Lether: Practical Post-Quantum Account-Based Private
Blockchain Payments

Hongxiao Wang

The University of Hong Kong
Hong Kong, China
hxwang@cs.hku.hk

Ron Steinfeld
Monash University
Melbourne, Australia
Ron.Steinfeld@monash.edu

Abstract

We introduce Lether, the first practical account-based private block-
chain payment protocol based on post-quantum lattice assumptions,
following the paradigm of Anonymous Zether (FC ’19, IEEE S&P
’21). The main challenge in building such a protocol from lattices lies
in the absence of core building blocks: unbounded-level additively-
homomorphic multi-message multi-recipient public key encryption
(mmPKE), and event-oriented linkable ring signatures with support
for multiple tags (events). To address these issues, we propose a
verifiable refreshable additively-homomorphic mmPKE scheme and
a plug-and-play event-oriented linkable tag scheme from lattices.
We believe both to be of independent interest.

To achieve unbounded-level homomorphic evaluation in the
lattice-based setting without relying on heavy techniques such as
bootstrapping or large moduli (e.g., over 60 bits) in fully homomor-
phic encryption (FHE), we introduce a lightweight and blockchain-
friendly mechanism called refresh. Namely, each user is required
to verifiably refresh their account after a certain number of trans-
actions. With our tailored parameter settings, the amortized per-
refresh costs of communication and computation are only about
1.3% and 1.5%, respectively, of the cost of a transaction.

We also optimize the implementations of LNP22 lattice-based
zero-knowledge proof system (Crypto "22) in the LaZer library (CCS
’24), to support efficient batching of various proof components.
Overall, for a typical transaction, the total communication cost
becomes about 68 KB, with the associated zero-knowledge proof
accounting for about 51 KB of this total. Each of proof generation
and verification take a fraction of a second on a standard PC.

As an additional contribution, we formalize new definitions for
Anonymous Zether-like protocols that more accurately capture
real-world blockchain settings. These definitions are generic and
are expected to benefit the broader development of account-based
private blockchain payment protocols, beyond just lattice settings.

CCS Concepts

« Security and privacy — Privacy-preserving protocols.

Keywords

Post-Quantum, Lattices, Zero-Knowledge, Account-Based Blockchain

Muhammed F. Esgin
Monash University
Melbourne, Australia
Muhammed.Esgin@monash.edu

Siu-Ming Yiu
The University of Hong Kong
Hong Kong, China
smyiu@cs.hku.hk

1 Introduction

Rapid progress in quantum computing [10] has led to a global shift
towards post-quantum cryptography. Consequently, cryptographic
applications in blockchain systems are also being re-evaluated in the
post-quantum setting. For example, recently, the Ethereum Foun-
dation [20] is exploring the integration of post-quantum signature
schemes into the Ethereum platform.

Blockchain-based cryptocurrencies such as Bitcoin and Ethereum
enable mutually distrustful users to reach consensus on the bal-
ances and the transactions that affect them. In general, there are
two models of blockchain: the Unspent Transaction Output (UTXO)
model and the account-based model. Both models have been ex-
tensively studied for their potential to support privacy-preserving
payments, offering confidentiality and anonymity features.

In the UTXO model, many privacy-preserving blockchain pay-
ment protocols have been proposed, including ZCash [39], Mon-
ero [37] (with a series of RingCT protocols [15, 16, 27, 41, 45,
48, 49]), and Quisquis [18]. Among them, only MatRiCT [16] and
MatRiCT* [15] operate in the post-quantum setting, where the com-
munication cost per transaction is about 50-110 KB at an anonymity
level of 1/11.!

On the other hand, the first privacy-preserving payment protocol
for account-based blockchains was proposed in [7], named Zether,
which provided a blueprint for achieving privacy and anonymity.
Building on this, Anonymous Zether [11] refined the underlying
zero-knowledge proof and identified potential insider attacks. To
mitigate these, they introduced a “register” phase, requiring each
user to prove the well-formedness of their public key. This line of
work has since attracted significant attention and has been extended
in multiple directions, including forward security [24] and full
anonymity [36, 38].2 As discussed in [7, 11, 18, 24], account-based
protocols offer advantages in terms of wallet efficiency, as users
only need to maintain their private key and account information
to transact—unlike UTXO-based systems, which require scanning
the entire transaction history. Moreover, account-based protocols

! An anonymity level of 1/N indicates that a real spender’s account is hidden within
an anonymity set of size N.

2However, to date, works such as [36, 38] that achieve full anonymity in account-based
blockchain payments remain largely theoretical and lack practical implementations,
even in the classical (quantum-vulnerable) setting, let alone in post-quantum settings,
due to their reliance on somewhat inefficient building blocks such as FHE, accumulators,
or complex NIZKs.

support richer functionalities such as sealed-bid auctions and stake
voting, as demonstrated in [7].

To the best of our knowledge, there is currently no private pay-
ment scheme for account-based blockchains in the post-quantum
setting. As detailed below, the main reason is the lack of essential
building blocks: (i) unbounded-level additively-homomorphic multi-
message multi-recipient public key encryption (mmPKE), and (ii)
event-oriented linkable ring signatures with support for multiple
tags (events).

1.1 Paradigm of Anonymous Zether

We first recall the paradigm of Anonymous Zether [7, 11] that we
also follow. Originally, Anonymous Zether was not presented in
a modular fashion, and the core building blocks with all of their
required features were not as explicit. Here, we identify three core
components needed for Anonymous Zether and make their required
features explicit:

o A multi-message multi-recipient public key encryption (mmPKE)
scheme [5, 26] that supports unbounded-level additive homomor-
phism, verifiable multi-encryption, and verifiable decryption.
In general, mmPKE enables the batch encryption of multiple
messages for multiple recipients in a single operation, signifi-
cantly reducing bandwidth compared to the trivial approach of
encrypting each message individually. This compactness feature
is critical in keeping the transactions efficient, particularly in the
lattice setting where ciphertexts/proofs are large.

o An event-oriented linkable ring signature [3, 43] (also known as a
prefix/scoped linkable ring signature [6, 25]) that allows signers
to anonymously produce at most one signature for each event
using their long-term private keys.?

o A highly modular non-interactive zero-knowledge (NIZK) proof
system that integrates the verifiable mmPKE, the event-oriented
linkable ring signature, a proof that the spender’s amount equals
the recipient’s amount (i.e., a balance proof), and a proof that
spender’s post-transaction balance together with the transaction
amount lies within a valid range (i.e., a range proof).

In Anonymous Zether, the balance bal of each account is en-
crypted under the account public key pk, yielding a ciphertext
acc[pk] « Enc(pk, bal). The ciphertext is stored on the blockchain
and can be indexed by the corresponding public key. We outline
how the spender makes a transaction as follows:

e First, the spender selects a set of public keys (pk;);c[n] as the
anonymity set, including her own public key pk, and the recipi-
ent’s public key pk,.

e Second, the spender performs a verifiable multi-encryption of the

amount vector as ct := (ct;)ie[n] < mmEnc((pk;)ie[n1, (Mi)ie[n])s

where mg = —amt, m, = amt, m; = 0 foralli € [N] \ {s,r},
and the amount amt € [0, MAX]. The security of mmPKE en-
sures that no one—including the decoy users in the anonymity
set—can determine which ciphertext encrypts a non-zero mes-
sage, thereby preventing identification of the spender’s or recipi-
ent’s public key.

3As shown in [46], event-oriented linkability is the most general form: by setting the
event as a fixed string, the ring, or the message, one can obtain one-time, ring-based,
or message-based linkability, respectively.

Wang et al.

o Third, the spender proves via verifiable decryption that the up-
dated balance of her account is non-negative, i.e., 0 < bal,, «
Dec(acc[pk,] + ctg, sks). This ensures that the spender is not
overdrawn, i.e., her initial balance satisfies balg > amt.

o Fourth, the spender produce an event-oriented linkable ring sig-
nature for the current epoch H* to anonymously authorizes the
transaction, which can be linked using a tag tagy,. Specifically,
the spender must prove knowledge of her private key sk; in the
anonymity set (pk;);c[n] and demonstrate that the tag tag;; is
correctly formed. This ensures that the spender cannot double-
spend in the current epoch H.

e Finally, the spender outputs a proof II attesting that all the above
conditions hold, along with the multi-recipient ciphertext ct and
the linkable tag tag.

Once the proof I is verified,® the system updates all accounts
in the anonymity set by homomorphically evaluating acc|[pk;] :=
acc[pk;] +ct; for all i € [N]. Here, the unbounded-level homomor-
phism property ensures that every account is updated correctly.

1.2 Existing Challenges

In attempting to build a post-quantum account-based private block-
chain payment protocol following the paradigm of Anonymous
Zether [7, 11], we identify several significant challenges, as sum-
marized below.

Challenge I: construct lattice-based unbounded-level addi-
tively homomorphic mmPKE along with efficient verification
mechanisms. Currently, the only existing mmPKE scheme based
on standard lattice assumptions, proposed in [44], does not support
additive homomorphism and lacks efficient mechanisms for veri-
fiable multi-encryption and decryption.® What’s more, generally,
lattice-based (mm)PKE schemes do not support unbounded-level
additive homomorphic evaluation without resorting to expensive
operations such as bootstrapping [21]. This limitation is inherent to
lattice-based setting, as noise accumulates with each homomorphic
operation. Moreover, the message encoding techniques employed
in lattice-based RingCT protocols [15, 16] to avoid homomorphic
evaluation are not applicable in our setting, as the spender cannot
compute the so-called “corrector” terms without knowing the recip-
ient’s balance. Therefore, designing a lattice-based mmPKE scheme
that enables unbounded-level additively-homomorphic evaluation
in an efficient manner—while also supporting efficient range proofs,
verifiable multi-encryption, and verifiable decryption—has been a
significant open problem.

“Here, the epoch H is the “event” of the event-oriented linkable ring signature. In
Anonymous Zether [7, 11], time is divided into epochs. To prevent front-running attacks,
each involved account, including the spender’s, is updated at the end of the epoch.
However, because the spender’s update amount is negative, to prevent double-spending
attacks within each epoch, the spender is allowed to spend at most one transaction per
epoch. This “locking” mechanism is achieved by requiring the spender to generate an
“epoch-based” linkable ring signature for each transaction. As discussed in [7, 11], with
a carefully chosen epoch length, usability is expected to remain largely unaffected. We
refer the reader to [7, 11] for further details.

5In Anonymous Zether [7, 11], it is assumed that the proof IT is verified before the end
of the current epoch. We note that delayed validation may affect liveness; however, it
does not compromise balance correctness or enable double spending.

®We also note that [28] proposes a lattice-based multi-message multi-recipient key
encapsulation mechanism (mmKEM) but based on non-standard lattice assumption,
named Oracle-MLWE.

Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

Blockchain Scheme PQ Anony. Transaction Refresh Eval. Level
Model N [tx| |1 tp t, |ref] . tp ty T
A t-Based Lether (this paper) v 16 67.8 51.1 0.53 0.34 549 43.8 042 0.32 60
nt-
CCOUntBASEE Anony. Zether [11] X 16 60 37 250 015 - - - - -
UTXO-Based MatRiCT"* [15] v 11 43.0 29.0 0.10 <0.01 - - - - -
-base:
Monero [37] X 16 2.1 2.0 0.08 0.02 - - - - -

Table 1: Summary of private blockchain payment protocols (sizes in KB, times in seconds). ‘-’ denotes not applicable. PQ indicates post-
quantum security. For the Transaction and Refresh phases, we present the communication sizes (|tx|, |ref|), the sizes of the associated proofs

(11|, |’ |)—already included in the communication sizes—as well as the corresponding proving time ¢, and verification time #,. The anonymity
set size is fixed at N = 16 (Anony.), following the current Monero [37] setting. The evaluation level for additively-homomorphic operations on

fresh or refreshed accounts is fixed at T = 60 (Eval. Level).

Challenge II: construct lattice-based event-oriented linkable
ring signatures for multiple events. To the best of our knowl-
edge, there exists no practical lattice-based event-oriented linkable
ring or group signature that supports many events (i.e., tags). The
only existing constructions support only a single event (i.e., one-
time) or a very limited number of events, as in [42], where the tag
takes the form tag := As with A < hash(event) and the secret
s is committed in advance. The main limitation of such construc-
tions arises from the contradiction between the need for fresh
noise (to ensure indistinguishability from random values) and the
uniqueness required for tag linkability. Specifically, to argue in-
distinguishability between ¢ tags (A; - s);e[¢] and random values,
the secret s must include at least ¢ fresh noise components and be
committed in advance—leading to the linear cost with the tag/event
number, which is highly inefficient. Therefore, constructing a prac-
tical lattice-based event-oriented linkable ring or group signature
that supports multiple events remains a significant challenge.

1.3 Our Contributions

Lether: a practical post-quantum account-based private block-
chain payment system. In this work, we propose Lether, the
first practical post-quantum account-based private blockchain pay-
ment system based on lattice assumptions. To build such a system,
we develop two novel building blocks: (i) a verifiable refreshable
additively-homomorphic mmPKE (Ref-AH mmPKE) scheme, and
(ii) a plug-and-play event-oriented linkable tag scheme. We fur-
ther optimize the implementation of the lattice-based NIZK scheme
LNP22 [31] in the LaZer library [35] to efficiently combine these
building blocks with other proofs (e.g., range proofs). These tools
may also be of independent interest.

We emphasize that our contributions go beyond merely shift-
ing Anonymous Zether [7, 11] to the post-quantum setting. Being
the first post-quantum account-based private blockchain payment
scheme, our work also paves the way for post-quantum secure
counterparts of other practical yet quantum-vulnerable account-
based blockchain payment protocols, such as the forward-secure
variant Pride CT [24].

To accommodate the constraints of the lattice-based setting, we
introduce a lightweight refresh mechanism where each account

ciphertext (representing the account balance) periodically get re-
freshed to support indefinite number of transactions via homomor-
phic evaluations. This mechanism is particularly well-suited for
blockchain environments, providing an efficient alternative to boot-
strapping or large-modulus schemes in FHE. By a careful choice
of parameters, the amortized overhead of a refresh operation is
minimized to be below 1.5% in terms of both communication and
computation. Furthermore, we believe that under a deployment
where a sufficiently large fraction of registered accounts stay ac-
tive and periodically refresh, the refresh mechanism has negligible
impact on forming an effective anonymity set for transactions.
Optimized implementations of NIZK for Lether. We also opti-
mize the implementations of LNP22 [31] in the LaZer library [35]
that are tailored to Lether. Briefly, our optimized NIZK implementa-
tion supports batching/aggregating various proofs (e.g., verifiable
multi-encryption, integer proofs, and tag proofs). Overall, these op-
timizations reduce the proof size by about 20% and achieve roughly
a 4X speedup, compared to the original LNP22 implementation in
the LaZer library.

We provide a summary of private blockchain payment proto-
cols across both post-quantum and traditional settings in Table 1.
The number of bits supported for the balances and amounts in
Lether is fixed at k = 32, which is the same as in (Anonymous)
Zether [7, 11] and Pride CT [24], and can be extended to 64 bits
by applying a simple transformation from [7]. Considering that
the size of post-quantum constructions is often at least an order of
magnitude larger than that of their traditional counterparts [4], we
believe that Lether is already practical for real-world applications,
particularly in terms of computational cost. We further note that
although account-based blockchain payments are a bit less efficient
than UTXO-based blockchain payments (even in the pre-quantum
setting) due to differences in their underlying techniques, the former
offers unique advantages, such as wallet efficiency and extensive
functionalities, as discussed above, which typically UTXO-based
schemes cannot provide.

We summarize our main building blocks below. For technical
overview, we refer the reader to Section 2.

Verifiable Ref-AH mmPKE. We construct the first verifiable Ref-
AH mmPKE scheme from lattices, extending the basic mmPKE
n [44]. Our scheme supports T-level additive homomorphism,
meaning that a fresh ciphertext can undergo up to T homomorphic
additions. Here, we introduce the notion of refreshability, which

Wang et al.

Scheme Recip. N |ct] 7] Add-Hom Dec-Ind Scheme Sign. Size Event-Link Multi-Tag
Cons 3.5 16 17 28 v v Cons 3.12 + [31] 93 KB v v
[31] 16 16 304 X v [31] 92 KB X X
[30] 16 144 144 v X [16] 148 KB X X
Table 2: Comparison of verifiable encryption schemes for N = 16 [42] 386 KB v X

recipients (Recip.). We report the sizes of the multi-recipient cipher-
text |ct| and its well-formedness proof || in kilobytes (KB). We
further indicate whether the schemes support additive homomor-
phism (Add-Hom) and decryption-time independent of adversary’s
runtime (Dec-Ind).

Scheme || Add-Hom Exa-Pro
Cons 3.7 31 KB v v
[33] ~ 50 KB X v
[22] > 1 MB* X X
[2] ~ 50 KB' X X

" We choose the same security parameter, i.e. A = 128
T This work is distributed verifiable decryption and the undistributed version is
implied in [40]

Table 3: Comparison of verifiable decryption schemes. For a fair
comparison, we adapt other works to support unforgeability and
estimate the proof size || for valid decryption. We further indicate
whether the schemes support additive homomorphism (Add-Hom)
and an exact-norm proof (Exa-Pro).

allows a user to convert a fully evaluated ciphertext into a fresh one
using their private key—thereby enabling the refresh mechanism
in Lether.

We further formalize and realize three types of verifiability for
Ref-AH mmPKE: verifiable multi-encryption, verifiable decryption,
and verifiable refresh, where the resulting proof and ciphertext sizes
are the primary contributors to the transaction communication.

For verifiable multi-encryption, as shown in Table 2, our con-
struction outperforms the state-of-the-art in communication size
for N = 16 recipients, achieving an order-of-magnitude reduction.”
Moreover, our scheme uniquely supports both additive homomor-
phism and decryption-time independence, ensuring that cipher-
texts—including those generated by adversaries—can be additively
evaluated and subsequently decrypted efficiently by honest users.

For verifiable decryption, we introduce a new unforgeability
notion, which strengthens the standard soundness definitions in
prior work [2, 22, 33]. Informally, unforgeability ensures that no
adversary can generate two valid proofs for different decryption
outputs of the same (honestly generated) ciphertext under a legit-
imate private key. This property is missing in prior works but is
crucial in practice, particularly under lattice-based assumptions.
For example, in existing works [2, 22, 33], an adversary can use a
mismatching private key to decrypt a ciphertext, resulting in an
incorrect plaintext. Since these works do not check the validity of
the input private key during verifiable decryption, an adversary
can honestly run the decryption algorithm with a mismatching

7Our scheme also demonstrates a similar advantage over related constructions such
as [14].

Table 4: Comparison of group signature schemes for group size
over 22°, We indicate whether the schemes support event-oriented
linkability (Event-Link) in the case of multiple tags (Multi-Tag).

key and still generate a valid proof, thereby misleading others into
accepting an incorrect plaintext.

To this end, we present a generic transformation that upgrades
existing schemes to satisfy this stronger notion by incorporating a
proof of knowledge of the private key corresponding to the associ-
ated public key. As shown in Table 3, our construction achieves at
least a 40% reduction in proof size while supporting additive homo-
morphism and exact-norm proofs for the decryption error—both
crucial for maximizing the level of homomorphic evaluations.

For verifiable refresh, we construct the scheme by combining ver-

ifiable encryption and verifiable decryption in a way that achieves
unforgeability and guarantees consistency between the input ci-
phertext and the refreshed ciphertext.
Plug-and-play event-oriented linkable tag scheme. We pro-
pose a plug-and-play event-oriented linkable tag scheme from lat-
tices that can transform most existing lattice-based ring or group
signature schemes including [13, 15, 16, 31, 32, 34, 47] to support
event-oriented linkability—the most general form of linkability (as
introduced above)—with many tags (events), and with negligible
overhead. To the best of our knowledge, no existing lattice-based
ring/group signature scheme supports such property.

We demonstrate the effectiveness of our technique by extending

the state-of-the-art lattice-based group signature scheme from [31]
to support event-oriented linkability. As shown in Table 4, our
extended scheme increases the signature size by only about 1%,
while supporting many tags.
New formal definitions for account-based private blockchain
payments. As an additional contribution, we propose new formal
definitions for account-based private blockchain payment proto-
cols. Our definitions aim to balance the complexity of real-world
blockchain systems with the abstraction required for rigorous se-
curity analysis, improving upon previous attempts 7, 11].

2 Technical Overview

In this section, we provide an overview of our techniques to address
the challenges listed in Section 1.2. We begin by showing how to
extend the basic mmPKE scheme [44] to support additive homo-
morphism and refreshability, and how to realize its verifiability
using LNP22 [31]. We then present the construction of a plug-and-
play event-oriented linkable tag scheme based on Learning with
Rounding (LWR), which is also instantiated via LNP22. Finally, we
outline how to optimize the implementations of LNP22 to efficiently
integrate these components and build the Lether system.

Ref-AH mmPKE. We start by recalling the basic mmPKE con-
struction in [44], named mmCipher. In the setup, the public matrix

Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

is sampled as A «— U(RF™") where Ry = Z, [X]/(X¢ + 1) and
R =Z[X]/(X? +1). Each public key b; for i € [N] is generated by
b;:=ATs; +e; (2.1)

where (s;, e;) « U(ST) x U(S?) are uniformly sampled from
[-V, ..., v]. To encrypt N messages (ri; € {0,1}% C R2)ie[n for N
recipients with public keys (b;);c[n7], the multi-recipient ciphertext
(¢, (ci)ie[n]) is computed as

c:=Ar+e, (2.2)

ci =(bi,1) +y; + [q/2] - M, (2.3)
where (r,e,) «— D7 X D7 and y; < Dy, are sampled indepen-
dently from the discrete Gaussian distributions with widths ¢y and
o1, respectively. With suitable parameters, under MLWE assump-
tion, the adversary (even the malicious recipients) cannot break the
other recipients’ ciphertext.

For an individual ciphertext (c, ¢;), decryption is computed as
Lei — (¢, 8i)]2. Using Equations (2.1) to (2.3), we obtain:

ci — (e 8:) = (=silles, ellr) +y; + [q/2] - iy, (2.4)
where || denotes concatenation. Correctness holds when the de-
cryption error h; = (—s;||e;, e,||r) + y; satisfies ||h;]| < | g/4].

The basic mmPKE [44] only supports binary messages in {0, 1}¢,
and thereby cannot satisfy additive homomorphism.

Here, we adopt a lightweight technique to address this limitation.
Without loss of generality, we first set the integer message m (as well
as the integer used in the Lether system) satisfying m € [0, MAX],
where MAX = 2F — 1 and 32 < k < d. We then encode each integer
message m in binary form m € R, such that m = (09% 2%, r?l)
where 25 = (29,...,2"1) and 1 is an integer vector consisting
of the coefficients of ri. Next, we extend the message space to
M= {-T,..., T + 1} by modifying the ciphertexts as follows:

c; = <bi’ I'> + Yi + |_q/(2T + 2)] . rh,—. (25)

Thus, the homomorphic addition can be performed in coefficient-
wise. For example,

my = (097K | 2%, g + i) = mg + my,

and the same principle applies to subtraction. Now, our scheme sup-
ports up to T levels of additive homomorphism with fresh/refreshed
ciphertexts, as long as the accumulated noise remains within re-
quired bounds, i.e., ||h]lo < |q/(4T + 4)].

Finally, while unbounded-level homomorphism cannot be achieved
due to possible message overflow and the accumulation of noise
beyond the correctness bound, we circumvent this limitation by
introducing a refresh mechanism. Roughly speaking, each recip-
ient decrypts the evaluated ciphertext to obtain m € Rary2, and
then decodes it to an integer message m := 09k || 2k, r_ﬁ) Subse-
quently, the integer message m is re-encoded into binary form and
re-encrypted with fresh randomness, yielding a refreshed cipher-
text, which can again support T levels of homomorphic evaluation.

Looking ahead to the Lether scheme, our Ref-AH mmPKE of-
fers several advantages: (i) The multi-recipient ciphertext size is
significantly smaller (e.g., only 17 KB for N = 16 recipients). (ii)
The ciphertext has a linear structure, which enables efficient proofs
of well-formedness, especially when the modulus of the LNP22
matches that of Ref-AH mmPKE, as demonstrated later. (iii) The

encoded message format supports efficient range proofs via LNP22,
where only binary proofs are required and can be batched. (iv) Any
fresh/refreshed ciphertext (account) supports at least T homomor-
phic evaluations with fresh ciphertexts (transactions).
Verifiability of Ref-AH mmPKE. We classify the verifiability of
Ref-AH mmPKE used in Lether system into three types: verifiable
multi-encryption, verifiable decryption, and verifiable refresh.

In our work, we employ LNP22 as a black box to achieve these
verifiability properties. At a high level, LNP22 supports proving
linear and quadratic relations over both R, and Z, with respect
to the witness. It also enables both exact and approximate range
proofs (ARP) for the £;-norm of linear combinations of the wit-
ness. As shown in [31, 35] and summarized in Appendix B.3, these
capabilities can be extended to prove integers (e.g., binary bits), poly-
nomials with binary coefficients, and range proofs for £,,-norms
(since || - |l2 = || - lleo)- Typically, the proof size of LNP22 is linear in
both the witness size and the number of norm/range proofs.

Towards verifiable multi-encryption, we must prove that Equa-
tions (2.2) and (2.5) hold, together with the bounds

I(r.e)lleo < Bo Nwall--- llyn)lleo < fr, and 1 € {0,1}7 € Ry,

where fy and f; are the randomness bounds determined by the
parameters of Ref-AH mmPKE scheme.

We define the witness as wit := (r, (12;);e[n]) and the statement
as stat := ((b;)ie[n], (¢, (ci)ie[n]))- After setting the modulus of
LNP22 equal to that of Ref-AH mmPKE in the implementation, we
only need to prove the relations: ||r||(c — Ar)||e < fo and

c1 — (b, r) - q/(2T +2)] - riy
: < B (2.6)
en = (bn,1) = lq/(2T +2)] - rn

)

As mentioned before, under this setting, commitments/witnesses
are required only for r, {ri1; };e[n], Without requiring any other ran-
domness such as e, or {y;};c[n], Which significantly reduces the
proof size. In particular, this design yields a proof size for verifiable
multi-encryption that is independent of the size of anonymity set
in Lether, since only ms and m, (for spender and recipients, respec-
tively) need to be committed, while all other messages (for decoy
accounts) are fixed to zero.

Notably, to guarantee the security of Ref-AH mmPKE, the #.-
norms of the randomness values, particularly y;, are relatively large.
As a result, we cannot prove their exact f,-norms. Instead, we
carefully adopt ARP to ensure soundness and correctness, and set
Bo =y - (m+n)d -0y and f; := ¢ - VNd - 7oy, where) is the
relaxation factor of ARP and 7 is the Gaussian tail bound. These
randomness bounds are also used to derive the decryption error
bound and the supported level of homomorphic evaluation.

Towards verifiable decryption, we need to guarantee the unique-
ness of the decrypted message under the correct private key to
ensure our stronger unforgeability notion. To achieve this, we add a
proof of knowledge of the private key corresponding to the public
key, i.e., ||(s,b — ATs)|lc < v. This approach can be applied to
existing schemes [2, 22, 33] to enhance them with unforgeability.

To construct verifiable decryption, we prove Equation (2.4), i.e.,

c—{(c,s)=h+|q/(2T +2)] - m, (2.7)

with ||kl < |g/(4T + 4)]. Since the £,,-norm bound on A is quite
large—close to Ref-AH mmPKE modulus—we cannot use ARP when
LNP22 shares the same modulus as Ref-AH mmPKE. Instead, we
decompose h to its bits and prove the well-formedness of the bits
and the reconstruction of h satisfying Equation (2.7).

Towards verifiable refresh, this construction combines verifiable
decryption and multi-encryption with a consistency check on the
message. Rather than directly revealing the decrypted message m
during verifiable decryption, we (i) prove that each coefficient of
lies in the range [T, T + 1] using its binary decomposition b,,; (ii)
show that (09| |25, i) = (09=F||Zk, i) and i’ € {0,1}7 C Ry;
and (iii) use m’ for the subsequent verifiable encryption.
Plug-and-Play Event-Oriented Linkable Tag Scheme. In gen-
eral, the tag scheme outputs a pair (r, tag), where 7 is a proof of
knowledge of a private key used to generate both a public key and
a linkable tag tag for a specific event. We construct the tag scheme
from an LWR-based pseudorandom function (PRF), such as the one
in [12]. Specifically, the tag tag is defined as

vy = [Ag - s mod g5, (2.8)

where Ay € R”*™ « hash(event) is derived from the event string,
and s is the private key from Ref-AH mmPKE in Equation (2.1). We
require that v < ¢ such that ||s||« < v and that p divides §.

Regarding security, we show that: (i) the pseudorandomness of
the tag is guaranteed under the Module Learning with Rounding
(MLWR) assumption. Furthermore, as analyzed in [12], a single
private key can generate a (practically) unbounded number of tags
(e.g., more than 2128) for different events with suitable parameters;
(ii) the non-frameability of the tag—namely, the inability of an
adversary to produce a valid proof for another user’s tag without
knowing the corresponding private key—is ensured by the Module
Short Integer Solutions (MSIS) assumption.

Then, we outline how to prove the well-formedness of the tag
in Equation (2.8) (i.e., the proof of rounding) via LNP22. We first
rewrite Equation (2.8) as

G/p - v mod § = Ay - s — ey mod ¢, (2.9)

where ||(s,b — ATs)||c < vand eg € {0,...,4/p — 13" is the
rounding error.

Here, the challenge is that § is not prime and does not match the
modulus g of LNP22 or Ref-AH mmPKE, and therefore we cannot
directly prove this relation modulo §. To address this issue, we set
¢ < q and transform Equation (2.9) into the following relation over
modulus g, which is equivalent to the relation over the integers:

C?/IAJ'VH—AH'S+CH+@'V=O,

where ||v]|e < f for = (§/p - p +dmgv + §/p — 1)/4.
Therefore, the proof of the well-formedness of the tag is reduced
to the following conditions, which can be efficiently realized using
LNP22:
1(=a/p - vr + Arr -s = emn) [dlls < £ (2.10)
together with ||(s,b — ATs)||c <V and ey € {0,...,4/p — 17,
where ﬁ’ = ¢\/W/§ and v/ := ¥+/(m + n)dv are the corresponding

£;-norm bounds,® and ¢ is the relaxation factor of ARP.

8As in our verifiable multi-encryption, we use f;-norms to bound fw-norms, i.e.,
[l 12 = |l - |l during the proof.

Wang et al.

Looking ahead to the Lether system, with carefully chosen pa-
rameters, we can batch the ARP for Equation (2.10) into the ARP
for Equation (2.6) as follows:

c1 — (b, 1r) - |q/(2T +2)] - riy

: Sﬁ',
cn — (bn,1) — g/ (2T +2)] - N
(=q/p-va+Au-s—em)/q |l

where the new bound satisfies ' ~ ‘lﬁA/z + f2. Moreover, we set

q/p = 2 to reduce the range proof of ey to binary proofs. These
optimizations allow the well-formedness of the linkable tag to be
proven at essentially no additional cost, without affecting the se-
curity or usability of either the tag scheme or other components;
hence, we refer to our tag scheme as “plug-and-play”.
Building Lether via optimized implementations of LNP22. At
a high level, Lether follows the paradigm of Anonymous Zether [7,
11], combining our verifiable Ref-AH mmPKE with event-oriented
linkable ring signature, unified through our optimized implementa-
tions of LNP22. The overall structure of the system is as follows.

Each user generates a public-private key pair (b, s) for Ref-AH
mmPKE and registers in the system by submitting (b, 7), where
7 is a proof of knowledge of the private key s corresponding to b,
generated using LNP22.

Each account (u,v), indexed by the associated public key b, is
initialized with balance m = 0 or funded with an amount m €
[0, MAX] as an individual ciphertext:

u:=Ar+e, ov:=(br)+y+|q/(2T+2)] - (m+Ty),

where 21 € R; is a binary polynomial satisfying (6¢~*||2,) =m,
and Ty is a shift offset, i.e.,, a polynomial whose coefficients are all
equal to T. For compatibility, we shift the message space of Ref-AH
mmPKE from {-T,...,T + 1} to {0,..., 2T + 1}¢ by adding T, to
the encoded balance.

To transact an amount m € [0, MAX], the spender first selects
N public keys (b;)ic[n], including her own public key by, the
recipient’s public key b,, and additional decoy accounts’ public
keys (b;)ic[n]\{rs}> forming an anonymity set that hides both the
spender’s and the recipient’s identities.

The spender then selects two binary indicator vectors b, b(") €
{0,1}N ¢ Zfl", where bs(s) =1, bﬁr) =1, and all other entries are set
to zero. These indicator vectors are used to index the spender and
recipient in the transaction proof. Accordingly, the spender must
prove the well-formedness of these vectors, namely that they are
binary integer vectors whose entries sum to 1.

Subsequently, the spender verifiably multi-encrypts the amount
m into a multi-recipient ciphertext (c, (¢;)ie[n]) for (b;)ic[n] Via
Ref-AH mmPKE, where ¢ := Ar + e, and for i € [N],

cii=(byr) +y; + [g/ 2T +2)1- (b = b)) - 1. (2.11)

Here, ri € R, satisfies (097%||2*, r;z) =m.

This construction induces a quadratic relation among the wit-
nesses b®, b, and . Each message of c; is defined as m; :=
(bfr) —bfs))-m, which guarantee balance correctness, i.e., s+, = 0
and r; = 0 for all i € [N] \ {s, 7}, even including the special case
s = r (i.e., the spender is the recipient).

Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

To prevent overdraft attacks, the spender must further provide a
verifiable decryption showing that the resulting balance i’ of her
account, computed as Zfil bi(s) - (u; +¢,0; +¢;), is non-negative, i.e.,
(064-k12k, i’ — Ty) € [0, MAX] and i’ € [0, 2T + 1]9.

Finally, to authorize the transaction and prevent double-spending
attacks, the spender generates an event-oriented (epoch-based)
ring signature, proving knowledge of the private key s corre-
sponding to the public key YN, b;s) - b;, together with the well-
formedness of the linkable tag vy := |Ap - ss mod g Py where
Ap « hash(Lether || H) and H denotes the current epoch obtained
from the blockchain state.

To manage additive homomorphism depth, the system maintains
a counter for each account, tracking the number of transactions
since its last refresh or initialization. Once the counter reaches
T, subsequent transactions are suspended until the user performs
a verifiable refresh, after which the counter is reset. We provide
implementation details in Section 4.2.

3 Novel Building Blocks of Lether

In this section, we develop the novel building blocks of Lether,
including a verifiable Ref-AH mmPKE scheme and a plug-and-play
event-oriented linkable tag scheme. Due to space constraints, we
defer the full preliminaries to Appendix B.

Preliminaries. Let [n] = {1,...,n} and R, = Zq[X]/(Xd +1).
Bold lowercase/uppercase letters denote vectors/matrices over R,
(eg, A€ R;”X”). For a € R, we let ae Z;”d denote its coefficient
embedding. We use (., -) for the inner product and || - ||2, || - |1, || - ||eo
for the usual norms (applied coefficient-wise to polynomial ele-
ments/vectors). We write x := y for assignment and x «— D for
sampling. We use U(S,) to denote the uniform distribution over
Sy :=={-v,...,v} (or {0,..., 7} when a support 0 < 7 < 2v+ 1is
specified), and D, to denote the discrete Gaussian distribution. We
write | -] for rounding. We use standard encoding/decoding oper-
ators as in the lattice literature. In particular, an integer message
is encoded as a binary polynomial in R, via a deterministic map
BinPoly(-), and a polynomial element is encoded as a binary poly-
nomial vector in R via a deterministic map Bit(-); both encodings
can be decoded using the corresponding gadget vector.

Lattice assumptions. We rely on standard lattice hardness assump-
tions, including MLWE, MLWR, and MSIS, as well as Matrix Hint-
MLWE. At a high level, Matrix Hint-MLWE models leakage/hints
of the secret through a sampled matrix and admits reductions from
standard MLWE under appropriate parameter choices.

LNP22 interface. We use LNP22 = (LNP22.Setup, LNP22.P, LNP22.V)
as a black-box lattice-based NIZK proof system for proving and
verifying relations R in this paper. We rely on the completeness,
knowledge soundness, and simulatability guarantees established in
LNP22 [31].

3.1 Verifiable Ref-AH mmPKE

We propose the first lattice-based verifiable Ref-AH mmPKE scheme.
Compared to the basic mmPKE [44], we additionally introduce the
properties of additive homomorphism, refreshability, and verifiabil-
ity. The syntax of Ref-AH mmPKE is defined below, and the formal
security properties are deferred to Appendix C.1.

Definition 3.1 (Ref-AH mmPKE). A Ref-AH mmPKE scheme with

a public-private key pair space K, a message space M, a multi-

recipient ciphertext space C, and an individual ciphertext space Cs

consists of the following algorithms.

® PPene < mmSetup(14, N): On input a security parameter 1
and a recipient number N, it outputs a public parameter ppg,,.
(which is an implicit input to all remaining algorithms).

o (pk,sk) <« mmKGen(): It outputs a public-private key pair
(pk, sk) € K.

e ct:= (cAt, (&i)ie[N]) — mmEnC((Pki)ie[N], (mi)ie[N]3r> (ri)ie[N])
: On input N public keys (pk;)ic[n], N messages (m;)ic[n],
(N + 1) randomnesses r, (r;)ic[n], it outputs the multi-recipient
ciphertext ct := (ct, (ai)ie[N]).

o ct; := (ct,ct;)/L « mmExt(i, ct): On input a multi-recipient
ciphertext ct € C, and an index i € [N], it deterministically
outputs the individual ciphertext ct; € C; or a symbol L to
indicate extraction failure.

e m/L « mmDec(sk,ct): On input a private key sk, and an in-
dividual ciphertext ct € Cs, it outputs a message m € M or a
symbol L to indicate decryption failure.

e ct’/L « mmRef(pk, sk, ct): On input a public-private key pair
(pk, sk), and an individual ciphertext ct € Cs, it outputs a re-
freshed individual ciphertext ct’ € Cs or a symbol L to indicate
refresh failure.

Correctness requires that ciphertexts decrypt correctly for all
intended recipients. Chosen-plaintext security (CPA) guarantees
security even in the presence of corrupted recipients. Additive
homomorphism enables ciphertexts to be combined to obtain an en-
cryption of the sum of the underlying messages, while refreshability
enables ciphertext re-randomization without affecting decryption.

The lattice-based constructions of Ref-AH mmPKE are as follows.
Construction 3.2 (Ref-AH mmPKE). Let A be a security parameter.
Let m,n,d,q,N,v,T be positive integers. Let oy, o1 be Gaussian
widths. For the message space M = [0, 2k — 1], our refreshable
T-level additively-homomorphic mmPKE is shown in Algorithm 1.
mmeExt is defined by picking (c, ¢;) from (¢, (¢;)ie[N])-

Our Ref-AH mmPKE scheme shares the same correctness and
security analysis as [44]°; we therefore only state the following
lemmas. Additive homomorphism and refreshability are also easy
to realize. In particular, for appropriate parameter settings (i.e.,
when the accumulated noise remains within bounds), our Ref-AH
mmPKE supports additive homomorphism for at least T levels.

Lemma 3.3 (Correctness). Let e;,s;, T, e,,y; be random variables
that have the corresponding distribution as in Construction 3.2. Denote
£+= Sieny Pr[Ient) + i — (st el = Lg/ (4T +4)7 |. W say
our Ref~AH mmPKE in Construction 3.2 is {-correct.

Lemma 3.4 (Security). Define the distribution y := U(S,), xo =

Dy(mensia sy and x1 = DZNd,\/Z_y’ whereX; = (Ulold O'OI(n(:+n)d),
%y = o1lng. Define the distribution S such that the matrixR < S can
be sampled asR = (07, —(soll -+ llsn-1)T. (eoll - [len-1)T) €
RNX(U+m+n) \oheres; « U(ST), e; « U(S™) foreachi € [N]. Our
Ref-AH mmPKE in Construction 3.2 is mmIND-CPAKOSK secure un-

der MLWER ., and MatrixHint-MLWEN 7S

R,y 4SSumptions.

The analysis is obtained by combining that of extended reproducible PKE with the
mmPKE compiler.

Algorithm 1 Ref-AH mmPKE

1. procedure mmSetup (14, N)
z A URPM)

3 return ppg, = A

4: end procedure

5. procedure mmKGen()

6 s,e — UEST)XU(SY)
72 b=ATs+e

8: return (pk:=b,sk:=5s)
9: end procedure

10: procedure mmEnc((pk; =b;)ic(n], (M; =m; € Zyk)ic[N])
11: T,y «— Z)g0 X D;’é

122 c:=Ar+ey,

132 forall i € [N]

14: yi — Dg,
15: m; € Ry < BinPoly(m;)
16: ci == (bir) +y; + |q/(2T + 2)] - miy;

172 end for
18 return ct:=(c, (¢;)ie(n])
19: end procedure

20: procedure mmDec(ct = (c,c),sk =s)
2 e Lo = (e 8)ar+2

22. return m := (09F||2¥, r?z)

23: end procedure

24: procedure mmRef(ct = (¢, ¢), (pk, sk) = (b, s))
25: m <« mmbDec((c,c),s)

26 return ct’ := (¢, c¢’) « mmEnc(b, m)

27: end procedure

We then use LNP22 as a black-box NIZK to realize the three
types of verifiability supported by our Ref-AH mmPKE : verifiable
multi-encryption, verifiable decryption, and verifiable refresh.
Verifiable multi-encryption for mmPKE. The verifiable multi-
encryption for (Ref~AH) mmPKE is a batched verifiable encryption
that offers significant savings in both bandwidth and computation,
compared to the naive approach of applying separate PKE and NIZK
for each recipient. As in standard verifiable encryption, it produces
a proof 7 to guarantee the well-formedness of the multi-recipient
ciphertext ct.

In general, a verifiable (multi-)encryption scheme must satisfy
three properties: completeness, simulatability, and soundness. Com-
pleteness requires that any honestly generated ciphertext and its
proof, is always accepted by the verifier. Simulatability ensures the
existence of a simulator such that no adversary can distinguish
between real and simulated ciphertext. Soundness guarantees that
no adversary can convince the verifier of an invalid ciphertext. We
defer the formal definition of soundness to Appendix C.1.

We present the constructions of verifiable multi-encryption for
(Ref-AH) mmPKE as follows.

Construction 3.5 (Verifiable Multi-Encryption for mmPKE). Suppose
the (Ref-AH) mmPKE shares the modulus with LNP22. After gen-
erating the multi-recipient ciphertext (c, (¢;);e[n]) using mmEnc(
(bi)icN1> (Mi)icN1; (T, €4), (Yi)ie|n]), the prover takes as input
the witness wit := ((#%;);c[n],T) Where each ri; « BinPoly(m;)
denotes the binary decomposition of message m; for all i € [N],
and the statement stat := (A, (b;)ic[n7], (¢, (¢i)ie[n]))- The proof is
generated as w1 «— LNP22.P(Rey, stat, wit) and verified by 0/1 «

Wang et al.

LNP22.V(Renc, stat,), where the proof relation Rey is defined as
follows:
(A, (bi)ie[ny» (¢ (ci)ierny))s ()i N7 T)

<y b,

o

iy
c — Ar|
Rene = { || €1~ ¢br1) = L3 1 ’ G.1)
: <y-p,
eN = (bn.T) = L35 1 - 1w
(]| - |lrn) € {0,134
where ¢ is the relaxation factor, and fy = +/(m + n)d - 7oy, p1 =
VNd - to; with Gaussian tail bound factor 7.

©

Its completeness and simulatability follow directly from those of
LNP22. We establish its soundness through the following lemma
and defer its proof to Appendix C.1.

Lemma 3.6 (Soundness in Verifiable Multi-Encryption). Suppose
LNP22 is knowledge sound. Then, our verifiable multi-encryption
in Construction 3.5 is sound if the probability 3.;c 1 Pr[[|{e;, T) +
7i — (s €yl = 1q/(4T + 4)]] is negligible, where (e;, s;) is the
private key in mmPKE and (¥, ;) is the extracted witness along with
&, :=Cc—AL 7 =c; — <bi,f'> - Lq/(ZT + 2)-| - M.

Verifiable decryption for mmPKE. The verifiable decryption for
(Ref-AH) mmPKE follows the same structure as that for standard
PKE. Here, we introduce a stronger security, called unforgeabil-
ity, which enhances the original soundness. Briefly, unforgeability
guarantees the uniqueness of the decrypted message m under the
correct private key. We defer its formal definition to Appendix C.1.

Here, its completeness requires that a proof generated for an
honestly decrypted message is always accepted. Its simulatability
ensures the existence of a simulator such that no adversary can
distinguish between real and simulated decrypted messages.

We present the constructions of verifiable decryption as follows.

Construction 3.7 (Verifiable Decryption for mmPKE). Suppose
the (Ref-AH) mmPKE shares the modulus with LNP22. Suppose
v =1, 7 = 2. After decrypting the individual ciphertext (c, ¢) under
the public key b using mmDec((c, ¢), s) to the encoded message m
and obtain the decryption error h := ¢ — (c,s) — | q/(2T + 2)] - m,
the prover takes as input the witness wit := (s, by,) and the state-
ment stat := (A, b, (c, ¢), r), where b, < Bit(h) is the coefficient-
wise binary decomposition of h. The proof is generated as 7 «
LNP22.P(Rgec, stat, wit) and verified by 0/1 «— LNP22.V(Rgec, stat,),
where the proof relation Rye. is defined as follows:
(A,b, (¢, ¢), 1in); (s, bp) :

c={es) = Llg/2T+2)] = & b,

icfo]

(s|/(b = ATs)|[by) € {0,1}(m+n+o)d

where o = [log(lq/(4T+4))1,by = (5", ... 0\"), 8 = (81,62, ... 8,) =
(29,21, ..., Lq/ (4T + 4)] — 2llogla/(4T+4)-1)])

Riec = (3.2)

The completeness and simulatability of our verifiable decryption
follow directly from those of LNP22. We establish its unforgeability
through the following lemma and defer its proof to Appendix C.1.

Lemma 3.8 (Unforgeability in Verifiable Decryption). Suppose
LNP22 is knowledge sound. Then, our verifiable decryption in Con-
struction 3.7 is unforgeable if MSISg m, (m+n),q,v assumption is hard.

Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

Verifiable Refresh for mmPKE. After at most T additively homo-
morphic evaluations, one can decrypt a ciphertext (c, ¢) to obtain
the message m, and then re-encrypt it into a fresh ciphertext (¢’, ¢’)
using fresh randomness (r’, e;,) < Dy x D7 Informally, verifi-
able refresh ensures that the message embedded in the refreshed
ciphertext is identical to that in the evaluated ciphertext, and that
the randomness used in the refreshed ciphertext is fresh (i.e., short).

The completeness of verifiable refresh requires that a proof for
an honestly refreshed ciphertext is always accepted. Simulatability
guarantees the existence of a simulator whose output is indistin-
guishable from a real refreshed ciphertext. Unforgeability ensures
the well-formedness of the refreshed ciphertext and the consistency
of the underlying messages. The formal definition of unforgeability
is deferred to Appendix C.1.

Construction 3.9 (Verifiable Refresh for mmPKE). Suppose the
(Ref-AH) mmPKE shares the modulus with LNP22. Suppose v =1
and 7 = 2. The verifiable refresh is shown in Algorithm 2. The
proof is verified by 0/1 <= LNP22.V (R, stat,), where the proof
relation Ryf is defined as follows:

stat = (A, b, (¢, ¢), (¢/,c"));
wit = (s, ', i, i, by, b))

c—(cs)—lg/@T+2)] =) &by,

iefo]

r/

J J S . >

¢ —Ar|| V- Bo (33)
Il = (b,r') = Lg/(T +2)1- (i + T llo < ¥ - B,
(041135, 5 - Ty) = (09K |25, '),

= 8- bD,
> 8 by

ielo’]

Rief =

bin € {0, 1}(m+n+o’+o+1)d

where ¢/ is the relaxation factor, bin := (s || (b—ATs) || by, || by, || 1t'),
b = (bY)s. .. b)), and 8 = (8,8),...,8,) = (1,2,...,2T +2~
2llog@T+1]y Moreover, p1 is defined as in Equation (3.1), while &
and by, are defined as in Equation (3.2).

To fit the Lether setting, as discussed in Section 2, the message
space is defined as M = [0,..., 2k — 1], and the encoding space
is shifted from {~T,...,T + 1}% to {0,...., 2T + 1}? by adding the
constant offset T;. Thus, we modify the message/encoding-related
part of the proof relation Ryef.

Algorithm 2 VRefresh
Input: pk =b, sk =s, ct = (c,c)

1 1= e = (e, 8) otz

2 h:=c—{cs)—|q/(2T +2)]-m

3: by, « Bit(rh)

4: by, « Bit(h)
s: m = (00|25, ih - Ty)
6: W’ « BinPoly(m)
7
8
9

o (r',e,) & DF x DN

c Y — Dg,

s ¢ =Ar +e,
10: ¢/ :=(b,r')Y+y + |q/(2T +2)] - (W +Ty)
11: 1"« LNP22.P (R, stat, wit) where Ry is defined in Equation (3.3)
12: return ref := (ct’ := (¢, ¢’), ')

Its completeness and simulatability follow directly from those
of LNP22. We establish its unforgeability through the following
lemma and defer its proof to Appendix C.1.

Lemma 3.10 (Unforgeability in Verifiable Refresh). Suppose LNP22
is knowledge sound. Then, our verifiable refresh in Construction 3.9
is unforgeable if MSISR 1, (m+n),q,v assumption is hard and the prob-
ability Pr[|[{e,T') + §" — (s, &)l = Lq/(4T + 4)1] is negligible,
where (e, s) is the private key in mmPKE and (¥', ") is the extracted
witness along with&!, := ¢ —AF¥, ' := ¢’ —(b,¥') — | q/ (2T +2)]-’.

3.2 Event-Oriented Linkable Tag

In this subsection, we propose the first plug-and-play event-oriented
linkable tag scheme based on lattices. Our construction directly
enables a lattice-based event-oriented ring signature for Lether,
where the private key is derived from our Ref-AH mmPKE. We
present the details of this ring signature in the next section and
define the syntax of our tag scheme below.

Definition 3.11 (Tag Scheme). A tag scheme with a public-private

key pair space K, a tag space 7~ consists of the following algorithms.

® (PPrag: Pk sk) Setup(1%) : On input a security parameter, it
outputs a public parameter (which is an implicit input to other
algorithms) and a public-private key pair.

o tag < TagGen(sk, event): On input a private key and an event
string, it outputs the linkability tag.

e 0/1 « Link(tag, tag’) : On input two tags, it outputs 1 if they
are linked, and 0 otherwise.

e 1« Prove(pk, tag, event, sk) : On input the statement and wit-
ness, it proves knowledge of a private key that was used to create
both a linkable tag for a specific event and a public key.

e 0/1 « Verify(pk, tag, event, r) : On input the statement and
proof, it outputs 1 if the proof is valid, and 0 otherwise.

Following [6], we model the tag proof algorithm Prove as a sig-
nature of knowledge and omit the signed message for simplicity.
In general, a signature of knowledge should satisfy completeness,
simulatability, and extractability. Completeness requires that any
honestly generated signature on a statement with a valid witness is
always accepted. Simulatability ensures that there exists a simulator
whose output is computationally indistinguishable from real signa-
tures. Extractability requires an efficient extractor that can extract
a witness from any accepting signature. For formal definitions of
these properties, we refer the reader to [6, 8] for details.

We further formalize additional security properties for our tag
scheme, namely event-oriented linkability, multi-tag anonymity, and
non-frameability, adapted from [25]. Event-oriented linkability re-
quires that any two valid tags generated by the same user for the
same event are publicly linkable, while tags generated for differ-
ent events remain unlinkable. Multi-tag anonymity ensures that,
even given many tags generated across different events, no adver-
sary can determine which user generates a particular tag, beyond
what is trivially revealed by linkability within the same event. Non-
frameability guarantees that no adversary can produce a valid tag
that is linkable to an honest user’s tag for a given event without pos-
sessing the corresponding private key. In particular, we explicitly
capture anonymity in the setting where many tags are generated
for different events. We defer these formal definitions of tag scheme
in Appendix C.2.

Then, using LNP22 as a black-box NIZK proof system, we con-
struct our tag scheme for our Ref-AH mmPKE as follows.

Construction 3.12 (Tag Scheme for mmPKE). Let mmKGen be a

sub-algorithm of Ref-AH mmPKE scheme. Suppose v =1 and v = 2.

Suppose p divides ¢ and §/p = 2. Suppose § < g, where q is the

modulus for LNP22 and Ref-AH mmPKE.

e Setup(1%): It outputs a hash function hash : {0,1}* — Rgrxm
(modeled as a random oracle in the security analysis) and a
private-public key pair (b, s) <~ mmKGen().

o TagGen(s, event): It outputs a linkable tag vy := | Ag+s mod 4],
where Ay < hash(event).

o Link(v,v’): It outputs 1 if vg = v};, and 0 otherwise.

e Prove and Verify: On input the witness wit := (s, ey), where
ey := Ay - s — §/p - vg mod § is the rounding error, and the
statement stat := (Ag, b, vir), the tag proof is generated by 7 «
LNP22.P(Ryy, stat, wit) and verified by 0/1 «— LNP22.V(Ry,, stat,
), where the proof relation Ry, is defined as:

(Am,b,vy); (s, eq) :
Riag = 1/ - vir + e = An-8)/qllw < ¥ -, (3.4)
(sl1(b = ATs)[lenr) € {0,1) (e

where i/ is the relaxation factor, and f = Vn’d - (dmdv + §/p —

1+3/p-)i

As discussed in Section 2, we prove the rounding relation vy =
[Ag s mod G] by showing [|(§/p - ve +en —Ap-8)/Gllc < ¥ - B
via LNP22 through a series of transformations.

The completeness, simulatability, and extractability of our tag
proof algorithm follow directly from LNP22. We demonstrate the
remaining properties through the following lemmas and defer their
proofs to Appendix C.2.

Lemma 3.13 (Event-Oriented Linkability in Tag Scheme). Suppose
LNP22 is knowledge sound. Then our tag scheme in Construction 3.12
is event-oriented linkable if MSISR i, (m+n),q,v assumption is hard.

Lemma 3.14 (Multi-Tag-Anonymity in Tag Scheme). Our tag
scheme in Construction 3.12 is multi-tag-anonymous if MLWRg n v 4.5
assumption for y = U(S,) is hard.

Lemma 3.15 (Non-Frameability in Tag Scheme). Suppose LNP22
is knowledge sound. Then our tag scheme in Construction 3.12 is
non-frameable if MLWER ;,m,q y assumption for i := U(S,) and
MSISR ' (m+n').4,p assumption for B = max(4/p — 1,v) are hard.

4 Lether: Account-Based Private Blockchain
Payments from Lattices

In this section, we provide the full details of Lether. Due to space
constraints, we defer the formal definitions of Lether to Appendix D.
Here, we specify the algorithms Setup, AddrGen, AnTransfer, and
Verify as follows. The algorithms TagGen and AmtGen are invoked
within AnTransfer, where TagGen corresponds to the tag scheme
in Construction 3.12, and AmtGen is instantiated by mmEnc of the
Ref-AH mmPKE in Construction 3.2.

The remaining algorithms are straightforward. The Register
algorithm is from LNP22.V. The RollOver algorithm consists of
mmExt and the additively-homomorphic evaluation of Ref-AH
mmPKE from Construction 3.2. The LinkTag algorithm is from
the tag scheme in Construction 3.12. The ReadBalance algorithm is
built using mmDec from Ref-AH mmPKE, followed by subtracting
the constant offset (04 ||2¥, Td).

Wang et al.

When a fresh or refreshed account has undergone T homomor-
phic evaluations, its owner can refresh the account by running
the VRefresh algorithm from Construction 3.9, which can then be
publicly verified by the system.

As in other account-based private blockchain payment systems,
including (Anonymous) Zether [7, 11] and Pride CT [24], we set
k := 32 as the bit-length of the maximum value supported in the
payment system, i.e., MAX = 232 — 1. As noted in Zether [7], a larger
range of values can be represented by composing smaller ones—for
example, using two 32-bit amounts to support 64-bit payments. To
prevent integer overflow attacks, we ensure that the actual message
space supports values larger than MAX.

Algorithm 3 Setup(1%)
1: Choose an anonymity set size N € Z,
2: Pick a hash function H : {0,1}* — Rg’x'n
3: PPenc = A — mmSetup(14, N)
4 ppnp < LNP22.Setup(1%)
5 return pp := (PPencs PPLnps H)

A is the security parameter

Algorithm 3 initializes the system parameters. It first selects an
anonymity set size N € N and a hash function H : {0,1}* —
Rgrxm. Then, it generates the public parameters for the Ref-AH
mmPKE scheme and LNP22, and combines them to form the system-
wide public parameters, which are treated as implicit inputs to the
later algorithms.

Algorithm 4 generates a public-private key pair along with a
corresponding proof. Suppose v = 1 and v = 2. It first runs mmKGen
from the Ref-AH mmPKE scheme to obtain the public-private key
pair, and then executes LNP22.P(Rpy, stat = (A,b), wit = s) to
generate the proof 7, where the proof relation R is defined as
follows:

Ry = {(s||b —ATs) € {0, 1}<m+">d}) @.1)

Later, the public key b together with the proof 7 can be verified in
the Register algorithm via 0/1 < LNP22.V(Rpx, (A, b), 7).
Algorithm 5 generates an anonymous transaction. In the anony-
mous transfer, the spender uses an anonymity set to hide the
identity of herself and the recipient. Thus, each account in the
anonymity set should be treated as the spender and recipient. We
begin by defining the proof relation R,, along with its statement
and witness as follows,
stat = (A, A, (bi, i, 0i)ic [N (€ (¢i)ie[N])s VH);
wit = (55, 1,6 b, it b,,r, bt ep, bp) -
b b0 e o, 1N ez, Y P =1, Y b7 =1,
i€[N] i€[N]

bin € {0, 1}(m+n+2+n’+o+o’)d’
c_rAr N < ‘/"ﬁo,
Ran = r S)y o

T e - i - L 187 - b

: <y B
en = (bn.T) = L5 100 = bR)i
(2-ve +em —An -sg)/q -

@ FNZE A~ Ta) = (@ F)125, bt),

Db (ot (wi+e54)) — La/ (T +2)1 -1 =h
i€[N]

(4.2)

Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

where h := ¥ ;c[0] i - b,(li), ' =31 0; bir? are the same as in
Equation (3.3) and

bin = (ss || Y b bi = ATsg, ||t || bty || €rr || by |1 bs).-
i€[N]
The statement includes the public parameters A, Ay := H (Lether||H)
for the current epoch H, the anonymity set (b;);c[n] with the cor-
responding accounts (u;,;);e[n], the set of amount ciphertexts
(¢, (¢i)ie[N]), and the linkable tag vj.
The witness contains:

o the private key s; of the spender;

o the randomness r used in the amount ciphertexts (c, (¢;)ie[n]);

o the binary integer vector b®®),b(") indicating the indices of the
spender and recipient, respectively, where only bs(s) =1, bﬁr) =1,
and all other elements are 0;

e a binary polynomial 1 < BinPoly(m) whose coefficients repre-
sent the binary decomposition of the integer amount m;

e apolynomial vector b, « Bin(r") representing the coefficient-
wise binary decomposition of the polynomial-encoded balance
m’ € Rarys in the spender’s account after the transaction;

e a binary polynomial bt < BinPoly(m’) whose coefficients are
the binary decomposition of the integer-encoded balance m’ :=
(09-%]|2*, r?t/) in the spender’s account after the transaction;

o the rounding error ey related to the linkable tag vy;

e a polynomial vector b, < Bin(h) which is the coefficient-wise
binary decomposition of the decryption error h during the de-
cryption of the spender’s account after the transaction.

The proof relation consists of four parts, detailed below.

First, to guarantee the uniqueness of spender and recipient, we
must ensure that both b®) and b(") are binary integer vectors whose
entries sum to 1. We use b®®) as an example: we first show that
b® e {0,1}N ¢ Zf]\’, and then prove that };c(n) b;s) =1.

Second, we prove that a concatenation of several vectors, specif—
ically, by, by, 1, btny, eq, ss, and es = (bs — ATsy), forms a
polynomial vector with binary coefficients. This not only proves
knowledge of the spender’s private key (s, €5), but also guarantees
that the transaction amount i1, the spender’s balance (b, bty),
the decryption error by, and the rounding error in the linkable tag
ey each lie within a suitable range. Specifically, we choose parame-
ters such that §/p = 2, v = 1, and v = 2, which guarantees that the
rounding error ey € {0,1}"% in the tag generation and that the
private key (s, e) € {0, 1}("*"9 are the binary polynomials. This
setting is motivated by the fact that LNP22 can efficiently prove
that polynomials are composed of binary coefficients.

Third, we batch the proofs of the well-formedness of the multi-
recipient ciphertext in Equation (3.1) and the linkable tag in Equa-
tion (3.4) to improve efficiency. This ensures that the decrease in
the spender’s amount equals the increase in the recipient’s amount,
while the amounts of all decoy accounts are zero. Specifically, we
leverage the binary strings b®®) and b(") to implicitly encode the
messages in the ciphertexts as m; := (bfr) - bi(s)) - r. For decoy ac-
counts, b;s) = bfr) =0, so m; = 0; for the spender, bs(s) =1, bﬁr) =0,
thus iy = —m; and for the recipient, i, = m. Our protocol also sup-
ports the special case where the spender and recipient are the same
one, i.e., s = r, in which case mg = m, = 0, which does not affect the
balance property. Additionally, we slightly increase the bound to

p1:=Nd - (z01)? + B2 for f = Vn'd - (dmGv+G/p—1+4/p-p) /4
to accommodate the batched proof.

Fourth, we use verifiable decryption to show that the decrypted
balance of the spender’s account after the transaction is non-negative
(i.e., the spender is not overdrawn). Since the message space for
balances is shifted from {-T,...,T+1} to {0,...,2T + 1} by adding
the constant offset T;, we need to shift it back by subtracting T
during the range proof.

Algorithm 4 AddrGen()

1: (pk :=b, sk :=s) « mmKGen()
2 7« LNP22.P(Ry, (A,b),s) where Ry is defined in Equation (4.1)
3: return (reg := (pk, x), sk)

Algorithm 5 AnTransfer
Input: (pk; =by)icn1, 5, 7, sks = 85, amt =m, §
1 HeS
2 H « pp
3. Ap := H (Lether||H)
4 vy = |Ap - ss mod g
5. ey :=Ag -s—§/p- vy mod ¢
6
7
8
9

- (reu) « Dy X D
- (Yd)ien) — DY
.« BinPoly(m)
;s 1= —m, Wy = m, m; =0 fori € [N]/{s,r}
10: (¢, (ci)ie[n]) = mmEnc(A, (bi)ie(n], (Mi)ic(n); (T, €4), (Yi)ie[N])
1: b = (01, bY)) € {0, 1)V, where b := 1, b)) := 0 for i € [N]/{s}
12 b = (b, ., b)) € {0, 1}V, where b := 1,5 := 0 for i € [N]/{r}
13: acc « S
14: for i € [N], do (u;,v;) < acc[pk;]
15: (uf,0}) = (us + ¢, 05 + ¢5)
16: 1’ = og — (ug, 85) Tor+2
17: h:=0) = (ug,ss) — [q/(2T + 2)] - i’
18: byy < Bit(i)
19: by, « Bit(h)
200 m’ = (04K||2k, A — Ty)
21: bty « BinPoly(m’)
22: IT = LNP22.P(Ryp, stat, wit) where R,y is defined in Equation (4.2)
23: return tx = ((pk; := b;)ie[n], t := (¢, (¢i)ic[n]), tag := vy, 1)

Algorithm 6 Verify(tx, S)

. fori € [N], (u;,v;) < acc[pk;]
: return 0/1 < LNP22.V(Ryy, stat, IT) where R,y is defined in Equ. (4.2)

1: Phrase ((pk; =bi)ic[n], ct = (¢, (¢i)ie[n]), tag = v,) « tx
2 HeS

3 H « pp

4 Ay := H (Lether||H)

5 acc « S

6

7

Algorithm 6 verifies the transaction generated by Algorithm 5.
It first constructs the corresponding statement and then validates
the proof included in the transaction using the LNP22.V algorithm.

The correctness of Lether follows from the completeness of
LNP22 and the correctness of Ref-AH mmPKE. Under our param-
eter selection, the probability that decryption succeeds is at least
1 - 2712 implying that Lether achieves statistical correctness. We
defer the security proof to Appendix E.
Denial of Service. We further consider the probability of a denial-
of-service attack, i.e., the likelihood that an adversary, given a link-
able tag vy, can generate a valid transaction with the same tag
without knowing the associated private key. We note that such an
attack reduces to the non-frameability property of the tag scheme.

4.1 Parameter Setting

We first present the parameter setting for Lether. At a high level, the
parameters must satisfy not only the requirements of the verifiable
Ref-AH mmPKE and the tag scheme (as discussed in Section 3), but
also the conditions required by LNP22 when these components are
combined. We summarize the requirements as follows:

e The Ref-AH mmPKE scheme must be mmIND-CPAKOSK gecure,
support T-level additive homomorphism, and achieve {-correctness
for { < 27128

e Verifiable multi-encryption, verifiable decryption, and verifiable
refresh must satisfy completeness, soundness (or unforgeability),
and simulatability.

o The tag scheme must satisfy event-oriented linkability, multi-tag
anonymity, and non-frameability.

o LNP22 must satisfy completeness, knowledge soundness and
simulatability.

Following prior work [12, 13, 15, 31], we use the Lattice Esti-
mator (a.k.a. LWE Estimator [1]) to estimate the practical hard-
ness of the lattice problems appearing in our Ref-AH mmPKE
and tag scheme. These include MLWER g5 for ¥ := U(S,),

MatrixHint-MLWER X5 MSISg m (man).q.vs MLWRR v g
for y = U(S,), and MSISR p/, (m+n'),4,5 for f = max(§/p —1,v), all
targeting the 128-bit security level.

In addition, following the parameter selection strategy of the
basic mmPKE [44] and LNP22 [31, 35], we choose parameters to
guarantee sufficient correctness of Ref-AH mmPKE, as well as com-
pleteness, simulatability, and soundness of LNP22 as used in Lether.
We also carefully select parameters to minimize the amortized cost
of refresh operations. We defer the detailed parameter selection to
Appendix A.1 and summarize the concrete parameters below.

Specifically, we set k := 32 for Lether. For Ref-AH mmPKE, we
choose q = 24 =64, N =16, m =30,n =26, T =60, v = 1,
v =2, 09 = 15.9, and o; = 30560. For the tag scheme, we set d = 64,
G ~ 21, p ~ 2!% with §/p = 2, and n’ = 2. Note that the modulus
q and degree d are also used in LNP22 to maintain compatibility
across components.

4.2 Implementation and Evaluation

We implement Lether in C'* on a standard desktop machine equipped
with an Intel i7-11850H CPU running at 2.50 GHz. Our implemen-
tation is based on the LaZer library [35].

Although the LaZer library provides a user-friendly Python in-
terface, it only supports proving simple linear relations in a fixed
manner, and the moduli used by the NIZK system and the target
relations do not match. Therefore, as discussed in Section 1.3 and
Section 2, to make Lether practical and efficiently prove the re-
quired relations, we optimize the LNP22 implementation in the
LaZer library to support: (i) using the same modulus as the proof re-
lations; (ii) batching proofs (e.g., verifiable multi-encryption and tag
proofs); (iii) aggregating integer proofs (e.g., those arising in ring
signatures); and (iv) proving quadratic relations (e.g., those arising
in balance proofs). To realize these optimizations, we extensively re-
structure internal functions and parameter generation scripts. The

1°0ur implementation: https://github.com/LetherSub/Lether-artifact

Wang et al.

newly added or modified code exceeds 3,000 lines. Implementation
details are deferred to Appendix A.2.

Results for typical Lether transactions appear in Table 1. Figure 1
and Figure 2 show the communication size of transactions |tx| and
the associated proof size [II|, together with the proving time ¢,
and verification time t,, for anonymity set sizes N ranging from 2
to 64. Each runtime value is averaged over 100 runs. We observe
that all costs scale linearly with the anonymity set size N, which
is consistent with (Anonymous) Zether [7, 11] and Pride CT [24].
These results demonstrate that Lether remains efficient for N < 64.

Table 5 reports the results of the registration phase in Lether. The
communication cost for each user during registration is about 37 KB,
and the computation cost is only a few milliseconds. Moreover, these
costs are one-time for each user.

=@- Transaction size |tx|
Proof size |M|

110

100

90

80

70

Size (KB)

60

50

40

2! 22 23 24 25 26
Anonymity Set Size N

Figure 1: Transaction and proof size growth with anonymity set
size. The evaluation level is fixed at T := 60.

1.4{ =@= Proving time t,
Verification time t,

2! 22 23 24 2° 26
Anonymity Set Size N

Figure 2: Proving and verification time growth with anonymity set
size. The evaluation level is fixed at T := 60.

Anony. Eval Level Register
N T [reg| || tp ty
16 60 37.2 27.5 0.12 0.08

Table 5: Results of the Lether registration phase. Sizes are reported
in KB and times in seconds. We report the communication size |reg|
(including proofs ||), the proving time #,, and the verification time
t,. The anonymity set size is N := 16 (Anony.), and the evaluation
level is T := 60 (Eval. Level).

https://github.com/LetherSub/Lether-artifact

Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

Acknowledgments

This work was supported in part by Australian Research Council
Discovery Grants DP250100229 and DP220101234. Siu-Ming Yiu
was supported by HKU-SCF FinTech Academy, Shenzhen-Hong
Kong-Macao Science and Technology Plan Project (Category C
Project: SGDX20210823103537030), Theme-based Research Scheme
of RGC, Hong Kong (T35-710/20-R).

References

(1]
(2]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

=
&

[19]

Martin R Albrecht, Rachel Player, and Sam Scott. 2015. On the concrete hardness
of learning with errors. Journal of Mathematical Cryptology 9, 3 (2015), 169-203.
Diego F Aranha, Carsten Baum, Kristian Gjesteen, and Tjerand Silde. 2023.
Verifiable mix-nets and distributed decryption for voting from lattice-based
assumptions. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security. 1467-1481.

Man Ho Au, Joseph K Liu, Willy Susilo, and Tsz Hon Yuen. 2013. Secure ID-based
linkable and revocable-iff-linked ring signature with constant-size construction.
Theoretical Computer Science 469 (2013), 1-14.

Elaine Barker, Lily Chen, Sharon Keller, Allen Roginsky, Apostol Vassilev, and
Richard Davis. 2017. Recommendation for pair-wise key-establishment schemes
using discrete logarithm cryptography. Technical Report. National Institute of
Standards and Technology.

Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. 2002. Randomness
Re-use in Multi-recipient Encryption Schemeas. In Public Key Cryptography —
PKC 2003, Yvo G. Desmedt (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
85-99.

Jonathan Bootle, Kaoutar Elkhiyaoui, Julia Hesse, and Yacov Manevich. 2022.
DualDory: logarithmic-verifier linkable ring signatures through preprocessing.
In European Symposium on Research in Computer Security. Springer, 427-446.
Benedikt Biinz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. 2020. Zether:
Towards privacy in a smart contract world. In International Conference on Finan-
cial Cryptography and Data Security. Springer, 423-443.

Melissa Chase and Anna Lysyanskaya. 2006. On signatures of knowledge. In
Advances in Cryptology-CRYPTO 2006: 26th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 2006. Proceedings 26.
Springer, 78-96.

Rafael del Pino and Shuichi Katsumata. 2022. A New Framework for More
Efficient Round-Optimal Lattice-Based (Partially) Blind Signature via Trapdoor
Sampling. In Advances in Cryptology — CRYPTO 2022, Yevgeniy Dodis and Thomas
Shrimpton (Eds.). Springer Nature Switzerland, Cham, 306-336.

Michel H Devoret and Robert J Schoelkopf. 2013. Superconducting circuits for
quantum information: an outlook. Science 339, 6124 (2013), 1169-1174.
Benjamin E Diamond. 2021. Many-out-of-many proofs and applications to
anonymous zether. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
1800-1817.

Muhammed F Esgin, Ron Steinfeld, Dongxi Liu, and Sushmita Ruj. 2023. Efficient
hybrid exact/relaxed lattice proofs and applications to rounding and VRFs. In
Annual International Cryptology Conference. Springer, 484-517.

Muhammed F Esgin, Ron Steinfeld, Joseph K Liu, and Dongxi Liu. 2019. Lattice-
based zero-knowledge proofs: new techniques for shorter and faster construc-
tions and applications. In Annual International Cryptology Conference. Springer,
115-146.

Muhammed F Esgin, Ron Steinfeld, and Raymond K Zhao. 2022. Efficient verifi-
able partially-decryptable commitments from lattices and applications. In JACR
International Conference on Public-Key Cryptography. Springer, 317-348.
Muhammed F Esgin, Ron Steinfeld, and Raymond K Zhao. 2022. MatRiCT+: More
efficient post-quantum private blockchain payments. In 2022 IEEE Symposium
on Security and Privacy (SP). IEEE, 1281-1298.

Muhammed F Esgin, Raymond K Zhao, Ron Steinfeld, Joseph K Liu, and Dongxi
Liu. 2019. MatRiCT: efficient, scalable and post-quantum blockchain confidential
transactions protocol. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 567-584.

Thomas Espitau, Guilhem Niot, and Thomas Prest. 2024. Flood and Submerse:
Distributed Key Generation and Robust Threshold Signature from Lattices. In
Advances in Cryptology - CRYPTO 2024, Leonid Reyzin and Douglas Stebila (Eds.).
Springer Nature Switzerland, Cham, 425-458.

Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. 2019.
Quisquis: A new design for anonymous cryptocurrencies. In Advances in
Cryptology-ASIACRYPT 2019: 25th International Conference on the Theory and
Application of Cryptology and Information Security, Kobe, Japan, December 812,
2019, Proceedings, Part I 25. Springer, 649-678.

Amos Fiat and Adi Shamir. 1986. How to prove yourself: Practical solutions to
identification and signature problems. In Conference on the theory and application
of cryptographic techniques. Springer, 186—194.

[20

[21]

[22

[23

[25

[26]

[27

[29

[30

[31

[32

[33

[34

[35

(37]

(38]

(39]

[42

Ethereum Foundation. 2025. Introducing ZKnox. https://x.com/ethereumfndn/
status/1896592240228893072 Posted on X (formerly Twitter), March 26, 2025.
Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In
Proceedings of the forty-first annual ACM symposium on Theory of computing.
169-178.

Kristian Gjgsteen, Thomas Haines, Johannes Miiller, Peter Rgnne, and Tjerand
Silde. 2022. Verifiable decryption in the head. In Australasian Conference on
Information Security and Privacy. Springer, 355-374.

Jens Groth, Rafail Ostrovsky, and Amit Sahai. 2006. Perfect Non-interactive
Zero Knowledge for NP. In Advances in Cryptology - EUROCRYPT 2006, Serge
Vaudenay (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 339-358.

Yue Guo, Harish Karthikeyan, Antigoni Polychroniadou, and Chaddy Huussin.
2024. Pride ct: Towards public consensus, private transactions, and forward
secrecy in decentralized payments. In 2024 IEEE Symposium on Security and
Privacy (SP). IEEE, 3904-3922.

Abida Haque, Stephan Krenn, Daniel Slamanig, and Christoph Striecks. 2022.
Logarithmic-size (linkable) threshold ring signatures in the plain model. In JACR
International Conference on Public-Key Cryptography. Springer, 437-467.

Kaoru Kurosawa. 2002. Multi-recipient Public-Key Encryption with Shortened
Ciphertext. In Public Key Cryptography, David Naccache and Pascal Paillier (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 48-63.

Russell WF Lai, Viktoria Ronge, Tim Ruffing, Dominique Schréder, Sri Ar-
avinda Krishnan Thyagarajan, and Jiafan Wang. 2019. Omniring: Scaling private
payments without trusted setup. In Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security. 31-48.

Zeyu Liu, Katerina Sotiraki, Eran Tromer, and Yunhao Wang. 2025. Lattice-based
Multi-message Multi-recipient KEM/PKE with Malicious Security. Cryptology
ePrint Archive (2025).

Vadim Lyubashevsky. 2012. Lattice signatures without trapdoors. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 738-755.

Vadim Lyubashevsky and Gregory Neven. 2017. One-shot verifiable encryption
from lattices. In Advances in Cryptology—EUROCRYPT 2017: 36th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30-May 4, 2017, Proceedings, Part I 36. Springer, 293-323.
Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plangon. 2022. Lattice-
based zero-knowledge proofs and applications: Shorter, simpler, and more gen-
eral. In Annual International Cryptology Conference. Springer, 71-101.

Vadim Lyubashevsky, Ngoc Khanh Nguyen, Maxime Plancon, and Gregor Seiler.
2021. Shorter lattice-based group signatures via “almost free” encryption and
other optimizations. In International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 218-248.

Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. 2021. Shorter
lattice-based zero-knowledge proofs via one-time commitments. In JACR Inter-
national Conference on Public-Key Cryptography. Springer, 215-241.

Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. 2021. SMILE:
set membership from ideal lattices with applications to ring signatures and
confidential transactions. In Annual International Cryptology Conference. Springer,
611-640.

Vadim Lyubashevsky, Gregor Seiler, and Patrick Steuer. 2024. The LaZer Li-
brary: Lattice-Based Zero Knowledge and Succinct Proofs for Quantum-Safe
Privacy. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security. 3125-3137.

Varun Madathil and Alessandra Scafuro. 2025. Pri FHE te: Achieving Full-Privacy
in Account-Based Cryptocurrencies is Possible. In International Conference on
the Theory and Application of Cryptology and Information Security. Springer,
199-229.

Shen Noether, Adam Mackenzie, et al. 2016. Ring confidential transactions.
Ledger 1 (2016), 1-18. Source code available at: https://github.com/monero-
project/monero (accessed on branch release-ve.18).

Amirreza Sarencheh, Hamidreza Khoshakhlagh, Alireza Kavousi, and Agge-
los Kiayias. 2025. DART: Decentralized, Anonymous, and Regulation-friendly
Tokenization. Cryptology ePrint Archive (2025).

Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE symposium on security and privacy. IEEE,
459-474.

Tjerand Silde. 2022. Short Paper: Verifiable Decryption for BGV. In International
Conference on Financial Cryptography and Data Security. Springer, 381-390.
Shi-Feng Sun, Man Ho Au, Joseph K Liu, and Tsz Hon Yuen. 2017. Ringct 2.0:
A compact accumulator-based (linkable ring signature) protocol for blockchain
cryptocurrency monero. In Computer Security—ESORICS 2017: 22nd European
Symposium on Research in Computer Security, Oslo, Norway, September 11-15,
2017, Proceedings, Part II 22. Springer, 456-474.

Yongli Tang, Deng Pan, Qing Ye, Yuanhong Li, and Jinxia Yu. 2024. Event-oriented
linkable group signature from lattice. IEEE Transactions on Consumer Electronics
(2024).

https://x.com/ethereumfndn/status/1896592240228893072
https://x.com/ethereumfndn/status/1896592240228893072
https://github.com/monero-project/monero
https://github.com/monero-project/monero

[43] Patrick P Tsang, Victor K Wei, Tony K Chan, Man Ho Au, Joseph K Liu, and Dun-
can S Wong. 2004. Separable linkable threshold ring signatures. In International
Conference on Cryptology in India. Springer, 384-398.

[44] Hongxiao Wang, Ron Steinfeld, Markku-Juhani O. Saarinen, Muhammed F. Esgin,
and Siu-Ming Yiu. 2026. mmCipher: Batching Post-Quantum Public Key Encryp-
tion Made Bandwidth-Optimal. In 35th USENIX Security Symposium, USENIX
Security 2026, Baltimore, MD, USA, August 12-14, 2026. USENIX Association, (to
appear). https://eprint.iacr.org/2025/1000

[45] Nan Wang, Qianhui Wang, Dongxi Liu, Muhammed F. Esgin, and Alsharif
Abuadbba. 2025. BulletCT: towards more scalable ring confidential transactions
with transparent setup. In Proceedings of the 34th USENIX Conference on Security
Symposium (Seattle, WA, USA) (USENIX Security 2025). USENIX Association,
USA, Article 172, 20 pages.

[46] Yuxi Xue, Xingye Lu, Man Ho Au, and Chengru Zhang. 2024. Efficient linkable
ring signatures: new framework and post-quantum instantiations. In European
symposium on research in computer security. Springer, 435-456.

[47] Tsz Hon Yuen, Muhammed F Esgin, Joseph K Liu, Man Ho Au, and Zhimin
Ding. 2021. DualRing: generic construction of ring signatures with efficient
instantiations. In Annual International Cryptology Conference. Springer, 251-281.

[48] Tsz Hon Yuen, Shi-feng Sun, Joseph K Liu, Man Ho Au, Muhammed F Esgin,
Qingzhao Zhang, and Dawu Gu. 2020. Ringct 3.0 for blockchain confidential
transaction: Shorter size and stronger security. In Financial Cryptography and
Data Security: 24th International Conference, FC 2020, Kota Kinabalu, Malaysia,
February 10-14, 2020 Revised Selected Papers 24. Springer, 464-483.

[49] Tianyu Zheng, Shang Gao, Yubo Song, and Bin Xiao. 2023. Leaking Arbitrarily
Many Secrets: Any-out-of-Many Proofs and Applications to RingCT Protocols.
In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2533-2550.

A Detailed Parameter Settings and
Implementations

In this section, we detail the parameter settings and implementation
aspects of Lether.

A.1 Detailed Parameter Setting

We demonstrate how to choose the parameters for the Lether sys-
tem, including the verifiable Ref-AH mmPKE, the event-oriented
linkable tag scheme, and LNP22, as follows.

Verifiable Ref-AH mmPKE. To parameterize our verifiable Ref-
AH mmPKE scheme, we require the following properties to be
satisfied:

e The Ref-AH mmPKE scheme must be mmIND-CPAKOSK gecure,
support T-level additive homomorphism, and achieve {-correctness
for { <2712,

o The verifiable multi-encryption must satisfy completeness, sound-
ness, and simulatability.

o The verifiable decryption must satisfy completeness, unforge-
ability, and simulatability.

o The verifiable refresh must satisfy completeness, unforgeability,
and simulatability.

Following a similar strategy to [44], we describe the parameter
selection step by step below.

First, we set v = 1 and 7 = 2 so that the proof of the private key
can be efficiently generated using the binary proof of LNP22. For
example, in the verifiable decryption scheme, the public key b is
proven to satisfy b = ATs + e where (s||e) € {0, 1} ("4,

Second, in the verifiable multi-encryption scheme, the multi-
recipient ciphertext (c, (c;)ic[n]) is proven to satisfy

c=Ar+e, ¢ =(bir)+y;+[q/(2T +2)] -my,
where ||(r,ey) |0 < ¥ -+/(m+n)d- 70y and ||yi||ec < ¥ - VNd - 707.
Therefore, to ensure the soundness of verifiable multi-encryption,

the unforgeability of verifiable refresh, and to guarantee at least
T-level additive homomorphism for a verified fresh or refreshed

Wang et al.

ciphertext, we must ensure that the accumulated decryption er-
ror remains below the bound | ¢/ (4T + 4)]. That is, the following
inequality should hold with overwhelming probability:

T - [lKei) = (si>eu) + yillo < Lq/(4T +4)1.

Third, we fix the parameters as d = 64, N = 16, and / = 189 (see
Appendix B.3). Following Lemma B.1, we fix 7 = 1.6 to bound the
Gaussian tail. To ensure the security of our Ref-AH mmPKE and its
verifiability, we use the parameter-generation script from [44] to in-
stantiate the hardness assumptions MLWER y,m,q 5 for 7 := U(S,),

MatrixHint-MLWE%{’?S;‘;HS%XO, and MSISR m, (m+n),q,v at the 128-
bit security level. This yields the concrete parameters oy = 15.9,
o1 = 30560, g ~ 2%, m = 30, and n = 26 when T = 60.

Finally, we verify that the above parameters also satisfy the

soundness conditions of LNP22 when the modulus of LNP22 matches
that of our Ref~-AH mmPKE, as detailed later.
Plug-and-Play Event-Oriented Linkable Tag. To parameterize
our tag scheme, in addition to the requirements already specified for
our verifiable Ref-AH mmPKE, we require the following additional
assumptions to hold:

e The MLWRR .1 4,5, Problem for y = U(S,) is hard at the 128-
bit security level.

o The MSISR w/, (m+n')..p problem for = max(§/p — 1, v) is hard
at the 128-bit security level.

We briefly outline our parameter selection as follows.

First, we adopt the same parameters used in our Ref-AH mmPKE
scheme, including v =1,m =30,v =2,d =64,and g 2% Here,
we must ensure that § < ¢, namely that g > (¢ + 1) - §, where
B:=(dmgv+q/p—1+q/p-D)/§, as discussed below.

Next, we set §/p = 2. To minimize the tag size, we choose ¢ ~ 21!
and p ~ 2!° Following prior work [12, 13, 15, 31], we use the
Lattice Estimator (a.k.a. LWE Estimator [1]) to estimate the practical
hardness of MLWR and MSIS at the 128-bit security level, which
yields n’ := 2.

In what follows, we show how to choose the parameters for
LNP22 that enable the integration of the tag proof and the verifiable
Ref-AH mmPKE into the transaction proof.

LNP22 in Lether. We further summarize the LNP22 requirements
as follows:

o Switched modulus condition: As discussed in Section 2, to
prove the well-formedness of the linkable tag via LNP22, we
must ensure that the equation

G/p-ve —Ap s, —eg+G-v=0

does not wrap around modulo g, where ||v||« < f; as defined in
R.n (Equation (4.2)). This leads to the requirement that

qz(q/p-p+md-qv+q/p-1)+§-fr

e Binary proof condition: To prove that a polynomial vector
b € {0, l}m’d has binary coefficients, LNP22 reduces this to
checking (l;, b- 1m'dy = 0 over Z4. To avoid wraparound modulo
g, suppose ||b||e < B, we must ensure g > dm’ - B2 + dm’ - B.In
our setting, B< ¢/ - Vm'dandm’ <m+n+2+n" +0+0'.

e ARP condition: Following [31, Lemma 2.9], to ensure the sound-
ness of ARP proofs in R,,, we must satisfy

q=41-(N+n)-d-y-p, and g=>41-(m+n)-d-¢ - fo.

https://eprint.iacr.org/2025/1000

Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

Eval. Level Transaction Refresh Amortization
T |tx| [T [ref| | 7’| [tx| + |ref|/T

1 62.3 48.2 49.9 40.7 112.2

20 66.7 50.4 53.5 42.9 69.3

40 67.8 51.1 54.9 43.8 69.0

60 67.8 51.1 54.9 43.8 68.7

80 68.7 51.8 55.7 44.3 69.4

100 70.7 53.1 57.6 45.6 71.3

Table 6: Additional Lether results for different evaluation levels
T € {1,20,40,60,80,100} (Eval. Level) for additively homomorphic
operations on fresh or refreshed accounts. Sizes are in KB. For the
Transaction and Refresh phases, we report the communication sizes
(|tx|, |ref]), including the associated proofs (|II|, |7’|), as well as the
amortized communication per level, computed as |tx| + |ref|/T. The
anonymity set size is fixed at N := 16.

e Inner product condition: To ensure that the inner product in
Ran does not wrap around modulo g, we require g > 25 - (2T +1).

After verifying that the above requirements are satisfied, we
obtain all parameters for LNP22 in Lether using our modified pa-
rameter selection scripts from [29, 35]. Overall, fixing N := 16 and
T := 60, the resulting sizes are as follows.

For Ref-AH mmPKE, we have |b;| = 9.34 KB, |c| = 10.78 KB,
|e;] = 0.36 KB, and |ct| = 16.53 KB. For the tag scheme, the tag size
is |vg| = 0.16 KB. For LNP22, the proof size for Ry (Equation (4.1))
in the registration phase is about || = 27.5 KB, the proof size for
Reef (Equation (3.3)) in the refresh phase is about |7’| = 43.8 KB,
and the proof size for Ry, (Equation (4.2)) in the transaction phase
is about |IT| = 51.1 KB.

The total communication cost of a verifiable refresh is |ref| =
|7’'| + |e| + |ci| = 54.9 KB. The total communication cost of reg-
istration is |reg| = |z| + |b;| = 37.2 KB, which is a one-time cost
for each user. The total communication cost of a transaction is
[tx| = || + |ct| + |vy| = 67.8 KB.

Following the above strategies, we further present the results of

Lether under different homomorphic evaluationlevels T € {1,...,100}

in Table 6. We observe that as T increases, both the transaction and
refresh costs increase accordingly, mainly due to larger parameter
sizes required by Ref-AH mmPKE and LNP22. However, the amor-
tized cost is minimized when T = 60, which is why we set T := 60
in our implementation.

A.2 Detailed Implementation

We first recall the workflow of the implementations of LNP22 in the
LaZer library [35]. The user first executes the code-generation scripts
to obtain a header file containing the parameters required by the
LaZer library, given a description of the proving relation. Next, the
user develops a front-end program (in C or Python) that generates
or loads the witness and statement, and invokes the generic proving
and verification functions provided by the LaZer library to produce
or verify a proof. When these functions are invoked by the front-
end, the LaZer library calls the LNP22 C implementation with the
parameters specified in the header file, together with the statement
and witness supplied by the front-end.

To implement the Lether scheme, we first modify the original
code-generation scripts. Specifically, we fix the modulus ¢q of LNP22
to match that of the statement (i.e., that of Ref~AH mmPKE), and
predefine [log q] and the statement dimensions m, n (as discussed
above and evaluated for security and soundness). Following the stan-
dard LaZer workflow, we then execute the modified code-generation
scripts to determine the concrete modulus g and other parameters
required by LNP22 to generate the header file, where the LWE
estimator [1] is invoked as a subroutine to ensure 128-bit security.

With the resulting modulus g, we use SageMath scripts to gener-
ate the witness and statement, and employ a front-end C program
to load them and invoke the generic proving and verification func-
tions. Since the original LNP22 implementation in the LaZer library
supports only linear relations, we reconstruct its C library to extend
its functionality. Specifically, we introduce three ARPs (for binary
proofs, verifiable multi-encryption, and other relations, respectively,
as described above) and implement both quadratic and linear re-
lations over Z; and R to support verifiable decryption, balance
proofs, sign-bit proofs, integer proofs, and Hamming-weight proofs
for spender-recipient indicator bit strings.

We now describe how to aggregate the integer proofs for the
spender-recipient indicator bit strings. Specifically, we set the num-
ber of repetitions to M := [A/log q] to ensure that the soundness
error of the aggregation is negligible (i.e., (1/@)" < 27%). We
then aggregate the spender-recipient indicator bit strings b(®) =
{b;s)}ie[N] and b = {bfr)}ie[m using integer challenges {y;, €
Zg}ic[2N],ue[M]> derived via a hash function following the Fiat-
Shamir transform [19], into M aggregated integers {by, }ye[m], de-
fined as

N-1 N-1
bu = Z Yiu * bi(S) + Z Yi+Nu * blfr)-
i=0 i=0
Next, we prove that each b, is an integer via LNP22. This opti-
mization reduces the cost of integer proofs from 2N instances to a
small constant M (where 2N := 32, M := 3 in our implementations),
reducing the runtime in practice from a few seconds to a fraction
of a second. After establishing that b(®) and b(") are integer vectors,
we further apply binary proofs to show that b, b € {0, 1}V,
and linear proofs to show that 3¢y bi(s) = Yie[N] bi(r) = 1. To-
gether, these proofs establish the well-formedness of the spender—
recipient indicator vectors.

B Preliminaries
B.1 Notation

Let A € N denote the security parameter. For a positive integer n, we
denote the set {1, ..., n} by [n]. For positive integers b, ¢, we denote
the integer vector (b°, b, ..., b=!) by bt. For a positive integer g, we
denote Z, as the integers modulo g and R, = Z4[X]/ (X9 +1) as
the polynomials modulo ¢ and X? + 1. For a positive integer b, we
denote a polynomial with all coefficients equal to b as by € Ry. For
positive integer v, we write S,, to denote the set of polynomials in
Rq with infinity norm bounded by v. The size of the S, coefficient
support is denoted 7 < 2v + 1; for example v = 1,7 = 2 indicates
binary polynomials. We denote bold lowercase letters as vectors
of polynomial elements, e.g., u € R, bold uppercase letters as
matrices of polynomial elements, e.g., U € Rq’"x”, and lowercase

letters with an arrow as vectors of integers or reals, e.g., d € Zg.
For a polynomial vector (or element when m = 1), e.g., a € R, we
defined € Z;”d as the integer vector concatenated by the coefficients
of each polynomial in a. For the vectors over integers/polynomials,
we denote their inner product as (-,), e.g., (4, l;) and (a,b).

We denote rounding operation as | -], e.g., | a] rounds the result
to the nearest integer of a. We denote assignment as :=, e.g.,, x :=y
assigns the value of y to x. We denote sampling or output as «<—, e.g.,
x « D indicates that x is sampled from the distribution D, and
x « A(y) denotes that x is the output of probabilistic polynomial
time (PPT) algorithm A given input y. Particularly, we write x < S
when x € S is sampled uniformly randomly from the finite set S. We
denote the uniform distribution on a set S as U(S). We denote D,
as a discrete Gaussian distribution with Gaussian width o, where
oc:=V2r-s corresponds to the standard deviation s. For a vector a
(or @), we write ||a]|, ||a]|1, and ||a]|« to denote its £,-norm, £;-norm
and f-norm, respectively.

Here, we define some useful functions and lemmas as follows:

e m € Ry « BinPoly(m € Z,): Given an integer m € Z, with
m < 2¢, this function outputs a binary polynomial 72 € R, whose
coeflicients represent the binary decomposition of m.

e b, € R « Bit(h € Ry): Given a polynomial h € R, with
Al < B and m = [log(f + 1)1, this function outputs a binary
polynomial vector b, € R’ representing the coefficient-wise

binary decomposition of h, i.e., h = Y[6 - b,(li), where 8 =
(81,62, .,0m) = (1,2,..., f+ 1 — 2Ll Bl),

Lemma B.1 (Gaussian tail bound [29, Lemma 4.4]). For anyt > 0,
Pr(|lz|| > r3vn;z « D7) < e (-7 ywhere D7 denotes the
discrete Gaussian distribution over Z"™ with standard deviation 3 and
© is Gaussian tail bound factor.

B.2 Non-Interactive Zero Knowledge Protocol

We define non-interactive zero knowledge (NIZK) protocol as fol-
lows.

Definition B.2 (Non-Interactive Zero Knowledge Protocol). Let
Ry be a polynomial-time verifiable relation of statement-witness
(x,w). Denote a language L as a set of statements where there
exists a witness w with (x, w) € Ry. A NIZK protocol I is defined
as follows.

® ppg < ﬁ.Setup(l’l): Input a security parameter 1%, it outputs a
public parameter ppg.

o T — ﬁ.Prove(ppﬁ, x, w): Input the public parameter ppg, a state-
ment x and a witness w such that (x, w) € Ry, it outputs a proof
TT.

e 0/1 « ﬁ.Verify(ppﬁ,x, 7): Input the public parameter ppg, a

statement x and a proof 7z, it output 1 if accepts, otherwise, it

outputs 0.

We then define the properties of computational completeness,
computational zero knowledge, and computational knowledge sound-
ness for NIZK argument system following [12, 23].

Wang et al.

Computational Completeness. A NIZK argument system I is com-
putational completeness if for any (x, w) € Ry, the following prob-
ability holds overwhelming,

PPRi < T.Setup(11);

Pr |1 Verify (pps, x, 7) = 1
! erify (ppgp X, 7) 7 — ILProve(ppg, X, w)

Computational Zero Knowledge. A NIZK argument system I is com-
putational zero knowledge if for any PPT adversary A, there exists
a PPT simulator I1.Sim = (Simy, Sim;) such that the following is
negligible with A,

i 2

) pps < ILSetup(1*);

o et | T
w 7 « ILProve(ppg, x, w)
(pps, T) « Simg(1%);

8 € Ry, n
“Pr | i S | e Ay
m 7« Simy (ppg, X, 7)

Computational Knowledge Soundness. A NIZK argument system i
is computational knowledge soundness if for any PPT adversary A,
there exists an expected PPT extractor ne having full access to the
adversary’s state, such that the following probability is negligible
with A,

ﬁ.Verify(ppﬁ, x,) =1

Pr A(x, W) ¢ Ry

(x,) < Alppg);
w — IL.E(ppg, A, x, 7)

ppg [.Setup(11);]

B.3 NIZK Protocol in LNP22 [31]

We recall one of the most efficient lattice-based NIZK protocols

proposed in [31], denoted as LNP22. We treat it as a black-box

throughout this paper and do not delve into its technical details.
We first define the proof relation R in LNP22 as follows:

wit =, stat = (¢, ¥,0,Q) :

Vf € ¢, f(s) =0over Ry,

VF € ¥, F(s) =0 over Zg, . (B,l)

V(E,v,3) €0, |[Es—v]|; < B,

V(D,u,f) € Q, [Ds—ulz <y -f

Ry =

For clarity, we omit the public parameters of LNP22 and their
relation to the witness in R y. The witness in R is a vector s over
Rgy- The statement consists of:

a set ¢ of linear and quadratic functions over Ry,

a set ¥ of linear and quadratic functions over Z,

a set O of exact £,-norm bounds on linear functions,

a set Q of approximate £,-norm bounds with relaxation factor
¥ = 189y where y is a rejection sampling constant. As a typical
choice, in this paper, we set y := 1 and omit it in subsequent
expressions for simplicity.

Notably, LNP22 can also support:

e Proving an (integer) bit b € {0, 1} by first proving b € Z via the
relation (I; g(i)) =0forallie{1,...,d — 1} where 6) := X' €
Ry, then proving b(b — 1) = 0 over Ry;

¢ Proving that a polynomial a € R, has binary coefficients by
showing (d,d — 19) = 0 over Z;

e Proving an approximate fo-norm bound via the corresponding
f-norm, i.e., |[Ds —ufle < [|[Ds —ull; < ¢ - B.

We define the construction of LNP22 as follows.

Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

Construction B.3 (LNP22 from [31]). Let A be the security param-
eter. The LNP22 protocol consists of the following algorithms:

o ppnp «— LNP22.Setup(1%): Given the security parameter A,
output the public parameters pp, yp-

o 71 «— LNP22.P(pp y\p; Ry, stat, wit): Given pp \p, a proof rela-
tion Ry, statement stat, and witness wit as defined in Equa-
tion (B.1), output a proof 7.

e 0/1 « LNP22.V(pp \p, Ry, stat,): Given pp \p, the relation
R, and statement stat, and a proof x, output 1 if the proof is
valid, otherwise output 0.

The completeness, knowledge soundness, and simulatability of
LNP22 are analyzed in detail in [31]; we refer the reader to the
original paper for further information.

B.4 Lattice Preliminaries
We show the definition of the standard lattice-based hard problems.

Definition B.4 (MLWE Problem). Let m,n > 0 be positive integers.
Let y be an error distribution over R. The MLWE problem, denoted
by MLWER ,n,q,y» asks an adversary A to distinguish the following
two case: (1) (A, Ar +e) for A « ’L{(R;"X"), r— y", e« y™and
(2) (A,u) for A — URF™™), w — U(RT).

Definition B.5 (Matrix Hint-MLWE Problem [17, 44]). Letm,n, £ >
0 be positive integers. Let S be a distribution over R ("+") and
let yo, x1 be distributions over R™*" and R’, respectively. The Ma-
trix Hint-MLWE problem, denoted by MatrixHint-M LWE;’%),(rIn’iq,)(o’
asks an adversary A to distinguish between the following two cases:
(1) (A, [| Alr, R h), where A U(RT*"), r « xo, R « S,
y < y1,and h := Rr + y; (2)(A, u,R h), where A «— URT™™),
u <—‘L{(R('I”),r<— X R— S8,y « y;,andh:=Rr+y.

We note that there exists a reduction from standard MLWE to
Matrix Hint-MLWE with appropriate parameters.

Definition B.6 (MLWR Problem). Let m,n,p,q > 0 be positive
integers. Let y be an error distribution over R. The MLWR problem,
denoted by MLWRR ,n,q.p, > asks an adversary A to distinguish
the following two case: (1) (A, |Ar],) for A « (L{(Rg‘x”), r« y"
and (2) (A, [u]p) for A < U(RT*"), u & U(RY'). Note that if p

divides g, [u], is itself uniform over Ry

Definition B.7 (MSIS Problem). Let m, n, f > 0 be positive integers
with n > m, given A := [L,||A’] € RI%" with A" € R} "™ the
MSIS problem, denoted by MSISg 1, n .. asks an adversary A to
find a short non-zero vector v € R” such that Av = 0 € R¢’ and

vllew < B

C Definitions and Proofs for Building Blocks

In this section, we present the formal definitions of our building
blocks, including verifiable Ref-AH mmPKE and an event-oriented
linkable tag scheme, and provide the security proofs for these con-
structions.

For convenience, we summarize the notations used in the Ref-AH
mmPKE construction (and Lether) in Table 7 and restate the syntax
of Ref-AH mmPKE and the event-oriented linkable tag scheme.

Table 7: Summary of main notations used in Lether, including Ref-
AH mmPKE and tag scheme.

Notation | Description

A security parameter

g correctness parameter

N # of recipients, size of anonymity set
m,n # of rows of A, # of columns of A

n’ dimension of linkable tag vg

q modulus in Ref-AH mmPKE and LNP22
d ring dimension of R = Z[X]/(X¢ + 1)
v
v

fe-norm bound on private key (s;, e;)

support size 7 < 2v + 1 of private key (s;, e;)

0 Gaussian width of (r, e,,) in the ciphertext

] Gaussian width of y; in the ciphertext

q.p moduli in tag scheme

T levels of additively-homomorphic evaluation in mmPKE
k # of bits of the integer message and the amount.

C.1 Verifiable Ref-AH mmPKE

Definition C.1 (Ref-AH mmPKE). A Ref-AH mmPKE scheme with
a public-private key pair space K, a message space M, a multi-
recipient ciphertext space C, and an individual ciphertext space Cs
consists of the following algorithms.

® PPEnc & mmSetup(14, N): On input a security parameter 1
and a recipient number N, it outputs a public parameter ppg,,.
(which is an implicit input to all remaining algorithms).

o (pk,sk) <« mmKGen(): It outputs a public-private key pair
(pk,sk) € K.

e ct:= (a, (ai)ie[N]) — mmEnC((pki)ie[N]s (mi)ie[N];r’ (ri)ie[N])
: On input N public keys (pk;)ic(n], N messages (m;)ic[n],
(N + 1) randomnesses r, (r;);c[N], it outputs the multi-recipient
ciphertext ct := (ct, (&i)ie[m).

o ct; := (ct,ct;)/L « mmExt(i, ct): On input a multi-recipient
ciphertext ct € C, and an index i € [N], it deterministically
outputs the individual ciphertext ct; € C; or a symbol L to
indicate extraction failure.

e m/L « mmDec(sk,ct): On input a private key sk, and an in-
dividual ciphertext ct € Cs, it outputs a message m € M or a
symbol L to indicate decryption failure.

e ct’/L « mmRef(pk, sk, ct): On input a public-private key pair
(pk, sk), and an individual ciphertext ct € C;, it outputs a re-
freshed individual ciphertext ct’ € Cs or a symbol L to indicate
refresh failure.

Remark C.2 (Correctness). Let { : N — [0,1]. We say a Ref-AH
mmPKE scheme is {-correct, if forall A, N € Nand i € [N], message
m; € M, the following probability is at most {'(1),

pp < mmSetup (14, N);
Vi € [N] : (pk;,sk;) < mmKGen(pp);
ct — mmEnc(pp, (pk;)ic[nN> (Mi)ie[N])s
ct; < mmExt(pp, i, ct)

Jie [N]:

Pr mmDec(pp, sk;, ct;) # m;

Remark C.3 (Security). Let RA-mmPKE be a Ref-AH mmPKE scheme,
let N € N, and let A denote the security parameter. We define the
chosen-plaintext attack (CPA) security of Ref-AH mmPKE under
the knowledge-of-secret-key (KOSK) assumption and the standard
CPA security via the mmIND-CPAKOSK and mmIND-CPA security
games, respectively, as shown in Figure 3.

For all PPT adversaries A, we say that RA-mmPKE is mmIND-
CPAKOSK secure if the advantage

Pr|GAMEZIINDCEN N (2) = 1] - §|

mmIND-CPAKOSK .
Adv () = RA-mmPKE,N, A

RA-mmPKE,N, A

is negligible in A. Similarly, we say that RA-mmPKE is mmIND-CPA
secure if the advantage

mmIND-CPA
Advpy

A (1) = [Pr[GAMERTINDCES, (2) =1] - 4

2

is negligible in A.

We note that, using the KOSK compiler from [44] (i.e., requiring
each recipient to prove knowledge of the corresponding private
key), an mmIND-CPAKOSK secure (Ref-AH) mmPKE can be generi-
cally transformed into an mmIND-CPA secure scheme.

Looking ahead to the construction of Ref-AH mmPKE in Con-
struction 3.2 and Lether system, here the KOSK assumption can
be removed by requiring each recipient to prove knowledge of its
private key during a registration phase, specifically by demonstrat-
ing that ||(s,b — ATs)|| < v. Note that, since here the number of
recipients N is polylogarithmic in the security parameter, we can
directly apply LNP22 without incurring for exponential soundness
degradation, as discussed in [9, 44].

mmIND-CPAKOSK
Game GAMERA-mmPKE,N,ﬂ 1)

(Ag, Ay, Az) & A

pp « mmSetup (14, N)

(€, st) «— Ag(pp)

for i € [£] do (pk;, sk;) < mmKGen(pp)

((md, mDicrer, (Mi)ierent, (Pk; sk)iegent, st) «— Ar((pk;)iefe]. st)
req: Vi € [{], |m?| = |m}|

req: Vi € [£: NJ, (pk; ski) € K

b« {0,1}

ct — mmEnc(pp, (pk;)ie(n], (MD)icrer, (Mi)iefeny)
b — Ay(ct,st)

return [b =b']

IND-CPA
Game GAME;‘:—‘mmPKE.N,]{ (A)

(Ap, Ay, Ag) — A

pp « mmSetup(lA,N)

(€, st) « Ay(pp)

for i €[] do (pk; sk;) « mmKGen(pp)

(M mierer. (M)iefen. (PKiereny. st) — AL((pkiefe). st)
req: Vi € [£], [m?| = |m]|

b —{0,1}

ct — mmEnc(pp, (pkyie(ng, (ME)ieqer, (M)ic(en)

b’ — Ay(ct,st)

return [b =b]

Figure 3: The CPA security games for Ref-AH mmPKE.

Remark C.4 (Additive Homomorphism). Let T be a positive integer.
We say an mmPKE scheme is T-level additively-homomorphic, if
for any A, N € N, any ppg,,. < mmSetup(1%), any (pk;, sk;) «
mmKGen() and mlw € Mforalli € [N], j € [T], the following
holds,

Vj € [T], etV) — mmEnc((pk,)icin)> (M)ic(n));
Vi e [N], ctl(.j) — mmExt(i, ct¥)) :
mmDec(ski,ctgo) -0 ctET_l))
= mi.o) + mi.Tfl)

Pr

Wang et al.

where @ denotes the additively-homomorphic evaluation.

Remark C.5 (Refreshability). Suppose an mmPKE scheme is T-level
additively-homomorphic. We say that the mmPKE is refreshable,
if for any 4, N € N, any ppg,. < mmSetup(1%), any (pk, sk) «
mmKGen(), any individual ciphertext ct € Cs encrypted under
pk and evaluated additively at most T times, there exists a PPT
algorithm ct’ «— mmRef((pk, sk), ct) such that mmDec(sk, ct’) =
mmDec(sk, ct) and ct’ is a fresh ciphertext that supports at least
T further additive homomorphic evaluations with other fresh or
refreshed ciphertexts.

Definition C.6 (Soundness in Verifiable Multi-Encryption). Let
mmPKE = (mmSetup, mmKGen, mmEnc, mmDec, mmExt) be a
(Ref-AH) mmPKE scheme for message space M. Let = (ﬁ.Setup,
T.Prove, ﬁ.Verify) be a verifiable multi-encryption scheme for mmPKE.

We say that I is sound if for any PPT adversary A, any ppg,,. <
mmSetup(1%, N), any ppi ﬁ.Setup(lA), any (pk;, sk;) <~ mmKGen()
for all i € [N], the following probability is negligible in A,

(7, et) — A(PPenc: PP (Pk;» skidie[n) :
Pr L Verify ((pk;)ie[n], ct, 1) =1 A
3i € [N], ct; « mmExt(ct, i), such that
mmbDec(ct;, sk;) = L V mmDec(ct;,sk;) ¢ M

Definition C.7 (Unforgeability in Verifiable Decryption). Let mmPKE =
(mmSetup, mmKGen, mmEnc, mmDec, mmExt) be a (Ref-AH) mmPKE
scheme. LetIT = (IL.Setup, IT.Prove, IL.Verify) be a verifiable decryp-
tion scheme for mmPKE.

We say that II is unforgeable if for any PPT adversary A =
(Ao, Ay), any PPEnc < mmSetup(l’l, N), any ppg H.Setup(l’l),
the following probability is negligible in A,

((pk;)ie[NT> (Mi)ic[N]>St) — Ao (PPEne> PP)3
P ct < mmEnc((pk;)ic(n]> (Mi)ic[N])3
r (mr,m}) « A (ct,st); ct; & mmExt(ct, i) :
ﬁ.Verify(pki, ctpmi,r) =1 A mj #m;

Definition C.8 (Unforgeability in Verifiable Refresh). Let mmPKE =
(mmSetup, mmKGen, mmEnc, mmDec, mmExt) be a (Ref-AH) mmPKE
scheme. Let II = (T1.Setup, I1.Prove, I1. Verify) be a verifiable refresh
scheme for mmPKE.

We say that I is unforgeable if for any PPT adversary A =
(Ao, Ay), any ppg,,. < mmSetup(14, N), any ppg — M.Setup(1%),
any (pk;, sk;) < mmKGen(pp) for all i € [N] the following prob-
ability is negligible in 4,

((Mi)ie[ny,st) — Ao(PPenc: PP (PK;s Ski)ie[n])s
ct — mmEnc((Pki)ie[N]! (mi)ie[N])§
Pr (7, ct}) A (ct,st); ct; & mmExt(ct, i) :
IAI.Verify(pki,ct,-,ct;.,zr) =1A
(mmbDec(sk;, ct}) = L Vv mmDec(sk;, ct}) # m;)

Lemma C.9 (Soundness in Verifiable Multi-Encryption). Suppose
LNP22 is knowledge sound. Then, our verifiable multi-encryption in
Construction 3.5 is sound if the following probability is negligible,

Z Pr[[[(eT) + i = (si;@u)llw 2 Lq/(4T +4)]] (O3]

ie[N]

where (e;,s;) is the private key in mmPKE and (, ;) is the extracted
witness along with &, := ¢ — AL, §; :=¢; — (b;, T) — g/ (2T + 2)] - my;.

Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

Proor. If LNP22 is knowledge sound, there exists a PPT extrac-
tor that can extract the witness (T, (1;);e[n7) satisfying the relation
Renc in Equation (3.1).

Denote &, := ¢ — Af and §; := ¢; — (b;,) — | g/ (2T +2)] - ;. The
value (¢, ¢;) in mmDec algorithm is

c=Ar+¢, Ci :<bi,f‘>+gi+ Lq/(2T+2)] rf’l.,

Since the public key b; = ATs; + e;, we can obtain
ci — <C, Si> = (ei,f) +7; — <Si,éu> + Lq/(ZT + 2)] . T;li.

Therefore, the decryption will fail if the decryption error satisfies
l[{ei, ¥) + 7i — (si- &) lleo = L/ (4T + 4)]. o

Lemma C.10 (Unforgeability in Verifiable Decryption). Suppose
LNP22 is knowledge sound. Then, our verifiable decryption in Con-
struction 3.7 is unforgeable if MSISg m, (m+n),q,v assumption is hard.

ProoF. Suppose there exists an adversary A that can generate
a valid proof 7 for a different message m’, where m # m’ for
the original message i encrypted by the challenger. If LNP22 is
knowledge sound, there exists a PPT extractor that can extract
the witness (8, by) from the proofs satisfying the relation Rye. in
Equation (3.2).

Denote € := b — ATsand e := b — ATs, where s is the correct
private key of b honestly generated by the challenger. We first argue
that § = s. Otherwise, the adversary can break the MSISg i, (m+n),q,v
assumption for the instance of [I|A] with the solution [(& —e)|(§ —
s)]7.

Denote i := Y2, 6; - E;li) for by, € {0,1}°¢, and

he=c—{(c§) - q/(2T +2)] - i, (C.2)

where the ciphertext (c, ¢) is honestly generated by the challenger.
Thus, we have i, h < | q/(4T +4)] and ||h — h||w < Lq/(2T +2)].
Next, we can obtain from Rgec:

c—{(c,5) - lq/(2T +2)] - = h, (C.3)

After subtracting Equation (C.3) and Equation (C.2), we can obtain
lg/(2T + 2)1 - (h — ') = h — h. Since i # ' and || q/(2T +
2)]- (m—m')|lo = Lq/(2T + 2)], it contradicts the soundness of
LNP22. O

Lemma C.11 (Unforgeability in Verifiable Refresh). Suppose LNP22
is knowledge sound. Then, our verifiable refresh in Construction 3.9 is
unforgeable if MSISR 1, (m+n),q,v assumption is hard and the following
probability is negligible,

Pr[[[{e,F) + 9" — (s, &)l = Lq/ (4T + 4)1] (C4)

where (e, s) is the private key in mmPKE and (¥', ") is the extracted
witness along withe,, := ¢/ —A¥, g’ := ¢’ —(b,¥') - |q/ (2T +2)]-’.

Proor skETCH. The proof combines the arguments from Lemma C.9

and Lemma C.10. Briefly, the unforgeability of the verifiable de-
cryption ensures that the decrypted message m is valid, while the
soundness of the verifiable multi-encryption guarantees that the
refreshed ciphertext is well-formed. Moreover, the relation m €
{0,...,2T + 1}4 together with (09| |2 i — Ty) = (64% |2k, i)
ensures the consistency between the messages in the evaluated and
refreshed ciphertexts. O

C.2 Event-Oriented Linkable Tag

Definition C.12 (Tag Scheme). A tag scheme with a public-private
key pair space K, a tag space 7 consists of the following algorithms.

® (PPiag> Pk sk) Setup(1%) : On input a security parameter, it
outputs a public parameter (which is an implicit input to other
algorithms) and a public-private key pair.

o tag « TagGen(sk, event): On input a private key and an event
string, it outputs the linkability tag.

e 0/1 « Link(tag,tag’) : On input two tags, it outputs 1 if they
are linked, and 0 otherwise.

e 1 «— Prove(pk, tag, event, sk) : On input the statement and wit-
ness, it proves knowledge of a private key that was used to create
both a linkable tag for a specific event and a public key.

e 0/1 « Verify(pk, tag, event,) : On input the statement and
proof, it outputs 1 if the proof is valid, and 0 otherwise.

Definition C.13 (Event-Oriented Linkability). Let Tag be a tag
scheme. We say that Tag is event-oriented linkable if for any PPT
adversary A, any (ppy,g, pk, sk) Setup(1%), the following prob-
ability is negligible in A,
(event, (tag;, i)ie(0,1)) « A(PPrag> Pk, sk) :
Pr Vi € {0,1}, Verify(pk, event, tag;, ;) =1
A Link(tag,, tag,;) =0
Definition C.14 (Multi-Tag Anonymity). Let Tag be a tag scheme.
We say that Tag is multi-tag anonymous if for any PPT adversary
A = (Ao, A1), any (ppy, Pk, sk) Setup(1%), any ¢ € N, the
following probability is negligible in 4,
((event;)iere), st) — Ao (pPrag: PK);

Pr Vi € [f], tag) « TagGen(sk, event;), tag} — 75 | _ l

b —{0,1}; b" — A ((tagh)ic[e}, st) : 2|

b=V
Definition C.15 (Non-Frameability). Let Tag be a tag scheme.
We say that Tag is non-frameable if for any PPT adversary A =
(Ao, A1), any (ppyag: Pk, sk) Setup(1*), the following probabil-
ity is negligible in A,
(event, st) « FAg(ppyyg, PK);
P tag « TagGen(sk, event);
r (tag’, n’, pk’) « A, (tag,st) :
Verify (pk’, event, tag’, ') = 1 A Link(tag’, tag) = 1

Lemma C.16 (Event-Oriented Linkability in Tag Scheme). Suppose
LNP22 is knowledge sound. Then our tag scheme in Construction 3.12
is event-oriented linkable if MSISg m, (m+n),q,v assumption is hard.

PRrROOF. Suppose there exists an adversary A can generate two
valid proofs o, 7o along with different tags v, # v}, for the same
event, towards the same public key b. Thus, if LNP22 is knowledge
soundness, there exists a PPT extractor that can extract two wit-
nesses (S, €),), (51, €},) satisfying the relation Ry,g in Equation (3.4).

Similar to Lemma C.10, we can argue that §p = §; holds if the
MSISR m, (m+n),q,v @assumption is hard.

Denote V; := (¢/p - VL + éil —Apg -§;)/q fori € {0, 1}. Thus, for
i € {0,1}, we have

Ay -8 — &y —G4/p-vi +¢-¥; modq=0modgq.

Then, we moduli g for the both sides of the above equation to obtain,
fori € {0,1},

Ag -5 — & —¢/p- vl mod ¢ =0mod g. (C.5)

Later, we subtract Equation (C.5) for i = {0, 1} to get
&y — €y mod ¢ = G/p - (v — vi) mod g.

Since v}, # v, G/p = 2, and &), ¢}, € {0, 1374 we have ||G/p -
(V?_I - Vi)l = §/p and |l&}, - é?{”m < ¢/p — 1. Therefore, it
contradicts the knowledge soundness of LNP22. O

Lemma C.17 (Multi-Tag-Anonymity in Tag Scheme). Our tag
scheme in Construction 3.12 is multi-tag-anonymous if MLWRg n. v 4.5,
assumption for y = U(S,) is hard.

ProoF skETCH. The tags are generated as v, := |Al, - s mod
Glp for i € [¢], which are instances of the MLWR assumption.
Therefore, as demonstrated in [12], when ¢ is polynomial (or even
exponential) in A, the honestly generated tags are indistinguishable
from uniformly random values under the hardness of the MLWR
assumption. m}

Lemma C.18 (Non-Frameability in Tag Scheme). Suppose LNP22
is knowledge sound. Then our tag scheme in Construction 3.12 is
non-frameable if MLWER y m g5 assumption for y := U(S,) and
MSISR 1w (m+n').4,5 assumption for f = max(G/p — 1,v) are hard.

ProoF. Given the honestly-generated tag vy for the event, sup-
pose there exists an adversary A can generate a valid proofs 7’
with the same tag vy for the same event, towards the different
public key b’. Thus, if LNP22 is knowledge soundness, there exists
a PPT extractor that can extract a witness (5§, &};) satisfying the
relation in Equation (3.4).

Therefore, we have

vy mod § = Ay - s+ ey mod § (C.6)

where s is the private key provided by the challenger bounded by
Islleo < vand ey € {0,...G/p — 1}
Since §/p =2, v = 1, we have

vgmod §=Ap-§ +éy (C.7)

where (5||eg) € {0, 1} "+,

Then, we subtract Equation (C.7) from Equation (C.6) to obtain
a short solution [s — 5| ey —] to the MSISg 1, (m+n),g, instance
defined by [Ay | L] for f = max(G/p — 1,v). If the solution [s —
§ | ey —€p] is zero, then the adversary can break the MLWER 1, m,q 7
instance defined by A™s + e.]

D Formal Definitions for Account-Based Private
Blockchain Payments

In this section, we present a new formal definition for account-
based private blockchain payment systems that captures Anony-
mous Zether-like protocols, e.g., [7, 11]. We also highlight the key
differences between our model and RingCT-like protocols used in
UTXO-based blockchains, such as [15, 16, 27, 41, 45, 48, 49].

The main advantage of our definition is it explicitly captures the
inherent stateful nature of blockchain environments and incorpo-
rates the notion of epochs, which is not considered in [11].

Similar to [11], here we focus primarily on transfer security; for
the security of funding and withdrawal (burn), we refer the reader
to [7].

Wang et al.

Definition D.1 (Account-Based Private Blockchain Payment). We
first introduce the notation used specifically for the security model
in Table 8. The blockchain state S consists of: (1) a table acc[-] of
registered accounts, where each public key pk indexes an account
as acc[pk]; (2) a table of all verified transactions; and (3) the current
epoch H, computed from the block height & and a system constant
E as | h/E]. The epoch serves as a logical time slot in the blockchain.

The algorithms of the account-based private blockchain payment
protocol are defined as follows:

e pp < Setup(1%): On input a security parameter A, it outputs the
system public parameters pp. We assume pp is an implicit input
to all remaining algorithms.

o (pk,sk,) « AddrGen(): It generates a public-private key pair
(pk, sk) and a proof 7 of correct key generation. The public key
pk serves as the account address.

e S « Register(pk, 7, S): On input a public key pk and a proof r,
it updates the state by initializing acc[pk] if the proof is valid.

o tag; < TagGen(sk, H): On input a private key sk and the cur-
rent epoch H, it outputs a linkable tag tag;.

o ct «— AmtGen((amt;)ic[n], (pk;)ie[n]): Oninput a set of amounts
(amt;);e[~ and corresponding public keys (pk;);e[n1, it outputs
a set of amount ciphertexts ct.

e S « RollOver((pk;)ic[n],ct,S): On input a set of addresses
(pk;)ic[N], a set of amount ciphertexts ct, and the blockchain
state S, it updates the state by setting acc[pk;] := ct; ® acc[pk;]
where @ denotes the additively-homomorphic evaluation.

o tx < AnTransfer((pk;)ic[n1, s, 7, sks, amt, S): On input an anony-
mity set of public keys (pk;)ic[n], spender index s, recipient
index r, the spender’s private key sk;, the transfer amount amt,
and the current state S, it generates amount ciphertexts ct «—
AmtGen((amt;);e[n], (pk;)ie[n]) such that amt, = —amt, amt, =
amt, and amt; = 0 for all i € [N] \ {s,r}, a tag tagy, <«
TagGen(sks, H) and a proof II. It outputs the transaction tx =
((pky)ie[n], ct, tagy,IT).

e 0/1 « LinkTag(tag, S): On input a tag tag and the blockchain
state S, it outputs 1 if the tag already appears in S, and 0 other-
wise.

® 0/S « Verify(tx, S): On input a transaction tx and the blockchain
state S, if the proof IT is valid and LinkTag(Tag, S) = 0, it updates
the state by recording tx and running RollOver((pk;);e[n7, ct, S)
with the associated public keys and ciphertexts!!; otherwise,
output 0.

e m « ReadBalance((pk,sk),S): On input a public-private key
pair (pk, sk) and the blockchain state S, it outputs the balance
m of the account acc[pk].

Like [16], we use the blockchain state S to capture the nature
of a blockchain environment and clarify how an (account-based)
private blockchain payment system operates.

We highlight the main differences between (Anonymous Zether-
like) account-based private blockchain payments and UTXO-based
RingCT-like protocols as follows:

o All public-private key pairs generated by the AddrGen algo-
rithm and used in the AnTransfer algorithm are long-term keys
(addresses), which must be verified for well-formedness due to

USimilar to [11], we assume for simplicity that each transaction takes effect
immediately.

Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

Table 8: Notations for the account-based private blockchain
payment formal model.

Symbol | Description
S the blockchain state
acc[pk] | anaccount indexed by the address (public key) pk
N # of public keys in the anonymity set
(pk;)ie[n]| anonymity set of public keys with |(pk;)icnjl =N

ct set of ciphertext with |ct| = N

S, r the indices to indicate the spender and recipient

amt the transaction amount

7, I1 the proofs for the public key and the transaction

tagy the linkable tag of the transaction at epoch H
tx a transaction tx = ((pk;);e[n7, ct, tagyy,IT)
\Y a set of all valid balances/amounts, V C [0, ..., MAX]

the requirements of mmPKE. In contrast, UTXO-based RingCT
uses one-time keys (stealth addresses).

e The linkable tag tagy; < TagGen(sk, H) is derived from the
long-term private key and the current epoch in the blockchain
state. In UTXO-based RingCT, the tag (or serial number) typically
depends only on a one-time private key.

e The input to the AmtGen algorithm can be negative, thereby
allowing a non-negative transaction amount to be “subtracted”
from the spender’s balance when the ciphertext is added to the
account. In UTXO-based RingCT, the input to the Mint algorithm
must be non-negative, as it represents the value of a coin.

e Once a transaction tx is approved, the set of ciphertexts ct is
added to all involved accounts (acc[pk;])ie[n]. In UTXO-based
RingCT, the output coins (with one-time public keys) are vali-
dated and stored on the blockchain and can later be spent by the
recipients.

It can be observed that the communication cost in (Anony-
mous Zether-like) account-based private blockchain payment is
linear in the size of the anonymity set. As stated in (Anonymous)
Zether [7, 11], this is difficult to avoid in their paradigm due to
the nature of account-based blockchains, where each account in
the anonymity set must be treated as both a potential spender and
recipient, and its balance updated with the corresponding amount ci-
phertext if the transaction is valid. In contrast, UTXO-based RingCT
typically achieves communication cost logarithmic in the size of
the anonymity set and linear in the number of input/output coins,
except for the any-out-of-many proof in [49], which requires pub-
lishing auxiliary data for all coins in the anonymity set to hide the
number of input coins.

D.1 Security Definition

We define the list ¢ in Table 9. Following [16], the list U can
be viewed as a database. A public key pk, a secret key sk, and a
linkable tag tag;; in U can serve as unique identifiers for rows to
retrieve associated information. For example, U [pk].acc denotes
the account associated with the public key pk. tag;; denotes the
linkable tag of the account for the current epoch H. PreBal denotes
the previous balance, i.e., the balance before the last transaction

involving the account. CurBal denotes the current balance. IsCrpt
denotes the “is corrupted” flag.

l U : H pk l sk l tang acc l PreBal l CurBaIl lsCrpt‘

Table 9: Structure of the list 7/ used in the security model

Oracles. The oracles O accessed by an adversary A are defined

below.

e AdGen(i): On input a query number i, it runs (pk;, sk;, 7;) <
AddrGen() and outputs pk;. It adds (pk;, sk;) to U where IsCrpt
is set to 0, automatically updates the linkable tag tag,, to U as
the epoch H increases and the remaining fields are left empty.

e Corrupt(pk): Oninput a public key pk, if U [pk] cannot be found,
it returns L indicating failure. Otherwise, it sets U [pk].IsCrpt
to 1 and outputs U [pk].sk, U[pk].acc and U [pk].balance.

e Transfer((pk;)ic(n],s,7,amt,S): On input an anonymity set
(pk;)ic[n] including the spender public key pk,, the recipient
public key pk,, a transaction amount amt, and the blockchain
state S. It first retrieve sky from U, runs tx «— AnTransfer((pk;)ic[n7,
s,r,sks, amt, S) and B « Verify(tx,S). If B = 0 indicating the
verification fails, it outputs L. Otherwise, it sets U [pk;].acc :=
U[pk;].acc + ct;, U[pk;].PreBal := U[pk;].CurBal for all i €
[N], and sets U [pk,].CurBal := U[pk,].CurBal—amt, U pk,].
CurBal := U|[pk,].CurBal + amt. It returns tx.

Correctness. Informally, correctness requires that any user is able
to spend her honestly generated account if the account has suffi-
cient balance. An account-based private blockchain protocol is
said to be e-correct if for any pp « Setup(1%), any N € Z*,
any blockchain state S, any (pk,, sks, 7s) <= AddrGen() that has
been appropriately funded or received transferred funds for m «
ReadBalance(sks, S), at any epoch H « S, any amount amt € V
for amt < m, and any set (pk;);e[n]\(s} of arbitrarily registered
decoy public keys along with the recipient’s public key pk,, the
following probability holds

tx « AnTransfer((pk;)ic[n7, S, 7> sks,amt, S) :

Pr Verify (tx,S) # 0

>1-¢€

If € = 0, then the protocol is said to be perfectly correct. If € =
negl(A), then it is said to be statistically correct.

Anonymity. Unlike UTXO-based RingCT, where the recipient’s
anonymity is guaranteed by using a one-time public key (stealth
address), in the account-based setting, the identities of both the
spender and the recipient are hidden among uncorrupted decoy ac-
counts. Therefore, we adapt the anonymity security model from [16]
to the account-based blockchain setting and divide it into two cases
as follows.

Anonymity against non-recipient. The anonymity against non-recipient
requires that towards the non-recipient users, including the out-
siders who do not involve the anonymity set and the insiders who
involve the anonymity set but not recipients, the addresses of both
the spender and recipient are hidden among all the uncorrupted
addresses in the anonymity set.

Definition D.2 (Anonymity against Non-Recipient). An account-
based private blockchain protocol is anonymous against non-recipient

if the following holds for all PPT adversaries A and pp « Setup(1%)
Pr[A wins the game Exp,y(S)] < 1/2 + negl(4),

Pr[A wins the game Exp,y (R)] < 1/2 + negl(4)

where the game Exp,y is defined as follows:

(1) ((pky)ierngs% 5% 0 rl,st) « A (pp): A is given pp and ac-
cess to all oracles, and then it outputs a set of registered public
keys (pk;)ie[n], the target spender indices s°, s' € [N], the tar-
get recipient indices %, r! € [N], and some state information
st to be used by A in the next stage.

(2) amt < V: The challenger samples an amount from set V.

(3) txi; < AnTransfer((pk;)ie[n],s', 1/, sk, amt, S) fori, j € {0,1}:
Both s° and s! are spent to both r° and r! respectively, where
skgo, sk, are retrieved from U. If Verify(tx; j, S) = 0 for some
i,j € {0,1}, then set all tx; j := L.

(4) by, by & {0,1}.

(5) b, by — ﬂo(txbs,br, st, S): A is given access to all the oracles,
the state st, the blockchain state S and one of the AnTransfer
outputs. Then A outputs a guess for the real spender and re-
cipient of txp p, .

A wins the game Exp,y(S) if b = bs and wins the game Exp,y (R)

if b = b, if the following conditions hold:

o all public keys in (pk;);e[n] are honestly generated and verified

in register algorithm,

o all accounts of pkg, pk,: for i € {0,1} are not be corrupted (i.e.

not queried to Corrupt),

o tx;; # Lforalli je {01},

o pk, foralli € {0,1} are never queried to Transfer at this epoch.

Anonymity against recipient. The anonymity against recipient prop-
erty requires that towards the recipient, the address of spender is
hidden among all the uncorrupted addresses in the anonymity set.

Definition D.3 (Anonymity against Recipient). An account-based

private blockchain payment protocol is anonymous against recip-

ient if the following holds for all PPT adversaries A and pp «

Setup(l")

Pr[A wins the game Exp,g] < 1/2 + negl(4)

where the game Exp,y is defined as follows:

(1) ((pkyie[nys% st r,st) « A(pp): A is given pp and access
to all oracles, and then it outputs a set of registered public keys
(pk;)ic[n], the target spender indices s°, s' € [N], a recipient
index r € [N], and some state information st to be used by A
in the next stage.

(2) amt « V: The challenger samples an amount from set V.

(3) tx; < AnTransfer((pk;)ic[n], shr, skgi,amt, S) for i € {0,1}:
Both s and s! are spent to r respectively, where sk, sk, are
retrieved from U. If Verify(tx;, S) = 0 for some i € {0, 1}, then
set all tx; := L.

@ b (0,1).

(5) b« A9(txp,st,S): A is given access to all the oracles, the
state st, the blockchain state S and one of the AnTransfer out-
puts. Then A outputs a guess bit b’ for the real spender of
txp.

A wins the game Exp ,p if the following holds:

Wang et al.

o all public keys in (pk;);e[n] are honestly generated and verified
in register algorithm,

both accounts of pk; for i € {0,1} are not be corrupted,

tx; # L foralli € {0, 1},

pk,: for all i € {0, 1} are never queried to Transfer at this epoch.
b’ =b.

Confidentiality. Informally, confidentiality requires that no party
other than the spender and the recipient can learn the transaction
amount, even if the identities of the spender and recipient are
revealed.

Definition D.4 (Confidentiality). An account-based private blockchain

payment protocol is confidential if the following holds for all PPT
adversaries A and pp « Setup(1%)

Pr[A wins the game Expon] < 1/2 + negl(1)

where the game Exp.qy is defined as follows:

(1) ((pk;)icin), amt®, amt!, s, r,st) « AO (pp): A is given pp and
access to all oracles, and then it outputs a set of registered
public keys (pk;)ic[n], the target amounts amt’, amt! € V, a
spender index s € [N], a recipient index r € [N], and some
state information st to be used by A in the next stage.

(2) tx; < AnTransfer((pk;)ic[n],s. 7, sk, amt;, S) for i € {0,1}:
amt® and amt! are transferred from s to r respectively, where
sk is retrieved from U. If Verify(tx;, S) = 0 for some i € {0, 1},
then set all tx; = L.

@) b {01

4) b « .ﬂo(txb, st, S): A is given access to all the oracles, the
state st, the blockchain state S and one of the AnTransfer out-
puts. Then A outputs a guess bit b” for the real amount of
txp.

A wins the game Expcqy if the following holds:

e all public keys in (pk;);e[n] are honestly generated and verified
in register algorithm,

both accounts of pk,, pk, are not be corrupted,

tx; # L foralli € {0, 1},

pk, is never queried to Transfer at this epoch.

b’ =b.

Balance. Here, we adapt the balance security model from [16, 48] to
the account-based blockchain setting. Informally, balance requires
that an adversary cannot:

(1) spend an inappropriate account, including an honestly gener-
ated account or an unlinked account;

(2) spend her own account with an amount inconsistent with the
sum of the transaction amounts of the other accounts in the
anonymity set;

(3) overdraft her own account;

(4) double spend her own account within the same epoch.

Definition D.5 (Balance). An account-based private blockchain
payment protocol is balanced if the following holds for all PPT
adversaries A and pp < Setup(1%)

Pr[A wins the game Expg,, | < negl(1)

where the game Expg,, is defined as follows:

Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

(1) (tx4,...,tx") « A (pp): the adversary A is given access to all
the oracles together with pp and outputs a set of T transactions
(tx', ..., tx?), where tx' = ((pké)jE[N], cti,tagi, I1Y). Without
loss of generality, we suppose the T transactions are all in the
same epoch. 12

(2) B' « Verify(tx',S) fori =1,...,t.

A wins the game Expyg,, if the following holds

e foralli € {1,..,t}, all public keys in (pkj-)je[N] are honestly-

generated and verified in register algorithm. And all associated
accounts are honestly maintained, i.e. the balance of each account
in (acc[pkj-]) je[n] is non-negative before all transactions of A,

o Atag’ =tag/ foralli,j € [N]andi # j,

e B #0foralli=1,..,t,

e for all j* € {1,...,t}, there exists at least one of the following

cases after each RoIIOver((pk{*)iE[N], et/ S):

— Case 1: for all i € [N], there exists amt{* < 0 where amt{* =
‘ll[pk{*].CurBal—’L{[pk{*] .PreBal, such that’L[[pk{*].IsCrpt =
0 or pk!” # Ultag/"].pk.

- Case 2: Y ;[N amt{* # 0 where amt{* = ’L([pk{*],CurBaI -
(Ll[pk{*].PreBaI.

— Case 3: for all i € [N], there exists ‘Ll[pk{*].CurBal <0.

- Case 4: tag/" ¢ ('U[pk{*].tag)ie[N].

Attack scenarios of the balance model.

(1) Forgery: The attacker attempts to create a transaction that
either steals from uncorrupted accounts or spends from unlinked
accounts, regardless of whether the latter are corrupted or not.
The latter scenario can also be interpreted as a potential double-
spending attack, since the attacker could later generate a valid
proof as the legitimate spender and spend the same account
again. This is captured by Case 1.

(2) Unbalanced amounts: The attacker attempts to create a trans-
action in which the sum of the spender’s and recipient’s amounts
(including amounts associated with other accounts in the anony-
mity set) does not equal zero. This is captured by Case 2.

(3) Overdraft: The attacker attempts to create a transaction in
which the amount transferred to the recipient exceeds the
spender’s available balance. In other words, the transaction
causes at least one account in the anonymity set to have a
negative balance after execution. This is captured by Case 3.

(4) Double spending: The attacker attempts to spend the same
account more than once during the same epoch by generating
distinct linkable tags. This is captured by Case 4.

Like [15, 16], our balance definition is presented as a single exper-
iment. Moreover, our definition captures multiple attack scenarios
and allows the adversary to output a set of transactions—where
one transaction may serve as input to another—while Anonymous
Zether [11] only allows the adversary to produce a single transac-
tion.

In our formal definition, we explicitly state our modeling assump-
tions to facilitate future extensions that relax them. One possible en-
hancement is to remove the assumption in Expg,, that all accounts

12As (Anonymous) Zether [7, 11] stated, after carefully choosing the constant E, it can
be supposed that the transactions generated in any epoch will be verified in the same
epoch.

in the anonymity set correspond to well-formed and correctly main-
tained states. In the current model, this assumption follows from
the correctness of the registration phase and the validity of pre-
vious transactions from earlier epochs. Relaxing this assumption
would require substantially more involved balance analyses and is
left for future work. We note that a similar assumption is made, ei-
ther explicitly or implicitly, in prior account-based private payment
systems such as (Anonymous) Zether [7, 11].

E Security Proofs for Lether

E.1 Anonymity

Theorem E.1 (Anonymity against Non-Recipients). Lether in Sec-
tion 4 is anonymous against non-recipients if LNP22 is simulatable,
tag scheme is tag-anonymous, and Ref-AH mmPKE is mmIND-CPAKOSK
secure. More precisely, for any PPT adversary A against Exp,y., there
exists PPT adversaries By, B1, B, against simulatability of LNP22,
tag-anonymity of tag scheme, and mmIND-CPAKOSK security of Ref-
AH mmPKE, such that

Expan _ Sim Tag-An mmIND-CPA
Advﬂ = Ade0 + Advg1 + Advzg2 .

Proor. Let A be a PPT adversary against anonymity with re-
spect to non-recipients. We define the following sequence of games.

Denote Adv;amei as the advantage of A in winning Game;.
Gamey _

Game: This is identical to Exp,y. Thus, we have Adv
Adv;pAN.
Game;: This game is the same as Game,, except that the chal-
lenger replaces the proof IT with a simulated proof generated by
the simulator of LNP22.

Therefore, there exists a PPT adversary 8B, whose running time

is approximately that of A such that
Adv;ame“ - Adv\c;(amel = Adv%:‘.

Game;: This game is the same as Gamey, except that the challenger
replaces the linkable tag tag with a uniformly random tag sampled
from the tag space.

Note that no queries of Corrupt or Trans fer at the current epoch
is allowed for the challenge spender public keys pk? and pk;. Thus,
there exists a PPT adversary 8; whose running time is approxi-
mately that of A such that

Game; _ Gamey | _ Tag-An
Adv Adv = Ade1 .

Game;: This game is the same as Game,, except that the challenger
modifies the amount ciphertext ct.

Specifically, the challenger changes the ciphertext ct = (c, (¢;)ic[n])
to (u, (v;)ie[Nn]), Where u (L[(RZ) is sampled uniformly at ran-
dom. For the uncorrupted accounts (i.e., i € {s%, 51,79, r'}), each
v; < U(R,) is also uniformly sampled. For the other account
(i.e., possible corrupted accounts), the ciphertext is reproduced as
v = (u,8;)+h;+q/(2T + 2)]-m; where h; := (—s;||e;, e,||r) +y; is
decryption error and m; = 0 because the corrupted accounts are all
decoys. Here, the challenger can obtain each private key (s;, €;) un-
der the KOSK assumption. We note that the KOSK assumption can
be removed if each user is required to provide a proof of knowledge
of the private key during the registration phase (as demonstrated
in [44] and Remark C.3).

Therefore, based on the security of (Ref-AH) mmPKE established
in [44], there exists a PPT adversary 8, whose running time is
approximately that of A such that

Gamey _ Games | _ mmIND-CPA
Adv\ﬂ Advﬂ = Ade2 .

Note that the ciphertexts for the accounts of the challenge senders
and recipients pk’, pk’ for i € {0, 1} are uniformly random. Further-
more, the output of AnTransfer is independent of pk’ and pk’ for
i € {0, 1}, and also independent of b and b,. Thus, A has advantage
at most 1/2 in guessing bs or b, in Games.

Collecting all the games from Game, to Games, we obtain the
anonymity against non-recipients. O

Theorem E.2 (Anonymity against Recipient). Lether in Section 4
is anonymous against recipient if LNP22 is simulatable, tag scheme
is tag-anonymous, and Ref-AH mmPKE is mmIND-CPAKOSK secure,
More precisely, for any PPT adversary A against Exp g, there exists
PPT adversaries By, By, B, against simulatability of LNP22, tag-
anonymity of tag scheme, and mmIND-CPAKOSK security of Ref-AH
mmPKE, such that

EXpar _ Sim Tag-An mmIND-CPA
Advﬂ = Ade0 + Ade1 + Adv82 .

Proor skeTcH. The proof is analogous to Theorem E.1; so we
provide only a sketch. Game, is identical to Exp,z. Game;, Gamey,
and Games are the same as those in Theorem E.1, except that in
Games, since the recipient is corrupted, the challenger constructs
its ciphertext as v; = (u,s,) + h; + g/ (2T + 2)|m. Thus, in Games,
the adversary A has a success probability of 1/2 in outputting
b’ =b.]

E.2 Confidentiality

Theorem E.3 (Confidentiality). Lether in Section 4 is confidential
if LNP22 is simulatable and Ref-AH mmPKE is mmIND-CPAKOSK
secure. More precisely, for any PPT adversary A against Expcon»
there exists PPT adversaries By, B, against simulatability of LNP22,
and mmIND-CPAKOSK security of Ref-AH mmPKE, such that

Expcon _ Sim mmIND-CPA
Advﬂ = Ade0 + Ade1 .

Proor skeTCH. The proof is analogous to Theorem E.1, so we
provide only a sketch. Game, is identical to Expqy. Game; is the
same as Game; in Theorem E.1. Game, corresponds to Games
in Theorem E.1. Thus, in Game;, the adversary A has a success
probability of 1/2 in outputting b” = b. O

E.3 Balance

Theorem E.4 (Balance). Lether in Section 4 is balanced if LNP22
is sound, tag scheme is event-oriented linkable, and MLWER . m g 7
assumption for y = U(S,) is hard.

Proor. Let A be a PPT adversary against the balance property
in the game Expg,, . We argue that the probability that A wins
this game is negligible. We divide the proof into the following four
cases.

Case 1 (Forgery): Let Egorge denote the event where A wins the
game such that there exists a transaction tx/" for some Jjredy, ..., t},
and for all i € [N], there exists amt{* < 0, where amt{* =

Wang et al.

‘Ll[pk{*],CurBal - ‘Ll[pk{*] .PreBal, and either ‘Ll[pk{*] AsCrpt =0
or pk{* # U[tag/"].pk.

Since A is able to generate a valid proof II, the extractability
of LNP22 implies the existence of an extractor that can extract a
witness satisfying R, in Equation (4.2).

For the first situation (i.e., Y [pk{ *],IsC rpt = 0), from the sound-
ness of verifiable encryption for mmPKE (Lemma C.9), we obtain
that each amount in the ciphertext satisfies amt{ = (bf 0 _ bl.(s)) -1,
where (097K ||2¥, r%) > 0. Therefore, for some i* € [N] such that
amt{: < 0, it must hold that bff) = 1. The extracted private key
§s must satisfy ||(5|| Xicn bfs) -b; = AT8) |l < v. Given that
(L([pk{*].1sCrpt =0, i.e., A does not possess the private key corre-
sponding to by, and b = 1,5” = 0 for all i € [N] \ {i*}, the ad-
versary can solve the MLWER p 1 ¢, 7 instance on input ([I]A], b;),
where y := U(S,)—leading to a contradiction.

In the second situation (i.e., pk{* # U[tag/].pk), it reduces to

breaking the event-oriented linkability property of the tag scheme,
as formalized in Lemma C.16. Specifically, for some i* € [N] such
that amt{* < 0and pkf* + U[tag’].pk, it ir_zlplies that A is able
to use the private key corresponding to pkf* to generate a valid
tag that is unlinkable to pk{: , which contradicts the event-oriented
linkability of the tag scheme.
Case 2 (Unbalanced Amounts): Let Eyppalance denote the event
where A wins the game such that there exists a transaction tx/* for
some j* € {1,..,, t} satisfying 3;c[n amt{* # 0, where amt{* =
’Ll[pk{*].CurBal - ’Ll[pk{*].PreBal.

Since the adversary A is able to generate a valid proof II, the
extractability of LNP22 ensures that there exists an extractor that
can extract a witness satisfying R,, as defined in Equation (4.2).

From the soundness of verifiable encryption in mmPKE (Lemma C.9),

we know that each amount in the ciphertext satisfies amt{* =
(bi(r) —bi(s)) - 1h, where (04| |2¥, r:t) > 0. Summing over all i € [N],
we obtain:

damt] = 3T (b7 by = b7 = 3 b))

i€e[N] i€e[N] i€e[N] i€e[N]

Since both ;e n bfr) =1land YN b;s) =1,wehave };c[n7 amt{* =

(1 = 1) - i = 0. This contradicts the assumption that the sum is
non-zero and thus violates the soundness of LNP22.
Case 3 (Overdraft): Let Eoyerdrat denote the event where A wins
the game such that there exists a transaction tx/* for some j* €
{1,...,t} satisfying W[pk{*].CurBaI < 0 for some i € [N].

Since A can produce a valid proof II, the extractability of LNP22
ensures that an extractor can recover a witness satisfying R,y as
defined in Equation (4.2).

From the soundness of verifiable encryption in mmPKE (Lemma C.9),

each amount in the ciphertext satisfies amt{* = (bfr) - bi(s)) -,
with (047 |2, 1;1) > 0. Let s := i* be the index such that b;f) =1.
Then, only the balance of account acc[pkg*] will be decremented
by the transaction.

Assuming that all accounts have non-negative balances before
the transaction, it suffices to argue that the post-transaction balance
of acc[pkg*] remains non-negative.

Lether: Practical Post-Quantum Account-Based Private Blockchain Payments

From the unforgeability of verifiable decryption in mmPKE
(Lemma C.10), the decrypted balance satisfies (09-%]|2*, - Td) €
{0,..., ok — 1} which implies that the balance is non-negative. This
contradicts the assumption in Egyerdraft and therefore violates the
soundness of LNP22.

Case 4 (Double-Spend): Let Egspeng denote the event where A
wins the game such that there exists a transaction tx/* for some
j* e {1,...,t} satisfying tag/" ¢ (‘L{[pk{].tag)ie[n)-

Since A can produce a valid proof II, the extractability of LNP22

ensures that an extractor can recover a witness satisfying R, as

defined in Equation (4.2). In particular, the extracted binary vector
b has Hamming weight 1. Let s := i* be the unique index such
that b = 1.

Hence, the adversary effectively generates a valid tag tag/™ us-
ing the private key of pkf that is not linked to the corresponding
account in the system state. This directly contradicts the event-

oriented linkability property of the tag scheme established in Lemma C.16.

[m]

	Abstract
	1 Introduction
	1.1 Paradigm of Anonymous Zether
	1.2 Existing Challenges
	1.3 Our Contributions

	2 Technical Overview
	3 Novel Building Blocks of Lether
	3.1 Verifiable Ref-AH mmPKE
	3.2 Event-Oriented Linkable Tag

	4 Lether: Account-Based Private Blockchain Payments from Lattices
	4.1 Parameter Setting
	4.2 Implementation and Evaluation

	Acknowledgments
	References
	A Detailed Parameter Settings and Implementations
	A.1 Detailed Parameter Setting
	A.2 Detailed Implementation

	B Preliminaries
	B.1 Notation
	B.2 Non-Interactive Zero Knowledge Protocol
	B.3 NIZK Protocol in LNP22 lyubashevsky2022lattice
	B.4 Lattice Preliminaries

	C Definitions and Proofs for Building Blocks
	C.1 Verifiable Ref-AH mmPKE
	C.2 Event-Oriented Linkable Tag

	D Formal Definitions for Account-Based Private Blockchain Payments
	D.1 Security Definition

	E Security Proofs for Lether
	E.1 Anonymity
	E.2 Confidentiality
	E.3 Balance

