness of the TAHE scheme alongside with the observation that the
key switching (Step 2, i) and re-randomization (Step 2, ii) do not change the
underlying plaintext.

To prove the security of our threshold decryption, we consider a subset U C P
where |U| = t. We proceed to outline a Simulator S:

51

Uu{o}
0,(4,5")

€)

FUNCTIONALITY 2. (ThFHE- Fhae e)

PARAMETERS: a set of N parties P = {P;};c|n}, & threshold ¢t < N/3, an ad-
versary A controlling a subset of the parties P4 C P (|Pa| < t), an encryption
scheme (G, E, D) with an affine key-homomorphism.

BEHAVIOR:

1. Setup: Upon receiving a command (keygen, sid, P;) from party P; € P,
send to A and record (keygen,sid, P;). After recording ¢ + 1 requests for
a given sid, generate a key triplet (pk,evk;sk) < G(1%), and send pk, evk
to A.

— Upon receiving (bias, sid, d, €) from A, set sk < § - sk + £, update the
public key pk and evk accordingly.
— Record (sid, pk, evk; sk) and send (pk, evk, ||d]|oo, ||€]|cc) to all parties.

2. preprocess Upon receiving a command (preprocess, sid, ssid, P;) for ssid =
(sid,...), and P; that is not recorded, if there is a record of (sid;sk),
send to A and record (ssid,ct, P;). Upon recording ¢ 4+ 1 requests, com-
pute an encryption of zero ct®¢ with randomizer u$¢ < Rg, record
(sid, ssid, ct2¢, u%) and send ct£¢ to A.

3. Decryption: Upon receiving a command (decrypt,ssid,ct’, P;), for
ssid = (sid, . ..), and P; that is not recorded, if there is a record of (sid; sk),
send to A and record (ssid,ct’, P;). Upon recording t + 1 requests, send
(decrypt, sid, ssid) to A which responds with (decrypt, sid, ssid, Nsni:) for
1 < Nairr < t compute the the correspondent key switched ciphertext
ct = (ksoct] 4 cth, ksict]) 4 Napie - ct2¢ and output uS? + Nepise - u2d where

uski'd =ct] © us.

FUNCTIONALITY 3. (TAHE- Fraue)

PARAMETERS: a set of N parties P = {P;};c[n], & threshold ¢, an adversary
A controlling a subset of the parties P4 C P (|Pa| < t), a AHE scheme
(G,E,D,®).
BEHAVIOR:

1. Setup: Upon receiving a command (keygen,sid, P;) from party P; € P,
send to A and record (keygen,sid, P;). After recording ¢ + 1 requests for
a given sid, generate a key tuple (pk;sk) < G(1%), and send pk to A.

— Upon receiving (continue,sid, P}) from A, if P4 U P4 = 0
record (sid, pk;sk) and send (sid, pk) to all parties. Otherwise send
(sid, abort, P’y U P4) to all parties and restart the execution.

2. Decryption: Upon receiving a command (decrypt, ssid, ct, P;), for ssid =
(sid,...), and P; that is not recorded, if there is a record of (sid;sk), send
to A and record (ssid, ct, P;). Upon recording ¢ + 1 requests, compute the
plaintext pt = D(ct, sk). Then, broadcast pt to all parties.

. First the simulator emulates the ideal functionality Frane Setup command
by randomizing a tuple (pktayg, sktane) if the adversary aborts it samples
a new value. Since the distribution of these public key is indistinguishable
from this send by the functionality eventually either this process terminates

or all corrupted parties are discovered.

52

2. § emulates the Key Generation phase via Fpkg-
3. For the pre-proccess phase the simulator works as follows:
(a) the simulator calls the ideal functionality to get an encryption of ctr.
(b) The simulator computes ¢t and ct®” for every i ¢ U similarly to honest
parties in the protocol. For every honest party it then sens ct"” + ctx
and ct'”” along with a fake proof.
(¢) Upon receiving a proof IT?*" it verifies it and consider ¢ malicious upon
failure.
(d) Upon receiving from the adversary a subset S of size ¢ + 1 which have
sent valid messages. It uses sktane to decrypt the messages ct”" sent by
malicious parties and sums over all values in the subset S (which may in-

clude honest and malicious parties). To achieve the summed randomizer
ug. This uy is to be used with the ¢ ciphertext which is being procced.

4. § emulates the threshold decryption:

(a) Upon receiving a ciphertext ct = (cto, ct1)¢, the simulator derives cipher-
texts ct using key-switch similar to the real execution.

(b) S sends (decrypt,ssid,ct, P;, |S/U|) to Fme for every party. It then
receives uy, = uks + |S/U |u§_— where uys is the subset sum of the key-
switch randomizer with the ciphertext and u‘}_— is the randomizer of cty.

(c) The simulator emulates the threshold decryption part of Fie to land
on the value ug + uj

In the following, we prove that the ideal and real executions are indistin-
guishable.

1. 1 - Indistinguishable since Frane has a UC simulator.

2. 2- Indistinguishable since Fpkg has a UC simulator. Notice that at the end
of the aforementioned simulation ct** can be taken to be an encryption to
Z€ro.

3. 3-b indistinguishable from the RLWE assumption and the zk simulator of
HZeI’O.

4. 4-b Indeed the final ciphertext as randomizer uy + uyxs + ué— and thus upon
opening it would fit cty.

5. Indistinguishable since Frape has a UC simulator.

After decryption, the adversary A learns ", which is the randomizer of ct”.
However, u” is masked by the aggregation of ¢t + 1 randomizers u;, hiding the
randomizer underlying the key switching ks. Thus, we can replace u” with a
random value.

In the real execution we will get randomizers of the form wuws + uy while in
the real execution we will get uks + ug + |S/U|u’s. we have that u’ statistically
cover uys so for indistinguishability we need uy to statistically cover ué_—.

53

F Supporting Torus-FHE

F.1 Notation, Torus, and Polynomials over Torus

The real torus T = R/Z represents the set of real numbers modulo 1. (i.e,. T
consists of real numbers wrapped around a unit interval). Consider the poly-
nomial rings Ry[X] = R[X]/(XN + 1) and Zn[X] = Z[X]/(XY + 1), we have
the Zy[X]-module Ty[X] = Ry [X]/Zn[X] = T[X]/(XY +1). Elements within
Tx|[X] can be viewed as polynomials modulo X~ 4 1 with coefficients belonging
to T. Acting as a Zy[X]-module, elements in T [X] can be added together and
externally multiplied by polynomials from Z x[X]. Mathematically, T is endowed
with a Z-module structure, reflecting its relationship with the integers. Let B
be the integer subset {0,1} and, for N a power of 2,By[X] is the subset of
polynomials in Zy[X] with coefficients in B.

Any two elements of T can be added modulo 1, forming an abelian group
denoted as (T,+). However, T does not constitute a ring due to the absence
of a defined internal product x among its elements. Nevertheless, an external
product denoted as - exists between integers and torus elements. For any k € Z
and ¢t € T, the element k-t € T is defined as follows: k-t =t +--- +¢ (repeated
|k| times) if £ > 0, and k-t = (—k) - (—¢) if £ < 0. This definition ensures that
the external product k -t aligns with the torus structure. The reverse negative
wrapped convolution of two vectors u = (uy,...,un),v = (v1,...,v,) € Z" is
the vector w =u®v = (u®; v,...,u®, v) € Z" defined by

% n
w; =u®; v= E UjUnj—i — E UjVj—i-

j=1 j=i+1
Definition 8. [CGGI16] (LWE problem over the torus). Let n € N and let
s = (81,...,8n) < B™. Additionally, let x represent an error distribution over

R. The learning with errors (LWE) over the torus problem involves distinguishing
between the following distributions:

~ Dy ={(ar) |a T T}
~pi={(an) a=(@.....a) T =50

i=18aj+ ee < x}.

Definition 9. [CGGI16] (GLWE problem over the torus). Let N,k € N with N
a power of 2 and let s = (71,...,x) + Bn[X]|¥. Additionally, let x represent an
error distribution over Ry[X]. The general learning with errors (GLWE) over
the torus problem involves distinguishing between the following distributions:

= Do = {(a,r) | a+ Tn[X]*,r « Tn[X]};

- D= {(a,r) la=(a1,...,ax) < Tn[X]*,r = 252153‘ “aj+e, e X}
The decisional LWE assumption (or the decisional GLWE assumption) asserts
that it is computationally infeasible to solve the LWE problem (or GLWE prob-

lem) for a certain security parameter A, where n = n(A) and x = x(\) (or
N =N(}), k=k(A), and x = x(A)).

o4

PARAMETERS: An integer n = 2" for some 17 > 0, two positive integers p and ¢ with
p| g, let A = q/p, two discretized error distributions x1 and 2 from N (O, 02)
over Z. The plaintext space is M = {0,1,...,¢ — 1}. The public parameters are

pp = {n,o,t,q, A}

keygen(2~) — (sk, pk) .
— Sample uniformly at random a vector s = (s1,...,8n) <« {0,1}".
— Sample uniformly at random a vector a<— (Z/qZ)" and compute b = a®s+e €
(Z/qZ)™ with e < x1™.
— Output (sk, pk,) where pk = (a,b), and sk = s.

E(pk,m) — ct
— Sample r<{0,1}", and e1 < x1™ and ez < X2.
— Compute co =a®r+e; and ¢1 = (b,r) + Am + e
— Output ct = (co,c1)
D(sk,ct) — m
— Let ¢o = ct[0], 1 = ct[1]
— Compute m* = ¢1 — {(co, 8)
— Output [(p* mod q) /A| mod ¢.

Fig. 8: A Public-key Torus FHE Construction from RLWE [CGGI16, Joy23].

F.2 Torus-FHE Construction and Its Extension for ThFHE

The LWE assumption over the torus essentially posits that a torus element
r € T, constructed as r = 2?21 sj - aj + e, cannot be distinguished from a
random torus element r € T, even when the torus vector (aq,...,a,) is known.
This r = 22:1 5j-a;+e can thus serve as a random mask to conceal a “plaintext
message” m € T, forming a ciphertext ¢ = (ay,...,a,,r +m) € T ! where
s = (s1,-.-,8n) € B™ acts as the private encryption key. In accordance with
Protocol 1, we present the public-key Torus FHE in Figure 8.

With our DKG, integrating the key generation process of the traditional
Torus-FHE becomes straightforward. Furthermore, we can customize our usage
of VSS and ZKP to prevent malicious adversaries in the partial decryption.
The remaining question pertains to the correctness of the resulting protocol as
Torus-FHE operates with a small ciphertext modulus, while our asynchronous
decryption requires a significantly larger modulus value. To tackle this, we pro-
pose employing the modulus switch operation [DDEK™23], enabling us to switch
the ciphertext modulus to a desired one for successful decryption with our de-

nominator clearing factor.

95

	Threshold FHE with Efficient Asynchronous Decryption
	Introduction
	Our Contribution
	Comparison with Prior Work
	Technical Overview

	Preliminaries
	Notation
	Communication and Security Model
	Homomorphic Commitments
	Zero Knowledge Proofs (ZKPs)
	Polynomial Rings, Ring LWE, and Public-Key Encryption
	Shamir Secret Sharing over Polynomial Rings
	Verifiable Secret Sharing (VSS)
	Publicly Verifiable Secret Sharing (PVSS)

	System Overview
	Ideal ThFHE Functionality

	Shamir Secret Sharing Over Rings
	Instantiation of the Set of Interpolation Points
	Instantiation of the Denominator Clearing Factor

	Threshold Decryption
	Leveraging Preprocessing Techniques
	Parameter Selection and Efficiency Estimates
	Standard Definitions
	PVSS over Polynomial Rings
	Asynchronous DKG
	First Approach
	DKG of Protocol 1
	DKG of Protocol 2

	Discussion on Theorem 1 and Experimental Analysis
	Omitted Proofs
	Missing Upper Bounds Proofs
	Security of RLWE with Noise from E
	Security Proof of (Protocol 3)
	Correctness Proof of Theorem 6
	Security Proof of Theorem 7
	Security Proof of Theorem 8
	Security Proof of Theorem 3
	Security Proof of Theorem 5

	Supporting Torus-FHE
	Notation, Torus, and Polynomials over Torus
	Torus-FHE Construction and Its Extension for ThFHE

