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Abstract

We initiate the study of a new abstraction called incremental decentralized data archival
(iDDA). Specifically, imagine that there is an ever-growing, massive database such as a blockchain,
a comprehensive human knowledge base like Wikipedia, or the Internet archive. We want to
build a decentralized archival system for such datasets to ensure long-term robustness and sus-
tainability. We identify several important properties that an iDDA scheme should satisfy. First,
to promote heterogeneity and decentralization, we want to encourage even weak nodes with
limited space (e.g., users’ home computers) to contribute. The minimum space requirement
to contribute should be approximately independent of the data size. Second, if a collection of
nodes together receive rewards commensurate with contributing a total of m blocks of space,
then we want the following reassurances: 1) if m is at least the database size, we should be able
to reconstruct the entire dataset; and 2) these nodes should actually be committing roughly m
space in aggregate — specifically, when m is much larger than the data size, these nodes cannot
store only one copy of the database, and be able to impersonate arbitrarily many pseudonyms
and get unbounded rewards.

We propose new definitions that mathematically formalize the aforementioned requirements
of an iDDA scheme. We also devise an efficient construction in the random oracle model which
satisfies the desired security requirements. Our scheme incurs only Õ(1) audit cost, as well as
Õ(1) update cost for both the publisher and each node, where Õ(·) hides polylogarithmic factors.
Further, the minimum space provisioning required to contribute is as small as polylogarithmic.

Our construction exposes several interesting technical challenges. Specifically, we show that
a straightforward application of the standard hierarchical data structure fails, since both our
security definition and the underlying cryptographic primitives we employ lack the desired com-
positional guarantees. We devise novel techniques to overcome these compositional issues, re-
sulting in a construction with provable security while still retaining efficiency. Finally, our new
definitions also make a conceptual contribution, and lay the theoretical groundwork for the
study of iDDA. We raise several interesting open problems along this direction.

∗Author ordering is randomized.
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1 Introduction
We consider the problem of building a decentralized data archival system for evolving databases,
henceforth called incremental Decentralized Data Archival (iDDA). One primary motivation comes
from blockchains. Today, running an Ethereum archival node that backs up the historical transac-
tion logs requires 2TB to 12TB of storage, and the space requirement will continue to grow. A key
challenge is how to incentivize nodes to archive the historical logs. In particular, consensus partici-
pants only need to maintain the up-to-date state (only 100-200GB today) to remain functional. As
a result, the consensus rewards alone do not provide sufficient incentive for storing the entire trans-
actional log. Besides blockchains, iDDA schemes can also be used to build a decentralized backup
of the Internet archive (e.g., archive.org, hundreds of petabytes in size), or an encyclopedia of
human knowledge (e.g., Wikipedia, 10+ TB including all history and media).

In an iDDA scheme, each node will store a (carefully chosen) shard of the dataset, and this
shard can evolve over time as the database grows. Further, a node can get remunerated for its
contribution through periodical audits. Informally speaking, if a node passes the audit, it means
that it has not only committed the purported amount of space S, but is also using this space to
store actual data and not junk.

Desiderata. A dream iDDA scheme should satisfy the following desiderata:

1. Permissionless and low barrier to entry. We want an open (i.e., permissionless) system, where
anyone can join and contribute, using the spare disk space they have on their home comput-
ers, without requiring special hardware provisioning. Specifically, this means that 1) the entire
data size n can be significantly larger than the any node’s available space S; and 2) as the
database grows, the nodes need not provision new disk space to continue participation. Philo-
sophically, a low barrier to entry encourages more users to contribute, thus leading to increased
decentralization, heterogeneity, and robustness.

2. Approximate best-possible recoverability. The strongest recoverability guarantee one can hope
for is the following: if any subset of nodes can successfully pass the audit and moreover, their
total claimed space is sufficient to hold the entire dataset, then it is possible to reconstruct
the dataset in full. However, if each node stores some random shard of the dataset, then strict
best-possible recoverability may be too strong to achieve. Therefore, we relax the notion to
an approximate version by allowing an ϵ slack, for an arbitrarily small constant ϵ ∈ (0, 1).
Specifically, we require that if any µ nodes, each claiming to have committed S space, can all
pass the audit, and µ · S ≥ (1 + ϵ)n, then we can successfully reconstruct the entire dataset.
The ϵ-best-possible-recoverability notion can also be further generalized to require that if any
µ nodes each with purported S space can pass the challenge, then we can extract roughly
min(n, (1− ϵ) · µ · S) amount of useful entropy (assuming a randomly chosen database).

3. Replication security. To get α times the fair rewards, a node must commit at least (α − ϵ) · S
blocks of space, where ϵ ∈ (0, 1) is an arbitrarily small constant. This definition ensures that
a powerful node with ample space cannot store only one copy of the database, and be able
to impersonate arbitrarily many nodes and request unbounded rewards. Instead, we want to
ensure that if a node is attaining rewards commensurate with αn copies of the database, it has
indeed dedicated roughly αn amount of space. Inspired by prior works [Fis19, Fis18, Pie19],
our replication security notion implies an ϵ-Nash equilibrium for rational nodes, that is, a node
cannot earn noticeably more rewards if it deviates from honest behavior.

The combination of the above requirements necessitates a strong security definition. In partic-
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ular, due to the permissionless nature, it could be that the µ nodes that can pass the audit (in the
approximate best-possible recoverability or the replication security notions) are in fact pseudonyms
controlled by the same adversary. To handle this challenge, our formal definitions implicitly require
that security must hold even if all participating storage nodes are adversarially controlled.

Such an adversary can mount powerful attacks to gain an advantage, and our scheme must
defend against such attacks. For example, if each node’s shard assignment is dependent on its
identity (e.g., public key), then an adversary can choose a set of identities to maximally overlap
the blocks assigned to the adversarial identities. This may allow the adversary to claim k times of
the fair reward without committing k times the required space. The adversary can also maliciously
select identities to censor specific blocks, thus undermining availability.

Why prior works fail to solve iDDA. Although our iDDA abstraction may bear superficial resem-
blance to known abstractions such as proofs of retrievability (PoR) [JK07,Kup10,SW08,DVW09,
BJO09,AKK09,SW13,SSP13,CKO14], data availability sampling (DAS) [HSW24a,HSW24b,CBK+24,
ABSBK21,GXQZ25], proofs of replication (PoRep) [Fis18,Fis18,Pie19]1, and verifiable information
dispersal (VID) [FLLY24,NNT23,BBC+24,YPA+22,CT05,HGR07], none of these known abstrac-
tions are adequate for solving the iDDA problem. To the best of our knowledge, all prior works
make one or more of the following (implicit) assumptions:

• The node is being audited for storing the entire database (or block), and not a piece of the
database — an assumption made by prior works on PoR [JK07,Kup10,SW08,DVW09,BJO09,
AKK09, SW13, SSP13, CKO14], DAS [HSW24a, HSW24b, CBK+24], and PoRep [Fis18, Fis18,
Pie19].

• A separate instance of the scheme is applied on a per-block basis — an assumption made
by prior works on DAS [HSW24a, HSW24b, CBK+24], and VID [FLLY24, NNT23, BBC+24,
YPA+22, CT05, HGR07]. In Section 1.2, we argue why this “separate instance per block”
paradigm cannot satisfy our requirements.

• A threshold fraction of the players must be honest — an assumption typically made by the VID
line of work [FLLY24,NNT23,BBC+24].

• The database is static. The aforementioned approach of applying a separate instance per-block
can also be viewed as having many small, static databases.

We provide a more detailed comparison with the related work in Section 1.2.

1.1 Our Results and Contributions

New definitions. To the best of our knowledge, we are the first to initiate a formal treatment
of the iDDA problem. We provide formal definitions that mathematically capture the aforemen-
tioned intuitive requirements of approximate best-possible recoverability and replication security.
Importantly, as mentioned, our definitions implicitly require that security hold even when the ad-
versary controls all participating pseudonyms. In particular, we stress that “honest majority” style
assumptions are not a great fit in a decentralized/permissionless setting when an adversary can
generate arbitrarily many pseudonyms.

Efficient construction. We construct an efficient iDDA scheme in the random oracle model
that supports append-only updates. Our scheme achieves low barrier to entry: the minimal space

1In this paper, we use PoR to refer to proofs of retrievability, and we use PoRep or “replication encoding” to refer
to proofs of replication.
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provisioning required to contribute is only polylogarithmic. Further, the amortized update cost is
logarithmic (or slightly more than logarithmic) for each node as well as the publisher. Importantly,
we prove the security of our construction even when all the pseudonyms in the system are controlled
by the same adversary.

Below, let λ be the security parameter, let B be the number of bits per block, let S be the
space provisioning per storage node, let N be the maximum database size, and let n0 be the initial
database size. Note that S, N and n0 are measured in the number of blocks.

Theorem 1.1 (Main theorem). Assume the random oracle model. Let ϵ ∈ (0, 1) be an arbitrarily
small constant. Further, suppose B ≥ poly log λ and S ≥ poly log λ for some suitable polyloga-
rithmic function, and n0 ≥ max(S, λ). There exists an iDDA scheme that satisfies ϵ-best-possible
recoverability as well as ϵ-replication security, with the following performance bounds where the
costs are amortized over N − n0 number of updates, and the ω(1) term represents an arbitrarily
small super-constant function in λ:

• Amortized per-node download bandwidth: each update incurs B ·O(1 + S log log λ/N) download
bandwidth which is simply O(B) for S = O(N/ log log λ);

• Amortized per-node computation: each update incurs O(B · log N) · ω(1) node computation for
some arbitrarily small super-constant function ω(1).

• Publisher computation: the publisher pays B ·eO(1)/ϵ · log N computation per update to maintain
its data structure;

• Audit cost: B · log λ · log N · ω(1).

We stress that under our security requirements, it is inevitable that each node must incur at
least constant cost per update. Since otherwise, if 1% of the nodes are not aware of the new update,
the adversary can erase the other 99% of nodes and cause this new block to be lost, even if the
remaining 1% nodes actually have enough space to store the entire dataset. In this sense, our
per-update costs are (nearly) optimal.

Our scheme can also be easily extended to a setting where nodes have heterogeneous space
provisioning, provided that the minimum space per node S is at least polylogarithmic. In this
non-uniform space setting, a node with k · S need not incur k times the update and audit costs —
it still enjoys the same update and audit costs as stated above. See Section 7.1 for more details.

Technical highlight. We first show how to combine techniques from PoR and PoRep in a non-
blackbox fashion to get a decentralized data archival scheme for a static database (Section 2.1 and
Section 5). The most naïve way to get a dynamic scheme is to rerun the static scheme upon every
update, but the cost per update would be linear in the data size. The key question is how to make
the scheme dynamic without this prohibitive cost.

At first sight, it might be tempting to think that directly applying the standard hierarchical
data structure of Bentley and Saxe [BS80] can turn any static scheme into a dynamic one. Recall
that the hierarchical data structure divides the dataset into logarithmically many levels, of size
1, 2, 4, . . . , n, respectively, where the smaller levels contain the fresher data blocks. It then runs a
separate instance of the static scheme per level. Each level ℓ of size 2ℓ needs updating only every
2ℓ steps, and thus the amortized update cost is logarithmic.

Unfortunately, we observe this approach does not generically work for any cryptographic scheme.
In our case, there are two reasons why a straightforward application of the hierarchical data struc-
ture fails:
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1. Our security definition lacks compositional guarantees. Our notion of ϵ-best-recoverability in-
cludes an implicit accounting requirement: data recovery is only possible if the total storage
provisioned by all nodes that pass the audit slightly exceeds the size of the dataset. However,
when we have multiple instances of the static scheme — each corresponding to one of the loga-
rithmically many levels — this condition is not necessarily met in a synchronized fashion across
all levels. As a result, even if each instance individually satisfies ϵ-best-recoverability, their
combined system may fail to satisfy the same notion globally.

2. The underlying cryptography lacks compositional guarantees. We make use of a PoRep scheme
to compute a replication encoding for each level in the hierarchical data structure. To formally
prove security, we need the underlying PoRep scheme to satisfy a certain form of adaptive se-
quential composability, that is, we want the PoRep’s security to hold even the adversary may
choose some instance’s data in a way that depends on another instance’s replication encod-
ing. Unfortunately, known PoRep constructions [Fis19,Fis18,Pie19] do not provide the desired
compositional guarantees.

To solve the first challenge, we devise a new space allocation scheme to allocate a node’s space
among the multiple levels — see Section 2.2 for details. For the second challenge, we are not
aware of any approach to extend the proofs in earlier works [Fis19, Fis18, Pie19] to satisfy the
desired adaptive sequential composition. Specifically, existing techniques for proving space-time
tradeoffs through direct incompressibility arguments are highly involved and apply to extremely
limited settings [DTT10,DGK17]. While some other proof techniques [Unr07,CDGS18,ACDW20,
GGKL21,AGL22] have been shown to prove space-time tradeoffs, they do not produce meaningful
results in our setting. Instead, we devise a method to side-step the lack of composition of the
underlying PoRep. Specifically, we modify our construction and force a storage node to locally
recompute the replication encodings of all levels upon every update, using the new digest of the
entire database to seed the underlying random oracle used in the PoRep scheme. We show that
with this modification, we can prove security even when the underlying PoRep scheme does not
provide the desired compositional guarantees.

Unfortunately, this modification also incurs significant extra costs. Specifically, each storage
node would now have to pay at least B ·S cost per update to recompute the replication codes of all
levels, where B is the block size and S is the blocks of space allocated by a node. In Section 2.4, we
devise some additional algorithmic tricks to avoid this extra cost blowup, and bring the amortized
update cost back down, to Õ(1) ·B.

Philosophical discussions: separate archival and retrieval services. In our definitions, we
adopt the same philosophy suggested in a line of prior works [SSP13, BBC+24]. Specifically, we
do not aim to support efficient read (by index) in the iDDA abstraction itself. This is a deliberate
choice, as efficient (authenticated) read can easily be handled with a separate (possibly distributed)
retrieval service provider who may simply store a cleartext copy of the dataset along with the Merkle
openings [BBC+24, SSP13], allowing users request any specific block. A separate reward system
can be used to incentivize the retrieval provider. Moreover, the retrieval service can be designed
to optimize efficiency without worrying about redundancy and robustness. Philosophically, by
decoupling the problem of providing retrieval from that of data archival, this definitional approach
expands the design space and allows for more efficient constructions. For example, our construction
can leverage the more efficient erasure codes rather than locally decodable codes.

Open questions. Our work raises several natural open questions. First, although we manage to
side-step the underlying PoRep’s lack of composition, our work nonetheless leaves open the following
interesting question: how can we design a PoRep scheme with the desired adaptive sequential
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composition property? Likely the reason why the prior works [Fis19,Fis18,Pie19] never considered
this natural compositional notion is exactly because they (implicitly) considered a setting with
static database, where every node has ample space to store the entire database. A related open
question is whether we can design an iDDA scheme that is itself composable. Another theoretically
interesting question is whether the random oracle needed for the shard selection can be avoided.
On the practical front, it would be interesting to devise a practical variant of our construction.
Specifically, for the blockchain context, instantiating the publisher without trust using efficient
Incrementally Verifiable Computation (IVC) would be highly relevant — see Section 7.2 for details.
Our paper focuses on append-only updates, so a natural direction is to extend the scheme to support
other types of updates.

1.2 Related Work

We now explain in more detail why our iDDA abstraction is different in nature from other abstrac-
tions that have been studied in the past.

Why “one instance per block” cannot satisfy our requirements. While the prior works
on Data Availability Sampling (DAS) [HSW24a,HSW24b,CBK+24,ABSBK21,GXQZ25] and and
Verifiable Information Dispersal (VID) [FLLY24, NNT23, BBC+24, YPA+22, CT05, HGR07] may
bear superficial resemblance to our problem at first sight, these works are of fundamentally different
nature, partly because they (implicitly) assume that a separate instance of the scheme will be
applied on a per-block basis.

We argue that the “separate instance per block” approach cannot satisfy our requirements.
Under this approach, either almost all nodes must store some (encoded) fragments of every block,
or only a subset of the nodes are responsible for a block. The former case necessitates per-node
storage that is linear in the dataset size, thus violating the “low barier to entry” requirement;
whereas the latter case is prone to a selective censorship attack if all nodes responsible for a block
become corrupted. Another way to see this is that even if µ nodes can pass the audit and their
purported total space exceeds the data size, we still may not be able to recover the dataset, since
the identities of these nodes can be adversarially chosen such that none of them is responsible for
storing a particular block.

Next, we review the prior works on PoR, DAS, PoRep, and VID one by one, and give more
reasons why all of them are of fundamentally different nature from our iDDA abstraction, despite
bearing some superficial resemblance at first sight.

Proofs of retrievability and data-availability sampling. In proofs of retrievability (PoR) [JK07,
Kup10,SW08,DVW09,BJO09,AKK09,SSP13,CKO14,SW13], an untrusted node can prove that it
is indeed correctly storing the data it is asked to store, and that no data loss has occurred. The secu-
rity definition requires that if a node can successfully pass the audit, then we can extract the entire
dataset by rewinding the node and feeding it with many different challenges. A couple works have
explored how to extend PoR schemes to support a dynamically evolving database [SSP13,CKO14].

Data availability sampling [HSW24a, HSW24b, CBK+24, BNNP25, CSK25] can be viewed as a
strengthening of PoR. Specifically, in PoR, we assume that the committer of the data is trusted,
whereas in DAS, the committer can be adversarial. In comparison with PoR, DAS additionally
requires that even when the commitment to the data is adversarially chosen, if a node can pass the
audit, we must be able to extract some dataset consistent with the commitment by rewinding the
node and feeding it with many different challenges.

Due to historical reasons, PoR was studied typically with the cloud setting in mind, where a
client outsources a dataset to a powerful but untrusted cloud server capable of storing the entire

5



dataset. By contrast, the DAS abstraction was proposed in a blockchain context, where blocks
are proposed by untrusted block producers in the underlying the consensus protocol. Lightweight
consensus clients want to ensure that the data block is available, without necessarily downloading
the entire block. It is implicitly assumed that a separate DAS instance will be applied to each block
being produced. Because block producers are untrusted, it is crucial that security hold even when
the committer is malicious.

Clearly, neither PoR nor DAS solve our iDDA problem for two main reasons. First, the approach
of spawning a separate instance of the scheme per block inherently requires each storage node to
maintain space that is linear in the size of the database. This directly violates our “low barrier to
entry” requirement. Second, neither PoR nor DAS provide replications security. Specifically, a
node with ample space can store just one copy of the data, and yet pretend to be arbitrarily many
pseudonyms and earn unbounded rewards.

Verifiable information dispersal. In verifiable information dispersal (VID) [FLLY24, NNT23,
BBC+24], a potentially malicious party encodes some data string and distributes the encoded frag-
ments among a set of nodes. At the end, the nodes can interact to determine whether the original
block is available. VID’s security relies on a threshold number of honest nodes, making it unsuit-
able for a permissionless setting in which the adversary can control arbitrarily many pseudonyms.
Like DAS, the VID abstraction was also proposed in a blockchain consensus context, where the
committer is a possibly malicious block producer. Consequently, it is typically assumed that a
separate VID instance is applied to disperse each block, thus leading to a linear space requirement
per node.

Proofs of replication. Proofs of replication (PoRep) [Fis19,Fis18,Pie19] guarantee that if a node
can pass the audit purporting to have allocated α ·n amount of space where n is the data size, then
the following are guaranteed: 1) the node must indeed be consuming (α − ϵ) · n amount of space;
and 2) the space is indeed used to store useful data. Existing works on PoRep [Fis19,Fis18,Pie19]
typically consider a static database and assume that the storage node can store the entire database.
PoRep (over unencoded data) also does not guarantee extraction of the entire data when the storage
provider can pass the audit.

Polynomial commitment. In our paper, we commit to some data string by computing an erasure
code and a vector commitment over the erasure code. We use a constant redundancy for the erasure
code (dependent on ϵ). This way, the publisher can simply cache all the opening proofs cheaply.
This way, when an update occurs or upon first joining, the storage node only needs to download
some data from the publisher, and the publisher need not perform any online computation.

Alternatively, we can use a polynomial commitment scheme with arbitrarily large redundancy
(e.g., as large as the underlying field size) [KZG10, WTS+18, BBHR18]. Unfortunately, this ap-
proach has the drawback that the publisher must compute the opening proofs on the fly, and in
a non-batched setting, the computation cost is at least linear in the database size using known
approaches [KZG10,WTS+18,BBHR18]. In comparison, our approach has only B · Õ(1) amortized
publisher cost per update.

2 Informal Technical Roadmap
In this section, we give an informal description of the ideas behind our construction. A formal
description is provided in the subsequent technical sections.

To understand the technicalities, let us begin with a couple strawman solutions, and gradually
work our way towards the final solution.
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2.1 Inefficient Strawman

We begin with a strawman scheme that indeed satisfies the desired security notions, despite being
inefficient.

Underlying static construction. First, if the database were static, we can employ the following
idea.

• Preprocess and publish. The trusted data publisher computes an erasure code over the original
database DB, resulting in DB. It then computes and publishes the Merkle digest denoted ϕDB

of DB.
• Store. Every storage node with roughly S blocks of space uses a random oracle G(id, ·) to

sample S indices. It then downloads DB[S] along with the relevant Merkle opening proofs, and
computes a replication encoding of DB[S] henceforth called the node’s shard. Specifically, we
will use the PoRep scheme of Pietrzak [Pie19]. The resulting replication encoding has S blocks,
and it provides the guarantee that the encoding is incompressible if the node later wants to
pass the audit within bounded time.
The node additionally computes a corresponding Merkle digest ϕshard of its replication-encoded
shard, and a succinct correct proof π attesting to the fact that ϕshard is computed correctly
w.r.t. G(id, ·) and ϕDB. Finally, the node stores the following information:

1. its shard, the shard’s Merkle digest ϕshard, as well as a proof of correctness π of the digest
ϕshard, and

2. the Merkle openings of all (replication-encoded) blocks in the shard.

• Audit. An auditor samples κ = ω(log λ) random challenge indices among [S] and asks the
storage node to open the replication-encoded blocks at these positions. The node responds with
the challenged positions, along with ϕshard, π, and the Merkle opening proofs of the opened
positions w.r.t. ϕshard. The auditor accepts if π verifies and all Merkle opening proofs verify.

Throughout the paper, we assume that the block size B is at least polylogarithmically large,
such that the space required for storing metadata (e.g., digests and opening proofs) is absorbed by
the block storage.

Remark 1 (Regarding the succinct proof of correctness). The aforementioned succinct proof of
correctness can be computed using a Succinct Non-interactive ARgument of Knowledge (SNARK)
scheme. The SNARK is undesirable not only due to the extra computational costs, but also
because we need a SNARK proof over computations that involve random oracle queries. Recent
work [BCG24] has shown that constructing such a relativized SNARK is impossible. We discuss
how to get rid of the SNARK proof in Section 2.4.

Making it dynamic: inefficient approach. Now, if the database is evolving over time, the most
naïve approach is to rerun the static scheme from scratch with every update. The resulting scheme
indeed satisfies ϵ-best-possible recoverability as well as ϵ-replication-security for an arbitrarily small
ϵ ∈ (0, 1). Unfortunately, for each update, the scheme would incur Õ(B ·N) cost for the publisher
and O(B · S) cost for each storage node, where N is the maximum data size.

We ask the natural question: can we reduce the cost per update to Õ(1) ·B ?
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2.2 How to Apply a Hierarchical Data Structure: the Space Allocation Problem

To answer the above question, the first idea that comes to mind is to apply the hierarchical data
structure of Bentley and Saxe [BS80], which turns a static data structure into a dynamic one.
This approach also draws inspiration from prior works on dynamic proofs of retrievability [SSP13,
CKO14].

Unfortunately, the hierarchical data structure does not generically work for any cryptographic
scheme. In particular, as explained below, both our security definitions and our underlying cryp-
tographic building blocks lack the appropriate compositional guarantees needed for a blackbox
application of the hierarchical data structure. To see this, it helps to go over a couple strawman
ideas.

Review: publisher’s hierarchical data structure. With Bentley and Saxe’s techniques [BS80],
the publisher can maintain a hierarchy of levels numbered 0, 1, . . . , L = O(log N), respectively,
where each level ℓ ∈ {0, 1, . . . , L} is either an erasure code of 2ℓ blocks, or empty.

Every time a new data block arrives, we find the smallest empty level denoted ℓ∗, and merge
all smaller levels as well as the newly arriving block into level ℓ∗, by recomputing an erasure code
of these blocks. The levels smaller than ℓ∗ now become empty. Further, suppose that the data
publisher publishes a Merkle digest of each level. Assuming that the block size B is larger than
the size of a Merkle opening proof, and the erasure code has constant rate, then the amortized
publisher cost for maintaining this hierarchical data structure can be as small as O(B log N) if we
use a special updatable erasure code proposed in prior work [SSP13].

The space allocation question. The idea is for each storage node with approximately S blocks
of space to choose sℓ random erasure-coded blocks per non-empty level for its shard, such that∑

ℓ sℓ = S. As before, this selection can be made with the help of a random oracle G(id, ·). During
the audit, the auditor will challenge µ = ω(log λ) random indices per level.

The challenging question is: how do we allocate the local space S among the levels? To
understand the subtleties here, it helps to look at a couple naïve approaches:

• (Idea 1) Uniform sampling rate: prone to selective censorship. The first idea is to use a uniform
sampling rate. Specifically, let p = S/n where S is the local space provisioning and n is the
current database size — for a growing database, we can recompute the sampling rate p whenever
the database size has reached (1 + o(1)) ·nprev where nprev denotes the database size when p was
last calculated. Now, a node would sample every block in any level with uniform probability p,
so that in expectation, it will get S blocks for its shard.
Unfortunately, this natural approach is fundamentally flawed. Under this approach, a node
would end up sampling Θ(S) blocks in expectation for the largest level. However, for any
constant-sized level (say, level 0), the fraction of nodes required to store some block of that
level is only Θ(S/n). This means that if the adversary selectively deletes the small fraction of
identities assigned to store some block of level 0, it can completely wipe out the data belonging
to level 0! Another way to think of the same attack is the following. As mentioned, it could be
that the adversary controls all the pseudonyms that are contributing and requesting rewards. In
this case, if the adversary chooses only identities that are not assigned any block of level 0 (e.g.,
through rejection sampling), it can successfully wipe out level 0 altogether while still being able
to pass the audits.

• (Idea 2) Same number of blocks per level: causes space waste. To fix the problem with idea 1, we
can increase the sampling rate of the smaller levels. A natural idea is to sample the same number
of blocks per level regardless of the level’s size. In other words, a node samples sℓ = S/L̂(n)
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blocks for every non-empty level, where L̂(n) denotes the number of non-empty levels under a
size-n database. Unfortunately, this approach suffers from a different problem partly because
the smaller levels effectively replicate their data much more abundantly than the larger levels,
leading to a waste problem. In particular, ϵ-best-possible recoverability requires that when µ
nodes pass the audit and the total space provisioned satisfies µ ·S ≈ (1 + ϵ)n, we should be able
to extract the entire dataset. However, when µ is chosen to ensure recoverability of the largest
level L, i.e., µ · sℓ ≈ (1 + ϵ) · 2L, the total space provisioned µ · S could exceed the data size by
a logarithmic factor, that is, S · µ = Ω(n log n). In other words, this approach would require a
total space provisioning of Θ(n log n) rather than (1 + ϵ)n to recover a database of size n.

More fundamentally, Idea 2 fails partly because our security definition itself lacks compositional
guarantees. Specifically, Idea 2 can in fact be shown to satisfy ϵ-best-possible recoverability for
each individual level, as long as we select the parameter S and the rate of the erasure code satisfy
some mild assumptions. Unfortunately, it is not the case that if each individual level satisfies ϵ-
best-possible recoverability, the union of all levels would also satisfy the same notion. Partly, this
is because the number of nodes µ needed for the space provisioning per level to roughly match the
level’s size can vary across the levels!

A hybrid space allocation scheme. We resolve the aforementioned challenges by using a hybrid
of the aforementioned ideas. Specifically, we divide the levels into two categories: the biggest
2 log log n levels numbered L−2 log log n+1 to L are called the large levels, and all remaining levels
are called the small levels. In our formal description later, we generalize the parameter 2 log log n to
more general forms, but for clarity, we simply use 2 log log n in the informal roadmap. By renaming,
we may assume that each node has (1 + o(1))S blocks of space rather than S for some suitable
sub-constant function o(1). We will allocate the (1 + o(1))S blocks of space among the levels as
follows:

• Large levels. We dedicate S blocks of space in aggregate to the large levels. Among the large
levels, we adopt a uniform sampling rate. In other words, a large level i + 1 occupies twice as
much space as level i.

• Small levels. We dedicate S · o(1) blocks of space in aggregate to the small levels. Further, this
space is divided evenly across the small levels.

This hybrid approach achieves the best of both worlds. First, by having a higher sampling rate
in the smaller levels, we prevent the aforementioned selective censorship attack. Second, since
nearly all the space is allocated to the large levels, the space waste caused by the smaller levels
is restricted to S · o(1). Moreover, the o(1) factor loss can be absorbed into the ϵ-slack already
permitted in our security definition.

One remaining technicality is how to formally argue resilience against the selective censorship
attack mentioned earlier. In particular, if for some level sℓ, each storage node samples only sℓ = 1
block to store, then an adversary can carefully select a set of identities that cause 2/3 of the
(erasure-coded) blocks to be lost. Specifically, the adversary can use rejection sampling to select
only identities that are assigned a block from the first 1/3. Intuitively, when sℓ is larger, erasing
2/3 of the blocks appears much harder, since only a negligible fraction of ids avoid hitting any
specific 1/3 of the blocks.

To formalize this intuition, we consider an adversary that can make at most polynomially many
queries to G(id, ·). After these queries, it selects a subset of µ queried identities denoted id1, . . . , idµ

to minimize the union G(id1, ·) ∪ . . . ∪G(idµ, ·). We prove that with all but negligible probability,
|G(id1, ·) ∪ . . . ∪G(idµ, ·)| ≥ min(2ℓ, (1− ϵ) · sℓ · µ), as long as i) the number of blocks sampled sℓ
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is at least polylogarithmically large, and ii) the redundancy (i.e., inverse rate) of the erasure code
is a suitably large constant. In particular, this implies that as long as (1− ϵ) · sℓ · µ ≥ 2ℓ, then the
union of any µ nodes’ shards are sufficient for reconstructing level ℓ which contains 2ℓ blocks —
even when the identities are adversarially chosen.

Of course, our actual proof is more complicated than the above. In the actual proof, the above
combinatorial reasoning is embedded in some extraction argument that takes into account the fact
that even when a node passes the audit, it may not be storing all blocks belonging to its shard.
We defer the details to Section 9.

The careful reader may also observe that a straightforward instantiation of our hybrid space
allocation idea would incur roughly Õ(S)·B amortized cost per update for a storage node. However,
later in Section 2.4, we will discuss some additional tricks that bring this cost down to Õ(1) ·B.

2.3 Handling Compositional Challenges

Lack of composition in the underlying replication code. Although the new hybrid space
allocation appears to address the aforementioned issues, we are not aware of any method to formally
prove its security. Specifically, one important challenge we face is that the underlying replication
encoding scheme [Pie19] lacks compositional guarantees.

Pietrzak [Pie19] only proved the incompressibility (subject to answering challenges quickly) of
his replication encoding scheme in a standalone setting. More specifically, imagine that there is a
single database, and we use the digest of the database to seed the hash function used to compute
the replication code. Then, the resulting replication code is incompressible subject to answering
challenges quickly.

In our application, there is a separate instance of the replication encoding per level. The most
straightforward approach is for each level to use the level’s own digest (along with the storage
node’s id) to seed its own hash function. With this approach, however, the adversary in our
security experiment would be able to choose the data contents of the smaller levels to depend on
the replication codes of the larger levels. This is because in our security experiment, the adversary
chooses the updates adaptively over time. So when it chooses the blocks that go into the smaller
levels, the replication codes of the larger levels are already available.

Unfortunately, Pietrzak’s proofs [Pie19] fall apart in such a setting when multiple instances are
composed and some instances’ data can depend on other instances’ replication code. Upon a closer
examination, Pietrzak’s proof has the following blueprint — henceforth let A = (A1,A2) where A1
is the adversary that outputs some database DB and an adversarial replication encoding denoted
stA of DB, and A2(stA) is the adversary interacting with the auditor.

• First, he shows that if A2(stA) can answer challenges quickly, then there is a winning strategy
to an underlying pebbling game. Specifically, by placing some initial labels on the depth-robust
graph, the adversary can pebble almost all vertices in a small number of steps.

• Second, he analyzes the underlying pebbling game and argues that for any winning strategy,
the number of initial pebbles must be large.

• Finally, he shows that if stA is short, and the number of initial pebbles is large, then one
can construct an encoding scheme to compress the random oracle H(ϕDB, ·) where ϕDB is the
digest of the challenge database, thus contradicting Shannon’s theorem that random strings are
incompressible. Intuitively, every initial pebble corresponds to a location A2(stA) can predict
in H(ϕDB, ·). As a result, we need not record these predicted positions in the encoded string,
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thus achieving compression. The encoded string consists of the short stA, H(ϕDB, ·) at all non-
predicted locations, and a small amount of metadata needed for extracting from A2(stA) the
predicted locations.

The subtlety in the proof lies with the decoder. For technical reasons, the decoder needs to know
the database to successfully extract H(ϕDB, ·) at the predicted locations. In a standalone setting,
before running A2 to perform decoding, the decoder first runs A1 till the point it first submits ϕDB

to extract the database — henceforth this is called the preparation stage. If the digest ϕDB is also
computed from a random oracle, then except with negligible probability, A1 cannot have queried
H(ϕDB, ·) yet before revealing the database. In our composed setting, the same proof strategy fails,
since A1 will submit the different level’s data incrementally. This means that before submitting
the data in level 1, A1 may already start querying H(ϕDB

0 , ·) yet where ϕDB
0 is the digest of the

0-th level. Unfortunately, the decoder has no way of answering queries to H(ϕDB
0 , ·) yet in the

preparation stage, without having run A2 to perform the decoding.
Although the literature also comes with some other replication encoding candidates [Fis19,

Fis18], to the best of our knowledge, no known scheme provides the compositional guarantees we
desire.

Our idea. One way to solve the problem is to devise a replication coding scheme with the desired
compositional guarantees, where the data of some instances may depend on the replication code
of other instances. Unfortunately, we are not aware of any existing tools that can be used to
achieve this: existing techniques for proving space-time tradeoffs through direct incompressibility
arguments are highly involved and apply to extremely limited settings [DTT10, DGK17]. While
some other proof techniques [Unr07, CDGS18, ACDW20, GGKL21, AGL22] have been shown to
prove space-time tradeoffs, they do not produce meaningful results in our setting.

Fortunately, we devise a method that side-steps this problem. Whenever a new erasure-coded
level is rebuilt in the hierarchical data structure, we ask a storage node to recompute its replication
codes for all levels, using the union of all levels’ digests (ϕ0, . . . , ϕL) along with the node’s id as the
seed to the random oracle.

At first sight, this approach comes with additional computational overhead on the storage
node. Specifically, the computational cost per update is at least S ·B. However, in Section 2.4, we
discuss additional tricks to asymptotically reduce the computational overhead, and achieve Õ(1) ·B
amortized cost per update.

2.4 Further Improvements

Achieving Õ(1) · B amortized cost for a storage node. So far, we have a candidate scheme
but each storage node must pay at least S · B download bandwidth and computational cost per
update. We propose a couple additional tricks to bring this cost down to Õ(1) · B. For example,
when S is roughly

√
n (see also Section 7.1), these tricks bring significant cost savings. We stress

that it is inherently unavoidable that each node must pay at least constant cost per update subject
to our definitions — in this sense, our update costs are nearly optimal. Specifically, if 1% of the
nodes do nothing upon an update, it means that they have no information about the new block.
Now, if the adversary selectively corrupts the 99% remaining nodes, it can selectively erase this
new block from the universe even if the 1% nodes’ combined storage is already large enough to
store the entire dataset.

1. Small =⇒ {tiny, mini, small}: We further divide the small levels into tiny, mini, and small
levels. For the tiny levels each containing at most κ = ω(log λ) blocks, the node simply stores
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the original data blocks (without any encoding), and all of the blocks are challenged during the
audit. For the mini levels each containing between κ and Θ(S/ log2 n) blocks, the node stores
all encoded blocks belonging to the level (without using the random oracle G to subsample),
and κ = ω(log λ) of them will be challenged during the audit. The small levels are treated in
the same way as before.

2. Seed with an aggregate digest only for the large levels: Instead of making all levels’ replication
codes use the aggregate digest (ϕ0, . . . , ϕL) as the seed, we have only the large levels use the
aggregate digest {ϕℓ}ℓ∈large, and the small levels use the level’s own digest as the seed. Recall
that the large levels occupy 1−o(1) fraction of the local space, this modification does not affect
our ϵ-replication security since the o(1) loss can be absorbed into the arbitrarily small constant
slack ϵ ∈ (0, 1).

A more detailed description and analysis of these optimizations are provided in Section 6.2.

Removing the SNARK proof. Recall that so far, in our underlying static construction, we rely
on a SNARK proof to attest to the correctness of the shard’s digest ϕshard w.r.t. the database’s
digest ϕDB and the indices selected by the shard G(id, ·). Using a SNARK, however, comes with
a couple drawbacks. First, it incurs additional costs of cryptographic computation. Second, since
the replication encoding is computed using a random oracle (RO), we would end up computing a
SNARK over computations that involve RO queries — this is undesirable due to impossibilities of
relativized succinct arguments in the RO model.

In our final construction, we avoid this SNARK proof by checking correctness at a few challenged
locations, resulting in a proof of approximate correctness (rather than strict correctness). Further,
we make our approach non-interactive by having the node sample the challenges itself through
a random oracle (commonly known as the Fiat-Shamir paradigm). The fact that we only have
approximate correctness introduces additional technicalities in our proof. Note that in comparison,
Pietrzak’s proof works only if the encoder is honest. Nonetheless, we show that approximate
correctness is sufficient for proving our security notions. We defer the details to the subsequent
formal technical sections.

Extensions. In Section 7, we discuss a couple extensions. Specifically, we show how to support
non-uniform space provisioning among nodes, ensuring that a node with k times the space need not
incur k times the update and audit costs. We also show when provided with a trusted hash digest
of the original dataset ϕorig (e.g., from the blockchain’s consensus layer), how to instantiate the
publisher without any trust, by relying on an Incremental Verifiable Computation (IVC) scheme
to incrementally compute succinct proofs that vouch for the correctness for the digests of the
erasure-coded hierarchical data structure.

3 Definitions
In this section, we formally define the iDDA problem and corresponding security definition. Through-
out the rest of the paper, we use Σ to denote some finite alphabet. We will treat the database
DB ∈ Σn as containing n blocks, where each block belongs to Σ. We often use the notation
B := log2 |Σ| to denote the block size. We treat B as a global parameter, so we do not carry it
around in the definitions below.
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3.1 Syntax of the iDDA Problem

Consider an evolving database whose length increases as new blocks get added over time. An
incremental Decentralized Data Archival (iDDA) scheme is a suite of algorithms and protocols
involving a data publisher, a set of storage nodes, and an auditor. We now describe the syntax
below:

• crs ← Setup(1λ): a setup algorithm that takes as input the security parameter 1λ and
outputs a common reference string crs.

• (ϕ, st0)← Init(crs, S, DB): an initialization algorithm that is executed once upfront by the
data publisher. The algorithm takes as input the common reference string crs, a parameter
S ∈ N that denotes the blocks of space provisioned by each storage node, and an initial
database DB ∈ Σn0 of length n0. The algorithm outputs a public digest denoted ϕ and
updates the data publisher’s internal state to st0.

• (st0, stid)← Join(st0, id): a protocol between the data publisher whose starting state is st0

and a storage node with unique identifier id. At the end of the protocol, the storage node
receives state stid , and the data publisher’s state st0 is updated.

• (ϕ, st0, {stid}id∈IDset) ← Update
(
(st0, upd), {stid}id∈IDset

)
: a protocol between the data

publisher whose current state is st0 and who receives an update upd as input, and a set of
storage nodes whose identities form the set IDset and whose current states are {stid}id∈IDset.
At the end of the protocol, the data publisher’s internal state st0 and the nodes’ internal
states {stid}id∈IDset are updated, and everyone receives an updated public digest ϕ.

• b ← Audit((crs, ϕ, id), stid): a protocol between a storage node with identity id and state
stid and an auditor whose input is (crs, ϕ, id). At the end of the protocol, the auditor
outputs either accept or reject, and the storage node outputs nothing, and its internal state
is unchanged.

Without loss of generality, we may assume that the security parameter λ is included in crs,
in the data publisher’s internal state, and in each storage node’s internal state. In general, the
auditor can be a different entity from the publisher. For example, as mentioned in Section 7.2,
in a blockchain context, the auditor is likely the blockchain such that nodes can get rewarded for
passing the audit. On the other hand, the publisher is a separate service provider that maintains
hash digests of some data structure built over the blockchain data. Section 7.2 describes how to
remove the trust in the publisher using IVC.

In practice, it might be desirable to periodically invoke the Audit protocol, and randomize the
time at which it is invoked. This can thwart attacks where the adversary restores its state right
before the Audit and deletes the state again afterwards — see the end of Section 3.3 for more
discussions.

Correctness. We now define the correctness property of an iDDA scheme. At a high level,
correctness means that even if there are corrupt nodes in the system, honest nodes can always pass
the audit with probability 1. More formally, for any λ, S, any initial DB, any adversary A, the
following experiment outputs 1 with probability 1:

• Initialize. Call crs← Setup(1λ), and ϕ, st0 ← Init(crs, S, DB).
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• Queries. The adversary can adaptively issue the following queries, where each query is one of
the following:

– Corrupt. A declares some identity id as corrupt. If id has already joined earlier, give its
private state stid to A.

– Join. A specifies an identity id. If the identity id has previously been corrupted, the
publisher performs the Join protocol with A who acts on behalf of id. Otherwise, spawn
an honest identity id, and have the publisher perform the Join protocol with id. If id has
previously been spawned, simply ignore the existing state and respawn the node.

– Update. A specifies an updated block upd, a set of identities IDSet. It is required that IDSet
is chosen among the identities that have joined, and moreover, all honest identities that
have been joined must belong to IDSet. Now, the Update protocol is invoked with upd,
involving the publisher and IDSet. Note that A will act on behalf of any corrupt identity in
IDSet.

• Challenge. A specifies an identity id that has joined and remains honest. Now, the honest id
engages in an Audit protocol with the auditor who receives the up-to-date ϕ. The experiment
outputs 1 if the auditor accepts; else it outputs 0.

Remark 2 (Additional desirable properties of our construction). While the above definitions aim
to be more general, the constructions proposed in this paper enjoy some additional nice properties:
1) our security notions defined below are respected even when the adversary can see the publisher’s
state st0; 2) during the Join protocol, the newly joining node simply downloads some portion of
the publisher’s state st0, and the Join protocol does not alter st0; and 3) during the Update
protocol, the publisher updates its state st0 based on the incoming block, and each storage node
then downloads some necessary parts of the new st0.

In particular, these desirable properties make it possible for us to instantiate the publisher
without any trust by relying on an IVC scheme, provided that there is a trusted hash digest of
the original dataset (e.g., coming from the blockchain’s consensus layer) — see Section 7 for more
details.

We now proceed to the security definitions. Our security definition has two components: ap-
proximate best-possible recoverability and replication security. We describe both components in
detail below.

3.2 Security Definition: Approximate Best-Possible Recoverability

3.2.1 Intuition of the Definition

Below, we will first define a security game denoted RecvExpt that allows an adversary A to interact
with the iDDA scheme. After obtaining the common reference string crs, the adversary A is allowed
to pick an initial database of its choice. Then, at any point in time, the adversary can 1) ask the
challenger to run the Join protocol with any identity of its choice; and 2) ask the challenger to run
the Update protocol (with all identities that have joined), supplying any new database update of
its choice.

At the end of the security game, we enter a challenge phase. During the challenge phase, the
adversary specifies µ challenge identities, and the auditor will run the Audit protocol with these
challenge identities. If all µ identities succeed in passing the audit, we want to extract a portion of
the database whose size is roughly commensurate with the total space of all the µ nodes, that is,
roughly (1− ϵ)µS blocks of information. To capture this intuition, our definition below involves a
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compressor algorithm CA and an extractor EA. Intuitively, the compressor’s job is to output the
missing n− (1− ϵ)µS blocks of information—denoted DBshort—that A may not know. Now, upon
receiving this missing information DBshort, the extractor EA can extract the entire database. Both
algorithms are allowed to interact with the oracle A, including rewinding A and supplying it with
fresh randomness on every invocation.

3.2.2 Formal Definition

Formally, given parameters λ, S, µ ∈ N, define the following experiment RecvExptA(1λ, S, µ) between
an adversary A and a challenger:

Experiment RecvExptA(1λ, S, µ):

• Initialization. Run crs ← Setup(1λ). The adversary A(1λ, S, µ, crs) specifies an initial
database DB ∈ Σn0 of length n0, and the challenger runs ϕ, st0 ← Init(crs, S, DB) and sends ϕ
to A.

• Queries. The adversary A can adaptively make Join and Update queries. In response, the
challenger acts on behalf of an honest data publisher and always keeps track of the publisher’s
latest state. More precisely:

– Join: A asks the challenger to run the Join protocol with itself. During this protocol, A
acts on behalf of the newly joining node, and it can act arbitrarily. This means that A can
also arbitrarily choose the identity of the newly joining node.

– Update: A chooses some update upd and asks the challenger to run the Update protocol
with all the identities that have joined so far. The publisher uses its latest state and upd
as input. A acts on behalf of all the storage nodes and can behave arbitrarily during the
protocol.

• Challenge. At some point, suppose that the database size has increased to n ≥ n0 following
the Update queries. Now, for j = 1 to µ sequentially: the adversary A specifies idj , and the
challenger, acting on behalf of the auditor, initiates an Audit instance using (crs, ϕ, idj) as
input. We say that the challenger accepts if it accepts in all Audit instances.

Going forward, we will treat the above security experiment as occuring in the following two
phases, and likewise we will consider the adversary to be of the form A = (A1,A2):

• In the first phase, the challenger interacts with A1 for the Initialization and for all Queries.
We denote stA to be A’s internal state at the end of this interaction.

• In the second phase, the experiment enters the Challenge phase, and the challenger interacts
with A2(stA).

We are now ready to introduce the definition of approximate best-possible recoverability. Through-
out, given algorithms E and O, we use the notation EO to mean that the algorithm E has oracle
access to O.

Definition 1 (Approximate best-possible recoverability). Let ϵ ∈ (0, 1) where ϵ is possibly a func-
tion in the other parameters. We say that an iDDA scheme satisfies ϵ-best-possible-recoverability
iff there exist a compression algorithm C, an extractor algorithm E , and a quasi-polynomial function
q(·), such that
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• C’s output DBshort is at most max(B · (n− (1− ϵ) · S · µ), 0) bits long, and E ’s running time is
upper bounded by q(λ, tA) where tA denotes A’s maximum running time.

• for any non-uniform deterministic polynomial-time algorithm A = (A1,A2), any S and µ, there
exists a negligible function negl(·) such that for every λ,

Pr


(
DBext ̸= DB∗

)
∧ (b = 1)

∣∣∣∣∣∣∣∣∣∣
b, ϕ, DB∗, stA, tr←RecvExptA(1λ, S, µ)
ρ

$←{0, 1}|ρ|

DBshort ← CA(1λ, S, µ, tr ; ρ)
DBext ← EA2(stA)(1λ, n, S, µ, ϕ, DBshort; ρ)

 ≤ negl(λ),

where ρ denotes the random coins consumed by the extractor E , which is also shared with the
compressor C.

In the above, we use the notation b, ϕ, DB∗, stA, tr←RecvExptA(1λ, S, µ) to mean the following:
execute the experiment RecvExptA(1λ, S, µ) with A, and

• let b denote whether the challenger accepts at the end;
• let ϕ denote the digest and let DB∗ be the correct database as we enter the Challenge phase

— specifically, ϕ and DB∗ can be computed from the initial database DB and the sequence of
updates submitted by A during the Initialization and Query phases;

• let stA be A’s internal state as we enter the Challenge phase; and
• let tr be all of the random coins consumed by the challenger.

Intuitively, the definition means that if the adversary A is able to successfully pass the audit
and get remuneration on behalf of µ ≤ n

(1−ϵ)S storage nodes, it must have knowledge of at least
(1 − ϵ) · µ · S blocks of useful information. This information, when combined with an additional
n− (1− ϵ) ·µ ·S blocks of information output by the compressor CA, is sufficient for reconstructing
the entire database.

Important special case: recover entire database. When µ · S ≥ n/(1 − ϵ), the definition
implies that we must be able to extract the entire database from the µ identities that can pass the
audit. In this special case, the compressor CA’s output is forced to be empty by the definition.

3.2.3 Discussions: Can We Achieve Polynomial-Time Extractability?

Definition 1 allows the extractor to be quasi-polynomial time. One meaningful question is whether
we can get polynomial-time extraction — if so, we can simply run the extractor to recover the
dataset in practice. We stress that although many works in the proof-of-retrievability [JK07]
and data availability sampling [HSW24a] literature claimed to achieve polynomial-time extraction,
their extractability notions are much weaker than ours (Definition 1). If we also adopt the same
relaxations to match the nature of the definitions in prior work, we can easily achieve polynomial-
time extraction too without rewinding the adversary — see Appendix A for details. For this reason,
we do not explicitly define reconstruction in the honest algorithms, since one can just run this
extractor to reconstruct.

However, since our paper is aiming to lay the definitional groundwork of decentralized data
archival, we choose to take a step back, elucidate the definitional subtleties, and rethink what is
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the right notion. We believe that our Definition 1 would actually be the desired notion — while our
current proof needs a quasi-polynomial time extractor, we leave it as an interesting open question
whether it is possible to achieve polynomial-time extraction under our notion. In particular, we
believe that adapting the techniques of Attema et al. [AKLY24] to our setting is a promising
direction for improving the extractor to expected polynomial time.2

We now explain why the relaxations adopted in the prior literature on proofs of retrievability
and data availability sampling are not ideal, even though they make polynomial-time extraction
possible. Take the work of Hall-Andersen et al. [HSW24a] as an example. The differences in the
notions are explained below:

• The soundness notion of Hall-Andersen et al. [HSW24a] (see page 8 of their paper) says that if
we invoke the adversary in the audit protocol polynomially many times, then the following holds
with probability close to 1: if the adversary succeeds in all of the sessions, then we can extract
the dataset from the transcripts collected from all these invocations (and there is no need to
rewind the adversary). Their definition is weak in the following sense. Consider an occasionally
successful adversary that succeeds in passing the audit with constant probability. Then, the
probability that the adversary succeeds in all polynomially many invocations is negligibly small.
In other words, their soundness definition does not provide extractability from such an occas-
sionally successful adversary. To mitigate this drawback, they provide a slightly strengthened
definition called subset soundness. Even subset soundness makes a strong assumption on the
adversary — it essentially assumes that with probability 1, the adversary will succeed in at
least ℓ out of L invocations of audit, where ℓ and L are a-priori known polynomials.

• Our notion (Definition 1) follows the definitional paradigm of the knowledge soundness property
in the standard zero-knowledge literature. We do not make any a-priori assumption on the
success probability of the adversary. To explain our definition, below we focus on the special
case where we want to extract the entire database, and we assume that µ · S ≥ (1 + ϵ)n, i.e.,
the number of adversarial nodes µ is large enough such that the combined space of µ nodes
can store the entire dataset. Our definition says that the following holds with probability close
to 1: as long as all µ adversarial nodes succeed in passing the audit once, we can extract the
entire dataset by rewinding the adversary. We stress that in our definition, the rewinding is
necessary because the transcript length of a single invocation (with all µ nodes) is not long
enough to encode the entire dataset, and we cannot simply extract from the transcript with
just one invocation.

Another way to understand the comparison is that Hall-Andersen et al. [HSW24a]’s definition es-
sentially bakes the extractor into the definition (by invoking the adversary in an audit polynomially
many times), and they achieve polynomial-time extraction simply by making a strong assumption
on the adversary, i.e., assuming that the adversary will succeed enough times after an a-priori
known polynomial number of invocations. In Appendix A, we explain how our proofs can be easily
extended to show polynomial-time extraction under the same relaxations as in Hall-Andersen et
al. [HSW24a].

Besides Hall-Andersen et al. [HSW24a], other works in this body of literature [JK07] make some
different and non-standard assumptions on the adversary to achieve polynomial-time extraction.

2It is also meaningful to compare with the knowledge soundness extractors in the proof systems literature. The
extraction in proofs of retrievability [JK07], data availability sampling [HSW24a], and in our work can be viewed as
a special case of the knowledge extractor of Kilian [CDG+24]. In particular, since our proofs do not involve proving
computation, the Probabilistic Checkable Proofs (PCP) in Kilian is replaced with a simpler erasure code. Note strictly
polynomial-time extraction for Kilian is not known, and there are reasons to believe that it is impossible [CGW25].
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3.3 Security Definition: Replication Security

Let A = (A1,A2) denote the adversary’s algorithm, where A1 participates in the Initialization
and Query phases of the PoRepExpt to be defined, and A2 participates in the Challenge phase.
Now, we define the following security experiment.

Experiment PoRepExptA(1λ, S, µ):

• Initialization. Same as in the RecvExpt experiment earlier, where A1(1λ, S, µ) interacts with
the challenger.

• Queries. Same as in the RecvExpt experiment earlier, where A1 continues to interact with the
challenger. At the end of the query phase, A1 outputs some state stA to be passed to A2.

• Challenge. A2 receives stA as input, and outputs µ challenge identities id1, . . . , idµ. The
challenger picks a random id ∈ {id1, . . . , idµ}, and invokes an Audit instance with A2, which
acts on behalf of identity id. The adversary is said to win this game if it passes the audit.

Definition 2 (Replication security). Let ϵ ∈ (0, 1). We say that a decentralized data archival
scheme satisfies ϵ-replication-security iff for any non-uniform deterministic polynomial-time adver-
sary A = (A1,A2) such that A1 is restricted to outputting a state stA of space at most µ · α ·BS,
then the probability that A wins the above PoRepExptA(1λ, S, µ) game is at most α− ϵ.

Intuition. Intuitively, replication security says that if an adversary wants to get α times the
fair reward in expectation, it must be consuming roughly α times the space, and this must hold
even when the original data itself is compressible. We now elaborate on how to understand the
definition. Suppose the adversary dedicates αµS blocks of space where S is the space of an honest
node. We expect that in every period, the adversary should get roughly αµ times the fair reward.
However, the adversary can allocate αµS blocks of space among its µ nodes in various ways: it
can allocate S space for α · µ nodes and 0 space for the remaining nodes, but it can also equally
allocate α · S space to each of the µ nodes. Regardless, the adversary should not get noticeably
more than α ·µ times the fair reward. Our replication security definition captures this intuition by
randomly sampling a challenge node among the µ specified nodes, which is effectively an “averaging
argument” to capture the idea that “no matter how the adversary allocates its space, it should get
no more than α ·µ times the fair reward in expectation”. Another reason why we randomly sample
a challenge node in the definition rather than challenging all of them is because in practice, it may
make sense to randomly sample the time at which each node is challenged. If the challenge times
are known ahead of time, then the adversary can reconstruct the storage right before the challenge
and delete the space afterwards.

Our replication security notion implies an ϵ-Nash-equilibrium, that is, a node with a fixed
amount of space cannot get ϵ fraction more rewards than behaving honestly and contributing all
of its space towards archiving the dataset. Because honest behavior is an equilibrium, it implies
that that in the equilibrium state, any node claiming rewards commensurate with contributing αn
blocks of space is actually storing α copies of the database.

4 Preliminaries

4.1 Depth-Robust Graphs

Definition 3 ((e, d)-depth-robust graph [EGS75, ABP18]). Let e, d ∈ [0, 1]. A directed acyclic
graph (DAG) DRG = (V, E) on |V | = n nodes is said to be (e, d)-depth-robust if after removing
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any subset of e · n nodes, there remains a path of length d · n.

In this work, we will use the depth-robust graphs (DRG) proposed by Alwen et al. [ABP18],
where each vertex has in-degree O(log n). Pietrzak [Pie19] showed how to use such a DRG to
construct proof of space. Specifically, suppose a node wants to prove that it is dedicating n amount
of space. Proof of space guarantees that if an adversary is restricted to αn space for some α ∈ (0, 1),
then it can only answer roughly α − ζ fraction of challenges within n rounds for some arbitrarily
small constant ζ ∈ (0, 1).

4.2 Erasure Code

Henceforth, we use Σ to denote the alphabet associated with the original message, and we use Σ
to denote the alphabet associated with the codeword. Let ℓ(n) denote the length of the encoding
of a length-n message. An erasure code over some finite alphabet Σ has the following algorithms:

• C← Encode(msg): a deterministic algorithm that on input of some message msg ∈ Σn, outputs
a codeword C ∈ Σℓ(n).

• msg← Decode(C): a deterministic algorithm which on input of some encoded C ∈ {Σ∪{⊥}}ℓ(n)

performs decoding and outputs msg. Note that some entries in the input C may be dropped
and replaced with ⊥.

Correctness. The erasure code satisfies correctness iff the following holds: for any msg ∈ Σn, let
C← Encode(msg), and let C′ ∈ {Σ∪⊥}ℓ(n) be any vector that agrees with C in at least n positions
whereas all remaining positions are ⊥, then Decode(C′) = msg.

Rate and redundancy of the code. The rate of the code is defined to be n/ℓ(n). The redundancy
is defined to be the inverse of the rate.

4.3 Vector Commitment

A vector commitment scheme over some finite alphabet Σ is a tuple of algorithms (Gen, Digest, Open, Vf):

• crs← Gen(1λ): on input the security parameter 1λ, output a common reference string crs;
• (cm, aux)← Digest(crs, msg): given crs and a message msg ∈ Σℓ, output a digest cm and some

auxiliary information aux — we may assume that aux contains the message length ℓ := |msg|;
• π ← Open(crs, aux, Q): on input crs, auxiliary information aux (assumed to contain the message

length ℓ), and a query set Q ⊆ [ℓ], output an opening proof π that msg[Q] is a restriction of
msg to the indices Q;

• (0, 1) ← Vf(crs, ℓ, cm, Q, ans, π): on input crs, message length ℓ, cm, a query set Q ⊆ [ℓ], a
purported answer ans, and a proof π, outputs either 0 or 1 indicating reject or accept.

Additional assumption on the vector commitment. We shall assume that the opening proof
π for the set Q of indices consists of an individual opening proof π[q] for each q ∈ Q. Further,
the verification algorithm Vf(crs, ℓ, cm, Q, ans, π) simply checks individually that for each q ∈ Q,
π[q] is a valid opening proof for ans[q] where ans[q] denotes answer to the query q contained in ans.
Without risk of ambiguity, we use the notation Vf(crs, ℓ, cm, q, ans[q], π[q]) to denote this individual
check.
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Correctness. Correctness requires that for any λ ∈ N, any ℓ, any message msg ∈ Σℓ, any
Q ⊆ [ℓ], the following holds with probability 1: let crs ← Gen(1λ), (cm, aux) ← Digest(crs, msg),
π ← Open(crs, aux, Q), then it holds that Vf(crs, ℓ, cm, Q, msg[Q], π) = 1.

Collision resistance. We say that a vector commitment scheme satisfies collision resistance (also
called computationally binding in some literature) against size-W (·) adversaries, iff for any non-
uniform probabilistic machine A(1λ, ·) whose running time is bounded by W (λ), there exists a
negligible function negl(·) such that for every λ ∈ N, the probability that the following experiment
outputs 1 is at most negl(λ):

• crs← Gen(1λ);
• (ℓ, cm, ans, ans′, Q, Q′, π, π′)← A(1λ, crs) where Q, Q′ ⊆ [ℓ];
• Output 1 if Vf(crs, ℓ, cm, Q, ans, π) = Vf(crs, ℓ, cm, Q′, ans′, π′); however, there is some i ∈ Q∩Q′

such that ans and ans′ contain different answers for the index i.

Intuitively, collision resistance ensures that a computationally bounded adversary cannot open
the same position to two different values.

Merkle [Mer89] showed how to build such a vector commitment scheme secure against polyno-
mially sized adversaries (or quasi-polynomially sized adversaries resp.) assuming the existence of a
collision resistant hash family secure against polynomially sized adversaries (or quasi-polynomially
sized adversaries).

4.4 Random Strings are Incompressible

We will use the following generalization of Shannon’s theorem.

Fact 4.1 (Extension of Shannon’s theorem for codes with probabilistic correctness.). Suppose
there is a randomized encoding procedure Enc : {0, 1}n × {0, 1}r → {0, 1}m and decoding procedure
Dec : {0, 1}m × {0, 1}r → {0, 1}n such that

Pr
[
r

$←{0, 1}r, msg $←{0, 1}n : Dec (Enc(msg, r), r) = msg
]
≥ δ

Then, m ≥ n− log(1
δ ).

5 Construction for a Static Database

5.1 Intuition

We illustrate our static construction in Figure 1. Specifically, the database DB is erasure coded into
DB, and ϕDB is the vector commitment (e.g., Merkle digest) of DB. A node id will sample a shard of
DB by computing G(id), i.e., by hashing its identity using a random oracle G(·). It then computes
a replication encoding (denoted h) of its shard using the scheme of Pietrzak [Pie19]. Let ϕshard

be the vector commitment of this replication encoding h. In Figure 1, s denote the approximate
space needed for each node to participate. The replication encoding has 4s vertices but the node
only needs to store the last s vertices (henceforth also called the challenge set) plus a small amount
of additional auxiliary data. Roughly speaking, the erasure coding is necessary for achieving best-
possible recoverability — without it, the audit may fail to detect it with noticeable probability when
a small number of blocks are missing globally. The replication encoding is necessary for preventing
a storage node from reusing the same space to claim multiple rewards.
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Figure 1: Warmup: construction for a static database.

The main technicality in the static construction arises from the fact that the storage node
(i.e., prover) may be malicious. Pietrzak [Pie19]’s work focused on the honest prover case and
did not give a full construction or proof for the malicious prover case. It turns out that there
are some technicalities in extending their scheme to the malicious prover case. Specifically, we
need a way for the node to prove correctness3 of its purported commitment ϕshard. One naïve
way to accomplish this is to rely on a generic SNARK. This is undesirable not only because of
the extra computational costs, but also because this SNARK would have to prove computations
that involve calls to a random oracle. Recent work [BCG24] has shown that constructing such a
relativized SNARK is impossible. To avoid using a SNARK, the audit protocol is divided into an
offline challenge and an online challenge. Specifically, the offline challenge proves that ϕshard is
approximately correct, and the online challenge is essentially the challenge protocol of the original
Pietrzak construction [Pie19].

• Offline challenge. The offline challenges are sampled by the node itself using the Fiat-Shamir
paradigm, by computing a set of random indices Q = FS(ϕshard, id) where FS(·) denotes the
Fiat-Shamir random oracle. Therefore, the node can prepare the response to the offline
challenges prior to the audit protocol (hence the name “offline”).
The node then opens up 1) all positions corresponding to indices in Q in the replication encoding
as well as all positions they depend on, denoted {h[Nb(q)]}q∈Q where

Nb(q) := {q} ∪ parents(q);

and 2) all dependent data blocks in its shard denoted {data[Nb(q − 3s)]}q∈Q′ where Q′ ⊆ Q
denotes the indices in Q that are greater than 3s. The auditor checks that all opened positions

3This is also the reason why Figure 1 opens up Pietrzak [Pie19]’s replication encoding — the internal workings of
their construction are needed for the node to prove correctness of its replication encoding.
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are consistent with the purported ϕshard, and that all positions in Q are computed correctly
using the dependent positions in h as well as the dependent data blocks in the shard.

• Online challenge. The online challenges denoted Q̃ are chosen at random by the challenger.
Because in Pietrzak’s replication encoding [Pie19], only the data-dependent indices [3s + 1, 4s]
belong to the challenge set, the online challenges are sampled from [3s+1, 4s], which is different
from the offline challenges which are sampled from the entire range [4s].

The careful reader may have noticed that the offline challenge falls short in proving that ϕshard

is strictly correct. Instead, it only guarantees that ϕshard is a commitment of a replication encoding
that is correct in most positions, also said to be approximately correct. The approximate correctness
will bring some technicalities in our formal proofs later, but we show that nonetheless it is sufficient
for establishing the desired security properties.

5.2 Formal Description

Notation and building blocks. We first define some notation and the underlying building blocks.

• Let VC = (Gen, Digest, Open, Vf) denote a vector commitment scheme. In this paper, we
assume that VC is instantiated with a Merkle tree using a hash function Hvc. When the hash
function Hvc is modeled as a random oracle (RO), the scheme is collision resistant against any
adversary that makes at most quasipolynomially many queries to Hvc as long as the output
length of Hvc is ω(log λ).

• Let EC = (Encode, Decode) denote an erasure code with rate 1/R where R may be a function
of the other parameters.

• Let n denote the size of the database assumed to be a power of 2, and let s denote the amount
of space per node dedicated to storing the database.

• Let DRG be the depth-robust graph described by Alwen et al. [ABP18] with 4s vertices. We
use the notation parents(i) to denote the parents of the i-th vertex in DRG, where i ∈ [4s].

• Let G : {0, 1}∗ → [R · n]s denote a random oracle that samples the data to be stored by each
node. On receiving some input from {0, 1}∗, G outputs s randomly sampled indices from [R ·n]
— here, we assume sampling with replacement. For convenience, we sometimes use the notation
G(inp)[i] to mean the i-th index contained in the set G(inp) where i ∈ [s].

• Let H : {0, 1}∗ → {0, 1}B be a random oracle for constructing the replication code where B
denotes the size of a block. For convenience, we often use the notation Hρ(·) to mean the
random oracle H(·) seeded with the string ρ, that is, Hρ(inp) := H(ρ||inp).

• Let FS : {0, 1}∗ → [4s]κ be a random oracle for offline sampling challenges using the Fiat-Shamir
paradigm.

Static construction. Our construction for a static database enjoys the same syntax as the
definitions in Section 3, except that we do not need to support the Update function. Without loss
of generality, we may assume that the size of the database DB is a power of 2.

• Setup(1λ): let crs← VC.Gen(1λ) and output crs.
• Init(crs, s, DB): Let DB be a database of size n.

1. Compute the encoding DB = EC.Encode(DB), and compute (ϕDB, auxDB)← VC.Digest(DB).
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2. Output ϕDB as the public digest, and the publisher’s state st0 is set to be (ϕDB, DB, DB, auxDB).

Although not explicitly denoted, we may assume that the per-node space parameter s is saved
along with ϕDB, and all algorithms below can access it.

• Join(st0, id): The storage node then interacts with the publisher as follows — henceforth, let
Gid := G(id):

1. Retrieve shard. The publisher computes πDB ← VC.Open(crs, auxDB, Gid), and sends ϕDB,
data := DB[Gid ], and the opening proofs πDB to the node.

2. Compute replication code h. The storage node now computes a replication code over its
shard as follows using ρ = (ϕDB, id) as the seed. For i = 1 to 4s, compute

h[i] :=
{

Hρ(i, h[parents(i)]) if i ≤ 3s

Hρ(i, h[parents(i)])⊕ data [i− 3s] o.w.

In the above, if parents(i) output a set, then h[parents(i)] := {h[j]}j∈parents(i). Further, we
define h[parents(1)] to be the empty string, since the first vertex does not have any parents.

3. Compute offline proof. Below let Q = FS(ϕshard, id), and let Nb(q) = {q} ∪ parents(q).
– Compute (ϕshard, auxshard)← VC.Digest(crs, h).
– Compute πshard ← VC.Open(crs, auxshard, {Nb(q)}q∈Q).

4. The node stores the following where Q′ ⊆ Q is the set of challenges greater than 3s:

stid :=
(
h[3s + 1 : 4s], ϕDB, ϕshard, auxshard, πDB, πshard, {h[Nb(q)]}q∈Q , {data[q − 3s]}q∈Q′

)
The publisher’s state st0 is unchanged.

• Audit((crs, ϕDB, id), stid): The auditor and the node interact as follows. Finally the auditor
outputs 1 if all checks pass, and moreover, the node responds to the challenges within s rounds
of time:

1. Offline challenge. Below, let Q = FS(ϕshard, id), and let Q′ ⊆ Q be the set of challenges
greater than 3s.
– The storage node sends ϕshard, πDB, πshard, {h[Nb(q)]}q∈Q, and {data[q − 3s]}q∈Q′ to the

auditor.
– The auditor verifies the following where we overload notation and let h[Nb(q)] to mean

the purported labels received by the auditor.

VC.Vf
(
crs, 4s, ϕshard, {Nb(q)}q∈Q , {h[Nb(q)]}q∈Q , πshard

)
= 1

– The auditor checks the following where we use the notation {data[q − 3s]}q∈Q′ to mean
the corresponding terms received by the auditor:

VC.Vf
(
crs, n, ϕDB, {Gid [q − 3s]}q∈Q′ , {data[q − 3s]}q∈Q′ , πDB

)
= 1

– For each q ∈ Q, the auditor checks that

h[q] =
{

Hρ(q, h[parents(q)]) if q ≤ 3s

Hρ(q, h[parents(q)])⊕ data[q − 3s] o.w.

where ρ = (ϕDB, id).
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2. Online challenge. The challenger samples a fresh online challenge set Q̃
$←[3s + 1 : 4s]κ, and

sends Q̃ to the storage node. The storage node responds with h[Q̃] as well as the opening
proofs π̃shard ← VC.Open(crs, auxshard, {Nb(q)}

q∈Q̃
). The verifier checks that

VC.Vf(crs, 4s, ϕshard, {Nb(q)}
q∈Q̃

, h[Q̃], π̃shard) = 1

where we overload the notation h[Q̃] to mean the corresponding terms received by the audi-
tor.

6 Construction for an Evolving Database
While the static construction itself (Section 5) is already nontrivial, our most novel contributions
lie in extending this scheme to support a dynamically evolving database. What is most interesting
here is that the common wisdom of “just applying the hierarchical data structure [BS80]” fails
in multiple dimensions, as explained earlier in Section 2.2 and Section 2.3 — we suggest reading
these sections first to get an intuition of the challenges before proceeding to our detailed scheme
description below.

6.1 Basic Scheme

We will use the hierarchical data structure initially proposed by Bentley and Saxe [BS80] to make
our scheme dynamic. However, there are a couple of important technicalities.

By variable renaming, we may assume that a per-node space requirement of S means that each
node will be asked to store up to (1 + o(1)) · S ·B amount of data where B denotes the block size,
and o(1) is some appropriate sub-constant function in λ and the database size.

Data structure. We will maintain a hierarchical data structure of L+1 levels numbered 0, 1, . . . , L.
Each level ℓ ∈ {0, 1, . . . , L} is either empty or a static scheme denoted DDAℓ (described in Section 5)
for data of size n = 2ℓ. All levels share the same crs, but each level has its own independent random
oracle instances denoted Gℓ, Hℓ, and FSℓ. Moreover, we assume that Gℓ(id) outputs sℓ randomly
sampled indices.

Space allocation among levels. In our dynamic construction, we will periodically recompute
the space allocation among the levels as the database grows. Suppose we need to reallocate the
space at some point when the database has size n. Henceforth, we abuse notation and use ω(1) to
denote an arbitrarily small super-constant function in λ. We define the following parameters:

• let L(n) := ⌊log2 n⌋ be the largest level;
• let γ(n) = S/n;
• let slb(n) = γ · 2L/(ω(1) · log n) be the lower bound on the number of blocks to be sampled per

level;

• for each non-empty level ℓ (determined by n), let sℓ(n) :=
⌈
max(γ · 2ℓ, slb)

⌉
be the number of

blocks a node will sub-sample for level ℓ.

In other words, we divide the levels into two categories:

1. Large levels. For the largest ⌊log2(log n · ω(1))⌋ levels, the blocks are sampled at uniform
density (modulo rounding errors) determined by the parameter γ. In other words, each node
dedicates twice as much space for storing samples from level i + 1 as from level i.
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2. Small levels. For all remaining levels, a node samples the same number of blocks ⌈slb⌉ per
level. In other words, each block in level i will be stored twice as often as a block in level i + 1.

Fact 6.1. Suppose n ≥ λ. The above space allocation scheme has the following properties:

• The small levels account for O(n/(ω(1) · log n)) = n · o(1) blocks in the database, and each node
dedicates O(S/ω(1)) = S · o(1) for storing samples from this portion of the database.

• The large levels account for n · (1 − 1
ω(1)·log n) = n · (1 − o(1)) blocks in the database, and each

node dedicates S · (1 − 1
ω(1)·log n) = S · (1 − o(1)) blocks of local space for storing samples from

this portion of the database.

Further, the total number of blocks of local space allocated across all levels is at most S(1 + o(1)).

In the above, each o(1) represents a (possibly different) sub-constant function in λ.

Parameter assumptions and choices. In our dynamic construction below, the parameter as-
sumptions and choices are as follows where N denotes the maximum number of blocks.

• Number of challenges per level κ = ω(log λ).
• Redundancy of the erasure code R = eO(1)/ϵ.
• S = ω(κ · log2 λ), and we need each storage node to allocate (1 + o(1))B · S bits of space for

some suitable sub-constant function o(1) in λ.
• Recall that slb = γ · 2L/(ω(1) · log n). Given S = ω(κ · log2 λ), we can always choose the

super-constant function ω(1) to be sufficiently small such that slb = ω(log λ).
• B = ω(λvc log N) where λvc denotes the hash output length of the VC scheme, assuming that

VC is instantiated with a Merkle tree.
• The initial database size n0 ≥ max(S, λ).

Specifically, Theorem 8.12 and Theorem 9.4 require that κ = ω(log λ), R = eO(1)/ϵ, S =
ω(log2 λ), and slb = ω(log λ). Further, we need that B = ω(λvc log N) and S = ω(κ log2 λ). to
ensure that all metadata stored by a node — including the Merkle proofs, the metadata needed to
answer the offline challenge — occupies only S · o(1) amount of space.

Dynamic construction. We now describe our construction that works for an evolving database.
Since we care about asymptotic behavior, without loss of generality, we may assume that the initial
database size n0 ≥ λ.

• Setup(1λ): call crs← VC.Gen(1λ) and output crs.
• Init(crs, S, DB): Let DB be the initial database containing n0 blocks, and let L = ⌊log2 n0⌋.

Compute sℓ := sℓ(n0) for each non-empty level ℓ. Write n0 := ∑
ℓ∈{0,1,...,L} bℓ · 2ℓ where each

bℓ ∈ {0, 1}.

– Divide DB into smaller databases of sizes {2ℓ : ∀ℓ s.t. bℓ = 1} each. Henceforth, let DBℓ

denote the sub-database of size 2ℓ.
– For any ℓ such that bℓ is non-zero, call (ϕℓ, st0

ℓ )← DDAℓ.Init(crs, sℓ, DBℓ). For all remaining
levels ℓ where bℓ = 0, let ϕℓ = st0

ℓ = ⊥.
– Output public digest ϕ := {ϕℓ}ℓ∈{0,...,L}, and publisher internal state st0 := {st0

ℓ}ℓ∈{0,...,L}.
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Although not explicitly denoted, henceforth, we assume that the parameters γ and slb are saved
along with the public digest ϕ and can be accessed by all algorithms below.

• Join(st0, id): Parse st0 := {st0
ℓ}ℓ∈{0,...,L}. For each non-empty level ℓ, the publisher and the

node invoke (st0
ℓ , stid

ℓ )← DDAℓ.Join(st0
ℓ , id), except that in the computation of the replication

code, for all levels, we replace the seed with ρ := ({ϕ0, . . . , ϕL}, id).
The publisher’s new state is st0 := {st0

ℓ}ℓ∈{0,...,L}, and the node’s new state is stid := {stid
ℓ }ℓ∈{0,...,L}.

• Update((st0, upd), {stid}id∈IDset):

1. Parse the state st0 := {st0
ℓ}ℓ∈{0,1,...,L}, where st0

ℓ := (ϕℓ, DBℓ, DBℓ, auxDB), and parse stid :=
{stid

ℓ }ℓ∈{0,...,L}.
2. Let ℓ∗ be the first empty level, and let DB = upd||DB0|| . . . ||DBℓ∗−1.
3. Let (ϕℓ∗ , st0

ℓ∗)← DDAℓ∗ .Init(crs, sℓ∗ , DB) where sℓ∗ := max(
⌈
γ · 2ℓ∗

⌉
, slb), and for all ℓ < ℓ∗,

let ϕℓ = st0
ℓ = ⊥.

4. For each non-empty level ℓ, each node id ∈ IDset and the publisher invoke (st0
ℓ , stid

ℓ ) ←
DDAℓ.Join(st0

ℓ , id), except that in the computation of the replication code4, replace the seed
with ρ = ({ϕ0, . . . , ϕL}, id).

5. Whenever the node’s local space has exceeded (1 + o(1)) · nprev where nprev is the size of
the database the last time the parameters were (re-)calculated, and o(1) is a suitable sub-
constant function, simply recalculate the parameters L and {sℓ}ℓ using the current n, and
rerun the Init algorithm with the up-to-date database DB. Every node now reruns the Join
algorithm with the publisher — see also Remark 3.

6. Output the new public digest ϕ := {ϕℓ}ℓ∈{0,...,L}. The publisher’s new state is st0 :=
{st0

ℓ}ℓ∈{0,...,L}, and the node’s new state is stid := {stid
ℓ }ℓ∈{0,...,L}.

• Audit((crs, ϕ, id), stid): Parse ϕ := {ϕℓ}ℓ∈{0,...,L}, and parse stid := {stid
ℓ }ℓ∈{0,...,L}. For each

non-empty level ℓ in parallel, the node and the auditor invoke DDAℓ.Audit(ϕℓ, stid
ℓ ), except

that for all levels, 1) we replace the seed with ρ = (ϕ, id); and 2) we require the answer to be
sent within slb amount of time. The auditor outputs accept iff all instances output accept.

Remark 3 (Optimization for parameter refreshes). When the level sizes {sℓ}ℓ are recomputed
based on the new n, the level sizes can only decrease. We can use the same Gℓ to decide which
blocks to sample, and we will simply read the top sℓ indices sampled by the random oracle Gℓ(id).
Therefore, as an optimization, when the level sizes are recalculated, the node need not download
any new block after sℓ shrinks; but it can drop some blocks it has already downloaded but are no
longer needed.

6.2 Optimizations

So far, our scheme requires each node to expend roughly S · B bandwidth and computation per
update. We now describe a few optimizations that get this cost down to Õ(1) · B. We stress that
our update costs are nearly optimal. Specifically, it is inherent that each node must incur at least
constant cost per update subject to our security definitions. For example, if 1% of the nodes do
not learn any information about the new block, then an adversary selectively erase the remaining

4As an optimization, for any ℓ ̸= ℓ∗, the node only needs to recompute its replication code locally using the new
seed, and need not download its sub-sampled blocks again. See Section 6.2 for some additional optimizations.
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Figure 2: Final construction for a dynamic dataset

99% of the nodes, which will cause this block to be lost even if the combined space of the 1% of
the nodes is sufficent for storing the whole dataset. After applying these optimizations, our final
construction is shown in Figure 2.

Henceforth in our analysis, we use N to mean the maximum database size. Our cost analysis
below will be amortized over N − n0 number of updates, where n0 is the initial database size.

Optimization 1: asymptotically improve per-node download. In our basic scheme, for
every level ℓ, a node needs to download sℓ many erasure-coded blocks every 2ℓ updates. This way,
the amortized download bandwidth per node is at least slb which can be as large as S

log N ·ω(1) . To
asymptotically improve the per-node download bandwidth, we can further refine our treatment of
some of the smallest levels as below.

• Tiny levels where 2ℓ ≤ κ: Each node simply stores all 2ℓ unencoded blocks belonging to the
level, and the online challenge phase simply asks the node to open all of them.

• Mini levels where 2ℓ ∈ (κ, slb]: We use an erasure code with redundancy R = 2 (or any constant
R > 1) to encode the blocks in the level. Each node computes and stores a replication encoding
over the entire set of erasure-coded blocks, i.e., the shard sampling using Gℓ(id) is not needed.

• Small levels where 2ℓ ∈ (slb, slb·n
S ]: treated in the same way as the small levels before.

• Large levels: All remaining levels, treated in the same way as the large levels before.

When n is growing over time, we can recompute the level definitions every time n grows by a
factor of 2 — henceforth, the duration between the refreshes of level sizes is called a window.

We now account for the new download bandwidth under this improvement. It suffices to account
for the cost of the most recent window amortized over the window itself. This is because costs over
previous windows (amortized over the window itself) are dominated by the last window.

Every time there is an update, a storage node downloads the update itself. For every small
or large level ℓ, every 2ℓ updates, the node needs to download sℓ erasure-coded blocks. Without
loss of generality, we may assume that slb is a power of 2. We may also assume that the choice
of the super-constant function ω(1) is sufficiently small, such that the number of large levels is
O(log log λ). So the amortized number of blocks to download per update is∑

ℓ∈ small ∪ large
sℓ/2ℓ = 1 + 1 + 1/2 + 1/4 + . . .︸ ︷︷ ︸

small levels

+ O(slb)
2ℓ∗ ·O(log log λ)︸ ︷︷ ︸

large levels

= O(1) + O(S log log λ/N)

where ℓ∗ denotes the index of the smallest large level. Therefore, as long as S = O(N/ log log λ),
we have that each node’s amortized download bandwidth is O(B).
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It is not hard to see that the modifications to the tiny and mini levels do not affect our ϵ-best-
recoverability and replication security guarantees (proven in Section 8 and Section 9). Specifically,
for the tiny levels, ϵ-best-recoverability is trivial to prove. For the mini levels, the proof of ϵ-best-
recoverability becomes simpler: since each node is required to store the entire erasure coded blocks,
even extracting from just one node would suffice for the reconstruction of the level. For replication
security, since the tiny and mini levels occupy only o(1) ·S, we can simply ignore the tiny and mini
levels in the proof, and the o(1) can be absorbed into the ϵ slack that we allow anyway, where ϵ is
an arbitrarily small constant.

Optimization 2: asymptotically improve per-node computation. In our basic scheme
of Section 6.1, every time an update comes in, every storage node must rebuild the replication
encoding in all levels of the hierarchical data structure, thus incurring O(B · S) cost per update.
We can further optimize the scheme to make each node’s computation per update as small as
O(B · log N) · ω(1), where N is the maximum size of the database, and recall that ω(1) is the
arbitrarily small super-constant function used in determining large and small levels. The idea is
as follows:

• Tiny level: Use optimization 1.
• Mini level: Use optimization 1.
• Small level: For every small level ℓ, each node id uses the seed ρ = (ϕℓ, id) when computing the

replication encoding, where ϕℓ is the digest of the level ℓ itself. Only recompute the replication
of the level when its seed changes.

• Large level: For every large level, each node id uses the seed ρ = (ϕlarge, id) when computing
the replication encoding, where ϕlarge := {ϕℓ}ℓ∈large denotes the digests of all large levels. Only
recompute the replication of the level when its seed changes.

With this new variant, every small level ℓ only needs to refresh its replication encoding every
2ℓ steps. Every large level must refresh its replication encoding every 2ℓ∗ times where ℓ∗ denotes
the index of the smallest large level. Therefore, the per-node per-update amortized computation
cost is at most

B ·

 ∑
ℓ∈small

1
2ℓ
· 2ℓ +

∑
ℓ∈large

1
2ℓ∗ · 2ℓ

 ≤ B ·

1 + 1 + . . . + 1︸ ︷︷ ︸
O(log N)

+1 + 2 + 4 + . . . + ω(1) · log N


≤ O(B · log N) · ω(1)

It is not hard to verify that the ϵ-best-recoverability and replication security proofs still hold
with the above modification. Specifically, it suffices to apply the replication security proof to only
the large levels, since the large levels occupy 1 − o(1) fraction of the node’s local space S due to
Fact 6.1. The proof of ϵ-best-recoverability is indifferent to what seed we use.

Efficiency. With these optimizations, we get the following efficiency under the parameter assump-
tions stated earlier in Section 6.1. Below, the costs are amortized over N − n0 = poly(λ) number
of updates.

• Amortized per-node download bandwidth: B ·O(1+S log log λ/N), which is simply O(B) for the
typical scenario when S = O(N/ log log λ).

• Amortized per-node computation: O(B · log N) · ω(1) for an arbitrarily small super-constant
function ω(1).

28



• Amortized publisher computation. Suppose we instantiate the erasure code with a special up-
datable erasure code such as the one proposed by Shi et al. [SSP13] — specifically, their erasure
code provides an efficient update capability that allows us to accomplish level rebuild in time
linear in the level’s size. In this case, the amortized publisher computation for updating the
erasure code is O(B · log N) = eO(1)/ϵ · log N , where the ϵ-dependent constant eO(1)/ϵ comes from
the redundancy of the erasure code. When B = ω(λvc), the cost of updating the erasure-coded
hierarchical data structure dominates the cost of recomputing the Merkle digests, so the total
amortized publisher computation5 is B · eO(1)/ϵ · log N .

• Audit cost. The audit cost (including computation and communication) is at most B · log λ ·
log N · ω(1), where the ω(1) term can be made an arbitrarily small super-constant function in
λ. Specifically, under our assumption B = ω(λvc · log N), the cost of sending and verifying the
VC opening proofs is absorbed by the cost of sending the challenged blocks.

• Node space and join cost. Each node’s space is at most B · S · (1 + o(1)). To join the system, a
node pays O(S) cost including download bandwidth and local computation.

Remark 4 (Effect of periodic parameter refreshes). Note that the need for a storage node to
periodically refresh its level sizes {sℓ}ℓ based on the new n does not matter to the amortized costs.
Due to Remark 3, the parameter refreshes do not increase a node’s download costs. We now argue
that the periodic refreshes do not affect the node’s asymptotic computation cost. Recall that the
parameter refresh happens only when nnew ≥ (1 + o(1)) ·nprev for some suitable o(1), where nnew is
the current database size and nprev is the database size when these parameters were last calculated.
Thus, the O(B · S) cost for a storage node to recompute the replication code can be amortized
to o(1) · nprev steps. Therefore, assume that the initial database size n0 ≥ S, and we choose the
sub-constant function o(1) to be ω(1/ log λ), then the extra computational cost due to the refreshes
is absorbed by the normal costs.

Remark 5 (Optimization for reducing working buffer needed). Another small technicality is how
much extra working buffer a node needs for computing the replication code. Recall that in level
ℓ, the depth-robust graph has 4sℓ vertices, but eventually the node stores only sℓ of them. We
can make the amount of extra working buffer bounded by B · S · o(1) with the following small
modification: we restrict each replication code to be over at most ν(λ)·S blocks for some sufficiently
small super-constant function ν(·). If a level ℓ has more than ν(λ) · S blocks, we can just divide
into multiple sub-levels each with at most ν(λ) · S blocks when computing its replication code.
This way, as long as the node computes the replication codes one after another, it only needs extra
working buffer for one copy of the replication code, which is bounded by B · S · o(1).

7 Extensions

7.1 Non-Uniform Node Space

So far, we have assumed a setting where all nodes have the same storage provisioning S. In practice,
some nodes may be more powerful than others. The most naïve approach is for a node with k · S
space to just spawn k instances. However, this approach would blow up the node’s update and
audit costs by a factor of k. We propose a simple modification to our scheme to avoid this k-factor

5The publisher’s computation is essentially the same as in the dynamic PoR scheme of Shi et al. [SSP13], and
using existing techniques [SSP13,BS80], the publisher’s computation can be easily deamortized, where we spread the
work evenly across all updates, thus avoiding some updates triggering a heavy-weight maintenance operation.

29



blowup. With our modification, a node with k · S space provisioning enjoys the same audit and
update costs as a node with S space.

Observe that in our scheme, the publisher’s data structure is agnostic of the parameter S.
Therefore, instead of having global parameters S and {sℓ}ℓ, we can make each node compute and
maintain its own {sℓ}ℓ parameters based on its own space available. When the node builds its local
replication encoding and computes the offline proofs, it samples the same number of challenges
κ = ω(log λ) as before, but the range from which the indices are sampled depends on {sℓ}ℓ.
The publisher need not know each node’s local parameters, since during the Join and Update
operations, the node simply downloads some portions of st0 from the publisher. During the audit,
the node can declare some purported space provisioning to the auditor upfront. The auditor then
computes the {sℓ}ℓ parameters, and samples the challenges from the appropriate domains based
on the {sℓ}ℓ parameters. Again, the number of challenges sampled remains unchanged, that is,
κ = ω(log λ).

It is not hard to see that our proofs still hold with this modification. Specifically, the repli-
cation security proofs (Section 8) hold directly even when all nodes have non-uniform space. For
the approximate best-possible recoverability proofs (Section 9), the key observation is that if the
adversary merges k adversarial identities into a single identity with k times the local space, then
its advantage in Lemma 9.3 will only become smaller. One way to see this is that the effect of
merging these identities is the same as querying the random oracle G on these identities separately,
but when selecting a subset of µ identities, these merged identities must act as a bundle — either
they are all selected or none of them are. With this key observation, it is easy to verify that the
remainder of the proofs Section 9 hold even under non-uniform space.

7.2 Instantiating the Publisher Using IVC

If the scheme is used to back up blockchain data, then a trusted hash digest ϕorig of the original data
is directly available from the consensus layer, and the blockchain will act as the auditor such that
a node can get rewarded for its contributions. However, we need an additional publisher who must
maintain an erasure-coded hierarchical data structure and the hash digests for this data structure.
In practice, we can instantiate the publisher without having to trust the publisher, through the use
of an Incrementally Verifiable Computation (IVC) scheme. Specifically, an untrusted publisher can
compute the hash digests of the hierarchical data structure denoted ϕ = (ϕ0, . . . , ϕL), and provide
a succinct proof of correctness of ϕ w.r.t. ϕorig.

Earlier works [DGKV22,PP22] have shown that under standard assumptions, we can construct
an IVC scheme with the following efficiency: each update to a RAM machine incurs poly log(λ, N)
time to update the proof; and the proof size and verification time are also poly log(λ, N), where N
is the maximum number of RAM steps. When applied to our problem, the publisher can maintain
the digests of the hierarchical data structure as well as the proofs of correctness in amortized
time poly log(λ, N) per update. As mentioned earlier, using existing techniques [SSP13,BS80], the
prover’s computation can also easily be deamortized over time. In a practical implementation, we
can also use an IVC scheme based on non-falsifiable assumptions such as using recursive composition
of SNARKs [BCCT13], or using more recent techniques [WPSP24].
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8 Replication Security

8.1 Additional Preliminaries

Pebbling game. Let DRG = (V, E, V C) be a directed acyclic graph, where V denotes the vertex
set, E denotes the edge set, and V C ⊆ V denotes a subset of challenge vertices. The pebbling game
on DRG played by an adversary A = (A1,A2) is defined as follows:

• Initialization: A1 outputs an initial set of vertices U ⊆ V to pebble.

• Challenge: Choose a random challenge c
$←V C . A2 receives as input an initial set U ⊆ V of

vertices that have been pebbled, and the challenge c. A2 then proceeds in rounds, starting with
round 1. In each round, A2 may pebble an arbitrary set of unpebbled vertices in DRG, subject
to the constraint that a vertex can only be pebbled if all its parents are already pebbled in
previous rounds. A is said to win the game if it successfully pebbles the vertex c.

We will use the depth-robust graph construction by Alwen et al. [ABP18]. Specifically, given
an arbitrary n ∈ N and ζ > 0, they define a depth-robust graph henceforth denoted DRGζ

4n with
4n vertices, and prove that DRGζ

4n is (e, d)-depth-robust for any e + d ≥ 1− ζ.
Henceforth, an (s, t)-pebbling-adversary is one that is required to output at most s initial

pebbles and answer the challenge in t rounds or fewer.

Lemma 8.1 (Pebbling hardness from depth-robust graphs [Pie19]). Fix an arbitrary n ∈ N and
ζ ′ > 0. Consider the depth-robust graph DRGζ′

4n = (V, E, V C), where V C ⊂ V denotes the n
topologically last vertices in V . Then, for any α ∈ [0, 1], for any deterministic (s, t)-adversary A,
the probability (over the choice of the challenge) that A wins the pebbling game on DRGζ′

4n is at
most ζ where

s = n · α, t = n, ζ = α + 4ζ ′

8.2 Concurrent Pebbling Game

We consider an L-fold concurrent composition of the above pebbling game. Specifically, we now
have L independent graph, and during the challenge phase, we issue one challenge per graph. The
modified game is formally defined as follows.

L-fold concurrent pebbling. Let DRG1, . . . , DRGL be L DAGs (possibly of different sizes). The
concurrent pebbling game on {DRGℓ}ℓ∈[L] played by an adversaryA = (A1,A2) is defined as follows:

• Initialization: In each DAG, the adversary A1 specifies an initial set of vertices to pebble in
each of the L graphs, henceforth denoted U1, . . . , UL respectively.

• Challenge: For ℓ ∈ [L], choose a random challenge v∗
ℓ ∈ ChSet(DRGℓ) where we use the

notation ChSet(DRGℓ) to denote the challenge set of vertices of DRGℓ. Now, A2 receives as
input {Uℓ, v∗

ℓ }ℓ∈[L]. A2 then proceeds in rounds, starting with round 1. In each round, A2 may
pebble an arbitrary set of unpebbled vertices in {DRGℓ}ℓ∈[L], subject to the constraint that a
vertex can only be pebbled if all its parents are already pebbled in previous rounds. A is said
to win iff for all ℓ ∈ [L], it has pebbled the v∗

ℓ -th vertex in DRGℓ.

Henceforth, an (s, t)-adversary is one who can output a total of at most s initial pebbles over
all L graphs, and must respond to the challenge in t or fewer rounds.
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Lemma 8.2 (L-fold concurrent pebbling hardness). Fix arbitrary n1, . . . , nL ∈ N and ζ ′ > 0. For
ℓ ∈ [L], suppose DRGℓ is the depth-robust graph DRGζ′

4nℓ
of Alwen et al. [ABP18] with the challenge

vertices being the topologically last nℓ vertices in its vertex set. Then, for any α ∈ [0, 1], for any
deterministic (s, t)-adversary A, the probability that A wins the pebbling game on {DRGℓ}ℓ∈[L] is
at most ζ where

s = α ·
∑

ℓ

nℓ, t = min
ℓ∈[L]

nℓ, ζ = (α + 4ζ ′)L

Proof. Let αℓ · nℓ be the number of initial pebbles placed on the j-th graph, where ∑ℓ∈[L] αℓ · nℓ ≤
α·
∑

ℓ nℓ. Due to Lemma 8.2, for any fixed graph ℓ ∈ [L], the probability over the choice of v∗
ℓ that A

successfully pebbles the v∗
ℓ -th vertex in the ℓ-th graph in t = nℓ rounds or fewer is at most αℓ + 4ζ ′.

Recall that A only wins if it simulatenously pebbles the v∗
ℓ -th vertex in the ℓ-th graph for all ℓ ∈ [L].

Therefore, the probability that A can win is upper bounded by ∏ℓ∈[L](αℓ + 4ζ ′) ≤ (α + 4ζ ′)L.

8.3 The Underlying Pebbling Game of Our Construction

Our data archival scheme is associated with the following underlying pebbling game. Specifically,
we will have µ independent instances, and each instance has L graphs. During the challenge phase,
only one random instance will be challenged; moreover, for the selected instance, we will execute
the challenge phase of the L-concurrent pebbling game κ independent times.

Formally, a (µ, {nℓ}ℓ∈[L], κ)-pebbling game is defined as follows.

(µ, {nℓ}ℓ∈[L], κ)-pebbling. Suppose we have µ instances, and each instance has L depth-robust
graphs {DRGζ′

4nℓ
}ℓ∈[L] of Alwen et al. [ABP18]. Again, for ℓ ∈ [L] the challenge vertices of DRGζ′

4nℓ

are the topologically last nℓ vertices in its vertex set. The (µ, {nℓ}ℓ, κ)-pebbling game, played by
an adversary A = (A1,A2), is defined as follows:
• Initialization: For each i ∈ [µ], ℓ ∈ [L], A1 outputs an initial set of vertices Ui,ℓ ⊆ Vi,ℓ to

pebble.

• Challenge: Choose a random instance i∗ $←[µ]. For κ times in parallel, perform the challenge
phase of the L-concurrent pebbling game with A2 on the chosen instance. In other words, A2 is
given the challenge instance i∗, and all the initial pebbled vertices {Ui,ℓ}i∈[µ],ℓ∈[L]. Now, repeat
the following κ times in parallel:

– Choose random challenge v∗
ℓ

$←ChSet(DRGζ′

4nℓ
) for each ℓ, and send {v∗

ℓ }ℓ to A2;
– A2 now proceeds in rounds, starting with round 1. In each round, A2 may pebble an arbitrary

set of unpebbled vertices in the L graphs of the i∗-th instance, subject to the constraint that
a vertex can only be pebbled if all its parents are already pebbled in previous rounds.

A is said to win the game iff for all κ parallel iterations, it simultaneously pebbles the challenged
vertices in all L graphs in the challenge instance i∗.
Below, an ((s1, . . . , sµ), t)-adversary is one who is required to output at most si initial pebbles

for the i-th instance for any i ∈ [µ], and respond in t rounds or fewer.
Lemma 8.3. Fix arbitrary n1, . . . , nL, µ, κ ∈ N and ζ ′ > 0. Then, for any α1, . . . , αµ ∈ [0, 1],
for any deterministic ((s1, . . . , sµ), t)-adversary A = (A1,A2), A can win the above (µ, {nℓ}ℓ, κ)-
pebbling game with probability at most ζ where

∀i ∈ [µ] : si = αi ·
∑

ℓ∈[L]
nℓ, t = min

ℓ∈[L]
nℓ, ζ = 1

µ
·
∑
i∈[µ]

(αi + 4ζ ′)κ
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Proof. Follows in a straightforward fashion from Lemma 8.2. Specifically, we may assume κ = 1
since for larger κ, A’s winning probability cannot become be better.

8.4 Replication Security: Proofs

8.4.1 Encoding Algorithm

Suppose VC is instantiated using a Merkle tree where the hash function Hvc is modeled as a random
oracle.

Given a deterministic machine A = (A1,A2), let A1 be the adversary that interacts with the
challenger during the Initialization and Queries phases of the PoRepExpt. At the end, A1 outputs
µ challenge identities id1, . . . , idµ, as well as some internal state stA to be passed to A2. Next, we
execute A2 who interacts with the challenger for the Challenge phase. Both A1 and A2 can make
random oracle queries — henceforth, let P1 and P2 denote the maximum number of random oracle
queries made by A1 and A2 respectively.

For ℓ ∈ {0, 1, . . . , L}, let Gℓ, Hℓ, and FSℓ denote the random oracle instances for level ℓ. Let
Hvc denote the global random oracle instance for the VC scheme.

The parallel adversary. Let id1, . . . , idµ be the challenge identities output by A2(stA). Hence-
forth, we use the notation Bid(stA) where id ∈ {id1, . . . , idµ} to denote the following algorithm
that computes the responses to all possible online challenges in parallel:

• Execute A2(stA) until it outputs all the challenge identities, and let Aid
3 (st) be its continuation

upon receiving the challenge id where st denotes the internal state passed to A3.
• Execute Aid

3 (st) until it finishes the offline challenge step. Let Aid
4 (st′) be a continuation of Aid

3
at this point where st′ is the internal state passed to Aid

4 .
• Fork ∏ℓ sκ

ℓ instances of Aid
4 (st′) and execute them in parallel on all possible online challenges.

We devise the following encoding scheme (Enc, Dec):

Encoding algorithm Enc(msg, r). We describe how to encode a message msg using the random
coins r.

1. Using part of the random coins in r, guess at random which is the time step t∗ in which
the adversary A1 will for the first time make a query to either Hℓ(ϕ∗, ·) for some ℓ, where
ϕ∗ := (ϕ∗

0, . . . , ϕ∗
L) denotes the digests of all levels when the challenge phase is invoked.

2. Execute A1 till t∗, and answer A1’s random oracle queries using the coins contained in r. If A1
does not make a query of the form Hℓ(ϕ∗, ·) at time t∗, or this is not the first time a query of
the form Hℓ(ϕ∗, ·) has appeared for the observed choice of ϕ∗, simply abort and output ⊥.

3. Program the random oracles {Hℓ(ϕ∗, ·)}ℓ∈{0,...,L} with msg, and for all other random oracle
queries, answer using the coins contained in r.
Continue executing A1 until it is about to enter the challenge phase. Let stA be its internal
state. Let DB∗ be the cumulative database at the challenge time. If the digest of DB∗ does not
agree with the guessed ϕ∗, then simply abort and output ⊥.

4. Let id1, . . . , idµ be the challenge identities output by A2(stA). Execute Bid(stA) until it finishes
the offline challenge phase.
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5. For each challenge identity id such that the adversary passes the offline challenge phase when
challenged on id, for each non-empty level ℓ, do the following: let ϕshard

ℓ be the shard commit-
ment submitted by Bid(stA) during the offline challenge phase and run the following extractor
algorithm.
Repeat the following T ext times where T ext := T ext(λ) is a super-polynomial function in λ:

• Rewind the entire adversary A to the point when it first made a query to FSℓ(ϕshard
ℓ , id).

Execute A but from this point on, reprogram the answer to any fresh queries to FSℓ(·) where
fresh means that the A has not made this query yet upto the rewinded point, including the
query to FSℓ(ϕshard

ℓ , id) itself. Here, we assume that the encoding algorithm will use its
own internal randomness to reprogram the answers to FSℓ(·) queries. We can view internal
random coins as a part of r that will not be consumed by the decoding algorithm.

• If in this reprogrammed execution trace, the encoding algorithm has not aborted, A still
includes id in the set of challenge identities, and Bid still passes the offline phase using
the same shard commitment ϕshard

ℓ , then let {hℓ[Nb(q)], . . .}q∈Q be the answer returned by
Bid(stA) during the offline challenge phase for level ℓ. Record the answers returned by the
adversary by setting hid

ℓ [Nb(q)] := hℓ[Nb(q)] for each q ∈ Q — initially, all entries of hid
ℓ

were set to ⊥.

During the execution, if we ever observe a collision of the VC scheme, then abort and output ⊥.
Collisions include the following types: 1) we observe two different values hℓ[q] and h′

ℓ[q] that both
have valid opening proofs w.r.t. ϕshard

ℓ ; and 2) for some challenged index q > 3sℓ, the adversary
answers with the purported data entry data[q − 3sℓ], however, data[q − 3sℓ] ̸= DBℓ[Gid [q − 3s]].

6. For each q ∈ Q and each non-empty ℓ, we say that the label hid
ℓ [q] is correct iff for any p ∈

parents(q), hid
ℓ [p] ̸= ⊥, and moreover, hid

ℓ [q] is computed correctly from hid
ℓ [parents(q)], as well

as DBℓ[Gid [q − 3sℓ]] if q > 3sℓ.

7. For each id ∈ {id1, . . . , idµ}: execute Bid(stA) on online challenges concurrently. We say
that the label hid

ℓ [q] is predicted iff hid
ℓ [q] is correct, and moreover, Bid(stA) submitted hid

ℓ [q]
either in a random oracle query or when responding to some challenge, before it queried
Hℓ(ϕ∗, id, q, hid

ℓ [parents(q)]). The first random oracle query made by Bid(stA) that includes
hid

ℓ [q] as input is said to be a predicting query.

8. Let η′ ∈ (0, 1) be some suitably small constant. If the number of predicted labels is fewer than
(α−η′) ·µ ·∑ℓ sℓ, output ⊥, where α denotes the expected fraction of challenges (id, {Qℓ}ℓ) that
A can respond to under a random choice of msg and r conditioned on the encoding algorithm
not aborting before entering the offline challenge phase.
Otherwise, output the encoded message msg consisting of the following terms:

• stA: the internal state output by A1;
• pred: contains the following information for each predicting query: 1) the index of id within
{id1, . . . , idµ} pertaining to the predicting query, 2) the index of the predicting query among
all queries made by Bid(stA) and 3) the starting offset of the input of the predicted label;

• other: contains all other parts of msg that is not the answer to a predicting query.

Note that if the number of predicted labels is greater than (α − η) · µ ·∑ℓ sℓ, we can simply
truncate it to exactly (α− η) · µ ·∑ℓ sℓ labels. This way, if the encoding is successful, then the
encoded string always has a fixed length.
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Decoding algorithm Dec(msg, r). If msg = ⊥, output ⊥, else parse msg = (stA, pred, other) and
continue as follows.

1. Using the same coins r, we execute A1 until the t∗-th random oracle query which is of the form
Hℓ(ϕ∗). Now, just like Step 2 of the Enc algorithm, we can use all the Hvc queries made so far
to extract a DB∗ that match ϕ∗. Let {DBℓ}ℓ be the erasure-coded levels derived from DB∗.

2. Let id1, . . . , idµ be the challenge identities output by A2(stA). Execute Step 4 of the Enc
algorithm using Bid(stA), except with the following modifications. Whenever Bid(stA) makes
a random oracle query of the form Hℓ(ϕ∗, id, ·), use the information in pred to check to see if
the query’s answer can be reconstructed from some predicted label and DBℓ. If so, use the
appropriate predicted label (which must have been seen by now) and DBℓ to compute the
answer. Otherwise, respond using other.

3. When the previous step finishes, we will have reconstructed all the predicted labels that are not
recorded in other, and therefore we can recover msg.

The following simple fact holds by construction.

Fact 8.4. If the encoding scheme does not output ⊥, then the decoded result must be correct.

8.4.2 Analysis of the Extractor

Suppose A makes at most Nfs queries to the random oracle FS. We define the following events:

• Passℓ,j : Let (ϕshard
ℓ , id) be the pair A submits in the j-th query to FS. Passℓ,j is the event that

the encoding algorithm has not aborted at the beginning of the offline challenge phase, id is
the first challenge identity submitted by A, and when challenged with id, A submits ϕshard

ℓ for
level ℓ during the offline challenge phase, and responds correctly for level ℓ.

• Passℓ: The encoding algorithm has not aborted at the beginning of the offline challenge phase,
and moreover, when challenged on id1, A responds correctly for level ℓ during the offline chal-
lenge phase, where id1 is the first challenge identity submitted by A.

• ReconstrGoodℓ: The encoding algorithm reconstructs an array of labels hid1
ℓ for level ℓ such that

at least 1−η fraction of positions are correct, where id1 is the first challenge identity submitted
by A, and η ∈ (0, 1) is a suitably small constant.

• Col: the event that some collision is observed when running the extractor;
• Deficientℓ: Let id1 be the first challenge identity submitted byA, and let ϕshard

ℓ be the shard com-
mitment for level ℓ submitted byA when challenged on id1. There exists some q ∈ FS(ϕshard

ℓ , id1)
that in the reconstructed hid1

ℓ , the position q is not correct.

Although the above events focus on the first challenge identity output by the adversary, all
lemmas proven below trivially extend when “first” is replaced with “any fixed i-th” challenge
identity where i ∈ [µ].

Lemma 8.5 (Technical lemma for the extractor). For any fixed non-empty level ℓ, Pr[Passℓ ∧
¬ReconstrGoodℓ] ≤ negl(λ). As a direct corollary, Pr[∀ non-empty ℓ : Passℓ ∧ ¬ReconstrGoodℓ] ≤
negl(λ).

Proof of Lemma 8.5. Below we prove Lemma 8.5.
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Claim 8.6. Fix ℓ and j. Pr[Passℓ,j ∧ Col] ≤ negl(λ).

Proof. Suppose that Hvc is a random oracle. Since A is polynomially bounded, the extractor makes
at most poly(λ) ·T ext queries to Hvc. The probability that the extractor can find a collision in Hvc is
negligibly small, as long as the output length of Hvc is at least 2.1 log2 T ext for a super-polynomial
T ext.

Claim 8.7. Fix ℓ and j. Pr[Passℓ,j ∧ (Col ∨ Deficientℓ)] ≤ negl(λ).

Proof. Observe that Pr[Passℓ,j∧(Col∨Deficientℓ)] ≤ Pr[Passℓ,j∧Col]+Pr[Passℓ,j∧¬Col∧Deficientℓ].
Due to Claim 8.6, it suffices to prove that Pr[Passℓ,j ∧ ¬Col ∧ Deficientℓ] ≤ negl(λ).

Henceforth in the proof, we may fix the all other random coins except the coins used in FS and
used by the extractor, and the probabilities below are taken over the choice of FS and the coins
consumed by the extractor. Let pre be the answers to the first j − 1 queries to FS.

Pr[Passℓ,j ∧ ¬Col ∧ Deficientℓ]
≤
∑
pre

Pr[Passℓ,j ∧ ¬Col ∧ Deficientℓ|pre] · Pr[pre]

≤
∑
pre

∑
q∈[4sℓ]

δℓ,j,pre(q) · (1− δℓ,j,pre(q))T ext · Pr[pre]

≤
∑
pre

∑
q∈[4sℓ]

1
T ext · Pr[pre] ≤ 4sℓ/T ext

where δℓ,j,pre(q) is the probability that conditioned on pre, the encoding algorithm has not aborted
when entering the offline challenge phase, q is included in the answer to the j-th FS query henceforth
denoted (ϕshard

ℓ , id), id is the first challenge identity, and when challenged with id, the adversary
submits ϕshard

ℓ in the offline challenge phase, and answers the challenge q correctly for level ℓ. The
second inequality used the fact that δ · (1− δ)T ≤ 1/T for any δ ∈ (0, 1). The above probability is
negligibly small since sℓ is polynomially bounded in λ and T ext is super-polynomial in λ.

Claim 8.8. Fix ℓ and j. Pr[Passℓ,j ∧ ¬ReconstrGoodℓ ∧ ¬Deficientℓ] ≤ negl(λ).

Proof. Observe that

Pr[Passℓ,j ∧ ¬ReconstrGoodℓ ∧ ¬Deficientℓ] ≤ Pr[¬ReconstrGoodℓ ∧ ¬Deficientℓ]
≤ Pr[¬Deficientℓ|¬ReconstrGoodℓ]

Since the coins in selecting the challenge FS(ϕshard
ℓ , id) in the main execution path are independent

of the coins consumed by the extractor, we conclude that Pr[¬Deficientℓ|¬ReconstrGoodℓ] ≤ (1−η)κ,
which is negligibly small in λ for any fixed constant η ∈ (0, 1) and κ = ω(log λ).

Now, for a fixed ℓ and j, we have that

Pr[Passℓ,j ∧ ¬ReconstrGoodℓ]
≤Pr[Passℓ,j ∧ ¬ReconstrGoodℓ ∧ (Col ∨ Deficientℓ)] + Pr[Passℓ,j ∧ ¬ReconstrGoodℓ ∧ ¬Col ∧ ¬Deficientℓ]
≤Pr[Passℓ,j ∧ (Col ∨ Deficientℓ)] + Pr[Passℓ,j ∧ ¬ReconstrGoodℓ ∧ ¬Deficientℓ]
≤negl1(λ) + negl2(λ) ≤ negl(λ)
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Finally, we arrive at Lemma 8.5 by taking a union bound on j and observing the fact that
except with negligible probability, if Passℓ happens, then (ϕshard

ℓ , id) must have been submitted in
a query to FS prior to the adversary sends back the response in the offline challnege phase, where
id is the first challenge identity, and ϕshard

ℓ is the shard commitment submitted by the adversary
for level ℓ when challenged on id.

8.4.3 Probability of Successful Encoding and Decoding

During the Enc algorithm, we say that some challenge id is good, iff the adversary passes the offline
challenge phase when challenged on id. Henceforth, let Pid be the number of predicted labels for
the challenge identity id.

Claim 8.9. For any fixed msg and r, the following holds. For each challenge identity id, let
P ′

id = Pid + 4η ·
∑

ℓ sℓ if id is good, and else let P ′
id = 0. Suppose that under the coins r and the

message msg, A can pass the audit on α = αr,msg fraction of the challenges (id, {Q̃ℓ}ℓ) where Q̃ℓ

denotes the online challenge set for level ℓ. Then, there is some ({P ′
id}id∈{id1,...,idµ}, t)-adversary

who can win the (µ, {sℓ}ℓ, κ)-pebbling game over at least α fraction of the challenges of the form
(id, {Q̃ℓ}ℓ) where t = slb.

Proof. Due to Lemma 8.5, if some challenge id is good, then for all non-empty ℓ, the extracted hid
ℓ

array has at least 1− η fraction of positions that are correct. In this case, we will place an initial
pebble on a vertex if the vertex is associated with either a predicted or incorrect label. The total
number of initial pebbles for instance id is upper bounded by P ′

id = Pid + η · 4∑ℓ sℓ. We place no
pebbles for any id that is not good since the adversary cannot even pass the offline challenge phase
for a bad id.

Consider a good id. For any vertex indexed by (id, ℓ, q) that is not initially pebbled, if the
adversary Bid submits the label hid

ℓ [q] during some random oracle query or in response to some
challenge, it must be that the adversary Bid has queried Hℓ(ϕ∗, id, q, hid

ℓ [parents(q)]). If we order
these queries in the order of q for each ℓ, it will give a way to pebble the level-ℓ graph of instance
id. Further, if Bid succeeds in answering the online challenge {Q̃ℓ}ℓ, then for every ℓ, every q ∈ Q̃ℓ,
the q-th vertex of the level-ℓ graph will have been pebbled at the end.

Therefore, with the above placed initial pebbles, the adversary can succeed in answering at least
α fraction of the challenges.

Claim 8.10. Given any msg and r. If the encoding algorithm does not abort before entering the
challenge phase, then

∑
id∈{id1,...,idµ} Pid ≥ (α− 4ζ ′ − η) · µ ·∑ℓ sℓ, where α := αr,msg is defined in

the same way as in Claim 8.9.

Proof. Henceforth, let α′
id := P ′

id∑
ℓ

sℓ
, and let αid := Pid∑

ℓ
sℓ

. Let good be the set of good identities.
Due to Lemma 8.3, we have that ∑

id∈good

(
α′

id + 4ζ ′)κ ≥ α · µ

Let large ⊆ good be the set of identities such that for id ∈ large, α′
id ≥ 1 − 5ζ ′. Let small =
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good\large. We have that ∑
id∈{id1,...,idµ}

(
α′

id + 4ζ ′)κ
≤

∑
id∈large

(
α′

id + 4ζ ′)κ +
∑

id∈small
(1− ζ ′)κ

≤
∑

id∈large

(
α′

id + 4ζ ′)κ + negl(λ)

≤
∑

id∈large

(
α′

id + 4ζ ′)+ negl(λ)

Thus, we have that ∑
id∈large

α′
id ≥ (α− 4ζ ′) · µ (⋆)

We also have ∑
id∈{id1,...,idµ}

αid ≥
∑

id∈good
αid =

∑
id∈good

(
α′

id − η
)
≥ (α− 4ζ ′ − η) · µ

We now lower bound the probability that the encoding algorithm succeeds under a random
msg and random r. Recall that α is the expected fraction of challenges (id, {Qℓ}ℓ) that A can
respond to under a random choice of msg, r conditioned on the encoding algorithm not aborting
before entering the offline challenge phase. Recall also that the encoding algorithm would abort if
the number of predicted labels is fewer than (α− η′) · µ ·∑ℓ sℓ.

Lemma 8.11 (Probability of successful encoding). Suppose α > η′. Under a random msg and a
random r, the probability of successful encoding δ ≥ (1− negl(λ) · 1

TA
· (η′ − 4ζ ′ − η).

Proof. The encoding is successful iff the following hold:

1. The adversary indeed makes one or more queries of the form Hℓ(ϕ∗, ·) where ϕ∗ is the digest
of the database DB∗ at the time of challege — this happens with 1− negl(λ) probability;

2. The encoding algorithm correctly guesses t∗. Conditioned on the above event, the probability
of guessing correctly is at least 1/TA where TA denotes the maximum number of random oracle
queries made by A.

3. The number of predicted labels is smaller than (α− η′) · µ ·∑ℓ sℓ. Due to Claim 8.10, we have
that conditioned on the encoding algorithm not aborting prior to entering the challenge phase,

E[
∑
id

Pid ] ≥ (α− 4ζ ′ − η) · µ ·
∑

ℓ

sℓ

where the randomness is taken over the choice of both msg and r.
Let p be the probability that this bad event happens conditioned on not aborting before entering
the offline challenge phase. Henceforth, assume that η′ < α. Due to Markov inequality, we
have (α− η′) · p + (1− p) ≥ α− 4ζ ′ − η, which implies that 1− p ≥ η′ − 4ζ ′ − η.
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Summarizing the above, the encoding is successful with probability at least

δ ≥ (1− negl(λ)) · 1
TA
· (1− p) ≥ (1− negl(λ)) · 1

TA
· (η′ − 4ζ ′ − η)

Theorem 8.12 (Space lower bound). Suppose B = ω(log λ) and κ = ω(log λ). Suppose we choose
ζ ′ > 0 to be an arbitrarily small constant. Let β be the probability that some deterministic adversary
A = (A1,A2) wins the PoRepExptA(1λ, S, µ) game. Then, |stA| ≥ (1 − o(1)) · B · (β − 5ζ ′) · µ · S,
where o(1) is a sub-constant function in λ.

Proof. Without loss of generality, we may assume that β > 5ζ ′ since otherwise, the theorem is
trivially true. Observe also that β ≤ α + negl(λ), since by definition, α is equal to the probability
that the adversary wins the PoRepExptA(1λ, S, µ) game conditioned on having queried Hℓ(ϕ∗, ·) for
the digest ϕ∗ that corresponds to the challenge database. Moreover, the probability that A wins
the game without having made such a query is negligibly small. Now, choose sufficiently small
constants η and η′ such that η′ ∈ (4ζ ′ + η, 5ζ ′), and α > η′, and run the encoding algorithm using
these parameters to compress a randomly chosen msg using a random r.

We now analyze how much the message msg can be compressed if the encoding is successful.
For each predicted label, instead of encoding the answer of the random oracle query which would
have cost B bits, we only need to record the index of the identity, the index of the predicting query,
and the starting offset of the predicted label within the relevent predicting query. The latter costs
at most log2 µ + log2 TA + log log S + O(1) bits per predicted label. By Fact 4.1, we have

|msg| = |stA|+ |msg| − (B − log2 µ− log2 TA − log log S −O(1)) · (α− η′) · µ ·
∑

ℓ

sℓ ≥ |msg| − log 1
δ

where δ is the probability of successful encoding which we lower bounded in Lemma 8.11. Therefore,
we have

|stA| ≥ (B − log2 µ− log2 TA − log log S −O(1)) · (α− η′) · µ ·
∑

ℓ

sℓ − log 1
δ

≥ B · (1− o(1))(α− η′) · µ ·
∑

ℓ

sℓ − log TA − log 1
η′ − 4ζ ′ − η

−O(1)

Since µ and TA are polynomially bounded in λ, and B = ω(log λ), we have that B − log2 µ −
log2 TA − log log S − O(1) ≥ (1 − o(1))B. Based on our space allocation scheme, it must be that∑

ℓ sℓ ≥ S. Therefore, we conclude that

|stA| ≥ (1− o(1)) ·B · (β − η′) · µ · S ≥ (1− o(1)) ·B · (β − 5ζ ′) · µ · S

9 Best Possible Recoverability

9.1 Definition of Extractor and Compression Algorithms

Extractor algorithm EA2. We define the following extractor algorithm.

EA2(stA)(1λ, n, S, µ, ϕ, DBshort; ρ): // all random coins consumed by E come from ρ
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• For each non-empty level ℓ (determined solely by n), initialize Pℓ = ∅, and DBext
ℓ to be an empty

array where all positions are ⊥.
• For each challenge identity id output by A2(stA), initialize h̃ℓ to be empty, and repeat the

following T̃ ext number of times to populate h̃ℓ, where T̃ ext is a super-polynomial function λ:

– For each non-empty level ℓ: let Q̃ℓ be a freshly sampled multiset of κ indices from Gℓ(id).
– Rewind A2(stA) to the point when it has just submitted the j-th challenge identity id.

Suppose A2 passes the offline phase, then feed it with the online challenges {Q̃ℓ}ℓ.
– Let {ϕshard

ℓ }ℓ be the shard commitments submitted by A2 during the offline challenge phase,
and let {(ansℓ, π̃shard

ℓ )}ℓ be A2’s answers for the online challenges {Q̃ℓ}ℓ, where ansℓ is a
vector of blocks corresponding to the challenged locations within the level ℓ, and π̃shard

ℓ are
the corresponding VC opening proofs. If VC.Vf(crs, 4sℓ, ϕshard

ℓ , ansℓ, π̃shard
ℓ ) = 1 for all non-

empty ℓ, then record the answers as follows. For each non-empty level ℓ: let Pℓ ← Pℓ∪Q̃ℓ, and
populate h̃ℓ[Q̃ℓ]← ansℓ. Since the online challenges involve only the indices in [3sℓ +1 : 4sℓ],
only the part h̃ℓ[3sℓ + 1 : 4sℓ] can be populated.

At the end of the T̃ ext iterations, do the following. For every non-empty ℓ, for every position
i ∈ [3sℓ + 1 : 4sℓ] where h̃ℓ[i] is correct (where the definition of correct is the same as in the
encoding algorithm of Section 8.4), populate

DBext
ℓ [Gid

ℓ [i− 3sℓ]]← h̃ℓ[i]⊕Hρ
ℓ (i, h̃ℓ[parents(i)])

where ρ = (ϕ, id), and Gid
ℓ := Gℓ(id).

• Finally, parse DBshort = {DBshort
ℓ }ℓ. For each non-empty level ℓ: call DB′

ℓ ← EC.Decode(DBext
ℓ ∪

DBshort
ℓ ), where ∪ is the following operation:

(DBext
ℓ ∪ DBshort

ℓ )[i] =
{

DBshort
ℓ [i] if DBshort

ℓ [i] ̸= ⊥
DBext

ℓ [i] o.w.

Now, from {DB′
ℓ}ℓ, reconstruct the database DBext and output the result.

Compression algorithm CA. We now define the compression algorithm.

CA(1λ, S, µ, tr ; ρ): // all random coins consumed by C come from ρ

• Replay the Initialization and Queries with A1 using the random coins contained in tr , and
obtain n, DB∗, ϕ, and stA;

• Execute EA2(stA)(1λ, n, S, µ, ϕ, _; ρ) except the final EC.Decode step, and obtain {DBext
ℓ }ℓ.

• For each non-empty level ℓ, suppose that DBext
ℓ has kℓ locations populated. Then, choose

max(0, 2ℓ − kℓ) locations that are ⊥ in DBext
ℓ , and populate those positions in DBshort

ℓ using
the correct values from DB∗

ℓ , which can in turn be computed from DB∗. All other locations in
DBshort

ℓ are set to ⊥.

• Output DBshort := {DBshort
ℓ }ℓ. We will later show that n − (1 − ϵ) · S · µ bits are sufficient for

encoding DBshort.
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Fiat-Shamir extractor EA
fs . We define another extractor that extracts a replication encoding by

reprogramming the random oracle FS used for determining the offline challenges. This extractor
EA

fs will serve as an aid in our proofs later.
EA

fs (1λ, S, µ, tr) is a randomized algorithm that works just like the extractor in our encoding
algorithm of Section 8.4 except with the following changes:

• The encoding algorithm of Section 8.4 needs to guess t∗, but here we no longer need to, and
thus we will never abort prior to entering the challenge phase.

• The encoding algorithm of Section 8.4 uses msg to determine the random oracles {Hℓ(ϕ∗, ·)}ℓ
with msg. Here, we no longer have msg, and the random oracle queries are answered as follows.
Before the extractor starts rewinding A, all random oracle queries will be answered using the
coins contained in tr . After the extractor starts rewinding A, any fresh random oracle query
will be answered using the extractor’s own internal randomness — here fresh means any random
oracle query A has not made upto the rewinded point, including the query FSℓ(ϕshard

ℓ , id) itself
for the challenge pair (ϕshard

ℓ , id) itself.

Finally, if no collisions are detected, the extractor Efs will output an array of labels hid
ℓ for each

non-empty level ℓ and each id that is a challenge identity under a tr in which A successfully answers
the audits for all µ challenge identities.

9.2 Analysis

We will consider the following experiment that is a slight modification of the experiment in Defini-
tion 1, where we additionally run the extractor Efs to aid the proof.

• b, ϕ, DB∗, stA, tr←RecvExptA(1λ, S, µ);
• {hid

ℓ }ℓ,id ← EA
fs (1λ, S, µ, tr);

• ρ
$←{0, 1}|ρ|;

• DBshort ← CA(1λ, S, µ, tr ; ρ);

• DBext ← EA2(stA)(1λ, n, S, µ, ϵ, ϕ, tr , DBshort; ρ).

Throughout the proof, we assume η ∈ (0, 1) is an arbitrarily small constant.

Claim 9.1. Lemma 8.5 still holds in the above experiment for the extractor Efs. In other words,
except with negligible probability, if A passes the audit, then for every challenge identity id, every
non-empty level ℓ, in the reconstructed label array hid

ℓ output by EA
fs , at least 1− η fraction of the

positions must be correct.

Proof. The proof is the same as the proof of Lemma 8.5, except that for Claim 8.6, we only need to
rely on the collision resistance of VC against quasi-polynomial-time adversaries, and we no longer
need to consider Hvc as a random oracle. This is because in the encoding algorithm of Section 8.4,
we cared only about bounding the number of random oracle calls made by the encoding algorithm,
but not its running time, since the encoding algorithm takes an exponentially-long random r and
msg as input. Here, however, the entire experiment is quasi-polynomially bounded.

Claim 9.2. Except with negligible probability, if the adversary passes the audit for all µ challenge
identities, then for each level ℓ, every challenge identity id will correctly populate at least (1−2η)·sℓ

positions in DBext
ℓ .
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Proof. Using almost the same (but a slightly simpler) argument as the proof of Claim 9.1, we know
that except with negligible probability, if A2(stA) passes the audit, then for each challenge id, each
ℓ, at least (1−η) ·sℓ extracted positions in each h̃id

ℓ agree with the shard commitment ϕid
ℓ submitted

by A2 in the offline challenge phase, where we use the superscript id to mean the corresponding
variables pertaining to challenge identity id. The proof is actually slightly simpler than that of
Claim 9.1 because here the challenges are sampled interactively, and we do not need to handle the
T A loss due to the Fiat-Shamir paradigm.

Henceforth, we ignore the negligible probability that for some position i, both h̃id
ℓ [i] and hid

ℓ [i]
are populated, but h̃id

ℓ [i] ̸= hid
ℓ [i] — since if this event happens, then we can construct a quasipoly-

nomial time algorithm that can find hash collisions. Due to Claim 9.1, for each id and ℓ, among the
1− η fraction of positions that agree with ϕid

ℓ , at most η fraction is incorrect. Therefore, for each
level ℓ, every challenge identity can correctly populate at least (1− 2η) · sℓ positions in DBext

ℓ .

Fix some level ℓ. Claim 9.2 shows that the extractor EA2 can populate many positions in DBext
ℓ

from each challenge identity. However, the positions populated by the different identities may have
overlap. Next, we want to show that the overlap cannot be very large. Specifically, we prove that
if the adversary is polynomially bounded, it cannot find µ number of challenge identities whose
respective sampled subsets Gℓ(id) overlap significantly.

Lemma 9.3 (Small overlap among multiple identities). Fix some level ℓ, and let η ∈ (0, 1) be
a sufficiently small constant. Suppose sℓ > ω(log λ), and the redundancy of EC is at least R ≥
(1 + η)e2/η. Then, except with negl(λ) probability, no adversary that makes at most T A = poly(λ)
number of random oracle queries can output µ identities id1, . . . , idµ, such that Gℓ(id1)∪Gℓ(id2)∪
. . . ∪Gℓ(idµ) < min

(
2ℓ, (1− η) · sℓ · µ

)
.

Proof. Henceforth, if the adversary outputs some challenge identity id but it has not queried Gℓ(id),
we simply assume that the adversary is given a query to id for free. In this way, the total number
of random oracle queries is at most T := T A + µ.

Henceforth, let nℓ = 2ℓ, let n′ = sℓ · µ, and let θ = R·nℓ
min(nℓ,(1−η)n′) where R is the redundancy

parameter of the erasure code. Given a fixed subset I ⊆ [R · nℓ] of size at most min(nℓ, (1− η)n′),
we say that some identity id falls within I iff Gℓ(id) ⊆ I. We have

Pr [at least µ queried identities fall within I] ≤
(1

θ

)n′

·
(

T

µ

)

We have that

Pr [∃I : at least µ queried identities fall within I]

≤
(1

θ

)n′

·
(

T

µ

)
·
(

R · nℓ

min(nℓ, (1− η)n′)

)

≤
(1

θ

)n′

·
(

e · T
µ

)µ

· (e · θ)(1−η)n′

≤


(1

θ

)0.5η·sℓ

·
(

eT

µ

)
︸ ︷︷ ︸

(♢)


µ

·


(1

θ

)1−0.5η

· (eθ)1−η

︸ ︷︷ ︸
(♣)


sℓ·µ
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Given that R ≥ (1 + η)e2/η and T = poly(λ), as long as sℓ = ω(log λ), we have that (⋄) is
negligibly small in λ. One can also mechanically verify that if θ ≥ e2/η, then the (♣) part is at
most 1. Further, if R ≥ (1 + η) · e2/η, then θ ≥ e2/η must be guaranteed.

Theorem 9.4 (ϵ-best-recoverability). Let ϵ ∈ (0, 1) be an arbitrarily small constant. Suppose
S = ω(log2 λ), κ = ω(log λ), and R ≥ (1+ ϵ)eO(1/ϵ). Then, our construction in Section 6.1 satisfies
ϵ-best-recoverability.

Proof. Since S = ω(log2 λ), it is possible to choose the super-constant function in slb = γ ·
2L/ω(1) log n to be sufficiently small such that sℓ = ω(log λ) for all ℓ — this condition will be
needed for invoking Lemma 9.3 below.

Recall that Claim 9.2 says that with each identity the extractor EA2 must be able to populate
many positions in DBext

ℓ . Further, by construction, for each identity id, these populated locations
must be among Gℓ(id). Imagine that we iterate through each challenge id one by one. For each
id, let ∆id be the number of locations in DBext

ℓ that can be populated by id but overlapping with
those already populated by earlier identities. Therefore, the total number of distinct populated
locations at the end is (1− 2η)sℓ · µ−

∑
id ∆id . By Lemma 9.3, with all but negligible probability,∑

id ∆id ≤ η · sℓ · µ. Therefore, combining Claim 9.2 and Lemma 9.3, we have that except with
negligible probability, given that all µ challenge identities pass the audit, the extractor must be
able to populate at least (1− 3η)sℓ · µ number of distinct locations in DBext

ℓ .
Additionally, due to Claim 9.1, the number of locations in DBext

ℓ extracted by both EA2 and
EA

fs must be at least (1 − 4η)sℓ · µ. Since we assume that VC is collision resistant against quasi-
polynomial-time adversaries, except with negligible probability, if a location in DBext

ℓ is extracted
by both EA2 and EA

fs , the extracted values must agree, and due to Claim 9.1, the extracted value
must also be correct.

Now, recall that the compression algorithm CA will simply populate sufficiently many additional
locations in DBext

ℓ to complement what EA2 can populate, such that in total, nℓ locations will be
populated for level ℓ. Based on the property of the erasure coding scheme EC, from these nℓ

locations in the encoded level, we can correctly decrypt the orginal blocks that belong to the level.
We now analyze the size of the summary DBshort output by the compressor CA. Except with

negligible probability, the number of locations CA needs to populate in a fixed level ℓ is at most
nℓ − (1− 5η)sℓ · µ. Due to our choice of {sℓ}ℓ,

|DBshort| ≤
∑

ℓ non-empty
(nℓ − (1− 5η)sℓ · µ)

≤
(∑

ℓ

nℓ

)
− (1− 5η)µ ·

(∑
ℓ

sℓ

)
≤ n− (1− 5η)µ ·

∑
ℓ non-empty, large

∑
ℓ

sℓ

≤ n− (1− 5η)µ · (1− o(1)) · S (by Fact 6.1)
≤ n− (1− 6η)µ · S

To satisfy ϵ-best recoverability, we can simply choose η = ϵ/6.
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A Achieving Polynomial-Time Extraction under Relaxed Defini-
tions

Relaxed extraction notion: weak recoverability. We now relax our best possible recoverabil-
ity notion using essentially the same relaxation adopted in prior work [HSW24a], which allows us
to get a strict polynomial-time extractor like in prior work [HSW24a].

Specifically, we modify the earlier RecvExpt experiment as follows, parametrized by some pa-
rameter τ which denotes the number of invocations per challenge identity.
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• Initialization, Queries. Same as before.

• Challenge. The adversary A specifies µ identities denoted id1, . . . , idµ, such that µ · S ≥
(1 + ϵ)n. Now, for each j ∈ [µ], the challenge invokes τ independent instances of the Audit
protocol using (crs, ϕ, idj) as input. Let Tr denote the collection of all transcripts of all µ · τ
instances of Audit.

Definition 4 (ϵ-weak-recoverability). We say that an iDDA scheme satisfies ϵ-weak-recoverability,
iff there exists some τ that is polynomially bounded in λ, and a polynomial-time extractor E such
that except with negligible probability, the following holds: if the adversary A succeeds in all
invocations of Audit in the above experiment, then E(Tr) = DB, where DB is the true cumulative
database determined by the initial database and all the updates submitted by the adversary A.

The above notion requires the adversary to succeed in all invocations of Audit for the extraction
to be successful. Like in Hall-Andersen et al. [HSW24a], we can relax this requirement on the
adversary by assuming that the adversary succeeds τ out of T invocations (called subset soundness
in their paper). Using the same argument as their Lemma 1 [HSW24a], we can show that our
ϵ-weak-recoverability for an always successful adversary implies ϵ-weak-recoverability for an τ -out-
of-T -successful adversary, with an

(T
τ

)
factor loss in the failure probability.

Proof of ϵ-weak-recoverability. Our proofs in Section 9 can be easily modified to show ϵ-weak-
recoverability with a strict polynomial-time extractor. In particular, since ϵ-weak-recoverability
cares only about extracting the entire database (and not partial information) when given suffi-
ciently many nodes that can succeed in the Audit protocol, we no longer need to worry about
the compression algorithm in the proof. Further, the original extractor E is now essentially baked
into the definition, which works by invoking the µ adversarial nodes each τ ≥ C · S/κ ≥ C · sℓ/κ
number of times where κ is the number of indices sampled for the challenge per level, and C is
a suitably large constant. However, with the new definition, the extractor is only required to be
successful if A succeeds in answering all Audit instances. Under this very strong requirement, it
is now much easier to show that Claim 9.2 still holds. Essentially, assuming that VC is secure and
no hash collisioins occur, this boils down to showing that if we sample κ · τ random challenges from
[sℓ], except with negligible probability, (1− η)sℓ fraction of the indices will be covered, where η is
a suitably small constant. Specifically, this probability is upper bounded by (1− η)C·κ·τ ·

( sℓ
(1−η)sℓ

)
.

It is not hard to see that if e · (1− η)C < 1, then this expression is upper bounded by exp(−Ω(sℓ)).
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