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Abstract
Directed Acyclic Graph (DAG)-based BFT consensus proto-
cols often suffer from limited throughput and scalability due
to bandwidth-intensive data replication to all participants.
However, it is sufficient to replicate data to a smaller sub-
committee of parties that holds an honest majority with high
probability.
In this work, we introduce tribe-assisted reliable broad-

cast, a novel primitive that ensures reliable broadcast (RBC)
properties within a smaller honest-majority sub-committee
(referred to as a clan) drawn from the entire network, called
the tribe. Leveraging this primitive, we develop two efficient
DAG-based BFT consensus protocols. First, we present a
single-clan protocol, in which a single clan is elected from the
tribe, and data is disseminated exclusively to this designated
clan using tribe-assisted RBC.We then extend this design to a
multi-clan setting, where multiple clans are elected and data
is distributed within each respective clan via the same mech-
anism. Experimental results demonstrate that both protocols
offer substantial improvements in throughput and latency
over existing DAG-based BFT protocols, even at moderately
large scales.

CCS Concepts: • Security and privacy → Distributed
systems security.

Keywords: Byzantine Fault Tolerance; DAG-based BFT SMR;
Scalable Consensus; Partial Synchrony

1 Introduction
Byzantine fault-tolerant state machine replication (BFT SMR)
serves as the core building block for blockchain systems.
BFT SMR allows a group of 𝑛 parties to reach consensus
on a sequence of values, even in the presence of up to 𝑓

Byzantine parties, who may act in arbitrarily malicious ways.
As blockchains strive toward greater decentralization, it be-
comes critical for these protocols to scale to hundreds of
nodes while maintaining high throughput and low latency.

Similar to many recent low-latency real-world blockchain
designs, we consider the partially synchronous model [22],
where BFT SMR requires 𝑓 < 𝑛/3. Traditional partially syn-
chronous BFT SMR protocols can achieve a commit latency
as low as 3𝛿 (where 𝛿 represents the actual network de-
lay) [10, 11, 20] and also achieve linear communication com-
plexity [29, 51]. However, their throughput is significantly

constrained, achieving only around 3 kTPS [3], even under
reasonable bandwidth and a wide-area network setup within
a single continent (US). This limitation is largely due to their
reliance on a single proposer design: only a designated (rotat-
ing or fixed) leader proposes transactions and disseminates
substantial amounts of data across the network at a time,
which creates a bottleneck and hinders throughput.

A novel approach called DAG-based BFT SMR [26, 27, 42,
45] has recently emerged to address this challenge. This ap-
proach enables every party to propose concurrently, thereby
maximizing bandwidth utilization and resulting in improved
throughput. Additionally, the state-of-the-art DAG-based
BFT SMR protocols such as Mysticeti [5], Sailfish [42], and
Shoal++ [4], have demonstrated a commit latency of 3𝛿 ,
matching the single-proposer BFT SMRprotocols while achiev-
ing higher throughput. Indeed, the experimental analyses
demonstrate that these multi-proposer DAG-based BFT SMR
protocols offer significantly better throughput without affect-
ing the latency for moderate network sizes. However, as the
system scales, these protocols often suffer a significant drop
in throughput, particularly due to bandwidth-intensive repli-
cation of data across all parties. Is this decline in throughput
inherent to DAG-based BFT SMR protocols as the system
scales? This paper seeks to answer this question.
Technical challenge. Most DAG-based BFT SMR proto-
cols [4, 42, 44, 45] rely on a reliable broadcast (RBC) prim-
itive [9, 30] to disseminate their proposals (referred to as
vertices), ensuring non-equivocation1 and guaranteed de-
livery of these proposed vertices to all parties. As a result,
these protocols incur a communication complexity of at least
Ω(𝑛2ℓ+𝜅𝑛3), where ℓ represents the size of input transactions
and 𝜅 is the security parameter. The proposed vertices typi-
cally contain a large number of transactions to promote good
throughput i.e., ℓ > 𝜅𝑛. Consequently, due to the bandwidth-
heavy replication of large data across all parties, they create
a bottleneck as the system scales. Additionally, once ordered,
every party must execute all transactions, further increasing
the bottleneck as the system expands.
Key idea. We observe that only the consensus/ordering
phase requires a super-majority of honest parties with 𝑛 >

3𝑓 participating parties with at most 𝑓 < 𝑛/3 [22] (assuming
partially synchrony). Once a total ordering of the proposed

1This property ensures that the sender cannot equivocate by convincing
different honest parties to accept different messages.
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vertices is agreed upon, it is not necessary for all parties to
execute the transactions in these vertices. Equivocation is
impossible after transactions are ordered, and the commit-
tee responsible for executing transactions only requires an
honest majority to function correctly [50]. Particularly, in a
(sub-) system with 𝑛𝑐 < 𝑛 parties and 𝑓𝑐 < 𝑛𝑐 being faulty, a
client only needs consistent responses from 𝑓𝑐 + 1 parties to
ensure their transaction has been safely executed. To address
the possibility of up to 𝑓𝑐 faulty parties failing to execute or
sending inconsistent responses, we need 𝑛𝑐 − 𝑓𝑐 ≥ 𝑓𝑐 + 1, and
thus𝑛𝑐 ≥ 2𝑓𝑐 +1. As a result, it is sufficient to disseminate the
transaction to a committee with𝑛𝑐 ≥ 2𝑓𝑐+1 parties, ensuring
that at least 𝑓𝑐 + 1 honest parties execute the transaction and
respond to the client.

Furthermore, if parties are selected uniformly at random,
we can form significantly smaller committeeswhilemaintain-
ing the honest majority assumption with only a negligible
probability of statistical failure. For instance, in a system of
𝑛 = 500 parties and 𝑓 = 166 faulty parties, a committee of
just 𝑛𝑐 = 184 members suffices to ensure an honest majority
with a negligible failure probability of 10−9, based on the
hypergeometric probability distribution. We present com-
mittee sizes at various system sizes in Figure 1. Leveraging
this observation, we elect smaller committees and confine
the dissemination of larger payloads to these committees,
thereby reducing bandwidth usage and enhancing through-
put and scalability. To simplify the explanation, we refer to
the entire set of 𝑛 parties as a tribe and the honest majority
committee of size 𝑛𝑐 as a clan.
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Figure 1. Clan sizes required to ensure an honest majority with
failure probability below 10−9.

A straw-man approach and further challenges. With
a clan, it is relatively straightforward to disseminate the
data solely to the clan and collect proof of data availability
(PoA), ensuring that at least one honest party has received
the data (with high probability) [31]. This PoA can then be
provided to any SMR protocol to establish a global ordering.
Since consensus on metadata is generally less costly, this
method reduces overhead. However, this method introduces
additional latency due to its inherently sequential nature.
Disseminating data and collecting the PoA takes at least

2𝛿 , and even if the PoA is included in the next proposed
consensus block, there is an average queuing delay of 1𝛿 .
Finally, the commit latency for the proposed block is at least
3𝛿 , resulting in a total latency of at least 6𝛿 .
In contrast, state-of-the-art DAG-based consensus pro-

tocols [4, 5] avoid the additional latency overhead from a
separate data dissemination layer by embedding transactions
directly into vertices. By conducting data dissemination and
consensus concurrently, these protocols minimize latency.
However, most DAG-based BFT SMR protocols rely on an
RBC primitive which delivers the proposed vertices to all
parties in the network. As mentioned before, this can be
bandwidth intensive, making existing RBC mechanisms un-
suitable for our specific requirements. This paper focuses
on improving the data dissemination layer while preserving
the latency performance of current DAG-based BFT SMR
protocols.

1.1 Our contributions
In this paper, we make three key contributions toward build-
ing a throughput-efficient and scalable DAG-based BFT SMR:

1. Tribe-assisted Byzantine reliable broadcast. As a founda-
tional building block, we first introduce an asynchronous
primitive that ensures agreement and eventual data delivery
within a clan. It is well established that for agreement under
partial synchrony, 𝑓 < 𝑛/3 is necessary [22], a condition
that cannot be satisfied within a clan that only has an honest
majority. To achieve agreement within a clan, we leverage
the support of the entire tribe. In this regard, we refer to this
primitive as tribe-assisted reliable broadcast. We present two
variations of this protocol–the first protocol terminates in
three rounds under an honest sender and is signature-free,
while the second protocol reduces termination to just two
rounds using signatures.

2. Single-clan DAG-based BFT. To address the scalability chal-
lenge, we propose electing a smaller clan of parties that
retains an honest majority with high probability. By utiliz-
ing the tribe-assisted reliable broadcast (RBC), we restrict
data dissemination to this designated clan while ensuring
that consensus on metadata occurs across the entire network
in parallel, thereby avoiding additional latency overhead.
Specifically, we pipeline the efficient data dissemination pro-
cess with the mechanisms responsible for non-equivocation
and guaranteed metadata delivery, achieving scalability with-
out compromising consistency. To ensure transaction vali-
dation, only the parties in the clan are permitted to act as
proposers, enabling them to validate and propose transac-
tions effectively. We refer to this protocol as the single-clan
DAG-based BFT. This method significantly reduces band-
width consumption by limiting data dissemination to the
designated clan, which improves throughput and scalability.
Additionally, this approach is versatile and can be integrated
into existing DAG-based BFT SMR protocols to enhance
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throughput and scalability while preserving security guar-
antees equivalent to systems where data dissemination and
execution involve all parties.
3. Multi-clan DAG-based BFT SMR. We extend the single-
clan DAG-based BFT SMR to a multi-clan setting, where the
entire tribe is partitioned into multiple disjoint clans, each
maintaining the honest majority assumption with negligible
error probability. Each clan independently disseminates and
executes proposed data and is responsible for responding to
the clients. This design builds upon the single-clan approach
by enabling more efficient bandwidth utilization across the
system, thereby improving both throughput and scalability.
The multi-clan protocol is particularly well-suited for shared
sequencers [35, 47, 48], which order transactions from inde-
pendent applications, and it can also enhance performance
in state-sharded blockchains [28, 52, 53].
Implementation and evaluation. We implemented and
evaluated the performance of both the single-clan and multi-
clan protocols, comparing them against Sailfish [42], the
current state-of-the-art DAG-based BFT SMR protocol. Our
results in a geo-distributed setting show that the single-clan
DAG-based BFT SMR significantly outperforms Sailfish in
terms of throughput across all system sizes, despite having
fewer proposers. This is primarily due to the reduced dissem-
ination of data to fewer parties within the designated clan.
Interestingly, despite having the same theoretical latency in
terms of the number of rounds, the single-clan DAG-based
BFT SMR also exhibited lower latency than Sailfish. Addition-
ally, we observed that the multi-clan DAG-based BFT SMR
outperforms both the single-clan DAG-based BFT SMR and
Sailfish in terms of throughput, benefiting from the efficient
distribution of data across multiple clans.
Organization. In Section 2, we present the system model
and preliminaries. In Section 3, we define the tribe-assisted
reliable broadcast primitive and discuss the tribe-assisted
RBC protocol. We present a round efficient variation of the
primitive in Section 4. Sections 5 and 6 present the single-clan
and the multi-clan DAG-based BFT protocols respectively.
Section 7 presents an evaluation of both of these protocols.
Finally, we discuss related works in Section 8.

2 Preliminaries
We consider a system P := 𝑃1, . . . , 𝑃𝑛 consisting of 𝑛 par-
ties out of which up to 𝑓 = ⌊𝑛−13 ⌋ parties can be Byzantine,
meaning they can behave arbitrarily. The model of corrup-
tion is static i.e., the adversary picks the corrupted parties
before the start of protocol execution. A party that is not
faulty throughout the execution is considered to be honest
and executes the protocol as specified.
We consider the partial synchrony model of Dwork et

al. [22]. Under this model, the network starts in an initial
state of asynchrony during which the adversary may arbi-
trarily delay messages sent by honest parties. However, after

an unknown time called the Global Stabilization Time (GST),
the adversary must ensure that all messages sent by honest
parties are delivered to their intended recipients within Δ
time of being sent. We use 𝛿 to characterize the actual (vari-
able) transmission latencies of messages and observe that
𝛿 ≤ Δ after GST. Additionally, we assume the local clocks of
the parties have no clock drift and arbitrary clock skew.

We employ digital signatures and a public-key infrastruc-
ture (PKI) to safeguard against spoofing, and replay attacks,
and to ensure message authenticity. A message 𝑥 digitally
signed by party 𝑃𝑖 using its private key is denoted as ⟨𝑥⟩𝑖 ,
while ⟨𝑥⟩ refers to an unsigned message 𝑥 transmitted over
an authenticated channel. Additionally, we represent the
hash of an input 𝑥 by 𝐻 (𝑥), where 𝐻 is the hash function.
For simplicity, we use the same parameter 𝜅 to denote both
the hash size and the signature size.
Tribe and clans. We define the entire system of 𝑛 nodes as
the tribe, where up to 𝑓 < 𝑛

3 nodes may exhibit Byzantine
faults. A sub-committee within this system, where the honest
majority assumption holds, is referred to as a clan. In a clan,
the number of nodes is represented as 𝑛𝑐 , with at most 𝑓𝑐 <
𝑛𝑐
2 being Byzantine, except with a negligible probability of
error.
Problem definition. Following earlier works [26, 42, 45],
we focus on the Byzantine Atomic Broadcast (BAB) problem
as defined below:
Definition 1 (Byzantine atomic broadcast [26,45]). In a BAB,
each honest party 𝑃𝑖 ∈ P can call a_bcast𝑖 (𝑚, 𝑟 ) to propagate
its input𝑚 in some round 𝑟 ∈ N. Each party 𝑃𝑖 then outputs
a_deliver𝑖 (𝑚, 𝑟, 𝑃𝑘 ), where 𝑃𝑘 ∈ P represents the sender of the
message. A Byzantine atomic broadcast protocol satisfies the
following properties:
- Agreement. If an honest party 𝑃𝑖 outputs a_deliver𝑖 (𝑚, 𝑟, 𝑃𝑘 ),
then every other honest party 𝑃 𝑗 eventually outputs a_deliver𝑗
(𝑚, 𝑟, 𝑃𝑘 ).

- Integrity. For every round 𝑟 ∈ N and party 𝑃𝑘 ∈ P, an
honest party 𝑃𝑖 outputs a_deliver𝑖 at most once regardless
of𝑚.

- Validity. If an honest party 𝑃𝑘 calls a_bcast𝑘 (𝑚, 𝑟 ) then
every honest party eventually outputs a_deliver(𝑚, 𝑟, 𝑃𝑘 ).

- Total order. If an honest party 𝑃𝑖 outputs a_deliver𝑖 (𝑚, 𝑟, 𝑃𝑘 )
before a_deliver𝑖 (𝑚′, 𝑟 ′, 𝑃ℓ ), then no honest party 𝑃 𝑗 outputs
a_deliver𝑗 (𝑚′, 𝑟 ′, 𝑃ℓ ) before a_deliver𝑗 (𝑚, 𝑟, 𝑃𝑘 ).

3 Tribe-assisted Reliable Broadcast
In this section, we introduce a primitive that ensures all
honest parties within a clan reach agreement on a value
and guarantees eventual delivery with the support of the
entire tribe. We refer to this primitive as tribe-assisted reliable
broadcast. We first formally define the tribe-assisted reliable
broadcast primitive. We denote the parties in a clan by P𝑐

which has an honest majority (except with negligible error
probability).
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Definition 2 (Tribe-assisted reliable broadcast). Let a desig-
nated sender 𝑃𝑘 invokes r_bcast𝑘 (𝑚, 𝑟 ) to propagate its input𝑚
in some round 𝑟 ∈ N. Each party 𝑃𝑖 outputs r_deliver𝑖 (𝑦, 𝑟, 𝑃𝑘 ),
where 𝑦 = 𝑚 when 𝑃𝑖 ∈ P𝑐 and 𝑦 = 𝐻 (𝑚) when 𝑃𝑖 ∉ P𝑐 , 𝑃𝑘
is the designated sender and 𝑟 is the round number in which
sender 𝑃𝑘 sent the message𝑚. The tribe-assisted reliable broad-
cast primitive satisfies the following properties, except with
a negligible probability of error in 𝜇 where 𝜇 is the security
parameter.
• Validity. If an honest party 𝑃𝑘 calls r_bcast𝑘 (𝑚, 𝑟 ) then each
honest party 𝑃𝑖 eventually outputs r_deliver𝑖 (𝑦, 𝑟, 𝑃𝑘 ) where
𝑦 =𝑚 when 𝑃𝑖 ∈ P𝑐 and 𝑦 = 𝐻 (𝑚) when 𝑃𝑖 ∉ P𝑐 .

• Agreement. If an honest party 𝑃𝑖 outputs r_deliver𝑖 (𝑦, 𝑟, 𝑃𝑘 ),
then each honest party 𝑃 𝑗 eventually outputs r_deliver𝑗 (𝑦, 𝑟, 𝑃𝑘 )
where 𝑦 =𝑚 when 𝑃𝑖 ∈ P𝑐 and 𝑦 = 𝐻 (𝑚) when 𝑃𝑖 ∉ P𝑐 .

• Integrity. For every round 𝑟 ∈ N and party 𝑃𝑘 ∈ P, an
honest party 𝑃𝑖 outputs r_deliver𝑖 at most once regardless of
𝑚.

Next, we present a candidate protocol in Figure 2. This
construction is based on Bracha’s RBC protocol [9]. Similar
to Bracha RBC, this protocol is signature-free and requires
three rounds in the good case when the sender is honest.
Alternatively, we can extend the RBC protocol of Abraham et
al. [2] to achieve better latency by using signatures (discussed
in Section 4).
Protocol details. In this protocol, the sender 𝑃𝑘 with input
value 𝑚 sends ⟨VAL,𝑚, 𝑟 ⟩ to each party 𝑃𝑖 ∈ P𝑐 for some
round 𝑟 , while it sends only the digest (i.e., 𝐻 (𝑚)) to the
parties outside the clan. Upon receiving the value𝑚, each
party 𝑃𝑖 ∈ P𝑐 sends ⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩. Parties outside the
clan send ⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩ upon receiving just the digest.
An honest party then sends a READY message for the

value 𝑚 when it receives 2𝑓 + 1 distinct ⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩
messages, with at least 𝑓𝑐 + 1 of those coming from parties
in P𝑐 . Note that the clan has at most 𝑓𝑐 Byzantine parties
(except with negligible error probability). Thus, waiting for
at least 𝑓𝑐 + 1 ECHO messages from parties in P𝑐 ensures
that at least one honest party in P𝑐 has received the value𝑚.
This allows other parties in P𝑐 to download value𝑚 at a later
point when required. Additionally, a party can also send a
READY message if they receive 𝑓 + 1 READY messages for
𝑚 and have not yet sent a READY message.

Upon receiving 2𝑓 +1 ⟨READY, 𝐻 (𝑚), 𝑟 ⟩messages, an hon-
est party 𝑃𝑖 ∈ P𝑐 can deliver𝑚 if it has already received the
value𝑚. If it has not yet received the value, it can download
𝑚 from other parties in P𝑐 and then deliver it. As previously
mentioned, if an honest party sends a ⟨READY, 𝐻 (𝑚), 𝑟 ⟩mes-
sage, it guarantees that at least one honest party in P𝑐 has
received the value𝑚, making it possible to retrieve𝑚 at this
stage. Finally, parties outside the clan deliver 𝐻 (𝑚) upon
receiving 2𝑓 + 1 ⟨READY, 𝐻 (𝑚), 𝑟 ⟩ messages.
Communication complexity. Let ℓ be the size of the value
𝑚. An honest sender sends the ℓ-bit message to parties in

P𝑐 and a 𝜅-bit digest to parties in P \ P𝑐 , resulting in a com-
munication complexity of 𝑂 (𝑛𝑐ℓ + 𝜅 (𝑛 − 𝑛𝑐 )). The all-to-all
multicast of ECHO andREADYmessages incurs a complexity
of𝑂 (𝜅𝑛2). Therefore, the overall communication complexity
is 𝑂 (𝑛𝑐ℓ + 𝜅𝑛2) in the good case when the sender is honest.
However, when the sender is Byzantine, only a subset of

honest parties in P𝑐 may receive the value𝑚, but all honest
parties could still gather 2𝑓 +1 READYmessages for𝑚. In this
scenario, the honest parties in P𝑐 would need to download
the value𝑚 from other honest parties who have received it.
To expedite the retrieval, the honest parties may request the
value from a linear number of parties, which could lead to
an increase in communication complexity, reaching up to
𝑂 (𝑛2𝑐 ℓ + 𝜅𝑛2).

Remark on communication complexity. Our protocol
allows parties to download or pull missing data. This feature
could be exploited by Byzantine parties, who might repeat-
edly request the data, potentially leading to unbounded com-
munication complexity. To mitigate such an attack, parties
can be rate-limited, effectively bounding the communication
complexity in practice.

Theoretical RBC protocols [9,17,30] typically only support
data being pushed, without allowing parties to pull the data.
Despite this, these protocols can still encounter unbounded
communication in practice. The assumption is that parties
communicate over reliable links, often implemented using
the TCP protocol [12]. In such setups, a sender continues
transmitting data until it receives an acknowledgment from
the receiver. If the receiver is Byzantine, it may never send
an acknowledgment, causing the sender to continuously
transmit the data, leading to unbounded communication.
However, in practical systems, it is usually assumed that
Byzantine parties do not disrupt the network layer to trigger
such unbounded communication. Under this assumption, our
protocol provides comparable communication complexity
guarantees in practice.
Additionally, theoretical RBC protocols often leverage

erasure and error-correcting codes [36] to improve worst-
case communication efficiency. While these techniques en-
hance communication in the worst case, they also introduce
overhead in terms of encoding, decoding, and verifying the
erasure-coded chunks [13], which can degrade performance
under normal conditions. Since most nodes in practice are
honest, many practical implementations [15, 37] avoid using
erasure codes. Instead, the sender multicasts the proposed
value to all parties, and the parties exchange ECHO and
READY messages on the digest of the value and download
missing values at a later point. This approach offers better
performance in typical scenarios. Moreover, in DAG-based
BFT SMR protocols, where all parties propose, bandwidth
utilization is inherently balanced. As a result, incorporat-
ing erasure-coded broadcast in DAG-based BFT would add
unnecessary computational overhead, reducing efficiency.
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𝑟_𝑏𝑐𝑎𝑠𝑡𝑘 (𝑚, 𝑟 )
1. The sender 𝑃𝑘 sends ⟨VAL,𝑚, 𝑟 ⟩ to each party 𝑃𝑖 ∈ P𝑐 and ⟨VAL, 𝐻 (𝑚), 𝑟 ⟩ to party 𝑃𝑖 ∉ P𝑐 .
2. Upon receiving the first ⟨VAL, 𝑦, 𝑟 ⟩, party 𝑃𝑖 sends ⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩ to all parties (where 𝑦 = 𝑚 when 𝑃𝑖 ∈ P𝑐 and 𝑦 = 𝐻 (𝑚) when

𝑃𝑖 ∉ P𝑐 ).
3. Upon receiving 2𝑓 + 1 distinct ⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩ messages with at least 𝑓𝑐 + 1 ⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩ messages from P𝑐 , party 𝑃𝑖 sends

⟨READY, 𝐻 (𝑚), 𝑟 ⟩ to all parties.
4. Upon receiving 𝑓 + 1 distinct ⟨READY, 𝐻 (𝑚), 𝑟 ⟩ messages, if ⟨READY, 𝐻 (𝑚), 𝑟 ⟩ has not been sent, party 𝑃𝑖 sends ⟨READY, 𝐻 (𝑚), 𝑟 ⟩ to

all parties.
5. Upon receiving 2𝑓 + 1 distinct ⟨READY, 𝐻 (𝑚), 𝑟 ⟩ messages, party 𝑃𝑖 performs the following:

• If party 𝑃𝑖 ∈ P𝑐 and has received value𝑚, invoke 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖 (𝑚, 𝑟, 𝑘); otherwise download value𝑚 from parties in P𝑐 and invoke
𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖 (𝑚, 𝑟, 𝑃𝑘 ).

• If party 𝑃𝑖 ∉ P𝑐 , invoke 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖 (𝐻 (𝑚), 𝑟 , 𝑃𝑘 ).
Figure 2. Tribe-assisted Byzantine reliable broadcast based on [9]

Consequently, we design our tribe-assisted RBC without
erasure and error-correcting codes, prioritizing practical per-
formance.

3.1 Security Analysis
Lemma 1 (Validity). The protocol in Figure 2 satisfies Validity,
except with a negligible error probability.

Proof. Observe that an honest sender 𝑃𝑘 sends ⟨VAL,𝑚, 𝑟 ⟩
to all parties in P𝑐 and ⟨VAL, 𝐻 (𝑚), 𝑟 ⟩ to all parties in P \
P𝑐 . Consequently, all honest parties will eventually send
⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩. As a result, all honest parties will receive
at least 2𝑓 + 1 distinct ⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩ messages, including
at least 𝑓𝑐 +1 from the parties in P𝑐 . Consequently, all honest
parties will eventually send ⟨READY, 𝐻 (𝑚), 𝑟 ⟩ to all parties,
and all honest parties will receive 2𝑓 + 1 ⟨READY, 𝐻 (𝑚), 𝑟 ⟩
messages. Furthermore, honest parties in P𝑐 will receive𝑚
from the sender 𝑃𝑘 . Therefore, all honest parties will invoke
r_deliver(𝑦, 𝑟, 𝑃𝑘 ), where 𝑦 = 𝑚 if 𝑃𝑖 ∈ P𝑐 and 𝑦 = 𝐻 (𝑚) if
𝑃𝑖 ∉ P𝑐 .

Note that honest parties may fail to receive at least 𝑓𝑐 + 1
⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩ messages only in the rare case where the
clan has a dishonest majority, which occurs with negligible
probability. Therefore, the validity property is maintained
except with a negligible probability of failure. □

Claim 1. No two honest parties will send READY message on
conflicting values.

Proof. Suppose an honest party 𝑃𝑖 sends READYmessage for
value𝑚. This implies 𝑃𝑖 must have received at least 2𝑓 + 1
⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩. A simple quorum intersection argument
show that there cannot exist a set of at least 2𝑓 + 1 ECHO
messages on a conflicting value𝑚′. Thus, no honest party
sends a READY message for a conflicting message. □

Lemma 2 (Agreement). The protocol in Figure 2 satisfies
Agreement, except with a negligible error probability.

Proof. Suppose an honest party 𝑃𝑖 outputs r_deliver𝑖 (𝑦, 𝑟, 𝑃𝑘 )
(where 𝑦 = 𝑚 when 𝑃𝑖 ∈ P𝑐 and 𝑦 = 𝐻 (𝑚) when 𝑃𝑖 ∉ P𝑐 ).
This implies 𝑃𝑖 must have received at least 2𝑓 +1 ⟨READY, 𝐻 (𝑚), 𝑟 ⟩
messages, including at least 𝑓 + 1 ⟨READY, 𝐻 (𝑚), 𝑟 ⟩ from

honest parties. Since honest parties send ⟨READY, 𝐻 (𝑚), 𝑟 ⟩
to all parties, all honest parties will eventually receive at
least 𝑓 + 1 ⟨READY, 𝐻 (𝑚), 𝑟 ⟩. By Claim 1, no honest party
sends READY message for a conflicting value. Thus, honest
parties that have not sent READY message will eventually
send ⟨READY, 𝐻 (𝑚), 𝑟 ⟩. Consequently, all honest parties will
eventually receive 2𝑓 + 1 ⟨READY, 𝐻 (𝑚), 𝑟 ⟩ and honest par-
ties in P \ P𝑐 will invoke r_deliver(𝐻 (𝑚), 𝑟 , 𝑃𝑘 ).

Moreover, observe that at least one honest partymust have
sent ⟨READY, 𝐻 (𝑚), 𝑟 ⟩ upon receiving 2𝑓 +1 ⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩
messages, including at least 𝑓𝑐 + 1 ⟨READY, 𝐻 (𝑚), 𝑟 ⟩ mes-
sages from parties in P𝑐 . This implies at least one hon-
est party 𝑃 𝑗 ∈ P𝑐 must have received the value𝑚, except
with negligible error probability. Consequently, other hon-
est parties in P𝑐 will download value 𝑚 from 𝑃 𝑗 and in-
voke r_deliver(𝑚, 𝑟, 𝑃𝑘 ), except with negligible error proba-
bility. □

Theorem 1. The protocol in Figure 2 is a tribe-assisted reliable
broadcast tolerating 𝑡 < 𝑛/3 Byzantine faults satisfying Defi-
nition 2, except for a negligible probability of error.

Proof. The integrity property is straightforward from the pro-
tocol, as a party can deliver a value at most once. The validity
and agreement property follows from Lemma 1 and Lemma 2
respectively. □

4 Two-Round Tribe-assisted Reliable
Broadcast

In this section, we present a tribe-assisted RBC protocol
that completes in two rounds in the good-case which is
optimal [2]. This construction is based on the two-round
RBC protocol of Abraham et al [2]. The protocol is presented
in Figure 3.
Protocol details. All the messages exchanged in this pro-
tocol are signed. The sender 𝑃𝑘 with input value 𝑚 sends
⟨VAL,𝑚, 𝑟 ⟩𝑘 to each party 𝑃𝑖 ∈ P𝑐 for some round 𝑟 , while
it sends only the digest (i.e., 𝐻 (𝑚)) to the parties outside
the clan. Upon receiving the value 𝑚, each party 𝑃𝑖 ∈ P𝑐

multicasts ⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩𝑖 . Parties outside the clan send
⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩ upon receiving just the digest.
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𝑟_𝑏𝑐𝑎𝑠𝑡𝑘 (𝑚, 𝑟 )
1. The sender 𝑃𝑘 sends ⟨VAL,𝑚, 𝑟 ⟩𝑘 to each party 𝑃𝑖 ∈ P𝑐 and ⟨VAL, 𝐻 (𝑚), 𝑟 ⟩𝑘 to party 𝑃𝑖 ∉ P𝑐 .
2. Upon receiving the first ⟨VAL, 𝑦, 𝑟 ⟩𝑘 , party 𝑃𝑖 sends ⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩𝑖 to all parties (where 𝑦 =𝑚 when 𝑃𝑖 ∈ P𝑐 and 𝑦 = 𝐻 (𝑚) when

𝑃𝑖 ∉ P𝑐 ).
3. Upon receiving 2𝑓 +1 distinct ⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩∗ messages with at least 𝑓𝑐 +1 ⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩∗ messages from P𝑐 (denoted by EC𝑟 (𝑚)),

party 𝑃𝑖 multicasts EC𝑟 (𝑚) and performs the following:
• If party 𝑃𝑖 ∈ P𝑐 and has received value𝑚, invoke 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖 (𝑚, 𝑟, 𝑘); otherwise download value𝑚 from parties in P𝑐 and invoke
𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖 (𝑚, 𝑟, 𝑃𝑘 ).

• If party 𝑃𝑖 ∉ P𝑐 , invoke 𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖 (𝐻 (𝑚), 𝑟 , 𝑃𝑘 ).
Figure 3. Tribe-assisted Byzantine reliable broadcast based on [2].

Upon receiving 2𝑓 + 1 ⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩ messages with at
least 𝑓𝑐 + 1 of those coming from parties in P𝑐 (denoted by
EC𝑟 (𝑚)), an honest party 𝑃𝑖 ∈ P𝑐 multicasts the EC𝑟 (𝑚).
𝑃𝑖 can deliver𝑚 if it has already received the value𝑚. If it
hasn’t yet received the value, it can download𝑚 from other
parties in P𝑐 and then deliver it. Finally, parties outside the
clan deliver 𝐻 (𝑚) upon receiving EC𝑟 (𝑚).
Communication complexity. Let ℓ represent the size of
the value𝑚. An honest sender transmits the ℓ-bit message to
parties in P𝑐 and a 𝜅-bit digest to parties in P \P𝑐 , resulting
in a communication complexity of 𝑂 (𝑛𝑐ℓ + 𝜅 (𝑛 − 𝑛𝑐 )). The
all-to-all multicast of ECHO messages incurs a complexity
of 𝑂 (𝜅𝑛2). When using the BLS multi-signature scheme, the
size of EC𝑟 (𝑚) becomes𝑂 (𝜅+𝑛), and the all-to-all multicast
of the EC𝑟 (𝑚) incurs𝑂 (𝜅𝑛2+𝑛3). Therefore, the overall com-
munication complexity is𝑂 (𝑛𝑐ℓ +𝜅𝑛2 +𝑛3) in the good-case.
While there is a cubic term in the communication complex-
ity, the linear term associated with the BLS multi-signature
is merely a bit vector indicating who voted, so it does not
impose significant communication overhead.
In the worst case, if the sender is Byzantine, the commu-

nication complexity can increase to 𝑂 (𝑛2𝑐 ℓ + 𝜅𝑛2 + 𝑛3) when
the honest parties request the value from a linear number of
parties.

4.1 Security Analysis
Lemma 3 (Validity). The protocol in Figure 3 satisfies Validity,
except with a negligible error probability.

Proof. Observe that an honest sender 𝑃𝑘 sends ⟨VAL,𝑚, 𝑟 ⟩
to all parties in P𝑐 and ⟨VAL, 𝐻 (𝑚), 𝑟 ⟩ to all parties in P \
P𝑐 . Consequently, all honest parties will eventually send
⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩. As a result, all honest parties will eventu-
ally receive at least 2𝑓 +1 distinct ⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩messages,
including at least 𝑓𝑐 + 1 from the parties in P𝑐 . Furthermore,
honest parties in P𝑐 will receive𝑚 from the sender 𝑃𝑘 . There-
fore, all honest parties will invoke r_deliver(𝑦, 𝑟, 𝑃𝑘 ), where
𝑦 =𝑚 if 𝑃𝑖 ∈ P𝑐 and 𝑦 = 𝐻 (𝑚) if 𝑃𝑖 ∉ P𝑐 .

Note that honest parties may fail to receive at least 𝑓𝑐 + 1
⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩ messages only in the rare case where the
clan has a dishonest majority, which occurs with negligible
probability. Therefore, the validity property is maintained
except with a negligible probability of failure. □

Lemma 4 (Agreement). The protocol in Figure 3 satisfies
Agreement, except with a negligible error probability.

Proof. Suppose an honest party 𝑃𝑖 outputs r_deliver𝑖 (𝑦, 𝑟, 𝑃𝑘 )
(where 𝑦 = 𝑚 when 𝑃𝑖 ∈ P𝑐 and 𝑦 = 𝐻 (𝑚) when 𝑃𝑖 ∉ P𝑐 ).
This implies 𝑃𝑖 must have received 2𝑓 + 1 ⟨ECHO, 𝐻 (𝑚), 𝑟 ⟩
messages, including at least 𝑓𝑐 + 1 from the parties in P𝑐 .
𝑃𝑖 must have sent EC𝑟 (𝑚) to all parties. Consequently, all
honest parties will eventually receive EC𝑟 (𝑚) and honest
parties in P \ P𝑐 will invoke r_deliver(𝐻 (𝑚), 𝑟 , 𝑃𝑘 ).
Moreover, observe that at least one honest party 𝑃 𝑗 ∈ P𝑐

must have received the value𝑚, except with negligible error
probability. Consequently, other honest parties in P𝑐 will
download value 𝑚 from 𝑃 𝑗 and invoke r_deliver(𝑚, 𝑟, 𝑃𝑘 ),
except with negligible error probability. □

Theorem 2. The protocol in Figure 3 is a tribe-assisted reli-
able broadcast satisfying Definition 2, except for a negligible
probability of error.

Proof. The integrity property is straightforward from the pro-
tocol, as a party can deliver a value at most once. The validity
and agreement property follows from Lemma 3 and Lemma 4
respectively. □

5 Single-clan DAG-based BFT SMR
In this section, we introduce an efficient and scalable archi-
tecture for a DAG-based BFT SMR protocol that limits data
dissemination and execution to a single designated clan of
parties while maintaining security guarantees comparable
to those of a system where transaction dissemination and
execution occur across the entire network.
Structural overview of DAG-based BFT SMR. A DAG-
based BFT SMR protocol progresses through a series of
rounds. In each round 𝑟 , each party proposes a single vertex
using the RBC primitive [9, 17] to ensure non-equivocation
and guarantee that all honest parties eventually deliver the
vertex. Each vertex 𝑣 contains a block of transactions, and
references to at least 2𝑓 + 1 vertices from round 𝑟 − 1 and up
to 𝑓 vertices from earlier rounds (i.e., rounds < 𝑟 − 1), pro-
vided there is no path from 𝑣 to these earlier vertices. These
references form the edges in the DAG, with the references to
2𝑓 + 1 round 𝑟 − 1 vertices serving as strong edges and refer-
ences to earlier rounds as weak edges. A path from vertex 𝑣𝑘
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to vertex 𝑣ℓ following the strong edges is called a strong path.
The strong edges and strong paths are crucial for committing
vertices within the DAG, while all edges contribute to the
total ordering of the vertices. The commit and total ordering
rules are specific to each protocol. We encourage readers
to refer to the respective protocols [42, 44, 45] for detailed
information on these rules.

The references, along with the edges and paths they create,
are essential for committing and totally ordering the vertices.
Therefore, it is necessary to propagate these references to
all parties in the system. However, the block of transactions
only needs to be (reliably) disseminated to a designated clan
of parties, who will execute the transactions and respond to
the client. This observation is fundamental to designing an
efficient and scalable DAG-based BFT SMR.

Towards improving throughput with scalability. As pre-
viously mentioned, transaction blocks within a vertex are
typically large, making their dissemination to all parties
bandwidth-intensive and a key bottleneck for scalability and
throughput. In contrast, the total size of references to ver-
tices from earlier rounds are much smaller, especially in
moderately-sized networks, and their dissemination intro-
duces minimal overhead. Specifically, the payload size ℓ far
exceeds the size of vertex references, i.e., ℓ >> 𝜅𝑛, in such
settings. To mitigate this bottleneck, we randomly elect a
clan of parties with a high probability of maintaining an
honest majority. The transaction block is then reliably dis-
seminated only to this clan, significantly reducing overall
bandwidth usage.

To further optimize the propagation of vertices, we modify
the vertex structure to contain only the digest of the block of
transactions. The updated data structures are shown in Fig-
ure 4. The actual block of transactions is placed in a separate
block structure, which is sent exclusively to the designated
clan, while the vertex itself is propagated to the entire tribe.
For block dissemination, we can leverage our tribe-assisted
RBC protocol, whereas the standard RBC protocol is used
to propagate the vertex. However, this approach increases
message (and computation) complexity.

Efficiently propagating the vertex and the block. To
efficiently propagate both the vertex and block, we merge the
two RBC instances. Let 𝑣 be a vertex,𝑏 be its associated block,
and C be the designated clan. The sender broadcasts vertex 𝑣
to all parties in the tribe but sends block 𝑏 only to members
of C. Members of C send an ECHO message (as part of the
RBC) only after receiving both 𝑣 and 𝑏, while parties outside
C send an ECHO after receiving just 𝑣 , which includes the
digest of block 𝑏. The READYmessage is sent upon receiving
2𝑓 + 1 ECHO messages with at least 𝑓𝑐 + 1 from the clan C,
or upon receiving 𝑓 + 1 READY messages. This combined
approach maintains the guarantees of standard RBC, as C
always includes at least 𝑓𝑐 + 1 honest members, except with

negligible error probability. It effectively integrates tribe-
assisted RBC for block propagation with standard RBC for
the vertex.

Generic technique: obtaining single-clan DAG-based
BFT SMR. Our scaling technique can be adapted to existing
DAG-based BFT SMR protocols that rely on RBC, such as
Bullshark [46], Shoal [44], Sailfish [42], Shoal++ [4] and Sail-
fish++ [43], with a few key modifications. Existing protocols
typically allow all parties to propose both blocks and vertices.
However, the single-clan technique limits block proposals to
parties within the clan.
While theoretically, all parties could propose blocks (of

transactions) and disseminate them only to the clan to im-
prove throughput, this is impractical. Block proposers are
also responsible for validating transactions and ensuring suf-
ficient gas is available for transaction execution. These tasks
require executing transactions and maintaining state, which
only clan members can do. Thus, in the single-clan approach,
only clan members can propose transaction blocks, while
all parties must continue proposing vertices since these are
essential for committing blocks and vertices. This modifi-
cation does not limit the protocol’s applicability, as clients
only need to send their transactions to the designated clan
instead of all parties and will receive responses from the
parties within the clan.
Another modification involves separating the dissemina-

tion of vertices and blocks: instead of broadcasting them
together, they are propagated independently. Despite these
adjustment, the DAG construction, commit, and ordering
rules remain unchanged, adhering to the original protocol de-
signs. After transactions are ordered, only the clan members
execute them and respond to the client.
Additionally, the enhanced protocol maintains the good-

case commit latency of the original protocol. For example,
in Bullshark [46], the protocol would still commit the leader
vertex (proposed by the round’s leader) with a latency of
two RBCs. Similarly, in Sailfish [42], the leader vertex would
be committed with a latency of one RBC, plus 1𝛿 .

When using tribe-assisted RBC to propagate vertices, par-
ties may need to download missing blocks if the sender is
Byzantine, which introduces additional latency. However,
this does not affect the protocol’s progress or commit latency.
In standard DAG-based BFT SMR protocols, the protocol ad-
vances to round 𝑟 + 1 once a sufficient number of RBCs from
round 𝑟 have been delivered. In our enhanced protocol, it
proceeds to the next round upon receiving 2𝑓 + 1 READY
messages from a sufficient number of RBCs, even before
downloading the associated blocks. This ensures the proto-
col’s progress remains unaffected.

Moreover, parties can commit the vertex, which includes
the block digest, even before the block itself has been deliv-
ered. Typically, transaction execution lags behind consensus.
Parties can begin requesting the missing blocks as soon as
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Local variables:
struct vertex 𝑣 : ⊲ The struct of a vertex in the DAG
𝑣 .𝑟𝑜𝑢𝑛𝑑 - the round of 𝑣 in the DAG
𝑣 .𝑠𝑜𝑢𝑟𝑐𝑒 - the party that broadcast 𝑣
v.block_digest - the digest of the corresponding block of transactions
𝑣 .𝑠𝑡𝑟𝑜𝑛𝑔𝐸𝑑𝑔𝑒𝑠 - a set of vertices in 𝑣 .𝑟𝑜𝑢𝑛𝑑 − 1 that represent strong edges
𝑣 .𝑤𝑒𝑎𝑘𝐸𝑑𝑔𝑒𝑠 - a set of vertices in rounds < 𝑣 .𝑟𝑜𝑢𝑛𝑑 − 1 that represent weak edges
𝑣 .𝑛𝑣𝑐 - a no-vote certificate for 𝑣 .𝑟𝑜𝑢𝑛𝑑 − 1 (if any)
𝑣 .𝑡𝑐 - a timeout certificate for 𝑣 .𝑟𝑜𝑢𝑛𝑑 − 1 (if any)

struct block 𝑏:
𝑏.𝑡𝑥𝑛 - a list of transactions

Figure 4. Basic data structures. The core structure is adapted from Sailfish [42].

they receive 2𝑓 + 1 ECHO messages, including at least 𝑓𝑐 + 1
from the clan C i.e., before receiving 2𝑓 +1 READYmessages;
ensuring that missing blocks are delivered before execution
begins.
On the security of single-clan DAG-based BFT SMR.
Existing DAG-based BFT SMR protocols [42, 44, 45] rely on
theoretical RBC primitives [9, 17, 30] to propagate proposed
vertices, which consist of both blocks of transactions and
references. These RBC primitives guarantee validity, agree-
ment, (eventual) guaranteed delivery, and timely delivery
(after GST). These properties are essential to ensure the se-
curity guarantees of the protocol, as outlined in Definition 1.

In our protocol, we use a tribe-assisted RBC to disseminate
blocks exclusively to a designated clan. This mechanism
retains the same validity, agreement and eventual guaranteed
delivery properties, except for a negligible probability of
error. While parties may need to download missing blocks,
introducing some additional latency, the missing blocks can
be retrieved without affecting the overall progress of the
protocol. Thus, tribe-assisted RBC does not compromise the
security of protocols relying on it, except in the unlikely
scenario of a dishonest majority forming within the clan,
which has a negligible probability. In particular, we obtain
the following result:

Theorem 3 (Informal). The single-clan DAG-based BFT SMR
implements Byzantine atomic broadcast and tolerates up to
𝑓 < 𝑛/3 Byzantine faults, except with negligible probability
of error.

Communication complexity. Let ℓ denote the size of a
block of transactions. Existing DAG-based BFT SMR proto-
cols incur a communication overhead of at least𝑂 (𝑛2ℓ +𝜅𝑛3).
By leveraging tribe-assisted RBC for block dissemination and
restricting payload proposals to the clan, our protocol re-
duces this overhead to𝑂 (𝑛2𝑐 ℓ +𝜅𝑛3) in the best-case scenario.
Operating cost reduction. Disseminating large amounts
of data across the entire network can be expensive due to
higher data transfer fees between data centers. Additionally,
machines with a larger number of cores are needed to exe-
cute transactions in parallel and reduce latency. As a result,
executing transactions and disseminating data across the

entire network can become cost-prohibitive. Our single-clan
design mitigates this by confining data dissemination and
transaction execution to a smaller, designated clan. Only this
clan needs high-capacity machines, reducing overall system
costs and transaction fees.
Remark. Our scaling techniques are applicable to DAG-
based BFT SMR protocols that rely on RBC, such as [4,42–45].
Some other approaches, like Cordial Miners [27] and Mys-
ticeti [5], utilize best-effort broadcast (BEB) to reduce latency
in failure-free scenarios but are more vulnerable to increased
latency under Byzantine behavior [4]. Our technique does
not directly extend to such BEB-based protocols, and explor-
ing how to support these protocols presents an interesting
avenue for future work.
Statistical security analysis. When a single clan of 𝑛𝑐
parties is randomly selected from a system of 𝑛 total par-
ties, of which 𝑓 are Byzantine, the probability of forming
a dishonest majority within the clan is given by the hy-
pergeometric cumulative distribution function (CDF). This
function calculates the likelihood of selecting more than half
of the 𝑛𝑐 parties as Byzantine. Specifically, the probability
Pr(dishonest majority) is:

Pr(dishonest majority) =
𝑛𝑐∑︁

𝑘=⌈ 𝑛𝑐2 ⌉

(𝑓
𝑘

) ( 𝑛−𝑓
𝑛𝑐−𝑘

)(
𝑛
𝑛𝑐

) (1)

The value of 𝑛𝑐 must be chosen sufficiently large relative
to the total number of parties 𝑛 and the number of Byzantine
parties 𝑓 so that the probability of forming a dishonest ma-
jority within the clan is below the desired security threshold
𝜇. Specifically, we require:

Pr(dishonest majority) ≤ 2−𝜇 (2)
If a clan with a dishonest majority is formed, the validity

and agreement properties of the tribe-assisted RBC may be
compromised. As a result, this probability defines the failure
probability of both the tribe-assisted RBC and the DAG-
based BFT SMR protocols that depend on it. In Figure 1, we
present the required clan size 𝑛𝑐 necessary to ensure that
the probability of forming a dishonest majority is below
10−9 ≈ 2−30.
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6 Multi-clan DAG-based BFT SMR
In the earlier design, a single clan handled block proposals,
received and disseminated the block, and executed transac-
tions. This design is effective for small systems where the
clan size remains only marginally smaller than the tribe size.
However, as the system scales, the clan size does not grow
proportionally, as illustrated in Figure 1. This single clan
design can restrict throughput in larger systems and fails to
fully utilize the bandwidth of the entire network. To address
this, we propose partitioning the tribe into multiple disjoint
clans. Each clan independently disseminates, processes, and
executes transactions within its group, while also respond-
ing to clients. This design maintains security guarantees
equivalent to a system where transaction dissemination and
execution are performed across the entire network.

Generic technique: obtaining multi-clan DAG-based
BFT SMR.We partition the tribe into multiple clans, denoted
as C1, . . . , C𝑞 , where 𝑞 is determined based on the desired
error probability. Unlike the single-clan approach, which
restricts block proposals to the designated clan, the multi-
clan design allows all parties to propose. Each proposer dis-
seminates its payload exclusively within its respective clan,
evenly distributing bandwidth consumption across clans.
Transaction execution is also handled independently within
each clan, balancing the processing load.

In the single-clan approach, only the designated clan mem-
bers could propose transactions because parties outside the
clan did not execute transactions, preventing proposers from
validating them. In contrast, the multi-clan design ensures
that all parties belong to a clan, execute transactions spe-
cific to their clan, and can validate and propose transactions
within their respective clans.

As before, we adopt the modified data structure where the
block of transactions is separated from the vertex, and the
vertex structure includes only the block’s digest (as depicted
in Figure 4). Parties within a clan use tribe-assisted RBC to
disseminate the block within their clan, while employing
standard RBC to propagate the vertex to the entire tribe.
These steps are integrated: a party in a clan sends an ECHO
message only after receiving both the block and the vertex.
As previously discussed, references to vertices are critical
for committing proposed vertices and must be propagated to
the entire tribe. Since these references are relatively small,
disseminating this metadata to all parties introduces minimal
overhead.
The core components of the DAG-based BFT SMR pro-

tocol, such as DAG construction, vertex commitment, and
ordering, remain unchanged. Although the block is dissemi-
nated exclusively within the respective clan, its vertex (and
by extension, the block) is globally ordered, ensuring a con-
sistent transaction sequence across the network. Once the
protocol has ordered the vertices, the corresponding clan
members execute the transactions and respond to the client.

The security of the multi-clan DAG-based BFT SMR pro-
tocol builds on the guarantees of the underlying DAG-based
BFT SMR, the tribe-assisted RBC, and the negligible proba-
bility of selecting a dishonest majority within any clan (as
analyzed in Section 6.2). Since both the formation of a dis-
honest majority clan and the failure of tribe-assisted RBC
occur only with negligible probability, the overall failure
probability of the multi-clan DAG-based BFT SMR remains
negligible. This leads to the following result.

Theorem 4 (Informal). Each clan in the multi-clan DAG-
based BFT SMR protocol ensures Byzantine atomic broadcast
properties, except with negligible probability of error.

Communication complexity. Let ℓ represent the size of
a block of transactions. By utilizing tribe-assisted RBC for
block dissemination and allowing all parties to propose pay-
loads within their respective clans, our protocol achieves
communication overhead of 𝑂 (𝑛𝑐𝑛ℓ + 𝜅𝑛3) in the best-case
scenario.

6.1 Applications

Shared-sequencers. The multi-clan DAG-based BFT SMR
design is specially well-suited for applications such as shared
sequencers [35,47,48], which focus on ordering transactions
from independent applications. Since these applications have
no inter-dependencies, a designated clan can handle transac-
tions for a specific application, processing and maintaining
only the state relevant to that application. The recent surge
in interest in shared sequencers highlights the potential of
our multi-clan design as a promising solution.
State-sharded blockchains. The multi-clan DAG-based
BFT SMR is also applicable in state-sharded blockchains [16,
28, 53], where the user space of a blockchain is partitioned
into multiple shards to group frequently interacting users
within a shard. In such blockchains, each shard is managed
by a dedicated clan. Intra-shard transactions are processed
within the shard, while cross-shard transactions require syn-
chronization across shards, handled by protocols like two-
phase commit. Extensive literature exists on efficiently man-
aging cross-shard transactions [16, 52, 53], which can be
extended to multi-clan DAG-based protocols. Exploring this
direction is left for future work.

6.2 Statistical security analysis.
In this sub-section, we calculate the probability of forming
a clan with a dishonest majority when the number of clans
is 2 and 3. This analysis can be generalized to compute the
error probability for a larger number of clans using the same
principles.
Analysis for 2 clans. Let 𝑓 = ⌊𝑛−13 ⌋ represent the maximum
number of Byzantine parties, and let 𝑛ℎ = 𝑛 − 𝑓 denote the
number of honest parties. When the tribe is divided into 2
clans, the total number of possible combinations to form two
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clans is given by:

𝑁 =

(
𝑛

𝑛𝑐

)
(3)

Let𝑤1 and𝑤2 represent the number of Byzantine parties
in clans C1 and C2, respectively. To ensure an honest majority
in both clans, the number of Byzantine parties in each clan
must be between 0 and 𝑓𝑐 , where 𝑓𝑐 is the maximum number
of Byzantine parties that a clan can tolerate and still maintain
an honest majority, i.e., 0 ≤ 𝑤1,𝑤2 ≤ 𝑓𝑐 . Given that there
are 𝑓 Byzantine parties in total, they must be split between
C1 and C2, meaning that 𝑤1 + 𝑤2 = 𝑓 . Let W represent
all possible pairs (𝑤1,𝑤2) such that 0 ≤ 𝑤1,𝑤2 ≤ 𝑓𝑐 and
𝑤1 +𝑤2 = 𝑓 . The total number of valid combinations where
both clans maintain an honest majority is then given by:

𝑠 =
∑︁

(𝑤1,𝑤2 ) ∈W

(
𝑓

𝑤1

) (
𝑛ℎ

𝑛𝑐 −𝑤1

)
(4)

Accordingly, the probability of forming a clan with dis-
honest majority is given by:

Pr(dishonest majority) = 1 − 𝑠

𝑁
(5)

Analysis for 3 clans. When the entire tribe is divided into
3 clans, the total number of possible combinations to form
three clans is given by:

𝑁 =

(
𝑛

𝑛𝑐

) (
𝑛 − 𝑛𝑐

𝑛𝑐

)
(6)

Let𝑤1,𝑤2 and𝑤3 represent the number of Byzantine par-
ties in clans C1, C2 and C3 respectively. To ensure an honest
majority in both clans, the number of Byzantine parties in
each clan must be between 0 and 𝑓𝑐 , i.e., 0 ≤ 𝑤1,𝑤2,𝑤3 ≤ 𝑓𝑐 .
Given that there are 𝑓 Byzantine parties in total, theymust be
split between C1, C2 and C3, meaning that𝑤1 +𝑤2 +𝑤3 = 𝑓 .
Let W represent all possible pairs (𝑤1,𝑤2,𝑤3) such that
0 ≤ 𝑤1,𝑤2,𝑤3 ≤ 𝑓𝑐 and 𝑤1 + 𝑤2 + 𝑤3 = 𝑓 . The total num-
ber of valid combinations, 𝑠 , where each clan maintains an
honest majority is then given by:

∑︁
(𝑤1,𝑤2,𝑤3 ) ∈W

(
𝑓

𝑤1

) (
𝑛ℎ

𝑛𝑐 −𝑤1

) (
𝑓 −𝑤1

𝑤2

) (
𝑛ℎ − (𝑛𝑐 −𝑤1)

𝑛𝑐 −𝑤2

)
(7)

We obtain the probability of forming a clan with dishonest
majority by substituting the value of 𝑁 (from Equation (6))
and 𝑠 (from Equation (7)) into Equation (5).

The value of 𝑛𝑐 must be chosen sufficiently large relative
to the total number of parties 𝑛 and the number of Byzantine
parties 𝑓 so that the probability of forming a dishonest ma-
jority within the clan is below the desired security threshold
𝜇. Specifically, we require:

Pr(dishonest majority) ≤ 2−𝜇 (8)
If a clan with a dishonest majority is formed, the validity

and agreement properties of the tribe-assisted RBC—and by

extension, the multi-clan DAG-based BFT protocol—can be
violated. Therefore, the probability Pr(dishonest majority)
directly bounds the probability with which the validity and
agreement properties of the multi-clan DAG-based BFT pro-
tocol may be compromised.
Concrete numbers. Based on the above analysis, when the
network size is 150, we can partition the network into two
clans, with the probability of forming a clan with a dishonest
majority being approximately 4.015 ∗ 10−6. Similarly, when
the network size is 387, we can divide the network into three
clans, with the probability of forming a clan with a dishonest
majority being approximately 1.11 ∗ 10−6.

7 Evaluation
We evaluate the performance of both the single-clan and
multi-clan protocols, comparing their throughput and la-
tency with the state-of-the-art DAG-based BFT SMR proto-
col, Sailfish [42], which relies on RBC. As discussed earlier,
our tribe-assisted RBC can also be integrated into other DAG-
based protocols [4, 44, 45] that employ RBC, thereby enhanc-
ing their overall performance. However, since data transfer
across geo-distributed instances is monetarily expensive [34],
we restrict our evaluation to only three protocols.
Implementation details. We use Sailfish as the underly-
ing DAG-based BFT SMR protocol. Sailfish commits leader
vertices with a latency of 3𝛿 and non-leader vertices with
5𝛿 . Multi-leader Sailfish supports multiple leaders per round,
committing all leader vertices with 3𝛿 latency.Wemodify the
open-source Sailfish implementation [39] to develop both the
single-clan and multi-clan versions, naming them single-clan
Sailfish and multi-clan Sailfish, respectively.

To minimize latency, we use the round-optimal RBC proto-
col [2] for vertex propagation and a two-round tribe-assisted
RBC protocol (cf. Section 4) for block propagation. For effi-
ciency, we combine these RBC processes, where clan mem-
bers send ECHO only after receiving both the vertex and
block (detailed in Section 5). Following Sailfish, this results in
a commit latency of 1RBC + 1𝛿 (i.e., 3𝛿). In our implementa-
tion of the round-optimal RBC [2], we avoid forwarding the
sender’s proposal and instead download missing proposals
off the critical path of consensus if needed, reducing com-
munication overhead in failure-free cases. As noted earlier,
retrieving missing vertices off the critical path does not slow
down consensus or increase commit latency. The implemen-
tation of Sailfish with these optimizations is available at [40].
The implementations of single-clan and multi-clan Sailfish
are available at [41] and [38], respectively.

We used RocksDB for persistent storage of the consensus
data and BLS multi-signatures [8] for authentication, sig-
nificantly reducing the size of signatures that need to be
multicast. While BLS multi-signatures are computationally
expensive to verify, we optimize this by aggregating indi-
vidual signatures without upfront verification and verifying
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Figure 5. Throughput vs. latency at varying system sizes and varying input

only the aggregated signature. In case the aggregated signa-
ture fails verification due to a Byzantine party’s incorrect
signature, individual signatures are verified to identify and
penalize the faulty party. This approach avoids the overhead
of verifying individual signatures in the typical case where
all nodes sign correctly.
Sailfish as the foundation protocol and generalization
to other DAG-based protocols. DAG-based protocols that
rely on RBC use it to disseminate proposed vertices in each
round, while differing in how they drive progress and com-
mit the proposed vertices. We selected Sailfish [42] as the
foundation protocol for our work because, to the best of our
knowledge, it offers the lowest latency among such proto-
cols. We modified Sailfish by integrating our tribe-assisted
RBC to propagate blocks of transactions and restricting pro-
posal rights to clan nodes. These modifications enhance the
protocol’s scalability and efficiency without altering its core
consensus mechanism. Importantly, the same ideas can be ap-
plied to other DAG-based BFT protocols [4,43–45] to achieve
similar improvements.

Table 1. Ping latencies (in ms) between GCP regions

Destination∗

Source us-e-1 us-w-1 eu-n-1 as-ne-1 au-se-1

us-east1-a 0.75 66.14 114.75 160.28 197.98
us-west1-a 66.15 0.66 158.13 89.56 138.33

europe-north1-a 115.40 158.38 0.69 245.15 295.13
asia-northeast1-a 159.89 90.05 246.01 0.66 105.58

australia-southeast1-a 197.60 139.02 294.36 108.26 0.58
∗Region names are abbreviated versions of the source regions.

Experimental setup. We carried out our evaluations on
the Google Cloud Platform (GCP), distributing nodes evenly
across five distinct GCP regions: us-east1-b (South Carolina),
us-west1-a (Oregon), europe-north1-a (Hamina, Finland),
asia-northeast1-a (Tokyo), and australia-southeast1-a (Syd-
ney). We employed e2-standard-32 instances [32], each fea-
turing 32vCPUs, 128GB of memory, and up to 16Gbps net-
work bandwidth [33]. All nodes ran on Ubuntu 20.04, and
we summarize round-trip latencies in Table 1.

In our evaluations, each party generates a configurable
number of transactions (512 random bytes each) for inclu-
sion in its proposal, with a proposal containing up to 6000
transactions (i.e., 3 MB). Latency is measured as the average
time between the creation of a transaction and its commit by
all non-faulty nodes. Throughput is measured by the number
of committed transactions per second. Our evaluation ex-
cludes transaction execution, as it is orthogonal to consensus:
execution must occur once consensus is achieved, regardless
of the protocol used. Hence, we concentrate exclusively on
improving and assessing consensus performance metrics.
Methodology. In our evaluations, we varied the number of
input transactions per proposal, selecting values from the
set [1, 32, 63, 125, 250, 500, 1000, 1500, 2000, 3000, 4000, 5000,
6000]. In Figure 5, the data points on the left correspond to
protocol performance with smaller numbers of input trans-
actions, while those on the right reflect performance with
larger numbers. As shown, throughput increases with load,
accompanied by a modest increase in latency, until reaching
a saturation point. Beyond this point, latency grows more
sharply while throughput either plateaus or increases only
marginally.
Performance of single-clan Sailfish. Large-scale geo-
distributed experiments are inherently costly. To reduce the
expense of running these experiments, we opted for a slightly
higher failure probability of 10−6 ≈ 2−20, which remains rea-
sonable for many practical applications. With this failure
probability, we can have clans of 32, 60, and 80 nodes for
system sizes of 50, 100, and 150 respectively.
We distributed clan nodes evenly across GCP regions in-

stead of randomly sampling them to produce more uniform
output. We then evaluated the performance of Sailfish and
single-clan Sailfish for various system sizes. The correspond-
ing throughput and latency results are shown in Figures 5.
Sailfish exhibited better throughput for the same num-

ber of input transactions due to its higher number of pro-
posers. However, its throughput quickly saturated, even with
a smaller number of input transactions. In contrast, single-
clan Sailfish initially showed lower throughput for the same
input transactions per proposer, as illustrated in Figure 6.



EUROSYS ’26, April 27–30, 2026, Edinburgh, Scotland UK Nibesh Shrestha and Aniket Kate

Nevertheless, single-clan Sailfish supported larger payload
sizes and ultimately achieved higher throughput. As a re-
sult, single-clan Sailfish outperformed Sailfish in terms of
throughput across all evaluated system sizes. This improve-
ment is primarily attributed to the efficient dissemination
of data only to the designated clan, significantly reducing
bandwidth consumption. The difference in throughput be-
comes increasingly pronounced as the system scales, given
that the clan size grows more slowly relative to the overall
system size.

For a fixed system size, single-clan Sailfish showed lower
commit latency compared to Sailfish. This is because only
the designated clan received the full block of transactions,
while the rest of the parties received only the vertex, allowing
quicker delivery. In tribe-assisted RBC, only 𝑓𝑐 + 1 ECHO
messages are needed from the clan, with the rest coming from
the tribe. Since the vertex propagates faster, tribe-assisted
RBC finishes sooner than standard RBC, leading to better
latency in single-clan DAG-based BFT SMR.
Commit latency increased with system size for both pro-

tocols, primarily due to a higher number of cryptographic
operations and database reads. Specifically, for minimal pay-
loads, the latency was around 380ms at 𝑛 = 50 and rose
to approximately 1392ms at 𝑛 = 150. In our implementa-
tion, BLS signature aggregation was performed on a single
thread, while the verification of aggregated signatures was
parallelized. Additionally, for each newly delivered vertex,
the system queries the database to verify delivery of its par-
ents. These computationally intensive tasks significantly
contributed to the latency at 𝑛 = 150. We note that these
latencies can be reduced with a more optimized implemen-
tation.

Performance ofmulti-clan Sailfish.Next, we evaluate the
performance of multi-clan Sailfish. To form multiple clans
with an acceptable failure probability, the system size must
be sufficiently large. For 𝑛 = 150, we can form two clans
with a failure probability of 4.015× 10−6 ≈ 10−6, as analyzed
in Section 6.2. Therefore, we evaluate the multi-clan protocol
only at 𝑛 = 150. We limit our evaluations to 𝑛 = 150 due to
the high cost of running these experiments. Figure 5c com-
pares the throughput and latency of multi-clan Sailfish with
Sailfish and single-clan Sailfish, while Figure 6 shows the
throughput relative to the number of input transactions per
proposal. Note that we did not evaluate Sailfish’s throughput
for 1500 transactions per proposal due to its significantly
higher latency at 1000 transactions (as shown in Figure 5c).

As shown in Figure 6, multi-clan Sailfish achieves higher
throughput for the same number of input transactions due to
more efficient bandwidth use compared to Sailfish and single-
clan Sailfish. In particular, the multi-clan Sailfish with two
clans achieves roughly twice the throughput of single-clan
Sailfish across all block sizes. This is because the size of a sin-
gle clan in both protocols is comparable (80 vs. 75), making
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Figure 6. Throughput vs. # of transactions at 𝑛 = 150

the data dissemination cost per clan nearly identical. With
two clans operating in parallel, the throughput effectively
doubles doubles across block sizes. However, multi-clan Sail-
fish incurs higher latency at the same input rate because all
parties need to process blocks, unlike single-clan Sailfish,
where parties outside the designated clan propose and pro-
cess only the vertex and can send ECHO messages more
quickly.
Remark on scalability. Both single-clan and multi-clan
Sailfish demonstrate stable performance even at moderately
large system sizes (e.g., 𝑛 = 150), whereas the throughput of
Sailfish quickly saturates. This stability is primarily due to
more efficient bandwidth utilization in clan-based protocols.
In this regard, our clan-based approach offers significantly
better scalability, making it a promising solution for larger
systems.

8 Related Work
An extensive body of research has focused on improving the
BFT SMR consensus. DAG-based BFT SMR protocols have
emerged as a promising solution to boost throughput while
maintaining low latency. We review the most relevant works
below.
Comparison with Arete [53]. Arete [53] also elects mul-
tiple sub-committees for data dissemination and execution
while executing the consensus across the entire tribe. In their
protocol, parties disseminate data solely to their respective
clans and collect proof of availability (PoA). This PoA is then
input to Jolteon [23], a traditional leader-based BFT SMR
protocol. While this method reduces bandwidth consump-
tion and enhances throughput and scalability, it introduces
additional latency overhead due to the sequential nature of
a separate data dissemination layer. Specifically, PoA gener-
ation incurs a latency of 2𝛿 , while the queuing latency is at
least 1𝛿 , and the commit latency for Jolteon adds up to 5𝛿 ,
resulting in a minimum total latency of 8𝛿 .
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We also identify an issue in Arete’s minimum shard size
computation. They rely on the hypergeometric distribution
to compute the size of multiple sub-committees such that
each sub-committee has an honest majority with high proba-
bility. However, the hypergeometric distribution can only be
applied to compute the size of a single committee required to
ensure an honest majority. This is because the initial count
of Byzantine parties is required to calculate the probability
of achieving an honest majority within a selected committee.
After the first committee is elected, this information is not
available for subsequent committee selections, making the
approach unsuitable for multiple committees.
To provide accurate probabilities, we instead calculate

the total number of possible committees that can be formed
and the subset of those committees that ensure an honest
majority. By comparing these counts, we can determine the
probability of multiple selected committees having an honest
majority. Moreover, our design enables data dissemination
and consensus to proceed in parallel, thereby avoiding the ad-
ditional latency overhead present in prior approaches. When
applied to latency-efficient DAG-based protocols [4, 42], our
method achieves lower latency than Arete.
Comparison with committee-based consensus proto-
cols. A long line of research [1,7,14,24] focuses on electing a
sub-committee of parties to execute the consensus protocol.
This sub-committee must ensure an honest super majority to
execute the consensus, leading to larger sub-committee sizes
unless there are over 10,000 participants in the system. As a
result, these approaches are mainly advantageous at much
larger scales. Furthermore, these protocols typically offer
only sub-optimal resilience. In contrast, our method selects
a sub-committee solely for data dissemination and execution
tasks, which only require an honest majority. This allows us
to form much smaller committees, even in moderate system
sizes. Meanwhile, the consensus protocol is executed across
the entire tribe, ensuring optimal resilience. Our approach,
therefore, offers improved performance even in moderate
system sizes.
Comparison with Gearbox [18]. Another noteworthy pro-
tocol is Gearbox [18], which prioritizes safety at the cost of
liveness. Gearbox forms smaller committees that may include
a Byzantine super-majority. To commit a value, the protocol
requires a higher number of consistent responses from com-
mittee members, which limits its resilience against liveness
failures. Furthermore, to detect liveness failures, Gearbox
relies on a separate consensus protocol that maintains both
safety and liveness under 𝑓 < 𝑛/3 Byzantine faults.
Comparison with Pando [49]. Pando elects a single com-
mittee for data dissemination and multiple sub-committees
for consensus execution, all requiring an honest super-majority.
This results in sub-optimal resilience. Its consensus mech-
anism resembles traditional leader-based BFT SMR. Addi-
tionally, the PoA from data dissemination is used during

the consensus phase, introducing extra latency due to the
sequential nature of the process.

Comparison with Distler et al. [19]. Their protocol is de-
signed for owned objects [6] and is not applicable to general-
purpose smart contracts. In their protocol, the payload is
sent to all parties, but each party executes only 𝑓 + 1 out of 𝑛
requests. Specifically, portions of transactions are executed
by a subset of 𝑓 + 1 parties, which works only if all parties
in the subset are honest. Moreover, their approach relies on
traditional leader-based BFT, leading to constrained through-
put. As a result, achieving high throughput would require
separate data dissemination phases, which, in turn, would
increase latency.

Comparison with state-sharded protocols. Several exist-
ing works [16, 28, 52] utilize state sharding to partition the
ledger into multiple shards, each managed by a dedicated
sub-committee executing the full consensus protocol on the
relevant partitioned state. However, these protocols often
rely on stronger assumptions such as synchrony (e.g., Rapid-
chain [52]) and provide only sub-optimal resilience [28, 52].
Our Multi-clan DAG-based BFT SMR can also be applied in
the state-sharded context, with consensus being executed
across the entire tribe, thereby tolerating optimal Byzantine
failures. A common challenge in sharded blockchains is effi-
ciently handling cross-shard transactions. There is extensive
literature on this topic [16, 28, 52] that could also be relevant
to our multi-clan protocol.

Comparison with Autobahn [25] and Star [21]. Both
Autobahn [25] and Star [21] include a separate data dissem-
ination layer where data is broadcast to all parties, and a
PoA with 𝑓 + 1 signatures is collected. This PoA is then
used in a single-proposer BFT SMR protocol for ordering.
As previously discussed, this approach introduces additional
latency due to the separate dissemination layer. Moreover,
these protocols do not restrict data dissemination to a smaller
committee, further contributing to the overhead.

Subsequent work. A recent DAG-based BFT protocol, Sail-
fish++ [43], was proposed in the signature-free setting, mo-
tivated by the computational efficiency and post-quantum
security of signature-free designs. Our technique can be read-
ily applied to enhance Sailfish++, extending its performance.

9 Conclusion
We introduced tribe-assisted RBC, a novel primitive that en-
forces RBC properties within a designated clan. Leveraging
this primitive, we developed two efficient DAG-based BFT
SMR protocols: single-clan and multi-clan DAG-based BFT
SMR. Our experimental evaluation demonstrated that both
protocols significantly enhance throughput and latency com-
pared to the state-of-the-art DAG-based BFT SMR protocols,
even at moderately large scales. While our exploration of
the multi-clan DAG-based BFT SMR primarily focused on its
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applicability to shared sequencers, an intriguing future direc-
tion would be to investigate its application in state-sharded
blockchains.
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