
Instant Block Confirmation in the Sleepy Model

Vipul Goyal1,2, Hanjun Li1, and Justin Raizes1 ?

1 Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
vipul@cmu.edu, lihanjun1212@gmail.com, jraizes@andrew.cmu.edu

2 NTT Research

Abstract. Blockchain protocols suffer from an interesting conundrum:
owning stake in the Blockchain doesn’t necessarily mean that the party
is willing to participate in day to day operations. This leads to large
quantities of stake being owned by parties who do not actually participate
in the growth of the blockchain, reducing its security. Pass and Shi [23]
captured this concern in the sleepy model, and subsequent work by Pass
et al. [5] extended their results into a full Proof of Stake blockchain
protocol which can continue to securely progress even when the majority
of parties may be offline. However, their protocol requires 10 or more
blocks to be added after a transaction first appears in the ledger for it to
be confirmed. On the other hand, existing Byzantine Agreement based
blockchain protocols such as Algorand [6, 14, 7] confirm transactions as
soon as they appear in the ledger, but are unable to progress when users
are not online when mandated.
The main question we address is:

Do there exist blockchain protocols which can continue to securely
progress even when the majority of parties (resp. stake) may be
offline, and confirm transactions as soon as they appear in the
ledger?

Our main result shows the answer to this question to be “yes”. We present
a Proof of Stake blockchain protocol which continues to securely progress
so long as more than half of the online stake is controlled by honest par-
ties, and instantly confirms transactions upon appearance in the ledger.

1 Introduction

Blockchain protocols provide significant economic and cryptographic implica-
tions, by means of the creation and maintenance of a globally agreed-upon log
in an environment with low trust. The two most popular variants of blockchain
protocols are Proof of Work (PoW) and Proof of Stake (PoS). Proof of Work un-
fortunately carries expensive hardware requirements and wastes a large amount
of energy. Proof of Stake protocols bypass the wastefulness of Proof of Work by
using the amount of stake a user owns in the system as a means for determining
whether the user can contribute to its progression.

? The authors were supported in part by the NSF award 1916939, a gift from Ripple,
a DoE NETL award, a JP Morgan Faculty Fellowship, a PNC center for financial
services innovation award, and a Cylab seed funding award.

However, this approach carries the downside of requiring users who own stake
in the system to be active in order for the system to securely progress. Since it
is more desirable to own stake in the system than it is to actively participate in
it (for instance, shareholders rarely want a say in the day-to-day operations of
a company), much of the stake present in the system may be owned by inactive
users. Current Proof of Stake protocols such as Algorand [6, 14, 7] are typically
unable to effectively deal with this problem, requiring over half of the stake
present in the system to be owned by users which are both active and honest.

Pass and Shi [23] were the first to address this problem, presenting a protocol
which could securely progress even when the majority of stake in the whole
system was owned by inactive users, so long as the majority of stake owned by
active users was owned by honest users (i.e. the “honest active stake” was over
half of the “active” stake). Their protocol was based on the follow-the-longest-
chain ideas of Nakamoto [21], which, although revolutionary, bring with them
the distinct downside of requiring a block to be “buried” beneath several others
before it is confirmed.

On the other hand, Byzantine Agreement-based blockchain protocols allow
blocks to be confirmed as soon as they are added to the chain. Unfortunately,
it is nontrivial to securely allow progression while the majority of stake may
be owned by inactive users and simultaneously scale to millions of users with
this style of protocol. Algorand [6, 14, 7] addresses the latter issue by securely
selecting a small committee to run a Byzantine Agreement protocol using a
Verifiable Random Function (VRF) [19]. As we will see later, it is difficult to
directly extend this committee approach to the heavily inactive setting, which
will pose our main challenge.

We present a new blockchain system, using Algorand as a starting point,
which allows transactions to be securely added to the ledger regardless of the
amount of stake owned by currently active users. In comparison, Algorand in
its base state cannot progress if even 40% of stake is owned by inactive users.
Furthermore, basing the mechanism on Byzantine Agreement prevents forks,
eliminating the major weakness of Sleepy Consensus [23] and its extension Snow
White [5]. While Sleepy Consensus and Snow White require 10 or more blocks
to be added after a transaction first appears in the ledger for it to be confirmed,
our approach allows transactions to be confirmed immediately upon appearing
in the ledger.

2 Technical Roadmap

2.1 Starting Point: Algorand

At a high level, in Algorand, a block is added to the chain by randomly selecting
a committee, which then runs a Byzantine Agreement protocol to decide on
the next block in a consistent manner. Since the probability of being in the
committee is proportional to the number of coins a user possesses (users may
appear multiple times in the committee if they own multiple coins), is unlikely
for a majority corrupt committee to be selected.

Concretely, each coin is associated with a Verifiable Random Function (VRF)
[19] for each round, and if its VRF is above some threshold, the owner is granted
the right to participate one additional time in the current committee. This
threshold is based on the number of coins (amount of stake) in the system,
and is set to ensure an average committee size. The larger the actual committee
size, the less likely it is to be majority-corrupt, which would allow the adversary
to break security. Therefore, Algorand does not allow a committee which is too
small to add blocks to the chain.

Unfortunately, in the sleepy model, parties do not know how much stake
is online (owned by online users) at any time, so it is not clear how to set the
threshold so as to frequently choose a committee large enough for secure progress.
Furthermore, since the adversary may control just under half of all online stake
and can selectively deliver corrupt messages to subsets of honest parties, it is
difficult to even estimate the amount of online stake by using messages from other
parties. Therefore, we will need a different approach for selecting a committee.

2.2 Selecting a Committee

To reliably choose a committee which is large enough to be majority honest with
high probability, we will build on the idea of using the n parties with the highest
VRFs seen as the committee. Though this approach ensures committee sizes
are always large enough to make them majority honest with high probability, is
obvious that not all parties are guaranteed to see the same committee.

In Algorand, players do not necessarily see the full committee, but all honest
parties will accept messages from any member of the committee, even if they
are received later. In contrast, using our committee selection procedure, the fact
that one party accepts a party i as a committee member does not imply that
another party who receives i’s message accepts i as a committee member. For
instance, if the adversary controlled 40% of the online stake, we would expect the
true list of the top n VRFs to be about 40% corrupt. If the first party receives
no corrupt VRFs, its committee will be completely honest. However, a second
party receiving all of the corrupt VRFs will replace the lower 40% of the top
n honest VRFs with corrupted VRFs. Furthermore, the second party cannot
simply extend its committee to include the first party’s committee, since it has
no way of determining that the first party is not corrupt, and corrupt parties
may pretend to see arbitrary committees.

As it is very difficult to entirely patch this flaw and guarantee that all parties
see the same committee, we will instead focus our efforts on ensuring that the
committees which are seen by various honest parties are “close enough”.

2.3 Consensus with Different Committees

Standard Byzantine Agreement protocols rely on all parties knowing the same
committee (even if they cannot directly communicate), and break down when
this is not the case.

Somewhat surprisingly, we show that the general design of Algorand’s binary
Byzantine Agreement protocol does work with our committee selection, despite
being designed for parties all using the same committee. However, this is not
immediately obvious, and there is an additional nuance to iron out: to ensure
that parties continue to do the same steps at the same times, parties should not
halt at different steps in the Byzantine Agreement protocol. With Algorand’s
committee selection, when a party halts during an execution of the Byzantine
Agreement protocol it is easy to produce a certificate which will convince the
other parties to halt. This certificate simply consists of all of the committee
messages received during the halting round, and since in Algorand, all parties
will always accept the same committee members, parties receiving this certificate
will also see a valid halt. However, as discussed previously, with our committee
selection, parties do not necessarily agree on the committee, and so may reject
some of the messages which caused the halting party to halt. To remedy this
problem, we will use a binary Byzantine Agreement algorithm from [20] (based on
the same design as Algorand’s BA), which also has the advantage of reducing our
requirements to only > 1

2 honest online stake (from Algorand’s > 2
3). However,

it is also not immediately obvious that the algorithm from [20] works with our
committee selection, and we will need to show this formally.

Byzantine Agreement is not the only building block of Algorand which re-
quires consistent views of the committee. Algorand uses a Graded Consensus
protocol, which requires consistent views of the committee, to transform binary
Byzantine Agreement into multivalued Byzantine Agreement protocol, allowing
for blocks to be consistently decided on. Informally, Graded Consensus [6, 7] al-
lows players to output a value and a grade, indicating how confident they are
that all other players output the same value. In the multivalue Byzantine Agree-
ment construction, binary Byzantine Agreement is used to decide on a default
value (the empty block), or a variable value, and the non-default value should
only be output if some honest party knows that all other honest parties are using
the same value. Since we ultimately want to decide the next block to add, not
the next bit to add, we will also show that the Graded consensus algorithm of
[20] with only minor modifications surprisingly still works with our notion of
“close enough” committees, despite being designed for the scenario where there
is a single committee which all parties accept messages from.

2.4 Summary of Challenges and Theorem Statement

In summary, the challenges we must overcome are:

– Ensuring the committees seen by all honest players are “close enough”. The
concrete properties we achieve are described in Lemma 1.

– Showing that the binary Byzantine Agreement algorithm from [20] works
when parties use different committees which are “close enough”.

– Showing that the Graded Consensus protocol from [20] works with mi-
nor modifications when parties use different committees which are “close
enough”.

Theorem 1. (Informal) If less than half the online stake is adversarially owned,
there exists a blockchain protocol in the sleepy model which, with overwhelming
probability, does not fork and enters transactions into the ledger at a constant
rate on average.

3 Related Work

Sleepy Consensus Pass and Shi [23] initiated the study of consensus in the sleepy
model, where parties may be either awake or asleep at any given point in time.
Upon waking, a previously sleeping user receives both all messages actually sent
during the time it was asleep, and some set of adversarially generated messages,
intermingled. They showed that it is possible to achieve consensus in this setting
if and only if the number of awake honest parties are strictly greater than the
number of adversarial parties (which are always awake). However, their protocol
requires many blocks to be added before a transaction can be confirmed with
high confidence. Snow White [5], a blockchain built using the sleepy consensus
protocol, requires 10 additional blocks to be added for 99% confidence when the
adversary controls only 16.5% of the online stake. If the adversary controls 30%,
the number of blocks required jump to 33, and the authors only note that Snow
White is theoretically capable of dealing with 49% corruption, without providing
a concrete number of blocks to wait. We aim to achieve immediate confirmation
as soon as a transaction appears in the chain, without waiting for additional
blocks to be added.

Blockchain Protocols Both Snow White [5] and Ouroboros Genesis [3] can se-
curely progress in the sleepy model, but requires transaction to be buried below
many blocks before being confirmed. Algorand [7] enables immediate confirma-
tion upon a transaction appearing in the chain, but is unable to deal with large
quantities of stake being offline. Algorand’s method of dealing with offline par-
ties is to allow parties to determine if they will be part of any committees for
the next, say, week’s worth of blocks. If the user will not be part of a committee
for the next week, they can go inactive with good conscience. We wish to treat
the more general case where parties cannot commit to being active at particular
points in time. This may be due to vacations, network interruptions, or sim-
ply the user not wanting to participate in the chain’s progression. Nevertheless,
Algorand forms a strong starting point for our protocol.

Other blockchain protocols include Ouroboros [17], Ouroboros Praos [8],
Ouroboros Genesis [3], and the well-known Bitcoin protocol [21]. These all fall
into one or more of the categories discussed previously (PoW, long confirmation
times, majority online). Thunderella [24] is able to give instant confirmation
during the optimistic case of the committee being over 3

4 honest, but slows down
significantly when this is not the case.

Accelerating Meta-solutions 3 Prism [4] and Parallel Chains [13] give meta-
solutions which can be applied to existing solutions to significantly improve

3 We were made aware of these works by helpful reviewers.

transaction throughput and/or confirmation times. In particular, the results of
Parallel Chains can be applied to sleepy PoS blockchains such as Snow White and
Ouroboros variants, enabling blockchains which progress quickly in the sleepy
model. This matches our target application. However, our work additionally con-
tributes to the understanding of how BFT protocols can be adapted to the sleepy
setting.

Prism, on the other hand, is specifically for PoW blockchains, and comes
with the associated energy waste.

Byzantine Agreement with Unknown Participants Alchieri et. al. [2, 1] charac-
terize the possibility of solving Byzantine Agreement when participants do not
know all other participants. Their main theorem identifies necessary and suffi-
cient properties for the knowledge graph (defined by the set of parties and which
other parties each knows) under which there exists a Byzantine Agreement al-
gorithm robust against an adversary which can corrupt up to t parties.

Though Alchieri et. al. provide protocols solving this problem, their results
are unfortunately insufficient for our setting. We will additionally require security
against an adversary which controls many more corrupt parties than the size of
any honest view - the whole set of corrupt players, not just the small fraction
of those selected to be committee members. This is in contrast to the adversary
considered by Alchieri et. al., may only corrupt up to t parties total, where all
honest views are at least size 2t+ 1.

3.1 Comparison of Confirmation Times and Communication
Complexity

Confirmation Times The time for a transaction to be confirmed in the blockchain
depends on both the time to first enter the ledger and the time for it to stabilize in
the chain. Our solution entirely eliminates the latter, which can be very large in
longest-chain style protocols such as Snow White or Ouroboros. Parallel Chains
is able to eliminate that weakness in those protocols, at the cost of increased
computation in proportion to the speedup, since parties have to track/participate
in multiple blockchains.

Since Algorand is the most similar to our protocol and its performance is well
understood by the community, it will form our main comparison point. In both
our protocol and Algorand, transactions must be present at block proposal to be
included, so transaction confirmation time is at most twice the time for a block
to be added. The main contribution to Algorand’s block addition time is the
number of Byzantine Agreement rounds, the expectation of which is given by the
expected number of rounds until an honest leader is elected. In this, our protocol
matches Algorand, since we borrow Algorand’s leader election. However, due to
the complexities of adapting to the sleepy model, the constant time for each
Byzantine Agreement round is significantly higher for our protocol. In particular,
it takes 4 messages to receive each committee member’s message, as opposed
to just 1 in Algorand. This leads to our protocol’s block addition time being
roughly 4x Algorand’s. Algorand’s best case scenario is significantly faster than

our protocol’s, since it is able to terminate the Byzantine Agreement almost
immediately when the next block is proposed by an honest party.

Communication Complexity One of the major strengths of current PoS blockchain
solutions is the subquadratic communication complexity. For a committee size of
n and a total number of online users N , current solutions usually achieve a com-
munication complexity of O(nN), or O(n) in the broadcast channel model. Our
protocol unfortunately requires a higher communication complexity of O(N2),
or O(N) in the broadcast channel model.

However, future work may be able to mitigate this downside by integrat-
ing our protocol as a fallback option to base Algorand. When participation is
high, Algorand provides low communication complexity, and during periods of
highly sporadic participation, our protocol can be used to provide progress when
Algorand would otherwise stall. Using our protocol only when participation is
low will also help mitigate the communication complexity slightly, since a lower
number of online users incurs a lower communication cost. More work will be
required to integrate the two protocols without introducing security issues.

Additionally, the approach of following the highest n VRFs means that after
receiving only a few messages, many others become entirely obsolete. Future
work may be able to exploit this at the gossip network level by heuristically
forwarding only the top n messages seen.

4 Definitions

4.1 Blockchain Execution Model

To allow us to capture the ability of users to be inactive, we adopt the sleepy
execution model of Pass and Shi [23], as extended by Bentov et. al. [5], with
one major difference: we consider a more powerful adversary who can instantly
corrupt any honest party. In the sleepy model, generally, parties may be either
awake or asleep (corrupt parties are assumed to always be awake). The two states
differ in that parties may only receive messages when they are awake.

(Weakly) Synchronized Clocks We assume all player clocks differ by at most a
constant at all times. As noted by Pass and Shi [23], the clock offset can be gener-
ically transformed into a network delay. Therefore, without loss of generality, we
will consider players to have synchronized clocks.

Network Delivery The adversary is responsible for delivering messages between
players. We assume that all messages sent by honest players are received by all
awake honest players within ∆ time steps, but that the adversary may otherwise
delay or reorder messages arbitrarily. It must be emphasized that the adversary
can exactly control the precise time that an honest player receives a message.

Sleeping players do not receive messages until they wake, whereupon they
receive all messages they would have received had they not slept. Note that this
may include a polynomial number of adversarially inserted messages, and the
ordering of all messages received upon waking may be adversarially chosen.

Corruption Model Corrupt parties may deviate arbitrarily from protocol (ie.
exhibit Byzantine faults), and are controlled by a probabilistic polynomial time
adversary which can see the internal state of corrupt players. At any time, the
adversary may instantly corrupt an honest party or cause them to sleep un-
til a future time. However, the adversary is not capable of seeing a message,
corrupting the sending party, then erasing the message from the network.

At any time, the adversary may spawn new corrupt users (distinct from
parties, which represent a unit of stake). This does not increase the amount of
adversarially owned stake in the system.

Secure Bootstrapping Assumption As noted by Bentov, Pass, and Shi [23, 5],
in this model it is impossible to achieve a secure blockchain protocol using only
common knowledge of the initial committee. Therefore we assume a trusted boot-
strapping procedure, as Sleepy Consensus [23] and Snow White [5] do. Future
work may be able to sidestep the impossibility result using a similar modification
to the execution model as Ouroboros Genesis [3].

4.2 Tools

Verifiable Random Functions A Verifiable Random Function (VRF) [19] takes
in a secret key ski and a seed s, and returns a random number in the range along
with a proof. Anyone who knows the public key pki associated with ski can verify
that V RF (ski, s) was computed correctly, but cannot compute V RF (ski, s

′)
themselves without knowing ski. Due to the complexity of instantiating VRFs
when players may choose their own seeds, we model them as random oracles,
and direct readers to [7] for a more in-depth treatment of the subject.

Byzantine Agreement The standard definition of Byzantine Agreement [25] is
given below. We say a party is honest if they behave according to the protocol
specification throughout its entire execution.

Definition 1. A protocol P achieves Byzantine Agreement with soundness
s if, in an execution of P, every honest player j halts with probability 1 and the
following two properties both hold with probability ≥ s:

1. Agreement: All honest parties output the same value.
2. Consistency: If all honest players input the same value v, then all honest

players output v.

If parties input values in {0, 1}, we say it achieves binary Byzantine Agreement.

Player Replaceability The idea of player replaceability was introduced by Chen
and Micali [6] as a means of preventing targeted attacks on committee members
from disrupting Algorand’s binary Byzantine Agreement protocol. Consider a
protocol executing over a very large set of players where a small subset of players
(the committee) is chosen to carry out the r’th round of a Byzantine Agreement
protocol. Informally, a Byzantine Agreement protocol is player replaceable if the

protocol still achieves agreement and consistency, despite the following condi-
tions: after each round the old committee may be immediately corrupted and a
new committee is selected to carry out round r + 1.

Graded Broadcast Graded broadcast was introduced in [12], and informally al-
lows parties to receive a message from a dealer and express how confident they
are that all other parties received the same message.

Definition 2. A protocol achieves Graded Broadcast if, in an execution where
the dealer D holds value vD, every player i outputs (gi, vi) where gi ∈ {0, 1, 2}
such that:

1. If D is honest, then every honest player outputs (2, vD).
2. For any honest parties i and j, |gi − gj | ≤ 1.
3. For any honest parties i and j, if gi > 0 and gj > 0, then vi = vj.

We say a protocol achieves {0, 1}-graded broadcast [20] if gi takes values in
{0, 1}, property 3 holds (2 holds trivially), and if players output (1, vD) when D
is honest. For simplicity, in a {0, 1}-graded broadcast, we say a party accepts a
value if it has grade 1, and rejects a value if it has grade 0.

Graded Consensus For the reduction of multivalued Byzantine Agreement to
binary Byzantine Agreement, we will additionally need the notion of Graded
Consensus [6, 7], which is a relaxation of consensus, and extends the concept of
graded broadcast [12].

Definition 3. A protocol P achieves Graded Consensus if, in an execution
of P where every player i inputs v′i, every player i outputs a grade gi and a value
vi such that:

1. For any honest players i and j, |gi − gj | ≤ 1
2. For any honest players i and j, if gi > 0 and gj > 0, then gi = gj
3. If there exists a value v such that v′i = v for all honest players i, then vi = v

and gi = 2 for all honest players i

4.3 Other Notation

Additionally, we will use the following pieces of notation which have not been
covered so far:

– H represents the set of all honest parties.
– Vi represents participant i’s current view of the committee
– N denotes the total amount of online stake at any time in a blockchain

Proof of Stake Abstraction In a proof of stake blockchain, users are granted
voting power proportional to how much currency they own in the blockchain.
Hence, we consider each unit of currency to be a party. Users owning multiple
units of currency act as multiple parties.

5 The Blockchain Protocol

We will make use of Algorand’s leader election (alg 1) in several of our protocols.
The following claim is modified from [6, 7] to reflect our treatment of VRFs as
random oracles and its usage in the sleepy model.

Proposition 1. [14, 6, 7] At the end of algorithm 1, if the adversary owns less
than 1

2 the online stake, then with probability > 1
2 , all honest parties output the

same message m, which was input by an honest party.

Proof. If an online honest party has the highest VRF for round r and inputs m,
all honest parties output m. Since we model VRFs as random oracles and the
adversary owns less than 1

2 of the online stake, this occurs with probability > 1
2 .

5.1 Committee Selection

The committee view formation algorithm needs to fulfill two different goals.
First, views must be majority honest, motivating a uniformly random selection
process with proportion to the amount of money (or stake) each user owns.
As in Algorand, users may be selected multiple times for the same committee
view, so long as they own enough stake. Second, the resulting committee views
must be similar enough that our binary Byzantine Agreement protocol will work.
Informally, for Byzantine Agreement to work, we need to ensure than any two
Vi, Vj overlap on more than half their respective views. The concrete properties
we achieve are actually stronger than this, and are described in Lemma 1.

Strawman: Committee Discovery Starting with the base idea of forming a tem-
porary committee consisting of the n highest VRFs seen, a natural first approach
is to attempt to discover the temporary committee members which other honest
players have selected and take the most commonly selected parties as your final
committee, similar to the participant discovery idea from [2, 1]. Intuitively, since
each honest temporary view is likely to be majority honest, parties selected by
many parties in your temporary view are likely to both be honest and appear
in many other honest views. Similarly, parties which are selected by only a few
parties in your temporary view are liable to either appear in very few honest
views globally, or to have been nominated by dishonest parties. Concretely:

1. All parties send their VRF for the round. Each party i takes the owners of
the highest n VRFs received to be its temporary committee V ∗i .

Algorithm 1: Leader Election [14, 6, 7]

Input: message m′i
1) Propagate V RF (i, r), sigi(m

′
i)

2) Set mi ← m′j such that sigj(m
′
j) was received and V RF (j, r) was the

highest VRF seen
Output: mi

Algorithm 2: Committee Selection

Input: mi, committee size n, round r
1) Propagate V RF (i, r), sigi(mi, r)
2) Set V ∗i = {j : V RF (j, r) was one of the highest n valid VRFs received

during step 1}.
Propagate V RF (j, r), sigj(mj , r) for each j ∈ V ∗i

3) Let VU,i = {j : V RF (j, r) was one of the highest n valid VRFs received
during step 2.}

Set Vi = V ∗i ∩ VU,i.
Set messages = {(j,mj , sigj(mj)) : j ∈ Vi and sigj(mj , r) was received}

Output: Vi, messages

2. All parties propagate their temporary committees. Each party i takes its
final committee to be Vi = {j : j ∈ V ∗k for more than n

2 parties k ∈ V ∗i }.

At the surface level, this seems quite promising - since temporary committees
were selected randomly, each temporary committee is highly likely to be over
half honest. Any party seen by the honest portion of your temporary committee
will end up in your final committee, and the adversary can’t add parties your
final view which were not seen by at least one honest party, since that would
require > n

2 corrupt parties to appear in your temporary committee.

Preventing Majority-Corrupt Committees Unfortunately, this strategy is not
quite as successful at keeping corrupt parties out of your final committee as
it might seem. The core issue is that while no single honest party sees many
corrupted parties in its temporary committee, different honest parties may see
different corrupted parties, and the adversary may use corrupted votes to reach
the threshold for acceptance. Section A in the appendix illustrates a concrete
example of the issue.

The key insight to ensuring honest parties end up with committees which are
very similar, but don’t include too many corrupted parties, is to only remove
parties from your temporary committee, rather than allowing them to be added
(in the example, adding parties resulted in a majority corrupt committee!).

Generally, we will assume that the committee size n is much smaller than
the amount of online stake N at any time.

Lemma 1. At the end of protocol 2, if the adversary controls ≤ 1
2 − ε fraction

of the online stake, then with probability ≈ 1−
(
1− 4ε2

)n/2
the following holds:

1.

∣∣∣∣ ⋃
i∈H

Vi

∣∣∣∣ ≤ n
2. ∃ set of honest parties HC such that |HC | ≥ n

2 and HC ⊆ Vi ∀i ∈ H.

Proof (Sketch). Property 1 relies on the fact that every honest player sees ev-
ery honest temporary committee V ∗i . This means that every honest player will

remove at least every VRF in
⋃
i∈H V

∗
i beyond the first n. However, they never

add additional parties to their view.
For the second property, consider the list of all VRFs of online parties for

the round, regardless of what messages they send. Define HC to be the set of
honest parties whose VRF is among the highest n in this list. These will appear
in all honest temporary views, and cannot be removed, since there are simply
not enough higher VRFs among the online parties.

The size of this set then follows by upper bounding the number of corrupt
parties among the highest n VRFs in the complete list. Since there are many
more than n online parties, we can approximate this with Bin(n, 12−ε). A bound
by Hoeffding [15] upper bounds the probability that this number is ≥ n

2 .

It is worth noting that the honest core HC is unknown, though it is guar-
anteed to exist. We do not know how to find it, but as we will show, it is not
necessary to know HC in order to use it; it is sufficient that it simply exists.

Section B in the appendix discusses the committee size requirements for
safety using our committee election process.

5.2 Binary Byzantine Agreement

In this section, we discuss the importance of completing the Byzantine agreement
protocol in the same step, as well as why that is difficult to achieve adaptively
in the sleepy model. Then, we show that both the binary Byzantine Agreement
protocol of Micali and Vaikuntanathan [20] and the {0, 1} Graded Broadcast
protocol used in it still work with our committee selection procedure, despite
being designed for the scenario where all honest parties agree on the committee.

Observe that if players were to complete the Byzantine agreement protocol
in different steps, then they would begin to do different steps of the overlying
blockchain protocol, with some parties operating “in the future”. Though we can
easily prevent messages sent for different steps of the protocol interfering with
each other, it is not so simple for a party lagging behind to “catch up”, nor is it
easy to convince a party speeding ahead to let the others catch up. Furthermore,
splitting the parties like this opens opportunities for the adversary, who may be
able to achieve majority online stake in the “future”, where only some honest
parties are currently operating, despite having minority online stake overall.

Algorand avoids this issue by relying on the fact that if one party accepts
a message from a committee member, all other players will also accept that
message (as being from a committee member) if they receive it. Thus, a player
who sees messages causing them to halt early can ensure that all other players
halt early as well by simply propagating those messages.

This strategy does not work under our committee selection, since it is not
the case that if i accepts k as a committee member, j will too after learning
about k. For instance, if k were corrupt, then during a Committee Selection
execution (algorithm 2) it is easy for k to appear in V ∗i but not V ∗j by simply
not sending a message to j by the deadline, resulting in k never appearing in Vj .
Furthermore, it is extremely important to not expand Vj based on other party’s

views, since corrupt parties may claim an arbitrarily corrupt view. Thus, we will
use the strategy presented in [20], which ensures all parties exit the Byzantine
Agreement execution at the same time.

To achieve resilience against slightly less than half of any committee view
being corrupted, we will need a protocol similar to Graded Broadcast. The only
difference in our requirements is in property 1: instead of each i ∈ H being
required to output (1,mD) when D is honest, i is only required to do so when
D ∈ HC . Algorithm 3 describes a parallel version of this, modified from [20].

Proposition 2. If at all times, |Vi| ≤ n for honest i and there exists a set of
honest players HC of size > n

2 common to all honest views, then algorithm 3
achieves the following properties:

1. If D ∈ HC,1 and sends mD, then i accepts mD from D.
2. If honest parties i, j accept mD,m

′
D, respectively, from D, then mD = m′D.

Proof (Sketch). If D ∈ HC,1, then all members of HC,2 receive and forward
sigD(mD). Each honest player therefore receives this from > n

2 sources, and do
not ever receive sigD(m′D) for mD 6= m′D.

If i ∈ H accepts a message, then one of the sources they received it from
in step 2 was a member of HC,2, so all other parties also receive the message i
accepts. This means that no j ∈ H will accept a different message.

Proposition 3. If |Vi
⋃
Vj | ≤ n for all honest parties i, j during an execution

of algorithm 4, then an honest party cannot follow substep (a) in the same step
an honest party follows substep (b).

Proof (Sketch). This would require i and j to see more unique votes combined
than exist in the union of their views.

Proposition 4. If Vi contains at least n
2 +1 honest parties and no more than n

parties total during an execution of algorithm 4, then if at some step all honest
parties agree on a bit b, all honest parties continue to agree on the same bit b.

Proof. By proposition 2 every honest party i accepts at least n
2 + 1 votes for b

from the honest parties in their view and no more than n − (n2 + 1) votes for
1− b. Therefore i sets vi = b at the end of the step.

Algorithm 3: {0, 1} Graded Broadcast [20]

Input: v′i, n, round r
1) Vi,1,ms1 ←Committee Selection(v′i, n, r)
2) Vi,2,ms2 ←Committee Selection(ms1, n, r)
3) For each k ∈ Vi,1, accept mk if sigk(mk) was received from > n

2
members of

Vi,2 and no other sigk(m′k) was received.i
Output: Accepted Messages, Vi,1

Algorithm 4: Byzantine Agreement [20]

Input: vi, n
for i← 0 to k do

1) Set mc = Leader Election(b←Uniform({0, 1}))
2) {0,1}-Graded Broadcast(vi)

a) if If #(0) accepted > n
2
then set vi = 0

b) else if If #(1) accepted > n
2
then set vi = 1

c) else set vi = mc
Output: vi

Proposition 5. If |Vi
⋃
Vj | ≤ n for all honest parties i, j and Vi contains at

least n2 +1 honest parties during an execution of algorithm 4, then with probability
at least 1

4 , at the end of step 2 all honest parties are in agreement.

Proof (Sketch). If an honest party sets vi = b, then all others either set b or set
mc, which matches b with probability 1

2 and is agreed upon with probability 1
2 .

Lemma 2. If the following properties hold, then algorithm 4 achieves binary

Byzantine Agreement with soundness > 1− 3
4

k
.

1. |Vi
⋃
Vj | ≤ n for all honest parties i, j.

2. ∃ a set of honest players HC of size > n
2 such that HC ⊆ Vi ∀i ∈ H.

Proof. Consistency follows immediately from proposition 4.
By proposition 4, agreement will hold at the end of an execution of algorithm

4 if it holds at the start of any step. By proposition 5, the probability that this

does not occur during any of the k steps is < 3
4

k
.

5.3 Block Proposal

In the binary Byzantine Agreement protocol, parties decide whether or not to
add a particular block to the chain. To extend this to deciding which block to
add to the chain, if any, parties will first attempt to decide a block to vote
on during the binary Byzantine Agreement execution. Intuitively, if one honest
party i believes the vote is about whether or not to add a block B to the chain,
and another honest party j believes the vote is about whether or not to add a
different block B′ to the chain, then the outcome of the vote should be that no
block is added - otherwise, i will add B and j will add B′!

To ensure a nonempty block is only added when all honest parties agree on it,
Algorand uses a Graded Consensus protocol before running the binary Byzantine
Agreement protocol. Roughly, this ensures that honest parties will decide to add
a nonempty block B as a result of the binary Byzantine Agreement execution
only if some honest party knows that all honest parties think the vote is about
whether or not to add B.

We will show that the graded consensus algorithm from [20] surprisingly still
works with the notion of “close enough” committees achieved by Algorithm 2

(laid out in Lemma 1). The only modification necessary is the threshold required
for a set of signatures to be consistent, since local views of the committee may be
different sizes. Algorithm 5 describes the modified graded consensus algorithm.

Algorithm 5: Graded Consensus

Input: v′i, n
1) messages1, Vi,1 ← {0,1}-Graded Broadcast
2) mi,2 ← ⊥

if accepted > n
2

signatures for v′ in step 1 then
mi,2 ← sigi(v

′, 2)
messages2, Vi,2 ← {0,1}-Graded Broadcast(mi,2)

3) mi,3 ← ⊥
if > n

2
+ 1 signatures sigj(v

′′, 2), for j ∈ Vi2 then
mi,3 ← sigi({sigj(v′′, 2) : sigj(v

′′, 2) was accepted from j ∈ Vi,2})
messages2, Vi,3 ← {0,1}-Graded Broadcast(mi,3)

4) A signature set is consistent if it contains > |Vi,2| − n
2

signatures from
members of Vi,2.

if > n
2

consistent signatures sets for (v′′′, 2) were accepted in step 3 then
Output (2, v′′′)

else if ≥ 1 consistent signature sets for (v′′′, 2) was accepted in step 3
then

Output (2, v′′′)
else

Output (0,⊥)
Output: (gi, vi)

Proposition 6. If each view change satisfies |Vi
⋃
Vj | ≤ n and there exists a

set of honest parties HC such that |HC | > n
2 and HC ⊆ Vi for any honest players

i, j then algorithm 5 achieves graded consensus.

Proof (Sketch). For the first property, if gi = 2 for an honest player i, then i
receives more consistent sets of signatures in step 3 than half its view. One of
these must have been from a member of HC,3, so all honest parties also receive a
set. Since two honest views cannot contain more than n unique parties in their
union, all honest parties consider this set consistent.

The second property starts with the observation that if no honest party signs
(v, 2) in step 2, then no honest party receives a consistent signature set for (v, 2)
in step 4, preventing them from outputting v with a non-zero grade. This follows
from honest views containing only |V2,i|−|HC | corrupted parties. Then, we show
that two different values will not be signed by honest parties in step 2, since this
would require two honest parties to accept more unique messages in step 1 than
exist in the union of their views.

The third property uses the fact that all honest parties accept all messages
from members of HC1

during the {0,1} graded broadcast, so each these messages

are signed by members of HC,2 in step 2. This causes every honest party to send
its own set, and honest signature sets are consistent for every honest party,
leading to an output grade of 2 for v.

To propose a block, every player will begin by creating a candidate block and
broadcasting it alongside a VRF and a short description of the block, such as its
hash. The block and its description will be propagated separately, so as to allow
fast propagation of the description, which is much shorter than the block itself.

After waiting for the network delay to complete, all players will begin Graded
Consensus (alg. 5) using the block description with the highest associated VRF
seen as their input. Finally, the block voted on during Byzantine Agreement will
be the value output from algorithm 5. This is summarized in algorithm 6.

5.4 Putting It All Together

In this section, we describe how our modifications fit into Algorand as a whole
and present our final result.

Our final protocol takes the following parameters, which must be common
to all honest players.

– n: the committee size
– k: the number of iterations for the binary Byzantine Agreement
– ∆N : the network delay

Note that a good parameter choice for n can be determined given a desired
safety parameter and an assumed maximum fraction of online stake controlled
by the adversary (1

2 − ε). For this reason, the safety parameter and ε may be
consider to be parameters in place of the committee size n.

It is also worth noting that the parameter n provides explicit bounds on the
committee size, independent of the amount of online stake 4 and in contrast to
Algorand, where it is only an expected committee size. By lemma 1, every honest
committee view will have size at least n

2 + 1, but no more than n, regardless of
the amount of online stake. In contrast, committee sizes in Algorand may vary
drastically if the amount of online stake is over or underestimated.

Theorem 1. If less than half of all online stake is adversarially owned and all
honest parties input the same parameters to an execution of algorithm 6, the
following properties hold:

1. With overwhelming probability, all honest players output the same block B.
2. With probability > 1

2 , B is not empty (i.e. contains transactions).

Proof (Sketch). The first property holds when all honest players output 0 in the
Byzantine Agreement protocol, or if all honest players output 1 in the Byzantine
Agreement protocol and the same block in the Graded Consensus protocol. With

4 Ignoring the possibility of less than n units of stake being online at all, which we
consider to be an extreme corner case.

Algorithm 6: Next Block

Input: committee size n, Byzantine Agreement iterations k, network delay
∆N , current log L

// During every subroutine, wait for ∆N time between steps

1) Wait for ∆N time to receive transactions.

Construct a block B
(3)
i from the transactions received.

2) B′′i ← Leader Election(B
(3)
i)

3) (gi, B
′
i)← Graded Consensus(B′′i)

During the Graded Consensus execution, ignore invalid blocks.
if gi = 2 then v′i ← 1
else v′i ← 0

4) vi ← Byzantine Agreement(v′i)
if vi = 1 then Bi ← B′i
else Bi ← empty block

Output: Bi

probability
(

3
4

k
+ 2k

(
1− 4ε2

)n/2)
and 6

(
1− 4ε2

)n/2
respectively, these cases

do not occur, and we can apply a union bound.
Whenever an honest leader is elected, they propose a non-empty block and

that block is unanimously chosen by honest parties. An honest leader is elected
with probability 1

2 .

References

1. Alchieri, E.A.P., Bessani, A., Greve, F., d. S. Fraga, J.: Knowledge connectivity
requirements for solving byzantine consensus with unknown participants. IEEE
Transactions on Dependable and Secure Computing 15(2), 246–259 (2018)

2. Alchieri, E.A.P., Bessani, A.N., da Silva Fraga, J., Greve, F.: Byzantine consensus
with unknown participants. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) Princi-
ples of Distributed Systems, 12th International Conference, OPODIS 2008, Luxor,
Egypt, December 15-18, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 5401, pp. 22–40. Springer (2008). https://doi.org/10.1007/978-3-540-92221-
6 4, https://doi.org/10.1007/978-3-540-92221-6 4

3. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros
genesis: Composable proof-of-stake blockchains with dynamic availabil-
ity. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018. pp. 913–930. ACM (2018). https://doi.org/10.1145/3243734.3243848,
https://doi.org/10.1145/3243734.3243848

4. Bagaria, V.K., Kannan, S., Tse, D., Fanti, G.C., Viswanath, P.: Prism: Decon-
structing the blockchain to approach physical limits. In: Cavallaro, L., Kinder,
J., Wang, X., Katz, J. (eds.) Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019, London, UK, November

11-15, 2019. pp. 585–602. ACM (2019). https://doi.org/10.1145/3319535.3363213,
https://doi.org/10.1145/3319535.3363213

5. Bentov, I., Pass, R., Shi, E.: Snow white: Provably secure proofs of stake. IACR
Cryptology ePrint Archive 2016, 919 (2016), http://eprint.iacr.org/2016/919

6. Chen, J., Micali, S.: Algorand (2016)
7. Chen, J., Micali, S.: Algorand: a secure and efficient dis-

tributed ledger. Theoretical Computer Science 777(nil),
155–183 (2019). https://doi.org/10.1016/j.tcs.2019.02.001,
https://doi.org/10.1016/j.tcs.2019.02.001

8. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. pp. 66–98.
Springer (2018)

9. Dolev, D., et al.: The byzantine generals strike again. J. Algorithms 3(1), 14–30
(1982)

10. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
Peer-to-Peer Systems. pp. 251–260. Springer Berlin Heidelberg, Berlin, Heidelberg
(2002)

11. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of
bounded degree. SIAM Journal on Computing 17(5), 975–988 (1988)

12. Feldman, P., Micali, S.: An optimal probabilistic algorithm for synchronous byzan-
tine agreement. In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.)
Automata, Languages and Programming. pp. 341–378. Springer Berlin Heidelberg,
Berlin, Heidelberg (1989)

13. Fitzi, M., Gazi, P., Kiayias, A., Russell, A.: Parallel chains: Improving throughput
and latency of blockchain protocols via parallel composition. IACR Cryptol. ePrint
Arch. 2018, 1119 (2018), https://eprint.iacr.org/2018/1119

14. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium
on Operating Systems Principles. pp. 51–68 (2017)

15. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301), 13–30 (1963)

16. Katz, J., Koo, C.Y.: On expected constant-round protocols for byzan-
tine agreement. In: Advances in Cryptology - CRYPTO. pp. 445–462.
Lecture Notes in Computer Science, Springer Berlin Heidelberg (2006).
https://doi.org/10.1007/11818175 27, https://doi.org/10.1007/11818175 27

17. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: Annual International Cryptology Confer-
ence. pp. 357–388. Springer (2017)

18. Micali, S.: Very simple and efficient byzantine agreement. In: Pa-
padimitriou, C.H. (ed.) 8th Innovations in Theoretical Computer Sci-
ence Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA.
LIPIcs, vol. 67, pp. 6:1–6:1. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2017). https://doi.org/10.4230/LIPIcs.ITCS.2017.6,
https://doi.org/10.4230/LIPIcs.ITCS.2017.6

19. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th annual
symposium on foundations of computer science (cat. No. 99CB37039). pp. 120–
130. IEEE (1999)

20. Micali, S., Vaikuntanathan, V.: Optimal and player-replaceable consen-
sus with an honest majority. Tech. Rep. MIT-CSAIL-TR-2017-004 (2017),
http://hdl.handle.net/1721.1/107927

21. Nakamoto, S., et al.: Bitcoin: A peer-to-peer electronic cash system.(2008) (2008)
22. Pass, R., Shi, E.: Hybrid Consensus: Efficient Consensus in the Permission-

less Model. In: Richa, A.W. (ed.) 31st International Symposium on Dis-
tributed Computing (DISC 2017). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 91, pp. 39:1–39:16. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2017). https://doi.org/10.4230/LIPIcs.DISC.2017.39,
http://drops.dagstuhl.de/opus/volltexte/2017/8004

23. Pass, R., Shi, E.: The sleepy model of consensus. In: International Conference on
the Theory and Application of Cryptology and Information Security. pp. 380–409.
Springer (2017)

24. Pass, R., Shi, E.: Thunderella: Blockchains with optimistic instant confirmation. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 3–33. Springer (2018)

25. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
Journal of the ACM (JACM) 27(2), 228–234 (1980)

26. Turpin, R., Coan, B.A.: Extending binary byzantine agreement to multivalued
byzantine agreement. Information Processing Letters 18(2), 73–76 (1984)

A Committee Selection Strawman Counter-Example

Figure 1 provides a concrete example of the issues in the strawman committee
selection with n = 100, where the adversary controls only 42% of the online
stake5, yet some honest parties end up with a majority-corrupt final committee!
Consider 5 general groups whose VRFs are among the highest: A (29 honest
parties), B (29 honest parties), C1 (42 corrupt parties), D (25 honest parties),
and C2 (17 corrupted parties). By not delivering corrupted messages from C1 to
B, parties in B take their temporary view to contain the next 0.42 · 100 parties
- those in D and C2 (similarly, this can occur for D). In step 2, parties in A
will see 71 votes (from parties in B and C1) for each party in C2, and so will
add parties in C2 to their final committee VA. Additionally, parties in B and
C1 will remain in A’s final committee, since parties in A will see 100 votes for
each (from parties in A,B,C1), but members of D will not appear in VA, since
A only sees 25 votes for them (from parties in B). This leaves VA containing 59
corrupted parties, but only 58 honest parties!

B Safety Parameters

Figure 2 shows the committee size required to ensure these properties hold with
probability 1 − 5x10−9, as a function of the online fraction of stake which is
controlled by honest users. If one block were to be added every 15 seconds, we
would expect it to take 95 years for a safety violation to occur with this safety
parameter. Of course, if more confidence is desired, the parameters can be easily
adjusted. Our approach requires committees ranging from sizes of less than 200

5 This attack can be carried out with as little as 33.4% online stake, but requires a
more complicated setup which does not lend itself well to small images.

Fig. 1. Strawman with n = 100. All three honest groups (A,B,D) have a majority-
honest temporary view, but A ends up with a majority-corrupt final view.

up to under 900 for 60-90% online stake being honest. In contrast, Algorand
requires committees of size 2000 to 4000 for the same guarantees6.

Fig. 2. Committee Size for Safety 1 − 5x10−9 vs Portion of Online Stake Controlled
by Honest Users

6 Algorand requires > 2
3

fraction honest stake, but can work with > 1
2

fraction honest
stake with modifications. To be more favorable to Algorand in this comparison, we
compare the committee size required for a particular difference in assumed fraction
of honest stake from its lower bound.

C Proofs

Proof of Lemma 1

Proof. First, we will show property 1. If it were not true then there would exist a
j ∈ Vi, for some honest i, such that V RF (j, r) is not among the highest n VRFs
in
⋃
k∈H Vk. Since Vi ⊆ V ∗i , j ∈ V ∗i and V RF (j, r) is not among the highest

n VRFs in
⋃
k∈H V

∗
k . Observe that all honest players see V RF (j, r) for each

j ∈
⋃
i∈H Vi during step 2, since every honest player i broadcasts V RF (j, r) for

each j ∈ V ∗i . Therefore, j /∈ VU,k for any honest k, since V RF (j, r) is not even
among the highest n VRFs in

⋃
k∈H V

∗
k . Thus, since i is an honest player, j /∈ Vi,

a contradiction.
For the second property, first consider the list of all VRFs of online parties

for this round. Let HC be the set of honest parties whose VRF appears in the
highest n VRFs of this complete list. Observe that HC ⊆ Vi for every honest
party i. If this were not the case, then ∃j ∈ HC such that j /∈ Vi for some honest
party i, which can only occur if i either did not receive j’s VRF, or if it saw n
VRFs which were higher than j’s. The former cannot occur in our model since
all honest messages are delivered to all honest parties within ∆ timesteps. The
latter would violate the definition of HC , since the adversary can only evaluate
the VRFs of corrupt parties, which are always online.

It remains to argue that |HC | > n
2 with high probability, which is equiva-

lent to arguing that n− |HC | < n
2 with high probability. Since we model VRFs

as random oracles, this is precisely the problem of drawing n players from a
bin containing (1

2 + ε)N honest players and (1
2 − ε)N corrupt players without

replacement, and counting the number of corrupt players drawn. Since we con-
sider N much larger than n, n − |HC |’s distribution is well approximated by
Binomial(n, 12 − ε). Let Ik be the indicator in the variable for this event that
the k’th Bernoulli trial is successful (i.e. a corrupt player is drawn). A bound by
Hoeffding [15] (see proposition 8 in the appendix for details) shows that

P

(
1

n

n∑
k=1

Ik ≥
1

2

)
≤

(1
2 − ε

1
2 − ε+ ε

) 1
2−ε+ε

(
1−

(
1
2 − ε

)
1−

(
1
2 − ε+ ε

)) 1
2−ε+ε

n

=

(
4

(
1

4
− ε2

))n/2
Since n − |HC |’s distribution is well approximated by the distribution of∑n
k=1 Ik, we have the result.

Proof of Proposition 2

Proposition 7. If at all times, |Vi| ≤ n for honest i and there exists a set of
honest players HC of size > n

2 common to all honest views, then algorithm3
achieves the following properties:

1. If D ∈ HC,1 and sends mD, then i accepts mD from D.

2. If honest parties i and j accept mD,m
′
D, respectively, from a party D, then

mD = m′D.

Proof. For the first property, observe that i does not receive sigk(m′D) for m′D 6=
mD if D is honest, since D never signs m′D 6= mD, and the adversary cannot
forge digital signatures. Furthermore, all honest parties receive sigD(mD) during
step 1, since D ∈ HC,1. Then, in step 2, j receives sigk(mD) from all members
of HC,2, which accounts for > n

2 members of Vj,2. Since D ∈ HC,1 ⊆ Vi,1, i
therefore accepts mD.

Assume the second property was false. Then i must have received sigk(mD)
from n

2 + 1 members of Vi,2. Since |Vi,2| ≤ n and the size of its honest core
|HC,2| ≥ n

2 + 1, at least one member of HC,2 sent sigD(mD) to i. Therefore that
same member also sent sigD(mD) to j, and so j would not have accepted any
other message m′D.

Proof of Propostion 3

Proof. Let i and j be honest parties. Since proposition 2 shows that i and j
never accept different messages from any party k, between them, i and j accept
at most |Vi

⋃
Vj | votes. By assumption, |Vi

⋃
Vj | ≤ n. For i to follow substep

(a) while j follows substep (b), i must have seen n
2 + 1 votes for 0 while j saw

n
2 + 1 votes for 1, a total of n+ 2 votes, which is more than they saw combined.

Proof of Proposition 5

Proof. Say some honest party i follows substep a, setting vi = 0. By proposition
3, every other honest party j either follows substep a, setting vj = 0 or c, setting
vj = mc. By proposition 1, with probability 1

2 , all honest parties set mc to be
the same bit, which was input by an honest party, so is a uniform random bit.
When this occurs, with probability 1

2 , that bit is 0, and all honest parties are in
agreement on 0.

The proof is symmetric for the case where i follows substep b.

Proof of Proposition 6

Proof. For the first property, we wish to show that if gi = 2 for some honest
player i, then if gj 6= 2 for some honest player j, gj = 1. Since gi = 2, i receives
≥ n

2 + 1 consistent sets of signatures in step 3. Recall that |Vi,3| ≤ n, and that
|HC,3| ≥ n

2 + 1. Therefore, at least one member, `, of HC,3 sent i a consistent
set of signatures, and so ` also sent j a set of > n

2 signatures. These signatures
belong to distinct members of V`,2, and in order for j to output gj = 1, at least
|Vj,2| − n

2 + 1 of these must also be members of Vj . Symbolically, this is the case

if n2 + 1−|V`,2\Vj,2| ≥ |Vj,2|− n
2 + 1. The following arithmetic shows this is true.

n

2
+ 1− |V`,2\Vj,2| =

n

2
+ 1− (|V`,2 ∪ Vj,2| − |Vj,2|)

≥ n

2
+ 1− n+ |Vj,2|

= |Vj,2| −
n

2
+ 1

The proof of the second property will require two steps. First, we will observe
that if no honest parties signs (v, 2) in step 2, then no honest party receives a
consistent signature set for (v, 2) in step 4. This would require |V2,i| − n

2 + 1 >
|V2,i| − |HC | total signatures from members of V2,i, which is more than the
number of corrupted parties in V2,i. Accordingly, if this is the case, no honest
party outputs v with a grade other than 0. Second, we show that in step 2, two
honest parties cannot trigger their thresholds for two values v1, v2. So, if some
honest party signs v1 in step 2, no honest party signs any v2 in step 2, and
therefore no honest party can output anything other than v1 with a grade other
than 0. This part requires us to recall that algorithm 3 prevents any player from
sending signatures for two different messages which are both accepted in step
1. Therefore, honest players i and j see at most |Vi

⋃
Vj | signatures between

them in step 2, too few to trigger both their thresholds for different values, since
|Vi
⋃
Vj | < n+ 2 = 2(n2 + 1).

For the third property, observe that during step 1, every honest player i
receives at least n

2 + 1 signatures for v from members of HC,1, and so they all
sign and send v during step 2. Therefore all honest parties have received at least
n
2 + 1 signatures for v from members of Vi,2 during step 2, and so send a set of
signatures for (v, 2) in step 3. Each honest party then receives a set of signatures
from each member of HC,3. As shown during the proof of property 1, any honest
player will consider these sets to be consistent, so since |HC,3| > n

2 , every honest
player i outputs (gi = 2, vi = v).

Proof of Theorem 1

Proof. For the first property, first note that if the Byzantine Agreement assump-

tions hold, then with probability > 1 − 3
4

k
, all honest players output the same

bit from the execution of binary Byzantine Agreement (algorithm 4, lemma
2). By lemma 1, each committee satisfies the assumptions with probability

≈ 1 −
(
1− 4ε2

)n/2
. The committee formation algorithm is executed 2k times

during the Byzantine Agreement protocol. Therefore by the union bound, all
players output the same bit from the execution of binary Byzantine Agreement

with probability at least 1 −
(

3
4

k
+ 2k

(
1− 4ε2

)n/2)
, which is overwhelmingly

close to 1 for appropriate choices of k and n.
If that bit was 0, then Bi is the empty block for all honest players i. Other-

wise, some honest player i input vi =′ 1 to the Byzantine Agreement protocol,
which only occurs if i output gi = 2 from the Graded Consensus execution in

step 2. Therefore, every other honest player j outputs B′i with grade > 0 as a
result of the Graded Consensus execution (proposition 6), and Bi = B′i = Bj .
Since graded consensus uses committee selection 6 times, by union bound the

requirements of proposition 6 are satisfied with probability ≥ 1−6
(
1− 4ε2

)n/2
.

For the second property, observe that if the leader (i.e. the owner of the
highest VRF) for a round is honest, then it proposes a valid non-empty block
associated with that VRF, which every honest party inputs to Graded Consen-
sus. Thus, that valid, non-empty block is subsequently output with grade 2 in the
Graded Consensus execution (proposition 6), and then becomes the final output
block for every honest party, since all honest parties input 1 to the Byzantine
Agreement algorithm (lemma 2). By proposition 1, this occurs with probability
> 1

2 .

D Performance Analysis

Confirmation Times We express times in terms of message propogation periods
(multiples of ∆). Leader Election (figure 1) takes ∆ time, as in Algorand. Com-
mittee Selection (figure 2) requires 2∆. Graded Broadcast (figure 3) requires
two committee selections, for a total of 4∆. This is where the approximation
discussed in the related work section comes from. Byzantine Agreement (fig-
ure 4) takes k rounds, each of which requires a Leader Election and a Graded
Broadcast, for a total of 5k∆. Graded Consensus (figure 5) requires 3 graded
broadcasts, for a total of 12∆. All together, adding the next block requires a
Leader Election, a Graded Consensus, and a Byzantine Agreement, for a total
of (13+5k)∆. If the block proposer was malicious, which occurs with probability
≤ 1

2 , however, this block could be empty. Therefore the expected time to add
the next block is bounded by (26 + 10k)∆.

Communication Complexity During Committee Selection, all-to-all communica-
tion is required to decide the committee, since the adversary may reorder honest
messages such that the top n are also the last n received. This gives a quadratic
communication complexity.

E Hoeffding’s Bound

The following probability bound is due to Hoeffding [15].

Proposition 8. If X1, . . . Xn are independent and 0 ≤ Xi ≤ 1 for i = 1 . . . n,
then for 0 < t < 1− µ, where µ = E[1n

∑n
i=1Xi], the following holds:

P

(
1

2

n∑
i=1

Xi − µ ≥ t

)
≤

((
µ

µ+ t

)µ+t(
1− µ

1− µ− t

)1−µ−t
)n

