
Lether: Practical Post-Quantum Account-Based Private
Blockchain Payments

Hongxiao Wang

The University of Hong Kong

Hong Kong, China

hxwang@cs.hku.hk

Muhammed F. Esgin

Monash University

Melbourne, Australia

Muhammed.Esgin@monash.edu

Ron Steinfeld

Monash University

Melbourne, Australia

Ron.Steinfeld@monash.edu

Siu-Ming Yiu

The University of Hong Kong

Hong Kong, China

smyiu@cs.hku.hk

Abstract
We introduce Lether, the first practical account-based private block-
chain payment protocol based on post-quantum lattice assumptions,

following the paradigm of Anonymous Zether (FC ’19, IEEE S&P

’21). Themain challenge in building such a protocol from lattices lies

in the absence of core building blocks: unbounded-level additively-

homomorphic multi-message multi-recipient public key encryption

(mmPKE), and event-oriented linkable ring signatures with support

for multiple tags (events). To address these issues, we propose a

verifiable refreshable additively-homomorphic mmPKE scheme and

a plug-and-play event-oriented linkable tag scheme from lattices.

We believe both to be of independent interest.

To achieve unbounded-level homomorphic evaluation in the

lattice-based setting without relying on heavy techniques such as

bootstrapping or large moduli (e.g., over 60 bits) in fully homomor-

phic encryption (FHE), we introduce a lightweight and blockchain-

friendly mechanism called refresh. Namely, each user is required

to verifiably refresh their account after a certain number of trans-

actions. With our tailored parameter settings, the amortized per-

refresh costs of communication and computation are only about

1.3% and 1.5%, respectively, of the cost of a transaction.

We also optimize the implementations of LNP22 lattice-based

zero-knowledge proof system (Crypto ’22) in the LaZer library (CCS

’24), to support efficient batching of various proof components.

Overall, for a typical transaction, the total communication cost

becomes about 68 KB, with the associated zero-knowledge proof

accounting for about 51 KB of this total. Each of proof generation

and verification take a fraction of a second on a standard PC.

As an additional contribution, we formalize new definitions for

Anonymous Zether-like protocols that more accurately capture

real-world blockchain settings. These definitions are generic and

are expected to benefit the broader development of account-based

private blockchain payment protocols, beyond just lattice settings.

CCS Concepts
• Security and privacy→ Privacy-preserving protocols.

Keywords
Post-Quantum, Lattices, Zero-Knowledge, Account-Based Blockchain

1 Introduction
Rapid progress in quantum computing [10] has led to a global shift

towards post-quantum cryptography. Consequently, cryptographic

applications in blockchain systems are also being re-evaluated in the

post-quantum setting. For example, recently, the Ethereum Foun-

dation [20] is exploring the integration of post-quantum signature

schemes into the Ethereum platform.

Blockchain-based cryptocurrencies such as Bitcoin and Ethereum

enable mutually distrustful users to reach consensus on the bal-

ances and the transactions that affect them. In general, there are

two models of blockchain: the Unspent Transaction Output (UTXO)

model and the account-based model. Both models have been ex-

tensively studied for their potential to support privacy-preserving

payments, offering confidentiality and anonymity features.

In the UTXO model, many privacy-preserving blockchain pay-

ment protocols have been proposed, including ZCash [39], Mon-

ero [37] (with a series of RingCT protocols [15, 16, 27, 41, 45,

48, 49]), and Quisquis [18]. Among them, only MatRiCT [16] and

MatRiCT
+
[15] operate in the post-quantum setting, where the com-

munication cost per transaction is about 50–110 KB at an anonymity

level of 1/11.
1

On the other hand, the first privacy-preserving payment protocol

for account-based blockchains was proposed in [7], named Zether,

which provided a blueprint for achieving privacy and anonymity.

Building on this, Anonymous Zether [11] refined the underlying

zero-knowledge proof and identified potential insider attacks. To

mitigate these, they introduced a “register” phase, requiring each

user to prove the well-formedness of their public key. This line of

work has since attracted significant attention and has been extended

in multiple directions, including forward security [24] and full

anonymity [36, 38].
2
As discussed in [7, 11, 18, 24], account-based

protocols offer advantages in terms of wallet efficiency, as users
only need to maintain their private key and account information

to transact—unlike UTXO-based systems, which require scanning

the entire transaction history. Moreover, account-based protocols

1
An anonymity level of 1/𝑁 indicates that a real spender’s account is hidden within

an anonymity set of size 𝑁 .

2
However, to date, works such as [36, 38] that achieve full anonymity in account-based

blockchain payments remain largely theoretical and lack practical implementations,
even in the classical (quantum-vulnerable) setting, let alone in post-quantum settings,

due to their reliance on somewhat inefficient building blocks such as FHE, accumulators,

or complex NIZKs.



Wang et al.

support richer functionalities such as sealed-bid auctions and stake

voting, as demonstrated in [7].

To the best of our knowledge, there is currently no private pay-
ment scheme for account-based blockchains in the post-quantum
setting. As detailed below, the main reason is the lack of essential

building blocks: (i) unbounded-level additively-homomorphic multi-

message multi-recipient public key encryption (mmPKE), and (ii)

event-oriented linkable ring signatures with support for multiple

tags (events).

1.1 Paradigm of Anonymous Zether
We first recall the paradigm of Anonymous Zether [7, 11] that we

also follow. Originally, Anonymous Zether was not presented in

a modular fashion, and the core building blocks with all of their

required features were not as explicit. Here, we identify three core

components needed for Anonymous Zether andmake their required

features explicit:

• A multi-message multi-recipient public key encryption (mmPKE)
scheme [5, 26] that supports unbounded-level additive homomor-

phism, verifiable multi-encryption, and verifiable decryption.

In general, mmPKE enables the batch encryption of multiple

messages for multiple recipients in a single operation, signifi-

cantly reducing bandwidth compared to the trivial approach of

encrypting each message individually. This compactness feature

is critical in keeping the transactions efficient, particularly in the

lattice setting where ciphertexts/proofs are large.

• An event-oriented linkable ring signature [3, 43] (also known as a

prefix/scoped linkable ring signature [6, 25]) that allows signers

to anonymously produce at most one signature for each event
using their long-term private keys.

3

• A highly modular non-interactive zero-knowledge (NIZK) proof
system that integrates the verifiable mmPKE, the event-oriented

linkable ring signature, a proof that the spender’s amount equals

the recipient’s amount (i.e., a balance proof), and a proof that

spender’s post-transaction balance together with the transaction

amount lies within a valid range (i.e., a range proof).

In Anonymous Zether, the balance bal of each account is en-

crypted under the account public key pk, yielding a ciphertext

acc[pk] ← Enc(pk, bal). The ciphertext is stored on the blockchain

and can be indexed by the corresponding public key. We outline

how the spender makes a transaction as follows:

• First, the spender selects a set of public keys (pk𝑖 )𝑖∈[𝑁 ] as the
anonymity set, including her own public key pk𝑠 and the recipi-

ent’s public key pk𝑟 .
• Second, the spender performs a verifiable multi-encryption of the

amount vector as ct := (ct𝑖 )𝑖∈[𝑁 ] ← mmEnc((pk𝑖 )𝑖∈[𝑁 ] , (m𝑖 )𝑖∈[𝑁 ]),
where m𝑠 = −amt, m𝑟 = amt, m𝑖 = 0 for all 𝑖 ∈ [𝑁 ] \ {𝑠, 𝑟 },
and the amount amt ∈ [0,MAX]. The security of mmPKE en-

sures that no one—including the decoy users in the anonymity

set—can determine which ciphertext encrypts a non-zero mes-

sage, thereby preventing identification of the spender’s or recipi-

ent’s public key.

3
As shown in [46], event-oriented linkability is the most general form: by setting the

event as a fixed string, the ring, or the message, one can obtain one-time, ring-based,

or message-based linkability, respectively.

• Third, the spender proves via verifiable decryption that the up-

dated balance of her account is non-negative, i.e., 0 ≤ bal′𝑠 ←
Dec(acc[pk𝑠 ] + ct𝑠 , sk𝑠 ). This ensures that the spender is not

overdrawn, i.e., her initial balance satisfies bal𝑠 ≥ amt.
• Fourth, the spender produce an event-oriented linkable ring sig-

nature for the current epoch 𝐻 4
to anonymously authorizes the

transaction, which can be linked using a tag tag𝐻 . Specifically,
the spender must prove knowledge of her private key sk𝑠 in the

anonymity set (pk𝑖 )𝑖∈[𝑁 ] and demonstrate that the tag tag𝐻 is

correctly formed. This ensures that the spender cannot double-
spend in the current epoch 𝐻 .

• Finally, the spender outputs a proof Π attesting that all the above

conditions hold, along with the multi-recipient ciphertext ct and
the linkable tag tag𝐻 .

Once the proof Π is verified,
5
the system updates all accounts

in the anonymity set by homomorphically evaluating acc[pk𝑖 ] :=

acc[pk𝑖 ] + ct𝑖 for all 𝑖 ∈ [𝑁 ]. Here, the unbounded-level homomor-

phism property ensures that every account is updated correctly.

1.2 Existing Challenges
In attempting to build a post-quantum account-based private block-

chain payment protocol following the paradigm of Anonymous

Zether [7, 11], we identify several significant challenges, as sum-

marized below.

Challenge I: construct lattice-based unbounded-level addi-
tively homomorphicmmPKEalongwith efficient verification
mechanisms. Currently, the only existing mmPKE scheme based

on standard lattice assumptions, proposed in [44], does not support

additive homomorphism and lacks efficient mechanisms for veri-

fiable multi-encryption and decryption.
6
What’s more, generally,

lattice-based (mm)PKE schemes do not support unbounded-level
additive homomorphic evaluation without resorting to expensive

operations such as bootstrapping [21]. This limitation is inherent to

lattice-based setting, as noise accumulates with each homomorphic

operation. Moreover, the message encoding techniques employed

in lattice-based RingCT protocols [15, 16] to avoid homomorphic

evaluation are not applicable in our setting, as the spender cannot

compute the so-called “corrector" terms without knowing the recip-

ient’s balance. Therefore, designing a lattice-based mmPKE scheme

that enables unbounded-level additively-homomorphic evaluation

in an efficient manner—while also supporting efficient range proofs,

verifiable multi-encryption, and verifiable decryption—has been a

significant open problem.

4
Here, the epoch 𝐻 is the “event” of the event-oriented linkable ring signature. In

Anonymous Zether [7, 11], time is divided into epochs. To prevent front-running attacks,
each involved account, including the spender’s, is updated at the end of the epoch.

However, because the spender’s update amount is negative, to prevent double-spending
attacks within each epoch, the spender is allowed to spend at most one transaction per
epoch. This “locking” mechanism is achieved by requiring the spender to generate an

“epoch-based” linkable ring signature for each transaction. As discussed in [7, 11], with

a carefully chosen epoch length, usability is expected to remain largely unaffected. We

refer the reader to [7, 11] for further details.

5
In Anonymous Zether [7, 11], it is assumed that the proof Π is verified before the end

of the current epoch. We note that delayed validation may affect liveness; however, it

does not compromise balance correctness or enable double spending.

6
We also note that [28] proposes a lattice-based multi-message multi-recipient key

encapsulation mechanism (mmKEM) but based on non-standard lattice assumption,

named Oracle-MLWE.



Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

Blockchain
Scheme PQ

Anony. Transaction Refresh Eval. Level

Model 𝑁 |tx| |Π | 𝑡𝑝 𝑡𝑣 |ref | |𝜋 ′ | 𝑡𝑝 𝑡𝑣 𝑇

Account-Based

Lether (this paper) ✓ 16 67.8 51.1 0.53 0.34 54.9 43.8 0.42 0.32 60

Anony. Zether [11] × 16 6.0 3.7 2.50 0.15 − − − − −

UTXO-Based

MatRiCT
+
[15] ✓ 11 43.0 29.0 0.10 ≤ 0.01 − − − − −

Monero [37] × 16 2.1 2.0 0.08 0.02 − − − − −
Table 1: Summary of private blockchain payment protocols (sizes in KB, times in seconds). ‘–’ denotes not applicable. PQ indicates post-
quantum security. For the Transaction and Refresh phases, we present the communication sizes ( |tx |, |ref |), the sizes of the associated proofs
( |Π |, |𝜋 ′ |)—already included in the communication sizes—as well as the corresponding proving time 𝑡𝑝 and verification time 𝑡𝑣 . The anonymity
set size is fixed at 𝑁 = 16 (Anony.), following the current Monero [37] setting. The evaluation level for additively-homomorphic operations on
fresh or refreshed accounts is fixed at𝑇 = 60 (Eval. Level).

Challenge II: construct lattice-based event-oriented linkable
ring signatures for multiple events. To the best of our knowl-
edge, there exists no practical lattice-based event-oriented linkable

ring or group signature that supports many events (i.e., tags). The

only existing constructions support only a single event (i.e., one-

time) or a very limited number of events, as in [42], where the tag

takes the form tag := As with A ← hash(event) and the secret

s is committed in advance. The main limitation of such construc-

tions arises from the contradiction between the need for fresh

noise (to ensure indistinguishability from random values) and the

uniqueness required for tag linkability. Specifically, to argue in-

distinguishability between ℓ tags (A𝑖 · s)𝑖∈[ℓ ] and random values,

the secret s must include at least ℓ fresh noise components and be

committed in advance—leading to the linear cost with the tag/event

number, which is highly inefficient. Therefore, constructing a prac-
tical lattice-based event-oriented linkable ring or group signature

that supports multiple events remains a significant challenge.

1.3 Our Contributions
Lether: a practical post-quantumaccount-based private block-
chain payment system. In this work, we propose Lether, the
first practical post-quantum account-based private blockchain pay-

ment system based on lattice assumptions. To build such a system,

we develop two novel building blocks: (i) a verifiable refreshable

additively-homomorphic mmPKE (Ref-AH mmPKE) scheme, and

(ii) a plug-and-play event-oriented linkable tag scheme. We fur-

ther optimize the implementation of the lattice-based NIZK scheme

LNP22 [31] in the LaZer library [35] to efficiently combine these

building blocks with other proofs (e.g., range proofs). These tools

may also be of independent interest.

We emphasize that our contributions go beyond merely shift-

ing Anonymous Zether [7, 11] to the post-quantum setting. Being

the first post-quantum account-based private blockchain payment

scheme, our work also paves the way for post-quantum secure

counterparts of other practical yet quantum-vulnerable account-

based blockchain payment protocols, such as the forward-secure

variant Pride CT [24].

To accommodate the constraints of the lattice-based setting, we

introduce a lightweight refresh mechanism where each account

ciphertext (representing the account balance) periodically get re-

freshed to support indefinite number of transactions via homomor-

phic evaluations. This mechanism is particularly well-suited for

blockchain environments, providing an efficient alternative to boot-

strapping or large-modulus schemes in FHE. By a careful choice

of parameters, the amortized overhead of a refresh operation is

minimized to be below 1.5% in terms of both communication and

computation. Furthermore, we believe that under a deployment

where a sufficiently large fraction of registered accounts stay ac-

tive and periodically refresh, the refresh mechanism has negligible

impact on forming an effective anonymity set for transactions.

Optimized implementations of NIZK for Lether. We also opti-

mize the implementations of LNP22 [31] in the LaZer library [35]

that are tailored to Lether. Briefly, our optimized NIZK implementa-

tion supports batching/aggregating various proofs (e.g., verifiable

multi-encryption, integer proofs, and tag proofs). Overall, these op-

timizations reduce the proof size by about 20% and achieve roughly

a 4× speedup, compared to the original LNP22 implementation in

the LaZer library.

We provide a summary of private blockchain payment proto-

cols across both post-quantum and traditional settings in Table 1.

The number of bits supported for the balances and amounts in

Lether is fixed at 𝑘 = 32, which is the same as in (Anonymous)

Zether [7, 11] and Pride CT [24], and can be extended to 64 bits

by applying a simple transformation from [7]. Considering that

the size of post-quantum constructions is often at least an order of
magnitude larger than that of their traditional counterparts [4], we

believe that Lether is already practical for real-world applications,

particularly in terms of computational cost. We further note that

although account-based blockchain payments are a bit less efficient

than UTXO-based blockchain payments (even in the pre-quantum

setting) due to differences in their underlying techniques, the former

offers unique advantages, such as wallet efficiency and extensive

functionalities, as discussed above, which typically UTXO-based

schemes cannot provide.

We summarize our main building blocks below. For technical

overview, we refer the reader to Section 2.

Verifiable Ref-AH mmPKE. We construct the first verifiable Ref-
AH mmPKE scheme from lattices, extending the basic mmPKE

in [44]. Our scheme supports 𝑇 -level additive homomorphism,

meaning that a fresh ciphertext can undergo up to𝑇 homomorphic

additions. Here, we introduce the notion of refreshability, which



Wang et al.

Scheme Recip. 𝑁 |ct | |𝜋 | Add-Hom Dec-Ind

Cons 3.5 16 17 28 ✓ ✓
[31] 16 16 304 × ✓
[30] 16 144 144 ✓ ×

Table 2: Comparison of verifiable encryption schemes for 𝑁 = 16

recipients (Recip.). We report the sizes of the multi-recipient cipher-
text |ct | and its well-formedness proof |𝜋 | in kilobytes (KB). We
further indicate whether the schemes support additive homomor-
phism (Add-Hom) and decryption-time independent of adversary’s
runtime (Dec-Ind).

Scheme |𝜋 | Add-Hom Exa-Pro

Cons 3.7 31 KB ✓ ✓
[33] ≈ 50 KB × ✓
[22] ≥ 1 MB

∗ × ×
[2] ≈ 50 KB

† × ×
*
We choose the same security parameter, i.e. 𝜆 = 128

†
This work is distributed verifiable decryption and the undistributed version is

implied in [40]

Table 3: Comparison of verifiable decryption schemes. For a fair
comparison, we adapt other works to support unforgeability and
estimate the proof size |𝜋 | for valid decryption. We further indicate
whether the schemes support additive homomorphism (Add-Hom)
and an exact-norm proof (Exa-Pro).

allows a user to convert a fully evaluated ciphertext into a fresh one

using their private key—thereby enabling the refresh mechanism

in Lether.

We further formalize and realize three types of verifiability for

Ref-AH mmPKE: verifiable multi-encryption, verifiable decryption,
and verifiable refresh, where the resulting proof and ciphertext sizes
are the primary contributors to the transaction communication.

For verifiable multi-encryption, as shown in Table 2, our con-

struction outperforms the state-of-the-art in communication size

for 𝑁 = 16 recipients, achieving an order-of-magnitude reduction.
7

Moreover, our scheme uniquely supports both additive homomor-

phism and decryption-time independence, ensuring that cipher-

texts—including those generated by adversaries—can be additively

evaluated and subsequently decrypted efficiently by honest users.

For verifiable decryption, we introduce a new unforgeability
notion, which strengthens the standard soundness definitions in

prior work [2, 22, 33]. Informally, unforgeability ensures that no

adversary can generate two valid proofs for different decryption

outputs of the same (honestly generated) ciphertext under a legit-
imate private key. This property is missing in prior works but is

crucial in practice, particularly under lattice-based assumptions.

For example, in existing works [2, 22, 33], an adversary can use a

mismatching private key to decrypt a ciphertext, resulting in an

incorrect plaintext. Since these works do not check the validity of

the input private key during verifiable decryption, an adversary

can honestly run the decryption algorithm with a mismatching

7
Our scheme also demonstrates a similar advantage over related constructions such

as [14].

Scheme Sign. Size Event-Link Multi-Tag

Cons 3.12 + [31] 93 KB ✓ ✓
[31] 92 KB × ×
[16] 148 KB × ×
[42] 386 KB ✓ ×

Table 4: Comparison of group signature schemes for group size
over 2

20. We indicate whether the schemes support event-oriented
linkability (Event-Link) in the case of multiple tags (Multi-Tag).

key and still generate a valid proof, thereby misleading others into

accepting an incorrect plaintext.
To this end, we present a generic transformation that upgrades

existing schemes to satisfy this stronger notion by incorporating a

proof of knowledge of the private key corresponding to the associ-

ated public key. As shown in Table 3, our construction achieves at

least a 40% reduction in proof size while supporting additive homo-

morphism and exact-norm proofs for the decryption error—both

crucial for maximizing the level of homomorphic evaluations.

For verifiable refresh, we construct the scheme by combining ver-

ifiable encryption and verifiable decryption in a way that achieves

unforgeability and guarantees consistency between the input ci-

phertext and the refreshed ciphertext.

Plug-and-play event-oriented linkable tag scheme. We pro-

pose a plug-and-play event-oriented linkable tag scheme from lat-

tices that can transform most existing lattice-based ring or group

signature schemes including [13, 15, 16, 31, 32, 34, 47] to support

event-oriented linkability—the most general form of linkability (as

introduced above)—with many tags (events), and with negligible
overhead. To the best of our knowledge, no existing lattice-based

ring/group signature scheme supports such property.

We demonstrate the effectiveness of our technique by extending

the state-of-the-art lattice-based group signature scheme from [31]

to support event-oriented linkability. As shown in Table 4, our

extended scheme increases the signature size by only about 1%,

while supporting many tags.

New formal definitions for account-based private blockchain
payments. As an additional contribution, we propose new formal

definitions for account-based private blockchain payment proto-

cols. Our definitions aim to balance the complexity of real-world

blockchain systems with the abstraction required for rigorous se-

curity analysis, improving upon previous attempts [7, 11].

2 Technical Overview
In this section, we provide an overview of our techniques to address

the challenges listed in Section 1.2. We begin by showing how to

extend the basic mmPKE scheme [44] to support additive homo-

morphism and refreshability, and how to realize its verifiability

using LNP22 [31]. We then present the construction of a plug-and-

play event-oriented linkable tag scheme based on Learning with

Rounding (LWR), which is also instantiated via LNP22. Finally, we
outline how to optimize the implementations of LNP22 to efficiently

integrate these components and build the Lether system.

Ref-AH mmPKE. We start by recalling the basic mmPKE con-

struction in [44], named mmCipher. In the setup, the public matrix



Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

is sampled as A ← U(R𝑚×𝑛𝑞 ) where R𝑞 = Z𝑞 [𝑋 ]/(𝑋𝑑 + 1) and
R = Z[𝑋 ]/(𝑋𝑑 + 1). Each public key b𝑖 for 𝑖 ∈ [𝑁 ] is generated by

b𝑖 := A⊤s𝑖 + e𝑖 (2.1)

where (s𝑖 , e𝑖 ) ← U(S𝑚𝜈 ) × U(S𝑛𝜈 ) are uniformly sampled from

[−𝜈, ..., 𝜈]. To encrypt 𝑁 messages (𝑚̂𝑖 ∈ {0, 1}𝑑 ⊆ R2)𝑖∈[𝑁 ] for 𝑁
recipients with public keys (b𝑖 )𝑖∈[𝑁 ] , the multi-recipient ciphertext

(c, (𝑐𝑖 )𝑖∈[𝑁 ] ) is computed as

c := Ar + e𝑢 , (2.2)

𝑐𝑖 = ⟨b𝑖 , r⟩ + 𝑦𝑖 + ⌊𝑞/2⌉ · 𝑚̂𝑖 , (2.3)

where (r, e𝑢 ) ← D𝑛
𝜎0

× D𝑚
𝜎0

and 𝑦𝑖 ← D𝜎1
are sampled indepen-

dently from the discrete Gaussian distributions with widths 𝜎0 and

𝜎1, respectively. With suitable parameters, under MLWE assump-

tion, the adversary (even the malicious recipients) cannot break the

other recipients’ ciphertext.

For an individual ciphertext (c, 𝑐𝑖 ), decryption is computed as

⌊𝑐𝑖 − ⟨c, s𝑖⟩⌉2. Using Equations (2.1) to (2.3), we obtain:

𝑐𝑖 − ⟨c, s𝑖⟩ = ⟨−s𝑖 | |e𝑖 , e𝑢 | |r⟩ + 𝑦𝑖 + ⌊𝑞/2⌉ · 𝑚̂𝑖 , (2.4)

where | | denotes concatenation. Correctness holds when the de-

cryption error ℎ𝑖 := ⟨−s𝑖 | |e𝑖 , e𝑢 | |r⟩ + 𝑦𝑖 satisfies ∥ℎ𝑖 ∥∞ ≤ ⌊𝑞/4⌉.
The basic mmPKE [44] only supports binary messages in {0, 1}𝑑 ,

and thereby cannot satisfy additive homomorphism.

Here, we adopt a lightweight technique to address this limitation.

Without loss of generality, we first set the integermessage𝑚 (as well

as the integer used in the Lether system) satisfying𝑚 ∈ [0,MAX],
where MAX = 2

𝑘 − 1 and 32 ≤ 𝑘 ≤ 𝑑 . We then encode each integer

message 𝑚 in binary form 𝑚̂ ∈ R2 such that 𝑚 = ⟨®0𝑑−𝑘 ∥®2𝑘 , ®̂𝑚⟩,
where ®2𝑘 = (20, . . . , 2𝑘−1) and ®̂𝑚 is an integer vector consisting

of the coefficients of 𝑚̂. Next, we extend the message space to

M := {−𝑇, . . . ,𝑇 + 1}𝑑 by modifying the ciphertexts as follows:

𝑐𝑖 = ⟨b𝑖 , r⟩ + 𝑦𝑖 + ⌊𝑞/(2𝑇 + 2)⌉ · 𝑚̂𝑖 . (2.5)

Thus, the homomorphic addition can be performed in coefficient-

wise. For example,

𝑚2 = ⟨®0𝑑−𝑘 ∥ ®2𝑘 , ®̂𝑚0 + ®̂𝑚1⟩ =𝑚0 +𝑚1,

and the same principle applies to subtraction. Now, our scheme sup-

ports up to𝑇 levels of additive homomorphism with fresh/refreshed
ciphertexts, as long as the accumulated noise remains within re-

quired bounds, i.e., ∥ℎ∥∞ ≤ ⌊𝑞/(4𝑇 + 4)⌉.
Finally, while unbounded-level homomorphism cannot be achieved

due to possible message overflow and the accumulation of noise

beyond the correctness bound, we circumvent this limitation by

introducing a refresh mechanism. Roughly speaking, each recip-

ient decrypts the evaluated ciphertext to obtain 𝑚̂ ∈ R2𝑇+2, and

then decodes it to an integer message𝑚 := ⟨®0𝑑−𝑘 ∥ ®2𝑘 , ®̂𝑚⟩. Subse-
quently, the integer message𝑚 is re-encoded into binary form and

re-encrypted with fresh randomness, yielding a refreshed cipher-

text, which can again support 𝑇 levels of homomorphic evaluation.

Looking ahead to the Lether scheme, our Ref-AH mmPKE of-

fers several advantages: (i) The multi-recipient ciphertext size is

significantly smaller (e.g., only 17 KB for 𝑁 = 16 recipients). (ii)

The ciphertext has a linear structure, which enables efficient proofs

of well-formedness, especially when the modulus of the LNP22
matches that of Ref-AH mmPKE, as demonstrated later. (iii) The

encoded message format supports efficient range proofs via LNP22,
where only binary proofs are required and can be batched. (iv) Any

fresh/refreshed ciphertext (account) supports at least 𝑇 homomor-

phic evaluations with fresh ciphertexts (transactions).

Verifiability of Ref-AH mmPKE. We classify the verifiability of

Ref-AH mmPKE used in Lether system into three types: verifiable
multi-encryption, verifiable decryption, and verifiable refresh.

In our work, we employ LNP22 as a black box to achieve these

verifiability properties. At a high level, LNP22 supports proving

linear and quadratic relations over both R𝑞 and Z𝑞 with respect

to the witness. It also enables both exact and approximate range

proofs (ARP) for the ℓ2-norm of linear combinations of the wit-

ness. As shown in [31, 35] and summarized in Appendix B.3, these

capabilities can be extended to prove integers (e.g., binary bits), poly-

nomials with binary coefficients, and range proofs for ℓ∞-norms

(since ∥ · ∥2 ≥ ∥ · ∥∞). Typically, the proof size of LNP22 is linear in
both the witness size and the number of norm/range proofs.

Towards verifiable multi-encryption, we must prove that Equa-

tions (2.2) and (2.5) hold, together with the bounds

∥(r, e)∥∞ ≤ 𝛽0, ∥(𝑦1 | | · · · | |𝑦𝑁 )∥∞ ≤ 𝛽1, and 𝑚̂𝑖 ∈ {0, 1}𝑑 ⊆ R2,

where 𝛽0 and 𝛽1 are the randomness bounds determined by the

parameters of Ref-AH mmPKE scheme.

We define the witness as wit := (r, (𝑚̂𝑖 )𝑖∈[𝑁 ]) and the statement

as stat := ((b𝑖 )𝑖∈[𝑁 ] , (c, (𝑐𝑖 )𝑖∈[𝑁 ] )). After setting the modulus of

LNP22 equal to that of Ref-AH mmPKE in the implementation, we

only need to prove the relations: ∥r| | (c − Ar)∥∞ ≤ 𝛽0 and








𝑐1 − ⟨b1, r⟩ − ⌊𝑞/(2𝑇 + 2) ⌉ · 𝑚̂1

.

.

.

𝑐𝑁 − ⟨b𝑁 , r⟩ − ⌊𝑞/(2𝑇 + 2) ⌉ · 𝑚̂𝑁










∞

≤ 𝛽1 . (2.6)

As mentioned before, under this setting, commitments/witnesses

are required only for r, {𝑚̂𝑖 }𝑖∈[𝑁 ] , without requiring any other ran-

domness such as e𝑢 or {𝑦𝑖 }𝑖∈[𝑁 ] , which significantly reduces the

proof size. In particular, this design yields a proof size for verifiable

multi-encryption that is independent of the size of anonymity set

in Lether, since only𝑚𝑠 and𝑚𝑟 (for spender and recipients, respec-

tively) need to be committed, while all other messages (for decoy

accounts) are fixed to zero.

Notably, to guarantee the security of Ref-AH mmPKE, the ℓ∞-
norms of the randomness values, particularly𝑦𝑖 , are relatively large.

As a result, we cannot prove their exact ℓ2-norms. Instead, we

carefully adopt ARP to ensure soundness and correctness, and set

𝛽0 := 𝜓 ·
√︁
(𝑚 + 𝑛)𝑑 · 𝜏𝜎0 and 𝛽1 := 𝜓 ·

√
𝑁𝑑 · 𝜏𝜎1, where 𝜓 is the

relaxation factor of ARP and 𝜏 is the Gaussian tail bound. These

randomness bounds are also used to derive the decryption error

bound and the supported level of homomorphic evaluation.

Towards verifiable decryption, we need to guarantee the unique-

ness of the decrypted message under the correct private key to

ensure our stronger unforgeability notion. To achieve this, we add a

proof of knowledge of the private key corresponding to the public

key, i.e., ∥(s, b − A⊤s)∥∞ ≤ 𝜈 . This approach can be applied to

existing schemes [2, 22, 33] to enhance them with unforgeability.

To construct verifiable decryption, we prove Equation (2.4), i.e.,

𝑐 − ⟨c, s⟩ = ℎ + ⌊𝑞/(2𝑇 + 2)⌉ · 𝑚̂, (2.7)



Wang et al.

with ∥ℎ∥∞ ≤ ⌊𝑞/(4𝑇 + 4)⌉. Since the ℓ∞-norm bound on ℎ is quite

large—close to Ref-AHmmPKEmodulus—we cannot use ARP when

LNP22 shares the same modulus as Ref-AH mmPKE. Instead, we

decompose ℎ to its bits and prove the well-formedness of the bits

and the reconstruction of ℎ satisfying Equation (2.7).

Towards verifiable refresh, this construction combines verifiable

decryption and multi-encryption with a consistency check on the

message. Rather than directly revealing the decrypted message 𝑚̂

during verifiable decryption, we (i) prove that each coefficient of 𝑚̂

lies in the range [−𝑇,𝑇 + 1] using its binary decomposition b𝑚 ; (ii)

show that ⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚⟩ = ⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚′⟩ and 𝑚̂′ ∈ {0, 1}𝑑 ⊆ R2;

and (iii) use 𝑚̂′ for the subsequent verifiable encryption.
Plug-and-Play Event-Oriented Linkable Tag Scheme. In gen-

eral, the tag scheme outputs a pair (𝜋, tag), where 𝜋 is a proof of

knowledge of a private key used to generate both a public key and

a linkable tag tag for a specific event. We construct the tag scheme

from an LWR-based pseudorandom function (PRF), such as the one

in [12]. Specifically, the tag tag is defined as

v𝐻 = ⌊A𝐻 · s mod 𝑞⌋𝑝 , (2.8)

whereA𝐻 ∈ R𝑛
′×𝑚

𝑞
← hash(event) is derived from the event string,

and s is the private key from Ref-AH mmPKE in Equation (2.1). We

require that 𝜈 ≪ 𝑞 such that ∥s∥∞ ≤ 𝜈 and that 𝑝 divides 𝑞.

Regarding security, we show that: (i) the pseudorandomness of

the tag is guaranteed under the Module Learning with Rounding

(MLWR) assumption. Furthermore, as analyzed in [12], a single

private key can generate a (practically) unbounded number of tags

(e.g., more than 2
128

) for different events with suitable parameters;

(ii) the non-frameability of the tag—namely, the inability of an

adversary to produce a valid proof for another user’s tag without

knowing the corresponding private key—is ensured by the Module

Short Integer Solutions (MSIS) assumption.

Then, we outline how to prove the well-formedness of the tag

in Equation (2.8) (i.e., the proof of rounding) via LNP22. We first

rewrite Equation (2.8) as

𝑞/𝑝 · v𝐻 mod 𝑞 ≡ A𝐻 · s − e𝐻 mod 𝑞, (2.9)

where ∥(s, b − A⊤s)∥∞ ≤ 𝜈 and e𝐻 ∈ {0, . . . , 𝑞/𝑝 − 1}𝑛′𝑑 is the

rounding error.

Here, the challenge is that 𝑞 is not prime and does not match the

modulus 𝑞 of LNP22 or Ref-AH mmPKE, and therefore we cannot

directly prove this relation modulo 𝑞. To address this issue, we set

𝑞 ≪ 𝑞 and transform Equation (2.9) into the following relation over

modulus 𝑞, which is equivalent to the relation over the integers:

𝑞/𝑝 · v𝐻 − A𝐻 · s + e𝐻 + 𝑞 · v = 0,

where ∥v∥∞ ≤ ˆ𝛽 for
ˆ𝛽 := (𝑞/𝑝 · 𝑝 + 𝑑𝑚𝑞𝜈 + 𝑞/𝑝 − 1)/𝑞.

Therefore, the proof of the well-formedness of the tag is reduced

to the following conditions, which can be efficiently realized using

LNP22:
∥(−𝑞/𝑝 · v𝐻 + A𝐻 · s − e𝐻 )/𝑞∥∞ ≤ ˆ𝛽 ′, (2.10)

together with ∥(s, b − A⊤s)∥∞ ≤ 𝜈 ′ and e𝐻 ∈ {0, . . . , 𝑞/𝑝 − 1}𝑛′𝑑 ,
where

ˆ𝛽 ′ :=𝜓
√
𝑛′𝑑 ˆ𝛽 and 𝜈 ′ :=𝜓

√︁
(𝑚 + 𝑛)𝑑𝜈 are the corresponding

ℓ2-norm bounds,
8
and𝜓 is the relaxation factor of ARP.

8
As in our verifiable multi-encryption, we use ℓ2-norms to bound ℓ∞-norms, i.e.,

∥ · ∥2 ≥ ∥ · ∥∞ during the proof.

Looking ahead to the Lether system, with carefully chosen pa-

rameters, we can batch the ARP for Equation (2.10) into the ARP

for Equation (2.6) as follows:








𝑐1 − ⟨b1, r⟩ − ⌊𝑞/(2𝑇 + 2) ⌉ · 𝑚̂1

.

.

.

𝑐𝑁 − ⟨b𝑁 , r⟩ − ⌊𝑞/(2𝑇 + 2) ⌉ · 𝑚̂𝑁

(−𝑞/𝑝 · v𝐻 + A𝐻 · s − e𝐻 )/𝑞










∞

≤ 𝛽 ′,

where the new bound satisfies 𝛽 ′ ≈
√︃

ˆ𝛽 ′2 + 𝛽2

1
. Moreover, we set

𝑞/𝑝 := 2 to reduce the range proof of e𝐻 to binary proofs. These

optimizations allow the well-formedness of the linkable tag to be

proven at essentially no additional cost, without affecting the se-

curity or usability of either the tag scheme or other components;

hence, we refer to our tag scheme as “plug-and-play”.

Building Lether via optimized implementations of LNP22. At
a high level, Lether follows the paradigm of Anonymous Zether [7,

11], combining our verifiable Ref-AH mmPKE with event-oriented

linkable ring signature, unified through our optimized implementa-

tions of LNP22. The overall structure of the system is as follows.

Each user generates a public-private key pair (b, s) for Ref-AH
mmPKE and registers in the system by submitting (b, 𝜋), where
𝜋 is a proof of knowledge of the private key s corresponding to b,
generated using LNP22.

Each account (u, 𝑣), indexed by the associated public key b, is
initialized with balance 𝑚 = 0 or funded with an amount 𝑚 ∈
[0,MAX] as an individual ciphertext:

u := Ar + e𝑢 , 𝑣 := ⟨b, r⟩ + 𝑦 + ⌊𝑞/(2𝑇 + 2)⌉ · (𝑚̂ +𝑇𝑑 ),

where 𝑚̂ ∈ R2 is a binary polynomial satisfying ⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚⟩ =𝑚,

and 𝑇𝑑 is a shift offset, i.e., a polynomial whose coefficients are all

equal to𝑇 . For compatibility, we shift the message space of Ref-AH

mmPKE from {−𝑇, . . . ,𝑇 + 1}𝑑 to {0, . . . , 2𝑇 + 1}𝑑 by adding 𝑇𝑑 to

the encoded balance.

To transact an amount𝑚 ∈ [0,MAX], the spender first selects
𝑁 public keys (b𝑖 )𝑖∈[𝑁 ] , including her own public key b𝑠 , the
recipient’s public key b𝑟 , and additional decoy accounts’ public

keys (b𝑖 )𝑖∈[𝑁 ]\{𝑟,𝑠 } , forming an anonymity set that hides both the

spender’s and the recipient’s identities.

The spender then selects two binary indicator vectors b(s) , b(r) ∈
{0, 1}𝑁 ⊂ Z𝑁

𝑞 , where 𝑏
(s)
𝑠 = 1, 𝑏

(r)
𝑟 = 1, and all other entries are set

to zero. These indicator vectors are used to index the spender and

recipient in the transaction proof. Accordingly, the spender must

prove the well-formedness of these vectors, namely that they are

binary integer vectors whose entries sum to 1.

Subsequently, the spender verifiably multi-encrypts the amount

𝑚 into a multi-recipient ciphertext (c, (𝑐𝑖 )𝑖∈[𝑁 ]) for (b𝑖 )𝑖∈[𝑁 ] via
Ref-AH mmPKE, where c := Ar + e𝑢 and for 𝑖 ∈ [𝑁 ],

𝑐𝑖 := ⟨b𝑖 , r⟩ + 𝑦𝑖 + ⌊𝑞/(2𝑇 + 2)⌉ · (𝑏 (r)
𝑖
− 𝑏 (s)

𝑖
) · 𝑚̂. (2.11)

Here, 𝑚̂ ∈ R2 satisfies ⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚⟩ =𝑚.

This construction induces a quadratic relation among the wit-

nesses b(s) , b(r) , and 𝑚̂. Each message of 𝑐𝑖 is defined as 𝑚̂𝑖 :=

(𝑏 (r)
𝑖
−𝑏 (s)

𝑖
)·𝑚̂, which guarantee balance correctness, i.e.,𝑚̂𝑠+𝑚̂𝑟 = 0

and 𝑚̂𝑖 = 0 for all 𝑖 ∈ [𝑁 ] \ {𝑠, 𝑟 }, even including the special case

𝑠 = 𝑟 (i.e., the spender is the recipient).



Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

To prevent overdraft attacks, the spender must further provide a

verifiable decryption showing that the resulting balance 𝑚̂′ of her

account, computed as

∑𝑁
𝑖=1

𝑏
(s)
𝑖
· (u𝑖 + c, 𝑣𝑖 +𝑐𝑖 ), is non-negative, i.e.,

⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚′ − ®𝑇𝑑 ⟩ ∈ [0,MAX] and 𝑚̂′ ∈ [0, 2𝑇 + 1]𝑑 .
Finally, to authorize the transaction and prevent double-spending

attacks, the spender generates an event-oriented (epoch-based)

ring signature, proving knowledge of the private key s𝑠 corre-

sponding to the public key

∑𝑁
𝑖=1

𝑏
(s)
𝑖
· b𝑖 , together with the well-

formedness of the linkable tag v𝐻 := ⌊A𝐻 · s𝑠 mod 𝑞⌋𝑝 , where
A𝐻 ← hash(Lether ∥𝐻 ) and𝐻 denotes the current epoch obtained

from the blockchain state.

To manage additive homomorphism depth, the system maintains

a counter for each account, tracking the number of transactions

since its last refresh or initialization. Once the counter reaches

𝑇 , subsequent transactions are suspended until the user performs

a verifiable refresh, after which the counter is reset. We provide

implementation details in Section 4.2.

3 Novel Building Blocks of Lether
In this section, we develop the novel building blocks of Lether,

including a verifiable Ref-AH mmPKE scheme and a plug-and-play

event-oriented linkable tag scheme. Due to space constraints, we

defer the full preliminaries to Appendix B.

Preliminaries. Let [𝑛] = {1, . . . , 𝑛} and R𝑞 = Z𝑞 [𝑋 ]/(𝑋𝑑 + 1).
Bold lowercase/uppercase letters denote vectors/matrices over R𝑞
(e.g., A ∈ R𝑚×𝑛𝑞 ). For a ∈ R𝑚𝑞 , we let ®𝑎 ∈ Z𝑚𝑑

𝑞 denote its coefficient

embedding. We use ⟨·, ·⟩ for the inner product and ∥ · ∥2, ∥ · ∥1, ∥ · ∥∞
for the usual norms (applied coefficient-wise to polynomial ele-

ments/vectors). We write 𝑥 := 𝑦 for assignment and 𝑥 ← D for

sampling. We useU(S𝜈 ) to denote the uniform distribution over

S𝜈 := {−𝜈, . . . , 𝜈} (or {0, . . . , 𝜈} when a support 0 < 𝜈 ≤ 2𝜈 + 1 is

specified), and D𝜎 to denote the discrete Gaussian distribution. We

write ⌊·⌉ for rounding. We use standard encoding/decoding oper-

ators as in the lattice literature. In particular, an integer message

is encoded as a binary polynomial in R2 via a deterministic map

BinPoly(·), and a polynomial element is encoded as a binary poly-

nomial vector in R2 via a deterministic map Bit(·); both encodings

can be decoded using the corresponding gadget vector.

Lattice assumptions.We rely on standard lattice hardness assump-

tions, including MLWE, MLWR, and MSIS, as well as Matrix Hint-
MLWE. At a high level, Matrix Hint-MLWE models leakage/hints

of the secret through a sampled matrix and admits reductions from

standard MLWE under appropriate parameter choices.

LNP22 interface.Weuse LNP22 = (LNP22.Setup, LNP22.P, LNP22.V)
as a black-box lattice-based NIZK proof system for proving and

verifying relations 𝑅 in this paper. We rely on the completeness,

knowledge soundness, and simulatability guarantees established in

LNP22 [31].

3.1 Verifiable Ref-AH mmPKE
We propose the first lattice-based verifiable Ref-AHmmPKE scheme.

Compared to the basic mmPKE [44], we additionally introduce the

properties of additive homomorphism, refreshability, and verifiabil-

ity. The syntax of Ref-AH mmPKE is defined below, and the formal

security properties are deferred to Appendix C.1.

Definition 3.1 (Ref-AH mmPKE). A Ref-AH mmPKE scheme with

a public-private key pair space K , a message spaceM, a multi-

recipient ciphertext space C, and an individual ciphertext space Cs
consists of the following algorithms.

• ppEnc ← mmSetup(1𝜆, 𝑁 ): On input a security parameter 1
𝜆

and a recipient number 𝑁 , it outputs a public parameter ppEnc
(which is an implicit input to all remaining algorithms).

• (pk, sk) ← mmKGen(): It outputs a public-private key pair

(pk, sk) ∈ K .
• ct := (ĉt, (ĉt𝑖 )𝑖∈[𝑁 ]) ← mmEnc((pk𝑖 )𝑖∈[𝑁 ] , (m𝑖 )𝑖∈[𝑁 ] ; r, (r𝑖 )𝑖∈[𝑁 ])

: On input 𝑁 public keys (pk𝑖 )𝑖∈[𝑁 ] , 𝑁 messages (m𝑖 )𝑖∈[𝑁 ] ,
(𝑁 + 1) randomnesses r, (r𝑖 )𝑖∈[𝑁 ] , it outputs the multi-recipient

ciphertext ct := (ĉt, (ĉt𝑖 )𝑖∈[𝑁 ] ).
• ct𝑖 := (ĉt, ĉt𝑖 )/⊥ ← mmExt(𝑖, ct): On input a multi-recipient

ciphertext ct ∈ C, and an index 𝑖 ∈ [𝑁 ], it deterministically

outputs the individual ciphertext ct𝑖 ∈ Cs or a symbol ⊥ to

indicate extraction failure.

• m/⊥ ← mmDec(sk, ct): On input a private key sk, and an in-

dividual ciphertext ct ∈ Cs, it outputs a message m ∈ M or a

symbol ⊥ to indicate decryption failure.

• ct′/⊥ ← mmRef (pk, sk, ct): On input a public-private key pair

(pk, sk), and an individual ciphertext ct ∈ Cs, it outputs a re-

freshed individual ciphertext ct′ ∈ Cs or a symbol ⊥ to indicate

refresh failure.

Correctness requires that ciphertexts decrypt correctly for all

intended recipients. Chosen-plaintext security (CPA) guarantees

security even in the presence of corrupted recipients. Additive

homomorphism enables ciphertexts to be combined to obtain an en-

cryption of the sum of the underlying messages, while refreshability

enables ciphertext re-randomization without affecting decryption.

The lattice-based constructions of Ref-AHmmPKE are as follows.

Construction 3.2 (Ref-AHmmPKE). Let 𝜆 be a security parameter.

Let 𝑚,𝑛,𝑑, 𝑞, 𝑁 , 𝜈,𝑇 be positive integers. Let 𝜎0, 𝜎1 be Gaussian

widths. For the message spaceM = [0, 2𝑘 − 1], our refreshable
𝑇 -level additively-homomorphic mmPKE is shown in Algorithm 1.

mmExt is defined by picking (c, 𝑐𝑖 ) from (c, (𝑐𝑖 )𝑖∈[𝑁 ]).
Our Ref-AH mmPKE scheme shares the same correctness and

security analysis as [44]
9
; we therefore only state the following

lemmas. Additive homomorphism and refreshability are also easy

to realize. In particular, for appropriate parameter settings (i.e.,

when the accumulated noise remains within bounds), our Ref-AH

mmPKE supports additive homomorphism for at least 𝑇 levels.

Lemma 3.3 (Correctness). Let e𝑖 , s𝑖 , r, e𝑢 , 𝑦𝑖 be random variables
that have the corresponding distribution as in Construction 3.2. Denote
𝜁 :=

∑
𝑖∈[𝑁 ] Pr

[
∥⟨e𝑖 , r⟩ + 𝑦𝑖 − ⟨s𝑖 , e𝑢⟩∥∞ ≥ ⌊𝑞/(4𝑇 + 4)⌉

]
. We say

our Ref-AH mmPKE in Construction 3.2 is 𝜁 -correct.

Lemma 3.4 (Security). Define the distribution 𝜒 :=U(S𝜈 ), 𝜒0 :=

DZ(𝑚+𝑛+1)𝑑 ,
√
Σ1

, and 𝜒1 :=DZ𝑁𝑑 ,
√
Σy
, where Σ1 =

(
𝜎1𝐼𝑑 0
0 𝜎0𝐼 (𝑚+𝑛)𝑑

)
,

Σy = 𝜎1𝐼𝑁𝑑 . Define the distributionS such that thematrixR← S can
be sampled as R = ( 0⊤, −(s0 | | · · · | |s𝑁 −1 )⊤, (e0 | | · · · | |e𝑁 −1 )⊤ ) ∈
R𝑁×(1+𝑚+𝑛) where s𝑖 ←U(S𝑛𝜈 ), e𝑖 ←U(S𝑚𝜈 ) for each 𝑖 ∈ [𝑁 ]. Our
Ref-AH mmPKE in Construction 3.2 is mmIND-CPAKOSK secure un-
derMLWER,𝑛,𝑚,𝑞,𝜒 andMatrixHint-MLWE𝑁,𝜒1,S

R,𝑚,𝑛,𝑞,𝜒0

assumptions.

9
The analysis is obtained by combining that of extended reproducible PKE with the

mmPKE compiler.



Wang et al.

Algorithm 1 Ref-AH mmPKE

1: procedure mmSetup(1𝜆, 𝑁 )
2: A←U(R𝑚×𝑛𝑞 )
3: return ppEnc := A
4: end procedure

5: procedure mmKGen()
6: s, e←U(S𝑚𝜈 ) × U(S𝑛𝜈 )
7: b := A⊤s + e
8: return (pk := b, sk := s)
9: end procedure

10: procedure mmEnc((pk𝑖 = b𝑖 )𝑖∈[𝑁 ] , (m𝑖 =𝑚𝑖 ∈ Z2
𝑘 )𝑖∈[𝑁 ] )

11: r, e𝑢 ← D𝑛
𝜎0

× D𝑚
𝜎0

12: c := Ar + e𝑢
13: for all 𝑖 ∈ [𝑁 ]
14: 𝑦𝑖 ← D𝜎1

15: 𝑚̂𝑖 ∈ R2 ← BinPoly(𝑚𝑖 )
16: 𝑐𝑖 := ⟨b𝑖 , r⟩ + 𝑦𝑖 + ⌊𝑞/(2𝑇 + 2)⌉ · 𝑚̂𝑖

17: end for
18: return ct := (c, (𝑐𝑖 )𝑖∈[𝑁 ])
19: end procedure

20: procedure mmDec(ct = (c, 𝑐), sk = s)
21: 𝑚̂ ← ⌊𝑐 − ⟨c, s⟩⌉2𝑇+2

22: return m := ⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚⟩
23: end procedure

24: procedure mmRef (ct = (c, 𝑐), (pk, sk) = (b, s))
25: 𝑚 ← mmDec((c, 𝑐), s)
26: return ct′ := (c′, 𝑐′) ← mmEnc(b,𝑚)
27: end procedure

We then use LNP22 as a black-box NIZK to realize the three

types of verifiability supported by our Ref-AH mmPKE : verifiable

multi-encryption, verifiable decryption, and verifiable refresh.

Verifiable multi-encryption for mmPKE. The verifiable multi-

encryption for (Ref-AH) mmPKE is a batched verifiable encryption

that offers significant savings in both bandwidth and computation,

compared to the naive approach of applying separate PKE and NIZK

for each recipient. As in standard verifiable encryption, it produces

a proof 𝜋 to guarantee the well-formedness of the multi-recipient

ciphertext ct.
In general, a verifiable (multi-)encryption scheme must satisfy

three properties: completeness, simulatability, and soundness. Com-

pleteness requires that any honestly generated ciphertext and its

proof, is always accepted by the verifier. Simulatability ensures the

existence of a simulator such that no adversary can distinguish

between real and simulated ciphertext. Soundness guarantees that

no adversary can convince the verifier of an invalid ciphertext. We

defer the formal definition of soundness to Appendix C.1.

We present the constructions of verifiable multi-encryption for

(Ref-AH) mmPKE as follows.

Construction 3.5 (Verifiable Multi-Encryption for mmPKE). Suppose

the (Ref-AH) mmPKE shares the modulus with LNP22. After gen-
erating the multi-recipient ciphertext (c, (𝑐𝑖 )𝑖∈[𝑁 ]) using mmEnc(
(b𝑖 )𝑖∈[𝑁 ] , (𝑚𝑖 )𝑖∈[𝑁 ] ; (r, e𝑢 ), (𝑦𝑖 )𝑖∈[𝑁 ] ), the prover takes as input

the witness wit := ((𝑚̂𝑖 )𝑖∈[𝑁 ] , r) where each 𝑚̂𝑖 ← BinPoly(𝑚𝑖 )
denotes the binary decomposition of message𝑚𝑖 for all 𝑖 ∈ [𝑁 ],
and the statement stat := (A, (b𝑖 )𝑖∈[𝑁 ] , (c, (𝑐𝑖 )𝑖∈[𝑁 ])). The proof is
generated as 𝜋 ← LNP22.P(𝑅enc, stat,wit) and verified by 0/1←

LNP22.V(𝑅enc, stat, 𝜋), where the proof relation 𝑅enc is defined as

follows:

𝑅enc =



(A, (b𝑖 )𝑖∈ [𝑁 ] , (c, (𝑐𝑖 )𝑖∈ [𝑁 ] ) ) ; ( (𝑚̂𝑖 )𝑖∈ [𝑁 ] , r) :



 r
c − Ar






∞
≤ 𝜓 · 𝛽0,









𝑐1 − ⟨b1, r⟩ − ⌊ 𝑞

2𝑇+2
⌉ · 𝑚̂1

.

.

.

𝑐𝑁 − ⟨b𝑁 , r⟩ − ⌊ 𝑞

2𝑇+2
⌉ · 𝑚̂𝑁










∞

≤ 𝜓 · 𝛽1,

(𝑚̂1 | | · · · | |𝑚̂𝑁 ) ∈ {0, 1}𝑁𝑑


, (3.1)

where 𝜓 is the relaxation factor, and 𝛽0 =
√︁
(𝑚 + 𝑛)𝑑 · 𝜏𝜎0, 𝛽1 =√

𝑁𝑑 · 𝜏𝜎1 with Gaussian tail bound factor 𝜏 .

Its completeness and simulatability follow directly from those of

LNP22. We establish its soundness through the following lemma

and defer its proof to Appendix C.1.

Lemma 3.6 (Soundness in Verifiable Multi-Encryption). Suppose
LNP22 is knowledge sound. Then, our verifiable multi-encryption
in Construction 3.5 is sound if the probability

∑
𝑖∈[𝑁 ] Pr[ ∥⟨e𝑖 , r̄⟩ +

𝑦𝑖 − ⟨s𝑖 , ē𝑢⟩∥∞ ≥ ⌊𝑞/(4𝑇 + 4)⌉ ] is negligible, where (e𝑖 , s𝑖 ) is the
private key in mmPKE and (r̄, ¯𝑚̂𝑖 ) is the extracted witness along with
ē𝑢 := c − Ar̄, 𝑦𝑖 := 𝑐𝑖 − ⟨b𝑖 , r̄⟩ − ⌊𝑞/(2𝑇 + 2)⌉ · ¯𝑚̂𝑖 .

Verifiable decryption for mmPKE. The verifiable decryption for

(Ref-AH) mmPKE follows the same structure as that for standard

PKE. Here, we introduce a stronger security, called unforgeabil-
ity, which enhances the original soundness. Briefly, unforgeability

guarantees the uniqueness of the decrypted message𝑚 under the

correct private key. We defer its formal definition to Appendix C.1.

Here, its completeness requires that a proof generated for an

honestly decrypted message is always accepted. Its simulatability

ensures the existence of a simulator such that no adversary can

distinguish between real and simulated decrypted messages.

We present the constructions of verifiable decryption as follows.

Construction 3.7 (Verifiable Decryption for mmPKE). Suppose

the (Ref-AH) mmPKE shares the modulus with LNP22. Suppose
𝜈 = 1, 𝜈 = 2. After decrypting the individual ciphertext (c, 𝑐) under
the public key b using mmDec((c, 𝑐), s) to the encoded message 𝑚̂

and obtain the decryption error ℎ := 𝑐 − ⟨c, s⟩ − ⌊𝑞/(2𝑇 + 2)⌉ · 𝑚̂,

the prover takes as input the witness wit := (s, bℎ) and the state-

ment stat := (A, b, (c, 𝑐), 𝑚̂), where bℎ ← Bit(ℎ) is the coefficient-

wise binary decomposition of ℎ. The proof is generated as 𝜋 ←
LNP22.P(𝑅dec, stat,wit) and verified by 0/1← LNP22.V(𝑅dec, stat, 𝜋),
where the proof relation 𝑅dec is defined as follows:

𝑅
dec

=


(A, b, (c, 𝑐 ), 𝑚̂) ; (s, bℎ ) :

𝑐 − ⟨c, s⟩ − ⌊𝑞/(2𝑇 + 2) ⌉ · 𝑚̂ =
∑︁
𝑖∈ [𝑜 ]

𝛿𝑖 · 𝑏 (𝑖 )ℎ
,

(s | | (b − A⊤s) | |bℎ ) ∈ {0, 1} (𝑚+𝑛+𝑜 ) ·𝑑


(3.2)

where𝑜 = ⌈log(⌊𝑞/(4𝑇+4)⌉)⌉, bℎ = (𝑏 (1)
ℎ

, ..., 𝑏
(𝑜 )
ℎ
),𝜹 = (𝛿1, 𝛿2, ..., 𝛿𝑜 ) =

(20, 21, ..., ⌊𝑞/(4𝑇 + 4)⌉ − 2
⌊log(𝑞/(4𝑇+4)−1) ⌋).

The completeness and simulatability of our verifiable decryption

follow directly from those of LNP22. We establish its unforgeability

through the following lemma and defer its proof to Appendix C.1.

Lemma 3.8 (Unforgeability in Verifiable Decryption). Suppose
LNP22 is knowledge sound. Then, our verifiable decryption in Con-
struction 3.7 is unforgeable ifMSISR,𝑚,(𝑚+𝑛),𝑞,𝜈 assumption is hard.



Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

Verifiable Refresh for mmPKE. After at most𝑇 additively homo-

morphic evaluations, one can decrypt a ciphertext (c, 𝑐) to obtain

the message𝑚, and then re-encrypt it into a fresh ciphertext (c′, 𝑐′)
using fresh randomness (r′, e′𝑢 ) ← D𝑛

𝜎0

× D𝑚
𝜎1

. Informally, verifi-

able refresh ensures that the message embedded in the refreshed

ciphertext is identical to that in the evaluated ciphertext, and that

the randomness used in the refreshed ciphertext is fresh (i.e., short).

The completeness of verifiable refresh requires that a proof for

an honestly refreshed ciphertext is always accepted. Simulatability

guarantees the existence of a simulator whose output is indistin-

guishable from a real refreshed ciphertext. Unforgeability ensures

the well-formedness of the refreshed ciphertext and the consistency

of the underlying messages. The formal definition of unforgeability

is deferred to Appendix C.1.

Construction 3.9 (Verifiable Refresh for mmPKE). Suppose the

(Ref-AH) mmPKE shares the modulus with LNP22. Suppose 𝜈 = 1

and 𝜈 = 2. The verifiable refresh is shown in Algorithm 2. The

proof is verified by 0/1← LNP22.V(𝑅ref, stat, 𝜋), where the proof
relation 𝑅ref is defined as follows:

𝑅
ref

=



stat = (A, b, (c, 𝑐 ), (c′, 𝑐′ ) ) ;
wit = (s, r′, 𝑚̂, 𝑚̂′, b𝑚, bℎ ) :

𝑐 − ⟨c, s⟩ − ⌊𝑞/(2𝑇 + 2) ⌉ · 𝑚̂ =
∑︁
𝑖∈ [𝑜 ]

𝛿𝑖𝑏
(𝑖 )
ℎ

,



 r′
c′ − Ar′






∞
≤ 𝜓 · 𝛽0,

∥𝑐′ − ⟨b, r′ ⟩ − ⌊𝑞/(2𝑇 + 2) ⌉ · (𝑚̂′ +𝑇𝑑 ) ∥∞ ≤ 𝜓 · 𝛽1,

⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚 − ®𝑇𝑑 ⟩ = ⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚′ ⟩,

𝑚̂ =
∑︁

𝑖∈ [𝑜′ ]
𝛿 ′𝑖 · 𝑏

(𝑖 )
𝑚 ,

bin ∈ {0, 1} (𝑚+𝑛+𝑜′+𝑜+1)𝑑



(3.3)

where𝜓 is the relaxation factor, bin := (s ∥ (b−A⊤s) ∥ b𝑚 ∥ bℎ ∥ 𝑚̂′),
b𝑚 = (𝑏 (1)𝑚 , . . . , 𝑏

(𝑜′ )
𝑚 ), and 𝜹 ′ = (𝛿 ′

1
, 𝛿 ′

2
, . . . , 𝛿 ′

𝑜′ ) = (1, 2, . . . , 2𝑇 +2−
2
⌊log(2𝑇+1) ⌋). Moreover, 𝛽1 is defined as in Equation (3.1), while 𝜹

and bℎ are defined as in Equation (3.2).

To fit the Lether setting, as discussed in Section 2, the message

space is defined asM = [0, . . . , 2𝑘 − 1], and the encoding space

is shifted from {−𝑇, . . . ,𝑇 + 1}𝑑 to {0, . . . , 2𝑇 + 1}𝑑 by adding the

constant offset 𝑇𝑑 . Thus, we modify the message/encoding-related

part of the proof relation 𝑅ref.

Algorithm 2 VRefresh

Input: pk = b, sk = s, ct = (c, 𝑐)
1: 𝑚̂ := ⌊𝑐 − ⟨c, s⟩⌉2𝑇+2

2: ℎ := 𝑐 − ⟨c, s⟩ − ⌊𝑞/(2𝑇 + 2)⌉ · 𝑚̂
3: b𝑚 ← Bit(𝑚̂)
4: bℎ ← Bit(ℎ)
5: 𝑚 := ⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚 − ®𝑇𝑑 ⟩
6: 𝑚̂′ ← BinPoly(𝑚)
7: (r′, e′𝑢 ) ← D𝑛

𝜎0

× D𝑚
𝜎0

8: 𝑦′ ← D𝜎1

9: c′ := Ar′ + e′𝑢
10: 𝑐′ := ⟨b, r′⟩ + 𝑦′ + ⌊𝑞/(2𝑇 + 2)⌉ · (𝑚̂′ +𝑇𝑑 )
11: 𝜋 ′ ← LNP22.P(𝑅ref, stat,wit) where 𝑅ref is defined in Equation (3.3)

12: return ref := (ct′ := (c′, 𝑐′), 𝜋 ′)

Its completeness and simulatability follow directly from those

of LNP22. We establish its unforgeability through the following

lemma and defer its proof to Appendix C.1.

Lemma 3.10 (Unforgeability in Verifiable Refresh). Suppose LNP22
is knowledge sound. Then, our verifiable refresh in Construction 3.9
is unforgeable if MSISR,𝑚,(𝑚+𝑛),𝑞,𝜈 assumption is hard and the prob-
ability Pr[ ∥⟨e, r̄′⟩ + 𝑦′ − ⟨s, ē′𝑢⟩∥ ≥ ⌊𝑞/(4𝑇 + 4)⌉ ] is negligible,
where (e, s) is the private key in mmPKE and (r̄′, ¯𝑚̂′) is the extracted
witness along with ē′𝑢 := c′−Ar̄′,𝑦′ := 𝑐′−⟨b, r̄′⟩− ⌊𝑞/(2𝑇 +2)⌉ · ¯𝑚̂′.

3.2 Event-Oriented Linkable Tag
In this subsection, we propose the first plug-and-play event-oriented
linkable tag scheme based on lattices. Our construction directly

enables a lattice-based event-oriented ring signature for Lether,

where the private key is derived from our Ref-AH mmPKE. We

present the details of this ring signature in the next section and

define the syntax of our tag scheme below.

Definition 3.11 (Tag Scheme). A tag scheme with a public-private

key pair spaceK , a tag space T consists of the following algorithms.

• (pptag, pk, sk) ← Setup(1𝜆) : On input a security parameter, it

outputs a public parameter (which is an implicit input to other

algorithms) and a public-private key pair.

• tag← TagGen(sk, event): On input a private key and an event

string, it outputs the linkability tag.

• 0/1 ← Link(tag, tag′) : On input two tags, it outputs 1 if they

are linked, and 0 otherwise.

• 𝜋 ← Prove(pk, tag, event, sk) : On input the statement and wit-

ness, it proves knowledge of a private key that was used to create

both a linkable tag for a specific event and a public key.

• 0/1 ← Verify(pk, tag, event, 𝜋) : On input the statement and

proof, it outputs 1 if the proof is valid, and 0 otherwise.

Following [6], we model the tag proof algorithm Prove as a sig-
nature of knowledge and omit the signed message for simplicity.

In general, a signature of knowledge should satisfy completeness,
simulatability, and extractability. Completeness requires that any

honestly generated signature on a statement with a valid witness is

always accepted. Simulatability ensures that there exists a simulator

whose output is computationally indistinguishable from real signa-

tures. Extractability requires an efficient extractor that can extract

a witness from any accepting signature. For formal definitions of

these properties, we refer the reader to [6, 8] for details.

We further formalize additional security properties for our tag

scheme, namely event-oriented linkability,multi-tag anonymity, and
non-frameability, adapted from [25]. Event-oriented linkability re-

quires that any two valid tags generated by the same user for the

same event are publicly linkable, while tags generated for differ-

ent events remain unlinkable. Multi-tag anonymity ensures that,

even given many tags generated across different events, no adver-

sary can determine which user generates a particular tag, beyond

what is trivially revealed by linkability within the same event. Non-

frameability guarantees that no adversary can produce a valid tag

that is linkable to an honest user’s tag for a given event without pos-

sessing the corresponding private key. In particular, we explicitly

capture anonymity in the setting where many tags are generated
for different events. We defer these formal definitions of tag scheme

in Appendix C.2.

Then, using LNP22 as a black-box NIZK proof system, we con-

struct our tag scheme for our Ref-AH mmPKE as follows.



Wang et al.

Construction 3.12 (Tag Scheme for mmPKE). Let mmKGen be a

sub-algorithm of Ref-AH mmPKE scheme. Suppose 𝜈 = 1 and 𝜈 = 2.

Suppose 𝑝 divides 𝑞 and 𝑞/𝑝 = 2. Suppose 𝑞 ≪ 𝑞, where 𝑞 is the

modulus for LNP22 and Ref-AH mmPKE.

• Setup(1𝜆): It outputs a hash function hash : {0, 1}∗ → R𝑛′×𝑚
𝑞

(modeled as a random oracle in the security analysis) and a

private-public key pair (b, s) ← mmKGen().
• TagGen(s, event): It outputs a linkable tag v𝐻 := ⌊A𝐻 ·s mod 𝑞⌋𝑝 ,

where A𝐻 ← hash(event).
• Link(v, v′): It outputs 1 if v𝐻 = v′

𝐻
, and 0 otherwise.

• Prove and Verify: On input the witness wit := (s, e𝐻 ), where
e𝐻 := A𝐻 · s − 𝑞/𝑝 · v𝐻 mod 𝑞 is the rounding error, and the

statement stat := (A𝐻 , b, v𝐻 ), the tag proof is generated by 𝜋 ←
LNP22.P(𝑅tag, stat,wit) and verified by 0/1← LNP22.V(𝑅tag, stat,
𝜋), where the proof relation 𝑅tag is defined as:

𝑅tag =


(A𝐻 , b, v𝐻 ) ; (s, e𝐻 ) :

∥ (𝑞/𝑝 · v𝐻 + e𝐻 − A𝐻 · s)/𝑞 ∥∞ ≤ 𝜓 · 𝛽,

(s | | (b − A⊤s) | |e𝐻 ) ∈ {0, 1} (𝑚+𝑛+𝑛
′ )𝑑

 (3.4)

where𝜓 is the relaxation factor, and 𝛽 =
√
𝑛′𝑑 · (𝑑𝑚𝑞𝜈 + 𝑞/𝑝 −

1 + 𝑞/𝑝 · 𝑝)/𝑞.
As discussed in Section 2, we prove the rounding relation v𝐻 =

⌊A𝐻 · s mod 𝑞⌋𝑝 by showing ∥(𝑞/𝑝 · v𝐻 + e𝐻 −A𝐻 · s)/𝑞∥∞ ≤ 𝜓 · 𝛽
via LNP22 through a series of transformations.

The completeness, simulatability, and extractability of our tag

proof algorithm follow directly from LNP22. We demonstrate the

remaining properties through the following lemmas and defer their

proofs to Appendix C.2.

Lemma 3.13 (Event-Oriented Linkability in Tag Scheme). Suppose
LNP22 is knowledge sound. Then our tag scheme in Construction 3.12
is event-oriented linkable ifMSISR,𝑚,(𝑚+𝑛),𝑞,𝜈 assumption is hard.

Lemma 3.14 (Multi-Tag-Anonymity in Tag Scheme). Our tag
scheme in Construction 3.12 is multi-tag-anonymous ifMLWRR,𝑛,𝑛′,𝑞,𝑝,𝜒
assumption for 𝜒 =U(S𝜈 ) is hard.
Lemma 3.15 (Non-Frameability in Tag Scheme). Suppose LNP22
is knowledge sound. Then our tag scheme in Construction 3.12 is
non-frameable if MLWER,𝑛,𝑚,𝑞,𝜒 assumption for 𝜒 := U(S𝜈 ) and
MSISR,𝑛′,(𝑚+𝑛′ ),𝑞,𝛽 assumption for 𝛽 = max(𝑞/𝑝 − 1, 𝜈) are hard.

4 Lether: Account-Based Private Blockchain
Payments from Lattices

In this section, we provide the full details of Lether. Due to space

constraints, we defer the formal definitions of Lether to Appendix D.

Here, we specify the algorithms Setup, AddrGen, AnTransfer, and
Verify as follows. The algorithms TagGen and AmtGen are invoked

within AnTransfer, where TagGen corresponds to the tag scheme

in Construction 3.12, and AmtGen is instantiated bymmEnc of the
Ref-AH mmPKE in Construction 3.2.

The remaining algorithms are straightforward. The Register
algorithm is from LNP22.V. The RollOver algorithm consists of

mmExt and the additively-homomorphic evaluation of Ref-AH

mmPKE from Construction 3.2. The LinkTag algorithm is from

the tag scheme in Construction 3.12. The ReadBalance algorithm is

built using mmDec from Ref-AH mmPKE, followed by subtracting

the constant offset ⟨®0𝑑−𝑘 | |®2𝑘 , ®𝑇𝑑 ⟩.

When a fresh or refreshed account has undergone 𝑇 homomor-

phic evaluations, its owner can refresh the account by running

the VRefresh algorithm from Construction 3.9, which can then be

publicly verified by the system.

As in other account-based private blockchain payment systems,

including (Anonymous) Zether [7, 11] and Pride CT [24], we set

𝑘 := 32 as the bit-length of the maximum value supported in the

payment system, i.e.,MAX = 2
32−1. As noted in Zether [7], a larger

range of values can be represented by composing smaller ones—for

example, using two 32-bit amounts to support 64-bit payments. To

prevent integer overflow attacks, we ensure that the actual message

space supports values larger thanMAX.

Algorithm 3 Setup(1𝜆 ) 𝜆 is the security parameter

1: Choose an anonymity set size 𝑁 ∈ Z𝑞
2: Pick a hash functionH : {0, 1}∗ → R𝑛′×𝑚

𝑞

3: ppEnc := A← mmSetup(1𝜆, 𝑁 )
4: ppLNP ← LNP22.Setup(1𝜆)
5: return pp := (ppEnc, ppLNP,H)

Algorithm 3 initializes the system parameters. It first selects an

anonymity set size 𝑁 ∈ N and a hash function H : {0, 1}∗ →
R𝑛′×𝑚
𝑞

. Then, it generates the public parameters for the Ref-AH

mmPKE scheme and LNP22, and combines them to form the system-

wide public parameters, which are treated as implicit inputs to the

later algorithms.

Algorithm 4 generates a public-private key pair along with a

corresponding proof. Suppose𝜈 = 1 and𝜈 = 2. It first runsmmKGen
from the Ref-AH mmPKE scheme to obtain the public-private key

pair, and then executes LNP22.P(𝑅pk, stat = (A, b),wit = s) to
generate the proof 𝜋 , where the proof relation 𝑅pk is defined as

follows:

𝑅
pk

=

{
(s | |b − A⊤s) ∈ {0, 1} (𝑚+𝑛)𝑑

}
. (4.1)

Later, the public key b together with the proof 𝜋 can be verified in

the Register algorithm via 0/1← LNP22.V(𝑅pk, (A, b), 𝜋).
Algorithm 5 generates an anonymous transaction. In the anony-

mous transfer, the spender uses an anonymity set to hide the

identity of herself and the recipient. Thus, each account in the

anonymity set should be treated as the spender and recipient. We

begin by defining the proof relation 𝑅an along with its statement

and witness as follows,

𝑅an =



stat = (A,A𝐻 , (b𝑖 , u𝑖 , 𝑣𝑖 )𝑖∈ [𝑁 ] , (c, (𝑐𝑖 )𝑖∈ [𝑁 ] ), v𝐻 ) ;
wit = (s𝑠 , r, b(s) , b(r) , 𝑚̂, b𝑚′ , 𝑏𝑡𝑚′ , e𝐻 , bℎ ) :

b(s) , b(r) ∈ {0, 1}𝑁 ⊆ Z𝑁
𝑞 ,

∑︁
𝑖∈ [𝑁 ]

𝑏
(s)
𝑖

= 1,
∑︁

𝑖∈ [𝑁 ]
𝑏
(r)
𝑖

= 1,

bin ∈ {0, 1} (𝑚+𝑛+2+𝑛′+𝑜+𝑜′ )𝑑 ,



 r
c − Ar






∞
≤ 𝜓 · 𝛽0,











𝑐1 − ⟨b1, r⟩ − ⌊ 𝑞

2𝑇+2
⌉ (𝑏 (r)

1
− 𝑏 (s)

1
)𝑚̂

.

.

.

𝑐𝑁 − ⟨b𝑁 , r⟩ − ⌊ 𝑞

2𝑇+2
⌉ (𝑏 (r)

𝑁
− 𝑏 (s)

𝑁
)𝑚̂

(2 · v𝐻 + e𝐻 − A𝐻 · sℓ
0
)/𝑞












∞

≤ 𝜓 · 𝛽1,

⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚′ − ®𝑇𝑑 ⟩ = ⟨®0𝑑−𝑘 | |®2𝑘 , ®𝑏𝑡𝑚′ ⟩,∑︁
𝑖∈ [𝑁 ]

𝑏
(s)
𝑖
(𝑣𝑖 + 𝑐𝑖 − ⟨u𝑖 + c, sℓ

0
⟩) − ⌊𝑞/(2𝑇 + 2) ⌉ · 𝑚̂′ = ℎ



. (4.2)



Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

where ℎ :=
∑

𝑖∈[𝑜 ] 𝛿𝑖 · 𝑏
(𝑖 )
ℎ

, 𝑚̂′ :=
∑

𝑖=[𝑜′ ] 𝛿
′
𝑖 · 𝑏

(𝑖 )
𝑚′ are the same as in

Equation (3.3) and

bin := (s𝑠 | |
∑︁

𝑖∈ [𝑁 ]
𝑏
(s)
𝑖

b𝑖 − A⊤sℓ
0
| | 𝑚̂ | | 𝑏𝑡𝑚′ | | e𝐻 | | b𝑚′ | | bℎ ) .

The statement includes the public parametersA,A𝐻 :=H(Lether| |𝐻 )
for the current epoch 𝐻 , the anonymity set (b𝑖 )𝑖∈[𝑁 ] with the cor-

responding accounts (u𝑖 , 𝑣𝑖 )𝑖∈[𝑁 ] , the set of amount ciphertexts

(c, (𝑐𝑖 )𝑖∈[𝑁 ] ), and the linkable tag v𝐻 .
The witness contains:

• the private key s𝑠 of the spender;
• the randomness r used in the amount ciphertexts (c, (𝑐𝑖 )𝑖∈[𝑁 ]);
• the binary integer vector b(s) , b(r) indicating the indices of the

spender and recipient, respectively, where only 𝑏
(s)
𝑠 = 1, 𝑏

(r)
𝑟 = 1,

and all other elements are 0;

• a binary polynomial 𝑚̂ ← BinPoly(𝑚) whose coefficients repre-

sent the binary decomposition of the integer amount𝑚;

• a polynomial vector b𝑚′ ← Bin(𝑚̂′) representing the coefficient-

wise binary decomposition of the polynomial-encoded balance

𝑚̂′ ∈ R2𝑇+2 in the spender’s account after the transaction;
• a binary polynomial 𝑏𝑡𝑚′ ← BinPoly(𝑚′) whose coefficients are

the binary decomposition of the integer-encoded balance𝑚′ :=

⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚′⟩ in the spender’s account after the transaction;
• the rounding error e𝐻 related to the linkable tag v𝐻 ;
• a polynomial vector bℎ ← Bin(ℎ) which is the coefficient-wise

binary decomposition of the decryption error ℎ during the de-

cryption of the spender’s account after the transaction.

The proof relation consists of four parts, detailed below.

First, to guarantee the uniqueness of spender and recipient, we

must ensure that both b(s) and b(r) are binary integer vectors whose
entries sum to 1. We use b(s) as an example: we first show that

b(s) ∈ {0, 1}𝑁 ⊆ Z𝑁
𝑞 , and then prove that

∑
𝑖∈[𝑁 ] 𝑏

(s)
𝑖

= 1.

Second, we prove that a concatenation of several vectors, specif-

ically, b𝑚′ , bℎ , 𝑚̂, 𝑏𝑡𝑚′ , e𝐻 , s𝑠 , and e𝑠 := (b𝑠 − A⊤s𝑠 ), forms a

polynomial vector with binary coefficients. This not only proves

knowledge of the spender’s private key (s𝑠 , e𝑠 ), but also guarantees
that the transaction amount 𝑚̂, the spender’s balance (b𝑚′ , 𝑏𝑡𝑚′ ),
the decryption error bℎ , and the rounding error in the linkable tag

e𝐻 each lie within a suitable range. Specifically, we choose parame-

ters such that 𝑞/𝑝 = 2, 𝜈 = 1, and 𝜈 = 2, which guarantees that the

rounding error e𝐻 ∈ {0, 1}𝑛
′𝑑

in the tag generation and that the

private key (s, e) ∈ {0, 1} (𝑚+𝑛)𝑑 are the binary polynomials. This

setting is motivated by the fact that LNP22 can efficiently prove

that polynomials are composed of binary coefficients.

Third, we batch the proofs of the well-formedness of the multi-

recipient ciphertext in Equation (3.1) and the linkable tag in Equa-

tion (3.4) to improve efficiency. This ensures that the decrease in

the spender’s amount equals the increase in the recipient’s amount,

while the amounts of all decoy accounts are zero. Specifically, we

leverage the binary strings b(s) and b(r) to implicitly encode the

messages in the ciphertexts as 𝑚̂𝑖 := (𝑏 (r)
𝑖
− 𝑏 (s)

𝑖
) · 𝑚̂. For decoy ac-

counts, 𝑏
(s)
𝑖

= 𝑏
(r)
𝑖

= 0, so 𝑚̂𝑖 = 0; for the spender, 𝑏
(s)
𝑠 = 1, 𝑏

(r)
𝑟 = 0,

thus 𝑚̂𝑠 = −𝑚̂; and for the recipient, 𝑚̂𝑟 = 𝑚̂. Our protocol also sup-

ports the special case where the spender and recipient are the same

one, i.e., 𝑠 = 𝑟 , in which case 𝑚̂𝑠 = 𝑚̂𝑟 = 0, which does not affect the

balance property. Additionally, we slightly increase the bound to

𝛽1 :=
√︁
𝑁𝑑 · (𝜏𝜎1)2 + 𝛽2

for 𝛽 =
√
𝑛′𝑑 · (𝑑𝑚𝑞𝜈 +𝑞/𝑝 − 1+𝑞/𝑝 ·𝑝)/𝑞

to accommodate the batched proof.

Fourth, we use verifiable decryption to show that the decrypted

balance of the spender’s account after the transaction is non-negative

(i.e., the spender is not overdrawn). Since the message space for

balances is shifted from {−𝑇, . . . ,𝑇 +1} to {0, . . . , 2𝑇 +1} by adding
the constant offset 𝑇𝑑 , we need to shift it back by subtracting 𝑇𝑑
during the range proof.

Algorithm 4 AddrGen( )
1: (pk := b, sk := s) ← mmKGen()
2: 𝜋 ← LNP22.P(𝑅pk, (A, b), s) where 𝑅pk is defined in Equation (4.1)

3: return (reg := (pk, 𝜋), sk)

Algorithm 5 AnTransfer

Input: (pk𝑖 = b𝑖 )𝑖∈[𝑁 ] , 𝑠 , 𝑟 , sk𝑠 = s𝑠 , amt =𝑚, S
1: 𝐻 ← S
2: H ← pp
3: A𝐻 :=H(Lether| |𝐻 )
4: v𝐻 := ⌊A𝐻 · s𝑠 mod 𝑞⌋𝑝
5: e𝐻 := A𝐻 · s − 𝑞/𝑝 · v𝐻 mod 𝑞

6: (r, e𝑢 ) ← D𝑛
𝜎0

× D𝑚
𝜎0

7: (𝑦𝑖 )𝑖∈[𝑁 ] ← D𝑁
𝜎1

8: 𝑚̂ ← BinPoly(𝑚)
9: 𝑚̂𝑠 := −𝑚̂, 𝑚̂𝑟 := 𝑚̂, 𝑚̂𝑖 := 0 for 𝑖 ∈ [𝑁 ]/{𝑠, 𝑟 }
10: (c, (𝑐𝑖 )𝑖∈[𝑁 ]) ← mmEnc(A, (b𝑖 )𝑖∈[𝑁 ] , (𝑚̂𝑖 )𝑖∈[𝑁 ] ; (r, e𝑢 ), (𝑦𝑖 )𝑖∈[𝑁 ] )
11: b(s) := (𝑏 (s)

1
, ..., 𝑏

(s)
𝑁
) ∈ {0, 1}𝑁 , where 𝑏 (s)𝑠 := 1, 𝑏

(s)
𝑖

:= 0 for 𝑖 ∈ [𝑁 ]/{𝑠}
12: b(r) := (𝑏 (r)

1
, ..., 𝑏

(r)
𝑁
) ∈ {0, 1}𝑁 , where 𝑏 (r)𝑟 := 1, 𝑏

(r)
𝑖

:= 0 for 𝑖 ∈ [𝑁 ]/{𝑟 }
13: acc← S
14: for 𝑖 ∈ [𝑁 ], do (u𝑖 , 𝑣𝑖 ) ← acc[pk𝑖 ]
15: (u′𝑠 , 𝑣 ′𝑠 ) := (u𝑠 + c, 𝑣𝑠 + 𝑐𝑠 )
16: 𝑚̂′ := ⌊𝑣 ′𝑠 − ⟨u′𝑠 , s𝑠⟩⌉2𝑇+2

17: ℎ := 𝑣 ′𝑠 − ⟨u′𝑠 , s𝑠⟩ − ⌊𝑞/(2𝑇 + 2)⌉ · 𝑚̂′
18: b𝑚′ ← Bit(𝑚̂′)
19: bℎ ← Bit(ℎ)
20: 𝑚′ := ⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚′ − ®𝑇𝑑 ⟩
21: 𝑏𝑡𝑚′ ← BinPoly(𝑚′)
22: Π← LNP22.P(𝑅an, stat,wit) where 𝑅an is defined in Equation (4.2)

23: return tx = ((pk𝑖 := b𝑖 )𝑖∈[𝑁 ] , ct := (c, (𝑐𝑖 )𝑖∈[𝑁 ]), tag := v𝐻 ,Π)

Algorithm 6 Verify(tx, S)
1: Phrase ((pk𝑖 = b𝑖 )𝑖∈[𝑁 ] , ct = (c, (𝑐𝑖 )𝑖∈[𝑁 ]), tag = v𝐻 ,Π) ← tx
2: 𝐻 ← S
3: H ← pp
4: A𝐻 :=H(Lether| |𝐻 )
5: acc← S
6: for 𝑖 ∈ [𝑁 ], (u𝑖 , 𝑣𝑖 ) ← acc[pk𝑖 ]
7: return 0/1← LNP22.V(𝑅an, stat,Π) where 𝑅an is defined in Equ. (4.2)

Algorithm 6 verifies the transaction generated by Algorithm 5.

It first constructs the corresponding statement and then validates

the proof included in the transaction using the LNP22.V algorithm.

The correctness of Lether follows from the completeness of

LNP22 and the correctness of Ref-AH mmPKE. Under our param-

eter selection, the probability that decryption succeeds is at least

1 − 2
−128

, implying that Lether achieves statistical correctness. We

defer the security proof to Appendix E.

Denial of Service. We further consider the probability of a denial-
of-service attack, i.e., the likelihood that an adversary, given a link-

able tag v𝐻 , can generate a valid transaction with the same tag

without knowing the associated private key. We note that such an

attack reduces to the non-frameability property of the tag scheme.



Wang et al.

4.1 Parameter Setting
We first present the parameter setting for Lether. At a high level, the

parameters must satisfy not only the requirements of the verifiable

Ref-AH mmPKE and the tag scheme (as discussed in Section 3), but

also the conditions required by LNP22 when these components are

combined. We summarize the requirements as follows:

• The Ref-AH mmPKE scheme must be mmIND-CPAKOSK
secure,

support𝑇 -level additive homomorphism, and achieve 𝜁 -correctness

for 𝜁 ≤ 2
−128

• Verifiable multi-encryption, verifiable decryption, and verifiable

refresh must satisfy completeness, soundness (or unforgeability),

and simulatability.

• The tag scheme must satisfy event-oriented linkability, multi-tag

anonymity, and non-frameability.

• LNP22 must satisfy completeness, knowledge soundness and

simulatability.

Following prior work [12, 13, 15, 31], we use the Lattice Esti-

mator (a.k.a. LWE Estimator [1]) to estimate the practical hard-

ness of the lattice problems appearing in our Ref-AH mmPKE

and tag scheme. These include MLWER,𝑛,𝑚,𝑞,𝜒 for 𝜒 := U(S𝜈 ),
MatrixHint-MLWE𝑁,𝜒1,S

R,𝑚+𝑁,𝑛,𝑞,𝜒0

,MSISR,𝑚,(𝑚+𝑛),𝑞,𝜈 ,MLWRR,𝑛,𝑛′,𝑞,𝑝,𝜒
for 𝜒 =U(S𝜈 ), and MSISR,𝑛′,(𝑚+𝑛′ ),𝑞,𝛽 for 𝛽 = max(𝑞/𝑝 − 1, 𝜈), all
targeting the 128-bit security level.

In addition, following the parameter selection strategy of the

basic mmPKE [44] and LNP22 [31, 35], we choose parameters to

guarantee sufficient correctness of Ref-AH mmPKE, as well as com-

pleteness, simulatability, and soundness of LNP22 as used in Lether.

We also carefully select parameters to minimize the amortized cost

of refresh operations. We defer the detailed parameter selection to

Appendix A.1 and summarize the concrete parameters below.

Specifically, we set 𝑘 := 32 for Lether. For Ref-AH mmPKE, we

choose 𝑞 ≈ 2
46
, 𝑑 = 64, 𝑁 = 16, 𝑚 = 30, 𝑛 = 26, 𝑇 = 60, 𝜈 = 1,

𝜈 = 2, 𝜎0 = 15.9, and 𝜎1 = 30560. For the tag scheme, we set 𝑑 = 64,

𝑞 ≈ 2
11
, 𝑝 ≈ 2

10
with 𝑞/𝑝 = 2, and 𝑛′ = 2. Note that the modulus

𝑞 and degree 𝑑 are also used in LNP22 to maintain compatibility

across components.

4.2 Implementation and Evaluation
We implement Lether in C

10
on a standard desktopmachine equipped

with an Intel i7-11850H CPU running at 2.50 GHz. Our implemen-

tation is based on the LaZer library [35].

Although the LaZer library provides a user-friendly Python in-

terface, it only supports proving simple linear relations in a fixed

manner, and the moduli used by the NIZK system and the target

relations do not match. Therefore, as discussed in Section 1.3 and

Section 2, to make Lether practical and efficiently prove the re-

quired relations, we optimize the LNP22 implementation in the

LaZer library to support: (i) using the same modulus as the proof re-

lations; (ii) batching proofs (e.g., verifiable multi-encryption and tag

proofs); (iii) aggregating integer proofs (e.g., those arising in ring

signatures); and (iv) proving quadratic relations (e.g., those arising

in balance proofs). To realize these optimizations, we extensively re-

structure internal functions and parameter generation scripts. The

10
Our implementation: https://github.com/LetherSub/Lether-artifact

newly added or modified code exceeds 3,000 lines. Implementation

details are deferred to Appendix A.2.

Results for typical Lether transactions appear in Table 1. Figure 1

and Figure 2 show the communication size of transactions |tx| and
the associated proof size |Π |, together with the proving time 𝑡𝑝
and verification time 𝑡𝑣 , for anonymity set sizes 𝑁 ranging from 2

to 64. Each runtime value is averaged over 100 runs. We observe

that all costs scale linearly with the anonymity set size 𝑁 , which

is consistent with (Anonymous) Zether [7, 11] and Pride CT [24].

These results demonstrate that Lether remains efficient for 𝑁 ≤ 64.

Table 5 reports the results of the registration phase in Lether. The

communication cost for each user during registration is about 37 KB,

and the computation cost is only a fewmilliseconds.Moreover, these

costs are one-time for each user.

21 22 23 24 25 26

Anonymity Set Size N

40

50

60

70

80

90

100

110

Si
ze

 (K
B)

Transaction size |tx|
Proof size |Π|

Figure 1: Transaction and proof size growth with anonymity set
size. The evaluation level is fixed at𝑇 := 60.

21 22 23 24 25 26

Anonymity Set Size N
0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e 
(s

)

Proving time tp
Verification time tv

Figure 2: Proving and verification time growth with anonymity set
size. The evaluation level is fixed at𝑇 := 60.

Anony. Eval. Level Register

𝑁 𝑇 |reg| |𝜋 | 𝑡𝑝 𝑡𝑣

16 60 37.2 27.5 0.12 0.08

Table 5: Results of the Lether registration phase. Sizes are reported
in KB and times in seconds. We report the communication size |reg |
(including proofs |𝜋 |), the proving time 𝑡𝑝 , and the verification time
𝑡𝑣 . The anonymity set size is 𝑁 := 16 (Anony.), and the evaluation
level is𝑇 := 60 (Eval. Level).

https://github.com/LetherSub/Lether-artifact


Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

Acknowledgments
This work was supported in part by Australian Research Council

Discovery Grants DP250100229 and DP220101234. Siu-Ming Yiu

was supported by HKU-SCF FinTech Academy, Shenzhen-Hong

Kong-Macao Science and Technology Plan Project (Category C

Project: SGDX20210823103537030), Theme-based Research Scheme

of RGC, Hong Kong (T35-710/20-R).

References
[1] Martin R Albrecht, Rachel Player, and Sam Scott. 2015. On the concrete hardness

of learning with errors. Journal of Mathematical Cryptology 9, 3 (2015), 169–203.

[2] Diego F Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde. 2023.

Verifiable mix-nets and distributed decryption for voting from lattice-based

assumptions. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security. 1467–1481.

[3] Man Ho Au, Joseph K Liu, Willy Susilo, and Tsz Hon Yuen. 2013. Secure ID-based

linkable and revocable-iff-linked ring signature with constant-size construction.

Theoretical Computer Science 469 (2013), 1–14.
[4] Elaine Barker, Lily Chen, Sharon Keller, Allen Roginsky, Apostol Vassilev, and

Richard Davis. 2017. Recommendation for pair-wise key-establishment schemes
using discrete logarithm cryptography. Technical Report. National Institute of
Standards and Technology.

[5] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. 2002. Randomness

Re-use in Multi-recipient Encryption Schemeas. In Public Key Cryptography —
PKC 2003, Yvo G. Desmedt (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

85–99.

[6] Jonathan Bootle, Kaoutar Elkhiyaoui, Julia Hesse, and Yacov Manevich. 2022.

DualDory: logarithmic-verifier linkable ring signatures through preprocessing.

In European Symposium on Research in Computer Security. Springer, 427–446.
[7] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. 2020. Zether:

Towards privacy in a smart contract world. In International Conference on Finan-
cial Cryptography and Data Security. Springer, 423–443.

[8] Melissa Chase and Anna Lysyanskaya. 2006. On signatures of knowledge. In

Advances in Cryptology-CRYPTO 2006: 26th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 2006. Proceedings 26.
Springer, 78–96.

[9] Rafael del Pino and Shuichi Katsumata. 2022. A New Framework for More

Efficient Round-Optimal Lattice-Based (Partially) Blind Signature via Trapdoor

Sampling. InAdvances in Cryptology – CRYPTO 2022, Yevgeniy Dodis and Thomas

Shrimpton (Eds.). Springer Nature Switzerland, Cham, 306–336.

[10] Michel H Devoret and Robert J Schoelkopf. 2013. Superconducting circuits for

quantum information: an outlook. Science 339, 6124 (2013), 1169–1174.
[11] Benjamin E Diamond. 2021. Many-out-of-many proofs and applications to

anonymous zether. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
1800–1817.

[12] Muhammed F Esgin, Ron Steinfeld, Dongxi Liu, and Sushmita Ruj. 2023. Efficient

hybrid exact/relaxed lattice proofs and applications to rounding and VRFs. In

Annual International Cryptology Conference. Springer, 484–517.
[13] Muhammed F Esgin, Ron Steinfeld, Joseph K Liu, and Dongxi Liu. 2019. Lattice-

based zero-knowledge proofs: new techniques for shorter and faster construc-

tions and applications. In Annual International Cryptology Conference. Springer,
115–146.

[14] Muhammed F Esgin, Ron Steinfeld, and Raymond K Zhao. 2022. Efficient verifi-

able partially-decryptable commitments from lattices and applications. In IACR
International Conference on Public-Key Cryptography. Springer, 317–348.

[15] Muhammed F Esgin, Ron Steinfeld, and Raymond K Zhao. 2022. MatRiCT+: More

efficient post-quantum private blockchain payments. In 2022 IEEE Symposium
on Security and Privacy (SP). IEEE, 1281–1298.

[16] Muhammed F Esgin, Raymond K Zhao, Ron Steinfeld, Joseph K Liu, and Dongxi

Liu. 2019. MatRiCT: efficient, scalable and post-quantum blockchain confidential

transactions protocol. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 567–584.

[17] Thomas Espitau, Guilhem Niot, and Thomas Prest. 2024. Flood and Submerse:

Distributed Key Generation and Robust Threshold Signature from Lattices. In

Advances in Cryptology – CRYPTO 2024, Leonid Reyzin and Douglas Stebila (Eds.).

Springer Nature Switzerland, Cham, 425–458.

[18] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. 2019.

Quisquis: A new design for anonymous cryptocurrencies. In Advances in
Cryptology–ASIACRYPT 2019: 25th International Conference on the Theory and
Application of Cryptology and Information Security, Kobe, Japan, December 8–12,
2019, Proceedings, Part I 25. Springer, 649–678.

[19] Amos Fiat and Adi Shamir. 1986. How to prove yourself: Practical solutions to

identification and signature problems. In Conference on the theory and application
of cryptographic techniques. Springer, 186–194.

[20] Ethereum Foundation. 2025. Introducing ZKnox. https://x.com/ethereumfndn/

status/1896592240228893072 Posted on X (formerly Twitter), March 26, 2025.

[21] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In

Proceedings of the forty-first annual ACM symposium on Theory of computing.
169–178.

[22] Kristian Gjøsteen, Thomas Haines, Johannes Müller, Peter Rønne, and Tjerand

Silde. 2022. Verifiable decryption in the head. In Australasian Conference on
Information Security and Privacy. Springer, 355–374.

[23] Jens Groth, Rafail Ostrovsky, and Amit Sahai. 2006. Perfect Non-interactive

Zero Knowledge for NP. In Advances in Cryptology - EUROCRYPT 2006, Serge
Vaudenay (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 339–358.

[24] Yue Guo, Harish Karthikeyan, Antigoni Polychroniadou, and Chaddy Huussin.

2024. Pride ct: Towards public consensus, private transactions, and forward

secrecy in decentralized payments. In 2024 IEEE Symposium on Security and
Privacy (SP). IEEE, 3904–3922.

[25] Abida Haque, Stephan Krenn, Daniel Slamanig, and Christoph Striecks. 2022.

Logarithmic-size (linkable) threshold ring signatures in the plain model. In IACR
International Conference on Public-Key Cryptography. Springer, 437–467.

[26] Kaoru Kurosawa. 2002. Multi-recipient Public-Key Encryption with Shortened

Ciphertext. In Public Key Cryptography, David Naccache and Pascal Paillier (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 48–63.

[27] Russell WF Lai, Viktoria Ronge, Tim Ruffing, Dominique Schröder, Sri Ar-

avinda Krishnan Thyagarajan, and Jiafan Wang. 2019. Omniring: Scaling private

payments without trusted setup. In Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security. 31–48.

[28] Zeyu Liu, Katerina Sotiraki, Eran Tromer, and Yunhao Wang. 2025. Lattice-based

Multi-message Multi-recipient KEM/PKE with Malicious Security. Cryptology
ePrint Archive (2025).

[29] Vadim Lyubashevsky. 2012. Lattice signatures without trapdoors. InAnnual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 738–755.

[30] Vadim Lyubashevsky and Gregory Neven. 2017. One-shot verifiable encryption

from lattices. In Advances in Cryptology–EUROCRYPT 2017: 36th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30–May 4, 2017, Proceedings, Part I 36. Springer, 293–323.

[31] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. 2022. Lattice-

based zero-knowledge proofs and applications: Shorter, simpler, and more gen-

eral. In Annual International Cryptology Conference. Springer, 71–101.
[32] Vadim Lyubashevsky, Ngoc Khanh Nguyen, Maxime Plançon, and Gregor Seiler.

2021. Shorter lattice-based group signatures via “almost free” encryption and

other optimizations. In International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 218–248.

[33] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. 2021. Shorter

lattice-based zero-knowledge proofs via one-time commitments. In IACR Inter-
national Conference on Public-Key Cryptography. Springer, 215–241.

[34] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. 2021. SMILE:

set membership from ideal lattices with applications to ring signatures and

confidential transactions. InAnnual International Cryptology Conference. Springer,
611–640.

[35] Vadim Lyubashevsky, Gregor Seiler, and Patrick Steuer. 2024. The LaZer Li-

brary: Lattice-Based Zero Knowledge and Succinct Proofs for Quantum-Safe

Privacy. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security. 3125–3137.

[36] Varun Madathil and Alessandra Scafuro. 2025. Pri FHE te: Achieving Full-Privacy

in Account-Based Cryptocurrencies is Possible. In International Conference on
the Theory and Application of Cryptology and Information Security. Springer,
199–229.

[37] Shen Noether, Adam Mackenzie, et al. 2016. Ring confidential transactions.

Ledger 1 (2016), 1–18. Source code available at: https://github.com/monero-

project/monero (accessed on branch release-v0.18).
[38] Amirreza Sarencheh, Hamidreza Khoshakhlagh, Alireza Kavousi, and Agge-

los Kiayias. 2025. DART: Decentralized, Anonymous, and Regulation-friendly

Tokenization. Cryptology ePrint Archive (2025).
[39] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized anonymous

payments from bitcoin. In 2014 IEEE symposium on security and privacy. IEEE,
459–474.

[40] Tjerand Silde. 2022. Short Paper: Verifiable Decryption for BGV. In International
Conference on Financial Cryptography and Data Security. Springer, 381–390.

[41] Shi-Feng Sun, Man Ho Au, Joseph K Liu, and Tsz Hon Yuen. 2017. Ringct 2.0:

A compact accumulator-based (linkable ring signature) protocol for blockchain

cryptocurrency monero. In Computer Security–ESORICS 2017: 22nd European
Symposium on Research in Computer Security, Oslo, Norway, September 11-15,
2017, Proceedings, Part II 22. Springer, 456–474.

[42] Yongli Tang, Deng Pan, Qing Ye, Yuanhong Li, and Jinxia Yu. 2024. Event-oriented

linkable group signature from lattice. IEEE Transactions on Consumer Electronics
(2024).

https://x.com/ethereumfndn/status/1896592240228893072
https://x.com/ethereumfndn/status/1896592240228893072
https://github.com/monero-project/monero
https://github.com/monero-project/monero


Wang et al.

[43] Patrick P Tsang, Victor K Wei, Tony K Chan, Man Ho Au, Joseph K Liu, and Dun-

can S Wong. 2004. Separable linkable threshold ring signatures. In International
Conference on Cryptology in India. Springer, 384–398.

[44] HongxiaoWang, Ron Steinfeld, Markku-Juhani O. Saarinen, Muhammed F. Esgin,

and Siu-Ming Yiu. 2026. mmCipher: Batching Post-Quantum Public Key Encryp-

tion Made Bandwidth-Optimal. In 35th USENIX Security Symposium, USENIX
Security 2026, Baltimore, MD, USA, August 12-14, 2026. USENIX Association, (to

appear). https://eprint.iacr.org/2025/1000

[45] Nan Wang, Qianhui Wang, Dongxi Liu, Muhammed F. Esgin, and Alsharif

Abuadbba. 2025. BulletCT: towards more scalable ring confidential transactions

with transparent setup. In Proceedings of the 34th USENIX Conference on Security
Symposium (Seattle, WA, USA) (USENIX Security 2025). USENIX Association,

USA, Article 172, 20 pages.

[46] Yuxi Xue, Xingye Lu, Man Ho Au, and Chengru Zhang. 2024. Efficient linkable

ring signatures: new framework and post-quantum instantiations. In European
symposium on research in computer security. Springer, 435–456.

[47] Tsz Hon Yuen, Muhammed F Esgin, Joseph K Liu, Man Ho Au, and Zhimin

Ding. 2021. DualRing: generic construction of ring signatures with efficient

instantiations. In Annual International Cryptology Conference. Springer, 251–281.
[48] Tsz Hon Yuen, Shi-feng Sun, Joseph K Liu, Man Ho Au, Muhammed F Esgin,

Qingzhao Zhang, and Dawu Gu. 2020. Ringct 3.0 for blockchain confidential

transaction: Shorter size and stronger security. In Financial Cryptography and
Data Security: 24th International Conference, FC 2020, Kota Kinabalu, Malaysia,
February 10–14, 2020 Revised Selected Papers 24. Springer, 464–483.

[49] Tianyu Zheng, Shang Gao, Yubo Song, and Bin Xiao. 2023. Leaking Arbitrarily

Many Secrets: Any-out-of-Many Proofs and Applications to RingCT Protocols.

In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2533–2550.

A Detailed Parameter Settings and
Implementations

In this section, we detail the parameter settings and implementation

aspects of Lether.

A.1 Detailed Parameter Setting
We demonstrate how to choose the parameters for the Lether sys-

tem, including the verifiable Ref-AH mmPKE, the event-oriented

linkable tag scheme, and LNP22, as follows.
Verifiable Ref-AH mmPKE. To parameterize our verifiable Ref-

AH mmPKE scheme, we require the following properties to be

satisfied:

• The Ref-AH mmPKE scheme must be mmIND-CPAKOSK
secure,

support𝑇 -level additive homomorphism, and achieve 𝜁 -correctness

for 𝜁 ≤ 2
−128

.

• The verifiablemulti-encryptionmust satisfy completeness, sound-

ness, and simulatability.

• The verifiable decryption must satisfy completeness, unforge-

ability, and simulatability.

• The verifiable refresh must satisfy completeness, unforgeability,

and simulatability.

Following a similar strategy to [44], we describe the parameter

selection step by step below.

First, we set 𝜈 = 1 and 𝜈 = 2 so that the proof of the private key

can be efficiently generated using the binary proof of LNP22. For
example, in the verifiable decryption scheme, the public key b is

proven to satisfy b = A⊤s + e where (s| |e) ∈ {0, 1} (𝑚+𝑛)𝑑 .
Second, in the verifiable multi-encryption scheme, the multi-

recipient ciphertext (c, (𝑐𝑖 )𝑖∈[𝑁 ]) is proven to satisfy

c = Ar + e𝑢 , 𝑐𝑖 = ⟨b𝑖 , r⟩ + 𝑦𝑖 + ⌊𝑞/(2𝑇 + 2)⌉ ·𝑚𝑖 ,

where ∥(r, e𝑢 )∥∞ ≤ 𝜓 ·
√︁
(𝑚 + 𝑛)𝑑 · 𝜏𝜎0 and ∥𝑦𝑖 ∥∞ ≤ 𝜓 ·

√
𝑁𝑑 · 𝜏𝜎1.

Therefore, to ensure the soundness of verifiable multi-encryption,

the unforgeability of verifiable refresh, and to guarantee at least

𝑇 -level additive homomorphism for a verified fresh or refreshed

ciphertext, we must ensure that the accumulated decryption er-

ror remains below the bound ⌊𝑞/(4𝑇 + 4)⌉. That is, the following
inequality should hold with overwhelming probability:

𝑇 · ∥⟨e𝑖 , r⟩ − ⟨s𝑖 , e𝑢⟩ + 𝑦𝑖 ∥∞ < ⌊𝑞/(4𝑇 + 4)⌉ .
Third, we fix the parameters as 𝑑 = 64, 𝑁 = 16, and𝜓 = 189 (see

Appendix B.3). Following Lemma B.1, we fix 𝜏 = 1.6 to bound the

Gaussian tail. To ensure the security of our Ref-AH mmPKE and its

verifiability, we use the parameter-generation script from [44] to in-

stantiate the hardness assumptionsMLWER,𝑛,𝑚,𝑞,𝜒 for 𝜒 :=U(S𝜈 ),
MatrixHint-MLWE𝑁,𝜒1,S

R,𝑚+𝑁,𝑛,𝑞,𝜒0

, and MSISR,𝑚,(𝑚+𝑛),𝑞,𝜈 at the 128-

bit security level. This yields the concrete parameters 𝜎0 = 15.9,

𝜎1 = 30560, 𝑞 ≈ 2
46
,𝑚 = 30, and 𝑛 = 26 when 𝑇 = 60.

Finally, we verify that the above parameters also satisfy the

soundness conditions of LNP22when themodulus of LNP22matches

that of our Ref-AH mmPKE, as detailed later.

Plug-and-Play Event-Oriented Linkable Tag. To parameterize

our tag scheme, in addition to the requirements already specified for

our verifiable Ref-AH mmPKE, we require the following additional

assumptions to hold:

• The MLWRR,𝑛,𝑛′,𝑞,𝑝,𝜒 problem for 𝜒 =U(S𝜈 ) is hard at the 128-

bit security level.

• TheMSISR,𝑛′,(𝑚+𝑛′ ),𝑞,𝛽 problem for 𝛽 = max(𝑞/𝑝 − 1, 𝜈) is hard
at the 128-bit security level.

We briefly outline our parameter selection as follows.

First, we adopt the same parameters used in our Ref-AH mmPKE

scheme, including 𝜈 = 1,𝑚 = 30, 𝜈 = 2, 𝑑 = 64, and 𝑞 ≈ 2
46
. Here,

we must ensure that 𝑞 ≪ 𝑞, namely that 𝑞 ≥ (𝜓 + 1) · 𝛽 , where
𝛽 := (𝑑𝑚𝑞𝜈 + 𝑞/𝑝 − 1 + 𝑞/𝑝 · 𝑝)/𝑞, as discussed below.

Next, we set 𝑞/𝑝 = 2. To minimize the tag size, we choose 𝑞 ≈ 2
11

and 𝑝 ≈ 2
10
. Following prior work [12, 13, 15, 31], we use the

Lattice Estimator (a.k.a. LWE Estimator [1]) to estimate the practical

hardness of MLWR and MSIS at the 128-bit security level, which

yields 𝑛′ := 2.

In what follows, we show how to choose the parameters for

LNP22 that enable the integration of the tag proof and the verifiable
Ref-AH mmPKE into the transaction proof.

LNP22 in Lether. We further summarize the LNP22 requirements

as follows:

• Switched modulus condition: As discussed in Section 2, to

prove the well-formedness of the linkable tag via LNP22, we
must ensure that the equation

𝑞/𝑝 · v𝐻 − A𝐻 · sℓ0 − e𝐻 + 𝑞 · v = 0

does not wrap around modulo 𝑞, where ∥v∥∞ ≤ 𝛽1 as defined in

𝑅an (Equation (4.2)). This leads to the requirement that

𝑞 ≥ (𝑞/𝑝 · 𝑝 +𝑚𝑑 · 𝑞𝜈 + 𝑞/𝑝 − 1) + 𝑞 · 𝛽1 .

• Binary proof condition: To prove that a polynomial vector

b ∈ {0, 1}𝑚′𝑑 has binary coefficients, LNP22 reduces this to

checking ⟨®𝑏, ®𝑏−®1𝑚′𝑑 ⟩ = 0 over Z𝑞 . To avoid wraparound modulo

𝑞, suppose ∥b∥∞ ≤ 𝐵, we must ensure 𝑞 ≥ 𝑑𝑚′ · 𝐵2 + 𝑑𝑚′ · 𝐵. In
our setting, 𝐵 ≤ 𝜓 ·

√
𝑚′𝑑 and𝑚′ ≤𝑚 + 𝑛 + 2 + 𝑛′ + 𝑜 + 𝑜 ′.

• ARP condition: Following [31, Lemma 2.9], to ensure the sound-

ness of ARP proofs in 𝑅an, we must satisfy

𝑞 ≥ 41 · (𝑁 + 𝑛′) · 𝑑 ·𝜓 · 𝛽1, and 𝑞 ≥ 41 · (𝑚 + 𝑛) · 𝑑 ·𝜓 · 𝛽0 .

https://eprint.iacr.org/2025/1000


Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

Eval. Level Transaction Refresh Amortization

𝑇 |tx| |Π | |ref | |𝜋 ′ | |tx| + |ref |/𝑇
1 62.3 48.2 49.9 40.7 112.2

20 66.7 50.4 53.5 42.9 69.3

40 67.8 51.1 54.9 43.8 69.0

60 67.8 51.1 54.9 43.8 68.7
80 68.7 51.8 55.7 44.3 69.4

100 70.7 53.1 57.6 45.6 71.3

Table 6: Additional Lether results for different evaluation levels
𝑇 ∈ {1, 20, 40, 60, 80, 100} (Eval. Level) for additively homomorphic
operations on fresh or refreshed accounts. Sizes are in KB. For the
Transaction and Refresh phases, we report the communication sizes
( |tx |, |ref |), including the associated proofs ( |Π |, |𝜋 ′ |), as well as the
amortized communication per level, computed as |tx | + |ref |/𝑇 . The
anonymity set size is fixed at 𝑁 := 16.

• Inner product condition: To ensure that the inner product in

𝑅an does not wrap around modulo 𝑞, we require 𝑞 ≥ 2
𝑘 · (2𝑇 + 1).

After verifying that the above requirements are satisfied, we

obtain all parameters for LNP22 in Lether using our modified pa-

rameter selection scripts from [29, 35]. Overall, fixing 𝑁 := 16 and

𝑇 := 60, the resulting sizes are as follows.

For Ref-AH mmPKE, we have |b𝑖 | = 9.34 KB, |c| = 10.78 KB,

|𝑐𝑖 | = 0.36 KB, and |ct| = 16.53 KB. For the tag scheme, the tag size

is |v𝐻 | = 0.16 KB. For LNP22, the proof size for 𝑅pk (Equation (4.1))

in the registration phase is about |𝜋 | = 27.5 KB, the proof size for

𝑅ref (Equation (3.3)) in the refresh phase is about |𝜋 ′ | = 43.8 KB,

and the proof size for 𝑅an (Equation (4.2)) in the transaction phase

is about |Π | = 51.1 KB.

The total communication cost of a verifiable refresh is |ref | =
|𝜋 ′ | + |c| + |𝑐𝑖 | = 54.9 KB. The total communication cost of reg-
istration is |reg| = |𝜋 | + |b𝑖 | = 37.2 KB, which is a one-time cost

for each user. The total communication cost of a transaction is

|tx| = |Π | + |ct| + |v𝐻 | = 67.8 KB.

Following the above strategies, we further present the results of

Lether under different homomorphic evaluation levels𝑇 ∈ {1, . . . , 100}
in Table 6. We observe that as𝑇 increases, both the transaction and

refresh costs increase accordingly, mainly due to larger parameter

sizes required by Ref-AH mmPKE and LNP22. However, the amor-

tized cost is minimized when 𝑇 = 60, which is why we set 𝑇 := 60

in our implementation.

A.2 Detailed Implementation
We first recall the workflow of the implementations of LNP22 in the

LaZer library [35]. The user first executes the code-generation scripts
to obtain a header file containing the parameters required by the

LaZer library, given a description of the proving relation. Next, the

user develops a front-end program (in C or Python) that generates

or loads the witness and statement, and invokes the generic proving

and verification functions provided by the LaZer library to produce

or verify a proof. When these functions are invoked by the front-

end, the LaZer library calls the LNP22 C implementation with the

parameters specified in the header file, together with the statement

and witness supplied by the front-end.

To implement the Lether scheme, we first modify the original

code-generation scripts. Specifically, we fix the modulus 𝑞 of LNP22
to match that of the statement (i.e., that of Ref-AH mmPKE), and

predefine ⌈log𝑞⌉ and the statement dimensions𝑚,𝑛 (as discussed

above and evaluated for security and soundness). Following the stan-

dard LaZerworkflow,we then execute themodified code-generation

scripts to determine the concrete modulus 𝑞 and other parameters

required by LNP22 to generate the header file, where the LWE

estimator [1] is invoked as a subroutine to ensure 128-bit security.

With the resulting modulus 𝑞, we use SageMath scripts to gener-

ate the witness and statement, and employ a front-end C program

to load them and invoke the generic proving and verification func-

tions. Since the original LNP22 implementation in the LaZer library

supports only linear relations, we reconstruct its C library to extend

its functionality. Specifically, we introduce three ARPs (for binary

proofs, verifiable multi-encryption, and other relations, respectively,

as described above) and implement both quadratic and linear re-

lations over Z𝑞 and R𝑞 to support verifiable decryption, balance

proofs, sign-bit proofs, integer proofs, and Hamming-weight proofs

for spender–recipient indicator bit strings.

We now describe how to aggregate the integer proofs for the

spender–recipient indicator bit strings. Specifically, we set the num-

ber of repetitions to 𝑀 := ⌈𝜆/log𝑞⌉ to ensure that the soundness

error of the aggregation is negligible (i.e., (1/𝑞)𝑀 ≤ 2
−𝜆
). We

then aggregate the spender–recipient indicator bit strings b(s) =
{𝑏 (s)

𝑖
}𝑖∈[𝑁 ] and b(r) = {𝑏 (r)

𝑖
}𝑖∈[𝑁 ] using integer challenges {𝛾𝑖,𝑢 ∈

Z𝑞}𝑖∈[2𝑁 ],𝑢∈[𝑀 ] , derived via a hash function following the Fiat-

Shamir transform [19], into𝑀 aggregated integers {𝑏𝑢 }𝑢∈[𝑀 ] , de-
fined as

𝑏𝑢 :=

𝑁−1∑︁
𝑖=0

𝛾𝑖,𝑢 · 𝑏 (s)𝑖
+

𝑁−1∑︁
𝑖=0

𝛾𝑖+𝑁,𝑢 · 𝑏 (r)𝑖
.

Next, we prove that each 𝑏𝑢 is an integer via LNP22. This opti-
mization reduces the cost of integer proofs from 2𝑁 instances to a

small constant𝑀 (where 2𝑁 := 32,𝑀 := 3 in our implementations),

reducing the runtime in practice from a few seconds to a fraction

of a second. After establishing that b(s) and b(r) are integer vectors,
we further apply binary proofs to show that b(s) , b(r) ∈ {0, 1}𝑁 ,
and linear proofs to show that

∑
𝑖∈[𝑁 ] 𝑏

(s)
𝑖

=
∑

𝑖∈[𝑁 ] 𝑏
(r)
𝑖

= 1. To-

gether, these proofs establish the well-formedness of the spender–

recipient indicator vectors.

B Preliminaries
B.1 Notation
Let 𝜆 ∈ N denote the security parameter. For a positive integer𝑛, we

denote the set {1, ..., 𝑛} by [𝑛]. For positive integers 𝑏, 𝑡 , we denote
the integer vector (𝑏0, 𝑏1, ..., 𝑏𝑡−1) by ®𝑏𝑡 . For a positive integer 𝑞, we
denote Z𝑞 as the integers modulo 𝑞 and R𝑞 = Z𝑞 [𝑋 ]/(𝑋𝑑 + 1) as
the polynomials modulo 𝑞 and 𝑋𝑑 + 1. For a positive integer 𝑏, we

denote a polynomial with all coefficients equal to 𝑏 as 𝑏𝑑 ∈ R𝑞 . For
positive integer 𝜈 , we write S𝜈 to denote the set of polynomials in

R𝑞 with infinity norm bounded by 𝜈 . The size of the S𝜈 coefficient

support is denoted 𝜈 ≤ 2𝜈 + 1; for example 𝜈 = 1, 𝜈 = 2 indicates

binary polynomials. We denote bold lowercase letters as vectors

of polynomial elements, e.g., u ∈ R𝑚𝑞 , bold uppercase letters as

matrices of polynomial elements, e.g., U ∈ R𝑚×𝑛𝑞 , and lowercase



Wang et al.

letters with an arrow as vectors of integers or reals, e.g., ®𝑎 ∈ Z𝑚𝑞 .
For a polynomial vector (or element when𝑚 = 1), e.g., a ∈ R𝑚𝑞 , we

define ®𝑎 ∈ Z𝑚𝑑
𝑞 as the integer vector concatenated by the coefficients

of each polynomial in a. For the vectors over integers/polynomials,

we denote their inner product as ⟨·, ·⟩, e.g., ⟨®𝑎, ®𝑏⟩ and ⟨a, b⟩.
We denote rounding operation as ⌊·⌉, e.g., ⌊𝑎⌉ rounds the result

to the nearest integer of 𝑎. We denote assignment as :=, e.g., 𝑥 := 𝑦

assigns the value of𝑦 to 𝑥 . We denote sampling or output as←, e.g.,

𝑥 ← D indicates that 𝑥 is sampled from the distribution D, and

𝑥 ← A(𝑦) denotes that 𝑥 is the output of probabilistic polynomial

time (PPT) algorithm A given input 𝑦. Particularly, we write 𝑥 ← 𝑆

when 𝑥 ∈ 𝑆 is sampled uniformly randomly from the finite set 𝑆 . We

denote the uniform distribution on a set 𝑆 asU(𝑆). We denote D𝜎

as a discrete Gaussian distribution with Gaussian width 𝜎 , where

𝜎 :=
√

2𝜋 · 𝔰 corresponds to the standard deviation 𝔰. For a vector a
(or ®𝑎), we write ∥a∥, ∥a∥1, and ∥a∥∞ to denote its ℓ2-norm, ℓ1-norm

and ℓ∞-norm, respectively.

Here, we define some useful functions and lemmas as follows:

• 𝑚̂ ∈ R2 ← BinPoly(𝑚 ∈ Z𝑞): Given an integer 𝑚 ∈ Z𝑞 with

𝑚 < 2
𝑑
, this function outputs a binary polynomial 𝑚̂ ∈ R2 whose

coefficients represent the binary decomposition of𝑚.

• bℎ ∈ R𝑚2 ← Bit(ℎ ∈ R𝑞): Given a polynomial ℎ ∈ R𝑞 with

∥ℎ∥∞ ≤ 𝛽 and𝑚 = ⌈log(𝛽 + 1)⌉, this function outputs a binary

polynomial vector bℎ ∈ R𝑚2 representing the coefficient-wise

binary decomposition of ℎ, i.e., ℎ =
∑

𝑖∈[𝑚] 𝛿𝑖 · 𝑏
(𝑖 )
ℎ

, where 𝜹 =

(𝛿1, 𝛿2, . . . , 𝛿𝑚) = (1, 2, . . . , 𝛽 + 1 − 2
⌊log 𝛽 ⌋).

Lemma B.1 (Gaussian tail bound [29, Lemma 4.4]). For any 𝜏 > 0,
Pr[∥z∥ > 𝜏𝓈

√
𝑛; z ← D𝑛

𝓈
] < 𝜏𝑛𝑒

𝑛
2
(1−𝜏2 ) , where D𝑛

𝓈
denotes the

discrete Gaussian distribution over Z𝑛 with standard deviation 𝓈 and
𝜏 is Gaussian tail bound factor.

B.2 Non-Interactive Zero Knowledge Protocol
We define non-interactive zero knowledge (NIZK) protocol as fol-

lows.

Definition B.2 (Non-Interactive Zero Knowledge Protocol). Let

𝑅L be a polynomial-time verifiable relation of statement-witness

(𝑥,𝑤). Denote a language L as a set of statements where there

exists a witness𝑤 with (𝑥,𝑤) ∈ 𝑅L . A NIZK protocol Π̂ is defined

as follows.

• pp
Π̂
← Π̂.Setup(1𝜆): Input a security parameter 1

𝜆
, it outputs a

public parameter pp
Π̂
.

• 𝜋 ← Π̂.Prove(pp
Π̂
, 𝑥,𝑤): Input the public parameter pp

Π̂
, a state-

ment 𝑥 and a witness𝑤 such that (𝑥,𝑤) ∈ 𝑅L , it outputs a proof
𝜋 .

• 0/1 ← Π̂.Verify(pp
Π̂
, 𝑥, 𝜋): Input the public parameter pp

Π̂
, a

statement 𝑥 and a proof 𝜋 , it output 1 if accepts, otherwise, it

outputs 0.

We then define the properties of computational completeness,

computational zero knowledge, and computational knowledge sound-

ness for NIZK argument system following [12, 23].

Computational Completeness. A NIZK argument system Π̂ is com-

putational completeness if for any (𝑥,𝑤) ∈ 𝑅L , the following prob-

ability holds overwhelming,

Pr

[
Π̂.Verify(pp

Π̂
, 𝑥, 𝜋 ) = 1

���� pp
Π̂
← Π̂.Setup(1𝜆 ) ;

𝜋 ← Π̂.Prove(pp
Π̂
, 𝑥, 𝑤 )

]
.

Computational Zero Knowledge. A NIZK argument system Π̂ is com-

putational zero knowledge if for any PPT adversaryA, there exists

a PPT simulator Π̂.Sim = (Sim0, Sim1) such that the following is

negligible with 𝜆,����� Pr

[
(𝑥, 𝑤 ) ∈ 𝑅L ;

A(pp
Π̂
, 𝜋 ) = 1

����� pp
Π̂
← Π̂.Setup(1𝜆 ) ;

(𝑥, 𝑤 ) ← A(pp
Π̂
) ;

𝜋 ← Π̂.Prove(pp
Π̂
, 𝑥, 𝑤 )

]
− Pr

[
(𝑥, 𝑤 ) ∈ 𝑅L ;

A(pp
Π̂
, 𝜋 ) = 1

����� (ppΠ̂
, 𝜏 ) ← Sim0 (1𝜆 ) ;

(𝑥, 𝑤 ) ← A(pp
Π̂
) ;

𝜋 ← Sim1 (pp
Π̂
, 𝑥, 𝜏 )

] ����� .
Computational Knowledge Soundness. A NIZK argument system Π̂

is computational knowledge soundness if for any PPT adversaryA,

there exists an expected PPT extractor Π̂.E having full access to the

adversary’s state, such that the following probability is negligible

with 𝜆,

Pr

[
Π̂.Verify(pp

Π̂
, 𝑥, 𝜋 ) = 1

∧(𝑥, 𝑤̄ ) ∉ 𝑅L

����� pp
Π̂
← Π̂.Setup(1𝜆 ) ;

(𝑥, 𝜋 ) ← A(pp
Π̂
) ;

𝑤̄ ← Π̂.E(pp
Π̂
,A, 𝑥, 𝜋 )

]
.

B.3 NIZK Protocol in LNP22 [31]
We recall one of the most efficient lattice-based NIZK protocols

proposed in [31], denoted as LNP22. We treat it as a black-box

throughout this paper and do not delve into its technical details.

We first define the proof relation 𝑅L in LNP22 as follows:

𝑅L =


wit = s, stat = (𝜙,Ψ,Θ,Ω) :

∀𝑓 ∈ 𝜙, 𝑓 (s) = 0 over R𝑞 ,
∀𝐹 ∈ Ψ, 𝐹 (s) = 0 over Z𝑞 ,

∀(E, v, 𝛽 ) ∈ Θ, ∥Es − v∥2 ≤ 𝛽,

∀(D, u, 𝛽 ) ∈ Ω, ∥Ds − u∥2 ≤ 𝜓 · 𝛽


. (B.1)

For clarity, we omit the public parameters of LNP22 and their

relation to the witness in 𝑅L . The witness in 𝑅L is a vector s over
R𝑞 . The statement consists of:

• a set 𝜙 of linear and quadratic functions over R𝑞 ,
• a set Ψ of linear and quadratic functions over Z𝑞 ,
• a set Θ of exact ℓ2-norm bounds on linear functions,

• a set Ω of approximate ℓ2-norm bounds with relaxation factor

𝜓 ≈ 189𝛾 where 𝛾 is a rejection sampling constant. As a typical

choice, in this paper, we set 𝛾 := 1 and omit it in subsequent

expressions for simplicity.

Notably, LNP22 can also support:

• Proving an (integer) bit 𝑏 ∈ {0, 1} by first proving 𝑏 ∈ Z via the

relation ⟨®𝑏, ®𝛿 (𝑖 ) ⟩ = 0 for all 𝑖 ∈ {1, . . . , 𝑑 − 1} where 𝛿 (𝑖 ) := 𝑋 𝑖 ∈
R𝑞 , then proving 𝑏 (𝑏 − 1) = 0 over R𝑞 ;

• Proving that a polynomial 𝑎 ∈ R𝑞 has binary coefficients by

showing ⟨®𝑎, ®𝑎 − ®1𝑑 ⟩ = 0 over Z;
• Proving an approximate ℓ∞-norm bound via the corresponding

ℓ2-norm, i.e., ∥Ds − u∥∞ ≤ ∥Ds − u∥2 ≤ 𝜓 · 𝛽 .
We define the construction of LNP22 as follows.



Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

Construction B.3 (LNP22 from [31]). Let 𝜆 be the security param-

eter. The LNP22 protocol consists of the following algorithms:

• ppLNP ← LNP22.Setup(1𝜆): Given the security parameter 𝜆,

output the public parameters ppLNP.
• 𝜋 ← LNP22.P(ppLNP, 𝑅L, stat,wit): Given ppLNP, a proof rela-

tion 𝑅L , statement stat, and witness wit as defined in Equa-

tion (B.1), output a proof 𝜋 .

• 0/1 ← LNP22.V(ppLNP, 𝑅L, stat, 𝜋): Given ppLNP, the relation
𝑅L and statement stat, and a proof 𝜋 , output 1 if the proof is

valid, otherwise output 0.

The completeness, knowledge soundness, and simulatability of

LNP22 are analyzed in detail in [31]; we refer the reader to the

original paper for further information.

B.4 Lattice Preliminaries
We show the definition of the standard lattice-based hard problems.

Definition B.4 (MLWE Problem). Let𝑚,𝑛 > 0 be positive integers.

Let 𝜒 be an error distribution over R. The MLWE problem, denoted

byMLWER,𝑚,𝑛,𝑞,𝜒 , asks an adversaryA to distinguish the following

two case: (1) (A,Ar+ e) for A←U(R𝑚×𝑛𝑞 ), r← 𝜒𝑛 , e← 𝜒𝑚 , and

(2) (A, u) for A←U(R𝑚×𝑛𝑞 ), u←U(R𝑚𝑞 ).

DefinitionB.5 (Matrix Hint-MLWEProblem [17, 44]). Let𝑚,𝑛, ℓ >

0 be positive integers. Let S be a distribution over Rℓ×(𝑚+𝑛)
and

let 𝜒0, 𝜒1 be distributions over R𝑚+𝑛 and Rℓ
, respectively. The Ma-

trix Hint-MLWE problem, denoted byMatrixHint-MLWEℓ,𝜒1,S
R,𝑚,𝑛,𝑞,𝜒0

,

asks an adversaryA to distinguish between the following two cases:

(1)

(
A, [I𝑚 | A]r,R, h

)
, where A ← U(R𝑚×𝑛𝑞 ), r ← 𝜒0, R ← S,

y ← 𝜒1, and h := Rr + y; (2)
(
A, u,R, h

)
, where A ← U(R𝑚×𝑛𝑞 ),

u←U(R𝑚𝑞 ), r← 𝜒0, R← S, y← 𝜒1, and h := Rr + y.
We note that there exists a reduction from standard MLWE to

Matrix Hint-MLWE with appropriate parameters.

Definition B.6 (MLWR Problem). Let 𝑚,𝑛, 𝑝, 𝑞 > 0 be positive

integers. Let 𝜒 be an error distribution over R. The MLWR problem,

denoted by MLWRR,𝑚,𝑛,𝑞,𝑝,𝜒 , asks an adversary A to distinguish

the following two case: (1) (A, ⌊Ar⌋𝑝 ) for A←U(R𝑚×𝑛𝑞 ), r← 𝜒𝑛 ,

and (2) (A, ⌊u⌋𝑝 ) for A←U(R𝑚×𝑛𝑞 ), u←U(R𝑚𝑞 ). Note that if 𝑝
divides 𝑞, ⌊u⌋𝑝 is itself uniform over R𝑚𝑝 .

Definition B.7 (MSIS Problem). Let𝑚,𝑛, 𝛽 > 0 be positive integers

with 𝑛 > 𝑚, given A := [I𝑚 | |A′] ∈ R𝑚×𝑛𝑞 with A′ ∈ R𝑚×(𝑛−𝑚)𝑞 , the

MSIS problem, denoted by MSISR,𝑚,𝑛,𝑞,𝛽 , asks an adversary A to

find a short non-zero vector v ∈ R𝑛 such that Av = 0 ∈ R𝑚𝑞 and

∥v∥∞ ≤ 𝛽 .

C Definitions and Proofs for Building Blocks
In this section, we present the formal definitions of our building

blocks, including verifiable Ref-AH mmPKE and an event-oriented

linkable tag scheme, and provide the security proofs for these con-

structions.

For convenience, we summarize the notations used in the Ref-AH

mmPKE construction (and Lether) in Table 7 and restate the syntax

of Ref-AH mmPKE and the event-oriented linkable tag scheme.

Table 7: Summary of main notations used in Lether, including Ref-
AH mmPKE and tag scheme.

Notation Description
𝜆 security parameter

𝜁 correctness parameter

𝑁 # of recipients, size of anonymity set

𝑚,𝑛 # of rows of A, # of columns of A
𝑛′ dimension of linkable tag v𝐻
𝑞 modulus in Ref-AH mmPKE and LNP22
𝑑 ring dimension of R = Z[𝑋 ]/(𝑋𝑑 + 1)
𝜈 ℓ∞-norm bound on private key (s𝑖 , e𝑖 )
𝜈 support size 𝜈 ≤ 2𝜈 + 1 of private key (s𝑖 , e𝑖 )
𝜎0 Gaussian width of (r, e𝑢 ) in the ciphertext

𝜎1 Gaussian width of 𝑦𝑖 in the ciphertext

𝑞, 𝑝 moduli in tag scheme

𝑇 levels of additively-homomorphic evaluation in mmPKE

𝑘 # of bits of the integer message and the amount.

C.1 Verifiable Ref-AH mmPKE
Definition C.1 (Ref-AH mmPKE). A Ref-AH mmPKE scheme with

a public-private key pair space K , a message spaceM, a multi-

recipient ciphertext space C, and an individual ciphertext space Cs
consists of the following algorithms.

• ppEnc ← mmSetup(1𝜆, 𝑁 ): On input a security parameter 1
𝜆

and a recipient number 𝑁 , it outputs a public parameter ppEnc
(which is an implicit input to all remaining algorithms).

• (pk, sk) ← mmKGen(): It outputs a public-private key pair

(pk, sk) ∈ K .
• ct := (ĉt, (ĉt𝑖 )𝑖∈[𝑁 ]) ← mmEnc((pk𝑖 )𝑖∈[𝑁 ] , (m𝑖 )𝑖∈[𝑁 ] ; r, (r𝑖 )𝑖∈[𝑁 ])

: On input 𝑁 public keys (pk𝑖 )𝑖∈[𝑁 ] , 𝑁 messages (m𝑖 )𝑖∈[𝑁 ] ,
(𝑁 + 1) randomnesses r, (r𝑖 )𝑖∈[𝑁 ] , it outputs the multi-recipient

ciphertext ct := (ĉt, (ĉt𝑖 )𝑖∈[𝑁 ] ).
• ct𝑖 := (ĉt, ĉt𝑖 )/⊥ ← mmExt(𝑖, ct): On input a multi-recipient

ciphertext ct ∈ C, and an index 𝑖 ∈ [𝑁 ], it deterministically

outputs the individual ciphertext ct𝑖 ∈ Cs or a symbol ⊥ to

indicate extraction failure.

• m/⊥ ← mmDec(sk, ct): On input a private key sk, and an in-

dividual ciphertext ct ∈ Cs, it outputs a message m ∈ M or a

symbol ⊥ to indicate decryption failure.

• ct′/⊥ ← mmRef (pk, sk, ct): On input a public-private key pair

(pk, sk), and an individual ciphertext ct ∈ Cs, it outputs a re-

freshed individual ciphertext ct′ ∈ Cs or a symbol ⊥ to indicate

refresh failure.

Remark C.2 (Correctness). Let 𝜁 : N → [0, 1]. We say a Ref-AH

mmPKE scheme is 𝜁 -correct, if for all 𝜆, 𝑁 ∈ N and 𝑖 ∈ [𝑁 ], message

m𝑖 ∈ M, the following probability is at most 𝜁 (𝜆),

Pr


∃𝑖 ∈ [𝑁 ] :

mmDec(pp, sk𝑖 , ct𝑖 ) ≠ m𝑖

�������
pp← mmSetup(1𝜆, 𝑁 ) ;

∀𝑖 ∈ [𝑁 ] : (pk𝑖 , sk𝑖 ) ← mmKGen(pp) ;
ct← mmEnc(pp, (pk𝑖 )𝑖∈ [𝑁 ] , (m𝑖 )𝑖∈ [𝑁 ] ) ;

ct𝑖 ← mmExt(pp, 𝑖, ct)

 .
Remark C.3 (Security). LetRA-mmPKE be a Ref-AHmmPKE scheme,

let 𝑁 ∈ N, and let 𝜆 denote the security parameter. We define the

chosen-plaintext attack (CPA) security of Ref-AH mmPKE under

the knowledge-of-secret-key (KOSK) assumption and the standard

CPA security via the mmIND-CPAKOSK
and mmIND-CPA security

games, respectively, as shown in Figure 3.



Wang et al.

For all PPT adversaries A, we say that RA-mmPKE is mmIND-
CPAKOSK

secure if the advantage

AdvmmIND-CPAKOSK
RA-mmPKE,𝑁 ,A (𝜆) :=

���Pr

[
GAMEmmIND-CPAKOSK

RA-mmPKE,𝑁 ,A (𝜆) = 1

]
− 1

2

���
is negligible in 𝜆. Similarly, we say that RA-mmPKE ismmIND-CPA
secure if the advantage

AdvmmIND-CPA
RA-mmPKE,𝑁 ,A (𝜆) :=

���Pr

[
GAMEmmIND-CPA

RA-mmPKE,𝑁 ,A (𝜆) = 1

]
− 1

2

���
is negligible in 𝜆.

We note that, using the KOSK compiler from [44] (i.e., requiring

each recipient to prove knowledge of the corresponding private

key), an mmIND-CPAKOSK
secure (Ref-AH) mmPKE can be generi-

cally transformed into an mmIND-CPA secure scheme.

Looking ahead to the construction of Ref-AH mmPKE in Con-

struction 3.2 and Lether system, here the KOSK assumption can

be removed by requiring each recipient to prove knowledge of its

private key during a registration phase, specifically by demonstrat-

ing that ∥(s, b − A⊤s)∥∞ ≤ 𝜈 . Note that, since here the number of

recipients 𝑁 is polylogarithmic in the security parameter, we can

directly apply LNP22 without incurring for exponential soundness

degradation, as discussed in [9, 44].

Game GAMEmmIND-CPAKOSK
RA-mmPKE,𝑁 ,A (𝜆)

(A0,A1,A2) ← A
pp← mmSetup(1𝜆, 𝑁 )
(ℓ, st) ← A0 (pp)
for 𝑖 ∈ [ℓ] do (pk𝑖 , sk𝑖 ) ← mmKGen(pp)
((m0

𝑖 ,m
1

𝑖 )𝑖∈[ℓ ] , (m𝑖 )𝑖∈[ℓ :𝑁 ] , (pk𝑖 , sk𝑖 )𝑖∈[ℓ :𝑁 ] , st) ← A1 ((pk𝑖 )𝑖∈[ℓ ] , st)
req: ∀𝑖 ∈ [ℓ], |m0

𝑖 | = |m1

𝑖 |
req: ∀𝑖 ∈ [ℓ : 𝑁 ], (pk𝑖 , sk𝑖 ) ∈ K
𝑏 ← {0, 1}
ct← mmEnc(pp, (pk𝑖 )𝑖∈[𝑁 ] , (m𝑏

𝑖 )𝑖∈[ℓ ] , (m𝑖 )𝑖∈[ℓ :𝑁 ])
𝑏′ ← A2 (ct, st)
return [𝑏 = 𝑏′]

Game GAMEmmIND-CPA
RA-mmPKE,𝑁 ,A (𝜆)

(A0,A1,A2) ← A
pp← mmSetup(1𝜆, 𝑁 )
(ℓ, st) ← A0 (pp)
for 𝑖 ∈ [ℓ] do (pk𝑖 , sk𝑖 ) ← mmKGen(pp)
((m0

𝑖 ,m
1

𝑖 )𝑖∈[ℓ ] , (m𝑖 )𝑖∈[ℓ :𝑁 ] , (pk𝑖 )𝑖∈[ℓ :𝑁 ] , st) ← A1 ((pk𝑖 )𝑖∈[ℓ ] , st)
req: ∀𝑖 ∈ [ℓ], |m0

𝑖 | = |m1

𝑖 |
𝑏 ← {0, 1}
ct← mmEnc(pp, (pk𝑖 )𝑖∈[𝑁 ] , (m𝑏

𝑖 )𝑖∈[ℓ ] , (m𝑖 )𝑖∈[ℓ :𝑁 ])
𝑏′ ← A2 (ct, st)
return [𝑏 = 𝑏′]

Figure 3: The CPA security games for Ref-AH mmPKE.

Remark C.4 (Additive Homomorphism). Let𝑇 be a positive integer.

We say an mmPKE scheme is 𝑇 -level additively-homomorphic, if

for any 𝜆, 𝑁 ∈ N, any ppEnc ← mmSetup(1𝜆), any (pk𝑖 , sk𝑖 ) ←
mmKGen() and m( 𝑗 )

𝑖
∈ M for all 𝑖 ∈ [𝑁 ], 𝑗 ∈ [𝑇 ], the following

holds,

Pr


∀ 𝑗 ∈ [𝑇 ], ct( 𝑗 ) ← mmEnc( (pk𝑖 )𝑖∈ [𝑁 ] , (m

( 𝑗 )
𝑖
)𝑖∈ [𝑁 ] ) ;

∀𝑖 ∈ [𝑁 ], ct( 𝑗 )
𝑖
← mmExt(𝑖, ct( 𝑗 ) ) :

mmDec(sk𝑖 , ct(0)𝑖
⊕ · · · ⊕ ct(𝑇 −1)

𝑖
)

=m(0)
𝑖
+ · · · +m(𝑇 −1)

𝑖

 = 1.

where ⊕ denotes the additively-homomorphic evaluation.

Remark C.5 (Refreshability). Suppose an mmPKE scheme is𝑇 -level

additively-homomorphic. We say that the mmPKE is refreshable,

if for any 𝜆, 𝑁 ∈ N, any ppEnc ← mmSetup(1𝜆), any (pk, sk) ←
mmKGen(), any individual ciphertext ct ∈ Cs encrypted under

pk and evaluated additively at most 𝑇 times, there exists a PPT

algorithm ct′ ← mmRef ((pk, sk), ct) such that mmDec(sk, ct′) =
mmDec(sk, ct) and ct′ is a fresh ciphertext that supports at least

𝑇 further additive homomorphic evaluations with other fresh or

refreshed ciphertexts.

Definition C.6 (Soundness in Verifiable Multi-Encryption). Let

mmPKE = (mmSetup,mmKGen,mmEnc,mmDec,mmExt) be a

(Ref-AH) mmPKE scheme for message spaceM. Let Π̂ = (Π̂.Setup,
Π̂.Prove, Π̂.Verify) be a verifiablemulti-encryption scheme formmPKE.

We say that Π̂ is sound if for any PPT adversaryA, any ppEnc ←
mmSetup(1𝜆, 𝑁 ), any pp

Π̂
← Π̂.Setup(1𝜆), any (pk𝑖 , sk𝑖 ) ←mmKGen()

for all 𝑖 ∈ [𝑁 ], the following probability is negligible in 𝜆,

Pr


(𝜋, ct) ← A(ppEnc, ppΠ̂

, (pk𝑖 , sk𝑖 )𝑖∈ [𝑁 ] ) :

Π̂.Verify( (pk𝑖 )𝑖∈ [𝑁 ] , ct, 𝜋 ) = 1 ∧
∃𝑖 ∈ [𝑁 ], ct𝑖 ← mmExt(ct, 𝑖 ), such that

mmDec(ct𝑖 , sk𝑖 ) = ⊥ ∨ mmDec(ct𝑖 , sk𝑖 ) ∉ M

 .
DefinitionC.7 (Unforgeability in Verifiable Decryption). LetmmPKE =

(mmSetup,mmKGen,mmEnc,mmDec,mmExt) be a (Ref-AH)mmPKE

scheme. Let Π̂ = (Π̂.Setup, Π̂.Prove, Π̂.Verify) be a verifiable decryp-
tion scheme for mmPKE.

We say that Π̂ is unforgeable if for any PPT adversary A =

(A0,A1), any ppEnc ← mmSetup(1𝜆, 𝑁 ), any pp
Π̂
← Π̂.Setup(1𝜆),

the following probability is negligible in 𝜆,

Pr


( (pk𝑖 )𝑖∈ [𝑁 ] , (m𝑖 )𝑖∈ [𝑁 ] , st) ← A0 (ppEnc, ppΠ̂

) ;
ct← mmEnc( (pk𝑖 )𝑖∈ [𝑁 ] , (m𝑖 )𝑖∈ [𝑁 ] ) ;

(𝜋,m′𝑖 ) ← A1 (ct, st) ; ct𝑖 ← mmExt(ct, 𝑖 ) :

Π̂.Verify(pk𝑖 , ct𝑖 ,m′𝑖 , 𝜋 ) = 1 ∧ m′𝑖 ≠ m𝑖

 .
DefinitionC.8 (Unforgeability in Verifiable Refresh). LetmmPKE =

(mmSetup,mmKGen,mmEnc,mmDec,mmExt ) be a (Ref-AH)mmPKE

scheme. Let Π̂ = (Π̂.Setup, Π̂.Prove, Π̂.Verify) be a verifiable refresh
scheme for mmPKE.

We say that Π̂ is unforgeable if for any PPT adversary A =

(A0,A1), any ppEnc ← mmSetup(1𝜆, 𝑁 ), any pp
Π̂
← Π̂.Setup(1𝜆),

any (pk𝑖 , sk𝑖 ) ← mmKGen(pp) for all 𝑖 ∈ [𝑁 ] the following prob-

ability is negligible in 𝜆,

Pr


( (m𝑖 )𝑖∈ [𝑁 ] , st) ← A0 (ppEnc, ppΠ̂

, (pk𝑖 , sk𝑖 )𝑖∈ [𝑁 ] ) ;
ct← mmEnc( (pk𝑖 )𝑖∈ [𝑁 ] , (m𝑖 )𝑖∈ [𝑁 ] ) ;

(𝜋, ct′𝑖 ) ← A1 (ct, st) ; ct𝑖 ← mmExt(ct, 𝑖 ) :

Π̂.Verify(pk𝑖 , ct𝑖 , ct′𝑖 , 𝜋 ) = 1 ∧
(mmDec(sk𝑖 , ct′𝑖 ) = ⊥ ∨mmDec(sk𝑖 , ct′𝑖 ) ≠ m𝑖 )

 .
Lemma C.9 (Soundness in Verifiable Multi-Encryption). Suppose
LNP22 is knowledge sound. Then, our verifiable multi-encryption in
Construction 3.5 is sound if the following probability is negligible,∑︁

𝑖∈ [𝑁 ]
Pr[ ∥ ⟨e𝑖 , r̄⟩ + 𝑦𝑖 − ⟨s𝑖 , ē𝑢 ⟩ ∥∞ ≥ ⌊𝑞/(4𝑇 + 4) ⌉ ] (C.1)

where (e𝑖 , s𝑖 ) is the private key in mmPKE and (r̄, ¯𝑚̂𝑖 ) is the extracted
witness along with ē𝑢 := c−Ar̄, 𝑦𝑖 := 𝑐𝑖 − ⟨b𝑖 , r̄⟩ − ⌊𝑞/(2𝑇 + 2)⌉ · ¯𝑚̂𝑖 .



Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

Proof. If LNP22 is knowledge sound, there exists a PPT extrac-

tor that can extract the witness (r̄, ( ¯𝑚̂𝑖 )𝑖∈[𝑁 ]) satisfying the relation
𝑅enc in Equation (3.1).

Denote ē𝑢 := c−Ar̄ and 𝑦𝑖 := 𝑐𝑖 − ⟨b𝑖 , r̄⟩ − ⌊𝑞/(2𝑇 + 2)⌉ · ¯𝑚̂𝑖 . The

value (c, 𝑐𝑖 ) in mmDec algorithm is

c = Ar̄ + ē𝑢 , 𝑐𝑖 = ⟨b𝑖 , r̄⟩ + 𝑦𝑖 + ⌊𝑞/(2𝑇 + 2)⌉ · ¯𝑚̂𝑖 .

Since the public key b𝑖 = A⊤s𝑖 + e𝑖 , we can obtain

𝑐𝑖 − ⟨c, s𝑖⟩ = ⟨e𝑖 , r̄⟩ + 𝑦𝑖 − ⟨s𝑖 , ē𝑢⟩ + ⌊𝑞/(2𝑇 + 2)⌉ · ¯𝑚̂𝑖 .

Therefore, the decryption will fail if the decryption error satisfies

∥⟨e𝑖 , r̄⟩ + 𝑦𝑖 − ⟨s𝑖 , ē𝑢⟩∥∞ ≥ ⌊𝑞/(4𝑇 + 4)⌉. □

Lemma C.10 (Unforgeability in Verifiable Decryption). Suppose
LNP22 is knowledge sound. Then, our verifiable decryption in Con-
struction 3.7 is unforgeable ifMSISR,𝑚,(𝑚+𝑛),𝑞,𝜈 assumption is hard.

Proof. Suppose there exists an adversary A that can generate

a valid proof 𝜋 for a different message 𝑚̂′, where 𝑚̂ ≠ 𝑚̂′ for
the original message 𝑚̂ encrypted by the challenger. If LNP22 is
knowledge sound, there exists a PPT extractor that can extract

the witness (s̄, ¯bℎ) from the proofs satisfying the relation 𝑅dec in

Equation (3.2).

Denote ē := b − A⊤s̄ and e := b − A⊤s, where s is the correct
private key of b honestly generated by the challenger. We first argue

that s̄ = s. Otherwise, the adversary can break theMSISR,𝑚,(𝑚+𝑛),𝑞,𝜈
assumption for the instance of [I|A] with the solution [(ē− e) | (s̄−
s)]⊤.

Denote
¯ℎ :=

∑𝑜
𝑖=1

𝛿𝑖 · ¯𝑏
(𝑖 )
ℎ

for
¯bℎ ∈ {0, 1}𝑜𝑑 , and

ℎ := 𝑐 − ⟨c, s̄′⟩ − ⌊𝑞/(2𝑇 + 2)⌉ · 𝑚̂, (C.2)

where the ciphertext (c, 𝑐) is honestly generated by the challenger.

Thus, we have
¯ℎ,ℎ < ⌊𝑞/(4𝑇 + 4)⌉ and ∥ ¯ℎ − ℎ∥∞ < ⌊𝑞/(2𝑇 + 2)⌉.

Next, we can obtain from 𝑅dec:

𝑐 − ⟨c, s̄⟩ − ⌊𝑞/(2𝑇 + 2)⌉ · 𝑚̂ = ¯ℎ, (C.3)

After subtracting Equation (C.3) and Equation (C.2), we can obtain

⌊𝑞/(2𝑇 + 2)⌉ · (𝑚̂ − 𝑚̂′) = ℎ − ¯ℎ. Since 𝑚̂ ≠ 𝑚̂′ and ∥⌊𝑞/(2𝑇 +
2)⌉ · (𝑚̂ − 𝑚̂′)∥∞ ≥ ⌊𝑞/(2𝑇 + 2)⌉, it contradicts the soundness of
LNP22. □

LemmaC.11 (Unforgeability in Verifiable Refresh). Suppose LNP22
is knowledge sound. Then, our verifiable refresh in Construction 3.9 is
unforgeable ifMSISR,𝑚,(𝑚+𝑛),𝑞,𝜈 assumption is hard and the following
probability is negligible,

Pr[ ∥⟨e, r̄′⟩ + 𝑦′ − ⟨s, ē′𝑢⟩∥ ≥ ⌊𝑞/(4𝑇 + 4)⌉ ] (C.4)

where (e, s) is the private key in mmPKE and (r̄′, ¯𝑚̂′) is the extracted
witness along with ē′𝑢 := c′−Ar̄′,𝑦′ := 𝑐′−⟨b, r̄′⟩− ⌊𝑞/(2𝑇 +2)⌉ · ¯𝑚̂′.

Proof sketch. The proof combines the arguments fromLemmaC.9

and Lemma C.10. Briefly, the unforgeability of the verifiable de-

cryption ensures that the decrypted message 𝑚̂ is valid, while the

soundness of the verifiable multi-encryption guarantees that the

refreshed ciphertext is well-formed. Moreover, the relation 𝑚̂ ∈
{0, . . . , 2𝑇 + 1}𝑑 together with ⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚 − ®𝑇𝑑 ⟩ = ⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚′⟩
ensures the consistency between the messages in the evaluated and

refreshed ciphertexts. □

C.2 Event-Oriented Linkable Tag
Definition C.12 (Tag Scheme). A tag scheme with a public-private

key pair spaceK , a tag space T consists of the following algorithms.

• (pptag, pk, sk) ← Setup(1𝜆) : On input a security parameter, it

outputs a public parameter (which is an implicit input to other

algorithms) and a public-private key pair.

• tag← TagGen(sk, event): On input a private key and an event

string, it outputs the linkability tag.

• 0/1 ← Link(tag, tag′) : On input two tags, it outputs 1 if they

are linked, and 0 otherwise.

• 𝜋 ← Prove(pk, tag, event, sk) : On input the statement and wit-

ness, it proves knowledge of a private key that was used to create

both a linkable tag for a specific event and a public key.

• 0/1 ← Verify(pk, tag, event, 𝜋) : On input the statement and

proof, it outputs 1 if the proof is valid, and 0 otherwise.

Definition C.13 (Event-Oriented Linkability). Let Tag be a tag

scheme. We say that Tag is event-oriented linkable if for any PPT

adversary A, any (pp
tag
, pk, sk) ← Setup(1𝜆), the following prob-

ability is negligible in 𝜆,

Pr

[
(event, (tag𝑖 , 𝜋𝑖 )𝑖∈{0,1} ) ← A(pptag, pk, sk) :

∀𝑖 ∈ {0, 1}, Verify(pk, event, tag𝑖 , 𝜋𝑖 ) = 1

∧ Link(tag
0
, tag

1
) = 0

]
.

Definition C.14 (Multi-Tag Anonymity). Let Tag be a tag scheme.

We say that Tag is multi-tag anonymous if for any PPT adversary

A = (A0,A1), any (pptag, pk, sk) ← Setup(1𝜆), any ℓ ∈ N, the
following probability is negligible in 𝜆,������Pr


( (event𝑖 )𝑖∈ [ℓ ] , st) ← A0 (pptag, pk) ;

∀𝑖 ∈ [ℓ ], tag0

𝑖
← TagGen(sk, event𝑖 ), tag1

𝑖 ← T;

𝑏 ← {0, 1}; 𝑏′ ← A1 ( (tag𝑏𝑖 )𝑖∈ [ℓ ] , st) :

𝑏 = 𝑏′

 −
1

2

������ .
Definition C.15 (Non-Frameability). Let Tag be a tag scheme.

We say that Tag is non-frameable if for any PPT adversary A =

(A0,A1), any (pptag, pk, sk) ← Setup(1𝜆), the following probabil-

ity is negligible in 𝜆,

Pr


(event, st) ← A0 (pptag, pk) ;
tag← TagGen(sk, event) ;
(tag′, 𝜋 ′, pk′ ) ← A1 (tag, st) :

Verify(pk′, event, tag′, 𝜋 ′ ) = 1 ∧ Link(tag′, tag) = 1

 .
Lemma C.16 (Event-Oriented Linkability in Tag Scheme). Suppose
LNP22 is knowledge sound. Then our tag scheme in Construction 3.12
is event-oriented linkable ifMSISR,𝑚,(𝑚+𝑛),𝑞,𝜈 assumption is hard.

Proof. Suppose there exists an adversary A can generate two

valid proofs 𝜋0, 𝜋0 along with different tags v0

𝐻
≠ v1

𝐻
for the same

event, towards the same public key b. Thus, if LNP22 is knowledge
soundness, there exists a PPT extractor that can extract two wit-

nesses (s̄0, ē0

𝐻
), (s̄1, ē1

𝐻
) satisfying the relation 𝑅tag in Equation (3.4).

Similar to Lemma C.10, we can argue that s̄0 = s̄1 holds if the

MSISR,𝑚,(𝑚+𝑛),𝑞,𝜈 assumption is hard.

Denote v̄𝑖 := (𝑞/𝑝 · v𝑖
𝐻
+ ē𝑖

𝐻
−A𝐻 · s̄𝑖 )/𝑞 for 𝑖 ∈ {0, 1}. Thus, for

𝑖 ∈ {0, 1}, we have
A𝐻 · s̄𝑖 − ē𝑖𝐻 − 𝑞/𝑝 · v

𝑖
𝐻 + 𝑞 · v̄𝑖 mod 𝑞 ≡ 0 mod 𝑞.

Then, wemoduli𝑞 for the both sides of the above equation to obtain,

for 𝑖 ∈ {0, 1},
A𝐻 · s̄𝑖 − ē𝑖𝐻 − 𝑞/𝑝 · v

𝑖
𝐻 mod 𝑞 ≡ 0 mod 𝑞. (C.5)



Wang et al.

Later, we subtract Equation (C.5) for 𝑖 = {0, 1} to get

ē1

𝐻 − ē
0

𝐻 mod 𝑞 ≡ 𝑞/𝑝 · (v0

𝐻 − v
1

𝐻 ) mod 𝑞.

Since v0

𝐻
≠ v1

𝐻
, 𝑞/𝑝 = 2, and ē0

𝐻
, ē1

𝐻
∈ {0, 1}𝑛′𝑑 , we have ∥𝑞/𝑝 ·

(v0

𝐻
− v1

𝐻
)∥∞ ≥ 𝑞/𝑝 and ∥ē1

𝐻
− ē0

𝐻
∥∞ ≤ 𝑞/𝑝 − 1. Therefore, it

contradicts the knowledge soundness of LNP22. □

Lemma C.17 (Multi-Tag-Anonymity in Tag Scheme). Our tag
scheme in Construction 3.12 is multi-tag-anonymous ifMLWRR,𝑛,𝑛′,𝑞,𝑝,𝜒
assumption for 𝜒 =U(S𝜈 ) is hard.

Proof sketch. The tags are generated as v𝑖
𝐻

:= ⌊A𝑖
𝐻
· s mod

𝑞⌋𝑝 for 𝑖 ∈ [ℓ], which are instances of the MLWR assumption.

Therefore, as demonstrated in [12], when ℓ is polynomial (or even

exponential) in 𝜆, the honestly generated tags are indistinguishable

from uniformly random values under the hardness of the MLWR

assumption. □

Lemma C.18 (Non-Frameability in Tag Scheme). Suppose LNP22
is knowledge sound. Then our tag scheme in Construction 3.12 is
non-frameable if MLWER,𝑛,𝑚,𝑞,𝜒 assumption for 𝜒 := U(S𝜈 ) and
MSISR,𝑛′,(𝑚+𝑛′ ),𝑞,𝛽 assumption for 𝛽 = max(𝑞/𝑝 − 1, 𝜈) are hard.

Proof. Given the honestly-generated tag v𝐻 for the event, sup-
pose there exists an adversary A can generate a valid proofs 𝜋 ′

with the same tag v𝐻 for the same event, towards the different

public key b′. Thus, if LNP22 is knowledge soundness, there exists
a PPT extractor that can extract a witness (s̄′, ē′

𝐻
) satisfying the

relation in Equation (3.4).

Therefore, we have

v𝐻 mod 𝑞 ≡ A𝐻 · s + e𝐻 mod 𝑞 (C.6)

where s is the private key provided by the challenger bounded by

∥s∥∞ ≤ 𝜈 and e𝐻 ∈ {0, ..., 𝑞/𝑝 − 1}𝑛′𝑑 .
Since 𝑞/𝑝 = 2, 𝜈 = 1, we have

v𝐻 mod 𝑞 ≡ A𝐻 · s̄′ + ē′𝐻 (C.7)

where (s̄| |e𝐻 ) ∈ {0, 1} (𝑛+𝑛
′ )𝑑

.

Then, we subtract Equation (C.7) from Equation (C.6) to obtain

a short solution [s − s̄ | e𝐻 − ē𝐻 ] to the MSISR,𝑚,(𝑚+𝑛),𝑞,𝛽 instance

defined by [A𝐻 | I𝑛′ ]⊤ for 𝛽 = max(𝑞/𝑝 − 1, 𝜈). If the solution [s −
s̄ | e𝐻 − ē𝐻 ] is zero, then the adversary can break theMLWER,𝑛,𝑚,𝑞,𝜒

instance defined by A⊤s + e. □

D Formal Definitions for Account-Based Private
Blockchain Payments

In this section, we present a new formal definition for account-

based private blockchain payment systems that captures Anony-

mous Zether-like protocols, e.g., [7, 11]. We also highlight the key

differences between our model and RingCT-like protocols used in

UTXO-based blockchains, such as [15, 16, 27, 41, 45, 48, 49].

The main advantage of our definition is it explicitly captures the

inherent stateful nature of blockchain environments and incorpo-

rates the notion of epochs, which is not considered in [11].

Similar to [11], here we focus primarily on transfer security; for

the security of funding and withdrawal (burn), we refer the reader

to [7].

Definition D.1 (Account-Based Private Blockchain Payment). We

first introduce the notation used specifically for the security model

in Table 8. The blockchain state S consists of: (1) a table acc[·] of
registered accounts, where each public key pk indexes an account

as acc[pk]; (2) a table of all verified transactions; and (3) the current
epoch 𝐻 , computed from the block height ℎ and a system constant

𝐸 as ⌊ℎ/𝐸⌋. The epoch serves as a logical time slot in the blockchain.

The algorithms of the account-based private blockchain payment

protocol are defined as follows:

• pp← Setup(1𝜆): On input a security parameter 𝜆, it outputs the

system public parameters pp. We assume pp is an implicit input

to all remaining algorithms.

• (pk, sk, 𝜋) ← AddrGen(): It generates a public-private key pair

(pk, sk) and a proof 𝜋 of correct key generation. The public key

pk serves as the account address.
• S← Register(pk, 𝜋, S): On input a public key pk and a proof 𝜋 ,

it updates the state by initializing acc[pk] if the proof is valid.
• tag𝐻 ← TagGen(sk, 𝐻 ): On input a private key sk and the cur-

rent epoch 𝐻 , it outputs a linkable tag tag𝐻 .
• ct← AmtGen((amt𝑖 )𝑖∈[𝑁 ] , (pk𝑖 )𝑖∈[𝑁 ]): On input a set of amounts

(amt𝑖 )𝑖∈[𝑁 ] and corresponding public keys (pk𝑖 )𝑖∈[𝑁 ] , it outputs
a set of amount ciphertexts ct.

• S ← RollOver((pk𝑖 )𝑖∈[𝑁 ] , ct, S): On input a set of addresses

(pk𝑖 )𝑖∈[𝑁 ] , a set of amount ciphertexts ct, and the blockchain

state S, it updates the state by setting acc[pk𝑖 ] := ct𝑖 ⊕ acc[pk𝑖 ]
where ⊕ denotes the additively-homomorphic evaluation.

• tx← AnTransfer((pk𝑖 )𝑖∈[𝑁 ] , 𝑠, 𝑟 , sk𝑠 , amt, S): On input an anony-
mity set of public keys (pk𝑖 )𝑖∈[𝑁 ] , spender index 𝑠 , recipient

index 𝑟 , the spender’s private key sk𝑠 , the transfer amount amt,
and the current state S, it generates amount ciphertexts ct ←
AmtGen( (amt𝑖 )𝑖∈[𝑁 ] , (pk𝑖 )𝑖∈[𝑁 ] ) such that amt𝑠 = −amt, amt𝑟 =
amt, and amt𝑖 = 0 for all 𝑖 ∈ [𝑁 ] \ {𝑠, 𝑟 }, a tag tag𝐻 ←
TagGen(sk𝑠 , 𝐻 ) and a proof Π. It outputs the transaction tx =

((pk𝑖 )𝑖∈[𝑁 ] , ct, tag𝐻 ,Π).
• 0/1 ← LinkTag(tag, S): On input a tag tag and the blockchain

state S, it outputs 1 if the tag already appears in S, and 0 other-

wise.

• 0/S← Verify(tx, S): On input a transaction tx and the blockchain
state S, if the proof Π is valid and LinkTag(Tag, S) = 0, it updates

the state by recording tx and running RollOver((pk𝑖 )𝑖∈[𝑁 ] , ct, S)
with the associated public keys and ciphertexts

11
; otherwise,

output 0.

• m ← ReadBalance((pk, sk), S): On input a public-private key

pair (pk, sk) and the blockchain state S, it outputs the balance
m of the account acc[pk].

Like [16], we use the blockchain state S to capture the nature

of a blockchain environment and clarify how an (account-based)

private blockchain payment system operates.

We highlight the main differences between (Anonymous Zether-

like) account-based private blockchain payments and UTXO-based

RingCT-like protocols as follows:

• All public-private key pairs generated by the AddrGen algo-

rithm and used in the AnTransfer algorithm are long-term keys

(addresses), which must be verified for well-formedness due to

11
Similar to [11], we assume for simplicity that each transaction takes effect

immediately.



Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

Table 8: Notations for the account-based private blockchain
payment formal model.

Symbol Description
S the blockchain state

acc[pk] an account indexed by the address (public key) pk
𝑁 # of public keys in the anonymity set

(pk𝑖 )𝑖∈[𝑁 ] anonymity set of public keys with | (pk𝑖 )𝑖∈ [𝑁 ] | = 𝑁

ct set of ciphertext with |ct | = 𝑁

𝑠, 𝑟 the indices to indicate the spender and recipient

amt the transaction amount

𝜋,Π the proofs for the public key and the transaction

tag𝐻 the linkable tag of the transaction at epoch 𝐻

tx a transaction tx = ( (pk𝑖 )𝑖∈ [𝑁 ] , ct, tag𝐻 ,Π)
V a set of all valid balances/amounts, V ⊆ [0, ...,MAX]

the requirements of mmPKE. In contrast, UTXO-based RingCT

uses one-time keys (stealth addresses).

• The linkable tag tag𝐻 ← TagGen(sk, 𝐻 ) is derived from the

long-term private key and the current epoch in the blockchain

state. In UTXO-based RingCT, the tag (or serial number) typically

depends only on a one-time private key.
• The input to the AmtGen algorithm can be negative, thereby

allowing a non-negative transaction amount to be “subtracted”

from the spender’s balance when the ciphertext is added to the

account. In UTXO-based RingCT, the input to theMint algorithm
must be non-negative, as it represents the value of a coin.

• Once a transaction tx is approved, the set of ciphertexts ct is
added to all involved accounts (acc[pk𝑖 ])𝑖∈[𝑁 ] . In UTXO-based

RingCT, the output coins (with one-time public keys) are vali-

dated and stored on the blockchain and can later be spent by the

recipients.

It can be observed that the communication cost in (Anony-

mous Zether-like) account-based private blockchain payment is

linear in the size of the anonymity set. As stated in (Anonymous)

Zether [7, 11], this is difficult to avoid in their paradigm due to

the nature of account-based blockchains, where each account in

the anonymity set must be treated as both a potential spender and

recipient, and its balance updatedwith the corresponding amount ci-

phertext if the transaction is valid. In contrast, UTXO-based RingCT

typically achieves communication cost logarithmic in the size of

the anonymity set and linear in the number of input/output coins,

except for the any-out-of-many proof in [49], which requires pub-

lishing auxiliary data for all coins in the anonymity set to hide the

number of input coins.

D.1 Security Definition
We define the list U in Table 9. Following [16], the list U can

be viewed as a database. A public key pk, a secret key sk, and a

linkable tag tag𝐻 inU can serve as unique identifiers for rows to

retrieve associated information. For example,U[pk] .acc denotes
the account associated with the public key pk. tag𝐻 denotes the

linkable tag of the account for the current epoch 𝐻 . PreBal denotes
the previous balance, i.e., the balance before the last transaction

involving the account. CurBal denotes the current balance. IsCrpt
denotes the “is corrupted” flag.

U : pk sk tag𝐻 acc PreBal CurBal IsCrpt

Table 9: Structure of the listU used in the security model

Oracles. The oracles O accessed by an adversary A are defined

below.

• 𝐴𝑑𝐺𝑒𝑛(𝑖): On input a query number 𝑖 , it runs (pk𝑖 , sk𝑖 , 𝜋𝑖 ) ←
AddrGen() and outputs pk𝑖 . It adds (pk𝑖 , sk𝑖 ) toU where IsCrpt
is set to 0, automatically updates the linkable tag tag𝐻 toU as

the epoch 𝐻 increases and the remaining fields are left empty.

• 𝐶𝑜𝑟𝑟𝑢𝑝𝑡 (pk): On input a public key pk, ifU[pk] cannot be found,
it returns ⊥ indicating failure. Otherwise, it setsU[pk] .IsCrpt
to 1 and outputsU[pk] .sk,U[pk] .acc andU[pk] .balance.

• 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 ((pk𝑖 )𝑖∈[𝑁 ] , 𝑠, 𝑟 , amt, S): On input an anonymity set

(pk𝑖 )𝑖∈[𝑁 ] including the spender public key pk𝑠 , the recipient
public key pk𝑟 , a transaction amount amt, and the blockchain

stateS. It first retrieve sks fromU, runs tx← AnTransfer((pk𝑖 )𝑖∈[𝑁 ] ,
𝑠, 𝑟 , sk𝑠 , amt, S) and 𝐵 ← Verify(tx, S). If 𝐵 = 0 indicating the

verification fails, it outputs ⊥. Otherwise, it setsU[pk𝑖 ] .acc :=

U[pk𝑖 ] .acc + ct𝑖 , U[pk𝑖 ] .PreBal := U[pk𝑖 ] .CurBal for all 𝑖 ∈
[𝑁 ], and setsU[pk𝑠 ] .CurBal :=U[pk𝑠 ] .CurBal−amt,U[pk𝑟 ] .
CurBal :=U[pk𝑟 ] .CurBal + amt. It returns tx.

Correctness. Informally, correctness requires that any user is able

to spend her honestly generated account if the account has suffi-

cient balance. An account-based private blockchain protocol is

said to be 𝜖-correct if for any pp ← Setup(1𝜆), any 𝑁 ∈ Z+,
any blockchain state S, any (pk𝑠 , sk𝑠 , 𝜋𝑠 ) ← AddrGen() that has
been appropriately funded or received transferred funds for m←
ReadBalance(sk𝑠 , S), at any epoch 𝐻 ← S, any amount amt ∈ V
for amt ≤ m, and any set (pk𝑖 )𝑖∈[𝑁 ]\{𝑠 } of arbitrarily registered

decoy public keys along with the recipient’s public key pk𝑟 , the
following probability holds

Pr

[
tx← AnTransfer( (pk𝑖 )𝑖∈ [𝑁 ] , 𝑠, 𝑟, sk𝑠 , amt, S) :

Verify(tx, S) ≠ 0

]
≥ 1 − 𝜖

If 𝜖 = 0, then the protocol is said to be perfectly correct. If 𝜖 =

negl(𝜆), then it is said to be statistically correct.
Anonymity. Unlike UTXO-based RingCT, where the recipient’s

anonymity is guaranteed by using a one-time public key (stealth

address), in the account-based setting, the identities of both the

spender and the recipient are hidden among uncorrupted decoy ac-

counts. Therefore, we adapt the anonymity securitymodel from [16]

to the account-based blockchain setting and divide it into two cases

as follows.

Anonymity against non-recipient.The anonymity against non-recipient

requires that towards the non-recipient users, including the out-

siders who do not involve the anonymity set and the insiders who

involve the anonymity set but not recipients, the addresses of both

the spender and recipient are hidden among all the uncorrupted

addresses in the anonymity set.

Definition D.2 (Anonymity against Non-Recipient). An account-

based private blockchain protocol is anonymous against non-recipient



Wang et al.

if the following holds for all PPT adversariesA and pp← Setup(1𝜆)
Pr[A wins the game ExpAN (S)] ≤ 1/2 + negl(𝜆),

Pr[A wins the game ExpAN (R)] ≤ 1/2 + negl(𝜆)
where the game ExpAN is defined as follows:

(1) ((pk𝑖 )𝑖∈[𝑁 ] , 𝑠0, 𝑠1, 𝑟 0, 𝑟 1, st) ← AO (pp): A is given pp and ac-

cess to all oracles, and then it outputs a set of registered public

keys (pk𝑖 )𝑖∈[𝑁 ] , the target spender indices 𝑠0, 𝑠1 ∈ [𝑁 ], the tar-
get recipient indices 𝑟 0, 𝑟 1 ∈ [𝑁 ], and some state information

st to be used by A in the next stage.

(2) amt← V: The challenger samples an amount from set V.
(3) tx𝑖, 𝑗 ← AnTransfer((pk𝑖 )𝑖∈[𝑁 ] , 𝑠𝑖 , 𝑟 𝑗 , sk𝑠𝑖 , amt, S) for 𝑖, 𝑗 ∈ {0, 1}:

Both 𝑠0
and 𝑠1

are spent to both 𝑟 0
and 𝑟 1

respectively, where

sk𝑠0 , sk𝑠1 are retrieved fromU. If Verify(tx𝑖, 𝑗 , S) = 0 for some

𝑖, 𝑗 ∈ {0, 1}, then set all tx𝑖, 𝑗 := ⊥.
(4) 𝑏𝑠 , 𝑏𝑟

$← {0, 1}.
(5) 𝑏′𝑠 , 𝑏

′
𝑟 ← AO (tx𝑏𝑠 ,𝑏𝑟 , st, S): A is given access to all the oracles,

the state st, the blockchain state S and one of the AnTransfer
outputs. Then A outputs a guess for the real spender and re-

cipient of tx𝑏𝑠 ,𝑏𝑟 .

A wins the game ExpAN (S) if 𝑏′𝑠 = 𝑏𝑠 and wins the game ExpAN (R)
if 𝑏′𝑟 = 𝑏𝑟 if the following conditions hold:

• all public keys in (pk𝑖 )𝑖∈[𝑁 ] are honestly generated and verified

in register algorithm,

• all accounts of pk𝑠𝑖 , pk𝑟𝑖 for 𝑖 ∈ {0, 1} are not be corrupted (i.e.

not queried to 𝐶𝑜𝑟𝑟𝑢𝑝𝑡 ),

• tx𝑖, 𝑗 ≠ ⊥ for all 𝑖, 𝑗 ∈ {0, 1},
• pk𝑠𝑖 for all 𝑖 ∈ {0, 1} are never queried to𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 at this epoch.

Anonymity against recipient. The anonymity against recipient prop-

erty requires that towards the recipient, the address of spender is

hidden among all the uncorrupted addresses in the anonymity set.

Definition D.3 (Anonymity against Recipient). An account-based

private blockchain payment protocol is anonymous against recip-

ient if the following holds for all PPT adversaries A and pp ←
Setup(1𝜆)

Pr[A wins the game ExpAR] ≤ 1/2 + negl(𝜆)
where the game ExpAR is defined as follows:

(1) ((pk𝑖 )𝑖∈[𝑁 ] , 𝑠0, 𝑠1, r, st) ← AO (pp): A is given pp and access

to all oracles, and then it outputs a set of registered public keys

(pk𝑖 )𝑖∈[𝑁 ] , the target spender indices 𝑠0, 𝑠1 ∈ [𝑁 ], a recipient
index 𝑟 ∈ [𝑁 ], and some state information st to be used by A
in the next stage.

(2) amt← V: The challenger samples an amount from set V.
(3) tx𝑖 ← AnTransfer((pk𝑖 )𝑖∈[𝑁 ] , 𝑠𝑖 , 𝑟 , sk𝑠𝑖 , amt, S) for 𝑖 ∈ {0, 1}:

Both 𝑠0
and 𝑠1

are spent to 𝑟 respectively, where sk𝑠0 , sk𝑠1 are

retrieved fromU. If Verify(tx𝑖 , S) = 0 for some 𝑖 ∈ {0, 1}, then
set all tx𝑖 := ⊥.

(4) 𝑏
$← {0, 1}.

(5) 𝑏′ ← AO (tx𝑏 , st, S): A is given access to all the oracles, the

state st, the blockchain state S and one of the AnTransfer out-
puts. Then A outputs a guess bit 𝑏′ for the real spender of

tx𝑏 .

A wins the game ExpAR if the following holds:

• all public keys in (pk𝑖 )𝑖∈[𝑁 ] are honestly generated and verified

in register algorithm,

• both accounts of pk𝑠𝑖 for 𝑖 ∈ {0, 1} are not be corrupted,
• tx𝑖 ≠ ⊥ for all 𝑖 ∈ {0, 1},
• pk𝑠𝑖 for all 𝑖 ∈ {0, 1} are never queried to𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 at this epoch.
• 𝑏′ = 𝑏.

Confidentiality. Informally, confidentiality requires that no party

other than the spender and the recipient can learn the transaction

amount, even if the identities of the spender and recipient are

revealed.

DefinitionD.4 (Confidentiality). An account-based private blockchain
payment protocol is confidential if the following holds for all PPT

adversaries A and pp← Setup(1𝜆)

Pr[A wins the game ExpCON] ≤ 1/2 + negl(𝜆)

where the game ExpCON is defined as follows:

(1) ((pk𝑖 )𝑖∈[𝑁 ] , amt0, amt1, 𝑠, 𝑟 , st) ← AO (pp):A is given pp and

access to all oracles, and then it outputs a set of registered

public keys (pk𝑖 )𝑖∈[𝑁 ] , the target amounts amt0, amt1 ∈ V, a
spender index 𝑠 ∈ [𝑁 ], a recipient index 𝑟 ∈ [𝑁 ], and some

state information st to be used by A in the next stage.

(2) tx𝑖 ← AnTransfer((pk𝑖 )𝑖∈[𝑁 ] , 𝑠, 𝑟 , sk𝑠 , amt𝑖 , S) for 𝑖 ∈ {0, 1}:
amt0 and amt1 are transferred from 𝑠 to 𝑟 respectively, where

sk𝑠 is retrieved fromU. If Verify(tx𝑖 , S) = 0 for some 𝑖 ∈ {0, 1},
then set all tx𝑖 = ⊥.

(3) 𝑏
$← {0, 1}

(4) 𝑏′ ← AO (tx𝑏 , st, S): A is given access to all the oracles, the

state st, the blockchain state S and one of the AnTransfer out-
puts. Then A outputs a guess bit 𝑏′ for the real amount of

tx𝑏 .

A wins the game ExpCON if the following holds:

• all public keys in (pk𝑖 )𝑖∈[𝑁 ] are honestly generated and verified

in register algorithm,

• both accounts of pk𝑠 , pk𝑟 are not be corrupted,
• tx𝑖 ≠ ⊥ for all 𝑖 ∈ {0, 1},
• pk𝑠 is never queried to 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 at this epoch.

• 𝑏′ = 𝑏.

Balance.Here, we adapt the balance security model from [16, 48] to

the account-based blockchain setting. Informally, balance requires

that an adversary cannot:

(1) spend an inappropriate account, including an honestly gener-

ated account or an unlinked account;

(2) spend her own account with an amount inconsistent with the

sum of the transaction amounts of the other accounts in the

anonymity set;

(3) overdraft her own account;

(4) double spend her own account within the same epoch.

Definition D.5 (Balance). An account-based private blockchain

payment protocol is balanced if the following holds for all PPT

adversaries A and pp← Setup(1𝜆)

Pr[A wins the game ExpBAL] ≤ negl(𝜆)

where the game ExpBAL is defined as follows:



Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

(1) (tx1, . . . , tx𝑡 ) ← AO (pp): the adversaryA is given access to all

the oracles together with pp and outputs a set of𝑇 transactions

(tx1, . . . , tx𝑡 ), where tx𝑖 = ((pk𝑖𝑗 ) 𝑗∈[𝑁 ] , ct𝑖 , tag𝑖 ,Π𝑖 ). Without

loss of generality, we suppose the 𝑇 transactions are all in the

same epoch.
12

(2) 𝐵𝑖 ← Verify(tx𝑖 , S) for 𝑖 = 1, ..., 𝑡 .

A wins the game ExpBAL if the following holds

• for all 𝑖 ∈ {1, ..., 𝑡}, all public keys in (pk𝑖𝑗 ) 𝑗∈[𝑁 ] are honestly-
generated and verified in register algorithm. And all associated

accounts are honestlymaintained, i.e. the balance of each account

in (acc[pk𝑖𝑗 ]) 𝑗∈[𝑁 ] is non-negative before all transactions of A,

• � tag𝑖 = tag𝑗 for all 𝑖, 𝑗 ∈ [𝑁 ] and 𝑖 ≠ 𝑗 ,

• 𝐵𝑖 ≠ 0 for all 𝑖 = 1, ..., 𝑡 ,

• for all 𝑗∗ ∈ {1, ..., 𝑡}, there exists at least one of the following
cases after each RollOver((pk𝑗

∗

𝑖
)𝑖∈[𝑁 ] , ct𝑗

∗
, S):

– Case 1: for all 𝑖 ∈ [𝑁 ], there exists amt𝑗
∗

𝑖
< 0 where amt𝑗

∗

𝑖
:=

U[pk𝑗
∗

𝑖
] .CurBal−U[pk𝑗

∗

𝑖
] .PreBal, such thatU[pk𝑗

∗

𝑖
] .IsCrpt =

0 or pk𝑗
∗

𝑖
≠ U[tag𝑗∗ ] .pk.

– Case 2:

∑
𝑖∈[𝑁 ] amt𝑗

∗

𝑖
≠ 0 where amt𝑗

∗

𝑖
:=U[pk𝑗

∗

𝑖
] .CurBal −

U[pk𝑗
∗

𝑖
] .PreBal.

– Case 3: for all 𝑖 ∈ [𝑁 ], there existsU[pk𝑗
∗

𝑖
] .CurBal < 0.

– Case 4: tag𝑗
∗
∉ (U[pk𝑗

∗

𝑖
] .tag)𝑖∈[𝑁 ] .

Attack scenarios of the balance model.
(1) Forgery: The attacker attempts to create a transaction that

either steals from uncorrupted accounts or spends from unlinked
accounts, regardless of whether the latter are corrupted or not.

The latter scenario can also be interpreted as a potential double-

spending attack, since the attacker could later generate a valid

proof as the legitimate spender and spend the same account

again. This is captured by Case 1.

(2) Unbalanced amounts: The attacker attempts to create a trans-

action inwhich the sumof the spender’s and recipient’s amounts

(including amounts associatedwith other accounts in the anony-

mity set) does not equal zero. This is captured by Case 2.

(3) Overdraft: The attacker attempts to create a transaction in

which the amount transferred to the recipient exceeds the

spender’s available balance. In other words, the transaction

causes at least one account in the anonymity set to have a

negative balance after execution. This is captured by Case 3.

(4) Double spending: The attacker attempts to spend the same

account more than once during the same epoch by generating

distinct linkable tags. This is captured by Case 4.

Like [15, 16], our balance definition is presented as a single exper-

iment. Moreover, our definition captures multiple attack scenarios

and allows the adversary to output a set of transactions—where

one transaction may serve as input to another—while Anonymous

Zether [11] only allows the adversary to produce a single transac-

tion.

In our formal definition, we explicitly state our modeling assump-

tions to facilitate future extensions that relax them. One possible en-

hancement is to remove the assumption in ExpBAL that all accounts

12
As (Anonymous) Zether [7, 11] stated, after carefully choosing the constant 𝐸, it can

be supposed that the transactions generated in any epoch will be verified in the same

epoch.

in the anonymity set correspond to well-formed and correctly main-

tained states. In the current model, this assumption follows from

the correctness of the registration phase and the validity of pre-

vious transactions from earlier epochs. Relaxing this assumption

would require substantially more involved balance analyses and is

left for future work. We note that a similar assumption is made, ei-

ther explicitly or implicitly, in prior account-based private payment

systems such as (Anonymous) Zether [7, 11].

E Security Proofs for Lether
E.1 Anonymity
Theorem E.1 (Anonymity against Non-Recipients). Lether in Sec-
tion 4 is anonymous against non-recipients if LNP22 is simulatable,
tag scheme is tag-anonymous, and Ref-AHmmPKE ismmIND-CPAKOSK

secure. More precisely, for any PPT adversaryA against ExpAN, there
exists PPT adversaries B0, B1, B2 against simulatability of LNP22,
tag-anonymity of tag scheme, andmmIND-CPAKOSK security of Ref-
AH mmPKE, such that

AdvExpANA = AdvSimB0

+ AdvTag-AnB1

+ AdvmmIND-CPA
B2

.

Proof. Let A be a PPT adversary against anonymity with re-

spect to non-recipients. We define the following sequence of games.

Denote AdvGame𝑖
A as the advantage of A in winning Game𝑖 .

Game0: This is identical to ExpAN. Thus, we have AdvGame0

A =

AdvExpANA .

Game1: This game is the same as Game0, except that the chal-

lenger replaces the proof Π with a simulated proof generated by

the simulator of LNP22.
Therefore, there exists a PPT adversary B0 whose running time

is approximately that of A such that���AdvGame0

A − AdvGame1

A

��� = AdvSimB0

.

Game2: This game is the same asGame1, except that the challenger

replaces the linkable tag tag with a uniformly random tag sampled

from the tag space.

Note that no queries of𝐶𝑜𝑟𝑟𝑢𝑝𝑡 or𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 at the current epoch

is allowed for the challenge spender public keys pk0

𝑠 and pk
1

𝑠 . Thus,

there exists a PPT adversary B1 whose running time is approxi-

mately that of A such that���AdvGame1

A − AdvGame2

A

��� = AdvTag-AnB1

.

Game3: This game is the same asGame2, except that the challenger

modifies the amount ciphertext ct.
Specifically, the challenger changes the ciphertext ct = (c, (𝑐𝑖 )𝑖∈[𝑁 ])

to (u, (𝑣𝑖 )𝑖∈[𝑁 ]), where u←U(R𝑛𝑞 ) is sampled uniformly at ran-

dom. For the uncorrupted accounts (i.e., 𝑖 ∈ {𝑠0, 𝑠1, 𝑟 0, 𝑟 1}), each
𝑣𝑖 ← U(R𝑞) is also uniformly sampled. For the other account

(i.e., possible corrupted accounts), the ciphertext is reproduced as

𝑣𝑖 := ⟨u, s𝑖⟩+ℎ𝑖+⌊𝑞/(2𝑇 + 2)⌉ ·𝑚𝑖 whereℎ𝑖 := ⟨−s𝑖 | |e𝑖 , e𝑢 | |r⟩+𝑦𝑖 is
decryption error and𝑚𝑖 = 0 because the corrupted accounts are all

decoys. Here, the challenger can obtain each private key (s𝑖 , e𝑖 ) un-
der the KOSK assumption. We note that the KOSK assumption can

be removed if each user is required to provide a proof of knowledge

of the private key during the registration phase (as demonstrated

in [44] and Remark C.3).



Wang et al.

Therefore, based on the security of (Ref-AH) mmPKE established

in [44], there exists a PPT adversary B2 whose running time is

approximately that of A such that���AdvGame2

A − AdvGame3

A

��� = AdvmmIND-CPA
B2

.

Note that the ciphertexts for the accounts of the challenge senders

and recipients pk𝑖𝑠 , pk
𝑖
𝑟 for 𝑖 ∈ {0, 1} are uniformly random. Further-

more, the output of AnTransfer is independent of pk𝑖𝑠 and pk𝑖𝑟 for
𝑖 ∈ {0, 1}, and also independent of𝑏𝑠 and𝑏𝑟 . Thus,A has advantage

at most 1/2 in guessing 𝑏𝑠 or 𝑏𝑟 in Game3.

Collecting all the games from Game0 to Game3, we obtain the

anonymity against non-recipients. □

Theorem E.2 (Anonymity against Recipient). Lether in Section 4
is anonymous against recipient if LNP22 is simulatable, tag scheme
is tag-anonymous, and Ref-AH mmPKE is mmIND-CPAKOSK secure.
More precisely, for any PPT adversary A against ExpAR, there exists
PPT adversaries B0, B1, B2 against simulatability of LNP22, tag-
anonymity of tag scheme, and mmIND-CPAKOSK security of Ref-AH
mmPKE, such that

AdvExpARA = AdvSimB0

+ AdvTag-AnB1

+ AdvmmIND-CPA
B2

.

Proof sketch. The proof is analogous to Theorem E.1; so we

provide only a sketch.Game0 is identical to ExpAR.Game1,Game2,

and Game3 are the same as those in Theorem E.1, except that in

Game3, since the recipient is corrupted, the challenger constructs

its ciphertext as 𝑣𝑖 = ⟨u, s𝑟 ⟩ +ℎ𝑖 + ⌊𝑞/(2𝑇 + 2)⌉𝑚. Thus, in Game3,

the adversary A has a success probability of 1/2 in outputting

𝑏′ = 𝑏. □

E.2 Confidentiality
Theorem E.3 (Confidentiality). Lether in Section 4 is confidential
if LNP22 is simulatable and Ref-AH mmPKE is mmIND-CPAKOSK

secure. More precisely, for any PPT adversary A against ExpCON,
there exists PPT adversaries B0, B1 against simulatability of LNP22,
and mmIND-CPAKOSK security of Ref-AH mmPKE, such that

AdvExpCONA = AdvSimB0

+ AdvmmIND-CPA
B1

.

Proof sketch. The proof is analogous to Theorem E.1, so we

provide only a sketch. Game0 is identical to ExpCON. Game1 is the

same as Game1 in Theorem E.1. Game2 corresponds to Game3

in Theorem E.1. Thus, in Game2, the adversary A has a success

probability of 1/2 in outputting 𝑏′ = 𝑏. □

E.3 Balance
Theorem E.4 (Balance). Lether in Section 4 is balanced if LNP22
is sound, tag scheme is event-oriented linkable, andMLWER,𝑛,𝑚,𝑞,𝜒

assumption for 𝜒 :=U(S𝜈 ) is hard.

Proof. Let A be a PPT adversary against the balance property

in the game ExpBAL. We argue that the probability that A wins

this game is negligible. We divide the proof into the following four

cases.

Case 1 (Forgery): Let Eforge denote the event where A wins the

game such that there exists a transaction tx𝑗
∗
for some 𝑗∗ ∈ {1, ..., 𝑡},

and for all 𝑖 ∈ [𝑁 ], there exists amt𝑗
∗

𝑖
< 0, where amt𝑗

∗

𝑖
:=

U[pk𝑗
∗

𝑖
] .CurBal−U[pk𝑗

∗

𝑖
] .PreBal, and eitherU[pk𝑗

∗

𝑖
] .IsCrpt = 0

or pk𝑗
∗

𝑖
≠ U[tag𝑗∗ ] .pk.

Since A is able to generate a valid proof Π, the extractability
of LNP22 implies the existence of an extractor that can extract a

witness satisfying 𝑅an in Equation (4.2).

For the first situation (i.e.,U[pk𝑗
∗

𝑖
] .IsCrpt = 0), from the sound-

ness of verifiable encryption for mmPKE (Lemma C.9), we obtain

that each amount in the ciphertext satisfies amt𝑗
∗

𝑖
= (𝑏 (r)

𝑖
−𝑏 (s)

𝑖
) ·𝑚̂,

where ⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚⟩ ≥ 0. Therefore, for some 𝑖∗ ∈ [𝑁 ] such that

amt𝑗
∗

𝑖∗ < 0, it must hold that 𝑏
(s)
𝑖∗ = 1. The extracted private key

s̄𝑠 must satisfy ∥(s̄𝑠 | |
∑

𝑖∈[𝑁 ] 𝑏
(s)
𝑖
· b𝑖 − A⊤s̄𝑠 )∥∞ ≤ 𝜈 . Given that

U[pk𝑗
∗

𝑖∗ ] .IsCrpt = 0, i.e., A does not possess the private key corre-

sponding to b𝑖∗ , and 𝑏
(s)
𝑖∗ = 1, 𝑏

(s)
𝑖

= 0 for all 𝑖 ∈ [𝑁 ] \ {𝑖∗}, the ad-
versary can solve theMLWER,𝑛,𝑚,𝑞,𝜒 instance on input ( [I | A], b𝑖∗ ),
where 𝜒 :=U(S𝜈 )—leading to a contradiction.

In the second situation (i.e., pk𝑗
∗

𝑖
≠ U[tag𝑗∗ ] .pk), it reduces to

breaking the event-oriented linkability property of the tag scheme,

as formalized in Lemma C.16. Specifically, for some 𝑖∗ ∈ [𝑁 ] such
that amt𝑗

∗

𝑖∗ < 0 and pk𝑗
∗

𝑖∗ ≠ U[tag𝑗∗ ] .pk, it implies that A is able

to use the private key corresponding to pk𝑗
∗

𝑖∗ to generate a valid

tag that is unlinkable to pk𝑗
∗

𝑖∗ , which contradicts the event-oriented

linkability of the tag scheme.

Case 2 (Unbalanced Amounts): Let Eunbalance denote the event
whereA wins the game such that there exists a transaction tx𝑗

∗
for

some 𝑗∗ ∈ {1, ..., 𝑡} satisfying ∑
𝑖∈[𝑁 ] amt𝑗

∗

𝑖
≠ 0, where amt𝑗

∗

𝑖
:=

U[pk𝑗
∗

𝑖
] .CurBal −U[pk𝑗

∗

𝑖
] .PreBal.

Since the adversary A is able to generate a valid proof Π, the
extractability of LNP22 ensures that there exists an extractor that

can extract a witness satisfying 𝑅an as defined in Equation (4.2).

From the soundness of verifiable encryption inmmPKE (LemmaC.9),

we know that each amount in the ciphertext satisfies amt𝑗
∗

𝑖
=

(𝑏 (r)
𝑖
−𝑏 (s)

𝑖
) ·𝑚̂, where ⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚⟩ ≥ 0. Summing over all 𝑖 ∈ [𝑁 ],

we obtain:∑︁
𝑖∈[𝑁 ]

amt𝑗
∗

𝑖
=

∑︁
𝑖∈[𝑁 ]

(𝑏 (r)
𝑖
− 𝑏 (s)

𝑖
) · 𝑚̂ = (

∑︁
𝑖∈[𝑁 ]

𝑏
(r)
𝑖
−

∑︁
𝑖∈[𝑁 ]

𝑏
(s)
𝑖
) · 𝑚̂.

Since both

∑
𝑖∈[𝑁 ] 𝑏

(r)
𝑖

= 1 and

∑
𝑖∈[𝑁 ] 𝑏

(s)
𝑖

= 1, we have

∑
𝑖∈[𝑁 ] amt𝑗

∗

𝑖
=

(1 − 1) · 𝑚̂ = 0. This contradicts the assumption that the sum is

non-zero and thus violates the soundness of LNP22.
Case 3 (Overdraft): Let Eoverdraft denote the event where A wins

the game such that there exists a transaction tx𝑗
∗
for some 𝑗∗ ∈

{1, . . . , 𝑡} satisfyingU[pk𝑗
∗

𝑖
] .CurBal < 0 for some 𝑖 ∈ [𝑁 ].

SinceA can produce a valid proof Π, the extractability of LNP22
ensures that an extractor can recover a witness satisfying 𝑅an as

defined in Equation (4.2).

From the soundness of verifiable encryption inmmPKE (LemmaC.9),

each amount in the ciphertext satisfies amt𝑗
∗

𝑖
= (𝑏 (r)

𝑖
− 𝑏 (s)

𝑖
) · 𝑚̂,

with ⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚⟩ ≥ 0. Let 𝑠 := 𝑖∗ be the index such that 𝑏
(s)
𝑖∗ = 1.

Then, only the balance of account acc[pk𝑗∗𝑠 ] will be decremented

by the transaction.

Assuming that all accounts have non-negative balances before

the transaction, it suffices to argue that the post-transaction balance

of acc[pk𝑗∗𝑠 ] remains non-negative.



Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

From the unforgeability of verifiable decryption in mmPKE

(Lemma C.10), the decrypted balance satisfies ⟨®0𝑑−𝑘 | |®2𝑘 , ®̂𝑚′ − ®𝑇𝑑 ⟩ ∈
{0, . . . , 2𝑘 − 1} which implies that the balance is non-negative. This

contradicts the assumption in Eoverdraft and therefore violates the

soundness of LNP22.
Case 4 (Double-Spend): Let Edspend denote the event where A
wins the game such that there exists a transaction tx𝑗

∗
for some

𝑗∗ ∈ {1, . . . , 𝑡} satisfying tag𝑗∗ ∉ (U[pk𝑗
∗

𝑖
] .tag)𝑖∈[𝑁 ] .

SinceA can produce a valid proof Π, the extractability of LNP22
ensures that an extractor can recover a witness satisfying 𝑅an as

defined in Equation (4.2). In particular, the extracted binary vector

b(s) has Hamming weight 1. Let 𝑠 := 𝑖∗ be the unique index such

that 𝑏
(s)
𝑖∗ = 1.

Hence, the adversary effectively generates a valid tag tag𝑗
∗
us-

ing the private key of pk𝑗
∗

𝑠 that is not linked to the corresponding

account in the system state. This directly contradicts the event-

oriented linkability property of the tag scheme established in LemmaC.16.

□


	Abstract
	1 Introduction
	1.1 Paradigm of Anonymous Zether
	1.2 Existing Challenges
	1.3 Our Contributions

	2 Technical Overview
	3 Novel Building Blocks of Lether
	3.1 Verifiable Ref-AH mmPKE
	3.2 Event-Oriented Linkable Tag

	4 Lether: Account-Based Private Blockchain Payments from Lattices
	4.1 Parameter Setting
	4.2 Implementation and Evaluation

	Acknowledgments
	References
	A Detailed Parameter Settings and Implementations
	A.1 Detailed Parameter Setting
	A.2 Detailed Implementation

	B Preliminaries
	B.1 Notation
	B.2 Non-Interactive Zero Knowledge Protocol
	B.3 NIZK Protocol in LNP22 lyubashevsky2022lattice
	B.4 Lattice Preliminaries

	C Definitions and Proofs for Building Blocks
	C.1 Verifiable Ref-AH mmPKE
	C.2 Event-Oriented Linkable Tag

	D Formal Definitions for Account-Based Private Blockchain Payments
	D.1 Security Definition

	E Security Proofs for Lether
	E.1 Anonymity
	E.2 Confidentiality
	E.3 Balance


