
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/243786506

E-Statistics:	Energy	of	statistical	samples

Article	·	January	2003

CITATIONS

18

READS

153

1	author:

Gabor	J.	Szekely

National	Science	Foundation

50	PUBLICATIONS			192	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Gabor	J.	Szekely

Retrieved	on:	14	May	2016

https://www.researchgate.net/publication/243786506_E-Statistics_Energy_of_statistical_samples?enrichId=rgreq-f3eb19da-cd2d-4119-8d36-5a4b216c94ca&enrichSource=Y292ZXJQYWdlOzI0Mzc4NjUwNjtBUzoyNzg3MjQ3ODUyNjI1OTNAMTQ0MzQ2NDU3NTExMA%3D%3D&el=1_x_2
https://www.researchgate.net/publication/243786506_E-Statistics_Energy_of_statistical_samples?enrichId=rgreq-f3eb19da-cd2d-4119-8d36-5a4b216c94ca&enrichSource=Y292ZXJQYWdlOzI0Mzc4NjUwNjtBUzoyNzg3MjQ3ODUyNjI1OTNAMTQ0MzQ2NDU3NTExMA%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-f3eb19da-cd2d-4119-8d36-5a4b216c94ca&enrichSource=Y292ZXJQYWdlOzI0Mzc4NjUwNjtBUzoyNzg3MjQ3ODUyNjI1OTNAMTQ0MzQ2NDU3NTExMA%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Gabor_Szekely3?enrichId=rgreq-f3eb19da-cd2d-4119-8d36-5a4b216c94ca&enrichSource=Y292ZXJQYWdlOzI0Mzc4NjUwNjtBUzoyNzg3MjQ3ODUyNjI1OTNAMTQ0MzQ2NDU3NTExMA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Gabor_Szekely3?enrichId=rgreq-f3eb19da-cd2d-4119-8d36-5a4b216c94ca&enrichSource=Y292ZXJQYWdlOzI0Mzc4NjUwNjtBUzoyNzg3MjQ3ODUyNjI1OTNAMTQ0MzQ2NDU3NTExMA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/National_Science_Foundation?enrichId=rgreq-f3eb19da-cd2d-4119-8d36-5a4b216c94ca&enrichSource=Y292ZXJQYWdlOzI0Mzc4NjUwNjtBUzoyNzg3MjQ3ODUyNjI1OTNAMTQ0MzQ2NDU3NTExMA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Gabor_Szekely3?enrichId=rgreq-f3eb19da-cd2d-4119-8d36-5a4b216c94ca&enrichSource=Y292ZXJQYWdlOzI0Mzc4NjUwNjtBUzoyNzg3MjQ3ODUyNjI1OTNAMTQ0MzQ2NDU3NTExMA%3D%3D&el=1_x_7


Energy Statistics: A Class of Statistics Based on
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Abstract

Energy distance is a statistical distance between the distributions of random
vectors, which characterizes equality of distributions. The name energy derives
from Newton’s gravitational potential energy, and there is an elegant relation to
the notion of potential energy between statistical observations. Energy statis-
tics are functions of distances between statistical observations in metric spaces.
Thus even if the observations are complex objects, like functions, one can use
their real valued nonnegative distances for inference. Theory and application of
energy statistics are discussed and illustrated. Finally, we explore the notion of
potential and kinetic energy of goodness-of-fit.

Keywords: energy distance, goodness-of-fit, multivariate independence,
distance covariance, distance correlation,

1. Introduction

Energy statistics (E-statistics) are functions of distances between statistical
observations. This concept is based on the notion of Newton’s gravitational
potential energy which is a function of the distance between two bodies. The
idea of energy statistics is to consider statistical observations as heavenly bodies
governed by a statistical potential energy, which is zero if an only if an underlying
statistical null hypothesis is true.

In this paper we present the foundational material, motivation, and unifying
theory of energy statistics. Previously unpublished results as well as an overview
of several published applications in inference and multivariate analysis that
illustrate the power of this concept are discussed. We will see that energy
statistics are extremely useful and are typically more general and often more
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powerful against general alternatives than classical (non-energy type) statistics
such as correlation, F -statistics, etc. For historical background, see Section 9.

If the observations play a symmetric role, then it makes sense to suppose
that energy statistics are symmetric functions of distances between observations.
Energy statistics in this paper are U -statistics or V -statistics based on distances;
that is, for a d-dimensional random sample X1, . . . , Xn, and kernel function
h : Rd ×Rd → R,

Un =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

h(Xi, Xj)

or

Vn =
1

n2

n∑
i=1

n∑
j=1

h(Xi, Xj),

where h(Xi, Xj) = h(Xj , Xi) is a symmetric function of Euclidean distances
|Xi − Xj | between sample elements. Here we use | · |d or | · | (if dimension d
is clear in context) to denote Euclidean norm if the argument is real, and | · |
denotes the complex norm when its argument is complex. The notation ‖ · ‖ is
reserved for another type of norm in this paper.

Since energy statistics are U -statistics or V -statistics, we can apply their
classical limit theory (Hoeffding [21], von Mises [63]) to obtain the limiting
behavior of these statistics. See Serfling [50] or Koroljuk and Borovskich [25]
for details.

A familiar example is the U -statistic for dispersion, Gini’s mean difference
[65],

1

n(n− 1)

n∑
i=1

n∑
j 6=i

|Xi −Xj |.

Alternately one can apply the V -statistic

1

n2

n∑
i=1

n∑
j=1

|Xi −Xj |.

In some of the applications discussed below, a generalized V -statistic is applied,
see e.g. [25, Ch. 11]. Although energy statistics can be defined in terms of
either U or V -statistics, we apply V -statistics throughout. One of the reasons
for applying V -statistics instead of U -statistics is that our energy statistics will
be non-negative and more easily interpreted as a statistical distance.

This paper summarizes many of the most interesting results and some of the
applications of energy statistics. The content is organized in sections as follows.

1. Introduction

2. Energy distance

3. Why is energy distance special?

4. One sample energy statistics: goodness-of-fit, multivariate normality

5. Generalized energy distance
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6. Two-sample and multi-sample energy statistics, distance components for
structured data, E-clustering, symmetry

7. Distance correlation, energy test of independence, Brownian covariance

8. Statistical Potential and Kinetic Energy

9. Historical background

2. Energy distance

There are many types of distances that can be defined between statistical
objects. One of the best known and most applied is the L2-distance. If F is
the cumulative distribution function (cdf) of a random variable and Fn is the
empirical cdf, then their L2 distance,∫ ∞

−∞
(Fn(x)− F (x))2 dx (2.1)

was introduced in Cramér (1928) [8]. This distance has the disadvantage that
it is not distribution-free; thus if we want to apply this distance for testing
goodness-of-fit, then the critical values depend on F . This problem was eas-
ily rectified via replacing dx by dF (x) which leads to the Cramér-von-Mises-
Smirnov distance: ∫ ∞

−∞
(Fn(x)− F (x))2 dF (x). (2.2)

There is, however, another important disadvantage of Cramér’s distance
(2.1) and also of the Cramér-von-Mises-Smirnov distance (2.2) that remains. If
the sample comes from a d-dimensional space where d > 1, then neither of them
are rotation invariant. This is a very important problem if e.g. we want to test
multivariate normality. Here is how to overcome this difficulty.

Suppose that X,Y are real-valued independent random variables with cu-
mulative distribution function F and G, respectively. It is easy to show (see
e.g. [51] and [53]) that if X ′ is an independent and identically distributed (iid)
copy of X, and Y ′ is an iid copy of Y , then

2

∫ ∞
−∞

(F (x)−G(x))2 dx = 2E|X − Y | − E|X −X ′| − E|Y − Y ′|.

A rotation invariant natural extension for higher dimension is

2E|X − Y |d − E|X −X ′|d − E|Y − Y ′|d, (2.3)

where X,Y ∈ Rd are independent. Rotational invariance of this expression is
trivial, but it is not trivial at all that this quantity (2.3) is nonnegative and
equals zero if and only if X and Y are identically distributed. See Proposition
1.

3
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Definition 1 (Energy distance). The energy distance between the d-dimensional
independent random variables X and Y is defined as

E(X,Y ) = 2E|X − Y |d − E|X −X ′|d − E|Y − Y ′|d, (2.4)

where E|X|d < ∞, E|Y |d < ∞, X ′ is an iid copy of X, and Y ′ is an iid copy
of Y . We omit the subscript d whenever it is clear in context.

Denote the Fourier-transform (characteristic function) of the probability

density functions f and g by f̂ and ĝ, respectively. Then, according to the
Parseval-Plancherel formula,

2π

∫ ∞
−∞

(f(x)− g(x))2 dx =

∫ ∞
−∞
|f̂(t)− ĝ(t)|2 dt.

Since the Fourier transform of the cdf F (x) =
∫ x
−∞ f(u) du is f̂(t)/(it), where

i =
√
−1, we have

2π

∫ ∞
−∞

(F (x)−G(x))2 dx =

∫ ∞
−∞

|f̂(t)− ĝ(t)|2

t2
dt. (2.5)

The pleasant surprise is that the natural multivariate generalization of the right-
hand side of (2.5) is rotation invariant and it is exactly a constant multiple of
(2.4).

Proposition 1. If the d-dimensional random variables X and Y are indepen-
dent with E|X|d + E|Y |d < ∞, and f̂ , ĝ denote their respective characteristic
functions, then their energy distance

2E|X − Y |d − E|X −X ′|d − E|Y − Y ′|d =
1

cd

∫
Rd

|f̂(t)− ĝ(t)|2

|t|d+1
d

dt, (2.6)

where

cd =
π(d+1)/2

Γ
(
d+1
2

) , (2.7)

and Γ(·) is the complete gamma function. Thus E(X,Y ) ≥ 0 with equality to
zero if and only if X and Y are identically distributed.

For a proof of this proposition see Székely and Rizzo [57] or see the proof of
its generalization, Proposition 2 below. For the prehistory of this inequality see
Section 9.

In view of (2.6), the square root of energy distance E(X,Y )1/2 is a metric
on the set of d-variate distribution functions.

It is easy to define E for all pairs of random variables X,Y that take their
values in a metric space with distance function δ:

E(X,Y ) = 2E[δ(X,Y )]− E[δ(X,X ′)]− E[δ(Y, Y ′)],

4
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provided that these expectations exist; but if we replace Euclidean distance
with the metric δ in an arbitrary metric space, then the claim of Proposition 1
that “E(X,Y ) ≥ 0 with equality to zero if and only if X and Y are identically
distributed” does not necessarily hold. It does hold in separable Hilbert spaces
(see Lyons [29]), which is an important result for applications.

Energy distance E(F,G) provides a characterization of equality of distribu-
tions F and G. The applications in dimensions d ≥ 1 include:

i. Consistent one-sample goodness-of-fit tests [57, 44, 64].

ii. Consistent multi-sample tests of equality of distributions [56, 42, 43, 3].

iii. Hierarchical clustering algorithms [58] that extend and generalize the
Ward’s minimum variance algorithm.

iv. Distance components (DISCO) [45], a nonparametric extension of analysis
of variance for structured data.

v. Characterization and test for multivariate independence [11], [62], [59].

vi. Change point analysis based on [56] is applied in [22] and [33].

Several of these applications are discussed below. Software for energy statistics
applications is available under General Public License in the energy [46] package
for R [40].

3. Why is energy distance special?

We see that energy distance (2.6) is a weighted L2 distance between char-

acteristic functions, with weight function w(t) = |t|−(d+1)
d . Suppose that the

following three technical conditions on the weight function hold: w(t) > 0, w(t)
is continuous, and ∫

|f̂(t)− ĝ(t)|2w(t) dt <∞. (3.1)

We claim that under these conditions if the weighted L2 distance between f̂
and ĝ is rotation invariant and scale equivariant, then w(t) = const /|t|d+1. In
other words, rotation invariance and scale equivariance (under some technical
conditions) imply that the weighted L2 distance between characteristic functions
is the energy distance.

Why do we have this characterization? One can show that if two weighted
L2 distances of the type (3.1) are equal for all characteristic functions f̂ and
ĝ, then the (continuous) weight functions are also equal (for proof of a similar
claim see [60]).

Scale equivariance and rotation invariance imply that for all real numbers a∫
|f̂(at)− ĝ(at)|2w(t) dt = |a| ×

∫
|f̂(t)− ĝ(t)|2w(t) dt.

Introduce s = at. We can see that if a 6= 0 then∫
|f̂(s)− ĝ(s)|2w(s/a)

|a|
ds = |a| ×

∫
|f̂(t)− ĝ(t)|2w(t) dt.

5
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Thus w(s/a)/|a| = |a|w(s). That is, if c := w(1) then w(1/a) = ca2, implying
that w(t) = const/|t|d+1.

Interestingly, this weight function appears in Feuerverger [11], where it is
applied for testing bivariate dependence. Although this singular weight function
is “special” from the equivariance point of view, other weight functions are also
applied in tests based on characteristic functions; see e.g. Gurtler and Henze
[18], Henze and Zirkler [19], or Matsui and Takemura [31].

4. One sample energy statistics

4.1. Energy goodness-of-fit statistics

Let X1, . . . , Xn be a random sample (iid) from a d-variate population with
distribution F , and let x1, . . . , xn be the observed values of the random sam-
ple. The one sample version of energy distance for testing the goodness-of-fit
hypothesis H0 : F = F0 vs H1 : F 6= F0 is

En(X,F0) =
2

n

n∑
i=1

E|xi −X| − E|X −X ′| −
1

n2

n∑
`=1

n∑
m=1

|x` − xm|, (4.1)

where X and X ′ are independent and identically distributed (iid) with distri-
bution F0, and the expectations are taken with respect to the null distribution
F0. The energy goodness-of-fit statistic is nEn = nEn(X,F0).

Notice that En is a V -statistic, and its unbiased versions are U -statistics.
(The kernel function for the energy goodness-of-fit statistic is (8.1), which is
discussed in Section 8.) Under the null hypothesis, the test statistic nEn tends
to a nondegenerate limit distribution as n → ∞ (see Section 8), while under
an alternative hypothesis nEn tends to infinity. Thus a goodness-of-fit test that
rejects the null for large values of nEn is consistent against general alternatives.

Figure 1(a) illustrates the sampling distribution of an energy goodness-of-fit
statistic. The sampling distributions of all energy statistics have similar shapes
under the null hypothesis, with rejection region in the upper tail.

For goodness-of-fit statistics, if parameters of the null distribution are es-
timated, in many applications the energy statistic is a degenerate kernel V -
statistic, thus the distribution has a similar shape with rejection region in the
upper tail. Here the energy goodness-of-fit test is developed for a specified
parametric family of distributions F0(θ) using estimated parameter(s) θ̂, so the

asymptotic distribution would depend on θ and the distribution of θ̂. In this
case, Monte Carlo methods can typically be applied to obtain a test decision. For
a discussion of goodness-of-fit tests with estimated parameters see Das Gupta
[9, 451–455] Section 28.1, Section 28.2 on the special case of EDF tests, and the
references at the end of Chapter 28. For further details on energy goodness-of-fit
tests, see Section 8 of this paper and [42, Theorem 5] for proof of consistency
in the case of estimated parameters for the multivariate normal distribution.

Energy tests based on (4.1) have been implemented for testing the composite
hypothesis of multivariate normality [57], Pareto family [44], stable [64], and
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other distributions. Let us first introduce energy goodness-of-fit tests with a
few univariate examples.

4.1.1. Two-parameter exponential distribution

Suppose for example, that we wish to test whether T has a two-parameter
exponential distribution, with density

fT (t) = λe−λ(t−µ), t ≥ µ.

Then we apply (4.1) using

E|t− T | = t− µ+
1

λ
(1− 2FT (t)), t ≥ µ;

E|T − T ′| = 1

λ
.

A computing formula for the corresponding test statistic nEn is easily derived.

4.1.2. Energy statistic for Uniform distribution

The energy test for the continuous uniform distribution is particularly sim-
ple. If X ∼ Uniform(a, b), then

E|x−X| = (x− a)2

b− a
− x+

b− a
2

; E|X −X ′| = b− a
3

.

In particular, the energy test statistic for a goodness-of-fit test of H0 : X ∼
Uniform(0,1) is given by

nEn = n
( 2

n

n∑
i=1

(
X2
i −Xi +

1

2

)
− 1

3
− 2

n2

n∑
k=1

(2k − 1− n)X(k)

)
,

where X(k) denotes the k-th order statistic of the sample. The linearization
in the last sum simplifies the statistic for any univariate test, reducing the
computational complexity to O(n log n) in the univariate case. The statistic
can be simplified further.

4.2. Energy test of normality

The energy statistic for testing whether a sample X1, . . . , Xn is from a mul-
tivariate normal distribution N(µ,Σ) is developed by Székely and Rizzo [57].
Let x1, . . . , xn denote an observed random sample.

4.2.1. Univariate normality

In the special case of testing univariate normality, the test statistic is nEn,
where En is given by (4.1) with

E|xi −X| = 2(xi − µ)F (xi) + 2σ2f(xi)− (xi − µ); E|X −X ′| = 2σ√
π
,

where F, f are respectively the cdf and density of the hypothesized N(µ, σ2)
distribution.
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Example 1 (Distribution of energy goodness-of-fit statistics). The sampling
distribution of the energy test statistic for testing normality is illustrated by
Figures 1(a) and Figure 1(b) for sample size n = 30. Figure 1(a) displays a
histogram of replicates of the test statistic for normal samples. In Figure 1(b)
the densities of the sampling distribution under the null and alternative are
compared. The test is implemented in the energy package [46] using estimated
parameters for µ and σ. The alternative in this example is a 90%-10% normal
location mixture of N(0, 1) and N(3, 1) data. The approximate critical value
0.82 for a test at 5% significance is marked with a vertical line on Figure 1(b).
As n increases, the distribution under the alternative shifts farther to the right.

Note that the shape of the sampling distribution under the null hypothesis
illustrated in Example 1 is typical of all energy statistics discussed in this paper.
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D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(a)

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Energy test statistic

D
en

si
ty

Null dist.
Alt. dist.
Critical value

(b)

Figure 1: Sampling distribution of the energy goodness-of-fit statistic for univariate normality,
sample size n = 30, in Example 1. Figure (a) displays simulated replicates of the statistic under

the null hypothesis. Figure (b) compares the density of nÊn under the null and alternative
hypotheses, for a normal location mixture. The rejection region is in the upper tail.

4.2.2. Relation to quadratic EDF statistics

The quadratic empirical distribution function (EDF) statistics are based on
weighted L2 distances of the type (2.2):∫ ∞

−∞
(Fn(x)− F (x))2w(x) dF (x), (4.2)

where w(·) is a suitable weight function. When w(x) is the identity function, the
test is called the Cramér-von Mises test. The Anderson-Darling test is obtained
using a weight function w(x) = [F (x)(1−F (x))]−1. In case of standard normal
null F , the shape of the curve w(x) = F (x)(1−F (x)) is similar to the the shape
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of the standard normal density; their ratio is close to a constant c (empirically
0.67). That is, in the univariate case the distribution of the energy statistic
for standard normal distribution hardly differs from the powerful Anderson-
Darling test of normality. The energy test of normality can thus be viewed as a
computationally simple way to lift the Anderson-Darling test to arbitrarily high
dimension. The energy test of multivariate normality is rigid motion invariant
and consistent against all fixed alternatives with E|X| < ∞. When the test is
applied to standardized samples, it is affine invariant.

4.3. Energy test of multivariate normality

For the test of multivariate normality, first the sample is standardized by
a linear transformation. For standard multivariate normal Z ∈ Rd with mean
vector 0 and identity covariance matrix,

E|Z − Z ′|d =
√

2E|Z|d = 2
Γ
(
d+1
2

)
Γ
(
d
2

) .

If y1, . . . , yn denote the standardized sample elements, the computing formula
for the d-variate normality test statistic is given by

n En,d = n
( 2

n

n∑
j=1

E|yj − Z|d − 2
Γ
(
d+1
2

)
Γ
(
d
2

) − 1

n2

n∑
j,k=1

|yj − yk|d
)

where

E|a− Z|d =

√
2 Γ
(
d+1
2

)
Γ
(
d
2

) +

√
2

π

∞∑
k=0

(−1)k

k! 2k
|a|d2k+2

(2k + 1)(2k + 2)

Γ
(
d+1
2

)
Γ
(
k + 3

2

)
Γ
(
k + d

2 + 1
) .

The expression for E|a−Z|d follows from the fact (see e.g. Zacks [66, p. 55])
that if Z is a d-variate standard normal random vector, |a − Z|2d has a non-
central chisquare distribution χ2[ν;λ] with degrees of freedom ν = d+ 2ψ, and
noncentrality parameter λ = |a|2d/2, where ψ is a Poisson random variable with
mean λ. Typically the sum in E|a − Z|d converges after 40 to 60 terms, but
may require more terms if |a|d is large; however, when |a|d is large the limit
E|a−Z|d u |a|d can be applied. See the source code in “energy.c” of the energy
package [46] for an implementation.

If the mean vector µ and covariance matrix Σ are not specified, then the test
is modified by transforming the observed sample using the sample mean vector
and the sample covariance matrix. This is the method of implementation in the
following simulations, using mvnorm.etest in the energy package for R [46]. The
modified test statistic nÊn,d has the same type of limit distribution as nEn,d, but
with different critical values. Theory for estimated parameters is derived in [42]
and [57]. In the energy package [46] the sample is standardized using estimated
parameters and a decision is obtained by parametric bootstrap. Alternately,
for large sample sizes (100 or more observations), one can obtain critical values

9

https://www.researchgate.net/publication/239329690_A_New_Rotation_Invariant_Goodness-of-Fit_Test?el=1_x_8&enrichId=rgreq-f3eb19da-cd2d-4119-8d36-5a4b216c94ca&enrichSource=Y292ZXJQYWdlOzI0Mzc4NjUwNjtBUzoyNzg3MjQ3ODUyNjI1OTNAMTQ0MzQ2NDU3NTExMA==


by numerical solution to the eigenvalue problem (8.5), or see [42] for tabulated
critical values of nÊn,d.

This new test of multivariate normality is practical to apply for arbitrary
dimension and sample size (d > n is not a problem.) Monte Carlo power
comparisons suggest that it is a powerful competitor to other affine invariant
tests of multivariate normality. Overall, the energy test is a powerful omnibus
test of multivariate normality, consistent against all alternatives with relatively
good power compared with other commonly applied tests.

Example 2 (Power of energy test of multivariate normality). Several examples
appear in [42, 57] to illustrate the power of the test of multivariate normality
against various alternatives, compared with competing tests. As an example, we
summarize a comparison for a 90%-10% normal location mixture in dimension
d = 5 against Mardia’s skewness and kurtosis tests [30], and the Henze-Zirkler
test [19]. The latter is another type of test that is based on the characteristic
function. Results for 2000 tests at significance level 5% are summarized in
Figure 2. Here we see that the energy test dominates the other tests, and we
can also observe that the test is consistent with power increasing to 1 as sample
size increases. �

Figure 2: Empirical power of tests of multivariate normality (d=5, n=25, 50, 100) against
normal location mixture .9N5(0, I) + .1N5(2, I): percent of significant tests of 2000 Monte
Carlo samples at α = .05. E denotes the energy test and HZ denotes the Henze–Zirkler test.
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5. Generalized energy distance

Since many important distributions do not have finite expected values we
need the following generalization of Proposition 1.
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Proposition 2. Let X and Y be independent d-dimensional random variables
with characteristic functions f̂ , ĝ. If E|X|α < ∞ and E|Y |α < ∞ for some
0 < α ≤ 2, then

(i) For 0 < α < 2,

E(α)(X,Y ) = 2E|X − Y |α − E|X −X ′|α − E|Y − Y ′|α

=
1

C(d, α)

∫
Rd

|f̂(t)− ĝ(t)|2

|t|d+α
dt, (5.1)

where

C(d, α) = 2πd/2
Γ(1− α/2)

α2αΓ
(
d+α
2

) . (5.2)

(ii) E(2)(X,Y ) = 2|E(X)− E(Y )|2.

Statements (i) and (ii) show that for all 0 < α < 2, we have E(α)(X,Y ) ≥ 0
with equality to zero if and only if X and Y are identically distributed; but this
characterization does not hold for α = 2 since we have equality to zero in (ii)
whenever E(X) = E(Y ).

Applications of Proposition 2 include:

i. Goodness-of-fit tests for heavy tailed distributions such as stable distribu-
tions [64] and Pareto distributions [44].

ii. Generalization of Ward’s minimum variance criterion in hierarchical clus-
ter analysis (see Section 6.4).

iii. Generalization of distance covariance for heavy tailed distributions (see
Section 7.3).

iv. The energy score (see Gneiting and Raftery [15]).

On the historical background of Proposition 2 see Section 9. For the sake of
easy reference we provide a proof.

Proof of Proposition 2. Statement (ii) is obvious. For (i), let f(·) denote the
complex conjugate of f(·). Notice that

|f̂(t)− ĝ(t)|2 = [f̂(t)− ĝ(t)][f̂(t)− ĝ(t)]

= [1− f̂(t)ĝ(t)] + [1− f̂(t)ĝ(t)]− [1− f̂(t)f̂(t)]− [1− ĝ(t)ĝ(t)]

= E{[2− exp{i(t,X − Y )} − exp{i(t, Y −X)}]
− [1− exp{i(t,X −X ′)}]− [1− exp{i(t, Y − Y ′)}]}

= E {2[1− cos(t,X − Y )]− [1− cos(t,X −X ′)]− [1− cos(t, Y − Y ′)]} ,

thus∫
Rd

|f̂(t)− ĝ(t)|2

|t|d+α
dt

= E

∫
Rd

2[1−cos(t,X−Y )]− [1−cos(t,X−X ′)]− [1−cos(t, Y −Y ′)]
|t|d+α

dt

 .
Therefore for (i), all we need to prove is the following lemma.
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Lemma 1. For all x ∈ Rd, if 0 < α < 2, then∫
Rd

1− cos(t, x)

|t|d+αd

dt = C(d, α)|x|αd ,

where (t, x) represents inner product, C(d, α) is the constant (5.2) defined in
Proposition 2, t ∈ Rd. (The integrals at t = 0 and t = ∞ are meant in the
principal value sense: limε→0

∫
Rd\{εB+ε−1B}, where B is the unit ball (centered

at 0) in Rd and B is the complement of B.)

A proof of Lemma 1 is given in [58]. Because of the importance of this
lemma, we reproduce the proof in the appendix of this paper.

What class of functions can replace |x− y|αd in Proposition 2? That is, for
which functions φ does the statement

2Eφ(X − Y )− Eφ(X −X ′)− Eφ(Y − Y ′) ≥ 0 (5.3)

hold, with equality to zero if and only if X and Y are identically distributed?
A necessary and sufficient condition is established in Proposition 3 below. For
this result, we need the definition of conditionally negative definite functions.

A function φ from Rd to the complex numbers is called conditionally negative
definite if for all choices of zi,j = xi−yj , i, j = 1, . . . , n, for all complex numbers
c1, . . . , cn, and all natural numbers n we have

n∑
i=1

n∑
j=1

cic̄jφ(zi,j) ≤ 0 (5.4)

whenever c1 + c2 + · · · + cn = 0 (see e.g. Berg [5]). The function φ is strictly
negative definite if it is negative definite and equality holds in (5.4) only if
c1 = · · · = cn = 0.

If φ is a symmetric real valued function, then it is enough to consider real
numbers c1, . . . , cn in (5.4).

Proposition 3. Let φ be a continuous symmetric function from Rd to R, and
let X ∈ Rd, Y ∈ Rd be independent.
(i) A necessary and sufficient condition that

2Eφ(X − Y )− Eφ(X −X ′)− Eφ(Y − Y ′) ≥ 0 (5.5)

holds for all X,Y such that E[φ(X − X ′) + Eφ(Y − Y ′)] < ∞ is that φ is
conditionally negative definite.

(ii) In (5.5), a necessary and sufficient condition that

2Eφ(X − Y )− Eφ(X −X ′)− Eφ(Y − Y ′) = 0

if and only if X and Y are identically distributed is that φ is strictly negative
definite.
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According to a characterization theorem of Schoenberg [6, Theorem 3.2.2], a
function is conditionally negative definite, continuous, symmetric, and takes the
value 0 at 0 if and only if it is the negative logarithm of an infinitely divisible
characteristic function. The functions

φ(z) = |z|α, 0 < α ≤ 2

correspond to infinitely divisible characteristic functions that are symmetric
stable with parameter α. Other examples include log(1+|z|2) which corresponds
to the characteristic function of the Laplace distribution. Note that in case
φ(z) = |z|2 (case α = 2) we have conditional negative definiteness, but not
strict conditional negative definiteness. This is an intrinsic limitation of classical
inference procedures applied for least squares estimates or Pearson correlation.
For application of other negative definite kernels φ(z) see Baringhaus and Franz
[4].

6. Multi-sample energy statistics

6.1. Testing for equal distributions

The two sample energy statistic corresponding to the energy distance E(X,Y ),
for independent random samples X = X1, . . . , Xn1 and Y = Y1, . . . , Yn2 , is

En1,n2
(X,Y) =

2

n1n2

n1∑
i=1

n2∑
m=1

|Xi − Ym|

− 1

n21

n1∑
i=1

n1∑
j=1

|Xi −Xj | −
1

n22

n2∑
`=1

n2∑
m=1

|Y` − Ym|. (6.1)

The statistic Tn1,n2
= n1n2

n1+n2
En1,n2

can be applied for testing homogeneneity
(equality of distributions of X and Y ). As the null distribution of Tn1,n2

depends
on the distributions of X and Y , the test is implemented as a permutation test
in the energy package. The hypothesis of equal distributions is rejected for large
Tn1,n2 . For details, application, and power comparisons see [56, 43, 3].

Several applications and extensions of the two-sample energy statistic follow.

6.2. Testing for Symmetry

A test for diagonal symmetry is a special case of the two-sample energy
test in Section 6.1. Diagonal symmetry holds if the distributions of X and −X
coincide. It was shown in Buja, Logan, Reeds, and Shepp [7] and also in Székely
and Móri [55] that if X,X ′ are iid Rd valued random variables then

E|X +X ′| ≥ E|X −X ′|,

and equality holds if and only if X is diagonally symmetric. We can thus
introduce a measure of asymmetry, the distance skewness.
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Definition 2. If X ∈ Rd and E|X| < ∞, the distance skewness coefficient
of a random vector is defined

dSkew(X) =

{
1− E|X−X′|

E|X+X′| , E|X +X ′| > 0;

1, E|X +X ′| = 0.

Distance skewness is a good measure of symmetry because 0 ≤ dSkew(X) ≤
1, with equality to zero if and only if X is diagonally symmetric.

If X = X1, . . . , Xn is a random sample from the distribution of X, the
sample distance skewness can be defined as follows:

dSkewn(X) := 1−
∑n
i,j=1 |Xi −Xj |∑n
i,j=1 |Xi +Xj |

.

A consistent test against general alternatives can be based on the statistic

Tn(X) : = 1 +
∑

1≤i<j≤n

|Xi +Xj | − |Xi −Xj |∑
1≤i≤n |Xi|

(6.2)

=

∑n
i,j=1 |Xi − Yj | −

∑n
i,j=1 |Xi + Yj |

2
∑n
i,j=1 |Xi|

, (6.3)

where Yi = −X ′i, i = 1, . . . , n is the reflected X sample in a randomized order.
Here the numerator of the fraction in (6.2) is exactly half the sample energy dis-
tance of X and −X. The numerator in (6.3) is proportional to (6.1) for samples
Xi and Yi = −X ′i, and its expected value is 2E|X|; thus Tn is a (normalized)
two-sample energy statistic.

With this standardized statistic, one can apply the chi-squared test criterion
in Székely–Bakirov [54]. That is, reject the null hypothesis at significance level
α if Tn ≥ (Φ−1(1− α/2))2, where Φ is the standard normal cdf. This criterion
is valid for any significance level less than 0.215. (This test criterion tends to
be conservative in general.)

For an interesting discussion of a special case of the inequality E|X +X ′| ≥
E|X −X ′| see Menshenin and Zubkov [35].

6.3. Distance components: A nonparametric extension of ANOVA

A multi-sample test of equal distributions is a type of generalization of the
hypothesis of equal means. Analogous to the ANOVA decomposition of variance
we can obtain a decomposition of distances called distance components (DISCO)
and a test statistic for the K-sample hypothesis H0 : F1 = · · · = FK , K ≥
2. To simplify subsequent notation, for two samples A = {a1, . . . , an1

}, B =
{b1, . . . , bn2

}, let

gα(A,B) :=
1

n1n2

n1∑
i=1

n2∑
m=1

|ai − bm|α, (6.4)
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for 0 < α ≤ 2. The multi-sample statistics are defined as follows. If A1, . . . , AK
are the samples of sizes n1, n2, . . . , nK , respectively, and N =

∑K
j=1 nj , we

define the total dispersion of the observed response by

Tα = Tα(A1, . . . , AK) =
N

2
gα(A,A), (6.5)

where A is the pooled sample (size N) and gα is given by (6.4). The within-
sample dispersion statistic is defined by

Wα = Wα(A1, . . . , AK) =

K∑
j=1

nj
2
gα(Aj , Aj). (6.6)

The between-sample energy statistic is

Sn,α =
∑

1≤j<k≤K

(
nj + nk

2N

)[
njnk
nj + nk

E(α)nj ,nk
(Aj , Ak)

]
(6.7)

=
∑

1≤j<k≤K

{njnk
2N

(2gα(Aj , Ak)− gα(Aj , Aj)− gα(Ak, Ak))
}
,

Then if 0 < α ≤ 2 we have the decomposition Tα = Sα + Wα, where both Sα
and Wα are nonnegative.

If 0 < α < 2, the statistic (6.7) determines a statistically consistent test of
the hypothesis that the distributions are identical [45]. If α = 2 the correspond-
ing energy distance can be zero if the means of the distributions are identical.
In fact, in the case where Fj are univariate distributions and α = 2, the statistic
Sn,2 is the ANOVA between sample sum of squared error (sum of squares for
treatments) and the decomposition T2 = S2+W2 is the ANOVA decomposition.
By choosing α = 1 or any 0 < α < 2 as the exponent on Euclidean distance, we
obtain a test of equality of distributions that is consistent against all alternatives
with finite α moments.

The power of the DISCO test of the multisample hypothesis H0 : F1 = · · · =
FK is illustrated in the following power comparison. The test has been imple-
ment by permutation bootstrap in the disco function of the energy package for
R [46]. For more examples, see [45].

Example 3. For this simulated data, the multivariate response is in Rp and
the DISCO test is compared with MANOVA tests based on Wilks Lambda and
Pillai statistics. There are four groups each with sample size n = 30. Here
groups 2-4 have iid marginal Gamma(shape=2, rate=0.1) distributions, while
group 1 is Gamma(shape=2, rate=0.1) with multiplicative errors distributed as
Lognormal(µ = 0, σ). (The natural logarithm of the group 1 response has an
additive normally distributed error with mean 0 and variance σ2.)

Empirical power performance is compared at significance level 10%, which
is summarized in Figures 3(a)-3(b). In Figure 3(a) at σ = 0 one can check that
each test achieves approximately the correct significance level 10% under the
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null. The standard error of the power estimate is at most 0.005, based on 10,000
tests.

In Figure 3(a) the parameter σ is varied while dimension is fixed at p = 10.
Each test has power increasing with σ, but the DISCO test is clearly more
powerful than the MANOVA tests in this example. In Figure 3(b) the dimension
p is varied while σ = 0.4 remains fixed. In this simulation one can see that the
difference in power between the DISCO and MANOVA tests is increasing with
dimension. �
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Figure 3: Monte Carlo results for Example 3. Power of the DISCO (D) and MANOVA
(Wilks, Pillai) tests for Gamma(shape=2, rate=0.1) data, in four groups with n = 30 per
group. Group 1 is Gamma(shape=2, rate=0.1) with multiplicative errors distributed as
Lognormal(µ = 0, σ). In (a) dimension p = 10 and σ varies and in (b) p varies and σ = 0.4.

For an interesting application of distance components analysis in behavioral
biology see Schilling, Oberdick, and Schilling [48].

6.4. E-clustering: An extension of Ward’s minimum variance method

Energy distance can be applied in hierarchical cluster analysis. In agglomer-
ative hierarchical clustering algorithms, at each step, we seek to merge clusters
that are homogeneous, as measured by the algorithm’s cluster distance, while
individual clusters are well-separated according to this cluster distance. In E-
clustering, we seek to merge clusters with minimum energy distance.

For a fairly general class of hierarchical clustering algorithms including Ward’s
minimum variance, an algorithm is uniquely determined by its recursive formula
for updating cluster distances (see [58] for details). The energy clustering algo-
rithm is also identified by the same type of recursive formula. Suppose at the
current step in the hierarchical clustering, the disjoint clusters Ci, Cj would be
merged. Then the E-distance between the new cluster Ci ∪ Cj and a disjoint
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cluster Ck is given by the following recursive formula:

d(Ci ∪ Cj , Ck) =
ni + nk

ni + nj + nk
d(Ci, Ck)

+
nj + nk

ni + nj + nk
d(Cj , Ck)− nk

ni + nj + nk
d(Ci, Cj), (6.8)

where d(Ci, Cj) = Eni,nj (Ci, Cj), and ni, nj , nk are the number of elements in
clusters Ci, Cj , Ck, respectively. From formula (6.8) above, if dij := E(Ci, Cj)
is given by (6.1), E-distance can be computed recursively by

d(ij)k := d(Ci ∪ Cj , Ck)

= αi d(Ci, Ck) + αj d(Cj , Ck) + β d(Ci, Cj)

= αidik + αjdjk + βdij + γ|dik − djk|, (6.9)

where

αi =
ni + nk

ni + nj + nk
; β =

−nk
ni + nj + nk

; γ = 0. (6.10)

In the recursive equation (6.9) if we substitute squared Euclidean distances for
Euclidean distances, with the same parameters (6.10), we have the updating
formula for Ward’s minimum variance method. Applying Proposition 2, we can
replace Euclidean distances in (6.9) with |x − y|α for any 0 < α ≤ 2 to obtain
a class of clustering algorithms that contain Ward’s minimum variance method
as a special case. By Proposition 2(ii) we know that Ward’s method (α = 2)
is a geometrical method that separates and identifies clusters by their centers;
consistency does not hold for Ward’s method (α = 2), because cluster distance
is zero when groups have equal means, while the underlying populations could
have different distributions. On the other hand, Proposition 2(i) implies that
for every 0 < α < 2 the energy clustering algorithm separates clusters that differ
in distribution (in any way).

The ability of E to separate and identify clusters with equal or nearly equal
centers is potentially an important practical advantage over geometric or cluster
center methods such as centroid, median, or Ward’s minimum variance methods.
In [58], simulations showed that E-clustering effectively recovers the underlying
hierarchical structure in several different scenarios, including high dimensional
data, and data with attributes on different scales. Moreover, in an example clus-
tering simulated normal data with different covariance but nearly equal means, E
outperformed six standard methods compared. Overall in our empirical results
the theoretical properties of E are indeed an advantage for certain clustering
problems, without sacrificing the good properties of Ward’s minimum variance
method for separating spherical clusters.

7. Distance Correlation: Measuring Dependence and the Energy Test
of Independence

In this section we focus on dependence coefficients distance covariance and
distance correlation introduced in [62] that measure all types of dependence
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between random vectors X and Y in arbitrary dimension. The corresponding
energy statistics have simple computing formulae, and they apply to sample
sizes n ≥ 2 (n can be much smaller than dimension).

To quote Newton [38]

Distance covariance not only provides a bona fide dependence mea-
sure, but it does so with a simplicity to satisfy Don Geman’s ele-
vator test (i.e., a method must be sufficiently simple that it can be
explained to a colleague in the time it takes to go between floors on
an elevator!).

The distance covariance statistic is computed as follows. First we compute
all of the pairwise distances between sample observations of the X sample, to
get a distance matrix. Similarly compute a distance matrix for the Y sample.
Next, we center the entries of these distance matrices so that their row and
column means are equal to zero. A very simple formula (7.10) accomplishes
the centering. Now take the centered distances Ak` and Bk` and compute the
sample distance covariance as the square root of

V2
n =

1

n2

n∑
k, `=1

Ak`Bk`.

The statistic Vn converges almost surely to distance covariance (dCov),
V(X,Y ), to be defined below, which is always non-negative and equals zero
if and only if X and Y are independent. Once we have dCov, we can define
distance variance (dVar), and distance correlation (dCor) is computed as the
normalized coefficient analogous to Pearson correlation ρ.

Pearson product-moment covariance measures linear dependence and in the
bivariate normal case ρ = 0 is equivalent to independence. For the multivariate
normal distribution, diagonal covariance matrix implies independence, but the
converse does not hold in general. More generally, in the case of quadrant depen-
dent random variables (including the multivariate normal), zero correlation(s)
are equivalent to (mutual) independence [26]. In general, however, Pearson cor-
relation and covariance do not characterize independence. Distance covariance
and distance correlation are more general measures of independence as they do
characterize independence of random vectors.

Classical inference based on normal theory tests the hypothesis of multivari-
ate independence via a likelihood ratio statistic based on the covariance matrix
of (X,Y ) or their marginal ranks. These tests are not consistent against general
alternatives, because like correlation measures, the statistics measure linear or
monotone association. The distance covariance energy test is based on measur-
ing the difference between the joint and marginal characteristic functions, thus
it characterizes independence. For other recent consistent tests of bivariate or
multivariate independence see e.g. [11, 16, 17].

In the special case when (X,Y ) are jointly distributed as bivariate normal,
distance correlation (R) is a deterministic function of Pearson correlation ρ =
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ρ(X,Y ) [62, Theorem 7]:

R2(X,Y ) =
ρ arcsin ρ+

√
1− ρ2 − ρ arcsin ρ

2 −
√

4− ρ2 + 1

1 + π/3−
√

3
.

Note that R(X,Y ) ≤ |ρ(X,Y )| with equality when ρ = 0 or ρ = ±1.

7.1. Definitions of distance covariance and distance correlation

In this section, we suppose that X in Rp and Y in Rq are random vectors,
where p and q are positive integers. If f̂

X
and f̂

Y
denote the characteristic

functions of X and Y , respectively, and their joint characteristic function is
denoted f̂

X,Y
, then X and Y are independent if and only if f̂

X,Y
= f̂

X
f̂
Y

.
We define the ‖·‖w-norm for complex functions γ defined on γ : Rp×Rq 7→ R

in the weighted L2 space of functions on Rp+q by

‖γ(t, s)‖2w =

∫
Rp+q

|γ(t, s)|2w(t, s) dt ds, (7.1)

where w(t, s) is an arbitrary positive weight function for which the integral
above exists.

Distance covariance is defined as a measure of the distance between f̂
X,Y

and f̂
X
f̂
Y

: it is the non-negative square root of

V2(X,Y ;w) = ‖f̂
X,Y

(t, s)− f̂
X

(t)f̂
Y

(s)‖2w

=

∫
Rp+q

|f̂
X,Y

(t, s)− f̂
X

(t)f̂
Y

(s)|2w(t, s) dt ds,

where w is a suitable weight function. The choice of weight function is critical
to obtaining a distance covariance with the properties one would require for a
useful measure of dependence.

We also define (analogous to variance)

V2(X;w) = V2(X,X;w) = ‖f̂
X,X

(t, s)− f̂
X

(t)f̂
X

(s)‖2w

=

∫
R2p

|f̂
X,X

(t, s)− f̂
X

(t)f̂
X

(s)|2w(t, s) dt ds.

A standardized version of V(X,Y ;w) is

Rw =
V(X,Y ;w)√
V(X;w)V(Y ;w)

,

which is an unsigned “correlation” coefficient.
Our definitions above are rotation invariant. We further require that Rw

be scale invariant. This will follow if we require that Vw be scale equivariant.
This property holds if the weight function w is proportional to the reciprocal of
|t|1+pp |s|1+qq (see (7.2)–(7.3)). In [60] it was proved that the distance covariance
weight function is unique. That is, scale invariance and rigid motion invariance,
along with natural technical conditions such as integrability of the weight func-
tion, imply the uniqueness of w. Thus, in the following definitions, the weight
function w(t, s) = (cpcq|t|1+pp |s|1+qq )−1 is applied, where cp, cq are given by (2.7).
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Definition 3. The distance covariance between random vectors X and Y
with finite first moments is the nonnegative number V(X,Y ) defined by

V2(X,Y ) = ‖f̂
X,Y

(t, s)− f̂
X

(t)f̂
Y

(s)‖2

=
1

cpcq

∫
Rp+q

|f̂
X,Y

(t, s)− f̂
X

(t)f̂
Y

(s)|2

|t|1+pp |s|1+qq

dt ds. (7.2)

If E|X|p < ∞ and E|Y |q < ∞ then by Lemma 1 and by Fubini’s theorem
we can evaluate

V2(X,Y ) = E[|X −X ′|p|Y − Y ′|q] + E|X −X ′|pE|Y − Y ′′|q
− 2E[|X −X ′|p|Y − Y ′′|q], (7.3)

where (X,Y ), (X ′, Y ′), and (X ′′, Y ′′) are iid.
Distance variance is defined as the square root of

V2(X) = V2(X,X) = ‖f̂
X,X

(t, s)− f̂
X

(t)f̂
X

(s)‖2.

By definition of the norm ‖ · ‖, it is clear that V(X,Y ) ≥ 0 and V(X,Y ) = 0
if and only if X and Y are independent.

Definition 4. The distance correlation (dCor) between random vectors X
and Y with finite first moments is the nonnegative number R(X,Y ) defined by

R2(X,Y ) =

{
V2(X,Y )√
V2(X)V2(Y )

, V2(X)V2(Y ) > 0;

0, V2(X)V2(Y ) = 0.
(7.4)

The energy dependence statistics are defined as follows. The sample distance
covariance statistic V2

n(X,Y) introduced at the beginning of this section has a
simple form (7.11). It is equivalent to the following definition.

Let f̂n
X

(t), f̂n
Y

(s), and f̂n
X,Y

(t, s) denote the empirical characteristic functions
of the samples X, Y, and (X,Y), respectively. It is natural to consider a statistic
based on the L2 norm of the difference between the empirical characteristic
functions; that is, to substitute the empirical characteristic functions for the
characteristic functions in the definition of the norm (7.1).

A key result [62, Theorem 1] is the following:
If (X,Y) is a random sample from the joint distribution of (X,Y ), then

‖f̂n
X,Y

(t, s)− f̂n
X

(t)f̂n
Y

(s)‖2 = S1 + S2 − 2S3, (7.5)

where

S1 =
1

n2

n∑
k,`=1

|Xk −X`|p|Yk − Y`|q, (7.6)

S2 =
1

n2

n∑
k,`=1

|Xk −X`|p
1

n2

n∑
k,`=1

|Yk − Y`|q, (7.7)

S3 =
1

n3

n∑
k=1

n∑
`,m=1

|Xk −X`|p|Yk − Ym|q, (7.8)
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and
V2
n(X,Y) = S1 + S2 − 2S3, (7.9)

where V2
n(X,Y) is given by (7.11) defined below.

For a random sample (X,Y) = {(Xk, Yk) : k = 1, . . . , n} of n iid random
vectors (X,Y ) from the joint distribution of random vectors X in Rp and Y in
Rq, compute the Euclidean distance matrices (ak`) = (|Xk −X`|p) and (bk`) =
(|Yk − Y`|q). Define the centered distances

Ak` = ak` − āk. − ā. ` + ā.. , k, ` = 1, . . . , n, (7.10)

where

āk. =
1

n

n∑
`=1

ak`, ā. `,=
1

n

n∑
k=1

ak`, ā.. =
1

n2

n∑
k, `=1

ak`.

Similarly, define Bk` = bk` − b̄k. − b̄. ` + b̄.., for k, ` = 1, . . . , n.
The sample distance covariance Vn(X,Y) and sample distance correlation

Rn(X,Y) are defined by

V2
n(X,Y) =

1

n2

n∑
k, `=1

Ak`Bk` . (7.11)

and

R2
n(X,Y) =

{
V2
n(X,Y)√
V2
n(X)V2

n(Y)
, V2

n(X)V2
n(Y) > 0;

0, V2
n(X)V2

n(Y) = 0,

respectively, where the sample distance variance is defined by

V2
n(X) = V2

n(X,X) =
1

n2

n∑
k, `=1

A2
k` .

As a corollary we have that V2
n(X,Y) ≥ 0, V2

n(X) ≥ 0.
One can also show [62, Theorem 2] that we have the almost sure convergence:

lim
n→∞

Vn(X,Y) = V(X,Y );

lim
n→∞

R2
n(X,Y) = R2(X,Y ).

Under independence nV2
n(X,Y) converges in distribution to a quadratic form

Q
D
=
∑∞
j=1 λjZ

2
j , where Zj are independent standard normal random variables,

and {λj} are nonnegative constants that depend on the distribution of (X,Y )
[62, Theorem 5]. (For more details on λj see Section 8.) Under dependence of
(X,Y ), nV2

n(X,Y)→∞ as n→∞, hence a test that rejects independence for
large nV2

n is consistent against dependent alternatives.
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On the definition of population distance covariance. Population distance co-
variance of random vectors X and Y with finite expectations can alternately be
defined along the same lines as the sample distance covariance. For a pair of
vectors x, x′ ∈ Rp, and a random vector X ∈ Rp, introduce the notation

mX(x) := E[|X − x|p], mX := E[mX(X)],

and
dX(x, x′) := |x− x′|p −mX(x)−mX(x′) +mX ,

which is a doubly centered distance analogous to (7.10). Then an equivalent
definition of population distance covariance is

V2(X,Y ) = E[dX(X,X ′) dY (Y, Y ′)], (7.12)

which may be heuristically easier to understand than (7.3).
Distance covariance and distance correlation can be extended via (7.2),

(7.11) and (7.12) to measure dependence of several random variables. For exam-
ple, dCor(X,Y, Z) measures the mutual dependence of X,Y, Z. The definition
and theory of partial distance correlation, however, is more complex; it will be
addressed in a forthcoming paper.

Some other important properties of distance covariance are

i. V(a1 + b1C1X, a2 + b2C2Y ) =
√
|b1b2| V(X,Y ), for all constant vectors

a1 ∈ Rp, a2 ∈ Rq, scalars b1, b2 and orthonormal matrices C1, C2 in Rp

and Rq, respectively.

ii. Distance covariance is not covariance of distances, but (applying (7.3)) it
can be expressed in terms of Pearson’s covariance of distances as:

V2(X,Y ) = Cov(|X −X ′|p, |Y − Y ′|q)− 2 Cov(|X −X ′|p, |Y − Y ′′|q).

It is interesting to note that Cov(|X−X ′|p, |Y −Y ′|q) = 0 does not imply
independence of X and Y . Indeed, there is a simple 2-dimensional random
variable (X,Y ) such that X and Y are not independent, but |X−X ′| and
|Y − Y ′| are uncorrelated.

Some additional properties of distance variance are:

i. V(X) = 0 implies that X = E[X], almost surely.

ii. Vn(X) = 0 if and only if every sample observation is identical.

iii. If X and Y are independent, then V(X + Y ) ≤ V(X) + V(Y ). Equality
holds if and only if one of the random vectors X or Y is constant.

iv. V(a + bCX) = |b|V(X), for all constant vectors a in Rp, scalars b, and
p× p orthonormal matrices C.

In addition to the properties stated above for distance correlation, we have

i. 0 ≤ Rn(X,Y) ≤ 1.
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ii. Rn(X,Y) = 1 implies that the dimensions of the linear subspaces spanned
by X and Y respectively are almost surely equal, and if we assume that
these subspaces are equal then in this subspace

Y = a+ bXC

for some vector a, non-zero real number b and orthogonal matrix C.

See [62] and [59] for proofs of these results and other properties. Also see Dueck,
Edelmann, Gneiting, and Richards [10] on affine invariant distance correlation.

Expected value of distance covariance. The statistic V2
n(X,Y ) is asymptotically

unbiased for V2(X,Y ). Under independence of X and Y ,

E[V2
n(X,Y)] =

n− 1

n2
E|X −X ′||Y − Y ′|.

In general, one can derive that

E[V2
n(X,Y)] =

(n− 1)(n− 2)2

n3
V2(X,Y ) +

2(n− 1)2

n3
γ − (n− 1)(n− 2)

n3
αβ,

where γ = E|X −X ′||Y − Y ′|, α = E|X −X ′|, and β = E|Y − Y ′|. Here

γ̂ =
1

n(n− 1)

n∑
i,j=1

aijbij ; α̂β =
1

n(n− 1)(n− 2)(n− 3)

n∑
i,j=1

∑
k,m/∈{i,j}

aijbkm,

are unbiased estimators of γ and αβ, respectively, and the statistic

U2
n(X,Y ) =

1

(n− 1)(n− 2)2

(
n3V2

n(X,Y )− 2

n

n∑
i,j=1

aijbij

+
1

n(n− 3)

n∑
i,j=1

∑
k,m/∈{i,j}

aijbkm

)

is unbiased for V2(X,Y ). A simpler and faster computing formula for an unbi-
ased estimator of V2(X,Y ) is

U2
n(X,Y ) =

1

n(n− 1)

n∑
i,j=1

aijbij +

n∑
i,j=1

aij(b·· − 2bi· − 2b·j + 2bij)

n(n− 1)(n− 2)(n− 3)

− 2

n∑
i,j=1

aij(bi· − bij)
n(n− 1)(n− 2)

,

where bi·, b·j , b·· are the row i sum, column j sum, and grand sum, respectively
of the distance matrix (bij).

These results apply in arbitrary dimensions. In addition, for high dimen-
sional problems, one can apply an alternate type of correction for bias and
obtain a distance correlation t-test of independence [61].
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Example 4 (Measuring non-linear dependence). In this example, which orig-
inally appeared in [59], we illustrate how to isolate the nonlinear dependence
between random vectors to test for nonlinearity. The bivariate data follow the
Gumbel bivariate exponential distribution, which has density function

f(x, y; θ) = [(1 + θx)(1 + θy)] exp(−x− y − θxy), x, y > 0; 0 ≤ θ ≤ 1.

Here the marginal distributions are standard exponential, so there is a nonlinear,
but monotone dependence relation between X and Y . The conditional densities
have the form

f(y|x) = e−(1+θx)y[(1 + θx)(1 + θy)− θ], y > 0.

The correlation between X and Y depends on θ. If θ = 0 then ρ = ρ(X,Y ) = 0,
and it is easy to check that independence holds. If θ = 1 then ρ = −0.40365.

Random samples from the Gumbel bivariate exponential were generated with
θ = 0.5. Empirical power of dCov and correlation tests are compared in Figure
4 for sample sizes varying from 10 to 300 (10,000 replications for each n =
10, 20, . . . ). Figure 4(a) reveals that the distance correlation test and correlation
test are comparable in power against this alternative. This is not surprising
because E[Y |X = x] = (1 + θ + xθ)/(1 + xθ)2 is monotone. In this example
the rank tests (rank-dCov and Spearman correlation test) were also applied
after first transforming the X and Y samples to ranks.

One of the great advantages of distance correlation is that it can detect
all types of dependence, including any non-linear or non-monotone association.
We can effectively use this property to measure the lack-of-fit of a linear model,
which is illustrated next.

Although we cannot split the dCor or dCov coefficient into linear and non-
linear components, we can extract the linear component from the data first by
regressing Y on X, and then compute dCor on the residuals. Then we can sepa-
rately analyze the linear and nonlinear components of bivariate or multivariate
dependence relations.

To extract the linear component of dependence, first we fit a linear model
Y = Xβ+ε to the sample (X,Y) by ordinary least squares. We can then apply
the dCov test of independence to (X, ε̂).

The results are illustrated for our Gumbel bivariate exponential (θ = 0.5)
data in Figure 4(b). The power of dCov tests is increasing to 1 with sample size,
which demonstrates consistency against the nonlinear dependence that remains
in the residuals of the linear model.

This “lack-of-fit” procedure for a linear model is easily applied in arbitrary
dimension. One can fit a linear multiple regression model to extract the linear
component of dependence. One could also apply this method to a model with a
multivariate response. This has important practical application for evaluating
models in higher dimension. �

In addition to testing independence or non-linearity, there are several other
important applications. In [59], dCov statistics were applied to identify in-
fluential observations. Distance covariance has been applied by Matteson and
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Figure 4: Power comparison of distance covariance and correlation tests at 10% significance
level for Gumbel’s bivariate exponential distribution. In (a) the null is H : X,Y are indepen-
dent; (b) tests of independence of X and ε̂, where ε̂ are residuals of the regression of Y on X.

Tsay for independent component analysis [32]. Li, Zhong, and Zhu [28] applied
distance correlation for feature screening for ultra-high dimensional data. For
another interesting application of distance correlation see Kong, Klein, Klein,
Lee and Wahba [24].

7.2. Generalization of distance covariance for heavy tailed distributions

Based on Lemma 1 one can easily generalize the definition of distance co-
variance to α-distance covariance as follows:

Definition 5. For 0 < α < 2, and random vectors random vectors X and Y
such that E(|X|α+|Y |α) <∞, define the α-distance covariance dCovα(X,Y )

as the nonnegative square root of V2(α)

(X,Y ) defined by

V2(α)

(X,Y ) =
1

C(p, α)C(q, α)

∫
Rp+q

|f̂
X,Y

(t, s)− f̂
X

(t)f̂
Y

(s)|2

|t|α+pp |s|α+qq

dt ds (7.13)

If E|X|αp <∞ and E|Y |αq <∞ then

V2(α)

(X,Y ) = E[|X −X ′|αp |Y − Y ′|αq ] + E|X −X ′|αpE|Y − Y ′|αq
− E[|X −X ′|αp |Y − Y ′′|αq ]− E[|X −X ′′|αp |Y − Y ′|αq ]. (7.14)

Based on this generalized distance covariance, we can generalize distance
correlation. It is clear that α = 1 corresponds to distance correlation (7.4).

Interestingly, if the α-distance correlation is computed from the α-distance
covariance when α = 2, and p = q = 1, then the distance covariance in (7.14) is

E|X −X ′|2|Y − Y ′|2 + E|X −X ′|2E|Y − Y ′|2

− E|X −X ′|2E|Y − Y ′′|2 − E|X −X ′′|2E|Y − Y ′|2.
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From this formula one can easily show that the (α = 2)-distance correlation is
exactly the same as the absolute value of Pearson’s correlation ρ(X,Y ) in the
bivariate case. This correlation ρ cannot be expressed in terms of characteristic
functions, like in (7.13), and in fact we know that ρ = 0 does not imply inde-
pendence. Despite this fact, both distance correlation and the absolute value of
Pearson’s correlation are special cases of generalized α-distance correlation.

By this generalization, note that one can apply distance covariance to test
independence of distributions that do not have finite variance. For example,
financial data are often modeled by stable distributions; in this case one can
choose α such that E|X −X ′|2α <∞ (see [64] for a proof) and an energy test
can be applied.

We have applied the corresponding generalization in energy goodness-of-fit
for Pareto family [44], Cauchy and stable distributions [64]. For the case of
Pareto with α < 1 or non-Gaussian stable distribution, our statistic can be
applied using a smaller value of α. (If variance is finite, then we do not find
that different choices of α in (0, 2) have significantly different performance in
terms of power.)

7.3. Brownian covariance

There is a very interesting duality between distance covariance and a co-
variance with respect to a stochastic process, defined below. We will see that
when the stochastic process is Brownian motion (Wiener process) the Brownian
covariance coincides with distance covariance (α = 1). For more details see
[59]. See also the discussion of Genovese [14]. One can show that fractional
Brownian motion-covariance with Hurst parameter H corresponds to general-
ized distance covariance (7.13) with exponent α = 2H. (On fractional Brownian
motion see e.g. [20].) When the stochastic process is identity, we obtain classical
product-moment covariance.

To motivate Definition 6, first, consider two real-valued random variables
X,Y . The square of their ordinary covariance can be written

E2[(X−E(X))(Y − E(Y ))]

= E[(X − E(X))(X ′ − E(X ′))(Y − E(Y ))(Y ′ − E(Y ′))].

Now define the square of conditional covariance, given two real-valued stochas-
tic processes U(·) and V (·). If X ∈ R and {U(t) : t ∈ R} is a real-valued
stochastic process, independent of X, define the U -centered version of X:

XU = U(X)−
∫ ∞
−∞

U(t) dFX(t) = U(X)− E[U(X) |U ],

whenever the conditional expectation exists. Notice that Xid = X − E[X],
where id is identity.

Next consider a two-sided, one-dimensional Brownian motion (Wiener pro-
cess) W with expectation zero and covariance function

|s|+ |t| − |s− t| = 2 min(s, t), t, s ≥ 0.
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(This is twice the covariance of the standard Brownian motion.)

Definition 6. The Brownian covariance of two real-valued random variables X
and Y with finite first moments is a nonnegative number defined by its square

W2(X,Y ) = Cov2
W (X,Y ) = E[XWX

′
WYW ′Y

′
W ′ ],

where (W,W ′) does not depend on (X,Y,X ′, Y ′).

If W in CovW is replaced by the (non-random) identity function id, then
Covid(X,Y ) = |Cov(X,Y )| is the absolute value of product-moment covariance.

Definition 6 can be extended to random processes and random vectors in
higher dimension; see [59] for details. The Brownian variance is defined by

W(X) = VarW (X) = CovW (X,X),

and Brownian correlation is

CorW (X,Y ) =
W(X,Y )√
W(X)W(Y )

whenever the denominator is not zero; otherwise CorW (X,Y ) = 0.
It was proved [59, Theorem 7] that CovW (X,Y ) exists for random vectors

X and Y with finite second moments:
We collect generalizations of distance covariance to Brownian covariance and

distance covariance of Gaussian processes in the following theorem that is split
into three parts for readability.

Theorem 1 (i). If X is an Rp-valued random variable, Y is an Rq-valued
random variable, and E(|X|+|Y |) <∞, then E[XWX

′
WYW ′Y

′
W ′ ] is nonnegative

and finite, and

W2(X,Y ) = E[XWX
′
WYW ′Y

′
W ′ ]

= E|X −X ′||Y − Y ′|+ E|X −X ′|E|Y − Y ′|
− E|X −X ′||Y − Y ′′| − E|X −X ′′||Y − Y ′|, (7.15)

where (X,Y ), (X ′, Y ′), and (X ′′, Y ′′) are iid.

If we compare Theorem 1(i) and (7.3), there is a surprising coincidence:
Brownian covariance is equal to distance covariance; that is,W(X,Y ) = V(X,Y )
in arbitrary dimension. See [59, Theorem 8] for the proof of Theorem 1(i).

Now consider the Lévy fractional Brownian motion {W d
H(t), t ∈ Rd} with

Hurst index H ∈ (0, 1), which is a centered Gaussian random process with
covariance function

E[W d
H(t)W d

H(s)] = |t|2H + |s|2H − |t− s|2H , t, s ∈ Rd.

The following generalization of Theorem 1 follows by application of Lemma 1
(see [59]).

27



Theorem 1 (ii). Let WH and W ′H∗ denote independent fractional Brownian
motion processes with Hurst index H, and suppose that X ∈ Rp, Y ∈ Rq,
E|X|hp < ∞, E|Y |h∗q < ∞, and (X,Y ), (X ′, Y ′), (X ′′, Y ′′) are independent.
Then for 0 < H, H∗ ≤ 1, h := 2H, and h∗ := 2H∗, we have

Cov2

Wp
H ,W

′q
H∗

(X,Y ) =
1

C(p, h)C(q, h∗)

∫
Rq

∫
Rp

|f(t, s)− f(t)g(s)|2 dt ds
|t|p+hp |s|q+h∗q

= E|X −X ′|hp |Y − Y ′|h
∗

q + E|X −X ′|hpE|Y − Y ′|h
∗

q

− E|X −X ′|hp |Y − Y ′′|h
∗

q − E|X −X ′′|hp |Y − Y ′|h
∗

q . (7.16)

Observe that when h = h∗ = 1, (7.16) is equation (7.15) of Theorem 1(i).
That is, we have Brownian motion and Brownian covariance when H = 1/2 and
α = 1.

One can also generalize the notion of Brownian covariance to define a dis-
tance covariance for more general Gaussian processes.

Definition 7. Let φi, i = 1, 2 be two conditionally negative definite continuous
symmetric functions from R to R, such that Eφi(|X −X ′|) <∞ and Eφi(|Y −
Y ′|) < ∞. Consider the zero mean Gaussian processes (Gaussian fields) Gi
with covariance functions ki(s, t) = φi(|s|) + φi(|t|)− φi(|s− t|). The (squared)
distance covariance of X and Y with respect to G1 and G2 is defined

Cov2G1,G2
(X,Y ) := E[XG1

X ′G1
YG2

Y ′G2
], (7.17)

where (X,Y ), (X ′, Y ′), and (X ′′, Y ′′) are iid.

Theorem 1 (iii). In Definition 7,

Cov2G1,G2
(X,Y ) = E[XG1

X ′G1
YG2

Y ′G2
] (7.18)

is nonnegative, finite, and

Cov2G1,G2
(X,Y ) = Eφ1(|X−X ′|)φ2(|Y −Y ′|) + Eφ1(|X−X ′|)Eφ2(|Y −Y ′|)
− Eφ1(|X−X ′|)φ2(|Y −Y ′′|)− Eφ1(|X−X ′′|)φ2(|Y −Y ′|).

In addition to the functions k(s, t) = |t|2H + |s|2H − |t − s|2H (fractional
Brownian motion), important examples of conditionally negative definite func-
tions include the negative logarithm of the symmetric Laplace characteristic
function, log(1 + |t|2). The covariance function of the corresponding Gaussian
process is

k(s, t) = constant× log

(
(1 + |s|2)(1 + |t|2)

1 + |s− t|2

)
.

This process (field) can be called a Laplace-Gaussian process. Another ex-
ample is the negative logarithm of the characteristic function of the difference
of two iid Poisson variables. The corresponding φi(t) = cos t− 1 and

k(s, t) = cos s+ cos t− cos(s− t)− 1,

and this process can be called a Poisson-Gaussian process. Details on proof and
application of Theorem 1(iii) will be published elsewhere.
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Remark 1. If Φi, i = 1, 2 denotes the centered version of φi such that the
conditional expectations E(Φ1(X −X ′)|X) and E(Φ2(Y − Y ′)|Y ) are equal to
zero with probability one, then the Gaussian distance covariance is

Cov2G1,G2
(X,Y ) = E[Φ1(X −X ′)Φ2(Y − Y ′)]. (7.19)

For the proof of a similar claim see Lyons [29].

7.4. Dependent observations

So far in this paper we have assumed that the observations are iid, but this
is a stronger assumption than necessary. In fact it is sufficient to suppose that
the sample {Xi : i = 0,±1,±2, . . . } is strongly stationary and ergodic. To see
this, observe that the conditional negative definiteness of φ : Rd → R implies
that the kernel

h(x, y) = hφ(x, y) := Eφ(x−X) + Eφ(y −X)− Eφ(X −X ′)− φ(x− y)

is positive semidefinite. If Eh(X,X ′) < +∞, then under the null hypothesis
that in the definition of the kernel h the observations have the same distribution
as X, we have that

E[h(x,Xn)|X1, X2, ..., Xn−1] = 0, n = 1, 2, ...

almost surely (a.s.) with respect to the probability distribution of X. This
implies that E[h(x,X)] = 0 a.s. Thus the kernel h is degenerate, but in fact we
have more: a martingale difference type property. If we suppose that φ is also
symmetric and continuous as in Proposition 3, then by Theorem 1 of Leucht
and Neumann [27] we have that the asymptotic distribution of the V -statistic
with kernel h is of the same type as if the sample elements were iid: a quadratic
form Q (8.2) of iid standard normal random variables.

It is also true that the strong law of large numbers applies to the correspond-
ing energy statistics (Aaronson, et al. [1, Theorem U]). This means that we can
apply energy tests even if the sample elements are not iid, but only strongly
stationary and ergodic, which is a standard regularity condition for time series,
stochastic processes and random fields.

On the other hand, if we know that the observations are increments of a
stochastic process (or random field) X(t) with stationary increments, such that
E[X(t)] = 0 and φ(t− s) := V ar(X(t)−X(s)), t, s ∈ Rd, then φ is symmetric
and conditionally negative definite (because Var(

∑
1≤i≤n ciX(ti)) ≥ 0 ). If φ is

also continuous, then by Proposition 3 it is natural to apply the corresponding
generalized energy kernel, hφ(x, y), for statistical tests. In case of Brownian
distance covariance we had iid observations and X(t) was Brownian motion. For
general Gaussian distance covariance (Definition 7), it makes sense to choose
the Gaussian processes with φ(t) = Var(X1 + · · ·+Xt), which implies that for
the corresponding covariance function k(s, t) we have

2k(s, t) = 2E[X(t)X(s)]

= E[X(t)2] + E[X(s)2]− E[X(t)−X(s)]2 = φ(t) + φ(s)− φ(t− s).
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We also have the converse identity for computing φ from k:

φ(t− s) = k(t, t) + k(s, s)− 2k(s, t).

Theoretical foundation for degenerate kernel V -statistics (directly relevant
to energy statistics for dependent observations) is found in the recent work of
Leucht and Neumann [27]. For time series, definitions of an “auto” distance
correlation analogous to auto correlation have been considered by Matteson
and Tsay [32], Rémillard [41], and Zhou [67].

8. Statistical Potential and Kinetic Energy

Energy is one of the most fundamental concepts in science. Energy is the
capacity of an item to do work, the capacity of acting. Potential energy is the
general name of energy which has to do with the location of an object relative
to something else, as in Newton’s potential energy. If µ is a mass distribution
or a probability distribution in R3, x ∈ R3, and y ∈ R3, the Newton potential
function of µ is defined by the formula

u(x) =

∫
R3

dµ(y)

|x− y|
,

where | · | denotes Euclidean distance. The potential energy function measures
the energy necessary to move one unit mass from the location x to infinity in
a gravitational space with mass distribution µ. The same formula describes
Coulomb’s electrostatic potential if µ denotes the charge distribution. As a
result, according to classical ideas, the orbits of electrons in atoms are similar to
the gravitational orbits in the solar system. The kernel γ(x, y) = |x−y|−1 = r−1,
where r = |x − y| is traditionally called Green’s function. If the exponent of r
is not −1 but 2, then we get the law of elasticity (Hooke’s law) where the force
(the negative gradient of the potential) is proportional to the stretching (r) of
a solid body, e.g. of a spiral spring. Thus in physics both positive and negative
exponents are applicable.

For statistical applications in Rd we need the following extension.

u(α)(x) =

∫
Rd
|x− y|α dµ(y) = E|x− Y |α,

where α ∈ R, E is the expected value, and Y is a random variable with distri-
bution µ and finite absolute α-moment.

Now let us revisit the goodness-of-fit problem based on the statistical energy
En of samples of size n in the ‘field’ of a given probability distribution (null
distribution), the distribution of a random vector X.

To apply E for univariate or multivariate goodness-of-fit tests of the null
hypothesis H0 : X ∼ F0, the energy statistic En (4.1) is a V -statistic with
kernel h : Rd ×Rd → R defined by

h(x, y) = E|x−X|+ E|y −X| − E|X −X ′| − |x− y|. (8.1)
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By the law of large numbers for V -statistics (see e.g. [50] or [25]), we have

lim
n→∞

En = E[h(X,X ′)]

with probability one. Applying Proposition 1 we see that E(F, F0) > 0 whenever
H0 : F = F0 is false. Hence under an alternative hypothesis nEn → ∞ with
probability one, as n→∞.

On the other hand, if H0 is true, then the kernel h is degenerate; that is,
E[h(x,X)] = 0 for almost all x ∈ Rd. Thus nEn has a finite limit distribution
under the extra condition E[h2(X,X ′)] < ∞ (see [50] or [25, Theorem 5.3.1]).
This result combined with the property that nEn → ∞ under the alternative,
shows that tests can be constructed based on En that are consistent against
general alternatives.

Under the null hypothesis, if E[h2(X,X ′)] < ∞, the limit distribution of
nEn is a quadratic form

Q =

∞∑
k=1

λkZ
2
k (8.2)

of iid standard normal random variables Zk, k = 1, 2, . . . [25, Theorem 5.3.1].
The nonnegative coefficients λk are eigenvalues of the integral operator with
kernel h(x, y), satisfying the Hilbert-Schmidt eigenvalue equation∫

Rd
h(x, y)ψ(y) dF (y) = λψ(x). (8.3)

We will call the eigenvalues λ the statistical potential energy levels.
The kernel h is symmetric (h(x, y) = h(y, x)), hence the eigenvalues are real.

Since |x − y| is conditionally negative definite, one can easily see that h(x, y)
is positive semidefinite, and thus all eigenvalues in (8.3) are nonnegative. It is
also known that their sum is finite and equal to E|X −X ′|.

The kernel h is degenerate; that is,∫
h(x, y) dF (y) = 0.

Thus ψ0 = 1 is an eigenfunction with eigenvalue 0. Since eigenfunctions with dif-
ferent eigenvalues are orthogonal we have for any ψ corresponding to a nonzero
λ that ∫

ψ(y) dF (y) = 0.

For such a ψ in (8.3) the y-independent terms in h(x, y) integrate to 0 and thus
(8.3) simplifies to ∫

(E|y −X| − |x− y|)ψ(y) dF (y) = λψ(x).

In the one dimensional case, if we differentiate with respect to x we get

−
∫ b

a

sign(x− y)ψ(y) dF (y) = λψ′(x),
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where (a, b) is the support of dF . (Note that a, b can be infinite). Now letting
x→ a,

λψ′(a) = −
∫ b

a

sign(a− y)ψ(y) dF (y) =

∫ b

a

ψ(y) dF (y) = 0.

We get a similar equation for b. Therefore the boundary conditions are

ψ′(a) = ψ′(b) = 0,

and this also holds for ψ0 = 1. One more differentiation leads to

−2fψ = λψ′′,

where f = F ′. This means that for f 6= 0 and for µ := 1/λ we have the simple
eigenvalue equation

− 1

2f
ψ′′ = µψ. (8.4)

Now let us recall the time independent (stationary) Schrödinger equation of
quantum physics [49]:

− ψ′′(x)

2m
+ V (x)ψ(x) = Eψ(x).

Here ψ is the standing wave function, m is the mass of a particle, V (x) is the
potential function, and E denotes the energy level. The left hand side of (8.4)
corresponds to pure kinetic energy because the V (x)ψ(x) term is missing in
(8.4). We can thus call µ in (8.4) the statistical kinetic energy level.

We have just proved that in one dimension the statistical potential energy
level λ is the exact reciprocal of the statistical kinetic energy level µ.

The derivation of this nice property relies on the fact that (1/2)|x−y| is the
fundamental solution of the one-dimensional Laplace equation

d2

dx2
1

2
|x− y| = −δ(x− y),

where δ(·) is the Dirac delta function.
In dimension d, the fundamental solution of the d-dimensional Laplace equa-

tion, i.e. the solution of ∆φ(x) = −δ(x − y) where ∆ is the Laplace operator,
φ is a scalar function on Rd and δ is the Dirac delta, is (4π)−1|x − y|2−dd for
d > 2, and (2π)−1 log |x− y|d for d = 2. Therefore the relationship between the
statistical potential energy levels and the kinetic energy level is more complex
if d ≥ 2.

We can also compute the statistical potential energy levels by applying
Proposition 1. If the characteristic function of F is f̂ and the empirical charac-
teristic function of F is f̂n, then provided that the variance of F exists, we have
that under the null

√
n(f̂n(t)− f̂(t)) tends to a (complex) Gaussian process with

zero expected value and covariance function f̂(s− t)− f̂(s)f̂(t).

32



Now from the Karhunen-Loève expansion for Gaussian processes, we have
the following equation for the eigenvalues λ:

1

cd

∫
Rd

f̂(s− t)− f̂(s)f̂(t)

|s|(d+1)/2
d |t|(d+1)/2

d

Ψ(s) ds = λΨ(t),

where

cd = C(d, 1) =
π(d+1)/2

Γ
(
d+1
2

) .
It is known that this eigenvalue equation has a countable spectrum; that is, we
have a discrete set of solutions {λk : k = 1, 2, ...}.

For example, if f̂ is the standard normal characteristic function, then

f̂(s− t)− f̂(s))f̂(t) = e−(s
2+t2)/2[est − 1],

thus
1

cd

∫
Rd

e−(s
2+t2)/2[est − 1]

|s|(d+1)/2
d |t|(d+1)/2

d

Ψ(s) ds = λΨ(t),

where st, s2, and t2 denote inner products if d > 1.
Typically we do not know the parameters of the normal distribution but

we can standardize the sample using the sample mean and sample standard
deviation. If the characteristic function of the standardized sample is ĝn(t) and

f̂(t) denotes the standard normal characteristic function, then it is still true

that
√
n(ĝn(t)− f̂(t)) tends to a (complex) Gaussian process with zero expected

value, but one can show that the covariance function now changes to

e−(s
2+t2)/2(est − 1− st− (st)2/2).

and the eigenvalue equation becomes

1

cd

∫
Rd

e−(s
2+t2)/2(est − 1− st− (st)2/2)

|s|(d+1)/2
d |t|(d+1)/2

d

Ψ(s) ds = λΨ(t). (8.5)

After discretization of the integral one can compute approximate values
of the first few eigenvalues in (8.5). For d = 1 the approximate eigenvalues
in decreasing order are: 0.11311, 0.08357, 0.03911, 0.03182, 0.01990, 0.01698,
0.01207, 0.01060, 0.00810, . . . (computation by V. N. Rokhlin). See e.g. [47] or
[2, Ch. 4] on numerical solutions of equations of this type.

If only the mean is estimated then we just need to delete the term (st)2/2
in (8.5). For more details see [36].

9. Historical background

The notion of E-statistic or energy statistic was introduced at least as early
as the mid-1980s, in several lectures given in Budapest, Hungary, in the Soviet
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Union, and at MIT, Yale, and Columbia (for lecture notes and Technical Reports
see [51] and [53]). This topic was also the central topic of the first author’s NSA
Grant “Singular Kernel Nonparametric Tests” submitted in 2000 (NSA grant
# MDA 904-02-1-0091).

The prehistory of Proposition 2 goes back to Gel’fand and Shilov, who
showed that in the world of generalized functions, the Fourier transform of
a power of a Euclidean distance is also a (constant multiple of a) power of the
same Euclidean distance (see equations (12) and (19) for the Fourier transform
of |x|α [13, pp. 173-174]). Thus, one can extend the validity of Lemma 1 us-
ing generalized functions, but the Proposition itself is not in [13]. The duality
between powers of distances and their Fourier transforms (characteristic func-
tions) is similar to the duality between probability density functions of random
variables and their characteristic functions (especially of normal distributions
whose probability density functions have the same form as their characteristic
functions). This duality was called by Gauss a “beautiful theorem of probability
theory” (“Schönes Theorem der Wahrscheinlichkeitrechnung” [12, p. 46]). The
proof of Propositions 1, and 2 in the univariate case, appeared as early as 1989
(Székely [51]).

An important special case of Proposition 1, namely E|X +X ′| ≥ E|X −X ′|
for all real valued X and X ′ with finite expectations, was a college level contest
problem in Hungary in 1990 [52, p. 458]. Russian mathematicians also published
proofs of these propositions and their generalizations to metric spaces, and for
more general functions than Euclidean distances; see e.g. Klebanov [23]. See also
Mattner [34] and Morgenstern [37] of the Austrian-German school. It seems that
by now many versions of the energy distance of Definition 1 and Proposition
1 and its proofs have become international folklore. On applications see the
test of bivariate independence of Feuerverger [11], and the test of homogeneity
of Baringhaus and Franz [3]. See also historical comments on “Hoeffding-type
inequalities” and their generalizations in Gneiting and Raftery [15, Sec. 5.2].

In the 2000s many applications of energy statistics have appeared in the
statistics literature as well as the literature of many other disciplines. The
applications and extensions discussed in this paper represent only a subset of
recent work that has appeared.
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Appendix A. Proof of Lemma 1

First let us see the proof for α = 1. Apply an orthogonal transformation
t 7→ z = (z1, z2, . . . , zd) with z1 = (t, x)/|x| followed by a change of variables:
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s = |x| · z to get ∫
Rd

1− cos(z1|x|)
|z|d+1

dz = |x|
∫
Rd

1− cos s1
|s|d+1

ds,

where s = (s1, s2, . . . , sd). Then for s = (s1, s2, . . . , sd),

cd := C(d, 1) =

∫
Rd

1− cos s1
|s|d+1

ds =
π(d+1)/2

Γ
(
d+1
2

) .
For d = 1 see [39, p. 442]. Note that 2cd = ωd+1 is the area of the unit sphere in
Rd+1. In the general case when both d and α can differ from 1, more technical
steps are needed. Applying formulas 3.3.2.1, p. 585, 2.2.4.24 p. 298 and 2.5.3.13
p. 387 of [39], we obtain

A : =

∫
Rd−1

dz2 dz3 . . . dzd

(1 + z22 + z23 + · · ·+ z2d)
d+α

2

=
2π

d−1
2

Γ(d−12 )

∫ ∞
0

xd−2d x

(1 + x2)
d+α

2

=
π
d−1
2 Γ(α+1

2 )

Γ(d+α2 )
;

d

da

(∫ ∞
0

1− cos au

u1+α
du

)
= aα−1

∫ ∞
0

sin v

vα
dv = aα−1

√
πΓ(1− α

2 )

2αΓ(α+1
2 )

.

Introduce new variables s1 := z1, and sk := s1zk for k = 2 . . . , d. Then

C(d, α) = A×
∫ ∞
−∞

1− cos z1
|z1|1+α

dz1

=
π
d−1
2 Γ(α+1

2 )

Γ(d+α2 )
×

2
√
πΓ(1− α

2 )

α2αΓ(α+1
2 )

=
2π

d
2 Γ(1− α

2 )

α2αΓ(d+α2 )
,

and this was to be proved.
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[51] Székely, G. J. (1989). Potential and Kinetic Energy in Statistics, Lecture
Notes, Budapest Institute of Technology (Technical University).
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[57] Székely, G. J. and Rizzo, M. L. (2005a). A new test for multivariate nor-
mality, J. Multivariate. Anal., 93/1, 58–80.
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