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Abstract. Web3 applications, such as on-chain gaming, require unbiased
and publicly verifiable randomness that can be obtained quickly and cost-
effectively whenever needed. Existing services, such as those based on
Verifiable Random Functions (VRF), incur network delays and high fees
due to their highly interactive nature. FlexiRand [CCS 2023] addressed
these problems by hiding the output of the VRF and using that as a seed
to derive many randomnesses locally. These randomnesses are instantly
available for usage. However, these randomnesses can not be verified
independently (or instantly) without disclosing the seed, leaving scope
for malicious actors to cheat.
To solve this problem, we introduce a new notion, called instantly-
verifiable VRF (iVRF), which enables the generation of many random-
nesses from one VRF output seed, such that each of them is verifiable
independently – this enables the first solution to cost-effectively generate
randomnesses, such that they are instantly available and also indepen-
dently/instantly verifiable.
To instantiate we propose a generic construction called InstaRand – it
combines any (possibly distributed) VRF at the server’s end with another
VRF at the client’s end to construct an iVRF. Our specific instantiation
uses the BLS-based GLOW-DVRF [Euro S&P 2021] at the server’s end
and the DDH-based VRF of Goldberg et al. [RFC 2023] at the client’s end.
We use the universal composability framework to analyze the security.
Moreover, due to its generality, InstaRand can be instantiated with any
post-quantum secure VRF to yield a post-quantum secure iVRF.
Our experiments demonstrate that our instantiation of InstaRand is
highly practical. The client incurs a one-time cost to generate the seed
(server’s VRF output) by querying the GLOW-DVRF servers once. Once
the seed is set up, the client locally generates the pseudorandom value on
demand in 0.18 ms, avoiding the client-server round-trip delay. Each value
can be independently verified in 0.22 ms. This yields a 400× improvement
in terms of output generation and 20× improvement in verification cost
over existing solutions.



1 Introduction

Randomness plays a critical role in all forms of computing, serving various pur-
poses such as generating cryptographic keys, enabling fair gameplay in online
gaming, and minting NFTs on blockchains. With the increasing popularity of
blockchains and Web3 applications like decentralized finance (DeFi) and gaming
(GameFi [Wor]), the need for reliable sources of randomness has grown signif-
icantly[5]. Consider a multiplayer game where players take turns to roll a dice.
If such a game is played over Web3, a cost-effective source of on-(block)chain
randomness is essential. In fact, to ensure the confidence of the current and future
participants, the randomness used must be (publicly) verifiable. As a result, there
are several on-chain verifiable randomness services [GHK+24], such as Chain-
link [Chaa], DRand [DRaa], Band [Ban], Supra dVRF [Sup], Dfinity [HMW18],
etc., flourishing in the Web3 space. However, existing on-chain solutions are
expensive and incur delays [Chac] during delivery. In particular, to obtain every
randomness, each client must place a VRF request, which is then fulfilled by the
VRF service interactively before it is available. So, not only does the price quickly
escalate with a growing number of requirements[6], but each fulfillment also takes
a while before it is available. For example, it would take 24 seconds [ych] on the
Ethereum blockchain (to request and then fulfill via two transactions).

Recently FlexiRand [KMMM23] proposed a solution to mitigate these issues
by introducing the notion of output-private VRFs. Their main idea was to use
the output of a single VRF request multiple times, in that a requester (the entity
running the gaming platform) obtains a single VRF output y and then locally
generates several random values z1, z2, . . . where each zi = PRG(y, i) for some
appropriate pseudorandom generator PRG (can be a hash function). However,
since in the blockchain setting, y becomes publicly available on the chain during
fulfillment, that makes all zi immediately predictable. So, y needs to be kept
private with respect to everyone but the requester, who would compute the zi
values. For this purpose an output-private VRF was used: the requester, once a
request is fulfilled, retrieves a blinded y from the VRF service via a blockchain,
locally unblinds the same (as the blinding mask is exclusively known to the
requester), and then uses the unblinded y to generate zi locally. So, the amortized
cost for the entire session decreases drastically – a single request suffices to
generate all random values needed.

However, the necessity of keeping y private poses a new impediment to
maintaining public verifiability. More specifically, the values z1, z2 . . . can not
be verified independently/instantaneously now, because to verify each zi one
needs to first verify that y is indeed the correct VRF output, and each zi =
PRG(y, i). This requires the knowledge of y, unless one uses a zero-knowledge (ZK)
proof [GWC19,YSWW21] which would make the procedure impractical due to

[5] Chainlink VRF [Chaa] has fulfilled 10.5 million [Chab] randomness requests in 2022.
[6] An average two-player Backgammon game takes 53.78 rolls [Esc24] costing 52, 38, 000

gwei gas or $17.
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non-blackbox use of the underlying PRG[7].On the other hand, the knowledge
of y during verification of a single zi lets everyone compute all other zj (i ̸= j)
values. In other words, there is no practical mechanism to allow verification of a
particular zi without breaking unpredictability for other zj values. An optimistic
approach would be that one waits until the end when all such zi values are used
up and then, one can verify y. This may leave scope for a malicious requester
to supply malformed and biased zi’s during the game, which can not be caught
until the very end when it could already be too late.

This conundrum begets the following question:

Can we design a practical cost-effective on-chain randomness service,
whose output is immediately/instantly available and instantly verifiable?

In this work, we affirmatively resolve this question. We propose a new crypto-
graphic primitive called instantly-verifiable VRF (iVRF) which enables anyone to
verify each zi individually/instantaneously without affecting the unpredictability
of other zj (i ̸= j) values while maintaining essentially the same amortized cost
and instant availability of FlexiRand.

Instantly-Verifiable VRF (iVRF). In particular, iVRF is a special two-party
protocol executed between a client (or a requester) and a server (or VRF node)
where parties communicate over a bulletin board (a blockchain). It allows a client
to make a single VRF request x to the server, and then reuse the server’s response
y to generate multiple pseudorandom outputs zi (for session i) without further
interaction with the server. The requirements for zi values are that they are
(i) pseudorandom even given all other zj values, (ii) unbiasable, (iii) instantly
verifiable with respect to y, server VRF verification key and client input x, and (iv)
immediately available via local computation. We formalize via ideal functionality
FiVRF (Fig. 3) in the Universal Composability (UC) framework [Can01].

InstaRand. Next, we propose a simple construction, named InstaRand, which
generically takes any (possibly distributed) VRF [Chaa,Ban, Sup,KMMM23],
combines with a VRF at the client side to construct a iVRF. The detailed workflow
is as follows: In the setup phase, the client and the servers post their respective
keys, vkc and vks respectively and each of them holds the corresponding secret
key skc and sks. In the pre-processing phase, the client posts a request, along
with an input x that embeds the client’s verification key vkc. The input is then
retrieved by the VRF server which produces an output y (plus a proof π) using
sks. At this point the triple (x, y, π) can be verified publicly using the server’s
public key vks. In the online phase, once the VRF output y is retrieved by the
client, who locally generates the zi values using skc on y as the seed and a counter
i. Each zi can be independently verified by verifying with respect to vkc and vks.
Note that, the pre-processing phase is the only phase where server interaction
is required, and that interaction is used with amortization in subsequent online

[7] We implement the PRG using Poseidon hash and generate a Plonk proof for each zi.
The proof generation is 400× slower and verification is 20× more expensive compared
to InstaRand’s proof generation and verification.
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phases. We compare InstaRand, FlexiRand, and other existing VRF services
qualitatively in Table. 1. Our contributions are summarized next.

1.1 Our Contributions

– We introduce instantly-verifiable VRF (iVRF), a new primitive that enables
a client to interact with a VRF server once to produce multiple pseudoran-
dom outputs zi, that are independently (and instantly) verifiable[8] without
affecting unpredictability of other zjs, for j ̸= i. We formalize it via an ideal
functionality FiVRF within UC framework [Can01].

– We propose InstaRand - a new generic construction for iVRF. We build it
by using any VRF protocol in the random oracle model. It can be extended
to the common reference string (crs) model as well. Prior designs, such as
FlexiRand [KMMM23] do not support independent instantaneous verification,
thereby falling short of iVRF requirement. Consequently, only InstaRand can
be useful for many important applications, such as Web3 games that require
many (pseudo-) random values, that are instantly verifiable. We formally
show that our construction securely realizes FiVRF.

– We extend iVRF to the distributed server setting to avoid a single point of
failure on the server side. We formalize the distributed iVRF functionality via
Fi-DVRF. Then we propose a distributed version of InstaRand that implements
Fi-DVRF. This is done by simply distributing the server’s secret key among
multiple servers, which then act as the VRF committee. In particular, a
t-out-of-n access structure would ensure resilience against up to t malicious
corruptions. Also, guaranteed output delivery (aka robustness) can be ensured
by setting n ≥ 2t+ 1 among the committee of server nodes.

– Finally, we provide concrete instantiations and benchmark the performance.
In particular, our client’s VRF is instantiated with the DDH-based con-
struction of Goldberg et al. [GRPV23], and the server’s side VRF with
BLS-based (distributed) construction by Galindo et al. [GLOW21] (abbrevi-
ated as GLOW-DVRF) – the choice was made considering the adaptability
to the distributed setting, which is needed only at the server’s end. Our
benchmarking demonstrates that InstaRand protocol is highly practical – it
takes 5.91 ms to generate the (one-time) server output (seed) y, the same
as GLOW-DVRF in the pre-processing. In comparison, FlexiRand servers
required 6.32 ms[9]. However, in an application setting requiring (i) cost
amortization, (ii) instant availability and (iii) instant verifiability, to generate
N = 10 pseudorandom zi, FlexiRand’s client takes about 33.2 ms[10] whereas

[8] We remark that we use the terms “independently” verifiable and “instantly” verifiable
interchangeably. iVRF guarantees that the output is independently verifiable, whereas
in the application, such as gaming, the requirement is instantly verifiable output.

[9] This increase in cost comes from the requirement of verifying proof of knowledge of
the exponent with respect to the blinded input.

[10] This blow up in the cost of FlexiRand is due to the instant verifiability requirement,
which requires one interaction with server per randomness – so no amortization is
possible.
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InstaRand’s client takes only 4.6 ms – this marks more than 7× improvement,
and scales with N (cf. Table 2).

In addition, we remark on some additional benefits.

Post-Quantum Security. InstaRand is a generic construction that uses any
VRF as a black-box, and therefore can be post-quantum secure if the server-side
and client-side VRFs are post-quantum secure. There are post-quantum secure
VRFs from LWE [Mal24], isogenies [Lai24] and hash functions [EEK+23]. Using
them on the server and client side suffices for us in the single-server setting. In the
distributed setting, it is possible to thresholdize the server side VRF using a fully-
homomorphic encryption (FHE) based universal thresholdizer [BGG+18,EY24],
which would yield an iVRF protocol in the distributed setting.[11]

Single Transaction Randomness Service. To request randomness on the
blockchain and use it in Web3 applications, the VRF client has to interact with
the VRF servers via transactions on the blockchain. Each blockchain has its block
latency to confirm a transaction via a block. For example, Ethereum blockchain
takes 12 seconds to confirm a block, whereas Bitcoin blockchain takes 8 mins. So,
the latency of any blockchain-assisted protocol is dominated by the transaction
latency, which is determined by the number of required on-chain transactions.
The recent work of [GHK+24] showed that a verifiable randomness service on the
blockchain necessarily requires two transactions for each randomness request–this
holds for existing randomness services like [Chaa, Ban, Sup, HMW18]. Aptos
Roll [Lab] generates randomness using a single transaction by using specific
properties of blockchains (discussed in Sec. 1.2), but it cannot be extended to
general blockchains, like Ethereum. InstaRand circumvents this lower bound
by having a preprocessing phase which requires two transactions, whereas each
extended output requires only a single transaction. Therefore, we require 2 +N
transactions for N outputs, reducing the amortized number of transactions.

Compatibility with Beacon Service. Due to its generality, the InstaRand pro-
tocol is also compatible with beacon services like (centralized) NIST beacon [PBB+],
verifiable beacons like Algorand [Ken], DRand [DRaa] etc. instead of VRF services.
It just requires replacing the server-side VRF output with an appropriate beacon
output. The client-side protocol generates instantly verifiable outputs on the
beacon output instead of the VRF output. However, deploying any beacon-based
randomness services introduces additional challenges [ST22] as (i) the blockchain
has reliable block time, (ii) beacon service is also timed, (iii) and that clocks
for beacon nodes and the blockchain validators are perfectly synchronized. Our
current iVRF formalization does not consider time. We leave this as an interesting
future work.

[11] We note that the protocol using universal thresholdizer may not be practically efficient
due to use of FHE. We leave constructing a practically efficient post-quantum secure
distributed iVRF as an interesting future direction.
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1.2 Related Works

In this section, we compare InstaRand with the relevant works from the literature
and we present it in Table 1.

Protocols
Cost Instant Instant

Assumptions
Post-Quantum # of Transactions

Amortization Availability Verifiability Security for N outputs

VRF Services × × × VRF ✓ 2N
[Chaa,Ban,Sup,HMW18]

FlexiRand [KMMM23] ✓ ✓ × BOMDH × 4N

FlexiRand [KMMM23]
✓ ✓ ✓ BOMDH × 4 +N

+ZK-SNARK [GWC19]

InstaRand
✓ ✓ ✓ VRF ✓ 2 +N

(this work)

Note: BOMDH: Bilinear Threshold One-More Diffie Hellman

Table 1: Comparison of existing protocols.

(Distributed) VRFs. There are existing VRF-based randomness service pro-
tocols like Chainlink [Chaa], Band-VRF [Ban], Supra DVRF [Sup] and more
general Verifiable Randomness as a service [GHK+24]. When a client makes a
randomness request via a smart contract to the VRF service, the service evaluates
a VRF on the input and returns the output and the proof via a smart contract
to the client. However, this approach suffers from two limitations. Firstly, there
is a significant latency overhead to complete a VRF request - the client has
to make the request, wait for it to get confirmed on the blockchain, then the
VRF provider evaluates it and sends it to the smart contract, and finally the
smart contract verifies the proof and uploads the output – so, in essence, the
randomnesses are not instantly available. Secondly, the output cannot be used as
a seed to generate multiple randomnesses; since the output is publicly available,
there is no unpredictability anymore. As a result, the client has to make a new
randomness request which incurs the cost of blockchain plus server latency and
at least two blockchain transactions – one for request, another for fulfillment –
every time it needs a fresh random value. In comparison, InstaRand client avoids
the server latency via pre-processing the server computation and reusing the
server output non-interactively in the online phase to generate the randomness –
if the randomness is used on blockchain, only one transaction is necessary then
per randomness.[12]

FlexiRand. FlexiRand [KMMM23] introduced the idea of output-private VRF,
in that only the client obtains the output y. A blinded version of the output is
made public, which only the client can unblind. Anyone can verify that the blinded
output was correctly generated, and once the final VRF output is unblinded it can
be verified in the usual manner. The flow is similar to InstaRand: the client can

[12] We note that, the randomness generated can be used and verified off-chain, or even
outside blockchain environment, such as Web2 gaming – this requires no transaction
beyond the pre-processing.
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request randomness in a preprocessing phase and by doing so the client shifts the
latency overhead and the gas cost on the smart contract to the preprocessing phase
such that the online phase is fast (non-interactive too) and inexpensive – this
makes the VRF output instantly available. However, as stated in the beginning of
the introduction section, the unblinded output y cannot be utilized to generate
multiple pseudo-random values zi’s that are independently and publicly verifiable.
This is because all randomnesses derives from y get leaked once the unblinded
output is made public. This limits the application of FlexiRand to scenarios
where verifiability can be postponed until all zi’s have been utilized. Hence,
if instant verifiability is needed, a client, using FlexiRand, has to pay (in the
preprocessing phase) the VRF service fee and incur the gas cost proportional
to the total number of independent zi values. This would totally obliterate the
benefit of amortized cost and would restrict their potential usage in many Web3
gaming applications.

Adding ZK-SNARKs: One alternate approach is to prove in zero knowl-
edge [GWC19] that zi was correctly evaluated by running a PRG (implemented
using a Poseidon hash) on the blinded y without exposing y. However, this re-
quires 80ms to generate an SNARK proof of correct computation, and verification
takes 4.5ms and at least 300k gas [Tha] on-chain. Meanwhile, InstaRand outputs
are generated in 0.18ms and verified in 0.22ms costing 84k gas.

Moreover, it is unclear how to extend FlexiRand to the post-quantum setting
since the output-private VRF requires a proof of correct computation of a commit-
ted VRF output that can be locally converted into a proof of correct computation
of the revealed VRF output by the client. The current construction requires
bilinear pairing and extending them to lattice or isogeny setting remains open.
Meanwhile, InstaRand is a generic construction that uses any VRF as a blackbox,
and therefore can be post-quantum secure if the server-side and client-side VRFs
are post-quantum secure [Mal24,EEK+23].

Randomness Beacons. Another popular paradigm of obtaining randomness
is to rely on randomness beacons [DRaa,Ken]. These beacons periodically post
random values on a blockchain. To ensure that a randomness is only available
after a certain time, often verifiable delay functions are used [Chi,CCB23,Vee,
BDD+23,BBBF18,LW15]. Parties read those random values from the blockchain
and use them in a Web3 game/application. However, the parties have to wait
for the randomness beacon to output the randomness at each predefined epoch,
rendering instant availability elusive. For example, the Drand beacon emits [Drab]
a new random value every 30 seconds. This causes the Web3 game to stall until
the beacon generates new randomness each time and it gets confirmed on the
blockchain. Other protocols, such as SPURT [DKIR22], does generate randomness
at sub-second levels. However, unlike InstaRand, the generated randomness cannot
be verified efficiently against a single server public key, since the VSS-based beacon
protocols do not run a DKG. Hence, to verify the SPURT (or Hydrand [SJSW20],
Rondo [Men24]) output one has to verify the PVSS vectors which require O(n)
exponentiations or pairings. This would be expensive in terms of gas cost in many
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Web3 applications where the generated randomness needs to be publicly verified
via smart contracts.

Moreover, unless we deploy a technique similar to InstaRand (or FlexiRand),
the beacon output cannot be used directly as a seed to generate multiple verifiable
outputs. However, as mentioned earlier, InstaRand can be made compatible with
a beacon service as well, instead of a VRF service.

Aptos Roll. The work of [Apt] is an interesting recent on-chain randomness
approach that offers instant randomness to the Aptos’ internal ecosystem. Here,
the Aptos validators generate a beacon value corresponding to each transaction
block. Whenever the Aptos validators include a client’s randomness request to
a block, the validators use the beacon, generated on the same block to fulfill
the randomness instantly by hashing the beacon value with some client/smart
contract data. Clearly, this approach crucially uses specific design aspects of
Aptos’ blockchain design. Consequently, it can work only on those chains where
the block consensus and ordering need to occur first, followed by the beacon
generation on the finalized block. Therefore, while this approach can work on
blockchain with fixed nodes such as Aptos and Sui, it cannot be employed by many
blockchains, such as Ethereum and its Layer-2 solutions. Conversely, InstaRand is
in the same paradigm of existing designs, such as GLOW-DVRF, FlexiRand,
etc., which uses blockchain in a blackbox manner, without relying on its design
specifications. Therefore, unlike Aptos Roll, it can be deployed on any blockchain
with smart-contract capability including Aptos.

Unbiasable VRFs. The recent work of [GS24] studied the scenario where the
VRF evaluator can potentially sample a biased keypair (vk, sk), such that the
VRF evaluation using secret key sk generates biased outputs. They formalize this
with a new notion of unbiasable VRFs – a VRF is considered unbiasable if an
adversarial evaluator cannot find a set of VRF keys whose evaluation on random
inputs yields biased outputs. In InstaRand, a malicious client could potentially
choose a pair of biased VRF keys in order to bias zi’s. However, our construction
takes care of this by using random oracles without explicitly using unbiasable
VRFs. Nevertheless, one may alternatively use unbiasable VRFs on the client
side to achieve iVRF as well potentially yielding a construction without random
oracles, albeit at the expense of efficiency.

Indexed VRF. The work of [EEK+23] introduced the notion of indexed VRF
and demonstrated its usage in the algorand leader election. The VRF evaluator
in [EEK+23] precomputes N random values together and commits to it using
a Merkle tree and when required, the evaluator reveals each leaf and the path
from the root as the proof. Their protocol requires securely storing the entire
Merkle tree state and knowing an upper bound on N beforehand. Using this as a
randomness service would require the VRF server to run the evaluation algorithm
on each randomness request, and it would provide the same properties as a regular
VRF service, with the added restriction that the VRF can be used to fulfill only N
requests. Moreover, thresholdizing the server algorithm is non-trivial. Whereas,
the InstaRand client generates randomness on demand without interacting with
the VRF server and only needs to store the client-side VRF secret key.
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Aggregatable VRF. There have been recent works on aggregatable VRFs [Mal24,
DDKL24] where multiple VRF proofs for several VRF evaluations on different
inputs under differents VRF keys are combined into a single constant sized proof.
However, they do not support the properties of an iVRF since the client needs to
query the VRF server for each randomness request.

2 Technical Overview

In this section, we provide an overview of the InstaRand protocol and discuss
how to extend it to the distributed server setting. Finally, we conclude with a
concrete application.

2.1 iVRF Primitive

The iVRF is a special two-party protocol, between a client (or a requester) and
a server (or VRF node) where parties communicate over a bulletin board (that
abstractly captures the blockchain setting). The server posts its verification key
vk on the bulletin board. Then, the client queries the server with input x to obtain
the server output y and proof π.[13] The triple (x, y, π) is (publicly) verifiable
with respect to vk – we call this pre-verification. Next, the client performs local
computation on (x, y), its secret state, and a session identifier i to generate
randomness zi for each session i. The output zi values are (i) pseudorandom,
(ii) unbiasable, (iii) independently verifiable with respect to y and (iv) remain
unpredictable given all the other zj values.

2.2 InstaRand Protocol

In this section, we build InstaRand and show that it is an iVRF.

First Attempt. Assume that the server has a pair of VRF keys - (vks, sks)
that are posted on to the bulletin board. Let’s consider a construction where the
client queries the VRF server on input x. The server evaluates on x with sks
to obtain output (y, π) := VRF.Eval(sks, x) where proof is π – pre-verification is
immediate. This is sent to the client. To generate instantly verifiable outputs for
session i, the client samples a VRF key pair - (vkc, skc), and then evaluates VRF
on (i, y) with secret key skc to obtain (zi, ρi) := VRF.Eval(skc, (i, y)) where ρi is
the proof – the triple (zi, ρi, (i, y)) can be verified with respect to vkc.

Problem 1: The above solution breaks as a malicious client can bias the zi
values by sampling multiple vkc values after obtaining y, computing the candidate
zi values and then choosing the particular vkc which yields favorable zi values,
for example, choose a specific vkc which makes the first bit of zi to be 0.

[13] We refer to this interactive phase as pre-processing. We remark that this pre-processing
is not a limitation, but a feature, which enables important properties such as instant
availability and cost amortization. Among prior works, only FlexiRand supports such
pre-processing due to output privacy.
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Binding vkc to x. To resolve we need to ensure that the input x is bound to
use a single vkc value. This is done by including vkc in x; by setting x := (u, vkc)
where u is the client’s actual input and (vkc, skc) is client’s VRF key pair.

Problem 2: The above solution again falls short as a malicious client can
choose a biased VRF [GS24] key pair (vkc, skc), such that the evaluation of the
client’s VRF on (i, y) with secret key skc outputs non-pseudorandom values. For
example, the client can choose a biased skc such that, regardless of input, all zis
would have the last bit fixed to 0 – such biasing issues are also considered in the
recent work of [GS24]. They mitigate it using unbiasable VRFs, whereas we take
a simpler and more efficient approach.

Tackling a Biased vkc. We tackle the above issue by using a random oracle H
jointly on the server’s and client’s VRF outputs.[14] In particular, if client’s VRF
computation on (i, y) using skc is expressed as (wi, ρi) := VRF.Eval(skc, (i, y)),
then the output zi for session-i is computed as zi := H(i, wi, y). This way,
even if a malicious client biases its VRF output wi, the final session output zi
remains pseudorandom due to the randomness of the server output y. Intuitively,
this guarantees that as long as at least one among the client and server is
honest, the corresponding VRF output is pseudorandom, which makes the final
zi pseudorandom. This yields an iVRF that is secure against a malicious client.
However, this construction does not suffice for full simulation security.

Problem 3: To provide full simulation security, the simulator needs to extract
the client’s input (i, x) on which zi is computed as the iVRF output by the client.
However, the simulator cannot find out x from the output zi := H(i, wi, y) by
observing the queries made to random oracle H since it does not contain x (and
the proof of correct evaluation on x) as input to H.

Extraction using Random Oracle. Extraction of x is enabled simply by
including input x [15] in the evaluation of (wi, ρi) := VRF.Eval(skc, (x, y, i))
plus the evaluation of zi := H(i, wi, x, y). We rely on an additional property of
the client-side VRF that allows a simulator to check whether wi is the correct
evaluation of VRF on input (x, y, i) w.r.t. verification key vkc. By using this
property, the simulator checks that the queried input to H is indeed correct, and so
it can program H on the correct (i, wi, x, y, i) to return a random output (obtained
from the ideal functionality). This is required to ensure that the final output is
unbiasable even if the client is corrupt.[16] We also prove in Appendix. D that

[14] This achieves the same effect as an unbiasable VRF using the random oracle. Another
approach could be to use unbiasable VRF generically, although that might incur
more performance overhead. We note that in [GS24], the author’s one of the main
objectives was to design a construction without random oracles, which is orthogonal
to ours.

[15] This is similar to the strategy of including the input within the oblivious PRF
constructions of [JKX21] and similar primitives [AMMM18].

[16] We note that this problem could not been solved by including the proof ρi inside the
oracle query since a malicious client can construct different ρi for the same wi and
choose the one for which it obtains a favorable zi, hence breaking unbiasability.

10



the existing VRF protocols satisfy the above mentioned property in the random
oracle model.

Final Protocol. We illustrate our final protocol in Fig. 1. Assume that the
server’s verification key vks is posted on the bulletin board. In the pre-processing
phase, the client samples a key pair (vkc, skc) for a client-side VRF protocol,
making a VRF query to the server with input x := (u, vkc) where u ∈ {0, 1}∗ is
the client’s input. The client receives the server-side VRF evaluation output y and
proof π on input x. This is a one-time pre-processing cost. In the online phase,
this y acts as an intermediate seed to generate multiple independently verifiable
random values - (z1, z2, . . . , zN ), for N different sessions. For each session-i,
the client generates an intermediate value (wi, ρi) = VRFc.Eval(skc, (x, y, i)) by
locally evaluating VRFc using its secret key skc. The final output for session
i is set as zi = H(i, wi, x, y). Pre-verification is possible by verifying y using
server verification key vk; final verification is done by verifying wi using client
verification key vkc, and the hash computation. The output zi is pseudorandom
due to the pseudorandomness of y and wi. And, zj ̸=i values remain hidden from
an external party unless the client reveals wj .

Extending to the crs model. The above protocol is proposed in the random
oracle model to generate extended outputs on the order of microseconds. However,
it can be extended to work in the crs model without relying on any random
oracle. To do so, we would instantiate the client and server side algorithms
with an unbiasable VRF [GS24] and the client gives a non-interactive proof (of
knowledge) [CSW22] of correct computation of vkc w.r.t skc in the preprocessing
phase. The skc is extracted from the NIZK proof, and the client-side extended
outputs zi can be extracted by the simulator and the proof is simulated.

2.3 Instantiations

InstaRand requires two VRF protocols - one on the client side and the other
on the server side. These can be instantiated from existing VRF construc-
tions like GLOW-DVRF [GLOW21], RSA-based VRF [GRPV23] or DDH-based
VRF [GRPV23]. Moreover, if the VRF is post-quantum secure, like the ones based
on lattice [EKS+21] or isogeny [Lai23] assumptions, then the InstaRand protocol
also guarantees post-quantum security. In our benchmarking, we implement the
client VRF using the DDH-based VRF [GRPV23] and the server side VRF using
GLOW-DVRF, the later chosen due to its adaptability to the distributed setting.

In the context of VRF, the server that possesses the secret key and calculates
the VRF output y becomes a single point of failure for both secrecy/unpredictability
and liveness. This means that the VRF outputs are entirely predictable to this
node, and if this node crashes, the server-side VRF computation halts. To address
this issue, instead of using a centralized VRF server, we use a distributed VRF
(DVRF) [GLOW21] on the server side.

In a DVRF framework, unlike a centralized VRF, no single node has access
to the entire secret key. Instead, the secret key is shared among multiple parties
(referred to as VRF committee, denoted as S1, S2, . . . , Sn), for example, using
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Shamir’s secret sharing scheme. This sharing is implemented using a Distributed
Key-generation (DKG) protocol. On receiving an input x, each party Si computes
a partial evaluation-proof pair (yi, πi) using their share of the secret key ski. An
aggregator, who may not hold any secret key and could be one of the servers
in the VRF committee, can then publicly gather at least t+ 1 ≤ n such partial
evaluations to aggregate them into the final output y and an accompanying proof
π.[17] Due to its generality, the InstaRand server can be easily distributed by using
the distributed VRF protocol from [GLOW21] based on BLS signatures [BLS01]
using GLOW-DVRF [GLOW21].

2.4 Application of InstaRand

Web3 Gaming (aka GameFi [Wor]). InstaRand is primarily useful in appli-
cations like Web3 gaming that demand a lot of instantly verifiable randomnesses.
Consider a Web3 Backgammon game between two players, where the game needs
to generate a random dice (values 1-6) for each round, and anyone should be able
to publicly verify that the dice value was indeed generated using the VRF output
of a randomness service [Chaa,Ban,Sup]. Moreover, it is not known in advance
how many rounds a game will last so there is no fixed upper bound on the number
of dice rolls that would be needed (such that they can be preprocessed using
protocols like FlexiRand). Games like this necessitate on-demand solutions that
are (i) cost-effective; (ii) instantly available (without much delay); (iii) instantly
(and independently) verifiable – InstaRand meets all these requirements.

Two-Player Dice Game. We describe a subprotocol where two players –
Alice and Bob, use InstaRand to roll a dice. Such a subprotocol can be used in
bigger protocols for playing games like Yahtzee [carb], Snake-and-Ladder [pok],
Backgammon [cara].

– Input Generation: Alice and Bob initially sample VRF keys (vkA, skA) and
(vkB , skB). They consider their input as xA := (uA, vkA) and xB := (uB , vkB)
respectively, where uA and uB are specific dates when vkA and vkB will
be considered valid. The VRF public keys and uA and uB values are stored
on-chain.

– One-time Preprocessing: Alice and Bob request VRF evaluation on xA and
xB from the server VRF service to obtain yA and yB respectively.

– Dice Generation: During the game, to generate the dice for round i the players
locally compute their outputs zA,i and zB,i from (xA, yA, i) and (xB , yB , i)
using their secret keys skA and skB respectively using InstaRand. The parties
reveal their outputs zA,i and zB,i on-chain. The gaming smart contract verifies

[17] We emphasize that, as every VRF output is publicly verifiable, an aggregator cannot
successfully submit a wrong output to the blockchain. It is only required for the
protocol’s liveness, even under asynchrony. For enhanced liveness it is possible to
also instantiate the aggregator using a separate group of nodes, and in that case
the any-trust assumption (n>t) on the aggregator is sufficient: as long as there is a
single honest aggregator, the liveness is maintained. In particular, we do not need
any honest majority assumption.
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zA,i and zB,i and then uses a hash function (modeled as a random oracle) to
derive dicei = 1 + H(i, zA,i, zB,i) mod 6, where H : {0, 1}∗ → N. In case, one
of the parties withholds their InstaRand outputs for a prespecified time and
prevents the dice generation, then that party is considered to have forfeited
the game.

We argue the following properties of the generated die:

– Pseudorandomness: The value dicei is guaranteed to be pseudorandom as
both zA,i and zB,i are instantly generated outputs of VRF, and the dice is
obtained by applying the random oracle on both.

– Public Pre-Verifiability: The server’s response can be verified by anyone since
everything happens on-chain.

– Instant (public) Verifiability: The dicei value can be verified by verifying zA,i

and zB,i values, and this does not even leak dicej>i values due to the iVRF
property. This verification can happen either on-chain, or off-chain by the
other player.[18]

– Unpredicatability of dicej>i: Even if Bob verifies the current zA,i, future dice
values dicej>i remain unpredictable to Bob as zA,j remains private untill
Alice reveals it, and vice versa.

– Instant Availability: Alice (resp. Bob) player may execute the pre-processing
ahead of time, and when demanded, can just instant compute zA,j (resp.
zB,j) locally. This avoids any delay incurred due to interaction.

The dice remains unpredictable even if one of the parties collude with the gaming
platform due to the unpredictability of the extended output of the other party.
We also note that even if Alice and Bob are corrupt, still the dice is unbiasable
due to the unbiasability of the InstaRand outputs. We provide a visualization of
the dice game in Fig. 2. We also compare the InstaRand approach with other
approaches – like VRF services-based, FlexiRand-based, coin-tossing-based, and
other VRF-based solutions for completeness – this is provided in Appendix. A.

3 Preliminaries

We introduce the formal notations, recall the security models, and describe the
necessary functionalities and primitives necessary for building our protocols.

3.1 Notations

We use N to denote the set of positive integers, Z to denote the set of all
integers, and [n] to denote the set {1, 2, . . . , n} (for n ∈ N). We denote the

[18] We remark that it is important to have an on-chain pre-verification, as that is crucial
for deploying a reward mechanism for the servers. However, the final verification, in
this context, can just take place off-chain, as the other player would be interested
to check whether the provided value is correctly computed. In other applications,
however, it can also take place on-chain if required, as anyone can publicly verify
this.
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security parameter by λ. We assume that every algorithm takes λ as an implicit
input. We use y := D(x) to denote the evaluation of a specifically deterministic
algorithm D on input x to produce output y. Also, we write x := val to denote
the assignment of a value val to the variable x. We use x = y to check equality
between x and y. We write R(x) → y or y ← R(x) to denote the evaluation
of a probabilistic algorithm R on input x to produce output y. We denote a
randomized algorithm that runs in polynomial time as a probabilistic polynomial
time (PPT) algorithm. We denote a negligible function in security parameter λ as
negl(λ). We denote computational indistinguishability between two distributions

D1 and D2 as D1
c
≈ D2, i.e. no PPT adversary can distinguish between the two

distributions, except with negligible probability. We denote a random oracle
query on input message m as H(m) ∈ R where the output is sampled from range
R. We prove security in the UC model. Formal details are in Appendix.B.

Random Function. The function RandD(u) is defined over input u ∈ {0, 1}∗
and output distribution D as:

RandD(u) := If ∃(u, r) ∈ T, return r.

:= Else, sample r ← D, T := T ∪ (u, r)

and return r.

where list T is initialized to the empty set, i.e. T := ∅. Looking ahead, RandD(·)
samples random values on fresh inputs from distribution D and it is maintained
internally by FiVRF.

3.2 Building Block: Verifiable Random Function

In this subsection, we recall the notion of verifiable random functions (VRF)
from [CL07]. It ensures that the output on a previously unqueried input x is
pseudorandom. A VRF over a distribution D is defined using a tuple of three
PPT algorithms.

– Gen(1λ)→ (vk, sk) : It outputs the public verification key vk and secret key
sk.

– Eval(sk, x) → (y, π) : It outputs a random string y ∈ Y and a proof π on
input x ∈ X .

– Verify(vk, x, (y, π))→ b ∈ {0, 1} : It verifies the proof π of correct generation
of y.

A VRF needs to satisfy the properties of correctness, uniqueness, and pseudo-
randomness. We refer to Def. 1 in Appendix B.3 for the formal definition. We
also discuss VRF constructions from BLS-signatures [BLS01], RSA [GRPV23],
and DDH [GRPV23] in Appendix D.
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3.3 Building Block: Distributed VRF

In this subsection, we recall the notion of distributed VRF from [GLOW21].
A t-out-of-n DVRF over a distribution D is defined using a tuple of four PPT
algorithms.

– DKG(1λ, t, n)→ (vk,S, {vki, ski}i∈[n]): It is the fully distributed key genera-
tion protocol that takes as input λ, number of parties n and the threshold t
and outputs a set of qualified nodes S, a global public verification key vk, a
list {vk1, vkn} of participating nodes’ verification keys, and results in a list
{sk1, . . . , skn} of nodes’ secret keys where each secret key is only known to
the corresponding node.

– PEval(ski, xi, vki) → (i, yi, πi) : Takes as input the secret key ski, input
x ∈ X and verification key vki and outputs a triple (i, yi, πi) where yi ∈ Y is
the ith evaluation share and πi is the corresponding proof.

– PEvalVer(vki, x, (i, yi, πi))→ 0/1 : Takes as input the i verification key vki,
input x and the partial evaluation triple (i, yi, πi) and outputs a decision bit
denoting whether the verification succeeded or not.

– Aggregate(vk, {vki}i∈[n], x, E)→ (y, π) : Takes as input the global verification
key vk, list of individual node verification keys {vki}i∈[n], input x, and a
set E = {(i1, yi1 , πi1), . . . , (i|E|, yi|E| , πi|E|)} of verified partial evaluations
originating from |E| > t + 1 different nodes, and outputs the aggregated
pseudorandom output y and correctness proof π.

– Verify(vk, x, (y, π)) → b ∈ {0, 1} : Takes as input the verification key vk,
input x, output y, and proof π, and outputs a decision bit denoting whether
the proof verified or not.

A DVRF needs to satisfy the properties of correctness, uniqueness, and strong
pseudorandomness. We refer to Def. 2 in Appendix B.4 for the formal definition.

4 Instantly Verifiable VRF (iVRF)

We define the notion of instantly verifiable VRF via our ideal functionality FiVRF

and show how to implement it using the InstaRand protocol.

4.1 Ideal Functionality FiVRF

We present the ideal functionality FiVRF in Fig. 3. The client makes a single
VRF query x to the server S. The functionality generates the server’s output
(y, π) and returns it to the client C. The server output (x, y, π) can be verified
by anyone using the Pre-Verify command. Then the functionality generates N
pairs of outputs - (i, zi, δi) to capture the instant generation of client randomness
from (x, y). These output pairs are returned to the client and registered in the
memory corresponding to input (x, i). Each i-th output pair (vk, x, i, zi, δi) is
independently random and can be verified by any verifier V using the Inst-Verify
command. The ideal functionality keeps track of the following variables:

17



Setting and parameters. The functionality interacts with servers S, clients C,
and public verifiers V and an ideal world adversary Sim. It is parameterized with
an integer N and an output distribution D.

– On (S, vk) from Sim: Check if S was already registered, if not then register
(S, vk).
– On (x, vk) from a client C: Skip unless (x, vk) is a fresh pair and (S, vk) was
registered for some S. Otherwise:

1. Server Computation: Forward the request to Sim, once Sim sends back (x, y, π)
register (vk, x, y, π) and send it to C.

2. Instant Output Generation:
(a) If both S and C are corrupt: For every i ∈ [N ] receive (i, zi, δi) from Sim

and register (vk, x, (i, zi, δi)). Ignore future evaluation requests for the
same (vk, x, i).

(b) Otherwise, compute zi := RandD(x, y, i) for i ∈ [1 . . . N ] and send them to
Sim, wait for the Sim to send back the proofs (δ1, . . . , δN ). Then register
(vk, x, (i, zi, δi)) and send it to C for i ∈ [N ]. (Random Output)

– On (Pre-Verify, (vk, x, y, π)) from anyone: If the entry (vk, x, y, π) is registered,
then return 1, else return 0.

– On (Inst-Verify, (vk, x, i, zi, δi)) from anyone: If the entry (vk, x, (i, zi, δi)) is
registered with the functionality, then return 1, else return 0. (Instantly
Verifiable Output)

Fig. 3: Ideal Functionality FiVRF for modeling VRF with instantly verifiable output
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– Server’s verification key vk,
– Client’s input x,
– Server’s one-time VRF output (y, π) evaluated on x - where y is the output

and π is the proof,
– Client’s instant verifiable output (i, zi, δi) for session i on input x - where zi

is the output and δi is the proof.

Based on the corruption case, FiVRF ensures:

– If either the server or the client is honest: Then the outputs (z1, . . . , zN ) is
uniformly random.

– If the client is honest: Then an external adversary cannot predict the output
zj given the input x, server output (y, π) and the output of any (zi, δi) for
i ̸= j.

– If both server and the client are corrupt: Then the adversary provides the
outputs to the functionality. This is captured in Step. 2a.

We present our functionality in Fig. 3 and we discuss the properties that FiVRF

provides:

1. Random Output: The outputs of each session i is uniformly random over
the output distribution D if either the client or the server is honest.

2. Instantly Available: Each of the N outputs and proofs (zi, δi) are instantly
available to the client upon querying FiVRF with (x, vk).

3. Instantly Verifiable Output: Each of the outputs and proofs (zi, δi) can
be verified just given the server verification key vk, client input x and the
session identifier i.

4. Output Privacy: If the client is honest then the output zj is unpredictable
even given the outputs (z1, . . . , zj−1, zj+1, . . . , zN ) and proofs (δ1, . . . , δj−1,
δj+1, . . . , δN ) of all other sessions.

FiVRF can also be modified to capture a single instance of an output-private
VRF, defined in Flexirand [KMMM23]. To do so, set N = 1 and then run the
functionality where z1 is the output and δ1 is the proof of the single instance of
the output-private VRF. Instant-Verification of FiVRF is the verification algorithm
of the single instance of the output-private. By making these modifications, our
functionality captures the private VRF functionality of Flexirand. The work
of [DGKR18] also proposed a VRF ideal functionality but their functionality is
stronger as it requires the VRF output y to remain unpredictable when the server
is corrupt. Moreover, they do not support the generation of instant verifiable
outputs.

4.2 InstaRand Protocol πIRand

The InstaRand protocol allows a VRF client to generate multiple random outputs,
that are independently verifiable, using a single query to the VRF server. To do
so, the client samples a key pair (pkc, skc) for a client-side VRF protocol, denoted
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as VRFc. The client makes a VRF query to the server with input x = (u, vkc)
where u is the client’s input. The server computes the VRFs on x as y:

(y, π) := VRFs.Eval(sks, x),

where x = (u, pkc). The output y acts as an intermediate seed for the client to
generate multiple independently verifiable randomness. For a session i, the client
uses the secret key skc corresponding to pkc to generate verifiable randomness
on (x, y, i) as (wi, ρi) by evaluating VRFc.

(wi, ρi) := VRFc.Eval(skc, (x, y, i))

The final randomness for session i is generated as zi

zi = H(i, wi, x, y),

where H is modeled as a random oracle. The proof for zi is δi = (π, ρi, wi, y).
Note that the final output zi is generated using a random oracle on both wi and
y. This is done to ensure that zi is pseudorandom when either the client VRFc

output wi, or the server VRFs outputs y is pseudorandom. Similarly, if the client
is honest then zi is unpredictable to an external party since wi is unpredictable.
zi also remains unpredictable given the verifiable output (zj , δj) for session j ̸= i
due to the unpredictability of wi. This allows instant generation of verifiable
randomness for different sessions, where each randomness can be independently
verified. We present the InstaRand protocol, denoted as πIRand, in Fig. 4. We
prove that πIRand implements FiVRF by proving Thm. 1.

Theorem 1. Assuming (VRFs,VRFc) are verifiable random functions with unique
and pseudorandom outputs, then πIRand (Fig. 4) implements FiVRF (Fig. 3) in the
random oracle model against malicious corruption of the server, the client and
the public verifier by a PPT adversary A.

Proof Sketch. The correctness of the VRFs and VRFc protocols ensure that the
server output y and each output zi will be publicly verifiable by verifying the
proofs π and δi respectively. Next, we argue pseudorandomness of y and zi. If
the server is honest then the output y remains unpredictable and pseudorandom
to everyone else due to the pseudorandomness of VRFs. When the client is
honest, each output zi becomes unpredictable and pseudorandom due to the
pseudorandomness of VRFc. This holds even if the server is corrupt since zi is
obtained by performing a random oracle query on the server output y and the
client’s output wi. Next, consider the case where the server is honest and the
client is corrupt. In this scenario, each output zi should satisfy unbiasability.
When the client makes the VRF query x, the server computes y and this fixes
each zi value as the client side VRF computation on each input (x, y, i) is unique.
Moreover, the zi values will be uniformly distributed and unpredictable to the
client when it queries the server. That is because the output y is unpredictable
to the client and zi is obtained by invoking the random oracle of y and unique
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Primitives. VRFs,VRFc are two verifiable random functions, H : {0, 1}∗ → {0, 1}λ
is a random oracle.
Parties. VRF server S, client C, and public verifier V .

Server Key Gen. The server S generates (vks, sks)← VRFs.Gen(1
λ) and posts

vks to the bulletin board as the server verification key.

Server interaction (One-time Preprocessing)

Client Key Gen. The client samples (vkc, skc)← VRFc.Gen(1
λ) and posts vkc

to the bulletin board.

Client Input Gen. Assume client has input u ∈ {0, 1}∗ ∪ ε. The client sends the
input x := (u, vkc) to the server.

Server VRF Evaluation. If x is fresh then the server computes (y, π) :=
VRFs.Eval(sks, x), sends (y, π) to the client and stores x. Otherwise, ignore the
evaluation request.

Client VRF Verification. The client verifies the generation of y by

checking that VRFs.Verify(vks, x, (y, π))
?
= 1, and sends ⊥ to server if

VRFs.Verify(vks, x, (y, π)) = 0.

The following algorithms are run multiple times for different sessions i ∈ [1 . . . N ].
Instant Output Generation. To generate verifiable random outputs for session
i from y, the client performs the following:

(wi, ρi) := VRFc.Eval(skc, (x, y, i)), zi = H(i, wi, x, y)

The client computes zi as the output and the proof as δi = (π, ρi, wi, y).

Pre-verification. To verify input (vks, x, y, π), return the output of
VRFs.Verify(vks, x, (y, π)).

Instant Verification. To verify input (vks, x, i, zi, δi), parse (π, ρi, wi, y) := δi
and (u, vkc) := x. Perform the following checks:

1. VRFs.Verify(vks, x, (y, π))
?
= 1, (one-time for each client input x)

2. VRFc.Verify(vkc, (x, y, i), (wi, ρi))
?
= 1, and

3. zi
?
= H(i, wi, x, y).

If all checks pass then output zi as the output for session i.

Fig. 4: InstaRand Protocol πIRand

21



input parameters like x and i. The formal proof is more involved and we refer to
Appendix. E for the detailed proof.

Instantiations. InstaRand protocol πIRand can be constructed by instantiating
VRFc and VRFs from the BLS-signatures based VRF [GLOW21], RSA-based
VRF [GRPV23] or the DDH-based VRF [GRPV23]. We recall these VRF protocols
in Appendix. D. For our empirical evaluation, we instantiate the client-side VRFc

with the DDH-based VRF protocol since the DDH-based protocol is the most
practically efficient VRF protocol. However, it is not amenable to decentralization
of the server. And so, the server side VRFs in InstaRand is instantiated with the
BLS-based VRF protocol. This is performed because we would like to distribute
the server protocol by distributing the server-side VRFs protocol in the next
section. We will use the BLS-based GLOW-DVRF protocol for this purpose.

5 Instantly Verifiable DVRF (i-DVRF)

In a distributed setting, the VRF secret key sk (corresponding to verification
key vk) is split among multiple servers, with a threshold t+ 1 out of n required
to reconstruct the key. Even if up to t servers are compromised, the key remains
secure. Clients interact with t+1 servers with input x. These servers compute their
partial evaluations and send it to an aggregator A. The aggregator aggregates the
partial evaluations to obtain the output y = VRFsk(x) and an associated proof π.
The aggregator returns (y, π) to the client. DVRF ensures that the output y is
always publicly verifiable w.r.t to vk. In addition, y is pseudorandom if at most t
servers are corrupt.

In addition to the above properties, we require that the server output y is
consistent, i.e. y is independent of the participating server set, and liveness of
the server computation, ensuring the protocol executes correctly regardless of
malicious actions (guaranteed output delivery). Achieving these is straightforward:
consistency is ensured using a t out of n secret sharing scheme like Shamir’s, and
availability/liveness is guaranteed by assuming n ≥ 2t+1, which is ensured within
our ideal functionality Fi-DVRF. Another requirement is robustness, ensuring that
if aggregation is successful, so is pre-verification. This is enabled by allowing the
Sim to verify the partial evaluations before aggregation and return ⊥ if enough
partial evaluations are not valid. Only, if t + 1 evaluations are valid then the
server VRF output y is registered.

5.1 Ideal functionality Fi-DVRF

We present the ideal functionality, denoted as Fi-DVRF, for capturing distributed
VRFs that provide instantly verifiable outputs in Fig. 7 (Appendix. C). A set of
servers - (S1, . . . , Sn) denoted by S, replaces the single VRF server. The public
verification key vk is generated using a DKG. When the client makes a single
VRF query x to the server set S, the functionality collects partial evaluations
from the servers. If there are enough valid evaluations then the functionality
(via Sim) generates the server’s output (y, π) and returns it to the client C. The
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server output (x, y, π) can be verified by anyone using the Pre-Verify command.
The instant output generation of zi values and their verification is the same
as FiVRF. Similar to FiVRF, functionality Fi-DVRF ensures that each ith output
pair (vk, x, i, zi, δi) is independently verifiable, and the zi values are random and
remain private unless the client discloses it.

5.2 Distributed InstaRand Protocol πDIRand

We present the distributed version of InstaRand, denoted as πDIRand, in Fig. 5.
The construction is a natural extension of InstaRand (Fig.4) to the distributed
setting where the server computation in the preprocessing phase is performed by
a committee of server nodes. We assume that there is a DVRF protocol (refer to
Def. 2 in Sec. 3.3). The servers jointly generate the public verfication key vk and
server secret key shares ski using the DVRF.DKG protocol. When a client makes
a query to the servers by sending input u to the servers, the servers perform
partial evaluations using DVRF.PEval and send it to a public aggregator A. The
public aggregator verifies the partial evaluations using DVRF.PEvalVer and then
aggregates them to compute (y, π). The rest of the protocol is the same as the
InstaRand protocol. The security of πDIRand relies on the security of DVRF and
VRFc. Thm. 2 summarizes it.

Theorem 2. Assuming DVRF is a distributed-VRF (Def. 2) and VRFc is a
verifiable random function with unique and pseudorandom outputs, then πDIRand

(Fig. 5) implements Fi-DVRF (Fig. 7) in the random oracle model against malicious
corruption of t among n servers, the client and the public verifier by a PPT
adversary A.

Proof Sketch. The correctness of the DVRF and VRFc protocols ensure that
the server output y and each output zi will be publicly verifiable by verifying
the proofs π and δi respectively. Next, we argue pseudorandomness of y and
zi. If at most t servers are corrupt, then the output y remains unpredictable
and pseudorandom to everyone else due to the strong pseudorandomness of
DVRF. When the client is honest, each output zi becomes unpredictable and
pseudorandom due to the pseudorandomness of VRFc. This holds irrespective of
the pseudorandomness property of y since zi is obtained by performing a random
oracle query on the server output y and the client’s output wi. Next, we argue
that each zi value is unbiasable when the client is corrupt. When the client makes
the VRF query x, the DVRF servers compute y, and this fixes each zi value as
the client-side VRF computation on each input (x, y, i) is unique. Moreover, the
zi values will be uniformly distributed and unpredictable to the client when it
queries the server. That is because the output y is unpredictable to the client, and
zi is obtained by invoking the random oracle of y and unique input parameters
like x and i. The formal proof of d-InstaRand is similar to the formal proof (in
Appendix. E) of InstaRand except that the VRF server side algorithm is replaced
by a DVRF.
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Primitives. DVRF is a distributed verifiable random function, VRFc is a verifiable
random function, and H : {0, 1}∗ → {0, 1}λ is a random oracle.
Parties. VRF servers (S1, . . . , Sn), aggregator A, client C, and public verifier V .
Distributed Key Generation: Servers in set S, jointly run the distributed key-
generation DVRF.DKG(1λ, t, n)→ (vk,S, {vkj , skj}j∈[n]) with security parameter
λ, threshold t and total number of parties n. Each server Sj obtains a secret key
skj . All the servers get the public verification keys (vk, vk1, . . . , vkn) and the list
of qualified servers S. The (vk, vk1, . . . , vkn) are posted on bulletin board.

Server interaction (One-time Preprocessing)

Client Key Gen. The client samples (vkc, skc)← VRFc.Gen(1
λ) and posts vkc

to the bulletin board.
Client Input Gen. Assume client has input u ∈ {0, 1}∗ ∪ ε. The client sends the
input x := (u, vkc) to all the servers S1, . . . , Sn.
Server VRF Evaluation. If x is not fresh then the servers ignore x, otherwise
the following steps are run:

– Each server Sj ∈ S computes the partial evaluation (j, yj , πj) ←
DVRF.PEval(skj , xj , vkj). Server Sj sends (yj , πj) to the aggregator A.

– The aggregator A initiates two sets SA := ∅ and E := ∅ and aggregates as:
• For each j ∈ [n], if DVRF.PEvalVer(vkj , x, (j, yj , πj)) = 1 then append j

into SA as SA := SA∪{j} and append (j, yj , πj) into E as E := E∪(j, yj , πj).
• If |SA| < t + 1 then output ⊥, otherwise compute the output (y, π) by

aggregating the partial evaluations in E as:

(y, π) := DVRF.Aggregate(vk, {vkj}j∈[n], x, E).

Aggregator A sends (y, π) as output to client.

Client VRF Verification. The client verifies y by checking that

DVRF.Verify(vk, x, (y, π))
?
= 1, and sends ⊥ to the servers if it fails.

The following algorithms are run multiple times for different sessions i ∈ [1 . . . N ].

Instant Output Generation. To generate verifiable random outputs for session
i from y, the client sets (wi, ρi) := VRFc.Eval(skc, (x, y, i)) and zi = H(i, wi, x, y).
The client computes zi as the output and the proof as δi = (π, ρi, wi, y).
Pre-verification. To verify input (vk, x, y, π), return the output of

DVRF.Verify(vk, x, (y, π))
?
= 1.

Instant Verification. To verify input (vk, x, i, zi, δi), parse (π, ρi, wi, y) := δi
and (u, vkc) := x. Check:

1. DVRF.Verify(vk, x, (y, π))
?
= 1, (one-time for each client input x)

2. VRFc.Verify(vkc, (x, y, i), (wi, ρi))
?
= 1, and

3. zi
?
= H(i, wi, x, y).

If all checks pass then output zi as the output for session i.

Fig. 5: Distributed InstaRand Protocol πDIRand
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Instantiation. We instantiate the DVRF protocol using GLOW-DVRF [GLOW21]
and it is based on BLS [BLS01] signatures. We recall it in Appendix D. Our
client-side VRF is implemented using DDH-based VRF [GRPV23].

6 Experimental Results

Implementation and Setup. We implement the DDH-based VRF, GLOW-
DVRF, FlexiRand, InstaRand and the distributed version of InstaRand in Rust.
We also implement a Plonk [GWC19] proof for generating a proof proving the
extended output of FlexiRand where the PRG is implemented using a Posei-
don [GKS23] hash. In this case, the preprocessing phase consists of a single
preprocessing phase of FlexiRand and a Plonk proof for committing the output
on-chain using a hash. In the online phase, the client generates an output locally
and a Plonk proof of correct computation. We run the server and client algorithms
on an Apple MacBook Pro 18.3 with an 8-core M1 Pro processor and 16 GB
RAM. We run our single-threaded implementation on MacOS Ventura 13.5.1.

Experiment Details. We benchmark the client and server algorithms of
InstaRand and the DDH-based VRF [GRPV23] in the setting where the server is
run by a single trusted node. The DDH-based VRF protocol and InstaRand client
side VRF is implemented using the [GRPV23] VRF over Secp256k1 curve (used
by Chainlink [Chad, line 56]). The server algorithm of InstaRand is run on the
BN254 curve. Then we benchmark distributed InstaRand, GLOW-DVRF, and
FlexiRand where the server node is replaced by a committee of nodes satisfying
an honest-majority trust assumption. The server algorithm is all three protocols
are run over the BN254 curve as it is the state-of-the-art curve for BLS-based
protocols. The pairing-based protocols are implemented using substrate-bn [cra]
from the crates.io library over BN254 curve. Finally, we compare the gas costs
of all three protocols to demonstrate the practicality of deploying distributed
InstaRand on-chain. We denote the distributed version of InstaRand and d-
InstaRand. We benchmark the interactive preprocessing and non-interactive
online costs separately. The preprocessing phase allows the client to make a
query beforehand and use it later on in the application during the online phase.
Only FlexiRand and InstaRand allow preprocessing of the output randomness.
However, since we focus on the application where imstant verifiability is crucial,
FlexiRand needs to interact to produce each randomn output.

6.1 Comparison of Client Computation Cost

We discuss the client computation cost for making a VRF query and then verifying
the output. We show that InstaRand fares the same as the other protocols, like
GLOW-DVRF and FlexiRand, in Table 2. In the DDH-based VRF and the BLS-
based GLOW-DVRF, there is no preprocessing phase. In the online phase, the
client makes the VRF query to the server, and then upon obtaining the server
output and proof, the client verifies the proof. Verification cost is 0.21ms and
2.81ms respectively. In FlexiRand, the client cost in the preprocessing phase
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consists of the input blinding and pre-verification of the blinded output by
verifying the proof. The online phase consists of unblinding the output. The
total client cost is 3.19ms. In FlexiRand+ZK-SNARK, the client additionally
bears the burden of generating a hash of its private output, storing it on-chain
and giving a Plonk proof of correct computation. This adds 80ms to the client
cost. However, the preprocessing can be reused for multiple extended outputs.
In InstaRand, the client cost in the preprocessing phase consists of sampling
the keypair for the client side VRF in 0.17ms. Then the client queries the server
to obtain the output. The client then verifies this output in 2.81ms. The client
cost for preprocessing is 2.98ms. It is a one-time cost that can be reused. The
proof verification in DDH-VRF is cheaper since the client checks a proof of equal
discrete logs. For others, the client performs a pairing check.

Protocols
N = 1 N = 10

Preprocessing Cost(ms) Online Cost(ms) Preprocessing Cost(ms) Online Cost(ms)

DDH-VRF - 0.21 - 2.1

GLOW-DVRF - 2.81 - 28.1

FlexiRand 3.19 0.13 31.9 1.3

FlexiRand+ZK-SNARK >83.19 >80 >83.19 >800

InstaRand,
2.98 0.18 2.98 1.8

d-InstaRand

Table 2: Comparison of client’s local computation costs for generating N = 1, 10
instantly verifiable outputs. Note that, DDH-VRF and GLOW-DVRF do not
have pre-processing, and therefore do not support cost amortization or instant
availability. Furthermore, since instant verifiability is mandated, FlexiRand needs
to interact with VRF servers for each randomness.

Instant Output Generation. The DDH-based VRF, GLOW DVRF and
FlexiRand does not allow instant output generation. As a result, we need to
run these protocols N times to generate N outputs that are instantly verifiable.
Meanwhile, we use the instant output generation property of InstaRand to
generate N outputs in 0.18ms per output in the online phase. This requires the
client to generate a proof of equal discrete logs. Each output can be verified
in 0.22ms by verifying the proof. The preprocessing phase remains unchanged.
This can be visualized in Table 2. It yields an instant improvement of 6× over
GLOW-DVRF and FlexiRand.

Estimates over Blockchains. In this setting, we assume there is a network
delay of 120ms between client/server nodes and the blockchain, and it takes Tms
for a transaction to get appended on the blockchain. In the DDH-based VRF
and GLOW-DVRF, the client incurs a round trip delay of 480ms for making the
request, servers reading the request, servers posting their output on blockchain
and client reading the output. In addition, there is a 2Tms for the request and
fulfillment transaction, resulting in a total delay of 480 + 2Tms. In FlexiRand,
there are four transactions - request transaction, verification of blinded input
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and fulfillment transaction with blinded output and unblinding the output, and
one VRF evaluation by the servers, resulting in an additional 4T + 960ms delay.
Meanwhile, in InstaRand we incur two transactions in the preprocessing phase for
the VRF evaluation by the server, resulting in an additional delay of 2T +480ms.
This cost gets amortized over multiple randomness requests. The online phase
of InstaRand incurs Tms to use the output on-chain. Note that T is the main
bottleneck in the delay as it varies from a few seconds (for Ethereum it takes 12
seconds [ych]) to even a few minutes (for Bitcoin).

6.2 Comparison of Server Computation Cost

Single Server Setting. In the DDH-based VRF, the VRF server evaluates
the VRF of [GRPV23] on the client input over secp256k1 curve in 0.18ms. In
InstaRand, the server is implemented using the BLS protocol and takes 0.24ms
over the BN254 curve. Operations over BN254 are more expensive compared
to operations over the secp256k1 curve and that causes the additional 0.06ms
delay. However, the server computation in InstaRand happens one-time in the
preprocessing phase and can be reused in the online phase to generate multiple
instantly verifiable outputs. We present the empirical results in Table 3.

Protocols n Preprocessing Cost(ms) Online Cost(ms)

DDH-VRF 1 - 0.18

InstaRand 1 0.24 -

GLOW-DVRF 8 - 5.91

FlexiRand 8 6.32 -

FlexiRand+ZK-SNARK 8 6.32 -

d-InstaRand 8 5.91 -

GLOW-DVRF 16 - 11.35

FlexiRand 16 11.8 -

FlexiRand+ZK-SNARK 16 11.8 -

d-InstaRand 16 11.34 -

GLOW-DVRF 64 - 44.52

FlexiRand 64 45.19 -

FlexiRand+ZK-SNARK 64 45.19 -

d-InstaRand 64 44.52 -

Table 3: Comparison of server computation costs in the distributed n-server
setting. For n > 1, the computation cost is the sum of a partial VRF evaluation,
n partial verifications, and aggregation of n partial evaluations. The one-time
preprocessing of InstaRand and d-InstaRand is reused for multiple requests.

Distributed Setting. In GLOW-DVRF, d-InstaRand and FlexiRand the server
is implemented by an n-sized committee of server nodes who compute the partial
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BLS-signatures and the proof of correct evaluation in parallel within 0.5ms.
These evaluations are sent to the aggregator who verifies n partial evaluations in
0.61ms/evaluation and then aggregates them into the correct output. Aggregation
and verification of partial evaluation grows with the value n. In Table 3, we
present this entire computation cost assuming there is no network delay. Note
that FlexiRand is slightly more expensive since the server nodes have to verify
the blinded client input as well. The d-InstaRand server is also slightly faster
than GLOW-DVRF server since we use an optimized (Appendix. D) BLS-based
VRF where the servers need to compute one less hash. Considering network delay
of 120ms between client/server and the blockchain, the servers in FlexiRand
and InstaRand perform the VRF evaluations in the preprocessing phase, hence
effectively restricting the client-server delay of 480ms to the preprocessing phase.
Whereas GLOW-DVRF performs the VRF evaluation in the online phase and as
a result, the GLOW-DVRF client incurs this delay in the online phase.

6.3 Comparison of Gas Cost Estimates

We perform the gas cost analysis in this section. All gas costs were taken as an
average of 100 samples executed on Remix VM (London) over the Ethereum
blockchain, which has a base fee [Git] of 21k for each transaction. Additionally, it
takes 22k gas to store a commitment on-chain, 9k gas to hash to a group element
on Secp256k1 curve, 62k gas to hash to a group element on BN254 curve, 80k
gas to perform a pairing check. A BLS verification involves hashing to BN254
curve and a pairing check, costing 142k gas. The DDH-based VRF verification
costs 33k gas - hashing to Secp256k1 curve and verifying a Proof of two equal
discrete logs. It takes 300k gas [Tha] to store a hash on-chain and verify a Plonk
proof of correct hash computation on-chain. Using these numbers, we analyze the
gas costs for DDH-VRF, GLOW-DVRF, d-InstaRand, and FlexiRand (discussed
in Appendix. F) in Table 4.

Protocols
N = 1 N = 10

Preprocessing Cost (gas) Online Cost ( gas) Preprocessing Cost (gas) Online Cost (gas)

DDH-based VRF - 130k - 1300k

GLOW-DVRF - 196k - 1960k

FlexiRand 306k 201k 3060k 2010k

FlexiRand+ZK-SNARK >606k >300k >606k 3000k

d-InstaRand 302k 84k 302k 840k

Table 4: Comparison of gas costs for verifying N instantly verifiable outputs.

DDH-VRF and GLOW-DVRF. Both protocols have a request and a ful-
fillment transaction. The request transactions for both cost 54k gas – 22k gas
for storing the request on-chain, 21k transaction, and the rest for bookkeeping
purposes. The verification transaction costs for DDH-VRF and GLOW DVRF
are 76k gas and 192k gas respectively. DDH-VRF incurs 33k gas for verifying
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Fig. 6: Comparison of total gas cost for verifying N instantly verifiable outputs.

the proof and GLOW-DVRF incurs 192k gas for hashing to BN254 and perform-
ing a pairing. Besides that, 21k gas is spent for the transaction, and the rest
for updating the fulfillment status of the request. Hence, the total gas cost of
DDH-VRF and GLOW-DVRF are 130k and 192k.

d-InstaRand. In the preprocessing phase, the client queries the GLOW-DVRF
servers to obtain an evaluation. The request transaction costs 58k, similar to the
request transaction in GLOW-DVRF, except an extra 4k gas is spent since the
query input consists of the additional client VRF verification key. The fulfillment
transaction (namely Pre-verification) costs 244k gas – GLOW-DVRF verification
plus storing the output y on-chain for later use. Hence, the preprocessing phase has
a one-time cost of 302k gas or $0.97 USD. The online gas cost for d-InstaRand is
84k gas – 33k gas for verifying the client side VRF proof, 21k transaction cost, and
the rest for obtaining the output by hashing and updating the fulfillment status
of the request. Note that, it is slightly higher than the DDH-VRF verification
due to performing an additional hash to obtain the final output. It costs $0.27
USD to generate each output.

In Fig.6, we compare the total gas costs of all the protocols for generating N
outputs that can be independently verified. For generating N = 1 output, the
DDH-based VRF is the least expensive since the three other protocols require
performing a pairing check on the smart contract. For N = 10 outputs, GLOW-
DVRF, FlexiRand and FlexiRand+ZK-SNARK are 1.7×, 4.4× and 3× more
expensive than InstaRand. Also, d-InstaRand becomes less expensive than DDH-
based VRF. This is mainly because DDH-VRF and GLOW-DVRF require 2N
transactions to generate N outputs whereas InstaRand only requires N + 2
transactions. Each transaction costs 21k gas. FlexiRand requires 4N transactions
and performs two pairing checks. Meanwhile, FlexiRand+ZK-SNARK approach
runs the preprocessing of FlexiRand once and verifies a plonk proof in the
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preprocessing and online phases. However, InstaRand is consistently outperforms
others, and the improvement further increases with higher values of N .

7 Conclusion

Web3 applications, such as on-chain gaming, require unbiased and publicly verifi-
able randomness that can be generated on demand and verified instantaneously
within the application. Existing services, such as those using Verifiable Random
Functions (VRF), are significantly slow, or other solutions, like FlexiRand [CCS
2023], lack instant verification capability. To solve this, we introduce an instantly
verifiable VRF (iVRF) that generates multiple randomnesses from one VRF
output seed, such that each value can be verified independently. This is the first
cost-effective solution for generating randomness that is immediately available
and instantly verifiable.

We build an iVRF using the InstaRand construction – that combines any
(possibly distributed) VRF at the server’s end with another VRF at the client’s
end to build an iVRF. Our specific instantiation uses the BLS-based GLOW-
DVRF [Euro S&P 2021] at the server’s end and the DDH-based VRF of Goldberg
et al. [RFC 2023] at the client’s end. An InstaRand client incurs a one-time
pre-processing cost to generate the seed (or server’s VRF output) by querying
the GLOW-DVRF servers once. Once the seed is set, the client locally generates
the random value on demand in 0.18 ms. This avoids the client-server round trip
delay (of 240 ms), hence generating outputs instantly.
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We compare our InstaRand solution (Fig 2) for the die roll with other solutions
as follows:
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– Comparison with VRF services: If we use a VRF service to play the same
dice game, then the generation of each dice would require a fresh randomness
query to the VRF server by the parties, incurring 240msecs latency (assuming
a standard 120msecs server-client network latency). InstaRand clients avoid
this delay.

– Comparison with FlexiRand: If we use FlexiRand for this game, then all the
dice (an average two-player Backgammon game takes 53.78 rolls [Esc24])
have to be preprocessed/precomputed since its output is not independently
verifiable. This avoids the online delay of the previous approach, albeit at
the cost of blowing up the preprocessing phase. In contrast, the preprocess-
ing phase of InstaRand does not grow with the number of random values
generated in the online phase.

– Comparison with Coin-Toss: An alternate solution is where the players commit
to random values and then open them to generate the randomness. But this
would require two on-chain transactions for one party and one transaction
for the other party in the online phase. In contrast, the online phase of
InstaRand requires a single on-chain transaction for both parties. Saving one
transaction could save us a few seconds (on the Ethereum blockchain) to a
few minutes (on the Bitcoin blockchain) for rolling a single die since it is the
major bottleneck in deploying Web3 dApps [Chac].

– Comparison with client-run VRFs: There is another approach to rolling the
dice, similar to our protocol. The clients post their own VRF keys in the
preprocessing phase and skip the query to the VRF service. In the online
phase, the clients evaluate their VRFs on the round number i to generate
ZA,i and ZB,i respectively. The gaming smart contract verifies those values
and then generates the dice using the hash function. This approach works
when at least one of the clients is honest. It has the same online cost as us and
it skips the query to the VRF service. However, if the two clients collude then
they can effectively bias the random dice value, as there is no contribution
from an external VRF service in the dice randomness. The previous protocol
based on commit-reveal coin-tossing also suffers from the same limitation.
This can be a problem in a Snake-and-Ladder tournament where a bunch
of players collude together such that one of them always wins their pairwise
match and gets more points than the other honest players in the tournament.

B Additional Preliminaries

We present the additional preliminaries in this section.

B.1 Random Oracle

A random oracle (RO) [CJS14,CSW20] H is parameterized by an arbitrary domain
and a specified range R. An RO query on message m is denoted by H(m). The
plain random oracle assumption guarantees that H(m) is indistinguishable from
an element uniformly sampled from R if m was not queried before. An observable
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RO additionally grants the simulator/reduction to observe (but not influence)
the queries made, to H, by the adversary. A programmable RO [CSW20] allows
the simulator/reduction to program the RO to output a value y on H(m) := y on
a previously unqueried input message.

B.2 Universal-Composability (UC) Model

We follow the Universal Composability Framework [Can01], in that a real-world
multi-party protocol realizes an ideal functionality in the presence of an adversary.
We assume the existence of a default authenticated channel in the real world
between any two parties. This can be modeled using an ideal authenticated
channel functionality [Can04]. We refer to the original work of Canetti [Can01]
for a detailed description of the security model.

B.3 Building Block: Verifiable Random Function

In this subsection, we recall the notion of verifiable random functions (VRF)
from [CL07]. It ensures that the output on a previously unqueried input x is
pseudorandom. A VRF over a distribution D is defined using a tuple of three
PPT algorithms.

– Gen(1λ)→ (vk, sk) : is the key generation algorithm that takes as input the
security parameter λ and outputs a key pair (vk, sk), where vk is the public
verification key and sk is the secret key.

– Eval(sk, x)→ (y, π) : is the evaluation algorithm that takes as input a secret
key sk and input x ∈ X and outputs a random string y ∈ Y and a proof π.

– Verify(vk, x, (y, π))→ b ∈ {0, 1} : is the verification algorithm that takes as
input the verification key vk, input x, output y, and proof π, and outputs a
decision bit denoting whether the proof verified or not.

Definition 1 (Verifiable Random Function). A tuple of algorithms denoted
as VRF = (Gen, Eval, Verify) is a verifiable random function (VRF) over input
space X and output space Y if it fulfills:

– Correctness. For all (vk, sk)← Gen(1λ), x ∈ X and, (y, π)← Eval(sk, x),
it holds that Verify(vk, x, (y, π)) = 1.

– Uniqueness. For all vk ∈ {0, 1}∗ that lie in the verification key space
corresponding to Gen(1λ), and for all x ∈ X , there does not exist any pair of
(y0, π0), (y1, π1) ∈ {0, 1}∗ s.t. y0 ̸= y1, and Verify(vk, x, (y0, π0)) = Verify(vk,
x, (y1, π1)) = 1.

– Pseudorandomness. On input vk, even with oracle access to Eval(sk, ·)
no PPT adversary can distinguish y0 (where (y0, π) ← Eval(sk, x)) from
a uniform random element y1 (where y1 ← RandY(x)) without explicitly
querying for it. More formally, ∀ PPT adversaries A the following two
distributions are computationally indistinguishable:

(vk, x, y0)
c
≈ (vk, x, y1),
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where (vk, sk)← Gen(1λ) is generated following the protocol. The adversary
A outputs x← AEval(sk,·)(vk). Then the output values generated as (y0, π) ←
Eval(sk, x), and y1←RandY(x). And input x was not queried to Eval(sk, ·),
i.e. x /∈ Qγ for γ ∈ {0, 1}, where Qγ is the list of queries made by A.

B.4 Building Block: Distributed VRF

In this subsection, we recall the notion of distributed VRF from [GLOW21].
A t-out-of-n DVRF over a distribution D is defined using a tuple of four PPT
algorithms.

– DKG(1λ, t, n)→ (vk,S, {vki, ski}i∈[n]): is a fully distributed key generation
protocol that takes as input the security parameter λ, number of parties n
and the threshold t and outputs a set of qualified nodes S, a global public
verification key vk, a list {vk1, vkn} of participating nodes’ verification keys,
and results in a list {sk1, . . . , skn} of nodes’ secret keys where each secret
key is only known to the corresponding node.

– PEval(ski, xi, vki)→ (i, yi, πi) : is a partial evaluation algorithm that takes
as input the secret key ski, input x ∈ X and verification key vki and outputs
a triple (i, yi, πi) where yi ∈ Y is the ith evaluation share and πi is the
corresponding proof.

– PEvalVer(vki, x, (i, yi, πi)) → 0/1 : is an algorithm to verify the i partial
evaluation and it takes as input the i verification key vki, input x and the
partial evaluation triple (i, yi, πi) and outputs a decision bit denoting whether
the verification succeeded or not.

– Aggregate(vk, {vki}i∈[n], x, E) → (y, π) : is the aggregation algorithm that
takes as input the global verification key vk, list of individual node verification
keys {vki}i∈[n], input x, and a set E = {(i1, yi1 , πi1), . . . , (i|E|, yi|E| , πi|E|)} of
verified partial evaluations originating from |E| > t+ 1 different nodes, and
outputs the aggregated pseudorandom output y and correctness proof π.

– Verify(vk, x, (y, π)) → b ∈ {0, 1} : Takes as input the verification key vk,
input x, output y, and proof π, and outputs a decision bit denoting whether
the proof verified or not.

Definition 2 (Distributed Verifiable Random Function). A tuple of algo-
rithms denoted as DVRF = (DKG, PEval, Aggregate, Verify) is a strongly pseudo-
random distributed verifiable random function (DVRF) over input space X and
output space Y if it fulfills:

– Correctness. For all (vk,S, {vki, ski}i∈[n])← DKG(1λ, t, n), x ∈ X , and all
possible sets Ω of size t ≤ |Ω| ≤ n, (y, π) ← Aggregate(vk, {vki}i∈[n], x, E),
where E = {(i, yi, πi)}i∈Ω is the set of valid partial evaluations of nodes in set
Ω i.e. ← PEval(ski, xi, vki) ∧ 1← PEvalVer( vki, x, (i, yi, πi)), then it holds
that Verify(vk, x, (y, π)) = 1.
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– Uniqueness. For all vk ∈ {0, 1}∗ that lie in the verification key space
corresponding to Gen(1λ), and for all x ∈ X , there does not exist any pair of
(y0, π0), (y1, π1) ∈ {0, 1}∗ s.t. y0 ̸= y1, and Verify(vk, x, (y0, π0)) = Verify(
vk, x, (y1, π1)) = 1.

– Strong Pseudorandomness. This says that even if the adversary corrupts
t of the n signers, and makes partial evaluation queries on the challenge
input, and yet the VRF evaluation on the challenge input is pseudorandom. It
is stronger than the standard pseudorandomness of the VRF as the adversary
is not allowed to make partial evaluation queries on the challenge input in
the standard pseudorandomness game. We refer to [GLOW21] for the formal
definition.

C Ideal Functionality Fi-DVRF for Distributing FiVRF

We present the ideal functionality Fi-DVRF in Fig. 7 and we refer to Sec. 5.1 for
more details on the functionality.

D VRF and DVRF Instantiations

We recall the BLS-based, RSA-based, and DDH-based VRF protocols. We also
optimize the BLS-based construction such that the verification algorithm costs
one less hash. This optimization reduces the “Pre-verification” in InstaRand. We
also show that for each protocol given a VRF output y on input x and verification
key vk, the simulator can check the correctness of the output y (without the VRF
proof) under the random oracle assumption. This is required for our security
proofs.

– Optimized BLS-signature-based VRF [BLS01]. This VRF is defined
over groups G1,G2,GT with a bilinear mapping e : G1 × G2 → GT . Let g1 and
g2 be generators over G1 and G2 respectively. The verification key is vk = gsk2
and the secret key is sk. The input is x ∈ {0, 1}λ. We optimize this VRF s.t.
the output is y = H(x)sk where H : {0, 1}λ → G1 is a random oracle. The

verifier checks e(y, g2)
?
= e(H(x), vk). The simulator also performs the same

check to verify output correctness. This saves us one hash compared to the
original BLS-based VRF of [GLOW21] where the final output is obtained by
further hashing y. It is not a problem in InstaRand if y is a group element
instead of a 256-bit string since it is used as an input in the client-side VRF
to produce the zi values. Such optimizations were also explored in FlexiRand.

– RSA-based [GRPV23]. The verification key is (n, e) and the secret key
is d. The input is x. The proof is ρ = H1(x)

d mod n and the output value
is y = H2(ρ) where H1 is an IETF specified hash function and H2 is a

cryptographic hash function. The verification equation is ρe mod n
?
= H1(x)

and y
?
= H2(ρ). To check output correctness, the simulator observes the

random oracle queries made to H2 to find out ρ, and then the simulator runs
the verification check to verify the output.
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Setting and parameters. The functionality interacts with servers S, public ag-
gregator A, clients C, and public verifiers V and an ideal world adversary Sim. It is
parameterized with an integer N , number of servers n, server corruption threshold
t and an output distribution D.

– On (S, vk, {vk1, . . . , vkn}) from Sim: Parse S := {S1, . . . , Sn} and when vk is
unique: (Distributed Key Generation)

1. Define CS ⊂ S is the set of corrupt servers and HS := S\CS is the set of honest
servers.

2. If n < 2t+ 1, then exit the procedure. (Liveness)
3. For each Si ∈ S set Keys[Si] := vki.
4. If |CS| ≥ t+ 1, then mark server set S as Corrupt.
5. Send (S, vk, vki) to each Si ∈ HS and register (S, vk).

– On (x, vk) from a client C: Skip unless (x, vk) is a fresh pair and (S, vk) was
registered for some S. Otherwise:

1. On (Partial-Eval, x, vk) from server Sj: Fetch vkj ← Keys[Sj ] and forward
(Partial-Eval, x, vk, vkj) to Sim. If Sim sends ⊥ then send it to Sj . If Sim sends
(vkj , x, j, yj , πj) then forward it to Sj and set Tpart[x, vk, Sj ] := (yj , πj). If the
same query is repeated then fetch (yj , πj) from Tpart and return it to Sj .

2. On (Aggregate, x, vk, {(y1, π1), . . . , (yℓ, πℓ)}) from A: If ℓ < t+ 1, then return
⊥. Otherwise, forward this message to Sim. If Sim sends ⊥ then send it to
A and exit. Otherwise, receive (vk, x, y, π) from Sim and register (y, π) as
T [x, vk] := (y, π) and send (vk, x, y, π) to C.

3. Instant Output Generation:

(a) If both S and C are corrupt: For every i ∈ [N ] receive (i, zi, δi) from Sim
and register (vk, x, (i, zi, δi)). Ignore future evaluation requests for the
same (vk, x, i).

(b) Otherwise, compute zi := RandD(x, y, i) for i ∈ [1 . . . N ] and send them to
Sim, wait for the Sim to send back the proofs (δ1, . . . , δN ). Then register
(vk, x, (i, zi, δi)) and send it to C for i ∈ [N ]. (Random Output)

– On (Pre-Verify, (vk, x, y, π)) from anyone: If the entry (vk, x, y, π) is registered,
then return 1, else return 0.

– On (Inst-Verify, (vk, x, i, zi, δi)) from anyone: If the entry (vk, x, (i, zi, δi)) is
registered with the functionality, then return 1, else return 0. (Independently
Verifiable Output)

Fig. 7: Ideal Functionality Fi-DVRF for modeling distributed VRF with instantly
verifiable output
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– DDH-based on Elliptic Curves [GRPV23]. The secret key is sk ∈ Zq

and the public verification key is vk = gsk. The input is x. Compute h = H1(x)
and γ = hsk. The output is y = H2(γ

f ) for a public parameter f . To compute
the VRF proof, compute a proof of equal discrete logs for (g, vk) and (h, γ)
as: sample k ← Zq, set c = H3(g, h, vk, γ, g

k, hk) and s = k − c · sk mod q.
Set y as the output and ρ = (γ, c, s) as the proof. To verify the output check

that 1) y
?
= H2(γ

f ), and 2) compute u = (vk)c ·gs, h = H1(x), v = γc ·hs and

check c
?
= H3(g, h, vk, γ, u, v). To perform the output correctness check, the

simulator programs H1 s.t. it returns gri for different queries H1(qi) made by
the client. When the client submits the output y for input x, the simulator
finds out γ by observing H2 and finds r s.t. H1(x) = gr. Then the simulator

returns 1 if (g,H1(x), vk, γ) forms a DDH tuple by checking vkr
?
= γ.

E Security Proof of Instarand

We prove that πIRand implements FiVRF in the real-ideal world paradigm by
proving Thm. 1.

Denote Advps and Advpc as the advantages of an adversary in the pseudoran-
domness games of VRFs and VRFc respectively. Denote Advus and Advuc as the
advantages of an adversary in the uniqueness games of VRFs and VRFc respec-
tively. Assuming adversary A makes at most q to the random oracle H in πIRand,
we concretely show that the advantage of A, denoted as Adv, is upper bounded
as:

Adv ≤ q · (Advps + Advpc) + Advus + Advuc

Proof. We prove that πIRand implements FiVRF by proving Thm. 1 in the UC
model [Can01]. We assume that there exists a PPT adversarial algorithm A
that corrupts participating parties in the protocol execution. In the real-world
execution of the protocol, A corrupts a party and interacts with the rest of
the honest parties. At the end of the protocol execution, we denote its view
as RealπIRand,A,E(1

λ). In the ideal world execution of the protocol, the honest
parties provide their input to FiVRF and we provide a PPT simulator Sim that
given access to the adversarial algorithm A and the functionality FiVRF produces
the ideal world adversary view IdealFiVRF,Sim,E(1

λ). According to the real-ideal
world paradigm, these two views should be indistinguishable.

We consider the following four exhaustive corruption cases for the corruption of
the client and the server. For each of them, we construct our simulator algorithms
and argue indistinguishability of real and ideal world views of the environment.
We assume that the public verifier is always controlled by the adversary in all
four cases.

1. Both server S and client C are honest. In this case, an adversary corrupts
a public verifier who views the final output (zi, δi) values. We argue that the
zi values will be random to an external verifier (who is not the server or the
client). We provide the simulation algorithm in Fig. 8. The simulator generates
a correct (vks, sks) on behalf of the server and registers it. For evaluation on
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input (x, vks) the simulator evaluates VRFs on the input using sks. For Instant
Output Generation the functionality samples random (z1, . . . , zN ) values and
sends it to the simulator for the simulated proofs. To construct proof ρi, the
simulator evaluates (wi, ρi) running the usual protocol steps and then programs
the random H on input (i, wi, x, y) s.t. it outputs zi. The simulator aborts if
the programming fails. To perform the pre-verification and instant verification
requests by an external verifier the simulator invokes FiVRF on the request and
returns the output of FiVRF. We provide the simulator algorithm in Fig. 8.

Primitives. VRFs,VRFc : (Gen,Eval,Verify) are two verifiable random functions,
H : {0, 1}∗ → {0, 1}λ is a random oracle.

Parties. Simulator Sim, functionality FiVRF.

Server Key Gen. The simulated server generates (vks, sks) ← VRFs.Gen(1
λ).

Sim invokes FiVRF with input (S, vks) and posts vks to the bulletin board in the
simulated protocol as the server verification key.

Client Input Gen. The honest client invokes FiVRF with input (x, vks) and this
is forwarded to the simulator by FiVRF.

Server VRF Evaluation. The simulated server computes (y, π) :=
VRFs.Eval(sks, x). It sends (x, y, π) to FiVRF and (y, π) to the simulated client.

Client VRF Verification. To verify input (vks, x, y, π), return the output of
FiVRF on input (Pre-Verify, (vks, x, y, π)).

The following algorithms are run multiple times for different sessions i ∈ [1 . . . N ].
Instant Output Generation. The simulator obtains (z1, . . . , zN ) from FiVRF.
The simulated client performs the following for i ∈ [N ]:

(wi, ρi) := VRFc.Eval(skc, (x, y, i)).

The simulated client programs H s.t. H(i, wi, x, y) := zi and sets the proof as δi =
(π, ρi, wi, y). If the programming of H fails then the simulator aborts. Otherwise,
Sim returns (δ1, . . . , δN ) to FiVRF.

Pre-verification. To verify input (vks, x, y, π), return the output of FiVRF on
input (Pre-Verify, (vks, x, y, π)).

Instant Verification. To verify input (vks, x, i, zi, δi), return the output of FiVRF

on input (Inst-Verify, (vks, x, i, zi, δi)).

Fig. 8: Simulator when both server S and client C are honest

An adversary A corrupting a public verifier can distinguish between the real
and ideal world if the programming of H fails. In this case, the adversary has
to guess the values of both y and wi without querying x to FiVRF since FiVRF
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only allows unique queries. Such an adversary breaks pseudorandomness of both
VRFs and VRFc in the random oracle model.
Indistinguishability Argument: We provide the formal hybrids and argue indistin-
guishability as follows:

– Hyb0: Real-world execution of the protocol in Fig.4.

– Hyb1: This is the same as Hyb0, except the simulator aborts if the adversary
makes any query of the form H( , , x, y), (here denotes any value) where x
is the simulated client input and VRFs.Verify(vks, x, (y, π)) for π computed
using the VRFs evaluation.
A distinguisher distinguishes between the two hybrids if it predicts y. The
adversary for the pseudorandomness game observes the set of ( , , x, y) values
and returns one of them randomly to the challenger of pseudorandomness
game as the response on challenge x. If the distinguisher distinguishes between
the two hybrids with advantage Adv10,1 and makes q queries to H, then the
pseudorandomness adversary of VRFs wins with probability Advps computed
as:

Adv10,1
q ≤ Advps

– Hyb2: This is the same as Hyb1, except the simulator aborts if the adversary
makes any query of the form H(i, wi, x, y) for i ∈ [N ] and prohibits the
programming of the random oracle.
A distinguisher between the two hybrids distinguishes if it makes a valid RO
query containing (i, wi) as the input for i ∈ [N ]. In such a case, we construct
an adversary for the pseudorandomness game of VRFc. The adversary returns
(i, wi) as the output on input (x, y, i) and wins the game. If the distinguisher
distinguishes between the two hybrids with advantage Adv11,2 and makes
q queries to H, then the pseudorandomness adversary of VRFc wins with
probability Advpc where:

Adv11,2
q ≤ Advpc

We note that since both server and client are honest, replacing the pre-
verification and instant verification steps in the protocol by invocations to
FiVRF does not provide any additional advantage to the adversary and these
changes are equivalent.

– Hyb3: This is the same as Hyb2, except the simulator performs the pre-
verification step by invoking FiVRF on the pre-verification request instead of
running the protocols steps of πIRand.
An adversary distinguishes between the two hybrids if it generates a pre-
verification request on a different (y′, π′) ̸= (y, π) s.t. (y′, π′) verifies w.r.t.
(vks, x). The request successfully verifies in Hyb2 but fails to verify in Hyb3
since one of them will not be registered with FiVRF. In this case, we construct
an adversary for breaking uniqueness of vks who returns (vks, x, (y, π), (y

′, π′))
as the answer to the challenger of the uniqueness game. If the distinguisher
distinguishes between the two hybrids with an advantage Adv12,3, then the
uniqueness adversary of VRFs wins with probability Advus computed as:

Adv12,3 ≤ Advus .
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– Hyb4: This is the same as Hyb3, except the simulator performs the instant
verification step by invoking FiVRF on the instant verification request instead
of running the protocols steps of πIRand. This is the ideal world execution of
the protocol.

An adversary distinguishes between the two hybrids if it generates an instant
verification request on two different requests containing (w, ρ) ̸= (w′, ρ′) s.t.
both verify w.r.t. (vkc, x, y, i). The request successfully verifies in Hyb3 but
fails to verify in Hyb4 since one of them will not be registered with FiVRF.
In this case, we construct an adversary for breaking uniqueness of vkc who
returns (vkc, (x, y, i), (w, ρ), (w

′, ρ′)) as the response to the challenger of the
uniqueness game. If the distinguisher distinguishes between the two hybrids
with advantage Adv13,4, then the uniqueness adversary of VRFc wins with
probability Advuc where:

Adv13,4 ≤ Advuc .

An adversary distinguishes the real and ideal world with an advantage Adv1 upper
bounded as:

Adv1 ≤ q · (Advps + Advpc) + Advus + Advuc .

2. Server S is corrupt and client C is honest. In this case, an adversary
corrupts the server and a public verifier who views the final output (zi, δi) values.
We argue that the zi values will be random to an external verifier even though
y is generated by the corrupt server. We provide the simulation algorithm in
Fig. 9. The simulator forwards the vks, generated by the corrupt server, to
FiVRF. For evaluation on input (x, vks) the simulator receives an evaluation
request on input (x, vks) and forwards it to the server to obtain the output (y, π).
The simulated client aborts the protocol if the verification of (y, π) fails else
the simulator forwards this output to FiVRF and it gets registered. For Instant
Output Generation the functionality samples random (z1, . . . , zN ) values and
sends it to the simulator for the simulated proofs. To construct proof ρi, the
simulator evaluates (wi, ρi) running the usual protocol steps and then programs
the random H on input (i, wi, x, y) s.t. it outputs zi. The simulator aborts if
the programming fails. To perform the pre-verification and instant verification
requests by an external verifier the simulator invokes FiVRF on the request and
returns the output of FiVRF. We provide the simulator algorithm in Fig. 9.

An adversary A corrupting a public verifier can distinguish between the real
and ideal world if the programming of H fails or if the pre-verification fails in the
ideal world but the pre-verificaiton succeeds in the real world. In this case, the
adversary either has to guess the values of wi without querying or it breaks the
uniqueness of VRFs in the real world execution by producing two different (y, π)
and (y′, π′) values that verify against (x, vks).

Indistinguishability Argument: We provide the formal hybrids and argue indistin-
guishability as follows:

– Hyb0: Real-world execution of the protocol in Fig.4.
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Primitives. VRFs,VRFc : (Gen,Eval,Verify) are two verifiable random functions,
H : {0, 1}∗ → {0, 1}λ is a random oracle.

Parties. Simulator Sim, functionality FiVRF.

Server Key Gen. The corrupt server sends vks to everyone. Sim receives it and
invokes FiVRF with input (S, vks).

Client Input Gen. The honest client invokes FiVRF with input (x, vks) and this
is forwarded to the simulator by FiVRF. The simulated client sends x to the corrupt
server.

Server VRF Evaluation. The corrupt server sends (y, π) to the simulated client.

Client VRF Verification. The simulated client sends (x, y, π) to FiVRF if
VRFs.Verify(vks, x, (y, π)) = 1. Otherwise, the simulator sends ⊥ to FiVRF and ⊥
to the corrupt server.

The following algorithms are run multiple times for different sessions i ∈ [1 . . . N ].
Instant Output Generation. The simulator obtains (z1, . . . , zN ) from FiVRF.
The simulated client performs the following for i ∈ [N ]:

(wi, ρi) := VRFc.Eval(skc, (x, y, i)).

The simulated client programs H s.t. H(i, wi, x, y) := zi and sets the proof as δi =
(π, ρi, wi, y). If the programming of H fails then the simulator aborts. Otherwise,
Sim returns (δ1, . . . , δN ) to FiVRF.

Pre-verification. To verify input (vks, x, y, π), return the output of FiVRF on
input (Pre-Verify, (vks, x, y, π)).

Instant Verification. To verify input (vks, x, i, zi, δi), return the output of FiVRF

on input (Inst-Verify, (vks, x, i, zi, δi)).

Fig. 9: Simulator when server S is corrupt and client C is honest
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– Hyb1: This is the same as Hyb0, except the simulator aborts if the adversary
makes any query of the form H(i, wi, x, y) for i ∈ [N ] and prohibits the
programming of the random oracle.
A distinguisher between distinguishes the two hybrids if it makes a valid RO
query containing (i, wi) as the input for i ∈ [N ]. In such a case, we construct
an adversary for the pseudorandomness game of VRFc. The adversary returns
(i, wi) as the output on input (x, y, i) and wins the game. If the distinguisher
distinguishes between the two hybrids with an advantage Adv20,1 and makes
q queries to H, then the pseudorandomness adversary of VRFc wins with
probability Advpc where:

Adv20,1
q ≤ Advpc

– Hyb2 : This is the same as Hyb1, except the checks of pre-verification are
performed by invoking FiVRF on the input request instead of running the
protocols steps of πIRand.
An adversary distinguishes between the two hybrids if it generates a pre-
verification request on a different (y′, π′) ̸= (y, π) s.t. (y′, π′) verifies w.r.t.
(vks, x). The request successfully verifies in Hyb1 but fails to verify in Hyb2
since one of them will not be registered with FiVRF. In this case, we construct
an adversary for breaking uniqueness of vks who returns (vks, x, (y, π), (y

′, π′))
as the answer to the challenger of the uniqueness game. If the distinguisher
distinguishes between the two hybrids with an advantage Adv21,2, then the
uniqueness adversary of VRFs wins with probability Advus computed as:

Adv21,2 ≤ Advus .

– Hyb3: This is the same as Hyb2, except the simulator performs the instant
verification step by invoking FiVRF on the instant verification request instead
of running the protocols steps of πIRand. This is the ideal world execution of
the protocol.
An adversary distinguishes between the two hybrids if it generates an instant
verification request on two different requests containing (w, ρ) ̸= (w′, ρ′) s.t.
both verify w.r.t. (vkc, x, y, i). The request successfully verifies in Hyb2 but
fails to verify in Hyb3 since one of them will not be registered with FiVRF.
In this case, we construct an adversary for breaking uniqueness of vkc who
returns (vkc, (x, y, i), (w, ρ), (w

′, ρ′)) as the response to the challenger of the
uniqueness game. If the distinguisher distinguishes between the two hybrids
with advantage Adv22,3, then the uniqueness adversary of VRFc wins with
probability Advuc where:

Adv22,3 ≤ Advuc .

An adversary distinguishes the real and ideal world with an advantage Adv2:

Adv2 ≤ q · Advpc + Advus + Advuc .

3. Server S is honest and client C is corrupt. In this case, an adversary
corrupts the client C and a public verifier who views the final output (zi, δi)
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values. We argue that even though the client is corrupt still the zi := H(i, wi, x, y)
values will be random since y is randomly distributed. The zi values are also
unique since wi will be unique as they are the output of VRFc, which guarantees
output uniqueness. We provide the simulation algorithm in Fig. 10. The simulator
generates a correct (vks, sks) on behalf of the server and registers it. For evaluation
on input (x, vks) the simulator evaluates VRFs on the input using sks. Sim also
observes the random oracle queries by client and Sim aborts if the client has
queried H on input ( , , x′, y′) where y′ = VRFs.Eval(sks, x

′). For Instant Output
Generation, when the corrupt client queries H(i, wi, x, y), the simulator observes
it, verifies that wi is the correct output and then invokes FiVRF to obtain the
random output zi. The simulator programs H(i, wi, x, y) = zi as the output.
This guarantees that the output is unbiasable against a malicious client. Then
the client generates the proof δi and returns it, which is forwarded to FiVRF.
To perform the pre-verification requests by an external verifier the simulator
invokes FiVRF on the request and returns the output of FiVRF. In the instant
verification step, when one of the simulated parties obtains this output and proof
for verification, the simulator checks y using the pre-verification stage. Then Sim
checks that wi is indeed the correct VRFc output on (x, y, i) and zi := H(i, wi, x, y).
Once these verification checks pass, Sim sets RandY(x, y, i) := zi so that FiVRF

obtains zi when it queries RandY(x, y, i) in the Output Generation step of FiVRF.
Then, FiVRF invokes Sim with zi and Sim returns δi as the proof to FiVRF. This
enables our Sim to correctly simulate the zi s.t. it matches with the output of
RandY(x, y, i) while ensuring zi is random since it is the output of the random
oracle. We provide the simulator algorithm in Fig. 10.

An adversary A corrupting the client and the public verifier can distinguish
between the real and ideal world if it breaks the pseudorandomness of VRFs

by guessing the output y′ of VRFs on x′ without querying the server, or if the
corrupt client breaks the uniqueness of VRFc producing two different wi values
for the same (x, y, i). The adversarial client can choose the output that favors it
the most and then produce it as the output of the Instant Output Generation
step.
Indistinguishability Argument: We provide the formal hybrids and argue indistin-
guishability as follows:

– Hyb0: Real-world execution of the protocol in Fig.4.

– Hyb1: This is the same as Hyb0, except if the client has queried H on input
( , , x′, y′) where y′ is computed as y′ = VRFs.Eval(sks, x

′), and x′ was not
queried to the server then Sim aborts.
A distinguisher between distinguishes the two hybrids if it makes a valid
RO query containing ( , , x′, y′) where y′ = VRFs.Eval(sks, x

′). The protocol
continues in Hyb0, whereas the simulator aborts in Hyb1. In such a case, we
construct an adversary for the pseudorandomness game of VRFs. When the
adversary makes such a query among the list of RO queries the adversary
returns one of the queries randomly as the output to the challenger of the
pseudorandomness game in VRFs. If the distinguisher distinguishes between
the two hybrids with an advantage Adv30,1 and makes q RO queries then the
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Primitives. VRFs,VRFc : (Gen,Eval,Verify) are two verifiable random functions,
H : {0, 1}∗ → {0, 1}λ is a random oracle.

Parties. VRF server S, client C.

Server Key Gen. The simulated server S generates (vks, sks)← VRFs.Gen(1
λ).

Sim invokes FiVRF with input (S, vks) and sends vks to the corrupt parties in the
simulated protocol as the server verification key.

Client Input Gen. The corrupt client sends x to the simulated server. If the
client has queried H on input ( , , x′, y′) where y′ = VRFs.Eval(sks, x

′) and x′

was not queried to the server then Sim aborts. Otherwise, Sim invokes FiVRF with
input (x, vks) on behalf of the corrupt client.

Server VRF Evaluation. When FiVRF forwards this request to Sim for server
computation, the simulated server computes (y, π) := VRFs.Eval(sks, x). The
simulated server sends (y, π) to the corrupt client. Sim returns (x, y, π) to FiVRF.

Client VRF Verification. The client verifies the generation of y by checking

that VRFs.Verify(vks, x, (y, π))
?
= 1.

The following algorithms are run multiple times for different sessions i ∈ [1 . . . N ].
Instant Output Generation. When the corrupt client queries (i, wi, x, y) to
H for i ∈ [N ], the simulator checks that wi is the correct evaluation of VRFc

on input (x, y, i) by using the output correctness property of VRFc. Once it is
verified, the simulator invokes FiVRF to obtain random outputs (z1, z2, . . . , zN ).
The simulator stores them locally and then programs H(i, wi, x, y) = zi. The
corrupt client obtains zi as the output and computes the corresponding proof as
δi = (π, ρi, wi, y) for i ∈ [N ]. Once the corrupt client returns δi as the proof, the
simulator forwards it to FiVRF.

Pre-verification. To verify input (vks, x, y, π), return the output of FiVRF on
input (Pre-Verify, (vks, x, y, π)).

Instant Verification. To verify input (vks, x, i, zi, δi), if this request was previ-
ously made then return the output of FiVRF on input (Inst-Verify, (vks, x, i, zi, δi)).
Otherwise, Sim performs the following:

1. Sim performs the following checks:
(a) The output of FiVRF on input (Pre-Verify, (vks, x, y, π)) is 1,

(b) VRFc.Verify(vkc, (x, y, i), (wi, ρi))
?
= 1, and

(c) zi
?
= H(i, wi, x, y).

2. If any of the checks fail then return 0 to the party who invoked the Instant
Verification command.

3. If all the above checks pass then Sim sets RandY(x, y, i) := zi and FiVRF obtains
zi when it queries RandY(x, y, i). Then, FiVRF invokes Sim with zi and Sim
returns δi as the proof to FiVRF. Return 1 to the party who invoked the Instant
Verification command.

Fig. 10: Simulator when server S is honest and client C is corrupt
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pseudorandomness adversary of VRFs wins with probability Advps computed
as:

Adv30,1
q ≤ Advps

– Hyb2 : This is the same as Hyb1, except the checks of pre-verification are
performed by invoking FiVRF on the input request instead of running the
protocols steps of πIRand.
An adversary distinguishes between the two hybrids if it generates a pre-
verification request on a different (y′, π′) ̸= (y, π) s.t. (y′, π′) verifies w.r.t.
(vks, x). The request successfully verifies in Hyb1 but fails to verify in Hyb2
since one of them will not be registered with FiVRF. In this case, we construct
an adversary for breaking uniqueness of vks who returns (vks, x, (y, π), (y

′, π′))
as the answer to the challenger of the uniqueness game. If the distinguisher
distinguishes between the two hybrids with an advantage Adv31,2, then the
uniqueness adversary of VRFs wins with probability Advus computed as:

Adv31,2 ≤ Advus .

– Hyb3: This is the same as Hyb2, except the simulator performs the instant
verification step by following the simulation steps in Fig.10 instead of running
the protocols steps of πIRand. This is the ideal world execution of the protocol.
An adversary distinguishes between the two hybrids if it generates an instant
verification request on two different requests containing (w, ρ) ̸= (w′, ρ′) s.t.
both verify w.r.t. (vkc, x, y, i). The request successfully verifies in Hyb2 but
fails to verify in Hyb3 since one of them will not be registered with FiVRF.
In this case, we construct an adversary for breaking uniqueness of vkc who
returns (vkc, (x, y, i), (w, ρ), (w

′, ρ′)) as the response to the challenger of the
uniqueness game. If the distinguisher distinguishes between the two hybrids
with advantage Adv32,3, then the uniqueness adversary of VRFc wins with
probability Advuc where:

Adv32,3 ≤ Advuc .

The uniqueness of VRFc ensures that the output zi is still uniformly distributed
since it is the output of a random oracle queried on y and wi. The value y is
pseudorandom and remains hidden from a client until it queries the server with
input x. And once x is queried the value wi gets fixed due to the uniqueness of
VRFs and VRFc. Hence, an adversary distinguishes the real and ideal world with
advantage Adv3 where:

Adv3 ≤ q · Advps + Advus + Advuc .

4. Both Server S and client C are corrupt. In this case the adversary corrupts
the server and the client. Pseudorandomness of the output is not guaranteed but
we guarantee the uniqueness of the output on input (x, i) and server key vks.
The first time when these steps are performed, the simulator checks the output
by running the protocol steps and then registers them by calling FiVRF. The next
time, when the same pre-verification or instant verification request is made on
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the same input and output pair, the simulator invokes the pre-verification and
instant verification steps of FiVRF to ensure only the registered output verifies on
the input, otherwise it is rejected. We present the formal simulator algorithm in
Fig. 11.

Primitives. VRFs,VRFc : (Gen,Eval,Verify) are two verifiable random functions,
H : {0, 1}∗ → {0, 1}λ is a random oracle.

Parties. VRF server S, client C.

Server Key Gen. The corrupt server sends vks to everyone. Sim receives it and
invokes FiVRF with input (S, vks).

Client Input Gen. Performs its own adversarial algorithm.

Server VRF Evaluation. Performs its own adversarial algorithm.

Client VRF Verification. Performs its own adversarial algorithm.

The following algorithms are run multiple times for different sessions i ∈ [1 . . . N ].
Instant Output Generation. Performs its own adversarial algorithm.

Pre-verification. To verify input (vks, x, i, zi, δi), if this request was previously
made then return the output of FiVRF on input (Pre-Verify, (vks, x, y, π)). Otherwise,
Sim performs the following:

1. If VRFs.Verify(vks, x, y, π) = 0: Return 0 to the party who invoked the Instant
Verification command.

2. If VRFs.Verify(vks, x, y, π) = 1: Then Sim invokes FiVRF with input (x, vks)
on behalf of corrupt client. When FiVRF forwards the same request to Sim,
then Sim return (x, y, π) to FiVRF. Return 1 to the party who invoked the
Pre-verification command.

Instant Verification. To verify input (vks, x, i, zi, δi), if this request was previ-
ously made then return the output of FiVRF on input (Inst-Verify, (vks, x, i, zi, δi)).
Otherwise, Sim performs the following:

1. Sim performs the following checks:
(a) The output of Pre-verification on input (Pre-Verify, (vks, x, y, π)) is 1,

(b) VRFc.Verify(vkc, (x, y, i), (wi, ρi))
?
= 1, and

(c) zi
?
= H(i, wi, x, y).

2. If any of the checks fail then return 0 to the party who invoked the Instant
Verification command.

3. If all the above checks pass then Sim sets RandY(x, y, i) := zi and FiVRF obtains
zi when it queries RandY(x, y, i). Then, FiVRF invokes Sim with zi and Sim
returns δi as the proof to FiVRF. Return 1 to the party who invoked the Instant
Verification command.

Fig. 11: Simulator when both server S and client C are corrupt
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An adversary A distinguishes between the real and ideal world if it breaks
the uniqueness of VRFs or VRFc computing two different outputs for the same
input that verifies in the real world but fails to verify in the ideal world since the
input-output pair is already registered by FiVRF and for the same input no other
output will verify. If such an attack is possible the adversarial client will choose
the output that favors it the most (for the same input) and then produce it as
the output of the Instant Output Generation step.

Indistinguishability Argument: We provide the formal hybrids and argue indistin-
guishability as follows:

– Hyb0: Real-world execution of the protocol in Fig.4.

– Hyb1 : This is the same as Hyb0, except the simulator performs the pre-
verification step by following the simulation steps in Fig.11 instead of running
the protocols steps of πIRand.

An adversary distinguishes between the two hybrids if it generates a pre-
verification request on a different (y′, π′) ̸= (y, π) s.t. (y′, π′) verifies w.r.t.
(vks, x). The request successfully verifies in Hyb0 but fails to verify in Hyb1
since one of them will not be registered with FiVRF. In this case, we construct
an adversary for breaking uniqueness of vks who returns (vks, x, (y, π), (y

′, π′))
as the answer to the challenger of the uniqueness game. If the distinguisher
distinguishes between the two hybrids with an advantage Adv31,2, then the
uniqueness adversary of VRFs wins with probability Advus where:

Adv31,2 ≤ Advus .

– Hyb3: This is the same as Hyb2, except the simulator performs the instant
verification step by following the simulation steps in Fig.11 instead of running
the protocols steps of πIRand. This is the ideal world execution of the protocol.

An adversary distinguishes between the two hybrids if it generates an instant
verification request on two different requests containing (w, ρ) ̸= (w′, ρ′) s.t.
both verify w.r.t. (vkc, x, y, i). The request successfully verifies in Hyb2 but
fails to verify in Hyb3 since one of them will not be registered with FiVRF.
In this case, we construct an adversary for breaking uniqueness of vkc who
returns (vkc, (x, y, i), (w, ρ), (w

′, ρ′)) as the response to the challenger of the
uniqueness game. If the distinguisher distinguishes between the two hybrids
with advantage Adv42,3, then the uniqueness adversary of VRFc wins with
probability Advuc where:

Adv42,3 ≤ Advuc .

Hence, an adversary distinguishes the real and ideal world with an advantage
Adv4:

Adv4 ≤ Advus + Advuc .
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An adversary A corrupting server and/or client and/or verifier has an advantage
Adv upper bounded as follows:

Adv := max(Adv1, Adv2, Adv3, Adv4)

≤ max(q · (Advps + Advpc) + Advus + Advuc ,

q · Advpc + Advus + Advuc ,

q · Advps + Advus + Advuc , Adv
u
s + Advuc )

:= q · (Advps + Advpc) + Advus + Advuc

where the A makes at most q queries to the random oracle.

F Gas Cost Estimation of FlexiRand

Here, we present our gas cost estimations for FlexiRand. We use the same cost
estimates as in Section 6.3.

In FlexiRand, the client initially submits an input to obtain a formatted input
that consists of a unique request identifier. This initial request transaction cost
the same 54k gas as the request for DDH-VRF and GLOW-DVRF. Then, the
client blinds the formatted input and submits a proof of correct blinding using
a Schnorr proof. This cost turns out to be 78k gas. This transaction consists
of validating the proof, ensuring that no blinding has yet been submitted for x,
and storing the blinded input on-chain. The cost is dominated by the 45k gas
required to store the blinded input (and input) on-chain, 21k for the transaction,
and additionally, the smart contract has to verify the Schnorr proof. Next, the
servers evaluate the BLS-based VRF on the blinded input to generate the blinded
output. The smart contract is run on this blinded output to fulfill the request.
This step costs 174k gas. This transaction consists of ensuring that the request
has not yet been fulfilled, and validating the blinded output w.r.t. the blinded
input via a pairing check. The cost is dominated by 80k gas for the pairing check,
21k for the transaction, and 45k gas required to store the blinded output (and
blinded input) on-chain. Note that, the blinded input is already in the BN254
curve and so FlexiRand avoids spending 62k to hash the input to the curve.
Hence, the preprocessing phase of FlexiRand takes 306k gas.

In the online phase, when the client unblinds the output, the smart contract
hashes the input and then performs a pairing check on the unblinded output
and the input. This step costs 201k gas. It is mainly dominated by 21k gas to
register the transaction, 62k gas to hash to the BN254 curve, and 80k gas to
perform a pairing check. However, since FlexiRand does not support instant
output generation, the preprocessing and online gas costs would scale with the
number of outputs being generated.

FlexiRand+ZK-SNARK Approach. In this approach the FlexiRand prepro-
cessing step is run only once, even for multiple extended outputs. Additionally, the
preprocessing step consists of computing a hash of private output y as h := H(y)
and giving a proof of correct computation of it. This incurs an additional gas cost
of 300k of storing the hash value on-chain and verifying it. Later in the online
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phase, the Plonk proof proves that the extended output zi := H(y, i), where
h := H(y), is obtained by hashing the private output y committed inside h. This
requires proving the correct computation of two poseidon hashes inside the plonk
proof. This takes 80ms to compute the proof. And verifying this proof takes
around 4.5ms and 300k gas on-chain.
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