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Fig. 1: Extreme Parkour: Low-cost robot with imprecise actuation can perform precise athletic behaviors directly from a high-dimensional
image without any explicit mapping and planning. The robot is able to long jump across gaps 2× of its own length, high jump over
obstacles 2× its own height, run over tilted ramps, and wwalk on just front two legs (handstand) – all with a single neural network
operating directly on depth from a single, front-facing camera. Parkour videos at https://extreme-parkour.github.io/.

Abstract— Humans can perform parkour by traversing
obstacles in a highly dynamic fashion requiring precise eye-
muscle coordination and movement. Getting robots to do the
same task requires overcoming similar challenges. Classically,
this is done by independently engineering perception, actuation,
and control systems to very low tolerances. This restricts
them to tightly controlled settings such as a predetermined
obstacle course in labs. In contrast, humans are able to learn
parkour through practice without significantly changing their
underlying biology. In this paper, we take a similar approach
to developing robot parkour on a small low-cost robot with
imprecise actuation and a single front-facing depth camera
for perception which is low-frequency, jittery, and prone to
artifacts. We show how a single neural net policy operating
directly from a camera image, trained in simulation with large-
scale RL, can overcome imprecise sensing and actuation to
output highly precise control behavior end-to-end. We show
our robot can perform a high jump on obstacles 2x its height,
long jump across gaps 2x its length, do a handstand and run
across tilted ramps, and generalize to novel obstacle courses
with different physical properties. Parkour videos at https:
//extreme-parkour.github.io/.

I. INTRODUCTION

Parkour is a popular athletic sport that involves humans
traversing obstacles in a highly dynamic manner like running

*equal contribution.

on walls and ramps, long coordinated jumps, and high jumps
across obstacles. This involves remarkable eye-muscle coor-
dination since missing a step can be fatal. Further, because
of the large torques exerted, human muscles tend to operate
at the limits of their ability and limbs must be positioned in
such a way as to maximize mechanical advantage. Hence,
margins for error are razor thin, and to execute a successful
maneuver, the athlete needs to make all the right moves.
Understandably, this is a much more challenging task than
walking or running and requires years of practice to master.
Replicating this ability in robotics poses a massive software
as well as hardware challenge as the robot would need
to operate at the limits of hardware for extreme parkour.
Perception and control must be precise and tightly coupled
to execute the correct moves at the right time. The robot
should have a precise physical understanding and be able
to come up with correct moves on the fly in advance of
the obstacle because, unlike locomotion, recovering from
suboptimal behavior is not only unsafe but also makes it
impossible to do the task. For instance, jumping over a wide
gap needs enough time to generate the required momentum
to take off before the edge. Hence, classical approaches can
only do parkour when everything is pre-measured precisely,
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Method Robot Climb Gap Ramp Handstand

Rudin et. al [2] AnymalC 1.1 0.75 × ×
Hoeller et. al [3]* AnymalC 2 1.5 × ×
Zhuang et. al [4]* Unitree-A1 1.6 1.5 × ×

Extreme Parkour (ours) Unitree-A1 2 2 37◦ ✓

TABLE I: Comparison of parkour setups. Starred papers in 2nd
and 3rd row are concurrent works (recently released). The numbers
in Climb and Gap denote the relative size of obstacles with respect
to quadruped’s height and length respectively. Notably, our method
is able to push the low-cost A1 robot to extreme scenarios which
are twice the height and length of robot. Anymal is an industry-
standard high-quality robot and therefore much more expensive.

that is, placement, size, and type of obstacle course are
known and optimization is performed to decide the right
control actions at each timestep [1]. But what if any obstacle
were to move, or if the robot is asked to perform as is on
a new parkour course? All these challenges are not feasible
with such an approach.

In contrast, humans take a very different approach. A
parkour expert and novice have access to the same set
of “sensors”, and in the process of learning parkour, their
sensing capabilities are not significantly improved. Instead,
through years of trial and error, they learn to use the same
imprecise sensing and actuation to accomplish amazing feats
in in-the-wild settings. In this paper, our hypothesis is that
we can demonstrate learning parkour in a similar way on
low-cost robots.

We build upon the recent line of works that show impres-
sive results on walking and running in diverse scenarios [5]–
[14] and use the low-cost Unitree A1 hardware. However,
low cost poses a new challenge for parkour which is not
as prominent in prior walking works. Due to the noisy and
laggy action, the perception has artifacts, latency, and jitter
[9]. Hence, building a terrain map with noisy perception will
lead to large errors in the map which will throw off the action
planner. Even if the actions were correct, executing them on
laggy and noisy actuators will lead to catastrophic failure.

In addition to precise control from noisy actuation, training
extreme parkour controllers has two conceptual challenges
as well. First, the robot should have the “freedom” to
automatically adjust its heading direction depending on the
type of parkour obstacle. We found that even if a human
expert is providing the heading direction, it is sub-optimal
because in extremely long or high jumps over obstacles or
ramps, even a few degrees of error in heading leads to failure.
Second, each parkour behavior from jumping to handstand
are very different in nature, so combining them within a
single neural network is a challenging learning problem.

We address all these challenges with an end-to-end data-
driven reinforcement learning framework. A single neural
network is trained via RL in simulation to directly output
motor commands from pixels [5], [6], [10]. To allow the
robot to adjust itself as per the obstacle type at deployment,
we propose a novel dual distillation method. The policy is
first trained with a privileged heading in Phase 1 and then
distilled to predict its own heading direction in Phase 2.
As a result at deployment, the policy not only outputs agile

motor commands but also rapidly adjusts heading directions
all from input depth image. Furthermore, to allow a single
neural network to represent diverse parkour skill behaviors
we propose a simple yet effective universal reward design
principle based on inner-products. Below, we summarize the
main contributions:

• A novel dual distillation method for distilling both
agile motor commands and rapidly fluctuating heading
directions from depth images.

• A simple yet effective inner-product reward design prin-
ciple for general robot base motion acquisition, together
with an automatic terrain curriculum for overcoming
exploration burden in RL.

• Our results set a new landmark in learning-driven park-
our with high jumps that are 2x the height of the robot,
long jumps that are 2x the length of the robot, walking
on front two legs (handstand), and jumping over titled
ramps directly from a single front-facing egocentric
depth camera (see Table I).

II. RELATED WORK

Legged Locomotion. Classical approaches for locomotion
use model-based control to define walking controllers [15]–
[19] and combine them with elevation maps constructed by
fusing point cloud and odometry data [20]–[29]. However,
these controllers can struggle to generalize to situations with
widely varying physical properties such as ice or deformable
material. This has motivated the use of learned controllers
trained with RL that can adapt to changes in dynamics [11],
[30]–[35] and also leverage elevation maps [9], [36]–[39] for
perceptive walking. Building elevation maps usually requires
sophisticated sensors and causes artifacts that degrade down-
stream performance. Recent work skips the use of elevation
maps entirely and accomplishes highly robust perceptive
walking [5], [6], [10], [40]. In this paper, we generalize a
similar paradigm with key modifications to parkour.

Robotic Parkour. Most animals and humans learn loco-
motion within the first year of their life. In contrast, parkour
is more challenging and requires years to master since a
single error can lead to failure. Results on this task are
comparatively fewer although recent years have seen some
progress [1]. [2] use the classical approach of decomposing
perception into elevation mapping and use RL to train a
policy conditioned on it. Some recent work demonstrates
blind dynamic running and jumping using sim2real RL on
quadrupeds [41] and bipeds [12], [13].

Concurrent work. There are two other concurrent works.
[3] demonstrates agile behaviors by training task-specific
policies and composing them using a high-level trained
module but still relying on elevation maps. And [4] trains
an end-to-end policy that uses depth instead of elevation
map but needs a complex curriculum of first training with
soft penetration constraints in simulation followed by distil-
lation to hard constraints. They also use simplified obstacle
abstractions (type, width, height, and robot’s distance to
the obstacle) as privileged visual information. However,
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Fig. 2: Training overview. In phase 1, we use RL to learn a locomo-
tion policy with access to privileged information like environment
parameters and scandots [5] in addition to heading direction from
waypoints. We use Regularized Online Adaptation (ROA) [31] to
train an estimator to recover environmental information from the
history of observations. In phase 2, we distill from scandots into a
policy that operates from onboard depth and automatically decides
its heading (yaw) direction conditioned on the obstacle.

this type of information cannot be generalized to general
obstacle geometries. In contrast to both of these papers,
we propose a conceptually simple framework that results
in more extreme parkour behaviors. The simplicity comes
from three ideas: (i) instead of privileged abstractions, we
use scandots as privileged information that generalizes across
terrain geometries, (ii) allowing the policy to decide its
own heading at deployment depending on the obstacle. This
allows us to demonstrate the capability of jumping across
tilted ramps. And (iii) a unified general-purpose reward
principle. Furthermore, we are able to cross gaps that are
upto 2× the length of the robot and jump obstacles that are
2× its height, whereas concurrent work using the A1 robot
jumps at most 1.5× its height and 1.5× its length (Table I).

III. METHOD

We wish to train a single neural network that goes directly
from raw depth and onboard sensing to joint angle com-
mands. To train adaptive motor policies, recent approaches
use two-phase student teacher training [9], [11], [42], [43].
Later works [44], [45] introduce regularized online adap-
tation (ROA) to collapse this into a single phase. To train
the vision backbone, a similar teacher-student framework
is employed [5], [6], [10] where a teacher trained with
privileged scandots information is distilled to a student with
access to depth. In this paper, we use ROA for adaptation and
two-phase training for the vision backbone but introduce key
modifications for the challenging task of extreme parkour.

First, since parkour requires diverse behaviors to traverse
different obstacles it is challenging to engineer reward func-
tions specific to each. We present a simple, unified reward

Fig. 3: Training terrains in simulation with red dots indicating
waypoints that are used to get heading direction.

formulation from which diverse behaviors emerge automat-
ically and are perfectly adapted to the terrain geometry.
Second, during parkour the robot needs to be able to choose
its own direction as opposed to following human-specified
ones. For instance, when jumping across tilted ramps, it
needs to jump on the first ramp at a very specific angle and
then change directions immediately which is impossible for
a human to provide. Instead, we provide directions in phase
1 using suitably placed waypoints and in phase 2 we train
a network to predict these oracle heading directions from
depth information. An overview is shown in Figure 2.

A. Unified Reward for Extreme Parkour

The rewards used in [5] do not transfer directly to the
parkour case. The robot cannot follow arbitrary direction
commands and instead must have the freedom to choose the
optimal direction. Instead of randomly sampling directions,
we compute direction using waypoints placed on the terrain
(Fig. 3) as

d̂w =
p−x
∥p−x∥

(1)

where p is the next waypoint location and x is robot location
in the world frame. The velocity tracking reward is then
computed as

rtracking = min(⟨v, d̂w⟩,vcmd) (2)

where v ∈ R2 is the robot’s current velocity in world frame
and vcmd ∈ R is the desired speed. Note that [5] tracks
velocity in the base frame but world frame is used. This
is done to prevent the robot from exploiting the reward
and learning the unintended behavior of turning around the
obstacle.

While the above reward is sufficient for diverse parkour
behavior, for challenging obstacles the robot tends to step
close to the edge to minimize energy usage. This behavior is
risky and does not transfer well to real settings. We therefore
add a term to penalize foot contacts near terrain edges.

rclearance =−
4

∑
i=0

ci ·M[pi] (3)

ci is 1 if ith foot touches the ground. M is a boolean function
which is 1 iff the point pi lies within 5cm of an edge. pi is
the foot position for each leg.

The rewards defined above typically lead to a gait that
uses all four legs. However, a defining feature of parkour
is walking in different styles that are aesthetically pleasing
but may not be biomechanically optimal. To explore this
diversity, we introduce a term to track a desired forward
vector using the same inner product design principle, which
can be controlled by the operator at test time.

rstylized =W ·
[
0.5 · ⟨v̂ f wd , ĉ⟩+0.5

]2 (4)
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Fig. 4: Key frames of our robot executing a very high jump (2x its height). We note the emergent foot placement, power generated
through hind legs and climbing behavior from the front legs.

where v̂ f wd is the unit vector pointing forward along the
robot’s body, ĉ is also a unit vector indicating the desired
direction and W is a binary number to switch the reward
on/off. In our case, we train the robot to do a handstand and
choose ĉ = [0,0,−1]T . W is sampled randomly in {0,1} at
training time and controlled via remote at deployment time.

We also use the additional regularization terms from [45].

B. Reinforcement Learning from Scandots (Phase 1)

We use the above rewards to learn a policy using model-
free RL [46] in simulation. This policy takes as input, the
proprioception x, scandots m, target heading d̂, walking flag
W and commanded speed vcmd. We use regularized online
adaptation (ROA) [44] to train an adaptation module to
estimate environment properties.

We create a set of tilted ramps, gaps, hurdles and high step
terrains (Fig. 3), and arrange them in increasing difficulty as
in [5]. To aid exploration, robots are first initialized in easy
levels. They are promoted to harder ones if they traverse
more than half the length, and demoted to an easier one if
they travel less than half the expected distance vcmdT (T is
episode length).

C. Distilling Direction and Exteroception (Phase 2)

The phase 1 policy relies on two pieces of information
not directly available on the real robot. First, exteroceptive
information is only available in the form of depth images
from a front-facing camera instead of scandots. Second,
there is no expert to specify waypoints and target directions,
these must be inferred from the visible terrain geometry.
We use supervised learning to obtain a deployable policy
which automatically estimates these quantities. For extero-
ception, similar to the RMA architecture in [5] we replace
the scandots input to the base policy with a convnet-GRU
pipeline that accepts depth. This network is trained using
DAgger [47], with ground truth actions from the phase 1
policy. We use student predicted motor commands to step
the environment. We initialize the actor network with a copy
from phase 1 to minimize the drift when we directly step
the environment with student actions. However for predicted
heading, the depth encoding network is not pre-trained.
Directly using predicted heading as observation could result
in catastrophic distribution drift leading to incorrect action
labels from the teacher. To overcome this issue, we propose
to use a mixture of teacher and student (MTS). Concretely,
the heading command the student observes

obsθ =

{
θ pred, if |θ pred − d̂w|< 0.6
d̂w, otherwise

where θ pred and d̂w are the desired yaw angle from pre-
diction and oracle, respectively. obsθ is the yaw angle the
policy observes.

IV. RESULTS

A. Experimental Setup
80cm 

(2x robot)

Fig. 5: Keyframes from a long
jump (2x robot length)

We use the Unitree
A1 robot with 12 joints.
When standing, height of
the thigh joint is 26cm
and body length is 40cm.
For exteroception, we use
the Intel RealSense D435
inside the head of the
robot which captures im-
ages at 10 ± 2Hz. We
run both depth backbone
(10Hz) and the base pol-
icy (50Hz) on the Jet-
son NX and communi-
cate via UDP. The depth
server captures depth im-
ages, processes them and
passes the latent and target
direction to the base policy. We preprocess the image by
cropping dead pixels from the left hand side and downsam-
pling to 58× 87. We enforce a constant depth latency of
0.08s to prevent jitter. Specifically, we record the time from
receiving the depth image to the time before sending the
latent as tp. If tp < 0.08, we pause the program for 0.08− tp
before sending the latents. Similarly, proprioception latency
is fixed at 0.016s. The deployable policy can be trained on
a single 3090 GPU in less than 20 hours.

B. Emergent results

Our simple reward functions impose no priors and the
robot is free to learn emergent behaviors that would be
impossible to heuristically define. We illustrate three such
examples in Fig. 4, 5, 6.

High jump. Our robot is able to jump on a gym box
0.5m high (Fig. 4) which is twice the height of its hip joint.
For context, the human high jump record is 2.45m which is
roughly 2.5 times as high as the human hip joint. This feat
is only possible with highly optimized behavior. In Fig. 4
we show a breakdown. As the robot approaches the obstacle
the stride length reduces and the robot aligns its front feet
and rear feet at the correct distance from the obstacle. Next,
it kicks out its rear feet with high torque and velocity to
propel itself upwards. Simultaneously, it extends its front



Terrain Mean X-Displacement (MXD) ↑ Mean Edge Violation (MEV) ↓
Ours NoInner NoClear Noisy Ours NoInner NoClear Noisy

Hurdle 0.99±0.05 0.90±0.12 1.00±0.03 0.78±0.26 0.04±0.21 0.03±0.16 0.12±0.38 0.31±0.58
Step 0.99±0.07 0.14±0.00 1.00±0.04 0.84±0.29 0.04±0.20 0.04±0.21 0.07±0.27 0.15±0.38
Gap 0.96±0.14 0.86±0.26 0.96±0.12 0.87±0.24 0.02±0.14 0.04±0.20 0.07±0.32 0.06±0.25
Ramps 1.00±0.04 0.92±0.24 1.00±0.03 0.79±0.31 0.01±0.11 0.02±0.13 0.04±0.19 0.14±0.41

Total 0.98±0.09 0.75±0.36 0.99±0.06 0.82±0.29 0.03±0.18 0.04±0.20 0.08±0.32 0.20±0.50

TABLE II: We create a simulated obstacle course consisting of versions of each terrain arranged in increasing levels of difficulty and
measure the average displacement along x and the mean time until failure for 256 randomly spawned robots in 30s. We report the mean
maximum number of waypoints reached normalized to [0, 1] indicating the policy’s capability on different terrains, and the mean edge
violation computed by taking the average of feet contact counts on edges.

Fig. 6: Transition from quadrupedal walking to bipedal walking.

feet to clear the top of the obstacle. As soon as the front
feet touch the top of the obstacle, it uses them to pull itself
up. Next, it tucks its rear legs close to the body so they are
able to clear the object boundary and then finally shifts to a
stable walking pose.

Long jump. Our robot is able to jump across a gap 0.8m
wide (Fig. 5). This is twice the separation between its front
and rear feet. To accomplish this, similar to the high jump
case it lines up its front feet with the edge of the obstacle.
Next, it also moves its rear feet close to the edge to maximize
its jumping distance. Then it kicks back using its hind feet to
propel itself forward and upward while extending the front
ones to reach the other side. While jumping, it extends its
hind feet to maximize the duration of force application. Once
it is in midair it extends its front feet and moves the hind
ones close to them such that they both land on the far side.
After landing safely, it extends its front ones again to shift
to a normal gait.

Handstand. Our robot can seamlessly transition between
walking on four and its front two legs (Fig. 6). Bipedal
walking in general is a much harder task than quadrupedal
walking since a four legged system is more inherently stable.
For example, a quadruped in its canonical pose will remain
standing and is a stable system, however a biped will topple
unless small active adjustments are constantly made. Our
robot learns to make these adjustments and is even able to do
a handstand walk on soft deformable grass with gentle slopes
(Fig. 6). To transition into a handstand, it first bends forwards
and shifts its entire weight onto the front legs. Then, it kicks
upward with its rear legs just the right amount to move into
a vertical position. Once in the vertical position, it keeps its
rear legs in a neutral pose and makes tiny adjustments to
them to maintain balance.

C. Comparison to Baselines

We propose two sets of baselines to experimentally verify
different parts of our system. First, we test our reward design
and overall pipeline (Tab. II):

• Noisy: This simulates a system that uses an elevation
map constructed by fusing depth and odometry. As in
[5], we simulate sensor noise in the map and train the
phase 1 policy. This tests whether an end-to-end system
is more performant over a modular one that relies on
elevation mapping.

• No inner product reward (NoInner): This replaces
the inner product reward Eq. 2 with velocity tracking
in base frame used in [5].

• No feet clearance penalty (NoClear): Removes the
penalization for stepping near the edges defined in Eq. 3.

The second set of baselines is designed to test our distil-
lation setup which involves BC for the direction prediction
and dagger for actions (Tab. III).

• Both: Student always observes predicted yaw angles.
• Mask: The yaw angle observations are masked with

zeros in phase 2 and the student is trained via action
supervision to learn turning behaviors with no specified
direction command.

• Oracle: Student observes oracle yaw angles from the
waypoints. This is an upper bound on the performance.

Simulation results: For each terrain—tilted ramps, steps,
gaps and hurdles we create an obstacle course consisting of
each arranged in increasing difficulty in series. We spawn
256 robots at the beginning of the course and record the
mean x-displacement (MVD) before they fall and the average
number of times per time-step a robot steps on an edge
(mean edge violation - MEV). A larger value for the former
is desirable while a lower for the latter is desirable since
stepping on the edge is unstable in the real world.

We find that our method outperforms the baselines in terms
of both metrics. The NoInner’s behavior on hurdle terrain is
to walk around the obstacle instead of getting over it, so it has
lowest edge violation metric. It struggles especially on step
terrain because there is no way to get around the obstacle and
still get to the next waypoint. All it learns is a colliding and
retrying behavior where the robot first walk and use its feet
to bounce back from the high step and walk forward again.
NoClear achieves slightly higher performance but it places



Robot Height Robot Height Robot Length

Fig. 7: For each terrain, we run 5 trials and record the number of successes. We find that ours has 20-80% higher success rate on the
most difficult instance of each terrain. NoDir is provided direction commands via a joystick controlled by a trained human operator. It
sometimes succeeds on hurdles and gaps but fails when the human has to provide sudden direction changes which are out-of-distribution.
It also fails on tilted ramps which require sudden direction changes hard for a human to do. NoClear is trained without feet edge penalty
and therefore steps very close to the edge which is unstable and often falls. Starred is recent concurrent work [4].

MXD ↑ MEV ↓

Both 0.12±0.07 0.26±0.57
Mask 0.05±0.07 0.00±0.00
Ours 0.92±0.19 0.09±0.33

Oracle 0.94±0.19 0.10±0.32

TABLE III: Ours reaches almost the same performance as oracle
yaw angles as inputs. Both and Mask work poorly because the noisy
or masked yaw angle can lead to large drift in state distributions
from expert resulting in irrelevant data collection.

feet close to the obstacle edges which is unstable in the real
world. Noisy is able to get some performance but has very
large variance since it can rely on collisions with its legs
to sense terrain geometry and overcome noise in the map.
In addition, its feet clearance also helps it to achieve some
performance with noisy measurements. We omit the NoDir
baseline comparison in simulation since it is infeasible to
provide human joystick commands and provide real-world
comparisons instead.

Similarly, we compare against the distillation baselines
in Tab. III averaged across all terrain. We find that ours
is very close to the upper bound which receives oracle
direction commands and it does much better in terms of x
displacement as compared to Mask and Both since they fail
to converge to low loss values since the data distribution used
for imitation learning drifts significantly from the teacher.

Real-world results We compare against NoClear and
NoDir baselines in the real world. Each method is run for
5 trials on each terrain for each difficulty and the success
rate is recorded (Fig. 7). For the NoDir baseline, directions
commands are provided via joystick by a trained human
operator. We find that ours has much higher success rate
in all environments. NoDir fails on jumps and gaps when

the operator has to make last-minute yaw adjustment to
keep the robot perpendicular to the obstacle. These sudden
adjustments are out-of-distribution for the policy and it
cannot adapt fast enough, causing it to fail. We find that
NoDir is especially bad on tilted ramps since this requires
quick changes in direction which are tricky for a human to
do. The NoClear baseline without clearance reward rclearance
tends to place feet very close to the gap or cliff edge since
this minimizes energy usage. We find that this is unstable
behavior and the robot sometimes misses the edge and falls.

For the handstand walking policy, we train it without
exteroception. Despite this, we find it has strong robustness
not only on different types of terrain (indoor and outdoor),
but can also walk down the stairs using proprioception alone.

V. DISCUSSION

In this work, we show how an end-to-end data-driven
approach can scale to the challenging task of precise and
extreme parkour, even on a robot with imprecise sensing and
actuation. This is possible because of unified and general
reward structure that allows emergent behavior. While our
robot is an expert at moving around in the world, it should
also be able to manipulate objects. A promising direction
for future research is to extend this same basic approach for
mobile manipulators.
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