Functional Data Structures and Algorithms

A Proof Assistant Approach

4

Tobias Nipkow (Ed.)

Version of January 22, 2026

Original version published by ACM Books, September 2025

https://dl.acm.org/doi/book/10.1145/3731369

Preface

This book is an introduction to data structures and algorithms for functional lan-
guages, with a focus on proofs. It covers both functional correctness and running
time analysis. It does so in a unified manner with inductive proofs about functional
programs and their running time functions.

What sets this book apart from existing books on algorithms is that all proofs
have been machine-checked, by the proof assistant Isabelle. That is, in addition to
the text in the book, which requires no knowledge of proof assistants!, the Isabelle
definitions and proofs are available online. Simply follow the links attached to chapter
and section headings with a ¥ symbol. The structured nature of Isabelle proofs permits
even novices to browse them and follow the high-level arguments.

This book is aimed at teachers and students (it has been classroom-tested for a
number of years) but is also a reference work for programmers and researchers who
are interested in the (verified!) details of some algorithm or proof.

Isabelle 0

Isabelle [Nipkow et al. 2002, Paulson 1989, Wenzel 2002] is a proof assistant for
the logic HOL (= Higher-Order Logic), which is why the system is often called
Isabelle/HOL. HOL is a generalization of first-order logic: functions can be passed
as parameters and returned as results, just as in functional programming, and they
can be quantified over. Isabelle also supports a simple version of Haskell’s type classes.

The main strength of proof assistants is their trustworthiness: all proofs are checked
to be logically correct. Beyond trustworthiness, formal proofs can also clarify argu-
ments, by exposing and explaining difficult steps. Most Isabelle users will confirm that
their pen-and-paper proofs became clearer and less error-prone after they subjected
themselves to the discipline of formal proof.

As emphasized above, the reader need not be familiar with Isabelle or HOL in order
to read this book. However, to take full advantage of our proof assistant approach,
readers are encouraged to learn how to write Isabelle definitions and proofs themselves
— and to solve some of the exercises in this book. To this end we recommend the
tutorial Programming and Proving in Isabelle/HOL |[Nipkow], which is also Part I
of the book Concrete Semantics [Nipkow and Klein 2014].

http://isabelle.in.tum.de/

Prerequisites
We expect the reader to be familiar with

e the basics of discrete mathematics: propositional and first-order logic, sets and
relations, proof principles including induction;

e a typed functional programming language like Haskell [Haskell], OCaml [OCaml]
or Standard ML [Paulson 1996];

e simple inductive proofs about functional programs.

Under Development
This book is meant to grow. New chapters are meant to be added over time. The list
of authors is meant to grow — you could become one of them!

Colour
For the quick orientation of the reader, definitions are displayed in coloured boxes:

These boxes display functional programs.

These boxes display auxiliary definitions.

From a logical point of view there is no difference between the two kinds of definitions
except that auxiliary definitions need not be executable.

Acknowledgements We are obviously indebted to the books by Cormen et al. [2009]
and Okasaki [1998]. We are similarly indebted to Makarius Wenzel, the long-time
Isabelle architect. Fabian Huch co-taught the course based on this book multiple
times. Jonas Stahl automated time function definitions. Lijun Chen, Nils Ole Harmsen,
Magnus Myreen, Alex Nelson and Johannes Pohjola commented on or reported
mistakes in preliminary versions of the book. We are very grateful to all of them.

Contents

1 Basics

I Sorting and Selection
2 Sorting

3 Selection

II Search Trees

4 Binary Trees

5 Binary Search Trees

6 Abstract Data Types

7 2-3 Trees

8 Red-Black Trees

9 AVL Trees

10 Beyond Insert and Delete: U, N and —
11 Arrays via Braun Trees

12 Tries

13 Region Quadtrees

IIT Priority Queues
14 Priority Queues

15 Leftist Heaps

11
13

31

45
47
59
77
85
95
105
117
127
149

161

177
179

183

iv. CONTENTS

16 Priority Queues via Braun Trees 191
17 Binomial Priority Queues 195
IV Advanced Design and Analysis Techniques 203
18 Dynamic Programming 205
19 Amortized Analysis 227
20 Queues 233
21 Splay Trees 245
22 Skew Heaps 253
23 Pairing Heaps 257
V Selected Topics 265
24 Graph Algorithms 267
25 Knuth—Morris—Pratt String Search 293
26 Huffman’s Algorithm 305
27 Alpha-Beta Pruning 319
VI Appendix 341
A List Library 343
B Time Functions 347
C Notation 355
Bibliography 361
Authors 369

Index 370

1.1

Basics

Tobias Nipkow

In this chapter we describe the basic building blocks the book rests on.

Programs: The functional programming language we use is merely sketched because
of its similarity with other well known functional languages.

Predefined types and notation: We introduce the basic predefined types and no-
tations used in the book.

Inductive proofs: Although we do not explain proofs in general, we make an excep-
tion for certain inductive proofs.

Running time: We explain how we model running time by step counting functions.

Programs
The programs in this book are written in Isabelle’s functional programming language
which provides recursive algebraic data types (keyword: datatype), recursive func-
tion definitions and let, if and case expressions. The language is sufficiently close to
a number of similar typed functional languages (SML [Paulson 1996], OCaml [OCaml],
Haskell [Haskell]) to obviate the need for a detailed explanation. Moreover, Isabelle can
generate SML, OCaml, Haskell and Scala code [Haftmann b]. What distinguishes Isa-
belle’s functional language from ordinary programming languages is that all functions
in Isabelle must terminate. Termination must be proved. For most of the functions in
this book, termination is not difficult to see and Isabelle can prove it automatically.
(For details on termination proofs, consult the function definition tutorial [Krauss].)

Isabelle’s functional language is pure logic. All language elements have precise defi-
nitions. However, this book is about algorithms, not programming language semantics.
A functional programmer’s intuition suffices for reading it. (If you want to know more
about the logical basis of recursive data types, recursive functions and code generation:
see [Berghofer and Wenzel 1999, Haftmann and Nipkow 2010, Krauss 2006].)

A useful bit of notation: any infix operator can be turned into a function by
enclosing it in parentheses, e.g. (+).

1.2

2 Chapter 1 Basics

Types

Type variables are denoted by ‘a, ‘b, etc. The function type arrow is =. Type
constructor names follow their argument types, e.g. ‘a list. The notation ¢ :: 7 means
that term ¢ has type 7. The following types are predefined.

Booleans Type bool comes with the constants True and False and the usual
operations. We mostly write = instead of +—.

Numbers There are three numeric types: the natural numbers nat (0, 1, ...), the
integers int and the real numbers real. They correspond to the mathematical sets
N, Z and R and not to any machine arithmetic. All three types come with the usual
(overloaded) operations.

Sets The type ‘a set of sets (finite and infinite) over type ’a comes with the
standard mathematical operations. The minus sign “—”, unary or binary, can denote
set complement or difference.

Lists The type 'a list of lists whose elements are of type ‘a is a recursive data type:
datatype 'a list = Nil | Cons 'a ('a list)

Constant Nil represents the empty list and Cons z zs represents the list with first
element z, the head, and rest list zs, the tail. The following syntactic sugar is sprinkled

on top:
[= Nil
z # zs = Cons z xs
[1, s Za] = 21 # . # 2o #]

The = symbol means that the left-hand side is merely an abbreviation of the right-
hand side.

A library of predefined functions on lists is shown in Appendix A. The length of a
list zs is denoted by |zs|.

Type 'a option The data type ‘a option is defined as follows:

datatype 'a option = None | Some ‘a

Pairs and Tuples Pairs are written (a, b). Functions fst and snd select the first
and second component of a pair: fst (a, b) = a and snd (a, b) = b. The type unit
contains only a single element (), the empty tuple.

1.2.1

1.2.2

1.2.3

1.2 Types 3

Functions Functions ‘a = b come with a predefined pointwise update operation,
with its own notation:

f(a :=b) = (Az. if z = a then b else f z)

Pattern Matching
Functions are defined by equations and pattern matching, for example over lists.
Natural numbers may also be used in pattern-matching definitions:

fib (n +2) = fib (n + 1) + fib n

Occasionally we use an extension of pattern matching where patterns can be named.
For example, the defining equation

f(z# (y# 25 =ys)) = ys @ zs

introduces a variable ys on the left that stands for y # zs and can be referred to on
the right. Logically it is just an abbreviation of

flz#y# 2s)=(let ys =y # zsin ys Q 2s)

although it is suggestive of a more efficient interpretation. The general format is
pattern =: variable.

Numeric Types and Coercions
The numeric types nat, int and real are all distinct. Converting between them requires
explicit coercion functions, in particular the inclusion functions int :: nat = int
and real :: nat = real that do not lose any information (in contrast to coercions
in the other direction). We do not show inclusions unless they make a difference. For
example, (m + n) :: real, where m, n :: nat, is mathematically unambiguous because
real (m + n) = real m + real n. On the other hand, (m — n) :: real is ambiguous
because real (m — n) # real m — real n because (0::nat) — n = 0. In some cases we
can also drop coercions that are not inclusions, e.g. nat :: int = nat, which coerces
negative integers to 0: if we know that ¢ > 0 then we can drop the nat in nat 1.

We prefer type nat over type real for ease of (Isabelle) proof. For example, for m,
n :: nat we prefer m < 2" over Ig m < n, where g is the binary logarithm.

Multisets
Informally, a multiset is a set where elements can occur multiple times. Multisets
come with the following operations:

4 Chapter 1 Basics

{} 'a multiset
(€,) 'a = 'a multiset = bool
add_mset 'a = 'a multiset = 'a multiset
(+) 'a multiset = 'a multiset = 'a multiset
size 'a multiset = nat
mset 'a list = 'a multiset
set_mset ‘a multiset = 'a set
image_mset ('a = 'b) = 'a multiset = 'b multiset
filter_mset :: (‘a = bool) = 'a multiset = 'a multiset
sum_mset 'a multiset = ‘a

Their meaning: {} is the empty multiset; (€,) is the element test; add_mset adds an
element to a multiset; (+) is the sum of two multisets, where multiplicities of elements
are added; size M, written | M|, is the number of elements in M, taking multiplicities
into account; mset converts a list into a multiset by forgetting about the order of
elements; set_mset converts a multiset into a set; image_mset applies a function to
all elements of a multiset; filter_mset removes all elements from a multiset that do
not satisfy the given predicate; sum_mset is the sum of the values of a multiset, the
iteration of (+) (taking multiplicity into account).
We use some additional suggestive syntax for some of these operations:

{z €, M| Pz} = filter_mset P M

{fz|ze, M} = image_mset f M
>., M = sum_mset M
>ee,u & = sum_mset (image_mset f M)

See Section C.3 in the appendix for an overview of such syntax.

1.3 Notation
We deviate from Isabelle’s notation in favour of standard mathematics in a number
of points:

e There is only one implication: —> is printed as — and P — @ — R is
printed as P A @ — R.

e length zs is printed as |zs|.
e Multiplication is printed as z - y.

e Exponentiation is uniformly printed as zY.

1.4

1.4 Proofs 5

e We sweep under the carpet that type nat is defined as a recursive data type:
datatype nat = 0 | Suc nat. In particular, constructor Suc is hidden: Suc* 0
is printed as k and Suc* n (where n is not 0) is printed as n + k.

e Set comprehension syntax is the canonical {z | P}.

The reader who consults the Isabelle theories referred to in this book should be aware
of these discrepancies.

Proofs
Proofs are the raison d’étre of this book. Thus we present them in more detail than
is customary in a book on algorithms. However, not all proofs:

e We omit proofs of simple properties of numbers, lists, sets and multisets, our pre-
defined types. Obvious properties (e.g. |zs @ ys| = |zs| + |ys| or commutativity
of U) are used implicitly without proof.

e With some exceptions, we only state properties if their proofs require induction, in
which case we will say so, and we will always indicate which supporting properties
were used.

e If a proposition is simply described as “inductive” or its proof is described by a
phrase like “by an easy/automatic induction” it means that in the Isabelle proofs
all cases of the induction were automatic, typically by simplification.

As a simple example of an easy induction consider the append function

(@) :: 'a list = 'a list = 'a list

[@uys=uys
(z#2s) Qys =z # zs Q@ ys

and the proof of (zs @ ys) @ zs = zs @ ys @ zs by structural induction on zs. (Note
that (@) associates to the right.) The base case is trivial by definition: ([] @ ys) @ zs
=[] @ ys @ zs. The induction step is easy:

(z # zs @ ys) @ zs
=z # (zs @ ys) @ zs by definition of (@)
Tz # xs @ ys @ zs by IH

Note that IH stands for Induction Hypothesis, in this case (zs @ ys) @ zs =
zs @ ys @ zs.

1.441

1.5

6 Chapter 1 Basics

Computation Induction

Because most of our proofs are about recursive functions, most of them are by
induction, and we say so explicitly. If we do not state explicitly what form the
induction takes, it is by an obvious structural induction. The alternative and more
general induction schema is computation induction where the induction follows
the terminating computation, but from the bottom up. For example, the terminating
recursive definition for ged :: nat = nat = nat

ged m n = (if n = 0 then m else gcd n (m mod n))
gives rise to the following induction schema:

If(n #0— Pn (mmod n)) — P mn (for all m and n),
then P m n (for all m and n).

In general, let f :: 7 = 7' be a terminating function of, for simplicity, one argument.
Proving P(z :: 7) by induction on the computation of f means proving

Prin...N\Pr, — Pe

for every defining equation

fe=...fri ... frno..

where f r1, ..., f r, are all the recursive calls. For simplicity we have ignored the if
and case contexts that a recursive call f r; occurs in and that should be preconditions
of the assumption P r; as in the gcd example. If the defining equations for f overlap,
the above proof obligations are stronger than necessary.

Running Time

Our approach to reasoning about the running time of a function f is very simple:
we explicitly define a function T; such that 7; z models the time the computation of
f = takes. More precisely, T¢ counts the number of non-primitive function calls in the
computation of f. It is not intended that T; yields the exact running time but only
that the running time of f is in O(Ty).

Given a function f :: 7y = ... = T, = T we define a (running) time function
Tf o 71 = ... = T, = nat by translating every defining equation for f into a
defining equation for T;. The translation is defined by two functions: £ translates
defining equations for f to defining equations for T; and 7 translates expressions that
compute some value to expressions that computes the number of function calls. The
unusual notation £[.] and 7.] emphasizes that they are not functions in the logic.

1.5 Running Time 7

Elfpr ... pn=¢] = (Tf p1 ... pn = T[e] + 1)
Tifer-.. en] = Tlea] + ... + Tlen] + Ts €1 ... €n (1.1)

This is the general idea. It requires some remarks and clarifications:

e This definition of T is an abstraction of a call-by-value semantics. Thus it is also
correct for lazy evaluation but may be a very loose upper bound.

e Definition (1.1) is incomplete: if f is a variable or constructor function (e.g. Nil
or Cons), then there is no defining equation and thus no T;. Conceptually we
define Ty ... = 0 if f is a variable, constructor function or predefined function
on bool or numbers. That is, we count only user-defined function calls. This does
not change O(Ty) for user-defined functions f (see Discussion below).

o if, case and let are treated specially:

TTif b then e; else e;]

= T[b] + (if b then T[e;] else T[e:])

Tlcase eof p; = e; | ... | pr = ex]

= Tle] + (case eof p1 = T[ei] | ... | px = Tlex])
Tllet z = ey in ex] = T[ei] + (let £ = e; in T[ez])

e For simplicity we restrict ourselves to a first-order language above. Nevertheless
we use a few basic higher-order functions like map in the book. Their running
time functions are defined in Appendix B.1.

As an example consider the append function (@) defined above. The defining
equations for Tappeng :: 'a list = 'a list = nat are easily derived. The first equation
translates like this:

€l @ ys = ys]
= (Tappend] ys = Tlys] + 1)
= (Tappend [ys =1)
The right-hand side of the second equation translates like this:
Tlz # zs @ ys]
= Tla] + Tlzs @ ys] + Teons @ (a5 @ ys)
= 0 + (T[[.’Es]] + Tl[ys]] + Tappend s ys) + 1
:0+(0+0+ Tappend$3y3)+1

Thus the two defining equations for Tappeng are

1.5.1

8 Chapter 1 Basics

7—avppend Jys=1
Tappend (z # x5) ys = Tappend s ys + 1

As a final simplification, we drop the +1 in the time functions for non-recursive
functions (think inlining). In that case E[fz1 ... z, = €] = (Tf z1 ... T, = T[e]).
Again, this does not change O(T;) (except in the trivial case where 7e] = 0).

In the main body of the book we initially show the definition of each T;. Once the
principles above have been exemplified sufficiently, the time functions are relegated
to Appendix B.

The definition of T; from the definition of f has been automated in Isabelle.

Example: List Reversal

This section exemplifies not just the definition of time functions but also their
analysis. The standard list reversal function rev is defined in Appendix A. This is
the corresponding time function:

Trev :: 'a list = nat

Trev [] =1
Trev (ZE # ZES) = Trev s + Tappend (I’eV :ZIS) [:Z:] + 1

A simple induction shows Tappend zs ys = |zs| + 1. The precise formula for Ty is
less immediately obvious (exercise!) but an upper bound is easy to guess and verify
by induction:

Trev zs < (Jzs| + 1)2

We will frequently prove upper bounds only.
Of course one can also reverse a list in linear time:

itrev :: 'a list = 'a list = 'a list
itrev [] ys = ys
itrev (z # zs) ys = itrev zs (z # ys)

Tirev =2 'a list = 'a list = nat

7—itrev [] _ = 1
Titrev (33 # ms) ys = Tiyrev T5 (33 # ys) 7 il

1.5.2

1.5 Running Time 9

Function itrev has linear running time: Tiyey zs ys = |zs| + 1. A simple induction
yields itrev zs ys = rev s @ ys. Thus jirev implements rev: rev zs = itrev zs |].

Discussion

Analysing the running time of a program requires a precise cost model. For imperative
programs the standard model is the Random Access Machine (RAM), where each
instruction takes one time unit. For functional programs a standard measure is the
number of function calls. We follow Sands [1990, 1995] by counting only non-primitive
function calls. One could also count variable accesses, primitive and constructor
function calls. This would not change O(T) because it would only add a constant
to each defining equation for T;. However, it would make reasoning about T; more
tedious.

A full proof that the execution time of our functional programs is in O(Ty) on some
actual software and hardware is a major undertaking: one would need to formalize the
full stack of compiler, runtime system and hardware. We do not offer such a proof.
Thus our formalization of “time” should be seen as conditional: given a stack that
satisfies our basic assumptions in the definition of £ and 7, our analyses are correct
for that stack. Below we argue that these assumptions are reasonable (on a RAM),
provided we accept that both the address space and numbers have a fixed size and
cannot grow arbitrarily. Of course this means that actual program execution may
abort if the resources are exhausted.

To simplify our argument, we assume that 7 counts all function calls and vari-
able accesses (which does not change O(Ty), as we argued above). Thus our basic
assumption is that function calls take constant time. This is reasonable (on a RAM)
because we just need to allocate, initialize and later deallocate a stack frame of con-
stant size. It is of constant size because all parameters are references or numbers and
thus of fixed size. We also assumed that variable access takes constant time. This is a
standard RAM assumption. Assuming that constructor functions take constant time
is reasonable because the memory manager could simply employ a single reference
to the first free memory cell and increment that with each constructor function call.
Garbage collection complicates matters. In the worst case we have to assume that
garbage collection is switched off, which simply exhausts memory more quickly. Fi-
nally we assume that operations on bool and numbers take constant time. The former
is obvious, the latter follows from our assumption that we have fixed-size numbers.

In the end, we are less interested in a specific model of time and more in the
principle that time (and other resources) can be analyzed just as formally as functional
correctness once the ground rules (e.g. 7)) have been established.

1.5.3

10 Chapter 1 Basics

Asymptotic Notation

The above approach to running time analysis is nicely concrete and avoids the more
sophisticated machinery of asymptotic notation, O(.) and friends. Thus we have
intentionally lowered the entry barrier to the book for readers who want to follow the
Isabelle formalization: we require no familiarity with Isabelle’s real analysis library and
in particular with the existing formalization of and automation for asymptotic notation
[Eberl 2017b]. Of course this comes at a price: one has to come up with and reason
about somewhat arbitrary constants in the analysis of individual functions. Moreover,
we seldom appeal to the master theorem [Cormen et al. 2009] (although Eberl
[2017b] provides a generalized version) but prove solutions to recurrence relations
correct by induction. Again, this is merely to reduce the required mathematical
basis and to show that it can be done. In informal explanations, typically when
considering inessential variations, we do use standard mathematical notation and
write, for example, O(nlgn).

Part 1

Sorting and Selection

11

Sorting [~
Tobias Nipkow and Christian Sternagel

In this chapter we define and verify the following sorting functions: insertion sort,
quicksort, and three variations of merge sort. We also analyze their running times
(except for quicksort, whose running time analysis is beyond the scope of this book).
Sorting involves an ordering. We assume such an ordering to be provided by
comparison operators < and < defined on the underlying type.
Sortedness of lists is defined as follows:

sorted :: (‘a::linorder) list = bool

sorted [| = True
sorted (z # ys) = ((Vyeset ys. z < y) A sorted ys)

That is, every element is < to all elements to the right of it: the list is sorted in
increasing order.

The notation ‘a:linorder restricts the type variable ‘a to linear orders, which
means that sorted is only applicable if a binary predicate (<) :: 'a = ‘a = bool is
defined and (<) is a linear order, i.e. the following properties are satisfied:

reflexivity: z <z
transitivity: c<yANy<z—oz<z
antisymmetry: a<bAb<a—a=1D

linearity/totality: z <yvy<z
Moreover, the binary predicate (<) must satisfy
<y «— < YAz #UY

On the numeric types nat, int and real, (<) is a linear order.

Note that linorder is a specific predefined example of a type class [Haftmann a].
We will not explain type classes any further because we do not require the general
concept. In fact, we will mostly not even show the linorder restriction in types: you
can assume that if you see < or < on a generic type ‘a in this book, ‘a is implicitly
restricted to ltznorder, unless we explicitly say otherwise.

13

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Sorting.html

2.1

2.2

2.21

14 Chapter 2 Sorting

Specification of Sorting Functions
A sorting function sort ::'a list = 'a list (where, as usual, ‘a::linorder) must
obviously satisfy the following property:

sorted (sort zs)

However, this is not enough — otherwise, nil_ sort s = [|] would be a correct sorting
function. The set of elements in the output must be the same as in the input, and
each element must occur the same number of times. This is most readily captured
with a multiset (see Section 1.2.3). Thus the second property that a sorting function
sort must satisfy is

mset (sort zs) = mset zs

where function mset converts a list into its corresponding multiset.

Insertion Sort

Insertion sort is well-known for its intellectual simplicity and computational ineffi-
ciency. Its simplicity makes it an ideal starting point for this book. Below, it is im-
plemented by the function insort with the help of the auxiliary function insort1 that
inserts a single element into an already sorted list.

insort! :: 'a = 'a list = 'a list
insort1 z [| = [z]
insort! z (y # ys) = (if z < ythen z # y # ys else y # insort! z ys)

insort :: 'a list = 'a list

insort [| =[]
insort (z # zs) = insort1 z (insort zs)

Correctness
We start by proving the preservation of the multiset of elements:

mset (insort! z zs) = {z} + mset zs (2.1)

mset (insort zs) = mset zs (2.2)

Both properties are proved by induction; the proof of (2.2) requires (2.1).

Now we turn to sortedness. Because the definition of Sorted involves sef, it is
frequently helpful to prove multiset preservation first (as we have done above) because
that yields preservation of the set of elements. That is, from (2.1) we obtain:

222

2.2 Insertion Sort 15

set (insort1 z zs) = {z} U set zs (2.3)
Two inductions prove

sorted (insort1! a xzs) = sorted zs (2.4)

sorted (insort zs) (2.5)

where the proof of (2.4) uses (2.3) and the proof of (2.5) uses (2.4).

Running Time
These are the running time functions (according to Section 1.5):

Tinsort1 2 'a = 'a list = nat

Tinsort1 _ [] =1
Tinsort1 = (y # ys) = (if z < y then 0 else Tipsort1 T ys) + 1

Tinsort :: 'a list = nat

Tinsort [] =1
Tinsort (z # ©5) = Tinsort ©s + Tinsort1 T (insort zs) + 1

A dismal quadratic upper bound for the running time of insertion sort is proved
readily:

Lemma 2.1. Tjpsort zs < (|zs| + 1)2

Proof. The following properties are proved by induction on zs:

Tinsort1 T s < |335| +1 (2.6)
linsort! = zs| = |zs| + 1 (2.7)
linsort zs| = |zs| (2.8)

The proof of (2.8) needs (2.7). The proof of Tinsort zs < (|zs| + 1)? is also by induction
on zs. The base case is trivial. The induction step is easy:

Tinsort (z # 28) = Tinsort s + Tinsort1 T (insort zs) + 1

< (Jzs| + 1)2 + Tinsort1 = (insort zs) + 1 by IH
< (lzs| + 1)2 + |zs| + 1 + 1 using (2.6) and (2.8)
< (lz # zs| + 1)? O

Exercise 2.1 asks you to show that insort actually has quadratic running time on
all lists [n, n—1, ..., 0].

2.3

2.31

16 Chapter 2 Sorting

Quicksort

Quicksort [Hoare 1961] is a divide-and-conquer algorithm that sorts a list as follows:
pick a pivot element from the list; partition the remaining list into those elements
that are smaller and those that are greater than the pivot (equal elements can go into
either sublist); sort these sublists recursively and append the results. A particularly
simple version of this approach, where the first element is chosen as the pivot, and
the equal elements are put into the second sublist, looks like this:

quicksort :: 'a list = 'a list

quicksort || =[]
quicksort (z # s)
= quicksort (filter (A\y. y < z) zs) @ [z] @ quicksort (filter (A\y. y > z) zs)

Correctness
Preservation of the multiset of elements

mset (quicksort zs) = mset zs (2.9)

is proved by computation induction using these lemmas:

mset (filter P zs) = filter_mset P (mset zs)

(Vz. Pz = (- Q z)) — filter_mset P M + filter_mset Q M = M

A second computation induction proves sortedness
sorted (quicksort xs)
using the lemmas

sorted (zs @ ys) = (sorted zs N sorted ys N (Vzeset zs. Vyeset ys. z < y))

set (quicksort zs) = set zs

where the latter one is an easy consequence of (2.9).

We do not analyze the running time of quicksort. It is well known that in the worst
case it is quadratic (exercise!) but that the average-case running time (in a certain
sense) is O(nlgn). If the pivot is chosen randomly instead of always choosing the
first element, the ezpected running time is also O(nlgn). The necessary probabilistic
analysis is beyond the scope of this text but can be found elsewhere [Eberl 2017a,
Eberl et al. 2018].

2.4

2.41

2.4 Top-Down Merge Sort 17

Top-Down Merge Sort

Merge sort is another prime example of a divide-and-conquer algorithm, and one whose
running time is guaranteed to be O(nlgn). We will consider three variants and start
with the simplest one: split the list into two halves, sort the halves separately and
merge the results.

merge :: 'a list = 'a list = 'a list

merge [| ys = ys

merge zs [| = s

merge (z # zs) (y # ys)

= (if z < ythen z # merge zs (y # ys) else y # merge (z # zs) ys)

msort :: 'a list = 'a list

msort zs
= (let n = |zs|
in if n < 1 then zs
else merge (msort (take (n div 2) zs)) (msort (drop (n div 2) zs)))

Correctness
We start off with multisets and sets of elements:

mset (merge zs ys) = mset zs + mset ys (2.10)
set (merge zs ys) = set zs U set ys (2.11)

Proposition (2.10) is proved by induction on the computation of merge and (2.11) is
an easy consequence.

Lemma 2.2. mset (msort zs) = mset zs

Proof by induction on the computation of msort. Let n = |zs|. The base case
(n <1) is trivial. Now assume n > 1 and let ys = take (n div 2) zs and zs =
drop (n div 2) zs.

mset (msort zs) = mset (msort ys) + mset (msort zs) by (2.10)
= mset ys + mset zs by IH
= mset (ys @ zs)

= mset zs O

Now we turn to sortedness. An induction on the computation of merge, using
(2.11), yields

2.4.2

18 Chapter 2 Sorting

sorted (merge zs ys) = (sorted zs A sorted ys) (2.12)
Lemma 2.3. sorted (msort zs)

The proof is an easy induction on the computation of msort. The base case (n < 1)
follows because every list of length < 1 is sorted. The induction step follows with the
help of (2.12).

Running Time
To simplify the analysis, and in line with the literature, we only count the number of
comparisons:

Cmerge = 'a list = 'a list = nat

Cmerge [] _ = 0

Cmerge _ [] =0

Crmerge (z # z5) (y # ys)

=1+ (if z < ythen Chnerge zs (y # ys) else Cmerge (z # x5) ys)

Cmsort = 'a list = nat

Cmsort Ts
= (let n = |zs|;
ys = lake (n div 2) zs;
zs = drop (n div 2) zs
inif n < 1theno0
else Cpsort ys + Cmsort 25 + Cmerge (Msort ys) (msort zs))

By computation inductions we obtain:

|merge zs ys| = |zs| + |ys] (2.13)
|msort zs| = |zs| (2.14)
Crerge zs ys < |zs| + [ys| (2.15)

where the proof of (2.14) uses (2.13).
To simplify technicalities, we prove the nlgn bound on the number of comparisons
in msort only for n = 2%, in which case the bound becomes k - 2.

Lemma 2.4. |zs| = 25— Cmsort zs < k - 2F

Proof by induction on k. The base case is trivial and we concentrate on the step. Let
n = |zs|, ys = fake (n div 2) zs and zs = drop (n div 2) zs. The case n < 1 is
trivial. Now assume n > 1.

2.5

2.5.1

2.5 Bottom-Up Merge Sort 19

Crmsort Ts

= Cmsort Y5 + Cmsort 25 + Cmerge (Msort ys) (msort zs)

< Cmsort Y$ + Cmsort 28 + |ys| + |zs| using (2.15) and (2.14)
<k-2F4+ k- 2F 4 |ys| + |zs] by IH
=k 28+ k- 2F 4 |25

=(k+1)-2F+1 by assumption |zs| = 2% +1 O

Bottom-Up Merge Sort

Bottom-up merge sort starts by turning the input [z1, ..., z,] into the list [[z4], ...,
[z5]]. Then it passes over this list of lists repeatedly, merging pairs of adjacent lists
on every pass until at most one list is left.

merge_adj :: 'a list list = 'a list list

merge_adj [] = []
merge_adj [zs] = [zs]
merge_adj (zs # ys # zss) = merge zs ys # merge_adj zss

merge_all :: 'a list list = ‘a list

merge_all [| =[]
merge_all [zs] = zs
merge_all zss = merge_all (merge_adj zss)

msort_bu :: 'a list = 'a list
msort_bu zs = merge_all (map (Az. [z]) zs)

Termination of merge_all relies on the fact that merge_adj halves the length of the
list (rounding up). Computation induction proves

|merge_adj2 acc zs| = |acc| + (Jzs| + 1) div 2 (2.16)

Correctness
We introduce the abbreviation mset_mset :: 'a list list = 'a multiset:

mset_mset zss =), (image_mset mset (mset zss))

These are the key properties of the functions involved:

mset_mset (merge_adj2 acc zss) = mset_mset acc + mset_mset zss
mset (merge_all2 zss) = mset_mset zss (2.17)

2.5.2

20 Chapter 2 Sorting

mset (msort_bu zs) = mset zs

(Vzseset xzss. sorted zs) — (Vzseset (merge_ad| zss). sorted zs)
(Vzseset zss. sorted zs) —» sorted (merge_all zss) (2.18)
sorted (msort_bu zs)
The third and the last proposition prove functional correctness of msort_bu. The
proof of each proposition may use the preceding propositions and the propositions

(2.10) and (2.12). The propositions about merge_adj and merge_all are proved by
computation inductions.

Running Time
Again, we count only comparisons:

Cmerge_adj :: 'a list list = nat

Cmergz—:'_azdj [] =0

Cmerge_adj [_] =0

Crmerge_adj (25 # ys # 25s) = Cmerge 5 ys + Cmerge_adj 255

Cmerge_an :: 'a list list = nat

Cmerge_all [] =0
Cmerge_a/l [_] =0
Cmerge_ail 55 = Cmerge_adj ©55 + Cmerge_an (merge_adj zss)

Cmsortﬁbu . Ia lZSt = nat

Cmsort_bu TS5 = Cmerge_all (map (Az. [z]) zs)

By simple computation inductions we obtain:
even |zss| A (Vzseset zss. |zs| = m) —
(Vzseset (merge_adj zss). |zs| = 2 - m) (2.19)
(Vzseset zss. |zs| = m) — Cmerge_adj T85 < m - |zss| (2.20)
using (2.13) for (2.19) and (2.15) for (2.20).
Lemma 2.5. (Vzscset zss. |zs| = m) A |zss| = 2F —
Cmerge_all zss <m -k - 2k
Proof by induction on the computation of merge_all. We concentrate on the
nontrivial recursive case arising from the third equation. We assume |zss| > 1,

Vzscset zss. |zs| = m and |zss| = 2F. Clearly k& > 1 and thus even |zss|. Thus
(2.19) implies Vzseset (merge_adj zss). |zs| = 2 - m. Also note

2.6

2.6 Natural Merge Sort 7 21

|merge_adj zss|
= (Jzss| + 1) div 2 using (2.16)

=2k -1 using |zss| = 2% and k& > 1 by arithmetic

Let yss = merge_adj zss. We can now prove the lemma:
Cmerge_all Tss = Cmerge_adj 55 + Cmerge_all yss
<m -2k 4 Cmerge_all Yss using |zss| = 2% and (2.20)
m-284+2.-m.(k—1)-2F"1
by IH using Vzseset yss. |zs| = 2 - m and |yss]|
m -k -2k O

A\

_ gk 1

For m = 1 we obtain the same upper bound as for top-down merge sort in Lemma 2.4:

Corollary 2.6. |zs| = 2k — Cmsort by zs < k - 2F

Natural Merge Sort 7

A disadvantage of all the sorting functions we have seen so far (except insertion sort)
is that even in the best case they do not improve upon the nlgn bound. For example,
given the sorted input [1, 2, 3, 4, 5], msort_bu will, as a first step, create [[1], [2], [3],
[4], [5]] and then merge this list of lists recursively.

A slight variation of bottom-up merge sort, sometimes referred to as natural
merge sort, first partitions the input into its constituent ascending and descending
subsequences (collectively referred to as runs) and only then starts merging. In the
above example we would get merge_all [[1, 2, 3, 4, 5]], which returns immediately
with the result [1, 2, 3, 4, 5]. Assuming that obtaining runs is of linear complexity,
this yields a best-case performance that is linear in the number of list elements.

Function runs computes the initial list of lists; it is defined mutually recursively
with asc and desc, which gather ascending and descending runs in accumulating
parameters:

runs :: 'a list = 'a list list

runs (a # b # zs) = (if b < a then desc b [a] zs else asc b ((#) a) zs)
runs [z] = [[z]]

runs || =]

asc :: 'a = ('a list = 'a list) = 'a list = 'a list list
asc a as (b # bs)

= (if - b < athen asc b (as o (#) a) bs else as [a] # runs (b # bs))
asc a as [| = [as [a]]

https://isa-afp.org/entries/Efficient-Mergesort.html
https://isa-afp.org/entries/Efficient-Mergesort.html

2.6.1

22 Chapter 2 Sorting

desc :: 'a = 'a list = 'a list = 'a list list

desc a as (b # bs)
= (if b < athen desc b (a # as) bs else (a # as) # runs (b # bs))
desc a as [| = [a # as$]

Function desc needs to reverse the descending run it collects. Therefore a natural
choice for the type of its accumulator as is list, since recursively prepending elements
(using (#)) ultimately yields a reversed list.

Function asc collects an ascending run and is slightly more complicated than
desc. If we used lists, we could accumulate the elements similarly to desc but
using as @ [a] instead of a # as. This would take quadratic time in the number
of appended elements. Therefore the “standard” solution is to accumulate elements
using (#) and to reverse the accumulator in linear time (as shown in Section 1.5.1)
at the end. However, another interesting option (that yields better performance for
some functional languages, like Haskell) is to use difference lists. This is the option
we chose for asc.

In the functional programming world, difference lists are a well-known trick to ap-
pend lists in constant time by representing lists as functions of type ‘a list = 'a list.
For difference lists, we have the following correspondences: empty list [| & Az. z, sin-
gleton list [z] ~ (#) z, and list append zs @ ys ~ zs o ys (taking constant time).
Moreover, transforming a difference list zs into a normal list is as easy as zs [] (taking
linear time).

Note that, due to the mutually recursive definitions of runs, asc, and desc,
whenever we prove a property of runs, we simultaneously have to prove suitable
properties of asc and desc using mutual induction.

Natural merge sort is the composition of merge_all and runs:

nmsort :: 'a list = ‘a list
nmsort zs = merge_all (runs zs)

Correctness
We have

(Vzs ys. f (zs @ ys) = fzs @ ys) —
mset_mset (asc z f ys) = {z} + mset (f [|) + mset ys (2.21)

mset_mset (desc z zs ys) = {z} + mset zs + mset ys (2.22)

2.6.2

2.6 Natural Merge Sort 7 23

mset_mset (runs zs) = mset zs (2.23)

mset (nmsort zs) = mset s (2.24)
where (2.23), (2.21), and (2.22) are proved simultaneously. The assumption of (2.21)
on f ensures that f is a difference list. We use (2.23) together with (2.17) in order to
show (2.24). Moreover, we have

Vzeset (runs xs). sorted z (2.25)

sorted (nmsort zs) (2.26)

where we use (2.25) together with (2.18) to obtain (2.26).

Running Time
Once more, we only count comparisons:

Cruns :: 'a list = nat

Cruns (a #£ b # zs) =1 + (if b < athen Cgesc b zs else Casc b)

Cruns [] =0
Cruns [_] =0

Casc :: 'a = 'a list = nat
Casc a (b # bs) = + (if - b < athen Casc b bS else Cruns (b # bs))
Casc _ [] =0

Cdesc :: 'a = 'a list = nat
Cdesc a (b # bs) = + (if b < a then Cdeso b bS else Cruns (b # bS))
Cdesc _ [] =0

Cnmsort : 'a list = nat

Crmsort s = Cruns 5 + Cmerge_an (runs zs)

Again note the mutually recursive definitions of Cryns, Casc, and Cgesc. Hence the
remark on proofs about runs also applies to proofs about Cryns.

Before talking about Cpmsort, Wwe need a variant of Lemma 2.5 that also works for
lists whose lengths are not powers of two (since the result of runs will usually not
satisfy this property).

To this end, we will need the following two results, which we prove by two simple
computation inductions using (2.15) and (2.13):

Cmerge_adj TSSs S |COncat $$S| (227)

https://isa-afp.org/entries/Efficient-Mergesort.html

24 Chapter 2 Sorting

|concat (merge_adj zss)| = |concat zss| (2.28)

Lemma 2.7. Cperge_an Tss < |concat zss| - [Ig |zss|]

Proof by induction on the computation of Cperge_ar. We concentrate on the nontrivial
recursive case arising from the third equation. It follows that zss is of the form zs #
ys # zss. Further note that for all n :: nat:

2<n —TJlgn]=TJlg ((n —1)div2+1)] +1 (2.29)
Now, let m = |concat zss|. Then we have

Cmerge_all Tss
Cmerge_adj zss + Cmerge_a/l (merge_adj zss)

< m + Chmerge_an (Merge_adj zss) using (2.27)
< m + |concat (merge_adj zss)| - [Ig |merge_adj zss|] by IH
=m + m - [lg |merge_adj zss|] by (2.28)
=m + m - [lg ((|zss| + 1) div 2)] by (2.16)
=m+ m - [lg ((Jzss| + 1) div 2 + 1)]
m - ([lg ((Jzss| + 1) div 2 + 1)] + 1)
=m - [lg (|zss| + 2)] by (2.29)
m - [lg |zss|] O

Three simple computation inductions, each performed simultaneously for the cor-
responding mutually recursive definitions, yield:

(Vzs ys. f (zs @ ys) = fzs @ ys) —
|concat (asc a fys)| =1+ |f [|| + |ys],
|concat (desc a zs ys)| = 1 + |zs| + |ys],
|concat (runs zs)| = |zs] (2.30)
(Vzs ys. f (zs @ ys) = fzs @ ys) — |asc a fys| < 1 + |ys|,
|desc a zs ys| < 1 + |ys|, |runs zs| < |zs| (2.31)
Casc a ys < |ys|, Cdesc @ ys < |ys|, Cruns zs < |zs| — 1 (2.32)
At this point we obtain an upper bound on the number of comparisons required
by Crmsort-
Lemma 2.8. |zs| = n — Cpmsort s < n + n - [Ig n]
Proof. Note that
Cmerge_an (runs zs) < n - [lg n| (%)

as shown by this derivation:

2.7

2.7 Uniqueness of Sorting 25

Crmerge_all (runs zs)

< |concat (runs zs)| - [lg |runs zs|] by Lemma 2.7 with zss = runs zs
< n - [lg |runs zs|] by (2.30)
<n-[lgn] by (2.31)

We conclude the proof by:

Crmsort 8 = Cruns 25 + Cmerge_air (runs zs)
<n+n-[lgn] using (2.32) and (%) O

Uniqueness of Sorting

We have seen many different sorting functions now and it may come as a surprise that
they are all the same in the sense that they are all extensionally equal: they have the
same input/output behaviour (but of course not the same running time).

A more abstract formulation of this is that the result of sorting a list is uniquely
determined by the specification of sorting. This is what we call the uniqueness of
sorting: Consider lists whose elements are sorted w.r.t. some linear order. Then any
two such lists with the same multiset of elements are equal. Formally:

Theorem 2.9 (Uniqueness of sorting).
mset ys = mset zs A sorted zs A sorted ys — zs = ys

Proof by induction on zs (for arbitrary ys). The base case is trivial. In the induction
step, zs = z # zs'. Thus ys must also be of the form y # ys' (otherwise their
multisets could not be equal).

Thus we now have to prove z # xs’' = y # ys’, and the facts that we have available
to do this are

mset (z # zs') = mset (y # ys') (2.33)
sorted (z # zs') A sorted (y # ys') (2.34)

and the induction hypothesis
Vys'. mset zs' = mset ys' A sorted xs' A sorted ys' — zs' = ys' . (IH)

Our first objective now is to show that z = y. Either z < y or z > y must hold.
Let us first prove = y for the case z < y. From (2.33), we have z €, mset (z # zs')
= mset (y # ys'). Thus z is contained somewhere in the list y # ys’. Since y # ys’
is sorted, all elements of y # ys’ are > y; in particular we then have z > y. Together
with z < vy, we obtain z = y as desired. The case z > y is completely analogous.

Now that we know that z = y, the rest of the proof is immediate: From (2.33) we
obtain mset zs' = mset ys’, and with that and (2.34), the (IH) tells us that zs’ =
ys' and we are done. O

2.8

26 Chapter 2 Sorting

This theorem directly implies the extensional equality of all sorting functions that
we alluded to earlier. That is, any two functions that satisfy the specification from
Section 2.1 are extensionally equal.

Corollary 2.10 (All sorting functions are extensionally equal). If f and g are
functions of type (‘a :: linorder) list = 'a list such that

Vzs. sorted (f zs) A mset (f zs) = mset zs
Vzs. sorted (g zs) A mset (g zs) = mset zs

then Vzs. f zs = g zs; or, equivalently: f = g

Proof. We use Theorem 2.9 with the instantiations zs = f zs and ys = g zs. [

Note that for both of these theorems, the lznorder constraint on the element type
is crucial: if we have an order < that is not linear, then there are elements z, y with
z < yand y <X z but z # y. Consequently, the lists [z,y] and [y,z] are not equal,
even though they are both sorted w.r.t. < and contain the same elements.

Stability

A sorting function is called stable if the order of equal elements is preserved. However,
this only makes a difference if elements are not identified with their keys, as we have
done so far. Let us assume instead that sorting is parameterized with a key function
f 2 'a = 'k that maps an element to its key and that the keys 'k are linearly ordered,
not the elements. This is the specification of a sorting function sort_ key:

mset (sort_key f zs) = mset zs
sorted (map f (sort_key f zs))

Assuming (for simplicity) we are sorting pairs of keys and some attached informa-
tion, stability means that sorting [(2, z), (1, 2), (1, y)] yields [(1, 2), (1, y), (2, z)]
and not [(1, y), (1, z), (2, z)]. That is, if we extract all elements with the same key
after sorting zs, they should be in the same order as in zs:

filter (\y. fy = k) (sort_key f zs) = filter (A\y. fy = k) xs

We will now define insertion sort adapted to keys and verify its correctness and
stability.

insorti_key :: ('la = 'k) = 'a = 'a list = 'a list
insorti_key =z [| = [z]

insort1_key f z (y # ys)
= (if fz < fythen z # y # ys else y # insort1_key f = ys)

2.8 Stability 27

insort_key :: ('a = 'k) = 'a list = 'a list
insort_key [=]
insort_key f (z # zs) = insort1_key f = (insort_key f zs)

The proofs of the functional correctness properties

mset (insort_key f zs) = mset s
sorted (map f (insort_key f zs)) (2.35)

are completely analogous to their counterparts for plain insort.
The proof of stability uses three auxiliary properties:

(Vzesetzs. fa < fz) — insorti_key fa xs = a # zs (2.36)
- Pz — filter P (insorti_key f = xzs) = filter P zs (2.37)

sorted (map fzs) N Pz —
filter P (insort1_key f « zs) = insorti_key f z (filter P zs) (2.38)

The first one is proved by a case analysis on zs. The other two are proved by induction
on zs, using (2.36) in the proof of (2.38).

Lemma 2.11 (Stability of insort_key).
filter (\y. fy = k) (insort_key f zs) = filter (A\y. fy = k) zs

Proof by induction on zs. The base case is trivial. In the induction step we consider
the list @ # zs and perform a case analysis. If f a # k the claim follows by IH using
(2.37). Now assume f a = k:

filter (\y. fy = k) (insort_key f (a # zs))
= filter (A\y. fy = k) (insorti_key f a (insort_key f zs))
insort1_key f a (filter (\y. fy = k) (insort_key f zs))

using f a = k, (2.38), (2.35)
insorti_key f a (filter (A\y. fy = k) zs) by IH
= a # filter (A\y. fy =k) zs using f a = k and (2.36)
filter Ay. fy = k) (a # xs) using fa = k O

2.9

28 Chapter 2 Sorting

Exercises
Exercise 2.1. Show that Tjssort achieves its optimal value of 2 - n + 1 for sorted
lists, and its worst-case value of (n 4+ 1) - (n + 2) div 2 for the list rev [0..<n].

Exercise 2.2. Function quicksort appends the lists returned from the recursive
calls. This is expensive because the running time of (@) is linear in the length of
its first argument. Define a function quicksort? :: 'a list = 'a list = 'a list that
avoids (@) but accumulates the result in its second parameter via (#) only. Prove
quicksort2 zs ys = quicksort zs @ ys.

Exercise 2.3. There is one obvious optimisation to the version of quicksort that we
studied before: instead of partitioning the list into those elements that are smaller
than the pivot and those that are at least as big as the pivot, we can use three-way

partitioning:
partition3 :: 'a = ‘a list = 'a list x 'a list x 'a list

partition3 z zs
= (filter (A\y. y < z) s, filter (\y. y = z) zs, filter (A\y. y > z) zs)

quicksort3 :: 'a list = 'a list
quicksort3 [] =[]
quicksort3 (z # xs)
= (let (Is, es, gs) = partition3 = zs
in quicksort3 Is @ z # es @ quicksort3 gs)

Prove that this version of quicksort also produces the correct results.

Exercise 2.4. In this exercise, we will examine the worst-case behaviour of Quicksort,
which is e.g. achieved if the input list is already sorted. Consider the time function

for Quicksort:
Tquicksort == 'a list = nat

Tquicksort [] =1

Tquicksort (z # xs) = Tquicksort (filter (A\y. y < z) zs) +
Tquicksort (filter (A\y. y > z) zs) +
2 Thger (A_. 1) zs + 1

1. Show that Quicksort takes quadratic time on sorted lists by proving
sorted ©s — Tquicksort ©s = a - |zs|> + b - |zs| + ¢

for suitable values a, b, c.
2. Show that this is the worst-case running time by proving

2.9 Exercises 29

Tquicksort s < a - lzs|* + b - |zs| + ¢

for the values of a, b, ¢ you determined in the previous step.
Exercise 2.5. The definition of msort is inefficient in that it calls length, take and
drop for each list. Instead we can split the list into two halves by traversing it only
once and putting its elements alternately on two piles, for example halve [2, 3, 4] (]0],
[1]) = ([4, 2, 0], [3, 1]). Define halve and msort2

msort2 :: 'a list = 'a list

msort2 | =]

msort2 [z] = [z]

msort2 zs

= (let (ys1, ys2) = halve zs ([], []) in merge (msort2 ys1) (msort2 ysz))

and prove mset (msort2 zs) = mset zs and sorted (msort2 zs). (Hint for Isabelle
users: The definition of msort2 is tricky because its termination relies on suitable
properties of halve.)

Exercise 2.6. Define a tail-recursive variant of merge_adj
merge_adj2 :: 'a list list = 'a list list = 'a list list

(with the same complexity as merge_adj, in particular no (@)) and define new variants
merge_all2 and msort_bu2 of merge_all and msort_bu that utilize merge_adj2.
Prove functional correctness of msort_bu2:

mset (msort_bu2 zs) = mset zs sorted (msort_bu2 zs)
Note that merge_adj2 [| zss = merge_adj zss is not required.

Exercise 2.7. Adapt some of the sorting algorithms other than insort to sorting with
keys and prove their correctness and stability.

Selection 7

Manuel Eberl

A topic that is somewhat related to that of sorting is selection: given a list zs of
length n with some linear order defined on its elements and a natural number k£ <
n, return the k-th smallest number in the list (starting with £ = 0 for the minimal
element). If zs is sorted, this is exactly the k-th element of the list.

The defining properties of the selection operation are as follows:

kE < |zs| — [{y €, mset zs | y < select k zs}| < k
N fy €, msetzs | y > select k zs}| < |zs| — k (3.1)

In words: select k zs has the property that at most k elements in the list are strictly
smaller than it and at most n — k are strictly bigger.

These properties fully specify the selection operation, as shown by the following
theorem:

Theorem 3.1 (Uniqueness of the selection operation).
If k < |zs| and

fz e, msetzs |z <z} <k |{{ze, msetzs|z >z} <|zs| — k (3.2)
Hz e, msetzs |z <yl <k |fz€,msetzs|z >y} <]|zs| — k ’
then z = vy .
Proof. Suppose ¢ # y and then w.l.o.g. * < y. This implies:
{ze, msetzs |z <z} C,{ze, msetzs |z <y} (3.3)
From this we can prove the contradiction |zs| < |zs|:
|zs| = {z €, mset zs | z < z}| + {z €, mset zs | z > z}
<|fze, msetzs| z <y} + {z €, msetzs | z > z}
<k + (Jzs| — k) using (3.2), (3.3)
= |as|
O

31

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Selection.html

32 Chapter 3 Selection

An equivalent, more concrete definition is the following:

select :: nat = 'a list = ‘a

select k zs = sort zs ! k (3.4)

Theorem 3.2. select as defined by Equation (3.4) satisfies the conditions (3.1).
Proof. If ys is sorted, a straightforward induction on ys shows the following:
{z €, msetys | z < ys ! k} C, mset (take k ys)
{z e, msetys |z > ys! k} C, mset (drop (k + 1) ys)
Taking the size of the multisets on both sides, we obtain:
f{z €, msetys |z < ys!k} <k
{z €, msetys |z > ys !k} <|ys| — k
Now, for an arbitrary list zs, we instantiate the above with ys := sort zs and obtain:

k > {z €, mset (sort zs) | ¢ < sort zs ! k}]

= |{z €, mset zs | z < sort zs ! k} using mset (sort zs) = mset s
= |{z €, mset zs | z < select k zs}| using (3.4)
and analogously for the elements greater than select k zs. O

We will frequently need another important fact about sort and select, namely that
they are invariant under permutation of the input list:

Lemma 3.3. Let zs and ys be lists with mset zs = mset ys. Then:

sort zs = sort ys (3.5)
select k s = select k ys (3.6)

Proof. Equation (3.5) follows directly from Theorem 2.9 (the uniqueness of the sort
operation), and (3.6) then follows from (3.5) and our definition of select. O

The definition of select in terms of sort zs ! k already gives us a straightforward
O(nlgn) algorithm for the selection operation: sort the list with one of our O(nlgn)
sorting algorithms and then return the k-th element of the resulting sorted list. It is
also fairly easy to come up with an algorithm that has running time O(kn), i.e. that
runs in linear time in n for any fixed k (see Exercise 3.3).

In the remainder of this chapter, we will look at a selection algorithm that achieves
O(n) running time uniformly for all k < n [Blum et al. 1973]. Since a selection
algorithm must inspect every element at least once (see Exercise 3.4), this running
time is asymptotically optimal.

33

Exercise 3.1. A simple special case of selection is select 0 zs, i.e. the minimum.
Implement a linear-time function selectO such that

zs # [| — select0 zs = select 0 zs

and prove this. This function should be tail-recursive and traverse the list exactly
once. You need not prove the linear running time (it should be obvious).

Exercise 3.2. How can your selectO algorithm be modified to obtain an analogous
algorithm select? such that

|zs| > 1 — select! zs = select 1 zs

Do not try to prove the correctness yet; it gets somewhat tedious and you will be able
to prove it more easily after the next exercise.

Exercise 3.3.

1. Based on the previous two exercises, implement and prove correct an algorithm
select_fixed that fulfills
k < |zs| — select_fixed k zs = select k zs
The algorithm must be tail-recursive with running time O(kn) and traverse the
list exactly once.
Hint: one approach is to first define a function fake_sort that computes take m
(sort zs) in time O(mn).
2. Prove your select! from the previous exercise correct by showing that it is
equivalent to select_fixed 1.
3. Define a suitable time function for your select_fixed. Prove that this time function
is O(kn), i.e. that
Tselect fixed ks < C1 - k - |zs| + Co - |zs| + C3 - k + C4
for all k < |zs| for some constants C; to Cj.
If you have trouble finding the concrete values for these constants, try proving
the result with symbolic constants first and observe what conditions need to be
fulfilled in order to make the induction step go through.

Exercise 3.4. Show that if zs is a list of integers with no repeated elements, an
algorithm computing the result of select k zs must examine every single element, i.e.
for any index 7 < |zs|, the i-th element can be replaced by some other number such
that the result changes. Formally:

k < |zs| A1 < |zs| A distinct zs —
(Jz. select k (zs[i := z]) # select k zs)

Here, the notation zs[¢ := z] denotes the list s where the i-th element has been
replaced with z (the first list element, as always, having index 0).

3.1

34 Chapter 3 Selection

Hint: a lemma you might find useful is that Ak. select k zs is injective if zs has
no repeated elements.

A Divide-and-Conquer Approach
As a first step in our attempt to derive an efficient algorithm for selection, recall what
we did with the function partition3 in the threeway quicksort algorithm in Exercise 2.3:
we picked some pivot value z from zs and partitioned the input list zs into the sublists
ls, es, and gs of the elements smaller, equal, and greater than z, respectively.

If we do the same for select k zs, there are three possible cases:

o If k < |ls|, the element we are looking for is located in ls. To be more precise, it
is the k-th smallest element of Is, i.e. select k Is.

o If K < |ls| + |es|, the element we are looking for is located in es and must
therefore be equal to z.

e Otherwise, the element we are looking for must be located in gs. More precisely,
it is the k'-th smallest element of gs where k' = k — |ls| — |es|.

This gives us a straightforward recursive divide-and-conquer algorithm for selection.
To prove this formally, we first prove the following lemma about the behaviour of
select applied to a list of the form zs @ ys:

Lemma 3.4.
k < |zs| + |ys| — (Vzeset zs. Vyeset ys. ¢ < y) —
select k (zs @ ys) (3.7)
= (if k < |zs| then select k zs else select (k — |zs|) ys)

Proof. The assumptions imply that sort zs @ sort ys is sorted, so that due to the
uniqueness of the sort operation, we have:

sort (zs @ ys) = sort zs @ sort ys (3.8)
Then:

select k (zs @ ys)

= sort (zs @ ys) ! k using (3.4)

= (sort zs @ sort ys) ! k using (3.8)

= if k < |zs| then sort zs ! k else sort ys ! (k — |zs|)

= if k < |zs| then select k zs else select (k — |zs|) ys using (3.4)
O

Now the recurrence outlined before is a direct consequence:

Theorem 3.5 (A recurrence for select). Let k < |zs| and z arbitrary. Then:

3.1 A Divide-and-Conquer Approach 35

select k zs = let (Is, es, gs) = partition3 z zs
in if k£ < |ls| then select k Is
elseif k < |ls| + |es| then z
else select (k — |ls| — |es|) gs

Proof. We have mset zs = mset ls + mset es + mset gs and |zs| = |ls| + |es| +
|gs|. Then:

select k zs
= select k (Is @ es @ gs) using (3.6)
= if k < |ls| then select k s

else if £ — |ls| < |es| then select (k — |ls|) es using (3.7) twice

else select (k — |ls| — |es|) gs

Clearly, k — |ls| < |es| «— k < |ls| + |es| and select (k — |ls|) es = z since select
(k — |ls|) es € set es and set es = {z} by definition. O

Note that this holds for any pivot z. Indeed, = need not even be in the list itself.
Therefore, the algorithm (which is also known as Quickselect [Hoare 1961] due to
its similarities with Quicksort) is partially correct no matter what pivot we choose.

However, like with Quicksort, the number of recursive calls (and thereby the
running time) depends strongly on the pivot choice:

e If we always choose a pivot that is smaller than any element in the list or bigger
than any element in the list, the algorithm does not terminate at all.

e If we choose the smallest element in the list as a pivot every time, only one element
is removed from the list in every recursion step so that we get n recursive calls in
total. Since we do a linear amount of work in every step, this leads to a running
time of ©(n?).

e If we choose pivots from the list at random, the worst-case running time is again
O©(n?), but the expected running time can be shown to be ©(n), similarly to the
situation in Quicksort. Indeed, it can also be shown that it is very unlikely that
the running time is “significantly worse than linear” [Karp 1994, Section 2.5].

o If we choose a pivot that cuts the list in half every time (i.e. at most 7 elements
are strictly smaller than the pivot and at most 7 are strictly bigger), we get a
recursion depth of at most [lgn| and, by the master theorem [Cormen et al.
2009, a running time of ©(n) (assuming we can find such a pivot in linear time).

Clearly, the last case is the most desirable one. An element that cuts the list in half
is called a median (a concept widely used in statistics).

For lists of odd length, there is a unique element in that list that achieves this,
whereas for lists of even length there are two such elements (e.g. for the list [1,2,3,4],

3.2

36 Chapter 3 Selection

both 2 and 3 work). In general, a median need also not necessarily be an element of
the list itself.

For our purposes, it is useful to pick one of the list elements as a canonical median
and refer to it as the median of that list. If the list has even length, we use the smaller
of the two medians. This leads us to the following formal definition:

median :: 'a list = 'a

median zs = select ((|zs| — 1) div 2) zs

Unfortunately, computing the median of a list is no easier than selection (see
Exercise 3.5), so it seems that, for now, this does not really help us.

Exercise 3.5. Show that computing select k zs can be reduced in linear time
to computing the median of a list, i.e. give a function reduce_select_median that
satisfies

zs [ANk < |zs| —
reduce_select_median k zs # [] A
median (reduce_select_median k zs) = select k zs

with a time function Trequce_select_median With an upper bound of the following form:
zs # [A k < |zs| — Treduce_select_median k s < C1 - |zs| + Cs

Prove that your function satisfies this property and that its time function has this
upper bound.

The Median of Medians

We have seen that computing a true median in every recursive step is just as hard as
the general selection problem, so using the median as a pivot is not going to work.
The natural question now is: is there something that is almost as good as a median
but easier to compute?

This is indeed the case, and this is where the ingenuity of the algorithm lies: instead
of computing the median of all the list elements, compute the median of only a small
fraction of list elements. To be precise, we do the following:

e chop the list into groups of 5 elements each (possibly with one smaller group at
the end if n is not a multiple of 5)

e compute the median of each of the [£] groups (which can be done in constant
time for each group using e.g. insertion sort, since their sizes are bounded by 5)

3.2 The Median of Medians 37

e compute the median M of these [§] elements (which can be done by a recursive
call to the selection algorithm)

We call M the median of medians. M is not quite as good a pivot as the true
median, but it is still fairly decent:

Theorem 3.6 (Pivoting bounds for the median of medians).
Let zs be a list and let < be either < or >. Let

M := median (map median (chop 5 zs))

where the chop function cuts a list into groups of a given size as described earlier:

chop :: nat = 'a list = 'a list list
chop0 =]

chop _ [] =]
chop s zs = take s s # chop s (drop s zs)

Then: |{y €, msetzs | y < M} < [0.7 - n + 3]

Proof. The result of chop 5 zs is a list of [n / 5] chunks, each of size at most 5, i.e.
|chop 5 zs| = [n / 5]. Let us split these chunks into two groups according to whether
their median is < M or > M:

Y. = {ys €, mset (chop 5 zs) | median ys < M}

Y. = {ys €, mset (chop 5 zs) | median ys > M}
We clearly have

mset zs = (3 s chop 5 2 MSEL Ys) (3.9)

mset (chop 5 zs) = Y, + Y (3.10)

[n /5] = | Y| + |V (3.11)
and since M is the median of the medians of the groups, we also know that:

Y < 1T /5] (3.12)

The core idea of the proof is that any group ys €, Y. can have at most 2 elements
that are < M:

Hy €, msetys | y < M}

< {y €, mset ys | y < median ys}| because ys €, Y
< |ys| div 2 using (3.1)
<5div2=2

And of course, since each group has size at most 5, any group in ys €, Y. can
contribute at most 5 elements. In summary, we have:

3.3

38 Chapter 3 Selection

Vyse, Y. {y €, msetys | y < M}| <5
Vyse,Ye. {y €, msetys | y < M}| <2 (3.13)

With this, we can begin our estimate of the number of elements < M:

{y €, mset zs | y < M}

= {y E# (Zys<—chop5 s mset yS) | Yy < M}} 'llSiIlg (3.9)
= Zys(—Chop5 zs {y S mset Yys | y < M}
= ZysE#(Y< + Yy) {y €, mset ys | y < M} using (3.10)

Taking the size of both sides, we have

{y €, msetzs | y < M}
< Zyse#(n + Yy) {y €, mset ys | y < M}
= Dyse,v, {y € msetys |y < M} +

Zyse#yt {y €, msetys | y < MY
< (EySE#lQ 5) + (ZysE#Yt 2) using (3.13)
=5 Y| +2-|Y;|
=2-(|Y<| +|Y-]) +3-|YL]

=2-[n /5] +3.|Y using (3.11)
<2-[n/5]+ 3 [n/5 using (3.12)
<35-[n/5

<07 - n + 3]

The delicate arithmetic reasoning about rounding in the end can thankfully be done
fully automatically by Isabelle’s 1inarith method. O

Selection in Linear Time

We now have all the ingredients to write down our algorithm: the base cases (i.e.
sufficiently short lists) can be handled using the naive approach of performing insertion
sort and then returning the k-th element. For bigger lists, we perform the divide-and-
conquer approach outlined in Theorem 3.5 using M as a pivot. We have two recursive
calls: one on a list with exactly [0.2 - n] elements to compute M, and one on a list
with at most [0.7 - n + 3] elements.

We will still need to show later that this actually leads to a linear-time algorithm,
but the fact that 0.7 + 0.2 < 1 is at least encouraging: intuitively, the “work load” is
reduced by at least 10 % in every recursive step, so we should reach the base case in
a logarithmic number of steps.

The full algorithm looks like this:

3.3 Selection in Linear Time 39

chop :: nat = 'a list = 'a list list
chop0 =]

chop _ [] =]
chop s s = take s xzs # chop s (drop s zs)

slow_select :: nat = 'a list = 'a

slow_select k zs = insort zs ! k

slow_median :: 'a list = 'a

slow_median zs = slow_select ((|zs| — 1) div 2) zs

mom_select :: nat = 'a list = 'a

mom_select k zs
= (if |zs| < 20 then slow_select k zs
else let M = mom_select (([|zs| / 5] — 1) div 2)
(map slow_median (chop 5 zs));
(Is, es, gs) = partition3 M zs
in if £ < |ls| then mom_select k s

elseif &k < |ls| + |es| then M
else mom_select (k — |ls| — |es]|) gs)

Correctness and termination are easy to prove:

Theorem 3.7 (Partial Correctness of mom_select). Let zs be a list and k < |zs|.
Then if mom_select k zs terminates, we have

mom_select k zs = select k zs .

Proof. Straightforward computation induction using Theorem 3.5. O

Theorem 3.8 (Termination of mom_select). Let zs be a list and k < |zs|. Then
mom_select k zs terminates.

Proof. We use |zs| as a termination measure. We need to show that it decreases in
each of the two recursive calls under the precondition |zs| > 20. This is easy to see:
e The list in the first recursive call has length [|zs| / 5], which is strictly less than
|zs| if |zs| > 1.
e The length of the list in the second recursive call is at most |zs| — 1: by induction

hypothesis, the first recursive call terminates, so by Theorem 3.7 we know that
M = median (map median (chop 5 zs)) and thus:

3.4

40 Chapter 3 Selection

M € set (map median (chop 5 zs))

= {median ys | ys € set (chop 5 zs)}

c UysEset (chop 5 zs) set ys

= set zs
Hence, M € set zs but M ¢ set ls and M ¢ set gs by construction. Since set s
and set gs are subsets of set zs, this implies that |Is| < |zs| and |gs| < |zs|. So
in either of the two cases for the second recursive call, the length decreases by at
least 1.
Of course, we will later see that it actually decreases by quite a bit more than
that, but this very crude estimate is sufficient to show termination.

O

Exercise 3.6. The recursive definition of mom_select handles the cases |zs| <
20 through the naive algorithm using insertion sort. The constant 20 here seems
somewhat arbitrary. Find the smallest constant ng for which the algorithm still works.
Why do you think 20 was chosen?

Note that in practice it may be sensible to choose a much larger cut-off size than
20 and handle shorter lists with a more direct approach that empirically works well

for such short lists.

Time Functions
It remains to show now that this indeed leads to a linear-time algorithm. The time
function for our selection algorithm is as follows:

Tmom_select :: nat = 'a list = nat

Tmom_select k Ts
=1+ 7-Iength zs +
(if |zs| < 20 then Tgpon_select k zs
else let zss = chop 5 zs;
ms = map slow_median zss;
ide = ([|zs| / 5] — 1) div 2;
T = mom_select idz ms;
(Is, es, gs) = partition3 z s
iN Trom_select 1dT ms + 7-chop 5zs + 7-map Tsiow_median Tss +
Tpartition3 T s + Tiength Is +
(if & < |ls| then Tpom_select k s
elseif k < |ls| + |es| then Tigpgm es
else Tmom_select (K — |ls| — |es]) gs + Tiength €s))

3.5

3.5 “Akra-Bazzi Light” 41

We can then prove
k < |zs| — Tmom_select k¥ 5 < Thom_select |T5| (3.14)

where the upper bound T/om_select is defined as follows:

Tr’nom_se[ect 00 nat = nat

Trom_select ™
= (if n < 20 then 483

else Thom select [0-2 - n] + Trom select [0-7 - n + 3] + 19 - n + 54)

The time functions of the auxiliary functions used here can be found in Section B.2
in the appendix. The proof is a simple computation induction using Theorem 3.6 and
the time bounds for the auxiliary functions from Chapter B in the appendix.

The next section will be dedicated to showing that Thom_select € O(n).

Exercise 3.7. Show that the upper bound [0.7 - n + 3] is fairly tight by giving an
infinite family (zs;);en of lists with increasing lengths for which more than 70 % of
the elements are larger than the median of medians (with chopping size 5). In Isabelle
terms: define a function f :: nat = nat list such that Vn. |fn| < |f (n + 1)| and

Hy €. mset (fn) | y > mom (f n)
If n

where mom zs = median (map median (chop 5 zs)) .

i > 0.7

“Akra—Bazzi Light”

The function Thpom_select (let us write it as f for now) satisfies the recurrence
n>20— fn=Ff[02-n]+f[07-n+3]+19 -n+ 54 (3.15)

Such divide-and-conquer recurrences are beyond the “normal” master theorem, but a
generalisation, the Akra—Bazzi Theorem [Akra and Bazzi 1998, Eberl 2017b, Leighton
1996], does apply to them. Let us first abstract the situation a bit and consider the
recurrence

n>20 = fn=fla-n+db+flc-n+dl+Ci -n+ Cy
where 0 < a, b < 1 and C;, Cy > 0. The Akra—Bazzi Theorem then tells us that
such a function is O(n) if (and only if) a + b < 1. We will prove the relevant direction
of this particular case of the theorem now — “Akra—Bazzi Light”, so to say.

Instead of presenting the full theorem statement and its proof right away, let us
take a more explorative approach. What we want to prove in the end is that there

42 Chapter 3 Selection

are real constants C3 > 0 and C, such that fn < C3z - n + Cy4 for all n. Suppose
we already knew such constants and now wanted to prove that the inequality holds.
For the sake of simplicity of the presentation, we assume b, d > 0, but note that
these assumptions are unnecessary and the proof still works for negative b and d if
we replace b and d with max 0 b and max 0 d.

The obvious approach to show this is by induction on n, following the structure
of the recurrence above. To do this, we use strong induction (i.e. the induction
hypothesis holds for all m < n)! and a case analysis on n > n; (where n; is some
constant we will determine later).

The two cases we have to show in the induction are then:

Base case: Vn<n;. fn < C3-n + C4
Step: Vn>ny. (Ym<n. fm < Cs3-m+ Cys) — fn<C;z; -n+ Cy

We can see that in order to even be able to apply the induction hypothesis in the
induction step, we need [a - n + b] < n. We can make the estimate?

!
[a-n+bd]<a-n+b+1<n

!
and then solve for n, which gives us n > ll’ + i . If we do the same for c and d as well,
we get the conditions
b+1 d+1
ny > + and ny > +
1—-a 1—-c
However, it will later turn out that these are implied by the other conditions we will

(3.16)

have accumulated anyway.

Now that we have ensured that the basic structure of our induction will work out,
let us continue with the two cases.

The base cases (n < nq) is fairly uninteresting: we can simply choose C4 to be big
enough to satisfy the equality for all n < nj, whatever n; is.

In the recursive step, unfolding one step of the recurrence and applying the
induction hypothesis leaves us with the proof obligation

(Cz3-Ja - nm+b]+Cq)+(Cz3-[c-n+d]+Cqg)+Ci1-n+ Cy

or, equivalently,

Cs-(f[a-n+bl+[c-n+d —n)+Cy-n+Cy+Cys<0,

1In Isabelle, the corresponding rule is called less_induct:
(Vn. (Vk<n. Pk) — Pn) — Pn (where n :: nat)
]

2The notation < stands for “must be less than”. It emphasises that this inequality is not a
consequence of what we have shown so far, but something that we still need to show, or in this case
something that we need to ensure by adding suitable preconditions.

3.5 “Akra-Bazzi Light” 43

We estimate the left-hand side like this:

Cs3-(Jle-n+bl+fc-n+dl—-—n)+Ci1-n+ Cs+ Cy

<Cs-((a-nm+b+1)+(c-n+d+1)—n)+Cy-n+ Cy+ Cy
=C3-(b+d+2)+C2+C4—(C3-(1—a—-¢c)—-C1)-n (%)
<C3-(b+d+2)+Ca+Cs—(C3-(1—a—-c)—Ci1) -m (1)
<0

The step from (%) to (1) uses the fact that n > n; and requires the factor Cz - (1 —
a — ¢) — C4 in front of the n to be positive, i.e. we need to add the assumption
Cy

C _—
3>1—a—c

(3.17)

The term (1) (which we want to be <0) is now a constant. If we solve that inequality
for C3, we get the following two additional conditions:

b+ d+ 2 Ci1-n1+ Cy+ Cy
D E— d >
n1>1—a—c an CS_(l—a—c)-nl—b—d—2

(3.18)

The former of these directly implies our earlier conditions (3.16), so we can safely
discard those now.

Now all we have to do is to find a combination of n;, C3, and C, that satisfies
(3.17) and (3.18). This is straightforward:

b+d+2
ny = max ng (’V]jai_c“ + 1> C4 = Max {fn | n S nl}

C’s::max< C1) ((Ci-n1+ Cy + Cy)

l1—-a-—-c l—a—-—¢) - n—b—d-2
And with that, the induction goes through and we get the following theorem:
Theorem 3.9 (Akra Bazzi Light).

a>0Ac>0ANa+c<1IANC;>0A
(Vn>ng. fn=fla-n+bl+flc-n+d]l+C1 -n+ Cs) —
(3C53 C4-Yn. fn < Csz-n+ Cy)
(3.19)

Applying this to our concrete example, we get our final result, namely that median-
of-medians selection runs in worst-case linear time, uniformly for all indices k:

Theorem 3.10. There are constants C3z and Cy4 such that, for any list zs and
any natural number k < |zs|:

Tmom_select k s < C3 - |$3 | + Cy4

44 Chapter 3 Selection

Proof. Our “Akra—Bazzi Light” Theorem (3.19) applied to the recurrence (3.15) gives
us constants Cg and C4 such that, for any natural number n:

Tmom_select & < C3 - n + Cy4 (3.20)

Thus we have:

Tmom_select k xs

< Thom_select | 8| (3.14)
< Cg3 - |zs| + C4 (3.20)
]

Exercise 3.8.

1. Suppose that instead of groups of 5, we now chop into groups of size [> 1. Prove
a corresponding generalisation of Theorem 3.6.

2. Examine (on paper only): how does this affect correctness and running time of
our selection algorithm? Why do you think [= 5 was chosen?

Chapter Notes

In this chapter, we have seen how to find the k-th largest element in a list containing
n elements in time O(n), uniformly for all k. Of course, we did not really talk
about the constant coefficients that are hidden behind the O(n) and which determine
how efficient that algorithm is in practice. Although median-of-medians selection is
guaranteed to run in worst-case linear time and therefore asymptotically time-optimal,
other approaches with a worse worst-case running time like O(nlogn) or even O(n?)
may perform better in most situations in practice.

One solution to remedy this is to take a hybrid approach: we can use a selection
algorithm that performs well in most situations (e.g. the divide-and-conquer approach
from Section 3.1 with a fixed or a random pivot) and only resort to the guaranteed-
linear-time algorithm if we notice that we are not making much progress. This is the
approach taken by Musser’s Introselect algorithm [Musser 1997].

Part 11

Search Trees

45

4.1

Binary Trees [~

Tobias Nipkow

Binary trees are defined as a recursive data type:
datatype 'a tree = Leaf | Node (‘a tree) 'a (‘a tree)

The following syntactic sugar is sprinkled on top:

() = Leaf
({, z,) Node lz r

The trees [and 7 are the left and right children of the node (I, z, r).

Because most of our trees will be binary trees, we drop the “binary” most of the
time and have also called the type merely tree.

When displaying a tree in the usual graphical manner we show only the Nodes. For
example, (((), 3, ()}, 9, ((), 7, (})) is displayed like this:

The (label of the) root node is 9. The depth (or level) of some node (or leaf) in a
tree is the distance from the root. The left spine of a tree is the sequence of nodes
starting from the root and following the left child until that is a leaf. Dually for the
right spine. We use these concepts only informally.

Basic Functions
Two canonical functions on data types are set and map:

set_tree :: 'a tree = 'a set

set_tree () = {}
set_tree (I, z, r) = set_tree | U {z} U set_tree r

47

https://isabelle.in.tum.de/dist/library/HOL/HOL-Library/Tree.html

48 Chapter 4 Binary Trees

map_tree :: ('a = 'b) = 'a tree = 'b tree

map_tree f () = ()
map_tree f (I, z, r) = (map_tree f 1, f , map_tree f r)

The inorder, preorder and postorder traversals (we omit the latter) list the
elements in a tree in a particular order:

inorder :: 'a tree = 'a list

inorder () = ||
inorder (I, z, r) = inorder | @ [z] @ inorder r

preorder :: 'a tree = 'a list

preorder () =[]
preorder (1, z, r) = x # preorder | @ preorder r

These two size functions count the number of nodes and leaves in a tree:

size :: 'a tree = nat

() =0
L =1+ Irl +1

sizel :: 'a tree = nat

|0l =1
16 s M = [l + |7l

The syntactic sugar |¢| for size t and |t|; for size? t is only used in this text, not in
the Isabelle theories.
Induction proves a convenient fact that explains the name sizeT:

[t = [t] + 1
The height (h) and the minimal height (mh) of a tree are defined as follows:

411

4.1 Basic Functions 49

h :: 'a tree = nat

mh(l, ,ry=min(mhl) (mhr)+1

You can think of them as the longest and shortest (cycle-free) path from the root to a
leaf. The names of these functions in the Isabelle theories are height and min_height.
The abbreviations h and mh are only used in this text.

The obvious properties h t < [t| and mh ¢t < h t and the following classical
properties have easy inductive proofs:

2mht < |t|1 |t|1 < 2ht

We will simply use these fundamental properties without referring to them by a name
or number.
The set of subtrees of a tree is defined as follows:

subtrees :: 'a tree = 'a tree set

subtrees () = {()}
subtrees (I, a, r) = {(l, a, r)} U subirees | U subtrees r

Note that every tree is a subtree of itself.

Exercises

Exercise 4.1. Function /inorder has quadratic complexity because the running time
of (@) is linear in the length of its first argument. Define a function inorder2 ::
'a tree = 'a list = 'a list that avoids (@) but accumulates the result in its second
parameter via (#) only. Its running time should be linear in the size of the tree. Prove
inorder2 t s = inorder t @ zs.

Exercise 4.2. Write a function enum_tree :: 'a list = 'a tree list such that
set (enum_tree zs) = {t | inorder t = zs} and prove this proposition. You could
also prove that enum_tree produces lists of distinct elements, although that is likely
to be harder.

Exercise 4.3. The weighted path length of a tree t :: nat tree is the sum over all
nodes (!, w, r) in t of w - (d + 1) where d is the depth of the node in ¢:

50 Chapter 4 Binary Trees

wpld :: nat = nat tree = nat

wpld () =0
wpldd (I, w,r) =(d+ 1) -w+ wpld (d+1) !+ wpld(d+ 1) r

wpl0 :: nat tree = nat
wpl0t = wpld 0 t

The weighted path length can also be defined without the depth parameter:

wpl :: nat tree = nat

wpl () =0
wpl (I, w, r) = sum_tree (I, w, r) + wpl I + wpl r

sum_tree :: nat tree = nat

sum_tree () =0
sum_tree (I, n, r) = sum_tree | + n + sum_tree r

Prove wpl0 t = wpl t.

Exercise 4.4. Function level lists the elements of a tree on a certain level from left

to right:

level :: 'a tree = nat = 'a list

level () =]
level (_,z,)0 =]z]
level (I, ,7)(n+1)=levelin Q level rn

Define a function levels :: ‘a tree = 'a list list that computes [level ¢t 0 , ...,
level t (ht —1)] (if t # () and levels () = []) but that traverses the tree only
once, does not use nat but may use auxiliary functions on lists. For starters,
prove |levels t| = h t. More challenging is the correctness of levels w.r.t. level:
n<ht—levelst! n=leveltn

Exercise 4.5. Define a function reconstruct :: ‘a list = ‘a list = ’'a tree
that reconstructs a tree from its preorder and inorder traversals. Prove that
distinct (preorder t) — reconstruct (preorder t) (inorder t) = t.

Figure 4.1

4.2

4.2 Complete Trees 51

/

N

o/.\o
N2

A complete tree

Exercise 4.6. Although we focus on binary trees, arbitrarily branching trees can be
defined just as easily:

datatype ‘a rtree = Nd ‘a (‘a rtree list)

Such trees are often called rose trees. Define a function mir :: ‘a rtree = 'a rtree
that mirrors a rose tree and prove mir (mir t) = t.

Complete Trees
A complete tree is one where all the leaves are on the same level. An example is
shown in Figure 4.1. The predicate complete is defined recursively:

complete :: 'a tree = bool

complete () = True
complete (I, ,)= (hl=hr A complete | A complete)

This recursive definition is equivalent with the above definition that all leaves must
have the same distance from the root. Formally:

Lemma 4.1. complete t «+—— mht=~ht

Proof by induction and case analyses on min and max. O

The following classic property of complete trees is easily proved by induction:
Lemma 4.2. complete t —» |t|; = 2"t

It turns out below that this is in fact a defining property of complete trees.
For complete trees we have 2™t < |¢|; = 2/ t. For incomplete trees both < and
= become < as the following two lemmas prove:

Lemma 4.3. - complete t — |t|; < 2/?

4.2.1

4.3

52 Chapter 4 Binary Trees

Proof by induction. We focus on the induction step where ¢t = (I, z, r). If ¢t is
incomplete, there are a number of cases and we prove |t|; < 2Nt in each case. If h [
h r, consider the case h I < h r (the case h » < h [is symmetric). From 27! <
207 1]y < 2PV and |r|; < 277 the claim follows: |t|y = |I|; + |r]y < 20t + 27 <
2.2 =2t If h 1 = hr, then either | or r must be incomplete. We consider the
case = complete [(the case — complete r is symmetric). From the IH |I|; < 27, ||,
< 2hmand h 1 = h r the claim follows: |t|; = ||, + |r|y < 20t + 27 =2 .27 =
2ht, O

Lemma 4.4. - complete t — 2™t < |¢|;

The proof of this lemma is completely analogous to the previous proof except that
one also needs to use Lemma 4.1.

From the contrapositive of Lemma 4.3 one obtains |t|; = 2"t — complete t, the
converse of Lemma 4.2. Thus we arrive at:

Corollary 4.5. complete t +— |t|; =20t

The complete trees are precisely the ones where the height is exactly the logarithm of
the number of leaves.

Exercises
Exercise 4.7. Define a function mcs that computes a maximal complete subtree of
some given tree. You are allowed only one traversal of the input but you may freely
compute the height of trees and may even compare trees for equality. You are not
allowed to use complete or subtrees.

Prove that mcs returns a complete subtree (which should be easy) and that it is
maximal in height:

u € subtrees t A complete w — h u < h (mcs t)

Bonus: get rid of any tree equality tests in mcs.

Almost Complete Trees
An almost complete tree is one where the leaves may occur not just at the lowest
level but also one level above:

acomplete :: 'a tree = bool
acompletet = (ht — mht < 1)

4.3 Almost Complete Trees 53

/

o/.\o
NN
VARVAN

\

Figure 4.2 An almost complete tree

An example of an almost complete tree is shown in Figure 4.2. You can think of an
almost complete tree as a complete tree with (possibly) some additional nodes one
level below the last full level.

Almost complete trees are important because among all the trees with the same
number of nodes they have minimal height:

Lemma 4.6. acomplete s N\ |s| < |t| — hs < ht

Proof by cases. If complete s then, by Lemma 4.2, 2/ = Isl1 < |t]1 < 21t and thus
h's < h t. Now assume - complete s. Then Lemma 4.4 yields 2™ % < |s|; < [t]; <
2Nt and thus mh s < h t. Furthermore we have h s — mh s < 1 (from acomplete s),
h s # mh s (from Lemma 4.1) and mh s < h s, which together imply mh s + 1 =
h s. With mh s < h t this implies h s < h t. O

This is relevant for search trees because their height determines the worst case running
time. Almost complete trees are optimal in that sense.
The following lemma yields a closed formula for the height of almost complete trees:

Lemma 4.7. acomplete t — ht = [lg |t]1]

Proof by cases. If t is complete, the claim follows from Lemma 4.2. Now assume ¢ is
incomplete. Then h t = mh t + 1 because acomplete t, mh t < h t and complete t
«—— mht=ht (Lemma 4.1). Together with |¢|; < 2/t this yields |¢t|, < 2™t +1
and thus /g |t|s < mh ¢t + 1. By Lemma 4.4 we obtain mh t < Ig |t|;. These two
bounds for /g |t|; together imply the claimed h t = [lg |t]1]. O

In the same manner we also obtain:

Lemma 4.8. acomplete t — mh t = |lg |t]1]

54 Chapter 4 Binary Trees

Figure 4.3 Balancing [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

4.3.1 Converting a List into an Almost Complete Tree

We will now see how to convert a list zs into an almost complete tree ¢ such that
inorder t = zs. If the list is sorted, the result is an almost complete binary search
tree (see the next chapter). The basic idea is to cut the list in two halves, turn them
into almost complete trees recursively and combine them. Cutting up the list in two
halves explicitly would lead to an nlgn algorithm, but we want a linear one. Therefore
we use an additional nat parameter to tell us how much of the input list should be
turned into a tree. The remaining list is returned with the tree:

bal :: nat = 'a list = 'a tree x 'a list

bal n zs
= (if n = 0 then ((), zs)
else let m = n div 2;
(I, ys) = bal m zs;
(r, zs) = bal (n — 1 — m) (tl ys)
in ((!, hd ys, 7), 2s))

The trick is not to chop zs but n in half, because we assume that arithmetic is
constant-time. Hence bal runs in linear time (see Exercise 4.9). Figure 4.3 shows the
result of bal 10 [0..9].

Balancing some prefix or all of a list or tree is easily derived:

bal_list :: nat = 'a list = 'a tree
bal_list n zs = fst (bal n zs)

4.3.1.1

4.3 Almost Complete Trees 55

balance_list :: 'a list = 'a tree

balance_list zs = bal_list |zs| zs

bal_tree :: nat = 'a tree = 'a tree
bal_tree n t = bal_list n (inorder t)

balance_tree :: 'a tree = 'a tree
balance_tree t = bal_tree |t| t

Correctness
The following lemma clearly expresses that bal n zs turns the prefix of length n of
zs into a tree and returns the corresponding suffix of zs:

Lemma 4.9. n < |zs| A bal n zs = (t, zs) — xs = inordert @ zs A |[t| = n

Proof by complete induction on n, assuming that the proposition holds for all values
below n. If n = 0 the claim is trivial. Now assume n # 0 and let m = n div 2 and
m' =n — 1 — m (and thus m, m’ < n). From bal n zs = (t, zs) we obtain [, r
and ys such that bal m zs = (I, ys), bal m' (t/ ys) = (r, zs) and t = (I, hd ys, 7).
Because m < n < |zs| the induction hypothesis implies zs = inorder | @ ys A
|l| = m (%). This in turn implies m’ < |fl ys| and thus the induction hypothesis
implies il ys = inorder r @ zs A |r| = m' (xx). Properties (%) and (*x) together with
t = (I, hd ys, r) imply the claim zs = inorder t @ zs A |t| = n because ys # []. U

The corresponding correctness properties of the derived functions are easy conse-
quences:

n < |zs| — inorder (bal_list n zs) = take n xs
inorder (balance_list zs) = s
n < |t| — inorder (bal_tree n t) = take n (inorder t)
inorder (balance_tree t) = inorder t
To prove that bal returns an almost complete tree we determine its height and
minimal height.
Lemma 4.10. n < |zs| A bal n zs = (t, zs) — ht =[lg (n + 1)]

Proof. The proof structure is the same as for Lemma 4.9 and we reuse the variable
names introduced there. In the induction step we obtain the simplified induction
hypothesese h i = [lg (m + 1)] and h r = [lg (m' + 1)]. This leads to

4.3.2

4.4

56 Chapter 4 Binary Trees

ht=max (hl) (hr)+1

=hil+1 because m' < m
=TJlg (m + 1) + 1]
=[lg (n + 1)] by (2.29) O

The following complementary lemma is proved in the same way:
Lemma 4.11. n < |zs| A bal nzs = (t, zs) — mht = |lg (n + 1)]

By definition of acomplete and because [z] — |z] < 1 we obtain that bal (and
consequently the functions that build on it) returns an almost complete tree:

Corollary 4.12. n < |zs| A bal n zs = (¢, ys) — acomplete t

Exercises

Exercise 4.8. Find a formula B such that acomplete (I, z, r) = B where B may
only contain the functions acomplete, complete, h, arithmetic, Boolean operations
and ! and r. Prove acomplete (I, z, r) = B.

Exercise 4.9. Prove that the running time of function bal is linear in its first
argument.

Augmented Trees (7

A tree of type ‘a tree only stores elements of type ‘a. However, it is frequently necessary
to store some additional information of type 'b in each node too, often for efficiency
reasons. Typical examples are:

e The size or the height of the tree. Because recomputing them requires traversing
the whole tree.

e Lookup tables where each key of type ‘a is associated with a value of type ‘b.

In this case we simply work with trees of type (‘a x 'b) tree and call them aug-
mented trees. As a result we need to redefine a few functions that should ignore the
additional information. For example, function inorder, when applied to an augmented
tree, should return an ‘a list. Thus we redefine it in the obvious way:

inorder :: ('a x 'b) tree = 'a list

[

inorder () =
I, (a,), r) =inorder! @ a # inorder r

inorder (

Another example is set_tree :: ('a x 'b) tree = 'a set. In general, if a function f is
originally defined on type ‘a tree but should ignore the ‘b-values in an (‘a x 'b) tree

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tree2.html

4.41

4.4 Augmented Trees ¥ 57

then we assume that there is a corresponding revised definition of f on augmented trees
that focuses on the ‘a-values just like inorder above does. Of course functions that do
not depend on the information in the nodes, e.g. size and height, stay unchanged.
Note that there are two alternative redefinitions of inorder (and similar functions):
map fst o inorder or inorder o map_tree fst where inorder is the original function.

Maintaining Augmented Trees
Maintaining the ‘b-values in an (‘a x ‘b) tree can be hidden inside a suitable

smart version of Node that has only a constant time overhead. Take the example
of augmentation by size:

sz :: ('a x nat) tree = nat
sz()=0
sz{ ,(,n), Y=n

node_sz :: ('a x nat) tree = ‘a = (‘a x nat) tree = (‘a x nat) tree
node_szlar={(,(a, szl +szr + 1), r)

A ('a x mat) tree satisfies invar_sz if the size annotation of every node is computed
from its children as specified in node_sz:

invar_sz :: ('a x nat) tree = bool

True

invar_sz () =
L ,n)yry=Mm=szl+szr + 1A invar_szl A invar_sz r)

invar_sz (

This predicate is preserved by node_sz and guarantees that sz returns the size:

invar_sz l A invar_sz r — invar_sz (node_sz l a r)

invar_szt — szt = |t|

We can generalize this example easily. Assume we have a constant zero :: 'b and a
function f :: 'b = 'a = 'b = 'b that we iterate over the tree:

F:(‘a x 'b) tree = 'b

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tree2.html

58 Chapter 4 Binary Trees

This generalizes the definition of size. Let node_f compute the ‘b-value from the
'b-values of its children via f:

b_val :: ('a x 'b) tree = b
b_val () = zero
bval(,(_,b),)=0»

node_f :: (‘a x 'b) tree = ‘a = (‘a x 'b) tree = (‘a x 'b) tree
node_flar = (L, (a, f (b_vall) a (b_valr)), r)

If all 'b-values are computed as in node_f

invar_f :: ('a x 'b) tree = bool

invar_f () = True
invar_f (1, (a, b), vy = (b = f (b_val l) a (b_val r) A invar_f 1 A invar_f r)

then b_val computes F: invar_ft — b_valt = F t.

4.4.2 Exercises
Exercise 4.10. Augment trees by a pair of a Boolean and something else where
the Boolean indicates whether the tree is complete or not. Define ch, node_ch and
invar_ch as in Section 4.4.1 and prove the following properties:

invar_ch t — ch t = (complete t, ? t)
invar_ch | A invar_ch r — invar_ch (node_ch 1 a r)

Exercise 4.11. Assume type ‘a is of class linorder and augment each Node with
the maximum value in that tree. Following Section 4.4.1 (but mind the option type!)
define mx :: (Ya x 'b) tree = b option, node_mx and invar_mx and prove

invar_mx t — mx t = (if t = () then None else Some (Max (set_tree t)))

where Max is the predefined maximum operator on finite, non-empty sets.

Binary Search Trees [

Tobias Nipkow and Bohua Zhan

The purpose of this chapter is threefold: to introduce binary search trees (BSTs),
to discuss their correctness proofs, and to provide a first example of an abstract data
type, a notion discussed in more detail in the next chapter.

Search trees are a means for storing and accessing collections of elements efficiently.
In particular they can support sets and maps. We concentrate on sets. We have already
seen function set_free that maps a tree to the set of its elements. This is an example
of an abstraction function that maps concrete data structures to the abstract values
that they represent.

BSTs require a linear ordering on the elements in the tree (as in Chapter 2, Sorting).
For each node, the elements in the left child are smaller than the root and the elements
in the right child are bigger:

bst :: (‘a::linorder) tree = bool

bst () = True

bst (I, a,)

= ((Vzeset_tree l. z < a) A (Vzeset_tree r. a < z) A bst 1 A bst r)

This is an example of a (coincidentally almost complete) BST:

It is obvious how to search for an element in a BST by comparing the element with
the root and descending into one of the two children if you have not found it yet. In
the worst case this takes time proportional to the height of the tree. In later chapters
we discuss a number of methods for ensuring that the height of the tree is logarithmic
in its size. For now we ignore all efficiency considerations and permit our BSTs to
degenerate. Thus we call them unbalanced.

59

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tree_Set.html

5.1

5.2

60 Chapter 5 Binary Search Trees

Exercise 5.1. The above recursive definition of bst is not a direct translation of the
description “For each node” given in the text. For a more direct translation define a
function

nodes :: 'a tree = ('a tree x 'a x ‘a tree) set

that collects all the nodes as triples (I, a, r). Now define bst_nodes as bst_nodes t
= (V(I, a, r)€nodes t. ? | a r) and prove bst_nodes t = bst t.

Interface

Trees are concrete data types that provide the building blocks for implementing
abstract data types like sets. The abstract type has a fixed interface, i.e. set of
operations, through which the values of the abstract type can be manipulated. The
interface hides all implementation detail. In the Search Trees part of the book we
focus on the abstract type of sets with the following interface:

empty :: 's

insert . 'a = 's = s

delete :: 'a = 's = s

isin 1 's = 'a = bool
where ‘s is the type of sets of elements of type 'a. Most of our implementations of
sets will be based on variants of BSTs and will require a linear order on ’a, but the
general interface does not require this. The correctness of an implementation of this
interface will be proved by relating it back to HOL’s type ‘a set via an abstraction
function, e.g. set_tree.

Implementing Sets via Unbalanced BSTs
So far we have compared elements via =, < and <. Now we switch to a comparator-
based approach:

datatype cmp_val = LT | EQ | GT

cmp :: (‘a:: linorder) = 'a = cmp_ val
cmpzy = (if z < ythen LT else if z = y then EQ else GT)

We will frequently phrase algorithms in terms of cmp, LT, EQ and GT instead of <, =
and >. This leads to more symmetric code. If some type comes with its own primitive
cmp function this can yield a speed-up over the above generic cmp function.

Below you find an implementation of the set interface in terms of BSTs. Functions
isin and insert are self-explanatory. Deletion is more interesting.

5.2 Implementing Sets via Unbalanced BSTs 61

empty :: 'a tree

empty = ()

isin :: 'a tree = 'a = bool

isin () = False

isin (I, a,)

= (case cmp z aof LT = isinlz | EQ = True | GT = isin r z)

insert :: 'a = 'a tree = 'a tree

insert z () = ((), z, ())

insert z (I, a, r) = (case cmp z a of
LT = (insertz I, a, 7) |
EQ= (I, a,)|
GT = (I, a, insert z 7))

delete :: 'a = 'a tree = 'a tree

delete () = ()

delete z (I, a, 7)

= (case cmp z a of
LT = (delete z I, a,) |
EQ = if r = () then lelse let (a’, ') = split_min rin (I, a’, 7'} |
GT = (I, a, delete z r))

split_min :: 'a tree = 'a x 'a tree

split_min (I, a, 7)
= (if I = () then (a, 7) else let (z, I') = split_min lin (z, (I, a, 7)))

5.2.1 Deletion
Function delete deletes a from (I, a, r) (where r # ()) by replacing a with a’ and r
with r’ where

a' is the leftmost (least) element of 7, also called the inorder successor of a,
r' is the remainder of r after removing a'.

We call this deletion by replacing. Of course one can also obtain a’ as the inorder
predecessor of a in [
An alternative is to delete a from (I, a, r) by “joining” [and 7:

5.3

62 Chapter 5 Binary Search Trees

delete? :: 'a = 'a tree = 'a tree

delete2 () = ()

delete2 z (l, a, r) = (case cmp z a of
LT = (delete2 z I, a, r) |
EQ = joinlr |
GT = (l, a, delete2 z r))

join :: 'a tree = 'a tree = ‘a tree
joint () =t
join () t=1t¢
join (ti, a, ta) (ts, b, ta)
= (case join t, t3 of
() = (t1, a, ((), b, ta)) |
(uz, z, uz) = ((t1, a, ua), z, (us, b, ts)))

We call this deletion by joining. The characteristic property of join is that
inorder (join I r) = inorder | @ inorder r.

The definition of join may appear needlessly complicated. Why not this much
simpler version:

join0 ¢ () =
join0 () t
jOinO (tl, a, tg) (tg, b, t4) = <t1, a, <jOin0 to t3, b, t4))

t
t

Because, with this version of join, deletion may almost double the height of the tree,
in contrast to join and also deletion by replacing, where the height cannot increase:

Exercise 5.2. First prove that join behaves well:
h(oinlr)y <max (hl)(hr)+1

Now show that join0 behaves badly: find an upper bound ub of h (join0 [r) such that
ub is a function of h [and h r. Prove h (join0 I r) < ub and prove that ubd is a tight
upper bound if [and r are complete trees.

We focus on delete, deletion by replacing, in the rest of the chapter.

Correctness
Why is the above implementation correct? Roughly speaking, because the implemen-
tations of empty, insert, delete and isin on type 'a tree simulate the behaviour of

5.4

5.4 Correctness Proofs 63

{}, U, — and € on type ‘a set. Taking the abstraction function into account we can
formulate the simulation precisely:

set_tree empty = {}

set_tree (insert ¢ t) = set_tree t U {z}
set_tree (delete = t) = set_tree t — {z}
isin t z = (z € set_tree t)

However, the implementation only works correctly on BSTs. Therefore we need to
add the precondition bst t to all but the first proposition. Why are we permitted to
assume this precondition? Only because bst is an invariant of this implementation:
bst holds for empty, and both insert and delete preserve bst. Therefore every tree
that can be manufactured through the interface is a BST. Of course this adds another
set of proof obligations for correctness, invariant preservation:

bst empty
bst t — bst (insert z t)
bst t — bst (delete z t)

When looking at the abstract data type of sets from the user (or “client”) perspec-
tive, we would call the collection of all proof obligations for the correctness of an
implementation the specification of the abstract type.

Exercise 5.3. Verify the implementation in Section 5.2 by showing all the proof
obligations above, without the detour via sorted lists explained below.

Exercise 5.4. Define a function union_tree :: (‘a::linorder) tree = 'a tree =
'a tree and prove set_tree (union_tree t, t;) = set_tree t; U set_free t, and
bst (union_tree t; t,), assuming bst t; and bst t,. Hint: define and use an auxiliary
function split_tree :: ('a::linorder) = ’‘a tree = 'a tree x 'a tree such that
split_tree z t = (lz, gz) implies that lz/gz contains those elements in ¢ that are
less/greater z.

Correctness Proofs
It turns out that direct proofs of the properties in the previous section can be
cumbersome, at least for delete. Yet the correctness of the implementation is quite
obvious to most (functional) programmers. Which is why most algorithm texts do
not spend any time on functional correctness of search trees and concentrate on non-
obvious structural properties that imply the logarithmic height of the trees — of
course our simple BSTs do not guarantee the latter.

We will now present how the vague notion of “obvious” can be concretized and
automated to such a degree that we do not need to discuss functional correctness of

5.41

64 Chapter 5 Binary Search Trees

search tree implementations again in this book. This is because our approach is quite
generic: it works not only for the BSTs in this chapter but also for the more efficient
variants discussed in later chapters. The remainder of this section can be skipped if
one is not interested in proof automation.

The Idea
The key idea [Nipkow 2016] is to express bst and set_tree via inorder:

bst t = sorted (inorder t) and set_tree t = set (inorder t)

where

sorted :: 'a list = bool

sorted [| = True
sorted [] = True
sorted (z # y # zs) = (z < y A sorted (y # zs))

Note that this is “sorted w.r.t. (<)” whereas in the chapter on sorting sorted was
defined as “sorted w.r.t. (<)”.

Instead of showing directly that BSTs implement sets, we show that they implement
an intermediate specification based on lists (and later that the list-based specification
implies the set-based one). We can assume that the lists are sorted because they are
abstractions of BSTs. Insertion and deletion on sorted lists can be defined as follows:

ins_list :: 'a = 'a list = 'a list
ins_list z [| = [z]
ins_list z (a # xs)
=(ifz < athen z # a # zs
else if z = a then a # zs else a # ins_list z zs)

del_list :: 'a = 'a list = 'a list

del_list [=]
del_list z (a # zs) = (if z = a then zs else a # del_list z xs)

The abstraction function from trees to lists is function inorder. The specification in
Figure 5.1 expresses that empty, insert, delete and isin implement [|, ins_list, del_list
and Azs z. ¢ € set zs. One nice aspect of this specification is that it does not require
us to prove invariant preservation explicitly: it follows from the fact (proved below)
that ins_list and del_list preserve sorted.

Figure 5.1

5.4 Correctness Proofs 65

inorder empty = ||

sorted (inorder t) — inorder (insert z t) = ins_list z (inorder t)
sorted (inorder t) — inorder (delete z t) = del_list = (inorder t)
sorted (inorder t) — isin t ¢ = (z € set (inorder t))

List-based Specification of BSTs

5.4.2 BSTs Implement Sorted Lists — A Framework

We present a library of lemmas that automate the functional correctness proofs for
the BSTs in this chapter and the more efficient variants in later chapters. This library
is motivated by general considerations concerning the shape of formulas that arise
during verification.

As a motivating example we examine how to prove

sorted (inorder t) — inorder (insert =z t) = ins_list z (inorder t)

The proof is by induction on ¢ and we consider the case ¢t = ([, a, r) such that z < a.
Ideally the proof looks like this:

inorder (insert z t) = inorder (insert z 1) @ a # inorder r
= ins_list = (inorder 1) @ a # inorder r
= ins_list = (inorder | @ a # inorder r) = ins_list z t

The first and last step are by definition, the second step by induction hypoth-
esis, and the third step by lemmas in Figure 5.2: (5.1) rewrites the assumption
sorted (inorder t) to sorted (inorder | @ [a]) A sorted (a # inorder r), thus al-
lowing (5.5) to rewrite ins_list z (inorder I @ a # inorder r) to ins_list = (inorder 1)
@ a # inorder .

The lemma library in Figure 5.2 helps to prove the properties in Figure 5.1. These
proofs are by induction on ¢ and lead to (possibly nested) tree constructor terms like
((t1, a1, t2), aq, t3) where the ¢; and a; are variables. Evaluating inorder of such a
tree leads to a list of the following form:

inorder t; @ a; # inorder to @ as # ... # inorder t,

Now we discuss the lemmas in Figure 5.2 that simplify the application of sorted,
ins_list and del_list to such terms.

Terms of the form sorfed (zs; @ a; # xs2 @ ap # ... # zs,) are decomposed
into the following basic formulas

Figure 5.2

5.4.3

66 Chapter 5 Binary Search Trees

sorted (zs @ y # ys) = (sorted (zs @ [y]) A sorted (y # ys)) (5.1)
sorted (z # xzs @ y # ys)

= (sorted (z # zs) A ¢ < y A sorted (zs @ [y]) A sorted (y # ys)) (5.2)
sorted (z # zs) — sorted zs (5.3)
sorted (zs @ [y]) — sorted zs (5.4)
sorted (zs @ [a]) = ins_list z (zs @ a # ys) = (5.5)

(if z < athen ins_list z zs @ a # ys else zs @ ins_list z (a # ys))
sorted (zs @ a # ys) = del_list z (zs @ a # ys) = (5.6)

(if z < athen del_list z zs @ a # ys else zs @ del_list z (a # ys))
sorted (z # xzs) = ((Vyeset zs. z < y) A sorted zs) (5.7)
sorted (zs @ [z]) = (sorted zs A (Vy€Eset zs. y < z)) (5.8)

Lemmas for sorted, ins_list, del_list

sorted (zs @ [a]) (simulating Vzeset zs. ¢ < a)
sorted (a # zs) (simulating Vzeset zs. a < z)
a<b

by the rewrite rules (5.1)-(5.2). Lemmas (5.3)—(5.4) enable deductions from basic
formulas.

Terms of the form ins_list z (zs;1 @ a; # zs2 @ as # ... # xs,) are rewritten
with (5.5) (and the defining equations for ins_list) to push ins_Iist inwards. Terms of
the form del_list z (zs; @ ay # xs2 @ ay # ... # zs,) are rewritten with (5.6)
(and the defining equations for del_list) to push del_list inwards. The isin property
in Figure 5.1 can be proved with the help of (5.1), (5.7) and (5.8).

The lemmas in Figure 5.2 form the complete set of basic lemmas on which the
automatic proofs of almost all search trees in the book rest; only splay trees (see
Chapter 21) need additional lemmas.

Sorted Lists Implement Sets
It remains to be shown that the list-based specification (Figure 5.1) implies the set-
based correctness properties in Section 5.3. Because bst t = sorted (inorder t), the
latter correctness properties become

set_tree empty = {}

sorted (inorder t) — set_tree (insert ¢ t) = sef_tree t U {z}

sorted (inorder t) — set_tree (delete = t) = set_tree t — {z}

9.5

5.5 Tree Rotations & 67

sorted (inorder t) — isin t ¢ = (z € set_tree t)

sorted (inorder empty)

sorted (inorder t) — sorted (inorder (insert z t))

sorted (inorder t) — sorted (inorder (delete z t))
They are proved directly by composing the list-based specification (Figure 5.1, proved
above) with the correctness of the sorted list implementation of sets

set (ins_list z zs) = set zs U {z}

sorted zs — set (del_list z zs) = set zs — {z}

sorted s — sorted (ins_list z xs)

sorted zs — sorted (del_list z zs)

(which have easy inductive proofs) using set_free t = set (inorder t).

Tree Rotations 0
As discussed in the introduction to this chapter, the BST on the left is better than
the one on the right, which has degenerated to a list:

On average, searching for a random key is faster in the left than in the right BST,
assuming that all keys are equally likely. In later chapters, a number of balancing
schemas will be presented that guarantee logarithmic height (in the number of nodes)

of trees balanced according to those schemas. The basic balancing mechanisms are
rotations, local tree transformations that preserve inorder but modify the shape:

e right-rotation e

G [fo\ e N
/N /o /2\ /o\

We will now show that any two trees t; and t, with the same inorder can be
transformed into each other by a linear number of rotations. The basic idea is simple.

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tree_Rotations.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tree_Rotations.html

68 Chapter 5 Binary Search Trees

Transform ¢; into a list-like tree [by right-rotations. In order to transform [into ¢,
note that we can transform ¢, into ! (because inorder t; = inorder t,). Hence we
merely need to reverse the transformation of ¢, into [

We call a tree in list-form if it is of the form

<<)) ai, <<>: az, ... <<>) Qn, <>>>>

Formally:

is_list :: 'a tree = bool
is_list (I, ,r)y= (=) Ais_listr)
is_list () = True

A tree is in list-form iff no right-rotation is applicable anywhere in the tree. The
following function performs right-rotations in a top-down manner along the right
spine of a tree:

list_of :: 'a tree = 'a tree

list_of ({4, a, B), b, C) = list_of (A, a, (B, b, C))
list_of (), a, A) = ((), a, list_of A)

list_of () = ()

The termination of this function may not be obvious. The problem is the first equation
because the size of ({4, a, B), b, C) and (A4, a, (B, b, C)) are the same. However,
the right spine has become one longer, which must end when all nodes of the tree are
on the right spine. This suggests the measure function At. |t| — rlen ¢ where

rlen :: 'a tree = nat

rlen () =0
rlen {(_, ,ry=rlenr +1

This works for the first /ist_of equation but not for the second one: |((}, a, A)| —
rlen {(), a, A) = |A| — rlen A. Luckily the measure function At. 2 - [t| — rlen t
decreases with every recursive call, thus proving termination.

The correctness of list_of is easily expressed

is_list (list_of t)
inorder (list_of t) = inorder t

and proved by computation induction.

5.5 Tree Rotations & 69

The claim that only a linear number of rotations is needed cannot be proved from
function fist_of because it does not count the rotations (but see Exercise 5.5). More
problematic is the fact that we cannot formalize the second step of our overall proof,
namely the idea of reversing the sequence of rotations that /ist_of performs because
the rotations are hidden inside /ist_of. Thus we abandon this formalization and restart
by introducing an explicit notion of position (type pos) in a tree:

datatype dir = L | R
type_synonym pos = dur list

The position of a node in a tree is a sequence of left/right directions. They encode
how to reach that node from the root by turning left or right at each successive node.
For example, the position of ((), 1, ()) in ({{), 0, ({), 1,), 2, ({), 3, ())) is [L, R].

Function rotR_poss is the analogue of list_of but whereas /ist_of returns the
rotated tree, rotR_poss produces the list of positions where the rotations should
be applied:

rotR_poss :: 'a tree = pos list

rotR_poss ((A, a, B), b, C) = [| # rotR_poss (A, a, (B, b, C))
rotR_poss ({), , A) = map ((#) R) (rotR_poss A)

rotR_poss () =[]

Termination is again proved with the help of the measure function A¢. 2 - |t| — rlen t.
Functions apply_at and apply_ats perform a transformation at a (list of) posi-
tion(s):

apply_at :: ('a tree = 'a tree) = pos = 'a tree = ‘a tree

apply_atf]t =ft
apply_at f (L # ds) (I, a,) = (apply_at f ds I, a, 7)
apply_at f (R # ds) (I, a,) = (I, a, apply_at f ds r)

apply_ats :: ('a tree = 'a tree) = pos list = 'a tree = 'a tree

apply_ats _[[t=1t
apply_ats f (p # ps) t = apply_ats f ps (apply_at f p t)

We are interested in left and right rotations:

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tree_Rotations.html

70 Chapter 5 Binary Search Trees

rotR :: 'a tree = 'a tree
rOtR <<A’ a7 B>7 b’ C) = (A’, a) <B) b’ C))

rotL :: 'a tree = 'a tree
rOtL <'A7 a’ <B’ b1 C>> = <<A’ a1 B>1 b’ C)

rotRs = apply_ats rotR
rotLs = apply_ats rotL

Now we can prove by computation induction that rotRs (rotR_poss t) transforms ¢
into list-form and preserves inorder

is_list (rotRs (rotR_poss t) t) (5.9)
inorder (rotRs (rotR_poss t) t) = inorder t (5.10)

using the inductive lemma
apply_ats f (map ((#) R) ps) (I, a, 7y = (I, a, apply_ats f ps r) (5.11)
Moreover, we can now express and prove how many right-rotations are required:
|rotR_poss t| = |t| — rlen t (5.12)

The reason: each right-rotation moves one more node onto the right spine. The proof
is by computation induction and uses an easy inductive fact: rlen t < |¢|.

Thus the number of right-rotations to reach list-form is upper-bounded by |t|. In
fact, (5.12) implies an upper bound of |t| — 1 because |¢t| — rlen t < |t| — 1 (why?).
This upper bound is tight: any tree with only one node on the right spine needs that
many right-rotations because each right-rotation increases rlen only by one.

At last we return to the original question, how to transform any tree into any other
tree by rotations. The key lemma, which we can express at last, is that reversing the
transformation to list-form takes us back to the original tree:

rotLs (rev (rotR_poss t)) (rotRs (rotR_poss t) t) =t (5.13)

The proof is an easy computation induction using (5.11), the fact that map and rev
commute and the easy inductive fact

apply_ats f (ps1 @ psz) t = apply_ats f ps2 (apply_ats f ps: t)
With this easy inductive proposition

is_list t1 A is_list ty A inorder t; = inorder to — t; = t, (5.14)

5.5.1

5.6

5.6.1

5.6 Case Study: Interval Trees 0 71

we can finally transform any ¢; into any ¢, by rotations if inorder t, = inorder t,.
First observe that

rotRs (rotR_poss t1) t; = rotRs (rotR_poss t3) ta
follows from inorder t; = inorder t,, (5.9), (5.10) and (5.14). Thus we obtain

rotLs (rev (rotR_poss t,)) (rotRs (rotR_poss t1) t1)
= rotLs (rev (rotR_poss ts3)) (rotRs (rotR_poss t3) t2)
= t, by (5.13)

Exercises

Exercise 5.5. Define a function count_rots that counts the number of right-rotations
that list_of performs. It should look essentially the same as list_of but return the
number of rotations rather than the list, similar to a running time function. Prove
count_rots t = |t| — rlen t.

Exercise 5.6. Prove dps. is_list (rotRs ps t) A inorder (rotRs ps t) = inorder t by
induction, without defining or using a function like rotR_poss to compute ps.

Exercise 5.7. Find a tree ¢t and a position list ps such that is_list (rotRs ps t) and
|ps| > |rotR_poss t|. Is it possible to rotate a tree into list-form with less than |¢| —
rlen t rotations?

Case Study: Interval Trees 7

In this section we study binary trees for representing a set of intervals, called interval
trees. In addition to the usual insertion and deletion functions of standard BSTs,
interval trees support a function for determining whether a given interval overlaps
with some interval in the tree.

Augmented BSTs

The efficient implementation of the search for an overlapping interval relies on an
additional piece of information in each node. Thus interval trees are another example
of augmented trees as introduced in Section 4.4. We reuse the modified definitions of
set_tree and inorder from that section. Moreover we use a slightly adjusted version
of isin that works for any kind of augmented BST:

isin :: ('a x 'b) tree = 'a = bool

isin () = False

isin (I, (a,), 7)

= (casecmp z aof LT = isinlz | EQ = True | GT = isin r)

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Interval_Tree.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Interval_Tree.html

5.6.2

5.6.3

72 Chapter 5 Binary Search Trees

Intervals

An interval ‘a 7l is simply a pair of lower and upper bound, accessed by functions
low and high, respectively. Intuitively, an interval represents the closed set between
low and high. The standard mathematical notation is [/, k|, the Isabelle notation is
{l..h}. We restrict ourselves to non-empty intervals:

low p < high p

Type ‘a can be any linearly ordered type with a minimum element L (for example,
the natural numbers or the real numbers extended with —oo). Intervals can be linearly
ordered by first comparing /ow, then comparing high. The definitions are as follows:

(z<y)=(lowz < lowy V lowz = low y A high z < high y)
(z<y)=(lowz < lowy V lowz = low y A high z < high y)

Two intervals overlap if they have at least one point in common:
overlap z y = (low y < high z A low z < high y)

The readers should convince themselves that overlap does what it is supposed to do:
overlap z y = ({low z..high z} N {low y..high y} # {})
We also define the concept of an interval overlapping with some interval in a set:

has_overlap S y = (3z€S. overlap z y)

Interval Trees

An interval tree associates to each node a number max_hi, which records the maximum
high value of all intervals in the subtrees. This value is updated during insert and delete
operations, and it will be crucial for enabling efficient determination of overlap with
some interval in the tree.

type_synonym ‘a wl_tree = (‘a twl x 'a) tree

max_hi :: 'a wl_tree = 'a

max_hi () = L
max_hi (_,(_,m),)=m

If the max_hi value of every node in a tree agrees with max3

5.6.4

5.6 Case Study: Interval Trees 0 73

inv_max_hi :: 'a ivl_tree = bool

inv_max_hi () = True

inv_max_hi (I, (a, m), r)

=(m =max3 alr Ainv_max_hi | A inv_max_hi r)

max3 :: 'a wl = 'a wl_tree = 'a wl_ tree = 'a

max3 a | r = max (high a) (max (max_hi 1) (max_hi r))

it follows by induction that max_hi is the maximum value of high in the tree and
comes from some node in the tree:

Lemma 5.1. inv_max_hi t A a € set_tree t — high a < max_hi t

Lemma 5.2. inv_max_hi t A t # () — (Jacset_tree t. high a = max_hi t)

Implementing Sets of Intervals via Interval Trees

Interval trees can implement sets of intervals via unbalanced BSTs as in Section 5.2.
Function isin was already defined in Section 5.6.1. Insertion and deletion are also very
close to the versions in Section 5.2, but the value of max_hi must be computed (by
max3) for each new node. We follow Section 4.4 and introduce a smart constructor
node for that purpose and replace (I, a, r) by node [a r (on the right-hand side):

node :: 'a wl_tree = 'a wl = ‘a wl_tree = 'a wl_ tree

nodelar =l (a, max3alr),r)

insert :: 'a wl = 'a wl_tree = 'a vl _tree

insert z () = ((), (z, high z), ())

insert z (I, (a, m), r) = (case cmp z a of
LT = node (insert z 1) a r |
EQ = (i, (a, m),) |
GT = node | a (insert z r))

split_min :: 'a wl_tree = 'a il x 'a iwl_ tree
split_min (I, (a,), 7)
= (if I = () then (a, 7)

else let (z, I') = split_min lin (z, node l' a T))

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Interval_Tree.html

74 Chapter 5 Binary Search Trees

delete :: 'a wl = 'a wl_tree = 'a wl_tree

delete () = ()

delete z (I, (a,), 7)

= (case cmp z a of
LT = node (delete z 1) a r |
EQ = if r = () then lelse let (z, y) = split_min rin node | z y |
GT = node [a (delete z r))

The correctness proofs for insertion and deletion cover two aspects. Functional
correctness and preservation of the invariant sorfed o inorder (the BST property)
are proved exactly as in Section 5.3 for ordinary BSTs. Preservation of the invariant
inv_max_hi can be proved by a sequence of simple inductive properties. The main
correctness properties are these:

sorted (inorder t) — inorder (insert z t) = ins_list z (inorder t)

sorted (inorder t) — inorder (delete z t) = del_list z (inorder t)

inv_max_hi t — inv_max_hi (insert z t)

inv_max_hi t — inv_max_hi (delete z t)
Defining invar t = (inv_max_hi t A sorted (inorder t)) we obtain the following
top-level correctness corollaries:

invar s — set_tree (insert ¢ s) = set_tree s U {z}

invar s — set_tree (delete z s) = set_tree s — {z}

invar s — invar (insert z s)

invar s — invar (delete z s)

The above insertion function allows overlapping intervals to be added into the
tree and deletion supports only deletion of whole intervals. This is appropriate
for the computational geometry application sketched below in Section 5.6.6. Other
applications may require a different design.

5.6.5 Searching for an Overlapping Interval
The added functionality of interval trees over ordinary BSTs is function search that
searches for an overlapping rather than identical interval:

search :: 'a wl_tree = 'a 1wl = bool

search () = False

5.6 Case Study: Interval Trees 0 75

search (I, (a,), 1)
= (if overlap = a then True
else if | # () A low z < max_hi | then search [z else search r z)

The following theorem expresses the correctness of search assuming the same
invariants as before; bst t would work just as well as sorted (inorder t).

Theorem 5.3. inv_max_hi t A sorted (inorder t) —
search t x = has_overlap (set_tree t) «

Proof. The result is clear when ¢ is (). Now suppose ¢ is in the form (I, (a, m), 7),
where m is the value of max_hi at root. If a overlaps with z, search returns True as
expected. Otherwise, there are two cases.

e If I # () and low z < max_hi I, the search goes to the left child. If there is
an interval in the left child overlapping with z, then the search returns True
as expected. Otherwise, we show there is also no interval in the right child
overlapping with z. Since ! # (), Lemma 5.2 yields a node p in the left child
such that high p = max_hi L. Since low z < max_hi I, we have low z < high p.
Since p does not overlap with z, we must have high z < low p. But then, for
every interval rp in the right child, low p < low rp, so that high z < low rp,
which implies that rp does not overlap with z.

e Now we consider the case where either [= () or max_hi | < low z. In this case,
the search goes to the right. We show there is no interval in the left child that
overlaps with z. This is clear if [= (). Otherwise, for each interval lp, we have
high lp < max_hi I by Lemma 5.1, so that high lp < low z, which means Ip does
not overlap with z. O

Exercise 5.8. Define a function that determines if a given point is in some interval
in a given interval tree. Starting with

in_ivl :: 'a = 'a 1wl = bool

in_ivl z ww = (low ww < z A z < high w)
write a recursive function

searchl :: 'a wl_tree = 'a = bool

(without using search) such that search? z t is True iff there is some interval v in
t such that in_ivl z iv. Prove

inv_max_hi t A bstt — searchl t ¢ = (Jweset_tree t. in_ivl z 1)

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Interval_Tree.html

5.6.6

76 Chapter 5 Binary Search Trees

Application

While this section demonstrated how to augment an ordinary binary tree with
intervals, any of the balanced binary trees (such as red-black tree) can be augmented
in a similar manner. We leave this as exercises.

Interval trees have many applications in computational geometry. As a basic
example, consider a set of rectangles whose sides are aligned to the z and y-axes.
We wish to efficiently determine whether any pair of rectangles in the set intersect
each other (i.e. sharing a point, including boundaries). This can be done using a "sweep
line" algorithm as follows. For each rectangle [z;,z4] X [y1,yn], We create two events:
insert interval [z;,zp] at y-coordinate y; and delete interval [z;,z,] at y-coordinate
yp. Perform the events, starting from an empty interval tree, in ascending order of y-
coordinates, with insertion events performed before deletion events. At each insertion,
check whether the interval to be inserted overlaps with any of the existing intervals
in the tree. If yes, we have found an intersection between two rectangles. If no overlap
of intervals is detected throughout the process, then no pair of rectangles intersect.
When using an interval tree based on a balanced binary tree, the time complexity of
this procedure is O(nlgn), where n is the number of rectangles.

Chapter Notes

Tree Rotations and Distance Culik II and Wood [1982] defined the rotation
distance of two trees t; and t, with the same number of nodes n as the minimum
number of rotations needed to transform ¢; into ¢, and showed that it is upper-
bounded by 2n — 2. This result was improved by Sleator et al. [1986] and Pournin
[2014] who showed that for n > 11 the maximum rotation distance is exactly 2n — 6.
The complexity of computing the rotation distance is open: it is in NP but it is
currently not known if it is NP-complete.

Interval Trees We refer to Cormen et al. [2009, Section 14.3] for another exposition
on interval trees and their applications. Interval trees, together with the application
of finding rectangle intersection, have been formalized by Zhan [2018].

6.1

6.2

Abstract Data Types

Tobias Nipkow

In the previous chapter we looked at a very specific example of an abstract data
type, namely sets. In this chapter we consider abstract data types in general and in
particular the model-oriented approach to the specification of abstract data types.
This will lead to a generic format for such specifications. As a second example we
consider the abstract data type of maps.

Abstract Data Types
Abstract data types (ADTs) can be summarized by the following slogan:

ADT = nterface + specification

where the interface lists the operations supported by the ADT and the specification
describes the behaviour of these operations. For example, our set ADT has the
following interface:

empty :: 's

insert :: 'a = 's = s

delete :: 'a = 's = s

isin 2 's = 'a = bool

The purpose of an ADT is to be able to write applications based on this ADT that

will work with any implementation of the ADT. To this end one can prove properties
of the application that are solely based on the specification of the ADT. That is, one
can write generic algorithms and prove generic correctness theorems about them in
the context of the ADT specification.

Model-Oriented Specification 7

We follow the model-oriented style of specification advocated by Jones [1990]. In that
style, an abstract type is specified by giving an abstract model for it. For simplicity
we assume that each ADT describes one type of interest T. In the set interface T is
's. This type T must be specified by some existing HOL type A, the abstract model.
In the case of sets this is straightforward: the model for sets is simply the HOL type
'a set. The motto is that T should behave like A. In order to bridge the gap between
the two types, the specification needs an

77

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Set_Specs.html

Figure 6.1

78 Chapter 6 Abstract Data Types

e abstraction function o :: T = A

that maps concrete values to their abstract counterparts. Moreover, in general only
some elements of T represent elements of A. For example, in the set implementation in
the previous chapter not all trees but only BSTs represent sets. Thus the specification
should also take into account an

e invariant tnvar :: T = bool

Note that the abstraction function and the invariant are not part of the interface, but
they are essential for specification and verification purposes.

As an example, the ADT of sets is shown in Figure 6.1 with suggestive keywords
and a fixed mnemonic naming schema for the labels in the specification. This is

ADT Set =

interface

empty = 's

insert : 'a = 's = s

delete :: 'a = 's = s

isin :: 's = ‘a = bool
abstraction set :: 's = ‘a set
invariant invar :: ‘s = bool

specification

set empty = {} (empty)
invar empty (empty-inv)
tnvar s — set (insert ¢ s) = set s U {z} (insert)
tnvar s — tnvar (tnsert s) (insert-inv)
tnvar s — set (delete ¢ s) = set s — {z} (delete)
tnvar s — tnvar (delete z s) (delete-inv)
tnvar s — isin s ¢ = (z € set s) (zstn)

ADT Set

the template for ADTs that we follow throughout the book. We have intentionally
refrained from showing the Isabelle formalization using a so-called locale and have
opted for a more intuitive textual format that is not Isabelle-specific, in accordance
with the general philosophy of this book. The actual Isabelle text can of course be
found in the source files, and locales are explained in a dedicated manual [Ballarin].
We conclude this section by explaining what the specification of an arbitrary ADT
looks like. We assume that for each function f of the interface there is a corresponding

6.3

6.3 Implementing ADTs 79

function f4 in the abstract model A. For a uniform treatment we extend a and invar
to arbitrary types by setting o z = z and tnvar z = True for all types other than
T. Each function f of the interface gives rise to two properties in the specification:
preservation of the invariant and simulation of f4. The precondition is shared:

mvar 1 A ... A\ mvar T, —
mvar(f 21 ... Tp) (f-inv)
a(fzy ...) = fa (azp) ... (@ zy) ()

To understand how the specification of ADT Set is the result of this uniform schema
one has to take two things into account:

e Precisely which abstract operations on type ‘a set model the functions in the
interface of the ADT Set? This correspondence is implicit in the specification:
empty is modeled by {}, insert is modeled by Az s. s U {z}, delete is modeled
by Az s. s — {z} and isin is modeled by As z. z € s.

e Because of the artificial extension of o and tnvar the above uniform format often
collapses to something simpler where some a’s and invar’s disappear.

Implementing ADTs
An implementation of an ADT consists of definitions for all the functions in the
interface. For the correctness proof, you also need to provide an abstraction function
and the invariant. The latter two need not be executable unless they also occur in
the interface and the implementation is meant to be executable. Finally you need to
prove all propositions in the specification of the ADT, of course replacing the function
names in the ADT by their implementations.

For Isabelle users: because ADTs are formalized as locales, an implementation of
an ADT is an interpretation of the corresponding locale.

Exercise 6.1. Sets of natural numbers can be implemented as lists of intervals, where
an interval is simply a pair of numbers. For example, the set {2, 3, 5, 7, 8, 9} can be
represented by the list [(2, 3), (5, 5), (7, 9)].

type_synonym interval = nat x nat
type_synonym :ntervals = interval list

Define an abstraction function and invariant

set_of :: intervals = nat set
invar :: intervals = bool

6.4

80 Chapter 6 Abstract Data Types

The invariant should enforce that all intervals are non-empty, they are sorted in
ascending order and they do not overlap. Then define two functions for adding and
deleting numbers to and from intervals:

isin :: intervals = nat = bool
add1 :: nat = intervals = intervals
deltl :: nat = intervals = intervals

Show that [], add1, dell, isin, set_of and invar correctly implement the ADT Set
by proving all propositions in the specification, suitably renamed, e.g. invar ivs —
set_of (add1 ¢ ws) = set_of ws U {4}.

In a second step, define two functions

add :: intervals = intervals = intervals
del :: intervals = intervals = wntervals

for union and difference and prove

invar zs A invar ys — set_of (add zs ys) = set_of zs U set_of ys
invar zs A invar ys — set_of (del zs ys) = set_of ys — set_of zs

and that they preserve the invariant.

Make sure all functions in your implementation terminate as soon as possible. Both
add and del should take time linear in the sum of the lengths of their arguments.
They should not simply iterate add? and del1.

Maps (7
An even more versatile type than sets are maps from ‘a to 'b. In fact, sets can be viewed
as maps from ‘a to bool. Conversely, many data structures for sets also support maps,
e.g. BSTs. Although, for simplicity, we mostly focus on sets in this book, maps are
used in a few places too.

Just as with sets, there is both an HOL type of maps and an ADT of maps. We
start with the former, where — is just nice syntax:

type_synonym ‘a — ‘b = 'a = ‘b option

These maps can also be viewed as partial functions. We define the following abbrevi-
ation:

m(a — b) = m(a := Some b)

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Map_Specs.html

Figure 6.2

6.5

6.5 Implementing Maps by BSTs & 81

The ADT Map is shown in Figure 6.2. Type ‘m represents the type of maps from
'a to 'b. The ADT Map is very similar to the ADT Set except that the abstraction
function lookup is also part of the interface: it abstracts a map to a function of type
‘a — 'b. This implies that the equations are between functions of that type. We use
the function update notation (Section 1.3) to explain update and delete: update is
modeled by Am a b. m(a — b) and delete by Am a. m(a := None).

ADT Map =

interface

empty :: 'm

update :: 'a = b = 'm = 'm
delete :: 'a = 'm = 'm
lookup :: 'm = 'a — b

abstraction lookup
invariant invar :: ‘'m = bool

specification

lookup empty = (A_. None) (empty)
nvar empty (empty-inv)
invar m — lookup (update a b m) = (lookup m)(a + b) (update)
tnvar m — invar (update a b m) (update-inv)
tnvar m — lookup (delete a m) = (lookup m)(a := None) (delete)
tnvar m — invar (delete a m) (delete-inv)
ADT Map

Implementing Maps by BSTs 7
We implement maps as BSTs of type (‘a x 'b) tree. The interface functions have the
following straightforward implementations, ignoring the trivial empty:

lookup :: ('a x 'b) tree = 'a — 'b

lookup () = None

lookup (1, (a, b),) = = (case cmp z a of
LT = lookup ! z |
EQ = Some b |
GT = lookup r z)

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tree_Map.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tree_Map.html

82 Chapter 6 Abstract Data Types

update :: 'a = 'b = (‘a x 'b) tree = (‘a x 'b) tree

update z y () = ((), (z, y), ())

update z y (I, (a, b), r) = (case cmp z a of
LT = (update z y {, (a, b), r) |
EQ = (i, (z, y),) |
GT = (I, (a, b), update z y r))

delete :: 'a = ('a x 'b) tree = ('a x 'b) tree
delete () = ()
delete z (I, (a, b),)
= (case cmp z a of
LT = (delete z I, (a, b),) |
EQ = if r = () then [
else let (ab’, ') = split_min rin (I, ab’, ') |
GT = (!, (a, b), delete z r))

Function split_min is the one defined in Section 5.6.4.
The correctness proof proceeds as in Section 5.4. The intermediate level is the type
(‘a x 'b) list of association lists sorted w.r.t. the fst component:

sorted1 ps = sorted (map fst ps)
Functions update, delete and lookup are easily implemented:

upd_list :: 'a = 'b = (‘a x 'b) list = (‘a x 'b) list

upd_list z y [| = [(z, y)]
upd_list z y ((a, b) # ps)
(lfa:<athen(y) # (a, b) # ps
else if z = a then (z, y) # ps else (a, b) # upd_list z y ps)

del_list :: 'a = ('a x 'b) list = (‘a x 'b) list

del_list [=]
del_list z ((a, b) # ps) = (if z = a then ps else (a, b) # del_list z ps)

6.5 Implementing Maps by BSTs & 83

map_of :: (‘a x 'b) list = 'a — b
map_of [| = (Az. None)
map_of ((a, b) # ps) = (map_of ps)(a — b)

It is easy to prove that association lists implement maps of type ‘a — ’b via the
abstraction function map_of:

map_of (upd_list z y ps) = (map_of ps)(z — vy)

)
sorted1 ps — map_of (del_list z ps) = (map_of ps)(z := None)
sorted1 ps —» sorted? (upd_list z y ps)

(
sorted1 ps — sorted1 (del_list z ps)

The correctness of map_of (as an operation on association lists) is trivial be-
cause map_of is also the abstraction function and thus the requirement becomes
map_of ps a = map_of ps a.

We can also prove that (‘a x b) trees implement association lists:

sorted1 (inorder t) — inorder (update a b t) = upd_list a b (inorder t)
sorted1 (inorder t) — inorder (delete = t) = del_list = (inorder t)
sorted1 (inorder t) — lookup t © = map_of (inorder t) z

The Map specification properties follow by composing the above two sets of imple-
mentation properties.

Exercise 6.2. Modify the ADT Map as follows. Replace update and delete by a
single function modify :: ‘a = ('b option = 'b option) = 'm = 'm with the
specification that invar m implies

lookup (modify a f m) = (lookup m)(a := f (lookup m a))
tnvar (modify a f m)

Define update and delete with the help of modify and prove the update and delete
properties in the original ADT Map from these definitions and the specification of
modify. Conversely, in the context of the original ADT Map, define modify in terms
of update and delete and prove the above properties.

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tree_Map.html

2-3 Trees [/

Tobias Nipkow

This is the first in a series of chapters examining balanced search trees where the
height of the tree is logarithmic in its size and which can therefore be searched in
logarithmic time.

The most popular first example of balanced search trees are red-black trees. We
start with 2-3 trees, where nodes can have 2 or 3 children, because red-black trees
are best understood as an implementation of (a variant of) 2-3 trees. We introduce
red-black trees in the next chapter. The type of 2-3 trees is similar to binary trees but
with an additional constructor Node3:

datatype 'a tree23 =
Leaf |
Node2 ('a tree23) 'a ('a tree23) |
Node3 ('a tree23) ‘a ('a tree23) 'a (‘a tree23)

The familiar syntactic sugar is sprinkled on top:

= Leaf
({, a, 7y = Node2!lar
Node3 lambr

—~
~
|

The size, height and the completeness of a 2-3 tree are defined by adding an equation
for Node3 to the corresponding definitions on binary trees:

(L _m, o) =i+ |m| + [r| +1
h({, ,m, ,ry=max (hl)(max (hm)(hr)) +1

complete (I, , m, ,r)
=(hl=hmAhm = hr A complete Il N complete m A complete r)

85

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tree23_Set.html

7.1

86 Chapter 7 2-3 Trees

A trivial induction yields complete t — 27t < |t| + 1: thus all operations on
complete 2-3 trees have logarithmic complexity if they descend along a single branch
and take constant time per node. This is the case and we will not discuss complexity
in any more detail.

A nice property of 2-3 trees is that for every n there is a complete 2-3 tree of size
n. As we will see below, completeness can be maintained under insertion and deletion
in logarithmic time.

Exercise 7.1. Define a function maxt :: nat = wunat tree23 that creates the tree with
the largest number of nodes given the height of the tree. We use type unit because
we are not interested in the elements in the tree. Prove |maxt n| = (3" — 1) div 2
and that no tree of the given height can be larger: [t| < (3"? — 1) div 2. Note that
both subtraction and division on type nat can be tedious to work with. You may want
to prove the two properties as corollaries of subtraction- and division-free properties.
Alternatively, work with real instead of nat by replacing div by /.

Implementation of ADT Set

The implementation will maintain the usual ordering invariant and completeness.

When we speak of a 2-3 tree we will implicitly assume these two invariants now.
Searching a 2-3 tree is like searching a binary tree (see Section 5.2) but with one

more defining equation:

isin {l, a, m, b, r) z
= (case cmp z a of LT = isinlz | EQ = True
| GT = case cmp z b of LT = isinmz | EQ = True | GT = isin r)

Insertion into a 2-3 tree must preserve completeness. Thus recursive calls must
report back if the tree has increased in height (Of = “overflow”) or if the height has
stayed the same (EQ;). Therefore insertion returns a result of this type:

datatype ‘a up; = Eq; (‘a tree23) | Of ('a tree23) 'a ('a tree23)

This is the idea: If insertion into ¢ returns
Eq; t then t' has the same height as ¢,
Of lz r then [and r have the same height as t.

The insertion functions are shown in Figure 7.1. The actual work is performed by
the recursive function ins. The element to be inserted is propagated down to a leaf,
which causes an overflow of the leaf. If an overflow is returned from a recursive call

7.1 Implementation of ADT Set 87

insert ¢ t = tree; (ins z t)

ins :: 'a = 'a tree23 = 'a up;
insz () = Of () z ()
ins z (I, a, ry = (case cmp z a of
LT = case ins z | of
Eqil' = Eqi (U, a, 1) |
Of Iy bly = Eqj (l1, b, Lo, a, 7) |
EQ = Eqg; (I, a, 7) |
GT = case ins z r of
Eqi v = Eq; (I, a, ') |
Ofry bry = Eqi (I, a, 71, b, 73))
ins z (I, a, m, b,)
= (case cmp z a of
LT = case ins z | of
Eq;l' = Eq; (I, a, m, b, 7} |
Ofly clo = Of (I1, ¢, l2) a (m, b, r) |
EQ = Eq; (I, a, m, b, 7) |
GT = case cmp z b of
LT = case ins z m of
Eqi m' = Eq; (I, a, m', b,) |
Of my ¢ my = Of (I, a, m1) c (mz, b, T) |
EQ = Eq; {l, a, m, b, T) |
GT = case ins z r of
Eq; v = Eq; (I, a, m, b, r') |
Ofri cro = Of (I, a, m) b (ry, c, T2))

Figure 7.1 Insertion into 2-3 tree

it can be absorbed into a Node2 but in a Node3 it causes another overflow. At the
root of the tree, function tree; converts values of type up; back into trees:

treej :: 'a up; = 'a tree23
treej (Eqi t) =t
treej (Oflar)={,a,)

7.2

88 Chapter 7 2-3 Trees

Deletion is dual. Recursive calls must report back to the caller if the child has
“underflown”, i.e. decreased in height. Therefore deletion returns a result of this type:

datatype ‘a up; = Eqq ('a tree23) | Uf (‘a tree23)

This is the idea: If deletion from ¢ returns

Eqg t' then t' has the same height as ¢,
Uft' then t' is one level lower than t.

The main deletion functions are shown in Figure 7.2. The actual work is performed
by the recursive function del. If the element to be deleted is in a child, the result
of a recursive call is reintegrated into the node via the auxiliary functions nodej
from Figure 7.3: nodeij creates a node with ¢ children, where child j is given as an
upy value, and wraps the node up in Uf or Eqq, depending on whether an underflow
occurred or not. If the element to be deleted is in the node itself, a replacement is
obtained and deleted from a child via split_min. At the root of the tree, upy values
are converted back into trees:

treeq :: 'a upg = 'a tree23

freeq (Eqg t) =t
treeq (Uft) =t

Preservation of Completeness

As explained in Section 5.4, we do not go into the automatic functional correctness
proofs but concentrate on invariant preservation. To express the relationship between
the height of a tree before and after insertion we define a height function h;:

hi :: 'a up; = nat
hi (Eqi t) = ht
hi (Ofl)= nhl

Intuitively, h; is the height of the tree before insertion. A routine induction proves
complete t — complete (tree; (ins a t)) A hj (insat)=ht
which implies by definition that

complete t — complete (insert a t)

7.2 Preservation of Completeness

delete :: 'a = 'a tree23 = 'a tree23
delete z t = treey (del z t)

del :: 'a = 'a tree23 = 'a upy

(), a, () = (if « = athen Uf () else Eqq ({), a, ()))
del z ((), a, (), b, ())
= Eqq (if z = a then ({), b, ())
else if z = b then ((), a, ()) else ((), a, (), b, ()))

del z (I, a,)
= (case cmp z a of LT = node21 (del z 1) a r

| EQ = let (a', ') = split_min rin node22 1 a’ '

| GT = node22 [a (del z T))
del z (I, a, m, b, 7)
= (case cmp z a of LT = node31 (del z1) am b r

| EQ = let (a', m') = split_min m in node32 1 a’ m' b r

| GT = case cmp z b of LT = node32 ! a (del z m) b r
| EQ = let (b, r') = split_min r in node33 [a m b 7'
| GT = node33 1 am b (del z 7))

split_min :: 'a tree23 = 'a X 'a upy

split_min ((), a, ()) = (a, Uf ())

split_min ((), a, (), b, (}) = (a, Eqa (O, b, ()))

split_min (I, a, r) = (Iet (z, ') = split_min lin (z, node21 I' a 1))
split_min (I, a, m, b, r)

= (let (z, !') = split_min lin (z, node31 !' a m b r))

89

Figure 7.2 Deletion from 2-3 tree: main functions

90 Chapter 7 2-3 Trees

node21 :: 'a upg = 'a = 'a tree23 = 'a upy

node21 (Eqq t1) a ta = Eqq (t1, a, t2)

node21 (Uf tl) a <t2, b, t3> = Uf (tl, a, ts, b, t3>

node21 (Uf tl) a <t2, b, tg, c, t4) = Eq(] ((tl, a, t2), b, <t3, @, t4>>

node22 :: 'a tree23 = 'a = 'a upy = 'a upg

node22 t1 a (Eqq t2) = Eqq (t1, a, t2)

node22 (tl, b, t2) a (Uf tg) = Uf <t1, b, ts, a, t3)

node22 (tl, b, t2, c, t3> a (Uf t4) = ECld <(t1, b, t2), c, (tg, a, t4)>

node31 :: 'a upgy = 'a = 'a tree23 = 'a = 'a tree23 = 'a upy
node31 (Eqd tl) aty bts = EQd <t1, a, ta, b, t3>

node31 (Uf tl) a <t2, b, t3> cty = Eqd <<t1, a, to, b, tg), c, t4>
node31 (Uf tl) a <t2, b, t3, C, t4) d ts

= Eqd <<t17 a, t2>’ b) <t3) c, t4>: d; t5>

node32 :: 'a tree23 = 'a = 'a upgy = 'a = 'a tree23 = 'a upy
node32 t, a (EQd t2) bt; = EQd (tl, a, ta, b, t3>

node32 t1 a (Uf tg) b (tg, c, t4> = Eq(j <t1, a, <t2, b, t3, c, t4>)
node32 t; a (Uf tg) b (tg, c, ta, d, t5>

= Eqd <t1) a, <t21 ba t3>) c, <t41 da t5>>

node33 :: ‘a tree23 = 'a = 'a tree23 = 'a = 'a upg = ‘a upq
node33 t, aty b (Eq(j tg) = Eqd (tl, a, to, b, t3>

node33 t; a <t2, b, t3> c (Uf t4) = Eq(j <t1, a, <t2, b, ts, c, t4>)
node33 t1 a <t2, b, t3, c, t4> d (Uf t5)

= Eqd <t1) a, <t2v ba t3>) ¢, <t4v da t5>>

Figure 7.3 Deletion from 2-3 tree: auxiliary functions

7.3

7.3 Converting a List into a 2-3 Tree 7 91

To express the relationship between the height of a tree before and after deletion
we define

hg 2 'a upg = nat
hg (Eqq t) = ht
hg (Uft)=ht+1

The intuition is that hy is the height of the tree before deletion.
We now list a sequence of simple inductive properties that build on each other and
culminate in completeness preservation of delete:

complete r N complete (treeq ') N hr = hg ! —
complete (treeq (node21 ' a r))

0< hr — hg(node21 ' ar) =max (hgl') (hr)+ 1

split_mint = (z, t') A0 < ht A completet — hgt' = ht
split_min t = (z, t') A complete t A 0 < ht — complete (treeq t')
complete t — hy (del zt) = ht

complete t — complete (lreeq (del z t))

complete t — complete (delete z t)

For each property of node21 there are analogues properties for the other nodey
functions which we omit.

Converting a List into a 2-3 Tree 0
We consider the problem of converting a list of elements into a 2-3 tree. If the resulting
tree should be a search tree, there is the obvious approach: insert the elements one
by one starting from the empty tree. This takes time ®(nlgn). This holds for any
data structure where insertion takes time proportional to lgn. In that case inserting n
elements one by one takes time proportional to lgl+---+1gn =1g(n!). Now n! <n”"
implies lg(n!) < nlgn. On the other hand, n” < (n-1)-((n—1)-2)---(1-n) = (n!)?2
implies fnlgn <lg(n!). Thus lg(n!) € ©(nlgn) (which also follows from Stirling’s
formula). We have intentionally proved a © property because the O property is
obvious but one might hope that 1g1+---+1gn has a lower order of growth than
nlgn. However, since a search tree can be converted into a sorted list in linear time,
the conversion into the search tree cannot be faster than sorting.

Now we turn to the actual topic of this section: converting a list zs into a 2-3 tree ¢
such that inorder t = zs — in linear time. Thus we can take advantage of situations
where we already know that zs is sorted. The bottom-up conversion algorithm is

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tree23_of_List.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tree23_of_List.html

92 Chapter 7 2-3 Trees

particularly intuitive. It repeatedly passes over an alternating list ¢;,e;,t2,e2,...,tx
of trees and elements, combining trees and elements into new trees. Given elements
ai,...,an we start with the alternating list (),a1,(),as,...,ax,(). On every pass over this
list, we replace adjacent triples ¢,a,t’ by (¢, a, t’), possibly creating a 3-node instead
of a 2-node at the end of the list. Once a single tree is left over, we terminate.

We define this type of alternating (and non-empty) lists as a new data type:

datatype 'a tree23s = T ('a tree23) | TTs ('a tree23) 'a ('a tree23s)

The following examples demonstrate the encoding of alternating lists as terms of type
‘a tree23s:

Alternating list: tl tl,el,t2 tl,el,t2,eg,ts
Encoding: Tt TTs ty ex (Tty) TTsty er (TTs ty es ts)

We also need the following auxiliary functions:

len :: 'a tree23s = nat
len(T _)=1
len (TTs ts)=lents + 1

trees :: 'a tree23s = 'a tree23 set
trees (T t) = {t}
trees (TTs t ts) = {t} U trees ts

inorder2 :: 'a tree23s = 'a list

inorder2 (T t) = inorder t
inorder2 (TTs t a ts) = inorder t @ a # inorder2 ts

Repeatedly passing over the alternating list until only a single tree remains is
expressed by the following functions:

join_all :: 'a tree23s = 'a tree23
join_all (Tt) =1t
join_all ts = join_all (join_adj ts)

7.3 Converting a List into a 2-3 Tree 7 93

join_adj :: 'a tree23s = 'a tree23s

join_adj (TTs t1 a (T t3)) = T (t1, a, t3)
join_adj (TTs t1 a (TTs t3 b (T t3))) = T (1, a, ta, b, t3)
join_adj (TTs t; a (TTs ty b ts)) = TTs (t1, a, t2) b (join_adj ts)

Note that join_adj is not and does not need to be defined on single trees. We express
this precondition with an abbreviation:

not Tts=FAt. ts=Tt

Also note that join_all terminates only because join_adj shortens the list:
not_T ts — len (join_adj ts) < len ts
In fact, it reduces the length at least by a factor of 2:
not_T ts — len (join_adj ts) < len ts div 2 (7.1)

The whole process starts with a list of alternating leaves and elements:

tree23_of_list :: 'a list = 'a tree23
tree23_of_list as = join_all (leaves as)

leaves :: 'a list = 'a tree23s

leaves [| = T ()
leaves (a # as) = TTs () a (leaves as)

7.3.1 Correctness
Functional correctness is easily established. The inorder and the completeness prop-
erties are proved independently by the following inductive lemmas:

not_T ts — inorder2 (join_adj ts) = inorder2 ts
inorder (join_all ts) = inorder2 ts

inorder (tree23_of_list as) = as

(Vtetrees ts. complete t AN ht = n) A not_Tts —
(Vtetrees (join_adj ts). complete t AN ht =n + 1)

(Vtetrees ts. complete t A ht = n) — complete (join_all ts)

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tree23_of_List.html

7.3.2

94 Chapter 7 2-3 Trees

t € trees (leaves as) — complete t A ht =0

complete (tree23_of_list as)

Running Time

Why does the conversion take linear time? Because the first pass over an alternating
list of length n takes m steps, the next pass n/2 steps, the next pass n/4 steps,
etc., and this sums up to 2n. The time functions for the formal proof are shown
in Appendix B.3. The following upper bound is easily proved by induction on the
computation of join_adj:

not_T ts — Tjoin_agj ts < len ts div 2 (7.2)

An upper bound Tjpin_ay ts < 2 - len ts follows by induction on the computation of
join_adj. We focus on the induction step:

Tjoin,all ts

= Tjoin_adj ts + Tjoin_all (Join_adj ts) + 1

< lents div2 + 2 - len (join_adj ts) + 1 using (7.2) and IH
<lentsdiv2+ 2 - (lentsdiv2) + 1 by (7.1)
<2-lents because 1 < len ts

Now it is routine to derive

Tiree23_of list as < 3 - |as| + 3

Chapter Notes

The invention of 2-3 trees is credited to Hopcroft in 1970 by Cormen et al. [2009,
p. 337]. Equational definitions were given by Hoffmann and O’Donnell [1982] (only
insertion) and Reade [1992]. Our formalisation is based on teaching material by
Franklyn Turbak and the article by Hinze [2018].

Red-Black Trees

Tobias Nipkow

Red-black trees are a popular implementation technique for BSTs: they guarantee
logarithmic height just like 2-3 trees but the code is arguably simpler. The nodes are
colored either red or black. Abstractly, red-black trees encode 2-3-4 trees where nodes
have between 2 and 4 children. Each 2-3-4 node is encoded by a group of 2, 3 or 4
colored binary nodes as follows:

()

(A,a,B)
(A,a,B,b,C)
(A,a,B,b,C,c,D)

R

9
(A,a,B)
((A,a,B),b,C) or (A,a,(B,b,C))
((A,a,B),b,(C,c,D))

QR

Color expresses grouping: a black node is the root of a 2-3-4 node, a red node is part
of a bigger 2-3-4 node. Thus a red-black tree needs to satisfy the following properties
or invariants:

1. The root is black.
2. Every () is considered black.
3. If a node is red, its children are black.

4. All paths from a node to a leaf have the same number of black nodes.

The final property expresses that the corresponding 2-3-4 tree is complete. The last
two properties imply that the tree has logarithmic height (see below).

We implement red-black trees as binary trees augmented (see Section 4.4) with a
color tag:

datatype color = Red | Black

type_synonym ‘a rbt = (‘a x color) tree

Some new syntactic sugar is sprinkled on top:

95

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/RBT_Set.html

8.1

96 Chapter 8 Red-Black Trees

Rlar = (I, (a, Red), r)
Blar = {((a, Black), r)

The following functions get and set the color of a node:

color :: 'a rbt = color

color () = Black

paint :: color = 'a rbt = 'a rbt

paint _ () = ()
paint ¢ (I, (a,), r) =, (a, ¢), 7

Note that the color of a leaf is by definition black.

Invariants

The above informal description of the red-black tree invariants is formalized as the
predicate rbt which (for reasons of modularity) is split into a color and a height
invariant inve and invh:

rbt :: 'a rbt = bool

rbt t = (inve t A invh t A color t = Black)

The color invariant expresses that red nodes must have black children:

inve :: 'a rbt = bool

inve {) = True

inve {I, (_, c), r)

= ((c = Red — color | = Black A color r = Black) A
inve I A inve r)

The height invariant expresses (via the black height bh) that all paths from the
root to a leaf have the same number of black nodes:

8.1.1

8.2

8.2.1

8.2 Implementation of ADT Set 97

invh :: 'a bt = bool

invh () = True
invh (I, (_,), ry=(bhi=>bhrAinvhlA invhr)

bh :: 'a rbt = nat
h () =
h (L, (c),) = (if ¢ = Black then bh | + 1 else bh)
Note that although bh traverses only the left spine of the tree, the fact that invh
traverses the complete tree ensures that all paths from the root to a leaf are considered
(see Exercise 8.2).

The split of the invariant into inve and invh improves modularity: frequently one
can prove preservation of invc and invh separately, which facilitates proof search. For
compactness we will mostly present the combined invariance properties.

Logarithmic Height

In a red-black tree, i.e. rbt t, every path from the root to a leaf has the same number
of black nodes, and no such path has two red nodes in a row. In the worst case, there
is one path where black and red alternate and all other nodes are black. Then the
height is 2 - n but the minimal height only n. Using 2™ * < |t|; this implies h t =
2-n =2-Ig |t];. Formally: if rbt ¢ then

ht<2-bht<2-mht<2:lgl|t:
where the first and second step are corollaries of the following inductive propositions:

invct Ainvht — ht < 2-bht + (if colort = Black then 0 else 1)
invht — bht < mht

Implementation of ADT Set
We implement sets by red-black trees that are also BSTs. As usual, we only discuss
the proofs of preservation of the rbt invariant.

Function isin is implemented as for all augmented BSTs (see Section 5.6.1).

Insertion

Insertion is shown in Figure 8.1. The workhorse is function ins. It descends to the
leaf where the element is inserted and it adjusts the colors on the way back up. The
adjustment is performed by baliL/baliR. They combine arguments [a r into a tree. If
there is a red-red conflict in /7, they rebalance and replace it by red-black. Inserting

98 Chapter 8 Red-Black Trees

insert ¢ t = paint Black (ins = t)

ins :: 'a = 'a rbt = 'a rbt
insz () =Rz
insz (Blar)=(case cmp z a of
LT = baliL (insz 1) ar |
EQ=Blar|
GT = baliR 1 a (ins z 7))
insz (Rlar)= (case cmp z a of
LT = R (inszl)ar|
EQ=Rlar|
GT = Rla (inszr))

baliL :: 'a rbt = ‘a = 'a rbt = 'a rbt

balilL (R (R t1 a tg) b tg) cty = R (B t1 a tz) b (B t3 C t4)
baliL (R t1 a (R ta b tg)) cty = R (B t1 a tg) b (B t3 C t4)
baliL t1 aty = B t1 a ty

baliR :: 'a rbt = 'a = 'a rbt = ‘a 7bt

baliR t1 a (R ty b (R i3 C t4)) =R (B t1 a tg) b (B t3 C t4)
baliR t1 a (R (R ta b tg) c t4) =R (B t1 a tg) b (B t3 C t4)
baliR t1 aty = B t1 a t;

Figure 8.1 Insertion into red-black tree

into a red node needs no immediate balancing because that will happen at the black
node above it, for example:

ins 1 (B (R ()0 ()
= baliL (ins 1 <
= baliL (R ()
= baliL (R ()

R (B)

Passing a red node up means an overflow occurred (as in 2-3 trees) that needs to be
dealt with further up. At the latest, insert turns red into black at the very top.

8.2.2

8.2 Implementation of ADT Set 99

Function ins preserves invh but not inve: it may return a tree with a red-red conflict
at the root, as in the example above: ins 1 (R () 0 ()) = R () 0 (R () 1 ()). However,
once the root node is colored black, everything is fine again. Thus we introduce the
weaker invariant invc2:

inve2 t = inve (paint Black t)

It is easy to prove that baliL and baliR preserve invh and upgrade from invc2 to invc:

invh I A invh r A inve2 1 A inver A bhl = bh r —
inve (baliL 1 a r) A invh (baliL 1 a r) A bh (baliLlar)=bhl+1

invh i A invhr Ainvel A inve2 r AN bhl = bhr —
inve (baliR 1l a r) A invh (baliRlar) A bh (baliRlar)=5bhil+ 1

Another easy induction yields

inve t A invht —
inve2 (ins z t) A (color t = Black — invc (ins z t)) A
invh (ins z t) A bh (ins zt) = bht

The corollary rbt t — rbt (insert = t) is immediate.

Deletion 7

Deletion from a red-black tree is shown in Figure 8.2. It follows the deletion-by-
replacing approach (Section 5.2.1). The tricky bit is how to maintain the invariants.
As before, intermediate trees may only satisfy the weaker invariant invc2. Functions
del and split_min decrease the black height of a tree with a black root node and leave
the black height unchanged otherwise. To see that this makes sense, consider deletion
from a singleton black or red node. The case that the element to be removed is not in
the black tree can be dealt with by coloring the root node red. These are the precise
input/output relations:

Lemma 8.1. split_mint = (z, ') At # () Ainvht A inve t —
invh t' A (colort = Red — bht' = bht A invc t') A
(color t = Black — bh t' = bht — 1 A invc2 t')

Lemma 8.2. invht Ainvct At = del z t —
invh t' A (colort = Red — bh t' = bh t A invc t') A
(color t = Black — bh t' = bht — 1 A invc2 t')

It is easy to see that the del-Lemma implies correctness of delete:

Corollary 8.3. rbt t — rbt (delete = t)

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/RBT_Set2.html

100 Chapter 8 Red-Black Trees

delete z t = paint Black (del z t)

del :: 'a = 'a rbt = 'a rbt

del _ () = ()
del z (I, (a,), 7)
= (case cmp z a of
LT = let I' = del z |
inif I # () A color! = Black then baldL ' a relse Rl ar |
EQ = if r = () then [
else let (o', r') = split_min r
in if color r = Black then baldR 1 a’ r' else Rl a' ' |
GT = letr =delzr
in if » # () A color r = Black then baldR 1 a ' else Rl a ')

split_min :: 'a rbt = 'a x 'a rbt
split_min (I, (a,), 7)
= (if I = () then (a, 7)
else let (z, ') = split_min !
in (z, if color | = Black then baldL ' a relse R’ ar))

baldL :: 'a rbt = 'a = 'a rbt = 'a rbt

baldL (R t1 a tg) b t3 = R (B t1 a t2) b t3

baldL t1 a (B to b t3) = baliR t1 a (R ty b t3)

baldL tl a (R (B tQ b t3) [t4) =R (B tl a tz) b (ba//R t3 [(palnt Red t4))
baldL t1 aty = R t1 a ts

baldR :: 'a rbt = ‘a = 'a rbt = 'a rbt

baldR t1 a (R ty b t3) =R t1 a (B ta b tg)

baldR (B t1 a tz) btz = baliL (R t1 a tz) b t3

baldR (R t1 a (B to b t3)) cty = R (ba/lL (palnt Red tl) a tz) b (B t3 C t4)
baldR tl a tg =R tl a tg

Figure 8.2 Deletion from red-black tree

8.2.3

8.3

8.3 Implementation of ADT Map & 101

The proofs of the two preceding lemmas need the following precise characterizations
of baldL and baldR, the counterparts of balilL and baliR:

Lemma 8.4.
invhli Ainvhr Abhl+1=bhr Ainvc2l Ainvcr ANt =baldL |l ar —
invht' A bh t' = bh r A inve2 t' A (color r = Black — invc t')

Lemma 8.5.
invhliANinvhr Abhl=bhr +1Ainvcl Ainve2r ANt =baldRlar —
invht' A bht' = bh 1 A inve2 t' A (color | = Black — invc t')

The proofs of the two preceding lemmas are by case analyses over the defining
equations using the characteristic properties of baliL and baliR given above.

Proof. Lemma 8.2 is proved by induction on the computation of del z . The base
case is trivial. In the induction step ¢t = (I, (a, ¢), 7). If z < a then we distinguish
three subcases. If { = () the claim is trivial. Otherwise the claim follows from the IH:
if color | = Red then the claim follows directly, if color I = Black then it follows
with the help of Lemma 8.4 (with | = del = [). The case a < z is dual and the case
z = a is similar (using Lemma 8.1). We do not show the details because they are
tedious but routine. O

The proof of Lemma 8.1 is similar but simpler.

Deletion by Joining
As an alternative to deletion by replacement we also consider deletion by joining
(see Section 5.2.1). The code for red-black trees is shown in Figure 8.3: compared to
Figure 8.2, the EQ case of del has changed and join is new.

Invariant preservation is proved much like before except that instead of split_min
we now have join to take care of. The characteristic lemma is proved by induction on
the computation of join:

Lemma 8.6. invh L A invhr A bhl=bhr Ainvcl Ainver At =joinlr —
invht A bht' = bhlAinve2t A
(color I = Black A color r = Black — invc t')

Implementation of ADT Map 7

Maps based on red-black trees are of course very similar to the above sets. In particular
we can reuse the balancing and other auxiliary functions because they do not examine
the contents of the nodes but only the color. We follow the general approach in
Section 6.5. The representing type is (‘a x 'b) rbt.

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/RBT_Map.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/RBT_Map.html

102 Chapter 8 Red-Black Trees

del :: 'a = 'a rbt = 'a rbt

del _ () =)
del z (I, (a,), 7)
= (case cmp z a of
LT = if I # () A color I = Black then baldL (del z 1) a r
else R (delz 1) ar |
EQ = join L r |
GT = if » # () A color r = Black then baldR | a (del z r)
else Rl a (del z r))

join :: 'a rbt = 'a rbt = ‘a rbt

join () t =1

joint () =t

join (R t; ats) (Rts cta)

= (case join t; t3 of
Rusbus=R (Rt au) b (R uszcty)]
tas = Rt; a (Rt cta))

join (B ty aty) (B ts c ta)

= (case join t; t; of
Rus bus= R (Bt auz)b(Buscty))]|
tas = baldL t; a (B tas c t4))

join t1 (R tz a t3) = R (join t1 ta) a t3 |

join (R ty aty) t3 = Rty a (join ts t3)

Figure 8.3 Deletion from red-black tree by joining

Function lookup is almost identical to its precursor in Section 6.5 except that the
lhs of the recursive case is lookup (I, ((a, b),), r) x because of the (irrelevant)
color field. There is no need to show the code.

Function update is shown in Figure 8.4. It is a minor variation of insertion shown
in Figure 8.1.

Deletion can be implemented by replacing and by joining. (In the source files we
have chosen the second option.) In both cases, all we need is to adapt del for sets
by replacing cmp z a by cmp z (fst a) (where the second a is of type ‘a x 'b and
should be renamed, e.g. to ab). Again, there is no need to show the code.

8.4 Exercises 103

update :: 'a = 'b = (‘a x 'b) rbt = (‘a x b) rbt
update z y t = paint Black (upd z y t)

upd :: 'a = 'b = (‘a x 'b) bt = (‘a x b) rbt
udzy () =R (2) 0
upd z y (Bl (a, b) r) = (case cmp z a of
LT = baliL (upd z y 1) (a, b) 7|
EQ= Bl (z,y) 7]
GT = baliR 1 (a, b) (upd z y 7))
updzy (R1 (a, b)) = (case cmp z a of
LT = R (upd z y 1) (a, b) 7 |
EQ= Rl (z,y) 7|
GT = Rl (a, b) (upd z y 7))

Figure 8.4 Red-black tree map update

8.4

Exercises
Exercise 8.1. Show that the logarithmic height of red-black trees is already guaran-
teed by the color and height invariants:

invct Ainvht — ht <2-lg|t; + 2

Exercise 8.2. We already discussed informally why the definition of invh captures
“all paths from the root to a leaf have the same number of black nodes” although bh
only traverses the left spine. This exercise formalizes that discussion. The following
function computes the set of black heights (number of black nodes) of all paths:

bhs :: 'a bt = nat set

bhs () = {0}

bhs (1, (_, ¢), 7)

= (let H = bhs | U bhs rin if ¢ = Black then Suc ‘ H else H)

where the infix operator () is predefined as f * A = {y | Jz€A. y = f z}. Prove
invht <— bhst = {bh t}. The — direction should be easy, the other direction
should need some lemmas.

Exercise 8.3. Following Section 7.3, define a linear-time function rbt_of_list :
‘a list = 'a bt and prove inorder (rbt_of _list as) = as and rbt (rbt_of_list as).

104 Chapter 8 Red-Black Trees

Chapter Notes

Red-black trees were invented by Bayer [1972] who called them “symmetric binary B-
trees”. The red-black color convention was introduced by Guibas and Sedgewick [1978]
who studied their properties in greater depth. The first functional version of red-black
trees (without deletion) is due to Okasaki [1998] and everybody follows his code. A
functional version of deletion was first given by Kahrs [2001] and Section 8.2.3 is based
on it. Germane and Might [2014] presents a function for deletion by replacement that
is quite different from the one in Section 8.2.2. Our starting point was an Isabelle
proof by Reiter and Krauss (based on Kahrs). Other verifications of red-black trees
are reported by Fillidtre and Letouzey [2004] (using their own deletion function) and
Appel [2011] (based on Kahrs).

AVL Trees (7

Tobias Nipkow

The AVL tree (named after its inventors Adel’son-Vel'skii and Landis [1962]) is the
granddaddy of efficient binary search trees. Its logarithmic height is maintained by
rotating subtrees based on their height. For efficiency reasons the height of each subtree
is stored in its root node. That is, the underlying data structure is a height-augmented
tree (see Section 4.4):

type_synonym ‘a tree_ ht = (‘a x nat) tree

Function ht extracts the height field and node is a smart constructor that sets the
height field:

ht :: 'a tree_ ht = nat
ht () =0
ht <_) (_) n)1 _> = n

node :: 'a tree_ ht = 'a = 'a tree_ ht = 'a tree_ ht
node l ar = (I, (a, max (htl) (htr) + 1), r)

An AVL tree is a tree that satisfies the AVL invariant: the height of the left and
right child of any node differ by at most 1

avl :: 'a tree_ ht = bool

avl () = True
avl (L, (_, n), r)
=(lint (hl) —int(hr)<1An=max (hil)(hr)+1AavilAavlr)

and the height field contains the correct value. The conversion function int :: nat =
wnt is required because on natural numbers 0 — n = 0.

105

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/AVL_Set.html

9.1

106 Chapter 9 AVL Trees

Logarithmic Height

AVL trees have logarithmic height. The key insight for the proof is that M n, the
minimal number of leaves of an AVL tree of height n, satisfies the recurrence relation
M (n+2)=M(n + 1) + M n. Instead of formalizing this function M we prove
directly that an AVL tree of height n has at least fib (n + 2) leaves where fib is the
Fibonacci function:

fib :: nat = nat

fib0=0

fibl1=1
fib(n+2)=fib(n+ 1)+ fibn

Lemma 9.1. avit — fib (ht + 2) < |tz

Proof. The proof is by induction on t. We focus on the induction step ¢t =
(l, (a, m), r) and assume av/ t. Thus the IHs reduce to fib (h I + 2) < |l|; and
fib (h r + 2) < |r|;. We prove fib (max (hl) (hr) + 3) <|l|1 + |r|1, from which
avlt — fib (h t + 2) < |t|; follows directly. There are two cases. We focus on h [
>hr hl < hrisdual

fib (max (hl) (hr)+3)=fib(hl+3)

=fib(hl+2)+fib(hl+1)

<l + fib(hl+1) by fib (hl + 2) < |1
<t + |7)a by fib (hr + 2) < |r|s
The last step is justified because h i + 1 < h r + 2 (which follows from av/ t) and
fib is monotone. O

Now we prove a well-known exponential lower bound for fib where ¢ = (1 + /5) / 2:
Lemma 9.2. ¢" < fib (n + 2)

Proof. The proof is by induction on n by fib computation induction. The case n = 0
is trivial and the case n = 1 is easy. Now consider the induction step:

fib(n+2+2) =fib(n+2+1) + fib(n+2)

>t Tl 4 pn by IHs
= +1)- "
=n T2 because ¢ + 1 = ¢? O

Combining the two lemmas yields avl t —s /1t < |t]; and thus

Corollary 9.3. avlt — ht <1/ 1lg ¢ - lg |th

9.2

9.2.1

9.2.2

9.2 Implementation of ADT Set 107

That is, the height of an AVL tree is at most 1 / Ig ¢ ~ 1.44 times worse than the
optimal /g |t|1.

Implementation of ADT Set

Insertion

Insertion follows the standard approach: insert the element as usual and reestablish
the AVL invariant on the way back up.

insert :: 'a = 'a tree_ ht = ‘a tree_ht

= (0, (2, 1), O

(a, n), r) = (case cmp z a of
LT = ball (insertz 1) a r |
EQ = (i, (a, n),) |
GT = balR !l a (insert z r))

insert z ()
insert = (1,

Functions ball/balR readjust the tree after an insertion into the left/right child. The
AVL invariant has been lost if the difference in height has become 2 — it cannot
become more because the height can only increase by 1. Consider the definition of
ball in Figure 9.1 (balR in Figure 9.2 is dual). If the AVL invariant has not been lost,
ie.if ht AB # ht C + 2, then we can just return the AVL tree node AB ¢ C. But
if ht AB = ht C + 2, we need to “rotate” the subtrees suitably. Clearly AB must be
of the form (A, (a,), B). There are two cases, which are illustrated in Figure 9.1.
Triangles of the same height denote trees of the same height. A +1 at the bottom
denotes an additional level due to insertion of the new element.

If ht B < ht A then ball performs what is known as a single rotation.

If ht A < ht B then B must be of the form (B1, (b,), Bz) (where either B; or
B, has increased in height) and ball performs what is known as a double rotation.

It is easy to check that in both cases the tree on the right satisfies the AVL invariant.

Preservation of avl by insert cannot be proved in isolation but needs to be proved
simultaneously with how insert changes the height (because av/ depends on the height
and insert requires av/ for correct behaviour):

Theorem 9.4. avit — avl (insert z t) A h (insertzt) e {ht, ht + 1}

The proof is by induction on t followed by a complete case analysis (which Isabelle
automates).

Deletion
Figure 9.3 shows deletion-by-replacing (see Section 5.2.1). The recursive calls are dual
to insertion: in terms of the difference in height, deletion of some element from one

108 Chapter 9 AVL Trees

balL :: ‘a tree_ht = 'a = 'a tree_ ht = ‘a tree_ht

balL AB ¢ C
= (if t AB=ht C + 2
then case AB of
(4, (a, z), B) =
if ht B < ht A then node A a (node B ¢ C)
else case B of
(Bi1, (b, _), B2) = node (node A a B;) b (node B; c C)
else node AB ¢ C)

Single rotation:

(o ball

Double rotation:

= ®

Figure 9.1 Function balL

9.2 Implementation of ADT Set 109

balR :: 'a tree_ ht = 'a = 'a tree_ ht = 'a tree_ ht

balR A a BC
= (if t BC = ht A + 2
then case BC of
(B, (¢, z), C) =
if ht B < ht C then node (node A a B) c C
else case B of
(Bi1, (b, _), B2) = node (node A a B;) b (node B; c C)
else node A a BC)

Figure 9.2 Function balR

delete :: 'a = 'a tree_ ht = 'a tree_ ht

delete () = ()

delete z (I, (a,), 7)

= (case cmp z a of
LT = balR (delete z 1) a r |
EQ = if | = () then r else let (I, a') = split_max lin balR l' a’ 7
GT = balL | a (delete z r))

split_max :: 'a tree_ ht = 'a tree_ ht x 'a

split_max (I, (a,), 7)
= (if » = () then (I, a)
else let (', a’) = split_max rin (balL l a 7', a'))

Figure 9.3 Deletion from AVL tree

child is the same as insertion of some element into the other child. Thus functions
balR/ball can again be employed to restore the invariant.

An element is deleted from a node by replacing it with the maximal element
of the left child (the minimal element of the right child would work just as well).
Function split_max performs that extraction and uses ball to restore the invariant
after splitting an element off the right child.

110 Chapter 9 AVL Trees

The fact that balR/ball can be reused for deletion can be illustrated by drawing
the corresponding rotation diagrams. We look at how the code for ball behaves when
an element has been deleted from C. Dashed rectangles at the bottom indicate a
single additional level that may or may not be there. A -1 indicates that the level has
disappeared due to deletion.

Single rotation in ball after deletion in C:

ballL
—

Double rotation in ball after deletion in C:
ball
=

At least one of B; and B, must have the same height as A.

Preservation of av/ by delete can be proved in the same manner as for insert but
we provide more of the details (partly because our Isabelle proof is less automatic).
The following lemmas express that the auxiliary functions preserve av/:

avlinavilrAnhr —1<hiAnhi<hr+2— avli(balLlanr)
avlinavirAnhl—1<hrAnhr<hl+2— avl(balRlar)

avlt At # () —
avl (fst (split_max t)) A
ht € {h (fst (split_max t)), h (fst (split_max t)) + 1}

The first two are proved by the obvious cases analyses, the last one also requires
induction.

9.3

9.3 Exercises 111

As for insert, preservation of avl by delete needs to be proved simultaneously with
how delete changes the height:

Theorem 9.5. avit A t' = deletezt — avit! Ahte {ht,ht + 1}

Proof. The proof is by induction on t followed by the case analyses dictated by the
code for delete. We sketch the induction step. Let ¢ = (I, (a, n), r) and t' = delete z t
and assume the IHs and av/ t. The claim av/ t' follows from the preservation of av/ by
ballL, balR and split_max as shown above. The claim h t € {h t', h t' + 1} follows
directly from the definitions of balL and balR. O

Exercises
Exercise 9.1. The logarithmic height of AVL trees can be proved directly. Prove

avlt ANht=mn— 2042 < ¢,
by fib computation induction on n. This implies avit — ht < 2 - g |t];.
Exercise 9.2. Fibonacci trees are defined in analogy to Fibonacci numbers:

fibt :: nat = unit tree
fibt 0 = ()

fibt 1 = (), (), ()
fibt (n + 2) = (fibt (n + 1), (), fibt n)

We are only interested in the shape of these trees. Therefore the nodes just contain
dummy unit values (). Hence we need to define the AVL invariant for trees without
annotations:

avlo :: 'a tree = bool

avlo () = True
avio (I, ,ry={(lint (hl) —int(hr)<1Aavi0lA avilr)

Prove the following properties of Fibonacci trees:
avlo (fibt n) |fibt n|y = fib (n + 2)

Conclude that the Fibonacci trees are minimal (w.r.t. their size) among all AVL trees
of a given height:

avl t — |fibt (h t)]1 < |t]h

Exercise 9.3. Show that every almost complete tree is an AVL tree:
acomplete t — avl0 t

As in the previous exercise we consider trees without height annotations.

Exercise 9.4. Generalize AVL trees to height-balanced trees where the condition

9.4

112 Chapter 9 AVL Trees

lint (h1) —int (hr) <1
in the invariant is replaced by
lint (h1) —int (hr)] <m

where m > 1 is some fixed integer. Modify the invariant and the insertion and deletion
functions and prove that the latter fulfill the same correctness theorems as before. You
do not need to prove the logarithmic height of height-balanced trees.

Exercise 9.5. Following Section 7.3, define a linear-time function av/_of_list :: 'a list
= 'a tree_ ht and prove both inorder (avl_of_list as) = as and av/ (avi_of_list as).

An Optimization (7

Instead of recording the height of the tree in each node, it suffices to record the
balance factor, i.e. the difference in height of its two children. Rather than the three
integers -1, 0 and 1 we utilize a new data type:

datatype bal = Lh | Bal | Rh

type_synonym ‘a tree_ bal = (‘a x bal) tree

The names Lh and Rh stand for “left-heavy” and “right-heavy”. The AVL invariant for
these trees reflect these names:

avl :: 'a tree_ bal = bool

avl () = True

avl (I, (_, b), ry = ((case b of
Lh=hi=hr+1]
Bal = hr =hl|
Rh=hr=h1l+1)A
avll A avlr)

The code for insertion (and deletion) is similar to the height-based version. The key
difference is that the test if the AVL invariant has been lost cannot be based on the
height anymore. We need to detect if the tree has increased in height upon insertion
based on the balance factors. The key insight is that a height increase is coupled with
a change from Bal to Lh or Rh, except when we transition from () to ((), (a, Bal), ()).
This insight is encoded in the test incr:

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/AVL_Bal_Set.html

9.4 An Optimization & 113

is_bal :: 'a tree bal = bool
is_bal {_,(_,b),)= (b= Bal

incr :: 'a tree__bal = 'b tree_ bal = bool
incrtt' = (t=() Vis_balt A - is_bal t')

The test for a height increase compares the trees before and after insertion. Therefore
it has been pulled out of the balance functions into insertion:

insert :: 'a = 'a tree_ bal = 'a tree_ bal

insert z {} = ((), (z, Bal), {))
insert z (I, (a, b), T)
= (case cmp z a of
LT = let ' = insert z |
in if incr 1 I’ then balL ' a b r else (', (a, b),) |
EQ = (I, (a, b),) |
GT = let ' = insert z r
in if incr r ' then balR i a b 7' else (I, (a, b), r'))

The balance functions are shown in Figure 9.4. Function rof2 implements double
rotations. Function ball is called if the left child AB has increased in height. If the
tree was Lh then single or double rotations are necessary to restore balance. Otherwise
we simply need to adjust the balance factors. Function balR is dual to ball.

For deletion we need to test if the height has decreased and decr implements this
test:

decr :: 'a tree_bal = 'b tree bal = bool
decrtt' = (t # () Alncrt t)

Function decr is almost the dual of incr except that decr must also ensure ¢ # (). In
places where t # () is already guaranteed, we have replaced decr t t' by incr t' t.

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/AVL_Bal_Set.html

114 Chapter 9 AVL Trees

ball :: 'a tree_bal = 'a = bal = 'a tree_bal = 'a tree_ bal
balL AB c bc C
= (case bc of
Lh = case AB of
(4, (a, Lh), B) = (4, (a, Bal), (B, (c, Bal), C)) |
(4, (a, Bal), B) = (4, (a, Rh), (B, (¢, Lh), C)) |
(A, (a, Rh), B) = rot2 A a Bc C |
Bal = (AB, (c, Lh), C) |
Rh = (AB, (c, Bal), C))

balR :: 'a tree_bal = 'a = bal = 'a tree_bal = 'a tree_ bal
balR A a ba BC
= (case ba of
Lh = (A, (a, Bal), BC) |
Bal = (A, (a, Rh), BC) |
Rh = case BC of
(B, (¢, Lh), C) = rot2 A a Bc C |
(B, (c, Bal), C) = ({4, (a, Rh), B), (c, Lh), C) |
(B, (¢, Rh), C) = ({4, (a, Bal), B), (c, Bal), C))

rot2 :: 'a tree_bal = 'a = 'a tree_ bal = 'a = 'a tree_bal = 'a tree_ bal
rot2 AaBcC
= (case B of
(B1, (b, bb), By) =
let b; = if bb = Rh then Lh else Bal,
b, = if bb = Lh then Rh else Bal
in ((4, (a, b1), B1), (b, Bal), (B,, (c, b2), C)))

Figure 9.4 Functions ball and balR

9.4 An Optimization & 115

Deletion and split_max change in the same manner as insertion:

delete :: 'a = '

a
delete () = ()
delete z (I, (a, ba), r)
= (case cmp z a of

LT = let I' = delete z |
in if decr I I’ then balR I' a ba r else (I, (a, ba), r)

| EQ = if Il = () then r

else let (I, a') = split_max |

in if incr ' I then balR !' o' ba r
else (!, (da/, ba), r)

| GT = let ' = delete z r

in if decr r v’ then balL | a ba ' else (I, (a, ba), 7'))

tree_ bal = 'a tree_ bal

split_max :: 'a tree_ bal = 'a tree_bal X 'a
split_max (l, (a, ba), 7)
= (if » = () then (I, a)
else let (7', o') = split_max r;
t' = if incr v’ r then balL I a ba 7' else (I, (a, ba), ")
in (¢, a’))

In the end we have the following correctness theorems:

Theorem 9.6. avlit A t' = insert z t —
avlt' N ht' = ht+ (if incrt t' then 1 else 0)

This theorem tells us not only that av/ is preserved but also that incr indicates
correctly if the height has increased or not. Similarly for deletion and decr:

Theorem 9.7. avlt A t' = delete x t —
avlt' N ht=ht + (if decrt ¢ then 1 else 0)

The proofs of both theorems follow the standard pattern of induction followed by
an exhaustive (automatic) cases analysis. The proof for delete requires an analogous
lemma for split_max:

split_max t = (t', a) Navlt ANt # () —
avlt' AN ht=ht + (if incr t' t then 1 else 0)

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/AVL_Bal_Set.html

9.5

116 Chapter 9 AVL Trees

Exercises
Exercise 9.6. We map type ‘a tree_ bal back to type (‘a X nat) tree (called
'a tree_ ht in the beginning of the chapter):

debal :: 'a tree_bal = (‘a x nat) tree

debal () = ()
debal (I, (a,), r) = (debal I, (a, max (hl) (hr) + 1), debal r)

Prove that the AVL property is preserved: avl t — avl_ht (debal t) where avl_ht is
defined in the beginning of the chapter.

Define a function debal2 of the same type that traverses the tree only once and in
particular does not use function h. Prove avi t — debal2 t = debal t.

Exercise 9.7. To realize the full space savings potential of balance factors we encode
them directly into the node constructors and work with the following special tree type:

datatype ‘a treed = Leaf
| Lh ('a treed) 'a ('a treed)
| Bal (‘a tree4) 'a (‘a tree4)
| Rh ('a tree4) ‘a (‘a treed)

On this type, define the AVL invariant, insertion, deletion and all necessary auxiliary
functions. Prove theorems 9.6 and 9.7. Hint: modify the theory underlying Section 9.4.

Beyond Insert and Delete:
J,nand — [7

Tobias Nipkow

So far we looked almost exclusively at insertion and deletion of single elements, with
the exception of the conversion of whole lists of elements into search trees. This chapter
is dedicated to operations that combine two sets (implemented by search trees) by
union, intersection and difference. We denote set difference by — rather than \.

Let us focus on set union for a moment and assume that insertion into a set of size s
takes time proportional to 1gs. Consider two sets A and B of size m and n where m <n.
The naive approach is to insert the elements from one set one by one into the other set.
This takes time proportional to lgn+---+lg(n+m—1) or lgm+---+1g(m+n—1)
depending on whether the smaller set is inserted into the larger one or the other way
around. Of course the former sum is less than or equal to the latter sum. To estimate
the growth of lgn+---+1g(n+m—1)=1g(n---(n+m —1)) we can easily generalize
the derivation of 1g(n!) € ®(nlgn) in the initial paragraph of Section 7.3. The result
islg(n---(n+m—1)) € ©(mlgn). That is, inserting m elements into an n element set
one by one takes time O(mlgn).

There is a second, possibly naive sounding algorithm for computing the union:
flatten both trees to ordered lists (using function inorder2 from Exercise 4.1), merge
both lists and convert the resulting list back into a suitably balanced search tree. All
three steps take linear time. The last step is the only slightly nontrivial one but has
been dealt with before (see Section 7.3 and Exercises 8.3 and 9.5). This algorithm takes
time O(m + n) which is significantly better than O(mlgn) if m =~ n but significantly
worse if m << n.

This chapter presents a third approach that has the following salient features:

o Union, intersection and difference take time O(mlg(Z +1))

e It works for a whole class of balanced trees, including AVL, red-black and weight-
balanced trees.

e It is based on a single function for joining two balanced trees to form a new
balanced tree.

117

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Set2_Join.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Set2_Join.html

Figure 10.1

10.1

10.2

118 Chapter 10 Beyond Insert and Delete: U, N and —

ADT Set2 = Set +
interface

union . 's = 's = 's
inter 1 s = ‘s = /s
diff w's = 's=>'s

specification

tnvar sy A tnvar s — set (unton s; s3) = set s; U set s, (union)
nvar s; A tnvar s — wnvar (union s; S2) (union-inv)
tnvar sy A tnvar s — set (inter s1 S3) = set sy N set sy (enter)
tnvar sy A tnvar s — invar (inter s; S2) (inter-inv)
tnvar sy A tnvar s — set (diff s1 s2) = set s; — set s (duff)
tnvar sy A tnvar s — tnvar (diff s1 sz2) (diff-inv)

ADT Set2

We call it the join approach. It is easily and efficiently parallelizable, a property we
will not explore here.

The join approach is at least as fast as the one-by-one approach: from m+n <mn
it follows that * +1 <n (if m,n > 2). The join approach is also at least as fast as the
tree-to-list-to-tree approach because m+n =m(2% +1) (if m > 1).

Specification of Union, Intersection and Difference 7
Before explaining the join approach we extend the ADT Set by three new functions
unton, tnter and diff. The specification in Figure 10.1 is self-explanatory.

Just Join J

Now we come to the heart of the matter, the definition of union, intersection and
difference in terms of a single function join. We promised that the algorithms would be
generic across a range of balanced trees. Thus we assume that we operate on augmented
trees of type (‘a x 'b) tree where 'a is the type of the elements and b is the balancing
information (which we can ignore here). This enables us to formulate the algorithms
via pattern-matching. A more generic approach is the subject of Exercise 10.2.

The whole section is parameterized by the join function and an invariant:

join :: (‘a x 'b) tree = 'a = ('a x 'b) tree = (‘a x 'b) tree
v (‘a x 'b) tree = bool

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Set_Specs.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Set2_Join.html

10.2 Just Join 7

set_tree (join l a r) = set_tree | U {a} U set_tree r
bst (I, (a,), ry — bst (joinlar)

mnv ()

mu l A tnvr — v (Join lar)

mv (I, (.,), 7y — muvlAmur

119

(10.1)
(10.2)

(10.3)
(10.4)

Figure 10.2 Specification of join and nv

Function wnv is meant to take care of the balancedness property only, not the BST

property. Functions join and wnv are specified with the help of the standard tree

functions set_free and bst in Figure 10.2. With respect to the set of elements, join

must behave like union. But it need only return a BST if both trees are BSTs and

the element a lies in between the elements of the two trees, i.e. if bst (I, (a,

))

The structural invariant :nv must be preserved by formation and destruction of trees.

Thus we can see join as a smart constructor that builds a balanced tree.

To define union and friends we need a number of simple auxiliary functions.

Function split_min decomposes a tree into its leftmost (minimal) element and the

remaining tree; the remaining tree is reassembled via join, thus preserving tnv:

split_min :: ('a x 'b) tree = ‘a x (‘a x 'b) tree
split_min (I, (a,), 7)
= (if I = () then (a, 7)

else let (m, I') = split_min lin (m, join l' a 1))

Function join2 is reduced to join with the help of split_min:

join2 :: ('a x 'b) tree = (‘a x 'b) tree = (‘a x 'b) tree

join2 i r = (if r = () then [else let (m, r') = split_min rin join | m ')

Function split splits a BST w.r.t. a given element a into a triple ({, b,) such that

[contains the elements less than a, 7 contains the elements greater than a, and b is

true iff @ was in the input tree:

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Set2_Join.html

120 Chapter 10 Beyond Insert and Delete: U, N and —

split :: 'a = (‘a x 'b) tree = (‘a x 'b) tree x bool x (‘a x 'b) tree
split _ () = ((), False, ()
split z (L, (a,), r)
= (case cmp z a of
LT = let (ly, b, l2) = splitz lin (11, b, join Iy aT) |
EQ = (I, True, r) |
GT = let (ry, b,) = split z rin (join l a r1, b, 72))

The following example demonstrates the workings of split:

split c

/A B @ /B
/B\

Assume a < b < ¢ < d < e. The call split ¢ descends the input BST along the path

a, e, b, d, splits the tree into two parts on each level and reassembles the parts into the

two separate output trees on the way back up using join. For simplicity the example

assumes that join just puts the subtrees together but no rebalancing is needed.
Insertion and deletion can be define in terms of split and join:

insert :: 'a = (‘a x 'b) tree = (‘a x 'b) tree

insert zt = (let (I, b, r) = split z tin join l z 1)

delete :: 'a = (‘a x 'b) tree = (‘a x 'b) tree
delete z t = (let (I, b,) = split z tin join2 | r)

Efficiency can be improved a little by taking the returned b into account (how?).
Alternatively, insertion and deletion can be defined by means of union and difference
(Exercise 10.1).

But we have bigger functions to fry: union, intersection and difference. They are
shown in Figure 10.3. All three are divide-and-conquer algorithms that follow the same
schema: both input trees are split at an element a (by construction or explicitly), the

10.2 Just Join @ 121

union :: (‘a x 'b) tree = (‘a x 'b) tree = ('a x 'b) tree
union () t =t
uniont () =t
union (I, (a,), T1) t3
= (let (2, b, r2) = split a t,
in join (union ly 1) a (union ry r3))

inter :: ('a x 'b) tree = ('a x 'b) tree = (‘a x 'b) tree
inter () t = ()
inter t () = ()
inter (11, (a,), T1) t2
= (let (I2, b, r2) = split a ts;
I = inter Iy ly; v = inter ry 7
in if b then join I' a ' else join2 ' r')

diff :: ('a x 'b) tree = (‘a x 'b) tree = ('a x 'b) tree
diff {) t = ()
difft {) =t
diff t1 (I, (a,), 72)
= (let (I3, b, r1) = split a t;
in join2 (diff Iy 15) (diff r1 7r2))

Figure 10.3 Union, intersection and difference

algorithm is applied recursively to the two trees of the elements below a and to the
two trees of the elements above a, and the two results are suitably joined.
The following diagram demonstrates the behaviour of union:

union

ll T1

N union I Iy union T1 T2

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Set2_Join.html

10.2.1

122 Chapter 10 Beyond Insert and Delete: U, N and —

Correctness
We need to prove that union, inter and diff satisfy the specification in Figure 10.1
where set = set_tree and invar t = inv t A bst t. That is, for each function we show
its set-theoretic property and preservation of tnv and bst using the assumptions in
Figure 10.2. Most of the proofs in this section are obvious and automatic inductions
and we do not discuss them.

First we need to prove suitable properties of the auxiliary functions split_min, join2
and split:

split_mint = (m, ') At # () —

m € set_tree t A set_tree t = {m} U set_tree t'
split_mint = (m, t') A bstt At # () —

bstt' A (Vzeset_tree t'. m < z)

split_mint =(m, ') Ninvt At # () — vt

set_tree (join2 | r) = set_tree | U set_tree r (10.5)

bstl A bst r A (Vzeset_tree |. Vyecset_tree r. T < y) —
bst (join2 1)

mu I A tnv r — v (join2 1 r)

splitzt = (I, b,) AN bstt —

set_tree | = {a € set_treet | a < z} A

set_treer = {a € sef_treet |z < a} A

b= (z € set_tree t) A bstl A bstr (10.6)

splitzt= (I, b, r) ANinvt — vl A invr

The correctness properties of insert and delete are trivial consequences and are
not shown. We move on to union. Its correctness properties are concretizations of the
properties (union) and (union-inv) in Figure 10.1:

bst t; — set_tree (union t, t;) = set_tree t; U set_tree t,
bst t; A bst t, — bst (union ty ts)
v t; A v to — tnv (union ty ts)

All three union properties are proved by computation induction. The first property
follows easily from assumption (10.1) and (10.6). The assumption bst t, (but not
bst t1) is required because ¢ is split and (10.6) requires bst. Preservation of bst
follows from assumption (10.2) with the help of the first union property and the
preservation of bst by split. Preservation of inv follows from assumptions (10.3) and
(10.4) with the help of the preservation of inv by split.

The correctness properties of inter look similar:

10.3

10.3.1

10.3 Joining Red-Black Trees & 123

bst t; A bst t, — set_tree (inter t; t;) = set_tree t; N set_tree t,

bst t; A bst t, — bst (inter t, t3)

v t; A tnu ta — nv (inter ¢y t5)
The proof of the preservation properties are automatic but the proof of the set_tree
property is more involved than the corresponding proof for union and we take a closer
look at the induction. We focus on the case t; = ({1, (a,), 71) and t5 # (). Let L

= set_tree l; and R; = set_tree ry. Let (I2, b, 7o) = split t2 a, Ly = set_tree I,
R, = set_tree ro and A = (if b then {a} else {}). The separation properties

a¢L1UR1 a¢L2UR2
LoNRy={} LinRy={} LynRs=1{}

follow from bst t;, bst t; and (10.6). Now for the main proof:

set_tree t; N set_tree t,

= (Ll U R U {a}) n (L2 U Ry U A) by (10.6), bst tq
=LiNLLUR NRyUA by the separation properties
= set_tree (inter t; t3) by (10.1), (10.5), IHs, bst t;, bst t,, (10.6)

The correctness properties of diff follow the same pattern and their proofs are
similar to the proofs of the inter properties. This concludes the generic join approach.

Joining Red-Black Trees 7

This section shows how to implement join efficiently on red-black trees. The basic
idea is simple: descend along the spine of the higher of the two trees until reaching
a subtree whose height is the same as the height of the lower tree. With suitable
changes this works for other balanced trees as well [Blelloch et al. 2022]. The function
definitions are shown in Figure 10.4. Function join calls joinR (descending along the
right spine of 1) if [is the higher tree, or calls joinL (descending along the left spine
of r) if 7 is the higher tree, or returns B I z r otherwise. The running time is linear
in the black height (and thus logarithmic in the size) if we assume that the black
height is stored in each node; our implementation of red-black trees would have to be
augmented accordingly. Note that in joinR (and similarly in joinlL) the comparison is
not bh I = bh r but bh | < bh r to simplify the proofs.

Correctness

We need to prove that join on red-black trees (and a suitable inv) satisfies its
specification in Figure 10.2. We start with properties of joinL; the properties of
function joinR are completely symmetric. These are the three automatically provable
inductive propositions:

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Set2_Join_RBT.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Set2_Join_RBT.html

124 Chapter 10 Beyond Insert and Delete: U, N and —

joinL :: 'a rbt = 'a = ‘a rbt = ‘a 7bt

joinL 1z r
=(ifbhr <bhithenRlz~r
else case r of
(U, (z', Red), ') = R (joinL Lz I') z' 7' |
(', (', Black), v') = baliL (joinL 1z l') z' ')

joinR :: 'a bt = 'a = 'a rbt = 'a Tbt

joinRlzr
=(ifbhi<bhrthenRliz~r
else case [of
(I, (z', Red), 'y = R U z’ (joinRr' zr) |
(I', (', Black), ') = baliR U z' (joinR r' z r))

join :: 'a rbt = 'a = 'a rbt = 'a 7bt
joinlzr
= (if bh r < bh [then paint Black (joinR | z)
else if bh | < bh r then paint Black (joinL | z r) else Bl z r)

Figure 10.4 Function join on red-black trees

invc Il Ainver Ainvh I A invhr A bhl < bhr —

inve2 (joinL Lz r) A

(bh I # bh r A color r = Black — invc (joinL l z 7)) A

invh (joinL 1 =z) A bh (joinL iz r) = bh r

bh! < bh r — set_tree (joinL 1 z r) = set_tree | U {z} U set_tree r
bst (I, (a, n), r) A bhl < bh r — bst (joinL | a)

Because joinL employs baliL from the chapter on red-black trees, the proof of the first
proposition makes use of the property of baliL displayed in Section 8.2.1.
We define the invariant inv required by the specification in Figure 10.2 as follows:

v t = (inve t A invh t)

Although weaker than rbt, it still guarantees logarithmic height (Exercise 8.1). Note
that rbt itself does not work because it does not satisfy property (10.4). The properties
of join and inv are now easy consequences of the joinL (and joinR) properties shown
above.

10.4

10.4 Exercises 125

Exercises

Exercise 10.1. Define alternative versions insert’ and delete’ of insert and delete
using union and diff (and join and ()). Prove their correctness as in Section 10.2.1:
set_tree yields the right result and bst is preserved.

Exercise 10.2. Define an alternative version diff1 of diff where in the third equation
pattern matching is on ¢; and ¢, is split. Prove that bst t; A bst t, implies both
set_tree (diff1 t; t;) = set_tree t; — set_tree t, and bst (diff1 t1 t3).

Exercise 10.3. Following the general idea of the join function for red-black trees,
define a join function for 2-3-trees. Start with two functions joinL, joinR :: 'a tree23
= 'a = 'a tree23 = 'a up; and combine them into the overall join function:

join :: 'a tree23 = 'a = 'a tree23 = 'a tree23
Prove the following correctness properties:

complete | A complete r — complete (join I z)

complete | A complete r —
inorder (join l z r) = inorder 1 @ z # inorder r

The corresponding (and needed) properties of joinL and joinR are slightly more
involved.

Chapter Notes

The join approach goes back to Adams [1993]. Blelloch et al. [2022] generalized the
approach from weight-balanced trees to AVL trees, red-black trees and treaps. In
particular they proved the O(mlg(7: +1)) complexity bound.

11.1

Arrays via Braun Trees [~

Tobias Nipkow

Braun trees are a subclass of almost complete trees. In this chapter we explore their
use as arrays and in Chapter 16 as priority queues.

Array (7

So far we have discussed sets (or maps) over some arbitrary linearly ordered type.
Now we specialize that linearly ordered type to nat to model arrays. In principle we
could model arrays as maps from a subset of natural numbers to the array elements.
Because arrays are contiguous, it is more appropriate to model them as lists. The type
'a list comes with two array-like operations (see Appendix A):

Indexing: zs ! n is the nth element of the list zs.

Updating: zs[n := z] is zs with the nth element replaced by z.

By convention, indexing starts with n = 0. If n > |zs| then s | n and zs[n = z]
are underdefined: they are defined terms but we do not know what their value is.

Note that operationally, indexing and updating take time linear in the index, which
may appear inappropriate for arrays. However, the type of lists is only an abstract
model that specifies the desired functional behaviour of arrays, but not their running
time complexity.

The ADT of arrays is shown in Figure 11.1. Type 'ar is the type of arrays, type
‘a the type of elements in the arrays. The abstraction function list abstracts arrays
to lists. It would make perfect sense to include list in the interface as well. In fact,
our implementation below comes with a (reasonably efficiently) executable definition
of list.

The behaviour of lookup, update, size and array is specified in terms of their
counterparts on lists and requires that the invariant is preserved. What distinguishes
the specifications of lookup and update from the standard schema (see Chapter 6) is
that they carry a size precondition because the result of lookup and update is only
specified if the index is less than the size of the array.

127

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Array_Braun.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Array_Specs.html

Figure 11.1

11.2

128 Chapter 11 Arrays via Braun Trees

ADT Array =

interface

lookup :: 'ar = nat = 'a
update :: nat = 'a = 'ar = ‘ar
len :: 'ar = nat

array :: 'a list = 'ar
abstraction list :: ‘ar = ‘a list
invariant invar :: 'ar = bool

specification

mvar ar A n < len ar — lookup arn = list ar ! n (lookup)
tnvar ar A n < len ar — st (update n z ar) = (list ar)[n := z] (update)
tnvar ar A n < len ar — invar (update n z ar) (update-inv)
tnvar ar — len ar = |list ar| (len)

list (array zs) = zs (array)
tnvar (array s) (array-inv)
ADT Array

Braun Trees 7

One can implement arrays by any one of the many search trees presented in this
book. Instead we take advantage of the fact that the keys are natural numbers and
implement arrays by so-called Braun trees that are almost complete and thus have
minimal height.

The basic idea is to index a node in a binary tree by the non-zero bit string that leads
from the root to that node in the following fashion. Starting from the least significant
bit and while we have not reached the leading 1 (which is ignored), we examine the
bits one by one. If the current bit is 0, descend into the left child, otherwise into the
right child. Instead of bit strings we use the natural numbers > 1 that they represent.
The Braun tree with nodes indexed by 1-15 is shown in Figure 11.2. The numbers
are the indexes and not the elements stored in the nodes. For example, the index
14 is 0111 in binary (least significant bit first). If you follow the path left-right-right
(corresponding to 011) in Figure 11.2, you reach node 14.

A tree t is suitable for representing an array if the set of indexes of all its nodes is
the interval {1..|t|}. The following tree is unsuitable because the node indexed by 2
is missing:

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Braun_Tree.html

11.2 Braun Trees 7 129

2/ \3
NN
8/ \ 10/ \14 9/ \13 11/ \15

12

Figure 11.2 Braun tree with nodes indexed by 1-15

1

\

3

It turns out that the following invariant guarantees that a tree ¢ contains exactly
the nodes indexed by 1, ..., |t]:

braun :: 'a tree = bool

braun () = True
braun (I, ,r)=((|{| =|r] V|| =|r| + 1) A braun | A braun r)

The disjunction can alternatively be expressed as |r| < |I| < |r] + 1. We call a tree
a Braun tree iff it satisfies predicate braun.

Although we do not need or prove this here, it is interesting to note that a tree
that contains exactly the nodes indexed by 1, ..., |t| is a Braun tree.

Let us now prove the earlier claim that Braun trees are almost complete. First, a
lemma about the composition of almost complete trees:

Lemma 11.1. acomplete | A acomplete r A |l| = |r| + 1 — acomplete (I, z,)
Proof. Using Lemmas 4.7 and 4.8 and the assumptions we obtain
h(l,z,r)=Tlg (Irls +] + 1 (%)
mh (i, z, r) = [Ig |r]1] + 1 (%)
Because 1 < |r|; there is an 4 such that 2° < |r|; < 2* T 1 and thus 2° < |r|; + 1 <
2¢ + 1 This implies ¢ = |/g |r|1] and 4 + 1 = [lg (|7|» + 1)]. Together with () and
(*x) this implies acomplete (I, z,). O
Now we can show that all Braun trees are almost complete. Thus we know that
they have optimal height (Lemma 4.6) and can even quantify it (Lemma 4.7).

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Braun_Tree.html

11.3

130 Chapter 11 Arrays via Braun Trees

Lemma 11.2. braun t — acomplete t

Proof by induction. We focus on the induction step where t = (I, z, r). Because
of braun t we can distinguish two cases. First assume |I| = |r| + 1. The claim
acomplete t follows immediately from the previous lemma. Now assume |I| = |r|. By
definition, there are four cases to consider when proving acomplete t. By symmetry it
suffices to consider only two of them. If h [< h r and mh » < mh [then acomplete t
reduces to acomplete r, which is true by IH. Now assume hl < hrand mh ! < mh r.
Because |I| = |r|, the fact that the height of an almost complete tree is determined
uniquely by its size (Lemma 4.7) implies h [= h r and thus acomplete t reduces to
acomplete 1, which is again true by IH. O

Note that the proof does not rely on the fact that it is the left child that is potentially
one bigger than the right one; it merely requires that the difference in size between
two siblings is at most 1.

Arrays via Braun Trees (7

In this section we implement arrays via Braun trees and verify correctness and
complexity. We start by defining array-like functions on Braun trees. After the above
explanation of Braun trees the following lookup function will not come as a surprise:

lookup? :: 'a tree = nat = 'a
lookup1 (I, z, r) n
= (if n = 1 then z else lookup1 (if even n then [else r) (n div 2))

The least significant bit is the parity of the index and we advance to the next bit by
div 2. The function is called lookup1 rather than /ookup to emphasize that it expects
the index to be at least 1. This simplifies the implementation via Braun trees but is
in contrast to the Array interface where by convention indexing starts with 0.

Function update1 descends in the very same manner but also performs an update
when reaching 1:

updatel :: nat = ‘a = 'a tree = 'a tree

update1 _ z () = ({), z, ())
update! n z (I, a, 7)
= (if n = 1then (I, z, r)
else if even n then (update? (n div 2) z I, a, 7)
else (I, a, updatet (n div 2) z r))

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Array_Braun.html

11.3 Arrays via Braun Trees & 131

lookup (t,) n lookup1 t (n + 1)
(updatet (n + 1) z t, m)

m

update n z (t, m)

len (t, m)
array s = (adds zs 0 (), |zs|)

Figure 11.3 Array implementation via Braun trees

11.3.1

The second equation updates existing entries in case n = 1. The first equa-
tion, however, creates a new entry and thus supports extending the tree. That is,
updatet (|t| + 1) = t extends the tree with a new node z at index |¢| + 1. Function
adds iterates this process (again expecting |¢| + 1 as the index) and thus adds a
whole list of elements:

adds :: 'a list = nat = ‘a tree = 'a tree

adds|[| t=t
adds (z # zs) nt = adds zs (n + 1) (update? (n + 1) z t)

The implementation of the Array interface in Figure 11.3 is just a thin wrapper
around the corresponding functions on Braun trees. An array is represented as a pair
of a Braun tree and its size. Note that although update? can extend the tree, the
specification and implementation of the array update function does not support that:
n is expected to be below the length of the array. Flexible arrays are specified and
implemented in Section 11.4.

Correctness
The invariant on arrays is obvious:

tnvar (t, 1) = (braun t A 1 = |t|)
The abstraction function list delegates to a namesake /ist on trees:
list (t,0) = list t

Function list could be defined in the following intuitive way, where [m..<n] is the list
of natural numbers from m up to but excluding n (see Appendix A):

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Array_Braun.html

132 Chapter 11 Arrays via Braun Trees

list t = map (lookup1 t) [1..<|t] + 1]

Instead we define /ist recursively and derive the above equation later on

list :: 'a tree = ‘a list
list () = [
list (I, z, r) = x # splice (list 1) (list r)

This definition is best explained by looking at Figure 11.2. The subtrees with root 2
and 3 will be mapped to the lists [2, 4, 6, 8, 10, 12, 14] and [1, 3, 5, 7, 9, 11, 13, 15].
The obvious way to combine these two lists into [1, 2, 3, ..., 15] is to splice them:

splice :: 'a list = 'a list = 'a list
splice [] ys = ys
splice (z # zs) ys = z # splice ys zs

Note that because of this reasonably efficient (O(nlgn), see Section 11.3.2) imple-
mentation of /ist we can also regard list as part of the interface of arrays.

Before we embark on the actual proofs we state a helpful arithmetic truth that is
frequently used implicitly below:

braun (I, z, 7y An € {L.{l, z, M} Al <n—
(oddn — ndiv2 e {1.|7|]}) A (even n — n div 2 € {1..|l|})

where {m..n} ={k | m < k AN k < m}.
We will now verify that the implementation in Figure 11.3 of the Array interface
in Figure 11.1 satisfies the given specification.
We start with proposition (len), the correctness of function len. Because of the
invariant, (len) follows directly from
|list t| = |t]|
which is proved by induction. This fact is used implicitly in many proofs below.
The following proposition implies the correctness property (lookup):
braun t A i < |t| — listt ! ¢ = lookup1 t (i + 1) (11.1)
The proof is by induction and uses the following proposition that is also proved by
induction:
n < las| + |ys| A lys| < [os| A Jas| < [ys| + 1 —
splice zs ys | n = (if even n then zs else ys) ! (n div 2)

11.3 Arrays via Braun Trees & 133

As a corollary to (11.1) we obtain that function /ist can indeed be expressed via
lookupT:

braun t — list t = map (lookup1 t) [1..<|t| + 1] (11.2)
It follows by list extensionality:
zs = ys «— |zs| = |ys| A (Vi<|zs|. zs 1 ¢ = ys | 1)

Let us now verify update as implemented via update1. The following two preser-
vation properties (proved by induction) prove (update-inv):

braunt A n € {1..|t|} — |updatel n z t| = |t
braun t A n € {1..|t|} — braun (update! n z t)
The following property relating lookup1 and update1 is again proved by induction:

braunt A n € {1..|t|]} —
lookup1 (update1 n z t) m = (if n = m then z else lookup1 t m)

The last three properties together with (11.2) and list extensionality prove the
following proposition, which implies (update):

braun t A n € {1.|t|} — list (update! n z t) = (list t)[n — 1 :=

Finally we turn to the constructor array. It is implemented in terms of adds and
update1. Their correctness is captured by the following properties whose inductive
proofs build on each other:

braun t — |updatel (Jt| + 1) z t| = |t] + 1 (11.3)
braun t — braun (updatet (|t| + 1) z t) (11.4)
braun t — list (updatel (|t| + 1) =z t) = list t @ [z] (11.5)

braun t — |adds zs |t| t| = |t| + |zs| A braun (adds zs |t| t)
braun t — list (adds zs |t| t) = list t @ zs

The last two properties imply the remaining proof obligations (array) and (array-
1nv). The proof of (11.5) requires the following two properties of splice which are
proved by simultaneous induction:

lys| < |zs| — splice (zs @ [z]) ys = splice zs ys Q [z]
lzs| < |ys| + 1 — splice zs (ys @ [y]) = splice zs ys @ [y]

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Array_Braun.html

11.3.2

11.4

134 Chapter 11 Arrays via Braun Trees

Running Time

The running time of /lookup1 and update1 is obviously logarithmic because of the
logarithmic height of Braun trees. We sketch why list and array both have running
time O(nlgn). Linear time versions are presented in Section 11.5.

Function list is similar to bottom-up merge sort and splice is similar to merge.
We focus on splice because it performs almost all the work. Consider calling /ist on
a complete tree of height h. At each level k (starting with O for the root) of the tree,
splice is called 2* times with lists of size (almost) 2"~*~1. The running time of splice
with lists of the same length is proportional to the size of the lists. Thus the running
time at each level is O(282"~*~1) = O(2"~!) = O(2"). Thus all the splices together
require time O(h2"). Because complete trees have size n = 2", the bound O(nlgn)
follows.

Function array is implemented via adds and thus via repeated calls of updatei. At
the beginning of Section 7.3 we show that because update? has logarithmic complexity,
calling it n times on a growing tree starting with a leaf takes time ©(nlgn).

Flexible Arrays
Flexible arrays can be grown and shrunk at either end. Figure 11.4 shows the
specification of all four operations. (For {/ and butlast see Appendix A.) Array_ Flex
extends the basic Array in Figure 11.1.

Below we first implement the Array_ Flex functions on Braun trees. In a final step
an implementation of Array_ Flez on (tree, size) pairs is derived.

We have already seen that update? adds an element at the high end. The inverse
operation del_hi removes the high end, assuming that the given index is the size of
the tree:

del_hi :: nat = 'a tree = 'a tree

del_hi () =)
del_hin (I, z, r)
= (if n = 1 then ()
else if even n then (del_hi (n div 2) [, z, 7)
else (I, z, del_hi (n div 2) 7))

This was easy but extending an array at the low end seems hard because one has to
shift the existing entries. However, Braun trees support a logarithmic implementation:

Figure 11.4

ADT Array_ Flex = Array +

interface

add_lo :: 'a = 'ar = 'ar
del_lo :: 'ar = 'ar
add_hi :: 'a = ‘ar = 'ar
del _hi :: 'ar = 'ar

specification

tnvar ar — 1nvar (add_lo a ar)

tnvar ar — list (add_lo a ar) = a # list ar
tnvar ar — tnvar (del_lo ar)

tnvar ar — list (del_lo ar) = tl (lzst ar)
tnvar ar — 1nvar (add_hi a ar)

tnvar ar — list (add_hi a ar) = list ar Q [a]
tnvar ar — invar (del_hi ar)

tnvar ar — list (del_hi ar) = butlast (list ar)

11.4 Flexible Arrays 135

ADT Array_ Flex

add_lo :: 'a = 'a tree = 'a tree

add_lo z () = ({), z, ())
add_lo z (l, a, r) = (add_lo a 7, z, 1)

The intended functionality is list (add_lo = t) = z # list t. Function add_Jlo installs
the new element z at the root of the tree. Because add_Jlo needs to shift the indices

of the elements already in the tree, the left child (indices 2, 4, ...) becomes the new
right child (indices 3, 5, ...). The old right child becomes the new left child with the
old root a added in at index 2 and the remaining elements at indices 4, 6, In the

following example, add_/o 0 transforms the left tree into the right one. The numbers

in the nodes are the actual elements, not their indices.

(1) add_lo 0
(2) (3
ORORO

136 Chapter 11 Arrays via Braun Trees

add_loz (t,1) = (add_lozt, |+ 1)

del_lo (¢, 1) = (del_lot, 1—1)

add_hiz (t,1) = (update! (1 + 1) zt, 1+ 1)
del_hi (t, 1) (del_hilt, 1 — 1)

Figure 11.5 Flexible array implementation via Braun trees

11.4.1

Function del_lo simply reverses add_lo by removing the root and merging the
children:

del_lo :: 'a tree = 'a tree

del_lo () = ()
del_lo (I, ,r)=mergelr

merge :: 'a tree = 'a tree = 'a tree
merge () r = r
merge (I, a,) rr = (rr, a, merge L r)

Figure 11.5 shows the obvious implementation of the functions in the Array_ Flez
interface in Figure 11.4 (on the left-hand side) with the help of the corresponding
Braun tree operations (on the right-hand side). It is an extension of the basic array
implementation from Figure 11.3. All Array_ Flex functions have logarithmic time
complexity because the corresponding Braun tree functions do because they descend
along one branch of the tree.

Correctness
We now have to prove the properties in Figure 11.4. We have already dealt with
update1 and thus add_ ht above. Properties (add_ hi-inv) and (add_ ht) follow from
(11.3), (11.4) and (11.5) stated earlier.

Correctness of del_hi on Braun trees is captured by the following two properties
proved by induction:

braun t — braun (del_hi |t| t)
braun t — list (del_hi |t| t) = butlast (list t) (11.6)

They imply (del_hi) and (del_ hi-inv). The proof of (11.6) requires the following
property of splice, which is proved by induction:

11.5

11.51

11.5 Bigger, Better, Faster, More! 137

butlast (splice zs ys)
= (if |ys| < |zs| then splice (butlast zs) ys else splice zs (butlast ys))

Correctness of add_lo on Braun trees (properties (add_lo) and (add_ lo-inv))
follows directly from the following two inductive properties:
braun t — list (add_lo a t) = a # list t
braun t — braun (add_lo z t)
Finally we turn to del_lo. Inductions (for merge) and case analyses (for del_lo)
yield the following properties:
braun (i, z, ry — list (merge | r) = splice (list 1) (list r)
braun {1, z, ry — braun (merge | r)
braun t — list (del_lo t) = tl (list t)
braun t — braun (del_lo t)

The last two properties imply (del_ lo) and (del_ lo-inv).

Bigger, Better, Faster, More!

In this section we meet efficient versions of some old and new functions on Braun
trees. The implementation of the corresponding array operations is trivial and is not
discussed.

Fast Size of Braun Trees
The size of a Braun tree can be computed without having to traverse the entire tree:

size_fast :: 'a tree = nat
size_fast () =0
size_fast (I, ,r) = (let n = size_fastrin 1+ 2 - n + diff i n)

diff :: 'a tree = nat = nat
diff) =0
diff (I, ,ryn
= (if n = 0 then 1
else if even n then diff r (n div 2 — 1) else diff | (n div 2))

Function size_fast descends down the right spine, computes the size of a Node as if
both children were the same size (1 + 2 - n), but adds diff | n to compensate for
bigger left children. Correctness of size_fast

138 Chapter 11 Arrays via Braun Trees

Lemma 11.3. braun t — size_fast t = |t|
follows from this property of diff:
braunt At € {n,n + 1} — difftn =1t — n

The running time of size_fast is quadratic in the height of the tree (Exercise 11.3).

11.5.2 |Initializing a Braun Tree with a Fixed Value
Above we only considered the construction of a Braun tree from a list. Alternatively
one may want to create a tree (array) where all elements are initialized to the same
value. Of course one can call update? n times, but one can also build the tree directly:

braun_of_naive z n
= (if n = 0 then ()
elselet m = (n — 1) div 2
in if odd n
then (braun_of_naive ¢ m, z, braun_of_naive z m)
else (braun_of_naive z (m + 1), z,
braun_of_naive z m))

This solution also has time complexity O(nlgn) but it can clearly be improved by
sharing identical recursive calls. Function braun2_of shares as much as possible by
producing trees of size n and n+ 1 in parallel:

braun2_of :: 'a = nat = 'a tree x 'a tree

braun2_of z n

= (if n = 0 then ((), (O, z, ()))
else let (s, t) = braun2_of z ((n — 1) div 2)

in if odd n then ((s, z, s), (¢, z, s)) else ((t, z, s), (¢, z, t)))

braun_of :: 'a = nat = 'a tree

braun_of z n = fst (braun2_of = n)

The running time is clearly logarithmic.
The correctness properties (see Appendix A for replicate)

list (braun_of z n) = replicate n «
braun (braun_of = n)

are corollaries of the more general statements which can be proved by induction:

11.5 Bigger, Better, Faster, More! 139

braun2_of z n = (s, t) —
list s = replicate n = A list t = replicate (n + 1)

braun2_of zn = (s, t) — |s| =n A |t| = n + 1 A braun s A braun t

11.5.3 Converting a List into a Braun Tree

We improve on function adds from Section 11.3 that has running time ©(nlgn) by
developing a linear-time function. Given a list of elements [1,2,...], we can subdivide
it into sublists [1], [2,3], [4,..-,7], ... such that the kth sublist contains the elements
of level k of the corresponding Braun tree. This is simply because on each level we
have the entries whose index has £+ 1 bits. Thus we need to process the input list
in chunks of size 2* to produce the trees on level k. But we also need to get the
order right. To understand how that works, consider the last two levels of the tree in
Figure 11.2:

4 6 5 7

/NN SN N

8 12 10 14 9 13 11 15

If we rearrange them in increasing order of the root labels
4 5 6 7
/SN /N /N /N
8 12 9 13 10 14 11 15

the following pattern emerges: the left subtrees are labeled [8,...,11], the right subtrees
[12,...,15]. Call t; the tree with root label <. The correct order of subtrees, i.e. t4, ts,
ts, t7, is restored when the three lists [t4, t5], [2, 3] (the labels above) and [tg, t7]
are combined into new trees by going through them simultaneously from left to right,
yielding [(ts, 2, ts), (s, 3, t7)], the level above.

Abstracting from this example we arrive at the following code. Loosely speaking,
brauns k zs produces the Braun trees on level k.

brauns :: nat = 'a list = 'a tree list

brauns k zs
= (if zs = [] then []
else let ys = take 2% zs;
zs = drop 2% zs;
ts = brauns (k + 1) zs
in nodes ts ys (drop 2% ts))

11.5.3.1

140 Chapter 11 Arrays via Braun Trees

Function brauns chops off a chunk ys of size 2% from the input list and recursively
converts the remainder of the list into a list ts of (at most) 2**! trees. This list
is (conceptually) split into fake 2% ts and drop 2% ts which are combined with ys
by function nodes that traverses its three argument lists simultaneously. As a local
optimization, we pass all of ¢s rather than just take 2% ts to nodes.

nodes :: 'a tree list = ‘a list = 'a tree list = ‘a tree list

nodes (I # 1Is) (z # zs) (r # rs) = (I, z, r) # nodes Is zs rs
nodes (I # 1s) (z # zs) [| = (I, z, ()) # nodes Is zs]

nodes [| (z # zs) (r # rs) = {{), z, r) # nodes || zs rs
nodes [| (z # zs) [| = ((), , ()) # nodes [| zs |

nodes _[| =]

Because the input list may not have exactly 2™ — 1 elements, some of the chunks of
elements and trees may be shorter than 2*. To compensate for that, function nodes
implicitly pads lists of trees at the end with leaves. This padding is the purpose of
equations two to four.

The top-level function for turning a list into a tree simply extracts the first (and
only) element from the list computed by brauns 0:

braunst :: 'a list = 'a tree
brauns1 zs = (if zs = [] then () else brauns 0 zs ! 0)

Correctness

The key correctness lemma below expresses a property of Braun trees: the subtrees on
level k consist of all elements of the input list zs that are 2% elements apart, starting
from some offset. To state this concisely we define

take_nths :: nat = nat = 'a list = 'a list

take_nths [=]
take_nths i k (z # s)
= (if 2 = 0 then = # take_nths (2F — 1) k zs else take_nths (i — 1) k xs)

The result of take_nths i k zs is every 2*-th element in drop 4 zs.
A number of simple properties follow by easy inductions:

lake_nths i k (drop j zs) = take_nths (i + j) k zs (11.7)

11.5 Bigger, Better, Faster, More! 141

take_nths 0 0 zs = zs (11.8)
splice (take_nths 0 1 zs) (take_nths 1 1 zs) = zs (11.9)
lake_nths i m (fake_nths j n zs)

= take_nths (i - 2™ + j) (m + n) s (11.10)
lake_nths i k zs =[] «— |zs| < 1 (11.11)
1 < |zs| — hd (take_nths i k zs) = xzs | 1 (11.12)
|zs| = lys| V |zs| = |ys| + 1 —

take_nths 0 1 (splice zs ys) = zs A

lake_nths 1 1 (splice zs ys) = ys (11.13)

|take_nths 0 1 zs| = |take_nths 1 1 zs| V
|take_nths 0 1 zs| = |take_nths 1 1 zs| + 1 (11.14)

We also introduce a predicate relating a tree to a list:

braun_list :: 'a tree = ‘a list = bool

braun_list () zs = (zs = [])

braun_list (I, z, r) zs

=(zs Z[] ANz =hdzs A
braun_list | (take_nths 1 1 zs) A
braun_list r (take_nths 2 1 zs))

This definition may look a bit mysterious at first but it satisfies a simple specification:
braun_list t zs +— braun t A zs = list t (see below). The idea of the above definition
is that instead of relating (I, z,) to zs via splice we invert the process and relate {
and r to the even and odd numbered elements of drop 1 zs.

Lemma 11.4. braun_list t zs «<— braun t A zs = list t

Proof by induction on t. The base case is trivial. In the induction step the key
properties are (11.14) to prove braun t and (11.9) and (11.13) to prove zs = list t. O

The correctness proof of brauns rests on a few simple inductive properties:

|[nodes s zs rs| = |zs]| (11.15)

1 < |zs| —
nodes ls zs rs ! 1
= (if 7 < |ls| then is ! i else (), zs ! ¢,
if © < |rs| then rs ! ¢ else ()) (11.16)

|brauns k zs| = min |zs| 2F (11.17)

11.5.3.2

142 Chapter 11 Arrays via Braun Trees

The main theorem expresses the following correctness property of the elements of
brauns k zs: every tree brauns k zs ! ¢ is a Braun tree and its list of elements is
lake_nths i k zs:

Theorem 11.5. i < min |zs| 28 — braun_list (brauns k zs ! i) (take_nths i k zs)

Proof by induction on |zs|. Assume i < min |zs| 2%, which implies zs # []. Let zs
= drop 2% zs. Thus |zs| < |zs| and therefore the IH applies to zs and yields
Vij.j=1+28Ad < minjzs|2Ftl —
braun_list (ts !) (take_nths j (k + 1) zs) (%)
where ts = brauns (k + 1) zs. Let ts' = drop 2* ts. Below we examine
nodes ts ts' ! v with the help of (11.16). Thus there are four similar cases of
which we only discuss one representative one: assume ¢ < |ts| and 7 > |ts'|.
braun_list (brauns k zs ! 1) (take_nths i k zs)
«— braun_list (nodes ts (take 2* xs) ts' ! 1) (take_nths i k xs)
«— braun_list (ts ! 1) (take_nths (2% + 1) (k + 1) zs) A
braun_list () (take_nths (2% 1 + 1) (k + 1) zs)
by (11.16), (11.10), (11.11), (11.12) and assumptions
«— True by (x), (11.11), (11.17) and assumptions

O

Setting ¢« = k = 0 in this theorem we obtain the correctness of brauns? using
Lemma 11.4 and (11.8):

Corollary 11.6. braun (braunst zs) A list (brauns1 zs) = zs

Running Time
Function Thoges is shown in Appendix B.4. It is obviously linear:

Thodes Is zs s = |zs| + 1 (11.18)

Function Tprauns assumes that 2k can be computed in constant (i.e. 0) time like all
basic arithmetic operations. This is justified if k is bounded, in which case 2* can be
implemented as a table lookup.

Torauns :: nat = 'a list = nat

Tbrauns k xs
= (if zs =[] then 0
else let ys = take 2* zs; zs = drop 2 zs; ts = brauns (k + 1) zs
in Tige 28 zs + Tarop 2% s + Thrauns (k + 1) 25 + Targp 2k ts +
Thodes ts ys (drop 2% ts)) + 1

1154

11.5 Bigger, Better, Faster, More! 143

Function Tprauns is also linear:

Lemma 11.7. Tbrauns k s S 9 - (|$S| + 1)

Proof by induction on |zs|. If zs = [] the claim is trivial. Now assume zs # [] and
let zs = drop 2% zs. In the first step we simplify the body using (11.17), (11.18) and
simple properties of take, drop, Tiake and Tgrop and min:

Torauns k s

=3 - (min 2F |zs| + 1) + (min 2% (Jzs| — 25) + 1) + Tprauns (k + 1) zs + 1

<4 - min 2 |zs| + Tprauns (k + 1) zs + 5

=4-min2F|zs| + 9 (lzs] + 1) + 5 by IH
=4-min2*|zs| + 9 - (|Jzs| — 28 + 1) + 5

=4-min2F|zs| + 4 - (Jzs| —2%) + 5 (Jzs| — 2k + 1) + 9

=4 |zs| + 5 (Jzs| — 2 + 1) + 9

<4-|zs|+5-|zs| + 9 because |zs| — 2F + 1 < |zs]
=9 - (Jzs| + 1) O

Converting a Braun Tree into a List

We improve on function /ist that has running time O(nlgn) by developing a linear-
time version. Imagine that we want to invert the computation of brauns? and thus
of brauns. Thus it is natural to convert not merely a single tree but a list of trees.
Looking once more at the reordered list of subtrees

8/4\12 9/5\13 10/6\14 11/7\15

the following strategy strongly suggests itself: first the roots, then the left children,
then the right children. The recursive application of this strategy also takes care of
the required reordering of the subtrees. Of course we have to ignore any leaves we
encounter. This is the resulting function:

list_fast_rec :: 'a tree list = 'a list
list_fast_rec ts
= (let us = filter (A\t. t # ()) ts
in if us = [] then []
else map value us @ list_fast_rec (map left us @ map right us))

11.5.4.1

144 Chapter 11 Arrays via Braun Trees

value (I, z, r) =
left (I, z, ry =1
right (I, z, r) = r

z

Function list_fast_rec terminates because left and right remove the top node of a
non-() tree. Thus the sum of the sizes of all trees in ¢s decreases with each recursive
call because us is a non-empty list of non-() trees.

This is the top level function to extract a list from a single tree:

list_fast :: 'a tree = 'a list

list_fast t = list_fast_rec [t]

From list_fast one can easily derive an efficient fold function on Braun trees that
processes the elements in the tree in the order of their indexes.

Correctness

We want to prove correctness of list_fast: list_fast t = list t if braun t. A direct proof
of list_fast_rec [t] = list t will fail and we need to generalize this statement to all
lists of length 2k, Reusing the infrastructure from the previous subsection this can be
expressed as follows:

Theorem 11.8. |ts| = 2F A (Vi<2E. braun_list (ts ! i) (take_nths i k zs)) —
list_fast_rec ts = zs

Proof by induction on |zs|. Assume the two premises. There are two cases.
First assume |zs| < 2*. Then

ts = map (Az. ((), z, {))) zs @ replicate n () (%)

where n = |ts| — |zs|. This can be proved pointwise. Take some i < 2%. If 1 < |zs]
then take_nths ¢ k zs = take 1 (drop ¢ zs) (which can be proved by induction on
zs). By definition of braun_list it follows that ¢t ! ¢ = (I, zs ! 4, r) for some ! and r
such that braun_list | [| and braun_list | [| and thus | = r = (), ie. t | 1 = ((), zs ! 1,
()). If = % < |zs| then take_nths ¢ k s = [] by (11.11) and thus braun_list (ts ! ©) []
by the second premise and thus ts ! ¢ = () by definition of braun_list. This concludes
the proof of (%). The desired list_fast_rec ts = zs follows easily by definition of
list_fast_rec.
Now assume — |zs| < 2¥. Then for all 4 < 2F

11.5.4.2

11.5 Bigger, Better, Faster, More! 145

tsti# () Avalue (ts!i)=zs!i A
braun_list (left (ts ! 1)) (take_nths (i + 2%) (k + 1) zs) A
braun_list (right (ts ! 4)) (take_nths (i + 2 - 2%) (k + 1) zs)

follows from the second premise with the help of (11.10), (11.11) and (11.12). We
obtain two consequences:

map value ts = take 2F zs
list_fast_rec (map left ts @ map right ts) = drop 2% zs
The first consequence follows by pointwise reasoning, the second consequence with

the help of the IH and (11.7). From these two consequences the desired conclusion
list_fast_rec ts = zs follows by definition of /ist_fast_rec. O

Running Time
We focus on list_fast_rec. After a few simplifications with basic properties of map
and Tappena, the definition of Tjs a5t rec looks like this:

Tiist_fast_rec :: 'a tree list = nat

Tiist_tast_rec ts
— (let us = filter (At. t # ()) ts

in|ts| + 1+
(if us =[] then 0
else 5 - (Jus| + 1) + Tiist_fast_rec (Map left us @ map right us))) + 1

The following inductive proposition is an abstraction of the core of the termination
argument of /ist_fast_rec above.

(Vtesetts. t # ()) —
(Etets |t|) = (Etemap left ts @ map right ts |t|) + |t5| (11'19)

The suggestive notation > z«zs. f z abbreviates sum_list (map f zs).
Now we can state and prove a linear upper bound of Tjst fast_rec:

Theorem 11.9. Tjst fast rec ts < 14 - (3o, 4 |t]) + |ts| + 2

Proof by induction on the size of ts (which decreases with each recursive call as we
argued above). If us = [] the claim is easily seen to be true. Now assume us # [] and
let children = map left us @ map right us.

Tiist_fast_rec ts = Tjist_fast_rec children + 5 - |us| + |ts| + 7
<14 - (Do) chadren 1) + 7 - |us| + |ts| + 9 by IH
=14 - (O chitgren 1t]) + 14 - Jus| + |ts| + 2 because us # [|

11.6

146 Chapter 11 Arrays via Braun Trees

=14 - (324 s 1E]) + [ts] + 2 by (11.19)
<14 (O g ED) + Its| + 2 O
Exercises

Exercise 11.1. Instead of first showing that Braun trees are almost complete, give
a direct proof of braun t —s h t = [Ig |t|1] by first showing braun t — 27t <
2 - |t] + 1 by induction.

Exercise 11.2. Let /h, the “left height”, compute the length of the left spine of a tree.
Prove that the left height of a Braun tree is equal to its height: braun t — Ih t =
ht

Exercise 11.3. Give a readable proof of the fact that Braun trees satisfy the same
height as size property:

braun{l, z, 7y — hl=hrVvhli=hr+1
Hint: use the fact that Braun trees are almost complete (and thus height optimal).
Exercise 11.4. Show that function bal in Section 4.3.1 produces Braun trees:

n < |zs| A bal nzs = (t, zs) — braun t
(Isabelle hint: bal needs to be qualified as Balance.bal.)

Exercise 11.5. One can view Braun trees as tries (see Chapter 12) by indexing them
not with a nat but a bool list where each bit tells us whether to go left or right
(as explained at the start of Section 11.2). Function nat_of specifies the intended
correspondence:

nat_of :: bool list = nat

nat_of [| =1

nat_of (b # bs) = 2 - nat_of bs + (if b then 1 else 0)
Define the counterparts of /ookup? and update1

lookup_trie :: 'a tree = bool list = 'a
update_trie :: bool list = 'a = 'a tree = 'a tree

and prove their correctness:
braun t A nat_of bs € {1..|t|} — lookup_trie t bs = lookup1 t (nat_of bs)
update_trie bs z t = updatel (nat_of bs) z t

Exercise 11.6. Function del_lo is defined with the help of function merge. Define
a recursive function del_lo2 :: 'a tree = 'a tree without recourse to any auxiliary
function and prove del_lo2 t = del_lo t.

11.6 Exercises 147

Exercise 11.7. Prove correctness of function braun_of_naive defined in Sec-
tion 11.5.2: list (braun_of_naive = n) = replicate n .

Exercise 11.8. Show that the running time of size_fast is quadratic in the height
of the tree: Define the running time functions Ty and Tgjze 25 (taking O time in the
base cases) and prove Tgize a5t t < (h t)2.

Chapter Notes

Braun trees were investigated by Rem and Braun [1983] and later, in a functional
setting, by Hoogerwoord [1992] who coined the term “Braun tree”. Section 11.5 is
partly based on work by Okasaki [1997]. The whole chapter is based on work by
Nipkow and Sewell [2020].

12.1

Tries

Tobias Nipkow

A trie is a search tree where keys are strings, i.e. lists of some type of “characters”. A
trie can be viewed as a tree-shaped finite automaton where the root is the start state.
For example, the set of strings {a,an,can,car,cat} is encoded as this trie:

The solid states are accepting, i.e. those nodes terminate the string leading to them.
What distinguishes tries from ordinary search trees is that the access time is not

logarithmic in the size of the tree but linear in the length of the string, at least

assuming that at each node the transition to the sub-trie takes constant time.

Abstract Tries via Functions (7
A nicely abstract model of tries is the following type:

datatype ‘a trie = Nd bool (‘a — 'a trie)

Paremeter 'a is the type of “characters”. In a node Nd b f, b indicates if it is an
accepting node and f maps characters to sub-tries. Remember (from Section 6.4) that
— is a type of maps with update notation f(a + b). There is no trie invariant, i.e. the
invariant is simply True: there are no ordering, balance or other requirements. This is
an abstract model that ignores efficiency considerations like fast access to sub-tries.

Figure 12.1 shows how the ADT Set is implemented by means of tries. The
definitions are straightforward. For simplicity, delete does not try to shrink the trie.
For example:

149

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Trie_Fun.html

Figure 12.1

12.1.1

150 Chapter 12 Tries

empty :: 'a trie
empty = Nd False (A_. None)

isin :: 'a trie = ‘a list = bool

isin(Ndb _)[]=0b

isin (Nd _ m) (k # zs)

= (case m k of None = False | Some t = isin t zs)

insert :: 'a list = 'a trie = 'a trie

insert [| (Nd _ m) = Nd True m

insert (z # zs) (Nd b m)

= (let s = case m z of None = empty | Some t = t
in Nd b (m(z — insert zs s)))

delete :: 'a list = 'a trie = 'a trie

delete [| (Nd _ m) = Nd False m
delete (z # zs) (Nd b m)
= Nd b (case m z of None = m | Some t = m(z — delete zs t))

Implementation of Set by tries

delete [a]
_

Formally:

delete [a] (Nd False [a — Nd True (A_. None)))
= Nd False [a — Nd False (A_. None)]

where [z — t] = (A_. None)(z — t). The resulting trie is correct (it represents the
empty set of strings) but could have been shrunk to Nd False (A_. None). We will
remedy this defect in later, more operational definitions of tries.

Correctness
For the correctness proof we take a lazy approach and define the abstraction function
in a trivial manner via isin:

12.2

12.2 Binary Tries @ 151

set_trie :: 'a trie = 'a list set

set_trie t = {zs | isin t zs}

Correctness of empty and isin is trivial, correctness of insertion and deletion is easily
proved by induction:

set_trie (insert zs t) = set_trie t U {zs}
set_trie (delete zs t) = set_trie t — {zs}

This simple model of tries leads to simple correctness proofs but is inefficient
because of the function space in ‘a — ‘a trie. Now we investigate two efficient
implementations: First binary tries where ’a is specialized to bool. Then ternary tries,
where the maps ‘a — ’a trie are represented by search trees.

Binary Tries 0
A binary trie is a trie over the alphabet bool. That is, binary tries represent sets of
bool lists. More concretely, a binary trie is simply a binary tree:

datatype trie = Lf | Nd bool (trie x trie)

Grouping the children of a Nd together like this is merely for convenience.
A Dbinary trie, for example

Nd False (Nd True (Nd False (Lf, Lf), Nd True (Lf, Lf)), Lf)

can be visualized like this:

False

False True

Lfs are not shown at all. The edge labels indicated that False refers to the left and
True to the right child. This convention is encoded in the following auxiliary functions
selecting from and modifying pairs:

sel2 :: bool = 'a x 'a = 'a
sel2 b (al, (12) = (lf b then as else al)

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tries_Binary.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tries_Binary.html

152 Chapter 12 Tries

empty :: trie
empty = Lf

isin :: trie = bool list = bool
isin Lf = False
isin (Nd b ir) ks = (case ks of [| = b | k # ks' = isin (sel2 k Ir) ks')

insert :: bool list = trie = trie
insert [| Lf = Nd True (Lf, Lf)
I

insert [| (Nd _ Ir) = Nd True Ir
insert (k # ks) Lf = Nd False (mod2 (insert ks) k (Lf, Lf))
insert (k # ks) (Nd b lr) = Nd b (mod2 (insert ks) k ir)

delete :: bool list = trie = trie

delete Lf = Lf
delete ks (Nd b ir)
= (case ks of [| = node False Ir
| £ # ks' = node b (mod2 (delete ks') k ir))

node b Ir = (if - b A Ir = (Lf, Lf) then Lf else Nd b Ir)

Figure 12.2 Implementation of Set by binary tries

mod2 :: ('a = ‘a) = bool = 'a X ‘a = 'a x 'a
mod2 f b (a1, ag) = (if b then (a1, f as) else (f a1, az))

The implementation of the Set interface is shown in Figure 12.2. In our abstract
tries, deletion could generate non-empty sub-tries that do not contain an accepting
Nd. In contrast, our binary delete employs a smart constructor node that shrinks
a non-accepting Nd to a Lf if both children have become empty. For example
delete [True] (Nd False (Lf, Nd True (Lf, Lf))) = Lf.

To ensure that tries are fully shrunk at all times, we make this constraint an
invariant: if both sub-tries of a Nd are Lfs, the Nd must be accepting.

12.2.1

12.2.2

12.2 Binary Tries? 153

invar :: trie = bool

invar Lf = True
invar (Nd b (I, r)) = (invar I A invar v A (L = Lf A r = Lf — b))

Of course we will need to prove that it is invariant.

Correctness
For the correctness proof we take the same lazy approach as above:

set_trie :: trie = bool list set

set_trie t = {zs | isin t zs}

The two non-trivial functional correctness properties
set_trie (insert zs t) = set_trie t U {zs} (12.1)
set_trie (delete zs t) = set_trie t — {zs} (12.2)
are simple consequences of the following inductive properties:
isin (insert zs t) ys = (zs = ys V isin t ys)
isin (delete zs t) ys = (zs # ys A isin t ys)
The invariant is not required because it only expresses a space optimality property.
Preservation of the invariant is easily proved by induction:
invar t — invar (insert zs t)
invar t — invar (delete zs t)

Exercises

Exercise 12.1. Show that distinct tries (which satisfy invar) represent distinct sets:
invar t; A invar to — (set_trie t; = set_trie t3) = (t1 = t2)

This is in contrast with most BST representations of sets.

Exercise 12.2. Define a union operation union :: trie = trie = trie on binary tries

and prove set_trie (union t; t,) = set_trie t; U set_trie t, and invar t; A invar t,

— invar (union t; t,). Similarly for intersection where you should be able to prove
invar (inter t, t3) outright.

Exercise 12.3. This exercise is about searching tries with wildcard patterns, i.e.
strings that can contain a special symbol that matches any character. We model such

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tries_Binary.html

12.3

154 Chapter 12 Tries

patterns with type bool option list where any Boolean value matches None but only
b matches Some b. Define a function matches :: 'a option list = 'a list = bool that
expresses when a wildcard pattern is matched by a bool list. Then define a function
isins :: trie = bool option list = bool list list that searches a trie with a wildcard
pattern and returns all the bool lists in the trie that match the pattern. Prove its
correctness: (zs € set (isins t ps)) = (isin t zs A matches ps s).

Exercise 12.4. This exercise is about nearest-neighbour search, namely finding all
strings in a trie within a given Hamming distance of the search key. The Hamming
distance of two lists of the same length is the number of positions where they differ.
Define a function Hdist :: 'a list = 'a list = mnat that computes the Hamming
distance. Then define a function near :: trie = bool list = nat = bool list list such
that near t zs d is a list of all ys in ¢t of the same length as zs that have Hamming
distance at most d from zs. Prove its correctness:

(ys € set (near t zs d)) = (|zs| = |ys| A isin t ys A Hdist zs ys < d).

Binary Patricia Tries (7

Tries can contain long branches without branching. These can be contracted by storing
the branch directly in the start node. The result is called a Patricia trie. The
following figure shows the contraction of a trie into a Patricia trie:

O —
C IS t
O

O

This is the data type of binary Patricia tries:
datatype trieP = LfP | NdP (bool list) bool (trieP x trieP)

The implementation of the Set ADT by binary Patricia tries is shown in Figure 12.3;
function nodeP is displayed separately. The key auxiliary function is /cp where
Icp zs ys = (ps, xs', ys') such that ps is the longest common prefix of zs and ys
and zs'/ys' is what remains of zs/ys after dropping ps. Function /cp is used by both

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tries_Binary.html

12.3.1

12.3 Binary Patricia Tries 7 155

insertP and deleteP to analyze how the given key and the prefix stored in the NdP
overlap. For the detailed case analysis see the code.

Just as for basic binary tries, deletion may enable shrinking. For example,
NdP zs False (NdP ys b Ir, LfP) can be shrunk to NdP (zs @ False # ys) b lr:
both tries represent the same set. Function delefeP performs shrinking with the help
of the smart constructor nodeP that merges two nested NdP’s if there is no branching:

nodeP ps b Ir
= (if b then NdP ps b Ir
else case Ir of
(LfP, LfP) = LfP |
(LfP, NdP ks b ir) = NdP (ps @ True # ks) b lr |
(NdP ks b lr, LfP) = NdP (ps @ False # ks) b Ir |
_ = NdP ps b Ir)

This shrinking property motivates the following invariant: any non-branching NdP
must be accepting (because otherwise it could be merged with its children).

invarP :: trieP = bool

invarP LfP = True
invarP (NdP b (I, r)) = (invarP L A invarP r A (I = LIP vV r = LfP — b))

It is tempting to think that invarP ¢t = invar (abs_trieP t) but this is not the case.
Find a ¢ such that — invarP t but invar (abs_trieP t).

Correctness
This is an exercise in stepwise data refinement. We have already proved that trie
implements Set via an abstraction function. Now we map trieP back to trie via
another abstraction function. Afterwards the overall correctness follows trivially by
composing the two abstraction functions.

The abstraction function abs_trieP is defined via the auxiliary function prefix_trie
that prefixes a trie with a bit list:

abs_trieP :: trieP = trie

abs_trieP LfP = Lf
abs_trieP (NdP ps b (1, v)) = prefix_trie ps (Nd b (abs_trieP [, abs_trieP r))

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tries_Binary.html

Figure 12.3

156 Chapter 12 Tries

emptyP :: trieP
emptyP = LfP

isinP :: trieP = bool list = bool

isinP LfP _ = False
isinP (NdP ps b Ir) ks

= (let n = |ps]
in if ps = take n ks then case drop n ks of
1=0|
k # z = isinP (sel2 k Ir) z
else False)

insertP :: bool list = trieP = trieP

insertP ks LfP = NdP ks True (LfP, LfP)
insertP ks (NdP ps b Ir)
= (case Icp ks ps of
(_, [, []) = NdP ps True ir |
(gs,], p # ps') =
let ¢t = NdP ps' b Ir
in NdP gs True (if p then (LfP, t) else (¢, LfP)) |
(_, k# ks', []) = NdP ps b (mod2 (insertP ks') k ir) |
(gs, k # ks', _ # ps') =
let tp = NdP ps' b lr; tk = NdP ks' True (LfP, LfP)
in NdP gs False (if k then (tp, tk) else (tk, tp)))

deleteP :: bool list = trieP = trieP

deleteP ks LfP = LfP
deleteP ks (NdP ps b Ir)
= (case Icp ks ps of
(_, [, [) = nodeP ps False ir |
(L, _, _#)= NdPpsbir|
(_, k # ks’ []) = nodeP ps b (mod2 (deleteP ks') k Ir))

Iep :: 'a list = 'a list = 'a list x ‘a list x 'a list

/Cp [] Yys = ([]’ []1 ys)
lep zs [] = ([, s, [])
lep (z # zs) (y # ys)
= (if z # ythen ([], ¢ # zs, y # ys)
else let (ps, zs', ys') = lep s ys in (z # ps, zs', ys'))

Implementation of Set by binary Patricia tries

12.3 Binary Patricia Tries 7 157

prefix_trie :: bool list = trie = trie

prefix_trie [| t = ¢

prefix_trie (k # ks) t

= (let t' = prefix_trie ks t in Nd False (if k then (Lf, t') else (t', Lf)))

Correctness of emptyP is trivial. Correctness of the remaining operations is proved
by induction and requires a number of supporting inductive lemmas which we display
before the corresponding correctness properties.

Correctness of isinP:

isin (prefix_trie ps t) ks = (ps = take |ps| ks A isin t (drop |ps| ks))
isinP t ks = isin (abs_trieP t) ks

Correctness of insertP:

prefix_trie ks (Nd True (Lf, Lf)) = insert ks Lf
insert ps (prefix_trie ps (Nd b lr)) = prefix_trie ps (Nd True Ir)
insert (ks @ ks') (prefix_trie ks t) = prefix_trie ks (insert ks' t)
prefix_trie (ps @Q gs) t = prefix_trie ps (prefix_trie gs t)
Icp ks ps = (gs, ks', ps') —
ks = gs @ ks' A ps = gs @ ps' A (ks' #[] A ps’ #[] — hd ks' # hd ps')
abs_trieP (insertP ks t) = insert ks (abs_trieP t) (12.3)
invarP t — invarP (insertP zs t)
Correctness of deleteP:
delete zs (prefix_trie zs (Nd b (I, r)))
= (if (I,) = (Lf, Lf) then Lf else prefix_trie zs (Nd False (I, 7)))
delete (zs @ ys) (prefix_trie zs t)
= (if delete ys t = Lf then Lf else prefix_trie zs (delete ys t))
abs_trieP (deleteP ks t) = delete ks (abs_trieP t) (12.4)
invarP t — invarP (deleteP zs t)

It is now trivial to obtain the correctness of the trieP implementation of sets. The
invariant is still invarP and has already been dealt with. The abstraction function
is simply the composition of the two abstraction functions: set_trieP = set_trie o
abs_trieP. The required functional correctness properties (ignoring emptyP and isinP)
are trivial compositions of (12.1)/(12.2) and (12.3)/(12.4):

set_trieP (insertP zs t) = set_trieP t U {zs}
set_trieP (deleteP zs t) = set _trieP t — {zs}

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Tries_Binary.html

12.3.2

12.4

158 Chapter 12 Tries

Exercises
The exercises for binary tries (Section 12.2.2) can be repeated for binary Patricia tries.

Ternary Tries 0
What if we want to implement our original abstract tries over type ‘a efficiently, not
just binary tries? For example the following one:

Ternary tries implement the ‘a — ‘a trie maps as BSTs. The above trie can be
represented (non-uniquely) by the following ternary trie:

The ternary trie diagram should be interpreted as follows. The left and right children
of a node form the BST. The middle child is the sub-trie that the character in the
node maps to. Accepting nodes are gray. The name ternary trie derives from the
fact that nodes have three children. However, conceptually they are BSTs that map
elements of type ‘a to further such BSTs, i.e. the middle child isn’t really a child but
part of the contents of the node.

Using the unbalanced tree implementation of maps from Section 6.5 (any other
map implementation works just as well) we define ternary tries as follows:

datatype ‘a trie3 = Nd3 bool (('a x ‘a tried) tree)
As before, the bool field indicates if it is an accepting node.

The invariant for ternary tries requires that in all nodes the invariant invar of the
map implementation holds:

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Trie_Ternary.html

Figure 12.4

12.4.1

12.4 Ternary Tries 7 159

empty3 :: 'a trie3
empty3 = Nd3 False ()

isin3 :: 'a trie3 = 'a list = bool

isin3 (Nd3b)[]=1b

isin3 (Nd3 _ m) (z # zs)

= (case lookup m z of None = False | Some t = isin3 t zs)

insert3 :: 'a list = 'a trie3 = 'a trie3

insert3 [| (Nd3 _ m) = Nd3 True m
insert3 (z # zs) (Nd3 b m)
= Nd3 b
(update z
(insert3 zs (case lookup m z of None = empty3 | Some t = t)) m)

delete3 :: 'a list = 'a trie3 = 'a trie3

delete3 [] (Nd3 m) = Nd3 False m
delete3 (z # zs) (Nd3 b m)
= Nd3 b
(case lookup m z of None = m | Some t = update = (delete3 zs t) m)

Implementation of Set via ternary tries

invar3 :: 'a trie3 = bool
invar3 (Nd3 _ m) = (invar m A (Va t. lookup m a = Some t — invar3 t))

The self-explanatory implementation of the Set interface is shown in Figure 12.4.
Function delete does not try to shrink the trie. Remember that /ookup and update
come from the Map implementation.

Correctness

This is another example of stepwise refinement, just like in the correctness proof for
binary Patricia tries in Section 12.3. We show that 'a trie3 implements 'a trie (from
Section 12.1) via this abstraction function:

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Trie_Ternary.html

160 Chapter 12 Tries

abs3 :: 'a trie3 = 'a trie
abs3 (Nd3 b t) = Nd b (Aa. map_option abs3 (lookup t a))

map_option :: ('a = 'b) = ‘a option = ‘b option
map_option f None = None
map_option f (Some z) = Some (f z)

The correctness properties (ignoring empty3) have easy inductive proofs:
isin3 t zs = isin (abs3 t) zs
invar3 t — abs3 (insert3 zs t) = insert zs (abs3 t)
invar3 t — abs3 (delete3 zs t) = delete zs (abs3 t)
invar3 t — invar3 (insert3 zs t)
invar3 t — invar3 (delete3 zs t)

We had already shown that 'a trie implements ‘a set and composing the abstraction
functions and correctness theorems to show that ‘a trie3 implements ‘a set is trivial.

Chapter Notes

Tries were first sketched by De La Briandais [1959] and described in more detail by

Fredkin [1960] who coined their name based on the word reTRIEval. However, “trie”

is usually pronounced like “try” rather than ‘“tree” to avoid confusion. Patricia tries

are due to Morrison [1968]. Ternary tries are due to Bentley and Sedgewick [1997].
Appel and Leroy [2023] present verified binary tries with an emphasis on efficiency.

13.1

Region Quadtrees 7

Tobias Nipkow

Quadtrees are a well-known data structure for the hierarchical representation of two-
dimensional space in computer graphics, image processing, computational geome-
try, geographic information systems, and related areas. There are many variants of
quadtrees and we concentrate on region quadtrees. They are particularly well suited
to the representation of two-dimensional images of pixels because of a potentially sig-
nificant compression of the image. As all hierarchical data structures, they support
parallel processing naturally. We consider the following variants:

e Basic region quadtrees (Section 13.1)

e Representation of block matrices via region quadtrees (Section 13.2)

e Region quadtrees generalized from two to k dimensions (Section 13.3)

In each case we verify a small selection of representative operations.

Region Quadtrees J

The best-known form of region quadtrees represent two-dimensional images of pixels
that can be black or white. The image is recursively subdivided into four quadrants
until all pixels in a quadrant have the same value. Consequently the image must be
of size 2™ x 2™ pixels. The number n is called the resolution of the quadtree. The
quadrants are numbered like this:

113
0|2

(13.1)

An image and its quadtree representation is shown in Figure 13.1. The gray nodes
in the tree represent subdivided squares.
The representation of quadtrees as a data type

datatype ‘a gtree = L ‘a | Q ('a gtree) ('a gtree) (‘a gtree) (‘a gtree)

161

https://isa-afp.org/entries/Region_Quadtrees.html
https://isa-afp.org/browser_info/current/AFP/Region_Quadtrees/Quad_Tree.html

Figure 13.1

162 Chapter 13 Region Quadtrees

OFRNWHRTIOY

=
01234567

Image and corresponding quadtree

supports leaves (constructor L) where all pixels have the same value of the parameter
type ’‘a. Black and white images as seen in Figure 13.1 are represented by boolean
quadtrees, i.e. where ‘a = bool.

The height of a quadtree is defined as usual:

height :: 'a gtree = nat
height (L) =0
he/ght (Q tg t1 to t3) = Max {helght to, helght t1, helght o, helght t3} +1

A quadtree is compressed if no subtree could be replaced by a leaf:

compressed :: 'a gqtree = bool

compressed (L) = True

compressed (Q to t1 to t3)

= (compressed t, A compressed t; A compressed t, A compressed ts A
(ﬂiE.tOZLx/\tl:to/\tgzto/\tgzto))

To keep our quadtrees compressed, we construct them with the compressing construc-
tor Qc, which assumes that its arguments are already compressed:

Qc :: 'a gtree = 'a qtree = 'a gtree = 'a qtree = 'a gtree

Qc (L zo) (L z1) (L z2) (L z3)

=(ifzg =21 AN z1 =22 A 2o = z3 then L z4
else Q (L zo) (L z1) (L z2) (L z3))

QC to ty ts ts = Qto ty ts ts

The following property of Qc is frequently used:

13.1.1

13.1 Region Quadtrees & 163

compressed t, A compressed t; A compressed t, A compressed t; —
compressed (Qc to t1 ta t3)

A quadtree does not specify the resolution of the image it represents. For example,
L True can represent a square of any size 2" x 2™. One can explicitly pair a quadtree
with its resolution, or one can keep both separate, as we will do. Either way, the tree
and the resolution have to match, i.e. height t < n, which one can see as an invariant
of the pair (¢, n). Otherwise ¢ cannot always represent an image of size 2™ x 2". For
example, Q (L True) (L True) (L True) (L False) does not represent an image of size
1 x 1 but requires at least 2 x 2 pixels. Therefore functions on quadtrees often take
the intended resolution n as an argument.

Functions get and put

Trees of type 'a gtree can be viewed as representations of mappings from (z, j)
coordinates to values of type ‘a. Thus the operation get for extracting a single pixel
doubles as the abstraction function:

get :: nat = 'a gtree = nat = nat = 'a

get (Lb) =0b

get (n + 1) (Qto t1 ta t3) 17

= get n (select (v < 2™) (j < 2™) tg t;1 ta t3) (¢ mod 27) (7 mod 2™)

select :: bool = bool = 'a = 'a = 'a = 'a = 'a

Se/eCt Ty to tl tg t3
= (if z then if y then ¢, else ¢, else if y then ¢, else t3)

The call get n t ¢ 7 returns the pixel at coordinate (z, 7) from the image of resolution
n represented by tree t. Function select selects one of four quadrants addressed by
two booleans. For an efficient implementation one should replace 2™ by something like
a table lookup or work directly with machine words.

Note that get n t ¢ 7 is only defined if height t < n. The reason for this was
discussed above. Partiality is the norm for functions that take both a quadtree and
its resolution. This is reflected in the functions’ properties, which are conditional (e.g.
the properties of put below).

Although get does not require ¢, j < 2™ (they are simply forced into that range via
mod 2™) this natural restriction is sometimes needed. The restriction is conveniently
expressed as (2, j) € §q n where

https://isa-afp.org/browser_info/current/AFP/Region_Quadtrees/Quad_Tree.html

13.1.2

164 Chapter 13 Region Quadtrees

sqn ={(z,7) |+ <2"Aj < 2™}
The converse of get is put, for setting a single pixel:

put :: nat = nat = 'a = nat = 'a gtree = ’a gtree
put a0(L)=La
putija(n+1)t
= modify (put (1 mod 2™) (j mod 2") a n) (v < 2™) (j < 2M)
(case tof L b= (L b, L b, L b, L b) | oto t1 tp t3 = (to, t1, ta, t3))

modify ::
('a gtree = 'a gtree)
= bool = bool = 'a gtree x 'a gtree x 'a gtree X 'a gqtree = 'a qtree
modify f z y (to, t1, ta, t3)
= (if z then if y then Qc (f to) t1 t; t3 else Qc to (f t1) t2 t3
else if y then Qc t; t1 (f t2) t3 else Qc tg t1 ty (f t3))

Note that when recombining quadrants on the way back up, Q is replaced by Qc to
take care of possible compressions.

Correctness is expressed by a triple of properties: functional correctness, preserva-
tion of resolution and compression.

heightt < n A (3, 5) € sqn A (¢, 7)) € sqn —
getn (putijant)d j = (ifid =i A5 =jthen aelse get nti j')
heightt < n — height (putijant) <n

height t < n A compressed t —s compressed (put i j a n t)

Note that the special case of bool gtree can be viewed as a representation of a set
of points: {(¢, 7) | (¢, 7) € s@ n A get n t i j}. Function get is also the ¢sin-test and
put combines insert and delete.

There is a wide range of interesting functions on quadtrees. What follows should
be considered a not quite random sample from a much larger space.

Boolean Operations

As remarked above, boolean quadtrees represent sets. It turns out that they support
binary set operations like U, N, etc. even more naturally than manipulation of indi-
vidual pixels. They can be expressed as a simple simultaneous traversal of both trees
and basic boolean operations on the leaves. As an example we consider intersection:

Figure 13.2

13.1.3

13.1 Region Quadtrees ¥ 165

Image and subimage

inter :: bool gtree = bool gtree = bool gtree

inter (L b) t = (if b then t else L False)

inter t (L b) = (if b then t else L False)

inter (Q sy sz s3 sa) (Q t1 ta t3 ta)

= Qc (inter sy t1) (inter so t2) (inter s3 t3) (inter sy t4)

Other set operations (union, difference, xor) can be defined analogously, with different
base cases.
The correctness theorems are easily stated and proved

height t; < n A heightt; < n —
getn (inter ty tz) 17 = (getnty 15 A getnty ij)

height (inter t; t2) < max (height t1) (height t,)
compressed t; A compressed t, — compressed (inter t; ts)

Exercise 13.1. Define and verify the operations of set union and set difference on
boolean quadtrees.

Extracting Subimages

As an example of a graphics-oriented function consider the extraction of a subimage
(a square of size 2™ x 2™) in the form of a new quadtree. Figure 13.2 shows such a
subimage with a red border.

Below we define a function get sq n t m 1 7 that takes a quadtree ¢ and its
resolution n and extracts a quadtree of the subimage of resolution m with lower left
corner at (%, 7). It is a bit tricky because it can involve subimages of varying sizes from
all four quadrants of a quadtree. Function get_sq recurses over ¢ and m as follows. If
the subimage is completely within one quadrant, get sq descends into that quadrant
(via select). Otherwise the subimage needs to be assembled from smaller subimages
from multiple quadrants.

https://isa-afp.org/browser_info/current/AFP/Region_Quadtrees/Quad_Tree.html

13.14

166 Chapter 13 Region Quadtrees

get_sq :: nat = 'a gtree = nat = nat = nat = 'a gtree

getsq (Lb) ~ =1L%b
get_sqnt0tj =L (getntey)
get sg(n+ 1) (Qtg ty tats) (m+1)ij
=(ifimod 2" + 2™ T1 < 2" A jmod 2" 4+ 2™t 1 < 27
then getf_sq n (select (i < 2™) (5 < 2") tg t1 t2 t3) (M + 1)
(¢ mod 2™) (5 mod 27)
else gf Qc (get_sq (n + 1) (Q tg t; ta t3) m) 152™)

gfgfijd=q(fe3) (fe (G +4d)(fE+d)J)(f(E+d)0G+d)

Note that in the else branch the four subimages do not necessarily come from all four
quadrants: the recursive calls are still on the full tree Q tg t; ty t3 but reduce the
size of the subimage until it fits into a single quadrant (or L is reached).

Although we have explained get sq graphically, it works for any quadtree, not just
boolean ones. Functional correctness is expressed like this: pixel (¢, j') in the image
extracted at (¢, 7) is the same as pixel (2 + ¢/, 7 + 7') in the original image.

height t <m AT +2M<2"AF+2M<2"A Y <2M A < 2™ —
getm (get.sqntmij)i j =getnt (i + 1)y +J)
height t < n A compressed t — compressed (get_sq n t m i j)

The first correctness theorems requires that the extracted subimage must lie com-

pletely within the original image. In contrast, the compression property is simple
enough that it does not require this precondition.

From Tree to Matrix and Back

Finally, we may also want to convert between quadtrees and some external format.
An obvious candidate is a matrix represented by a list of lists:

type_synonym ‘a mz = ‘a list list
Function mx_of converts a quadtree into a matrix:
mx_of :: nat = 'a gtree = ‘a mz

mx_of n (L z) = replicate 2™ (replicate 2™ z)
mX_Of (n + 1) (O to tl tg t3)

13.1 Region Quadtrees ¥ 167

= Qmx (mx_of n tg) (mx_of n t1) (mx_of n t3) (mMx_of n t3)

Qmx :: 'amz = 'a mz = 'a mz = ‘a mr = 'a mz

Qmx mzg mz, mzy mzz = map2 (@) mzy mz; @ map2 (@) mz, mzs
map2 f [z1,..-,Tm] [Y1,---,Yn] = [f 21 Y1, -+, f Tk yx] where k = min m n

For example, mx_of 1 (Q (L 0) (L 1) (L 2) (L 3)) = [[0, 1], [2, 3]], which we can
regard as a two dimensional image:

[0,1] ,
2,3]]
This is a 90° rotation of (13.1) and Figure 13.1 where (0,0) is the lower left corner,
now it is the upper left one. This is necessary because we want to address a point
(¢,7) in some mz by mz ! ¢ ! 7. With the above definition of mx_of this works. For
example, [[0, 1], [2, 3]] 10! 1 =1and [[0, 1], [2, 3]] ! 1 ! 0 = 2. In general we can
prove that indexing the matrix yields the same value as function get:
heightt <n A(:,5) €sgn — mx_ofnt!ilj=getntij

Conversely, we can also translate a matrix into a quadtree:

gt_of :: nat = '‘a mz = 'a gtree
gt_of (n + 1) mz
= (let (mzq, mz1, mza, mz3) = decomp n mz
in Qc (qt_of n mzg) (qt_of n mz,) (gt_of n mzsy) (qt_of n mz3))
gt of0[[z]] =Lz

decomp :: nat = 'a mz = '‘amz X 'a mz X 'a mr X 'a mz

decomp n mz
= (let mzo1 = take 2™ mz; mz,3 = drop 2" mz
in (map (take 2™) mzg1, map (drop 2™) mzg1, map (take 2™) mzas,
map (drop 2™) mz23))

Function qgf_of is correct w.r.t. gef and yields a compressed tree:
sg_mxnmz A (i,7) €Esqn — getn (gtofnmz) tj=mz!i!lj
sq_mx n mx — compressed (gt_of n mz)

where sg_mx n mz = (|mz| = 2™ A (Vzseset mz. |zs| = 27)).

https://isa-afp.org/browser_info/current/AFP/Region_Quadtrees/Quad_Tree.html

13.2

168 Chapter 13 Region Quadtrees

The matrix correctness proofs depend on the following auxiliary lemmas:
height t < n — sq_mx n (mx_of n t)
sq_mx n mz — height (gt_of n mz) < n
height (Q to t1 t2 t3) < n —
getn (Qctg ty tats) g =getn (Qtg ty tats) iy
Exercise 13.2. Define a function
gt_of_fun :: (nat = nat = 'a) = nat = 'a gtree

that converts a matrix represented as a function into a quadtree of the given resolution
and prove its functional correctness

(i,7) € sqn — getn (qt_of funfn)ij=7F1ij

Matrix Quadtrees

This section is not about quadtrees per se but about their usage. The application
is the efficient (because easily parallelizable) implementation of matrix operations. It
is well-known that many operations on matrices can be expressed very succinctly on
block matrices, which are typically depicted like this:

A| B
C|D

The correspondence to quadtrees is obvious and we will see how matrix addition and

multiplication can be implemented easily on quadtrees.
Our abstract type of (real) matrices is simply a function from indices to real
numbers:

type_synonym ma = nat = nat = real
We have chosen a more abstract model of matrices than the one in Section 13.1.4 be-
cause the purpose is to state correctness properties and not to implement algorithms.
Functions are in general infinite objects, matrices are restricted to finite dimensions.
We model this by requiring matrices to be 0 outside of their dimensions:

sqgmana=V15.2"<i1Vv2"<j3-—a15=0

The restriction is required for many nontrivial theorems about matrices, but luckily
we get away without requiring it in what follows.

https://isa-afp.org/browser_info/current/AFP/Region_Quadtrees/Quad_Matrix.html

13.2.1

13.2 Matrix Quadtrees & 169

How to convert a quadtree into such a matrix is obvious, except that L z has more

than one reasonable interpretation. We interpret L z as the diagonal matrix with z
everywhere on the diagonal. Thus the abstraction function ma is defined like this:

ma :: nat = real gtree = ma
man(Lz)=Dncz

ma (n + 1) (Q to t1 ta t3)

= Qman (manty) (Manty) (Manty) (Mants)

D :: nat = real = ma

D nz = mk_sqn (Mij.if i« = jthen z else 0)

mKk_sq :: nat = ma = ma

mk_sqna=(Xij. ifi <2® A j < 2" then a i jelse 0)

Qma::nat:ma:>ma:>ma:>ma:>ma
Qmanabcd
=(Aj.ifi <2"thenif j <2"thenaijelse bi (j — 27)
else if 7 < 2" then ¢ (1 — 2") jelse d (1 — 2™) (j — 2™))

As before, we need to supply the resolution n to obtain a matrix of dimension 2™ x 2%
and to restrict the diagonal matrix D to a square. Note that the correspondence of
the four subtrees of Q to the submatrices is not like in (13.1) but like this,

01
213

assuming the standard notation for matrices, where the upper left corner is the element
with index (0, 0).

Addition and Multiplication of Matrices

First we define matrix addition and multiplication on abstract functional matrices,
then we implement both operations on quadtrees and finally we show the correctness
of the implementation via the abstraction function ma.

On the level of matrices, addition and multiplication are defined as in mathematics:

https://isa-afp.org/browser_info/current/AFP/Region_Quadtrees/Quad_Matrix.html

170 Chapter 13 Region Quadtrees

(+) = ma = ma = ma

a+b=(Aij.a17+b1ij)

mult_ma :: nat = ma = ma = ma
a*xpbb=(MN7. > k=0.<2™ a1k -bkj)

Because the dimension of a matrix is implicit, but matrix multiplication depends on
it, it is supplied as a subscript in a *, .

The following lemma collection is easily proved and is used implicitly below:

Dnz+Dny=Dn(z+vy)
DnO0+a=a
a+Dnl0=a
Dn0xy,a=Dno0

a*, Dn0=Dno
Dnzxp, Dny=Dn (z-vy)

13.2.2 Addition and Multiplication of Quadtrees
Matrices are represented by quadtrees over real numbers. As before, we have Qc, a

smart version of @ that is used when creating a quadtree. It compresses the four
quadrants if they form a diagonal:

Qc :: real gtree = real gtree = real gtree = real qtree = real qtree
Qc (L zo) (L z1) (L z2) (L z3)
=(ifa:1=0/\:z:2=0/\:ro=x3thean0

else Q (L zo) (L z1) (L z2) (L z3))
QCto tl tz t3 = Qto tl tg t3

A quadtree is compressed if it does not contain a compressible Q:

compressed :: real qtree = bool

compressed (L) = True

compressed (Q (L zo) (L z1) (L z2) (L z3))
=(-(z1=0Az3 =0A zg = z3))

compressed (Q tp t1 ta t3)

= (compressed t, A compressed t; A compressed t, A compressed t3)

13.2 Matrix Quadtrees & 171

Addition and multiplication on quadtrees is defined as follows:

(®) :: real gtree = real qtree = real gtree

QSO S1 Sz S3 @ Oto t] ity t3 = Qc (So (&) to) (81 @ tl) (32 @ tg) (33 (&) tg)
LzeLy=1L(z+ vy)

L(E@Qto t; to t3:QC(LIEBt0) t1 tao (Lm@tg)

Qto tl tg tg@Liv:QC(to@LZE) tl tg (tg@L:ZI)

(®) :: real gtree = real gtree = real gtree

Q sp s1 52 83 @ Qtg t1 t2 ts

=QCc(s0®t) ®s1®tz) (50® 1t & s1® ts) (52 ® Lo @ s3 @ tz)
(52 ® t1 ® s3 ® t3)

Lz@ Qtotitats=Qc(Lz®t) (Lz®t) (Lz®t)(Lz® ts)

Qtot1tatz3®Lzc=Qc(to®Lz) (t1®Lz)(t2®@Lz)(ts ® L)

Lz@Ly=L(z-y)

The Q-Q and L-L cases follow the standard definition of how block matrices are added
and multiplied. The Q-L and L-Q cases are dealt with by implicitly expanding L z to
Q (L z) (L0O)(LO) (L z)and following the Q-Q case while simplifying addition and
multiplication with 0.

Correctness is expressed by showing that the quadtree operations correctly imple-
ment the abstract matrix operations via the abstraction function ma:

height s < n A heightt <n — man (s@®t)=mans+ mant
height s < n A heightt <n — man(s®t)=mansx*,mant
Moreover, both operations preserve compression:
compressed s A compressed t — compressed (s & t)
compressed s A compressed t — compressed (s @ t)
The proofs employ the following lemmas:
ma(n + 1) (Qc tg ty ta t3) = ma(n + 1) (Q to t1 t2 t3)

Qmanabcd+ Qmana' b ¢ d
=Qman(a+a)(b+?b)(c+c)(d+d)

D(n+1l)z+Qmanabcd=Qman(Dnz+a)bc(Dnz + d)

compressed (Qc tg t ts t3)
= (compressed to A compressed t; A compressed t, A compressed t3)

https://isa-afp.org/browser_info/current/AFP/Region_Quadtrees/Quad_Matrix.html

Figure 13.3

13.3

172 Chapter 13 Region Quadtrees

= o
"

|_JEEmy |

O N W

0123

Image and corresponding k-d tree

Qmanabcecd+*n 1 Qmanad b ¢ d
=Qman (a*pa + b*pc)(a*pb + bxpd)(c*pa + dx*pc)
(c xp b + d %, d')

D(n+1l)z=Qman (Dnz)(Dn0)(Dn0) (Dnz)
helghl‘ (QC tg t1 to tg) < helght (Q to t1 to t3)
height (s & t) < max (height s) (height t)
) (

height (s ® t) < max (height s) (height t)

k-Dimensional Region Trees 7

The direct generalization of quadtrees to k-dimensional space is to subdivide a
hypercube of resolution n + 1 into 2 subcubes of resolution n. We subdivide space
with binary splits, dimension by dimension. This means we subdivide a hypercube into
two boxes (or hyperrectangles) along the first dimension, and then subdivide those
along the second dimension, and so on, until we reach the last dimension and restart,
or a homogeneous box has been obtained. If we start with a hypercube and cycle
through all dimension, we end up with another hypercube, but if we stop beforehand,
it is some box. An example is shown in Figure 13.3. The first split is always vertical
(in red), the second one horizontal (in green). The order or the subtrees is left-right
and below-above the split, i.e. in increasing order of coordinates. After the first split,
the right rectangle is homogeneous and we do not split it any further.

A k-d (region) tree is a binary tree whose leaves are boxes:

datatype 'a kdt = Box ‘a | Split ('a kdt) (‘a kdt)

Subtrees of a binary tree can be addressed by a sequence of left-right turns, which
we represent as a bool list, where False represents left.

https://isa-afp.org/browser_info/current/AFP/Region_Quadtrees/KD_Region_Tree.html

13.3.1

13.3.2

13.3 k-Dimensional Region Trees @ 173

subtree :: 'a kdt = bool list = 'a kdt

Subtree t [| =t
subtree (Box z) = Box z
Subtree (Split 1 r) (b # bs) = subtree (if b then r else [) bs

This is the generalization of function select for quadtrees.

Compression
A k-d tree is compressed if no two adjacent boxes can be merged:

compressed :: 'a kdt = bool

compressed (Box) = True
compressed (Split I r)
= (compressed | A compressed r A (b. | = Box b A r = Box b))

To keep k-d trees compressed, we introduce the compressing constructor SplitC:

SplitC :: 'a kdt = 'a kdt = 'a kdt

SplitC (Box by) (Box bs)

= (if b; = b, then Box b; else Split (Box b;) (Box bs))
SplitC L r = Splitl r

The following useful properties are easily proved:

compressed | A compressed r —» compressed (SplitC 1 r)

1 < |bs| — subtree (SplitC i r) bs = subtree (Split I r) bs

Functions get and put

We generalize the idea of the abstraction function for quadtrees. A k-d tree of
resolution n represents a k-dimensional hypercube of side-length 2™ which in turn
can be seen as a function from coordinates in k-dimensional space to type 'a, where
we represent a coordinate by a nat list (of length k). This function from coordinates
to ‘a is defined recursively over the resolution. A coordinate [i1, ..., @] = nat list
in a k-dimensional hypercube of resolution n + 1 is located in a sub-hypercube of
resolution n. The sub-hypercube is identified by the top-bits of the coordinate, i.e.
[t1 < 27, ..., 1k < 2™] iz bool list. On the kdt level it is the subtree addressed by this

https://isa-afp.org/browser_info/current/AFP/Region_Quadtrees/KD_Region_Tree.html

174 Chapter 13 Region Quadtrees

list. The coordinate of the point in the sub-hypercube is [¢; mod 27, ..., 15 mod 27|
2 nat list. This is the full definition of the abstraction function get:

get :: nat = 'a kdt = nat list = ‘a

get (Boxb) =b

get (n + 1) tps

= get n (subtree t (map (Ai. 1 < 2™) ps)) (map (Ai. ¢ mod 2™) ps)

Function put updates a single point:

put :: nat list = 'a = nat = 'a kdt = 'a kdt

put a0 (Box)= Boxa

putpsa (n+ 1)t

= modify (put (map (Ai. i mod 2™) ps) a n) (map (Ai. © < 2™) ps) ¢

modify :: ('a kdt = 'a kdt) = bool list = 'a kdt = 'a kdt
modify f [t =f1t
modify f (b # bs) (Split I r)
= (if b then SplitC | (modify f bs r) else SplitC (modify f bs 1) r)
modify f (b # bs) (Box a)
= (let t = modify f bs (Box a)

in if b then SplitC (Box a) t else SplitC t (Box a))

Note that when recombining quadrants on the way back up, Split is replaced by SplitC
to take care of possible compressions.
Just like for quadtrees, there are three correctness properties for put:

height t < k - n A ps € cube kn A ps' € cube k n —

get n (put ps a n t) ps' = (if ps’ = ps then a else get n t ps’)
height t < n - |ps| — height (put ps ant) < n - |ps|

height t < |ps| - n A compressed t — compressed (put ps a n t)

Additional lemmas are needed because subtree and modify are recursive:

(Vt. height t < nk — height (f t) < nk) A height t < |bs| + nk —
height (modify f bs t) < |bs| + nk

|bs'| = |bs| —

subtree (modify f bs t) bs’

= (if bs'’ = bs then f (subtree t bs) else subtree t bs')

13.3.3

13.3 k-Dimensional Region Trees & 175

compressed t A compressed (f (subtree t bs)) —
compressed (modify f bs t)

compressed t — compressed (subtree t bs)

For quadtrees, the upper bound on the height was n. Now it is £ - n because each
step from resolution n+1 to n can take up to k& Splits.

Boolean Operations
Boolean combinations of boolean k-d trees are straightforward generalizations of their
quadtree relatives and we show only union:

union :: bool kdt = bool kdt = bool kdt
union (Box b) t = (if b then Box True else t)

union t (Box b) = (if b then Box True else t)
union (Split l; 1) (Split s T2) = SplitC (union 1y 13) (union rq 7r3)

Functional correctness

max (height t1) (height t;) < |ps| - n —
get n (union t;, t;) ps = (get n t1 ps V get n ty ps)

requires a simple lemma for its proof:
subtree (union t; t;) bs = union (subtree t; bs) (subtree t, bs)
Moreover, we have the same height and compression properties as for quadtrees:
height (union t; t2) < max (height t,) (height t»)
compressed t; A compressed t, —s compressed (union t; ts)

Chapter Notes

Samet [1984, 1990] and Aluru [2017] have written surveys of the many variations of
quadtrees. Wise [1985, 1986, 1987| has published extensively about the representation
of block matrices via quadtrees. We follow Wise’s initial [Wise 1987] interpretation of
leaves as diagonal matrices.

Quadtrees are obviously a special case. There are also Octrees [Meagher 1982], a
version for 3-dimensional space. The generalization to k£ dimensions is due to Bentley
[1975] and Friedman et al. [1977], who invented k-d trees for storing sets of k-
dimensional points. Rau [2019] has formalized k-d trees. In Section 13.3 we transfer
k-d trees to region data.

https://isa-afp.org/browser_info/current/AFP/Region_Quadtrees/KD_Region_Tree.html

Part 111

Priority Queues

177

Figure 14.1

Priority Queues [~

Tobias Nipkow

A priority queue of linearly ordered elements is like a multiset where one can insert
arbitrary elements and remove minimal elements. Its specification as an ADT is shown
in Figure 14.1 where Min_mset m = Min (set_mset m) and Min yields the minimal
element of a finite and non-empty set of linearly ordered elements.

ADT Priority_ Queue =

interface

empty = 'q

insert :: 'a = 'g = g
del_min :: 'q = 'q
get_min = 'qg = 'a

abstraction mset :: 'q = 'a multiset
invariant invar :: 'q = bool

specification

mset empty = {} (empty)
nvar empty (empty-inv)
tnvar ¢ — mset (insert z q) = mset g + {z} (insert)
tnvar ¢ — invar (insert z q) (insert-inv)

tnvar ¢ A mset g # {}
— mset (del_min q) = mset ¢ — {get_min q} (del_man)
tmvar ¢ A mset ¢ # {} — invar (del_min q) (del_mian-inv)

tnvar ¢ A mset ¢ #{} — get_min ¢ = Min_mset (mset q) (get_man)

ADT Priority_ Queue

Mergeable priority queues (see Figure 14.2) provide an additional function merge
(sometimes: meld or union) with the obvious functionality.

Our priority queues are simplified. The more general version contains elements that
are pairs of some item and its priority.

179

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Priority_Queue_Specs.html

Figure 14.2

14.1

180 Chapter 14 Priority Queues

ADT Priority_ Queue_ Merge = Priority_ Queue +
interface
merge :: 'g = g = 'q

specification
invar g1 A tnvar g — mset (merge q1 g2) = mset g1 + mset g
invar g1 A tnvar gz — invar (merge q1 gz)

ADT Priority_ Queue_ Merge

Exercise 14.1. Give a list-based implementation of mergeable priority queues with
constant-time get_ min and del_ man. Verify the correctness of your implementation

w.r.t. Priority_ Queue_ Merge.

Heaps U
A popular implementation technique for priority queues are heaps, i.e. trees where
the minimal element in each subtree is at the root:

heap :: 'a tree = bool

heap () = True
heap (I, m, r) = ((Vz€set_tree | U set_tree r. m < z) A heap | A heap r)

Function mset_tree extracts the multiset of elements from a tree:

mset_tree :: 'a tree = 'a multiset

mset_tree () = {}
mset_tree (I, a, vy = {a} + mset_tree | + mset_tree r

When verifying a heap-based implementation of priority queues, the invariant invar
and the abstraction function mset in the ADT Priority Queue are instantiated
by heap and mset_tree. The correctness proofs need to talk about both multisets
and (because of the heap invariant) sets of elements in a heap. We will only show
the relevant multiset properties because the set properties follow easily via the fact
set_mset (mset_tree t) = set_tree t.

Both empty and get_ min have obvious implementations:

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Heaps.html

14.1 Heaps ¥ 181

empty = ()

getmin{ ,a,)=a

If a heap-based implementation provides a merge function (e.g. skew heaps in
Chapter 22), then insert and del_min can be defined like this:

insert ¢ t = merge ((), z, ()) t

del_min {) = ()
l’ —

del_min { , Ty =mergelr

Note that the following tempting definition of merge is functionally correct but
leads to very unbalanced heaps:

merge () t =t
merget () =t
merge (<ll, ai, T1) = tl) (<lg, Qag, 7‘2) =: tg)

)
= (lf a1 < as then (ll, ai, merge rq t2> else (lg, az, merge t; 7‘2>)

Many of the more advanced implementations of heaps focus on improving this
merge function. We will see examples of this in the next chapter on leftist heaps, as
well as in the chapters on skew heaps and pairing heaps.

Exercise 14.2. Show functional correctness of the above definition of merge (w.r.t.
Priority_ Queue_ Merge) and prove functional correctness of the implementations
of insert and del_min (w.r.t. Priority_ Queue).

Exercise 14.3. Define a function /ist from a heap to a sorted list of its elements
and prove mset (list t) = mset_tree t and heap t — sorted (list t). Also prove
that /ist has at most quadratic complexity, i.e. Tjgr t < |t]1? (possibly with additional
constants).

Exercise 14.4. Let xs be a list of linearly ordered elements.

e Prove 3t. inorder t = zs A heap t.

e Prove that this tree ¢ is unique if distinct zs.

e Define a function heap_of that constructs ¢ from zs and prove
inorder (heap_of zs) = zs and heap (heap_of zs)

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Heaps.html

182 Chapter 14 Priority Queues

Chapter Notes

The idea of the heap goes back to Williams [1964] who also coined the name. In
imperative implementations, priority queues frequently also provide an operation
decrease__key: given some direct reference to an element in the priority queue,
decrease its element’s priority. This is not completely straightforward in a functional
language. Lammich and Nipkow [2019] present an implementation, a Priority Search
Tree.

Leftist Heaps [~

Tobias Nipkow

Leftist heaps are heaps in the sense of Section 14.1 and implement mergeable priority
queues with efficient (logarithmic) access operations. The key idea is to maintain the
invariant that at each node the minimal height of the right child is < that of the left
child. We represent leftist heaps as augmented trees that store the minimal height in
every node:

type_synonym ‘a lheap = (‘a x nat) tree

mht :: ‘a lheap = nat

mht () = 0
mht (_,(_,m),)=n

There are two invariants: the standard heap invariant (on augmented trees)

heap :: (a x 'b) tree = bool

heap () = True

heap (i, (m, _), r)

= ((Vzeset_tree | U set_tree r. m < z) A heap I A heap)

and the structural invariant that requires that the minimal height of the right child is
no bigger than that of the left child (and that the minimal height information in the
node is correct):

Itree :: 'a lheap = bool

True

Itree () =
L ,n),ry=(mhr<mhlAn=mhr+ 1A lireel A ltree r)

Itree

Thus a tree is a leftist tree if for every subtree the right spine is a shortest path from
the root to a leaf. Pictorially:

183

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Leftist_Heap.html

184 Chapter 15 Leftist Heaps

Now remember 2™t < |t|;, i.e. mh ¢t < Ig |t|;. Because the expensive operations
on leftist heaps descend along the right spine, this means that their running time is
logarithmic in the size of the heap.

Exercise 15.1. An alternative definition of leftist tree is via the length of the right
spine of the tree:

rank :: 'a tree = nat
rank () =0
rank (_, ,r)y=rankr +1

Prove that the definition by rank and by mh define the same trees:

ltree_by rank t = ltree_by mh t

ltree_by :: ('a tree = nat) = ’'a tree = bool

ltree_by () = True
tree_by f (I, ,ry=(r <flAltree_by fl A ltree_by f r)

It turns out that we can also consider leftist trees by size rather than height and
obtain the crucial logarithmic bound for the length of the right spine. Prove

ltree_by (At. [t]) t — 2@kt < |t + 1

15.1 Implementation of ADT Priority Queue Merge
The key operation is merge:

merge :: 'a lheap = 'a lheap = 'a lheap
merge () t =t
merge t () =t
merge ((l1, (a1, n1), r1) =: t1) ({l2, (a2, n2), T2) =: t2)
= (if a; < a then node I; a; (merge 7y ts)
else node I; a; (merge t; 72))

15.2 Correctness 185

node :: 'a lheap = ’‘a = 'a lheap = 'a lheap

nodelar
= (let mhi = mht I, mhr = mht r
in if mhr < mhl then (I, (a, mhr + 1), r)
else (r, (a, mhl + 1), 1))

Termination of merge can be proved either by the sum of the sizes of the two
arguments (which goes down with every call) or by the lexicographic product of the
two size measures: either the first argument becomes smaller or it stays unchanged
and the second argument becomes smaller.

As shown in Section 14.1, once we have merge, the other operations are easily
definable. We repeat the definitions of those operations that change because this
chapter employs augmented rather than ordinary trees:

get_min :: 'a lheap = 'a

get.min (_, (a,),) =a

insert :: 'a = 'a lheap = 'a lheap
insert z t = merge {{), (z, 1), ()) t

15.2 Correctness

The above implementation is proved correct with respect to the ADT Prior-
ity Queue_ Merge where

mset_tree :: ('a x 'b) tree = 'a multiset

{

mset_tree () =
I, (a,), ry ={a} + mset_tree | + mset_tree r

mset_tree (

invart = (heap t A ltree t)

Correctness of get_min follows directly from the heap invariant:
heap t At # () — get_min t = Min (set_tree t)
From the following inductive lemmas about merge

mset_tree (merge t; t;) = mset_tree t; + mset_tree t,

15.3

15.4

186 Chapter 15 Leftist Heaps

Itree | A ltree v — ltree (merge | 1)

heap I A heap r — heap (merge | r)
correctness of insert and del_min follow easily:

mset_tree (insert z t) = mset_tree t + {z}
mset_tree (del_min t) = mset_tree t — {get_min t}
Itree t — ltree (insert z t)

heap t — heap (insert z t)

Itree t — lfree (del_min t)

heap t — heap (del_min t)

Of course the above proof (ignoring the /free part) works for any mergeable priority
queue implemented as a heap.

Running Time
The running time functions are shown in Appendix B.5. By induction on the compu-
tation of merge we obtain

ltree L A ltree 1 — Tmerge L < mhl+ mhr + 1
With 2™t < |¢|; it follows that

ltree I A lfree 1 — Tmerge L < Ig || + Ig |7y + 1 (15.1)
which implies logarithmic bounds for insertion and deletion:

ltree t — Tipserr zt < Ig |t]1 + 2
ltree t — Tgermin t <219 |t); + 1

The derivation of the bound for insertion is trivial. The proof of the deletion bound
is a simple case analysis (on t).

Converting a List into a Leftist Heap

We follow the pattern of bottom-up merge sort (Section 2.5) and of the conversions
from lists to 2-3 trees (Section 7.3). In both cases we repeatedly pass over a list
of objects, merging pairs of adjacent objects in each pass. However, the complexity
differs: in merge sort, each merge takes linear time, which leads to the overall
complexity of O(nlgn); when converting a list into a 2-3 tree, each combination of
two trees takes only constant time, which leads to a linear overall complexity. So what
happens if the merge step takes logarithmic time, as in (15.1)? But first the algorithm,
which is very similar to merge sort:

15.4 Converting a List into a Leftist Heap 187

merge_adj :: 'a lheap list = 'a lheap list

merge_adj [| = []
merge_adj [t] = [t]
merge_adj (t1 # t» # ts) = merge t; t2 # merge_adj ts

merge_all :: 'a lheap list = 'a lheap

merge_all [| = ()
merge_all [t] =t
merge_all ts = merge_all (merge_adj ts)

lheap_list :: 'a list = 'a lheap
lheap_list zs = merge_all (map (Az. (), (z, 1), ())) zs)

Termination of merge_all follows because merge_adj decreases the length of the list
if |ts| > 2:

|merge_adj ts| = (|ts| + 1) div 2
Functional correctness is straightforward: from the inductive properties

Viteset ts. heap t) — (Vteset (merge_adj ts). heap t)
Vteset ts. heap t) — heap (merge_all ts)

Vieset ts. ltree t) — (Vteset (merge_adj ts). ltree t)
Vteset ts. ltree t) — ltree (merge_all ts)

(
(
(
(

Y., (image_mset mset_tree (mset (merge_adj ts)))
= >, (image_mset mset_tree (mset ts))
mset_tree (merge_all ts) =). (mset (map mset_tree ts))

it follows directly that lheap_list zs yields a leftist heap with the same multiset of
elements as in s:

heap (lheap_list ts)
Itree (lheap_list ts)
mset_tree (lheap_list zs) = mset xs

The running time analysis is more interesting. We only count the time for merge
to keep things simple.

188 Chapter 15 Leftist Heaps

Tmerge_adj == 'a lheap list = nat

Tmerge_adj [] =0
Tmerge_adj [_] =0
Tmerge_adj (t1 # ta # ts) = 7—merge t1 to + Tmerge_adj ts

The remaining time functions are displayed in Appendix B.5.

To simplify things further we assume that the length of the initial list zs and
thus the length of all intermediate lists of heaps are powers of 2 and in any of the
intermediate lists all heaps have the same size.

Because the complexity of merge is logarithmic in the size of the two heaps (15.1),
the following upper bound for merge_adj follows by an easy computation induction:

(Vteset ts. ltree t) A (Vieset ts. |t| = n) —
Tmerge_adj tS S (|t$| diV 2) - Tm n

where Tmn =2 -lg (n + 1) + 1.
The complexity of merge_all can be expressed as a sum:

(Vteset ts. ltree t) A (Vicset ts. [t| = n) A |ts| = 28 —

k i o

Tmerge_an ts < (35—, 28— % Tm (20— 1 . n)) (15.2)
Each summand is the complexity of one merge_adj call on heap lists whose lengths
go down from 2% t0 2 and whose heaps go up in size from n to 2k =1 . n. The proof

is by induction on the computation of merge_all.
The following lemma will permit us to find a closed upper bound for the sum in
(15.2). The proof is a straightforward induction on k.

Lemma 15.1. (33F_ 2k~ *". 2. i+1)=5-2"-2.k -5

3

Now we can upper-bound Tjneap_jist as follows if |zs| = 2k:

Tineap_iist 8 = Tmerge_an (Map (Az. (), (z, 1), ())) zs)

< okt Tm(2r Y by (15.2) (where n = 1) and |zs| = 2%
<YYo 2P t@2ilge-2t)+

=Sk _ k-2 04 1)

=5.28_ 2.k _5 by Lemma 15.1

Thus (15.2) implies that Tjneap_iist s is upper-bounded by a function linear in |zs|:
|zs| = 2k — Tiheap_list s < 5 - |zs| — 2 - Ig |zs|

The assumption |zs| = 2k merely simplifies technicalities. With more care one can
show that Tineap_sist € O(n) holds for all inputs of length n; the term — 2 - Ig |zs]| is
irrelevant because O(n —lgn) = O(n).

15.4 Converting a List into a Leftist Heap 189

Finally note that the above complexity analysis has nothing to do with leftist
heaps or priority queues and works for any merge function of the given logarithmic
complexity. Our proofs generalize easily. One can even go one step further and show
that merge_all has linear complexity as long as merge has sublinear complexity. This
is a special case of the master theorem [Cormen et al. 2009] for divide-and-conquer
algorithms, because merge_all is just divide-and-conquer in reverse. However, proving
even this special case (let alone the full master theorem) is much harder than the proofs
above.

Exercise 15.2. Define a tail-recursive variant of merge_adj
merge_adj2 :: 'a lheap list = 'a lheap list = 'a lheap list

(with the same complexity as merge_adj, in particular no (@)) and define new variants
merge_all2 and lheap_list2 of merge_all and lheap_list that utilize merge_adj2.
Prove functional correctness of /heap_list2:

mset_tree (lheap_list2 zs) = mset zs
heap (lheap_list2 ts) Itree (lheap_list2 ts)

Note that merge_adj2 [| ts = merge_adj ts is not required.
Chapter Notes

Leftist heaps were invented by Crane [1972]. Another version of leftist trees, based on
weight rather than height, was introduced by Cho and Sahni [1998].

16.1

Priority Queues via Braun
Trees (7

Tobias Nipkow

In Chapter 11 we introduced Braun trees and showed how to implement arrays. In
the current chapter we show how to implement priority queues by means of Braun
trees. Because Braun trees have logarithmic height this guarantees logarithmic running
times for insertion and deletion. Remember that every node (I, z, r) in a Braun tree
satisfies |I| = |r| V |I| = |r] + 1 (%).

Implementation of ADT Priority Queue
We follow the heap approach in Section 14.1. Functions empty, get_min, heap and
mset_tree are defined as in that section.

Insertion and deletion maintain the Braun tree property (%) by inserting into the
right (and possibly smaller) child, deleting from the left (and possibly larger) child,
and swapping children to reestablish (x).

Insertion is easy and clearly maintains both the heap and the Braun tree property:

insert :: 'a = 'a tree = 'a tree

insert a () = (), a, ())
insert a (I, z, T)
= (if a < z then (insert z r, a, [) else (insert a r, z, 1))

To delete the minimal (i.e. root) element from a tree, extract the leftmost element
from the tree and let it sift down to its correct position in the tree d la heapsort:

del_min :: 'a tree = 'a tree

del_min () = ()
del_min (), _, _) = ()
del_min (I, , r) = (let (y, I') = del_left lin sift_down r y l')

191

https://isa-afp.org/browser_info/current/AFP/Priority_Queue_Braun/Priority_Queue_Braun.html
https://isa-afp.org/browser_info/current/AFP/Priority_Queue_Braun/Priority_Queue_Braun.html

192 Chapter 16 Priority Queues via Braun Trees

del_left :: 'a tree = 'a x 'a tree

del_left ((), z, r) = (z, 7)
del_left (I, z, ry = (let (y, ') = del_left Lin (y, (r, z, I')))

sift_ down :: 'a tree = 'a = 'a tree = 'a tree

sift_down () a = ({), a, ())
sift_down ((), z,) a ()
= (if a < s then ({(), z, (), a, ()) else ((0), e, O), @, ()
sift_down ((l1, 1, r1) =: t1) a ((l2, z2, T2) =: t3)
= (if a < z1 A a < z, then (¢, a, t5)
else if z; < z; then (sift_down Iy a r1, z1, t2)
else (t1, z2, sift_down I a r3))

In the first two equations for sift_down, the Braun tree property guarantees that the
“ " arguments must be empty trees if the pattern matches.

Termination of sift_down can be proved with the help of a measure function
depending on the two tree arguments ! and r. A simple measure that works is |I| + |7|
but it is overly pessimistic. A better measure is max (h l) (h r) because it is a tight
upper bound on the number of steps to termination. Thus it yields a better upper

bound for the later running time analysis.

16.2 cCorrectness
We outline the correctness proofs for insert and del_min by presenting the key lemmas.
Correctness of insert is straightforward:
linsert z t| = |t| + 1
mset_tree (insert z t) = {z} + mset_tree t
braun t — braun (insert z t)
heap t — heap (insert = t)

Correctness of del_min builds on analogous correctness lemmas for the auxiliary

functions:
del_leftt = (z, t') ANt £ () — mset_tree t = {z} + mset_tree t'
del_leftt = (z, t') Nt £ () AN heap t — heap t'
del_leftt = (z, t') ANt #£ () — [t = + 1 (16.1)
del_leftt = (z, t') At # () A braun t — braun t' (16.2)

braun (l, a, r) — |sift_.down lar| = |l + |r| +1

16.3

16.3 Running Time 193

braun {l, a, vy — braun (sift_down l a r)

braun (l, a, r) —

mset_tree (sift_down 1 a) = {a} + (mset_tree | + mset_tree r)
braun {l, a, r) A heap I A heap r — heap (sift_down [a 7)

braun t — braun (del_min t)
heap t A braun t — heap (del_min t)
braun t A t £ () — mset_tree (del_min t) = mset_tree t — {get_min t}

Running Time
The running time functions are shown in Appendix B.6. Intuitively, all operations are
linear in the height of the tree, which in turn is logarithmic in the number of elements
(see Section 11.2).

Upper bounds for the running times of insert, del_left and sift_down are proved
by straightforward inductions:

Tinsert at < ht +1

t# () — ToeLent < ht (16.3)

braun (l, a, 7y — Tsitt down lz T < max (hi) (hr)+1 (16.4)
The analysis of del_min requires a bit more work, including another auxiliary induc-
tive fact:

del_leftt =(z, YNt # () — ht' < ht (16.5)

Lemma 16.1. braunt — Tgei min t < 2 - h't

Proof by induction on t. The base case is trivial. If ¢ = (I, z, r), the case [= ()
is again trivial. Assume [# (). The call of del_min must yield a pair: del_left | =
(y, U'). Now we are ready for the main derivation:

Toel_min t = Tael_teft L + Tsitt_down 7 Y U

< height I + Tsitt_down T y U by (16.3)
In order to upper-bound Tgig gown T ¥ !’ via (16.4), we need braun (r, y, l'), which
follows from braun t via (16.2) and (16.1). Thus

<hl+max (hr) (hl)+

<hl+max (hr) (hl) + by (16.5)

§2-max(hl)(hr)+1§2-ht+1 O

Chapter Notes
Our implementation of priority queues via Braun trees is due to Paulson [1996] who
credits it to Okasaki.

Binomial Priority Queues 7

Peter Lammich

Binomial priority queues are another common implementation of mergeable priority
queues that supports efficient (O(lgn)) insert, get_min, del_min, and merge opera-
tions.

The basic building blocks of a binomial priority queue are binomial trees, which
are defined recursively as follows: a binomial tree of rank r is a node with 7 children
that are binomial trees of ranks » — 1, ..., 0, in that order. This is an example of a

It can be shown that a binomial tree of rank r has G) nodes on level ! (see

binomial tree of rank 3:

Exercise 17.1). Hence the name.
To define binomial trees, we first define a more general datatype and the usual
syntax for nodes:

datatype 'a tree = Node nat 'a ('a tree list)
(r, z, ts) = Node r z ts

Apart from the list of children, a node stores a rank and a root element:
rank (r, z, ts) = r root (r, z, ts) = ¢

This datatype contains all binomial trees, but also some non-binomial trees. To
carve out the binomial trees, we define an invariant, which reflects the informal
definition above:

195

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Binomial_Heap.html

17.1

196 Chapter 17 Binomial Priority Queues

btree :: 'a tree = bool

biree (r, , ts) = ((Vteset ts. biree t) A map rank ts = rev [0..<r])

Additionally, we require the heap property, i.e. that the root element of each subtree
is a minimal element in that subtree:

heap :: 'a tree = bool
heap (_, z, ts) = (Vteset ts. heap t A =z < root t)

Thus, a binomial heap is a tree that satisfies both the structural and the heap
invariant. The two invariants are combined into a single predicate:

bheap :: 'a tree = bool
bheap t = (btree t A heap t)

A binomial priority queue or binomial forest is a list of binomial trees
type_synonym 'a forest = 'a tree list
with strictly ascending rank:

invar :: 'a forest = bool

invar ts = ((Vteset ts. bheap t) A sorted_wrt (<) (map rank ts))

Note that sorted_wrt states that a list is sorted w.r.t. the specified relation, here (<).
It is defined in Appendix A.

Size
The following functions return the multiset of elements in a binomial tree and forest:

mset_tree :: 'a tree = 'a multiset
mset_tree (_, a, ts) = {a} + (3¢, mset 1, MSeL_tree t)
mset_forest :: ‘a forest = 'a multiset

mset_forest ts = (3¢, mset 1 MSeL_tree t)

17.2

17.21

17.2 Implementation of ADT Priority_ Queue 197

Most operations on binomial forests are linear in the length of the forest. To show
that the length is bounded by the logarithm of the number of elements, we first observe
that the number of elements in a binomial tree is already determined by its rank. A
binomial tree of rank r has 2" nodes:

btree t —s |mset_tree t| = 2@k ¢

This proposition is proved by induction on the tree structure. A tree of rank 0 has
one element, and a tree of rank 7+1 has subtrees of rank 0,1,...,r. By the induction
hypothesis, these have 2°,2!,...,2" elements, i.e., 2"t — 1 elements together. Including
the element at the root, there are 2"t! elements.

The length of a binomial forest is bounded logarithmically in the number of its
elements:

invar ts — |ts| < Ig (|mset_forest ts| + 1) (17.1)

To prove this, recall that the forest ¢s is strictly sorted by rank. Thus, we can
underestimate the ranks of the trees in ¢s by 0,1,...,|¢s| — 1. This means that they
must have at least 20,21, ..., 2/*I-! elements, i.e., at least 2/*s| — 1 elements together,
which yields the desired bound.

Implementation of ADT Priority Queue
Obviously, the empty binomial forest is [| and a binomial forest is_empty iff it is [].
Correctness is trivial. The remaining operations are more interesting.

Insertion

A crucial property of binomial trees is that we can link two binomial trees of rank
r to form a binomial tree of rank » + 1, simply by prepending one tree as the first
child of the other. To preserve the heap property, we add the tree with the bigger
root element below the tree with the smaller root element. This linking of trees is
illustrated in Figure 17.1. Formally:

link :: 'a tree = 'a tree = 'a tree

link ({r, z1, ts1) =: t1) ((r', T2, tsz) =: t3)
= (lf z; < x4 then <T + 1, z1, t # t51> else <7’ + 1, zo, 11 # tSQ))

By case distinction, we can easily prove that link preserves the invariant and that
the resulting tree contains the elements of both arguments.

bheap t; A bheap t» A rank ti = rank to — bheap (link t; tz)
mset_tree (link t; t;) = mset_tree t; + mset_tree t,

198 Chapter 17 Binomzial Priority Queues

Figure 17.1 Linking two binomial trees of rank 2 to form a binomial tree of rank 3, by linking the
left tree as first child of the right tree, as indicated by the dashed line. We assume
that the root element of the left tree is greater than or equal to the root element of
the right tree, such that the heap property is preserved.

The link operation forms the basis of inserting a tree into a forest: if the forest does
not contain a tree with the same rank, we can simply insert the tree at the correct
position in the forest. Otherwise, we merge the two trees and recursively insert the
result. For our purposes, we can additionally assume that the rank of the tree to be
inserted is smaller than or equal to the lowest rank in the forest, which saves us a case
in the following definition:

ins_tree :: 'a tree = 'a forest = 'a forest

ins_tree t [| = [t]
ins_tree t; (t2 # ts)
= (if rank t; < rank t, then ¢, # t, # ts else ins_tree (link t; t5) ts)

Invariant preservation and functional correctness of ins_free is easily proved by
induction using the respective properties for link:

bheap t A invar ts A (Vt'eset ts. rank t < rank t') — invar (ins_tree t ts)

mset_forest (ins_tree t ts) = mset_tree t + mset_forest ts

A single element is inserted as a one-element (rank 0) tree:

insert :: 'a = 'a forest = 'a forest

insert ¢ ts = ins_tree (0, z, []) ts

The above definition meets the specification for insert required by the Prior-
ity Queue ADT:

17.2 Implementation of ADT Priority_ Queue 199

invar t — invar (insert z t)

mset_forest (insert z t) = {z} + mset_forest t

17.2.2 Merging
Recall the merge algorithm used in top-down merge sort (Section 2.4). It merges two
sorted lists by repeatedly taking the smaller list head. We proceed analogously when
merging forests, where “smaller” means “of smaller rank”. If both ranks are equal, we
link the two heads (call the result ¢') and insert ¢’ into the result s’ of the recursive
call of merge. Thus, the resulting forest will be strictly ordered by rank. Formally:

merge :: 'a forest = 'a forest = ‘a forest
merge tsy [| = ts;
merge [] tsz = tsa
merge (t1 # ts1 =: f1) (t2 # tsa =: f2)
= (if rank t; < rank t, then t; # merge ts; f»
else if rank t, < rank t; then ty # merge f1 ts,
else ins_tree (link t, t3) (merge tsy tsz))

The merge function can be regarded as an algorithm for adding two sparse binary
numbers. This intuition is explored in Exercise 17.2.
We show that the merge operation preserves the invariant and adds the elements:

invar ts; A invar ts; — invar (merge ts; tsz)

mset_forest (merge ts, ts;) = mset_forest ts; + mset_forest ts,

The proof is straightforward, except for preservation of the invariant. We first show
that merging two forests does not decrease the lowest rank in these forests. This
ensures that prepending the head with smaller rank to the recursive merger of the
remaining forests results in a sorted forest. Moreover, when we link two forests of
equal rank, this ensures that the rank of ¢’ is less or equal to the ranks of the trees
in ts' (for t' and ts’ see above), as required by the ins_tree function. We phrase this
property as preservation of lower rank bounds, i.e. a lower rank bound of both forests
is still a lower bound for the merged forest:

t' € set (merge tsy tsz) A (Vti2€set tsy U set tsy. rank t < rank ti2) —
rank t < rank t'

The proof is by straightforward induction, relying on an analogous bounding lemma
for ins_tree.

17.2.3

17.2.4

200 Chapter 17 Binomial Priority Queues

Finding a Minimal Element

For a binomial tree, the root node always contains a minimal element. Unfortunately,
there is no such property for the whole forest—the minimal element may be at the
root of any tree in the forest. To get a minimal element from a non-empty forest, we
look at all root nodes:

get_min :: 'a forest = 'a
get_min [t] = root t
get_min (t # ts) = min (root t) (get_min ts)

Correctness of this operation is proved by a simple induction:

mset_forest ts # {} A invar ts — get_min ts = Min_mset (mset_forest ts)

Deleting a Minimal Element

To delete a minimal element, we first need to find one and then remove it. Removing
the root node of a tree with rank r leaves us with a list of its children, which are
binomial trees of ranks r —1,...,0. Reversing this list yields a valid binomial forest,
which we merge with the remaining trees in the original forest:

del_min :: 'a forest = 'a forest

del_min ts
= (case get_min_rest ts of ((_, _, ts1), ts3) = merge (itrev tsy []) tsz2)

We use itrev for efficiency reasons, as explained in Section 1.5.1. The auxiliary function
get_min_rest splits a forest into a tree with minimal root element and the remaining
trees.

get_min_rest :: 'a forest = 'a tree x 'a forest

get_min_rest [t] = (¢, [])
get_min_rest (t # ts)
= (let (t', ts") = get_min_rest ts
in if root t < root t' then (¢, ts) else (t', t # ts'))

We prove that, for a non-empty heap, del_min preserves the invariant and deletes the
minimal element:

ts # [] A invar ts — invar (del_min ts)

ts # [| — mset_forest ts = mset_forest (del_min ts) + {get_min ts}

17.3

17.3 Running Time 201

The proof of the multiset proposition is straightforward. For invariant preservation,
the key is to show that get_min_rest preserves the invariants:

get_min_rest ts = (t', ts') A ts # [| A invar ts — bheap t'
get_min_rest ts = (t', ts') A ts # [| A invar ts — invar ts'

To show that we actually remove a minimal element, we show that get_min_rest
selects a tree with the same root as get_min:

ts # [] A get_min_rest ts = (t', ts') — root t' = get_min ts

Running Time
The running time functions are shown in Appendix B.7. Intuitively, the operations
are linear in the length of the forest, which in turn is logarithmic in the number of
elements (see Section 17.1).

The running time analysis for insert is straightforward. The running time is
dominated by ins_tree. In the worst case, it iterates over the whole heap, taking
constant time per iteration. By straightforward induction, we show

Tins_tree t ts < |ts| + 1
and thus
invar ts — Tipsert © ts < Ig (|mset_forest ts| + 1) + 1

The running time analysis for merge is more interesting. In each call, we need con-
stant time to compare the ranks. However, if the ranks are equal, we link the trees and
insert them into the merger of the remaining forests. In the worst case, this takes time
linear in the length of the merger. A naive analysis would estimate |merge ts; tsa| <
[ts1| + |tsz|, and thus yield a quadratic running time in |ts;| + |tsa].

However, we can do better: we observe that every link operation in ins_tree reduces
the number of trees in the forest. Thus, over the whole merge, we can only have linearly
many link operations in |ts1| + |tsa].

To formalize this idea, we estimate the running time of ins_free and merge together
with the length of the result:

Tins_tree t ts + |ins_tree t ts| = 2 + |ts|
Tmerge tS]_ tSQ + |mefge tS]_ t52| S 2 * (|t3]_| + |t$2|) + 1

Both estimates can be proved by straightforward induction, and from the second
estimate we easily derive a bound for merge:

invar ts, A invar ts; —
Tmerge ts1 tsz < 4 - Ig (|mset_forest tsi| + |mset_forest ts;| + 1) + 1

From the bound for merge and (17.1) we can prove a bound for del_min:

17.4

202 Chapter 17 Binomial Priority Queues

invar ts A ts # [| — Tgel_min ts < 6 - Ig (|mset_forest ts| + 1) + 2

Exercises

Exercise 17.1. A node in a tree is on level n if it is n edges away from the root.

Define a function nol :: nat = ‘a tree = nat such that nol n t is the number of
T

nodes on level n in tree ¢t and show that a binomial tree of rank r has (l) nodes on

level [. In Isabelle, (?) is written r choose [and thus you should prove

btree t — nol I t = rank t choose |

Hint: You might want to prove separately that

i(:z) B <n:-1>

Exercise 17.2. Sparse binary numbers represent a binary number by a list of the
positions of set bits, sorted in ascending order. Thus, the list [1, 3, 4] represents the
number 11010. In general, [p1,...,pn] represents 2°1 + --- 4 27,

Implement sparse binary numbers in Isabelle, using the type nat list.

1. Define a function invar_sn :: nat list = bool that checks for strictly ascending bit
positions, a function num_of :: nat list = nat that converts a sparse binary num-
ber to a natural number, and a function add :: nat list = nat list = nat list
to add sparse binary numbers.

2. Show that add preserves the invariant and actually performs addition as far as
num_of is concerned.

3. Define a running time function for add and show that it is linear in the list
lengths.

Hint: The bit positions in sparse binary numbers are analogous to binomial trees of
a certain rank in a binomial forest. The add function should be implemented similarly
to the merge function, using a carry function to insert a bit position into a number
(similar to ins_tree). Correctness and running time can be proved similarly.

Chapter Notes

The binomial priority queue (often called binomial heap) was invented by Vuillemin
[1978]. Functional implementations were given by King [1994] and Okasaki [1998]. A
functional implementation was verified by Meis et al. [2010], a Java implementation
by Miiller [2018].

Part IV

Advanced Design and Analysis

Techniques

203

Dynamic Programming [~
Simon Wimmer

You probably have seen this function before:

fib :: nat = nat

fib0=0

fibl1=1
fib(n+2)=f1fib(n+1)+fibn

It computes the well-known Fibonacci numbers. You may also have noticed that
calculating fib 50 already causes quite some stress for your computer and there is no
hope for fib 500 to ever return a result.

This is quite unfortunate considering that there is a very simple imperative program
to compute these numbers efficiently:

int fib(n) {
int a = 0;
int b = 1;
for (i in 1..n) {
int temp = b;
b =a + b;
temp;

o)
Il

}

return a;

So we seem to be caught in an adverse situation here: either we use a clear and
elegant definition of fib or we get an efficient but convoluted implementation of fib.
Admittedly, we could just prove that both formulations are the same function, and
use whichever one is more suited for the task at hand. For fib, of course, it is trivial to
define a functional analogue of the imperative program and to prove its correctness.

205

https://isa-afp.org/entries/Monad_Memo_DP.html

Figure 18.1

18.1

206 Chapter 18 Dynamic Programmaing

4/ \3
SN

/N /NN

2 1 1 0 1 0
/\
10

N

1

Tree of the recursive call structure for fib 5

However, doing this for all recursive functions we would like to define is tedious.
Instead, this chapter will sketch a recipe that allows to define such recursive functions
in the natural way, while still getting an efficient implementation “for free”.

In the following, the Fibonacci function will serve as a simple example on which we
can illustrate the idea. Next, we will show how to prove the correctness of the efficient
implementation in an efficient way. Subsequently, we will discuss further details of the
approach and how it can be applied beyond fib. The chapter closes with the study of
two famous (and archetypical) dynamic programming algorithms: the Bellman-Ford
algorithm for finding shortest paths in weighted graphs and an algorithm due to Knuth
for computing optimal binary search trees.

Memoization
Let us consider the tree of recursive calls that are issued when computing fib 5 in
Figure 18.1. We can see that the subtree for fib 3 is computed twice, and that the
subtree for fib 2 is even computed three times. How can we avoid these repeated
computations? A common solution is memoization: we store previous computation
results in some kind of memory and consult it to potentially recall a memoized result
before issuing another recursive computation.

Below you see a simple memoizing version of fib that implements the memory as a
map of type nat — nat (see Section 6.4 for the notation):

fibs :: nat = (nat — nat) = nat x (nat — nat)
fibs 0 m = (0, m(0 — 0))
fiby 1 m = (1, m(1 — 1))

18.1 Memoization 207

fiby (n +2) m
= (let (z, m) = case m n of None = fiby n m | Some i = (¢, m);
(4, m) =
case m (n + 1) of None = fib; (n + 1) m | Some j = (j, m)
in(z+7,mn+2—1+ 7))

And indeed, we can ask Isabelle to compute (via the value command) fibs 50 or even
fib; 500 and we get the result within a split second.

However, we are not yet happy with this code. Carrying the memory around means
a lot of additional weight for the definition of fibs, and proving that this function
computes the same value as fib is not completely trivial (how would you approach
this?). Let us streamline the definition first by pulling out the reading and writing of
memory into a function memo (for a type 'k of keys and a type ‘v of values):

memo ::
k= (k= 'v) = v x ('k = "))
= (k= 'v) = v x ('"k = ")
memo k fm
= (case m k of None = let (v, m) = fmin (v, m(k — v))
| Some v = (v, m))

fiby :: nat = (nat — nat) = nat x (nat — nat)
fibo 0 = memo 0 (Am. (0, m))
fibo 1 = memo 1 (Am. (1, m))
fibz (n + 2)
= memo (n + 2)

(Am. let (i, m) = fibp n m;

(j, m) = fibz (n + 1) m
in (2 + 7, m))

This already looks a lot more like the original definition but it still has one problem:
we have to thread the memory through the program explicitly. This can become rather
tedious for more complicated programs, and deviates from the original shape of the
program, complicating the proofs.

18.1.1

208 Chapter 18 Dynamic Programmaing

Enter the Monad

Let us examine the type of fiby, more closely. We can read it as the type of a function
that, given a natural number, returns a computation. Given an initial memory, it
computes a pair of a result and an updated memory. We can capture this notion of
“stateful” computations in a data type:

datatype (s, ‘a) state = State ('s = 'a x 's)

A value of type (s, 'a) state represents a stateful computation that returns a
result of type '‘a and operates on states of type 's. The constant run_state forces the
evaluation of a computation starting from some initial state:

run_state :: ('s, 'a) state = 's = ‘a x s
run_state (State f) s = f's

The advantage of this definition may not seem immediate. Its value only starts to
show when we see how it allows us to chain stateful computations. To do so, we only
need to define two constants: refurn to pack up a result in a computation, and bind
to chain two computations after each other.

return :: 'a = ('s, 'a) state

return z = State (As. (z, s))

bind :: ('s, 'a) state = (‘a = ('s, 'b) state) = ('s, 'b) state

bind a f = State (As. let (z, s) = run_state a s in run_state (f z) s)

We add a little syntax on top and write {(z) for refurn z, and a >= f instead of
bind a f. The “identity” computation {z) simply leaves the given state unchanged
and produces z as a result. The chained computation a >= f starts with some state
s, runs a on it to produce a pair of a result z and a new state s’, and then evaluates
f = to produce another computation that is run on s'.

We have now seen how to pass state around but we are not yet able to interact
with it. For this purpose we define get and set to retrieve and update the current
state, respectively:

18.1 Memoization 209

get :: ('s, 's) state
get = State (As. (s, s))

set :: 's = ('s, unit) state
set s' = State (A_. ((), s'))

Let us reformulate fiby with the help of these concepts:

memoy 'k = ('k = v, 'v) state = ('k — 'v, 'v) state

memoq k a

= get >= (Am. case m k of
None = a >= (Mv. set (m(k — v)) >= (A_. (v))) |
Some z = (z))

fibg :: nat = (nat — nat, nat) state

fibs 0 = (0)

fibg 1 = (1)

fibs (n + 2)

= memoy (n + 2) (fibg n >= (M. fibg (n + 1) >= (A7. (¢ + 7))))

Can you see how we have managed to hide the whole handling of state behind the
scenes? The only explicit interaction with the state is now happening inside of memoj.
This is sensible as this is the only place where we really want to recall a memoized
result or to write a new value to memory.

While this is great, we still want to polish the definition further: the syntactic
structure of the last case of fibz still does not match fib exactly. To this end, we lift
function application f z to the state monad:

(.) = ('s, 'a = ('s, 'b) state) state = ('s, 'a) state = ('s, 'b) state
fm - 2Zm = (fm >= (Af. ¢, >= (Az. f z)))

We can now spell out our final memoizing version of fib where (.) replaces ordinary
function applications in the original definition:

18.1.2

210 Chapter 18 Dynamic Programmaing

fibg :: nat = (nat — nat, nat) state

fib4 0 = {0)

fibs 1 = (1)

fibg (n + 2)

= memos (n + 2) ({Ai. (A7. (¢ + 5))) . (fibg n) . (fib4 (n + 1)))

You may wonder why we added that many additional computations in this last step.
On the one hand, we have gained the advantage that we can now closely follow the
syntactic structure of fib to prove that fibs is correct (notwithstanding that memo;
will need a special treatment, of course). On the other hand, we can remove most of
these additional computations in a final post-processing step.

Memoization and Dynamic Programming
Let us recap what we have seen so far in this chapter. We noticed that the naive
recursive formulation of the Fibonacci numbers leads to a highly inefficient imple-
mentation. We then showed how to work around this problem by using memoization
to obtain a structurally similar but efficient implementation. After all this, you may
wonder why this chapter is entitled Dynamic Programming and not Memoization.
Dynamic programming is based on two main principles. First, to find an optimal
solution for a problem by computing it from optimal solutions for “smaller” instances
of the same problem, i.e. recursion. Second, to memoize these solutions for smaller
problems in, e.g. a table. Thus we could be bold and state:

dynamic programming = recursion + memoization

A common objection to this equation would be that memoization should be
distinguished from tabulation. In this view, the former only computes “necessary”
solutions for smaller sub-problems, while the latter just “blindly” builds solutions for
sub-problems of increasing size, many of which might be unnecessary. The benefit of
tabulation could be increased performance, for instance due to improved caching. We
believe that this distinction is largely irrelevant to our approach. First, in this book we
focus on asymptotically efficient solutions, not constant-factor optimizations. Second,
in many dynamic programming algorithms memoization would actually compute
solutions for the same set of sub-problems as tabulation does. No matter which of
the two approaches is used in the implementation, the hard part is to come up with
a recursive solution that can efficiently make use of sub-problems in the first place.

There are problems, however, where clever tabulation instead of naive memoization
is necessary to achieve an asymptotically optimal solution in terms of memory
consumption. One instance of this is the Bellman-Ford algorithm presented in Section

18.2

18.2 Correctness of Memoization 211

18.4. On this example, we will show that our approach is also akin to tabulation. It
can easily be introduced as a final post-processing step.

Some readers may have noticed that our optimized implementations of fib are not
really optimal as they use a map for memoization. Indeed it is possible to swap in other
memory implementations as long as they provide a lookup and an update method.
One can even make use of imperative data structures like arrays. Because this is
not the focus of this book, the interested reader is referred to the literature that is
provided at the end of this chapter. Here, we will just assume that the maps used for
memoization are implemented as red-black trees (and Isabelle’s code generator can be
instructed to do so).

For the remainder of this chapter, we will first outline how to prove that fiby is
correct. Then, we will sketch how to apply our approach of memoization beyond
fib. Afterwards, we will study some prototypical examples of dynamic programming
problems and show how to apply the above formula to them.

Correctness of Memoization
We now want to prove that fiby is correct. But what is it exactly that we want to
prove? We surely want fibs to produce the same result as fib when run with an empty
memory (in this chapter we write the empty map A_ . None simply as empty):

fst (run_state (fib4 n) empty) = fib n (18.1)

If we were to make a naive attempt at this proof, we would probably start with an
induction on the computation of fib just to realize that the induction hypotheses are
not strong enough to prove the recursion case, since they demand an empty memory.
We can attempt generalization as a remedy:

fst (run_state (fibg4 n) m) = fib n

However, this statement does not hold anymore for every memory m.
What do we need to demand from m? It should only memoize values that are
consistent with fib:

type_synonym ‘a mem = (nat — nat, ‘a) state

cmem :: (nat — nat) = bool

cmem m = (Vnedom m. m n = Some (fib n))

dom :: ('k — 'v) = 'k set
dom m = {a | m a # None}

212 Chapter 18 Dynamic Programmaing

Note that, from now on, we use the type ‘a mem to denote memoized values of type
'a that have been “wrapped up” in our memoizing state monad. Using cmem, we can
formulate a general notion of equivalence between a value v and its memoized version
a, written v > a: starting from a consistent memory m, a should produce another
consistent memory m’, and the result v.

(») = 'a = 'a mem = bool

vD>a

(Vm. cmem m —

(let (v', m') = run_state a min v = v’ A cmem m'))

Thus we want to prove
fib n > fibsy n (18.2)

via computation induction on n. For the base cases we need to prove statements of
the form v > {v), which follow trivially after unfolding the involved definitions. For
the induction case, we can unfold fiby (n + 2), and get rid of memo; by applying
the following rule (which we instantiate with a = fiby n):

fibnv>a— fibn> memos na (18.3)

For the remainder of the proof, we now want to unfold fib (n + 2) and then follow
the syntactic structure of fib4 and fib in lockstep. To do so, we need to find a proof rule
for function application. That is, what do we need in order to prove fz > f,. . ;7
For starters, z > z,, seems reasonable to demand. But what about f and f,,? If f has
type ‘a = 'b, then f,, is of type (‘a = 'b mem) mem. Intuitively, we want to state
something along these lines:

fm 1s a memoized function that, when applied to a value z, yields a memoized
value that is equivalent to f z.

This goes beyond what we can currently express with (>) as v > a merely states that
“a is a memoized value equivalent to v”. What we need is more liberty in our choice
of equivalence. That is, we want to use statements v > a, with the meaning: “a is a
memoized value that is related to v by R”. The formal definition is analogous to ()

(and (>) = (>(=))):

18.2 Correctness of Memoization 213

(>)'a= ('a = b = bool) = 'b mem = bool

VDR S
= (Vm. cmem m —
(let (v, m') = run_state s min R v v' A cmem m'))

However, we still do not have a means of expressing the second part of our sentence.
To this end, we use the function relator (=):

() (la="c= bool) = ("6 = 'd = bool) = ('a = 'b) = ('c = 'd) = bool
R= S=(\g.Vzy. Rzy — S (fz) (9v))

Spelled out, we have (R = S) f g if for any values z and y that are related by R, the
values f ¢ and g y are related by S.
We can finally state a proof rule for application:

o Tm AfP=)s o) fm — fTZ0 fm . Tm (18.4)
In our concrete example, we apply it once to the goal

fib (n + 1) + fib n > {(Aa. (Ab. {a + b))) . (fib4 (n + 1)) . (fibg n)
solve the first premise with the induction hypotheses, and arrive at

(+) (fib (n + 1)) b=y =3 () {Aa. (Ab. (a + b))) . (fibg (n + 1))

Our current rule for application (18.4) does not match this goal. Thus we need to
generalize it. In addition, we need a new rule for return, and a rule for (). To
summarize, we need the following set of theorems about our consistency relation,
applying them wherever they match syntactically to finish the proof of (18.2):

Rzy — zv>g (y)
T PR mm/\fDRébsfm — fTPs fm Tm
(Vey. Rzy — S (fz) (9y)) — (R S) fg
The theorem we aimed for initially
fst (run_state (fiby n) empty) = fib n (18.1)

is now a trivial corollary of fib n > fib4 n. By reading the equation from right to left,
we have an easy way to make the memoization transparent to an end-user of fib.

18.3

214 Chapter 18 Dynamic Programmaing

Details of Memoization*
In this section, we will look at some further details of the memoization process and
sketch how it can be applied beyond fib. First note that our approach of memoization
hinges on two rather independent components: We transform the original program to
use the state monad, to thread (an a prior: arbitrary) state through the program.
Only at the call sites of recursion, we then introduce the memoization functionality
by issuing lookups and updates to the memory (as implemented by memo¢). We will
name this first process monadification. For the second component, many different
memory implementations can be used, as long as we can define memo; and prove
its characteristic theorem (18.3). For details on this, the reader is referred to the
literature. Here, we want to turn our attention towards monadification.

To discuss some of the intricacies of monadification, let us first stick with fib for a
bit longer and consider the following alternative definition (which is mathematically
equivalent but not the same program):

fib n = (if n = 0 then 0 else 1 + sum_list (map fib [0..<n — 1]))

We have not yet seen how to handle two ingredients of this program: constructs like
if-then-else or case-combinators; and higher-order functions such as map.
It is quite clear how if-then-else can be lifted to the state monad:

ifm :: bool mem = 'a mem = 'a mem = 'a mem

ifm bm Tm Ym = bm, >= (Ab. if b then z,, else y.,)

By following the structure of the terms, we can also deduce a proof rule for ify:
b by AZTPR Ty A Y PR Ym — (if bthen z else y) bg ifn by T Ym

However, suppose we want to apply this proof rule to our new equation for fib. We will
certainly need the knowledge of whether n = 0 to make progress in the correctness
proof. Thus we make our rule more precise:

bo by A(b—2PRram) A(m b — YDPR Ym) —

(if b then z else y) >g ifm b T Ym

How can we lift map to the state monad level? Consider its defining equations:

*If you are just interested in the dynamic programming algorithms of the following sections, this
section can safely be skipped on first reading.

18.3 Details of Memoization 215

map f [] =]
map f (z # zs) = fz # map f zs

We can follow the pattern we used to monadify fib to monadify map:

mapm' f [= ([l
mapm' f (z # zs) = (Xa. (Ab. (a # b))) . ((f) . (z)) . (mapm’ f zs)

We have obtained a function mapy,' of type
('la = 'b mem) = 'a list = 'b list mem

This is not yet compatible with our scheme of lifting function application to (.). We
need a function of type

((la = ' mem) = (‘a list = 'b list mem) mem) mem

because map has two arguments and we need one layer of the state monad for each
of its arguments. Therefore we simply define

mapm = (Af. {(mapm’ f))

For inductive proofs about the new definition of fib, we also need the knowledge
that fib is recursively applied only to smaller values than n when computing fib n.
That is, we need to know which values f is applied to in map f zs. We can encode
this knowledge in a proof rule for map:

zs =ys A (Vz. z € setys — fz >R fim) —
map f zs vjist_aiz R MaPm - (Ffm) - (ys)

The relator list_all2 lifts R to a pairwise relation on lists:
list_all2 R zs ys = (|zs| = |ys| A (Vi<|zs|. R (zs ! 1) (ys ! 7))
To summarize, here is a fully memoized version of the alternative definition of fib:

fibm :: nat = nat mem

fibm m = memo; n
(ifm {n = 0) (0)
({ra. (1 + a)) . ((Xa. {sum_list a)) . (mapm . (fibn') . ([0..<n — 1]}))))

18.4

216 Chapter 18 Dynamic Programmaing

The correctness proof for fiby, is analogous to the one for fiby, once we have proved
the new rules discussed above.

At the end of this section, we note that the techniques that were sketched above also
extend to case-combinators and other higher-order functions. Most of the machinery
for monadification and the corresponding correctness proofs can be automated in
Isabelle [Wimmer et al. 2018b]. Finally note that none of the techniques we used so
far are specific to fib. The only parts that have to be adopted are the definitions of
memo; and cmem. In Isabelle, this can be done by simply instantiating a locale.

This concludes the discussion of the fundamentals of our approach towards verified
dynamic programming. We now turn to the study of two typical examples of dynamic
programming algorithms: the Bellman-Ford algorithm and an algorithm for computing
optimal binary search trees.

The Bellman-Ford Algorithm 7

Computing shortest paths in weighted graphs is a classic algorithmic task that we all
encounter in everyday situations, such as planning the fastest route to drive from A
to B. In this scenario we can view streets as edges in a graph and nodes as street
crossings. Each edge is associated with a weight, e.g. the time to traverse a street. We
are interested in the path from A to B with minimum weight, corresponding to the
fastest route in the example. Note that in this example it is safe to assume that all
edge weights are non-negative.

Some applications demand negative edge weights as well. Suppose, we transport
ourselves a few years into the future, where we have an electric car that can recharge
itself using solar cells while driving. If we aim for the most energy-efficient route from
A to B, a very sunny route could then incur a negative edge weight.

The Bellman-Ford algorithm is a classic dynamic programming solution to the
single-destination shortest path problem in graphs with negative edge weights.
That is, we are given a directed graph with negative edge weights and some target
vertex (called a sink), and we want to compute the weight of the shortest (i.e.
minimum weight) paths from each vertex to the sink. Figure 18.2 shows an example
of such a graph.

Formally, we will take a simple view of graphs. We assume that we are given a number
of nodes numbered 0,...,n, and some sink ¢ € {0..n} (thus n = ¢t = 4 in the example).
Edge weights are given by a function W :: int = int = wnt extended. The type
int extended extends the integers with positive and negative infinity:

https://isa-afp.org/browser_info/current/AFP/Monad_Memo_DP/Bellman_Ford.html

Figure 18.2

18.4.1

18.4 The Bellman-Ford Algorithm @ 217

Example of a weighted directed graph

datatype 'a extended = Fin 'a | oo | —0

We refrain from giving the explicit definition of addition and comparison on this
domain, and rely on your intuition instead. A weight assignment W 7 7 = co means
that there is no edge from % to 5. The purpose of —oco will become clear later.

Deriving a Recursive Solution
The main idea of the algorithm is to consider paths in order of increasing length in
the number of edges. In the example, we can immediately read off the weights of
the shortest paths to the sink that use only one edge: only nodes 2 and 3 are directly
connected to the sink, with edge weights 3 and 2, respectively; for all others the weight
is infinite. How can we now calculate the minimum weight paths (to the sink) with at
most two edges? For node 3, the weight of the shortest path with at most two edges
is: either the weight of the path with one edge; or the weight of the edge from node 3
to node 2 plus the weight of the path with one edge from node 2 to the sink. Because
—2 4+ 3 =1 < 2, we get a new minimum weight of 1 for node 3. Following the same
scheme, we can iteratively calculate the minimum path weights given in table 18.1.
The analysis we just ran on the example already gives us a clear intuition on all
we need to deduce a dynamic program: a recursion on sub-problems, in this case to
compute the weight of shortest paths with at most ¢« + 1 edges from the weights of
shortest paths with at most 2 edges. To formalize this recursion, we first define the
notion of a minimum weight path from some node v to ¢ with at most ¢ edges, denoted
as OPT i v:

https://isa-afp.org/browser_info/current/AFP/Monad_Memo_DP/Bellman_Ford.html

Table 18.1

218 Chapter 18 Dynamic Programmaing

v | 0 1 2 3 4
0 o oo oo oo 0
1 oo oo 3 2 0
2 5 6 3 1 0
3 5 5 3 1 0
4 4 5 3 1 0

The minimum weights of paths from vertices v =0...4 to ¢ that use at most 2 =0...4
edges.

OPT :: nat = nat = int extended

OPT i v

= Min ({weight (v # zs @ [t]) | |zs| + 1 < i A set zs C {0..n}} U
{if t = v then 0 else «})

weight :: nat list = int extended
weight [v] = 0
weight (v # w # xs) = W v w + weight (w # s)

If 2 = 0, things are simple:
OPT 0 v = (if t = v then 0 else o)

A shortest path that constitutes OPT (¢ + 1) v uses either at most 7 or exactly ¢ + 1
edges. That is, OPT (¢ + 1) v is either OPT i v, or the weight of the edge from v to
any of its neighbours w plus OPT ¢ w:

OPT (i + 1) v = min (OPT i v) Min {Wvw + OPTiw | w < n})
Proof. We prove this equality by proving two inequalities:

(Ihs < rhs) For this direction, we essentially need to show that every path on the
rhs is covered by the lhs, which is trivial.

(lhs > rhs) We skip the cases where OPT (i + 1) v is trivially 0 or oo (i.e.
where it is given by the singleton set in the definition of OPT). Thus con-
sider some zs such that OPT (i + 1) v = weight (v # zs @ [t]), |zs| < ¢, and
set zs C {0..n}. The cases where |zs| < ¢ or ¢ = 0 are trivial. Otherwise,
we have OPT (¢ + 1) v = W v (hd zs) + weight (zs @ [t]) by definition of
weight, and OPT ¢ (hd zs) < weight (zs @ [t]) by definition of OPT. Therefore,
we can show: OPT (¢ + 1) v > Wwv (hd zs) + OPT i (hd zs) > rhs O

18.4.2

18.4 The Bellman-Ford Algorithm @ 219

We can turn these equations into a recursive program:

bf :: nat = nat = wnt extended

bf0 v = (if t = v then 0 else o)
bf (v + 1) v = min_list (bf 1 v # map (Aw. W v w + bf 1 w) [0..<n + 1])

It is obvious that we can prove correctness of bf by induction:

bfiv=0PTziv

Negative Cycles
Have we solved the initial problem now? The answer is “not quite” because we have
ignored one additional complication. Consider our example Table 18.1 again. The
table stops at path length five because no shorter paths with more edges exist. For
this example, five corresponds to the number of nodes, which bounds the length of
the longest simple path (= without repeated nodes). However, is it the case that
we will never find shorter non-simple paths in other graphs? The answer is “no”. If a
graph contains a negative reaching cycle, i.e. a cycle with a negative sum of edge
weights from which the sink is reachable, then we can use it arbitrarily often to find
shorter and shorter paths.

Luckily, we can use the Bellman-Ford algorithm to detect this situation by ex-
amining the relationship of OPT n and OPT (n + 1). The following proposition
summarizes the key insight:

The graph contains a negative reaching cycle if and only if there exists a v < n
such that OPT (n + 1) v < OPT n v

Proof. If there is no negative reaching cycle, then all shortest paths are either simple
or contain superfluous cycles of weight 0. Thus, we have OPT (n + 1) v = OPT n v
forall v < n.

Otherwise, there is a negative reaching cycle ys = a # zs @ [a] with weight ys
< 0. Working towards a contradiction, assume that OPT n v < OPT (n + 1) v for
all v < n. Using the recursion we proved above, this implies OPT n v < W v u +
OPT n wu for all u, v < n. By applying this inequality to the nodes in a # zs, we
can prove the inequality

sum_list (map (OPT n) ys) < sum_list (map (OPT n) ys) + weight ys
This implies weight ys > 0, which yields the contradiction. O

This means we can use bf to detect the existence of negative reaching cycles by
computing one more round, i.e. bf (n + 1) v for all v. If nothing changes in this step,

https://isa-afp.org/browser_info/current/AFP/Monad_Memo_DP/Bellman_Ford.html

18.5

220 Chapter 18 Dynamic Programmaing

we know that there are no negative reaching cycles and that bf n correctly represents
the shortest path weights. Otherwise, there has to be a negative reaching cycle.

Finally, we can use memoization to obtain an efficient implementation that solves
the single-destination shortest path problem. Applying our memoization technique
from above, we first obtain a memoizing version bf, of bf. We then define the following
program:

bellman_ford ::
((nat x nat, int extended) mapping, int extended list option) state

bellman_ford
= iter_bf (n, n) >=
(A_. mapp’ (bf;m n) [0..<n + 1] >=
(Azs. mapm' (bfm (n + 1)) [0..<n + 1] >=
(Ays. (if zs = ys then Some zs else None))))

Here, iter_bf (n, n) just computes the values from bfpy, 0 0 to bfy, n n in a row-by-
row manner, storing them in a table (where ('a, 'b) mapping is essentially ‘a — 'b).
Using the reasoning principles that were described above (for fib), we can then prove
that bellman_ford indeed solves its intended task correctly (shortest v is the length
of the shortest path from v to t):

(Vi<n. Vi<n. —oo < Wij) —

fst (run_state bellman_ford empty)

= (if contains_negative_reaching_cycle then None
else Some (map shortest [0..<n + 1]))

Here, shortest is defined analogously to OPT but for paths of unbounded length.

Optimal Binary Search Trees (7

In this book, we have studied various tree data structures that guarantee logarithmic
running time bounds for lookup and update operations. These bounds were worst-case
and did not take into account any information about the actual sequence of queries.
In this section, instead, we focus on BSTs that minimize the amount of work when
the distribution of keys in a sequence of queries is known in advance.

More formally, we study the following problem. We are given a list [¢..7] of integers
ranging from 7 to 7 and a function p :: int = nat that maps each key in the range
to a frequency with which this key is searched for. Our goal is to construct a BST
that minimizes the expected number of comparisons when presented with a sequence
of lookup operations for keys in the range [¢..7] that adhere to the distribution given

https://isa-afp.org/browser_info/current/AFP/Optimal_BST/Optimal_BST2.html

18.5 Optimal Binary Search Trees 7 221

by p. As an example, consider the range [1..5] with frequencies [10, 30, 15, 25, 20].

This tree
(3)
(2 @
@ ()

incurs an expected value of 2.15 comparison operations. However, the minimal ex-
pected value is 2 and is achieved by this tree:

Our task is equivalent to minimizing the weighted path length (or cost). The
weighted path length is the sum of the frequencies of each node in the tree multiplied
by its depth in the tree. The following definition avoids the notion of depth:

cost :: int tree = nat

cost () =0

cost (I, k, r)

= (Zkeset_treel pk)+costl+pk+ costr + (Ekeset_treer p k)

To come up with a dynamic programming solution, we must find a way to subdivide
the problem.

18.5.1 Deriving a Recursive Solution
One way to subdivide the problem is to subdivide the interval [z..j]. This motivates
the following definition, which generalizes cost:

wpl Wij () =0
wol Waejg(lk,r)y=wpl Wi(k —1)l+wpl W (k+1)j5r+ Wij

When setting Wij = (f;:i p k), it is easy to see that wp/ W ¢ j is just a
reformulation of cost t:

https://isa-afp.org/browser_info/current/AFP/Optimal_BST/Optimal_BST2.html

222 Chapter 18 Dynamic Programmaing

inorder t = [i..j] — wpl W13t = cost t

We can actually forget about the original frequencies p and just optimize wpl W 1 j
for some fixed weight function W :: int = int = nat. Therefore, in the remainder,
we will assume W to be known in the context and just write wpl 7 5.

The key insight into the problem is that subtrees of optimal BSTs are also optimal.
The left and right subtrees of the root must be optimal, since if we could improve
either one, we would also get a better tree for the complete range of keys.

Formally, the BST ¢ that contains the keys [:..7] and minimizes wp/ 7 j ¢ has some
root k with [¢.7] = [t.k — 1] @ k # [j + 1..k]. Its left and right subtrees need
to be minimal again, i.e. minimize wpl ¢ (k — 1) and wpl/ (k + 1) j. This yields
the following recursive functions for computing the minimal weighted path length
(min_wpl) and a corresponding BST (opt_bst):

min_wpl :: int = int = nat
min_wpl © 5
= (if 7 < <then 0
else min_list
(map (Ak. min_wpl i (k — 1) + min_wpl (k + 1) 7 + W i7) [2..7]))

opt_bst :: int = wnt = int tree
opt_bst i j
= (if 5 < i then ()
else argmin (wpl < j)
(map (Ak. (opt_bst i (k — 1), k, opt_bst (k + 1) 7)) [¢..7]))

Here argmin f zs returns the rightmost z € sef zs such that f z is minimal among
zs (ie. fz < fyforall y € set zs).

To prove that min_wpl and opt_bst are correct, we want to show two propositions:
min_wpl ¢ j should be a lower bound of wpl i j ¢ for any search tree ¢ for [¢..7], and
min_wpl 7 j should correspond to the weight of an actual search tree, namely opt_bst
1 5. Formally, we prove the following propositions:

inorder t = [i..7] — min_wplij < wplijt
inorder (opt_bst ¢ j) = [4..7]
wpl ¢ j (opt_bst i 7) = min_wpl ¢ j

The three propositions are easily proved by computation induction on wpl, opt_bst
and min_wpl, respectively.

18.5.2

18.5 Optimal Binary Search Trees 0 223

When setting W = W, we can derive the following correctness theorems referring
to the original problem:

inorder t = [i..7] — min_wpl W i3 < cost t

cost (opt_bst W i 35) = min_wpl W1 j

Memoization

We can apply the memoization techniques that were discussed above to efficiently
compute min_wpl and opt_bst. The only remaining caveat is that W also needs to
be computed efficiently from the distribution p. If we just use the defining equality
Wij=(fc _ ; p k), the computation of W is unnecessarily costly. Another way is
to memoize W itself, using the following recursion:

Wij=(ifi<jthen Wi (5 — 1) + p jelse 0)
This yields a memoizing version Wy, and a theorem that connects it to W:
Wije Wy 13

We can now iterate Wy, i n for 4 = 0...n to pre-compute all relevant values of W i j:
W¢ n = snd (run_state (mapm' (Ai. W' 7 n) [0..n]) emply)

Using the correctness theorem for mapy,’ from above, it can easily be shown that this
yields a consistent memory:

cmem (W; n)
We can show the following equation for computing W
Wij = (case (W; n) (i, 7) of None = Wij | Some z = z)

Note that the None branch will only be triggered when indices outside of 0...n are
accessed. Finally, we can use W to pass the pre-computed values of W to opt_bst:

opt_bst' :: int = int = int tree

opt_bst' 17 =

let M = W¢j; W = Xij. case M (i, 7) of None = W13 | Some z = =
in opt_bst W 1 j

https://isa-afp.org/browser_info/current/AFP/Optimal_BST/Optimal_BST2.html

18.5.3

224 Chapter 18 Dynamic Programmaing

Optimizing the Recursion
While we have applied some trickery to obtain an efficient implementation of the
simple dynamic programming algorithm expressed by opt_bst, we still have not arrived
at the solution that is currently known to be most efficient. The most efficient known
algorithm to compute optimal BSTs due to Knuth [1971] is a slight variation of opt_bst
and relies on the following observation.

Let R ¢ j denote the maximal root of any optimal BST for [¢..7]:

R 17 = argmin (Ak. wij + min_wpl < (k — 1) + min_wpl (k + 1) j) [2..7]

It can be shown that R ¢ j is bounded by R < (j — 1) and R (¢ + 1) 7:
1<jg—Ri(-1)<RigARi7<R(t+1)7

The proof of this fact is rather involved and the details can be found in the references
provided at the end of this section.
With this knowledge, we can make the following optimization to opt_bst:

opt_bsts :: int = int = nt tree
opt_bsts 1 3
= (if 5 < i then ()
else if : = j then ({(), 7, ())
else let left = root (opt_bstz i (7 — 1));
right = root (opt_bsty (i + 1) 7)
in argmin (wpl < j)
(map (k. (opt_bsty i (k — 1), k, opt_bsty (k + 1) j))
[left..right]))

You may wonder whether this change really results in an asymptotic runtime im-
provement. Indeed, it can be shown that it improves the algorithm’s runtime by a
factor of O(n). For a fixed search tree size d = ¢ — 7, the total number of recursive
computations is given by the following telescoping series:

d<n—
(CF_gleti=j —dinR(i+1)j—-Ri(G—1)+1)
=Rn-d+1)n-R0(d-1)+n-d+1

This quantity is bounded by 2 - n, which implies that the overall number of recursive
calls is bounded by O(n?).

18.5 Optimal Binary Search Trees 0 225

Chapter Notes
The original O(n?) algorithm for optimal BSTs is due to Knuth [1971]. Yao [1980]
later explained this optimization more elegantly in her framework of “quadrilateral
inequalities”. Nipkow and Somogyi [2018] follow Yao’s approach in their Isabelle
formalization, on which the last subsection of this chapter is based. Chapter 26 studies
a related but simpler problem, the construction of an optimal binary tree, without the
ordering requirement. That problem can be solved efficiently with a greedy algorithm.
The other parts of this chapter are based on a paper by Wimmer et al. [2018b] and
its accompanying Isabelle formalization [Wimmer et al. 2018a]. The formalization also
contains further examples of dynamic programming algorithms, including solutions for
the Knapsack and the minimum edit distance problems, and the CYK algorithm.

https://isa-afp.org/browser_info/current/AFP/Optimal_BST/Optimal_BST2.html

19.1

Amortized Analysis (7

Tobias Nipkow

Consider a k-bit binary counter and a sequence of increment (by 1) operations on it
where each one starts from the least significant bit and keeps flipping the 1s until a
0 is encountered (and flipped). Thus the worst-case running time of an increment is
O(k) and a sequence of n increments takes time O(nk). However, this analysis is very
coarse: in a sequence of increments there are many much faster ones (for half of them
the least significant bit is 0!). It turns out that a sequence of n increments takes time
O(n). Thus the average running time of each increment is O(1). Amortized analysis
is the analysis of the running time of a sequence of operations on some data structure
by upper-bounding the average running time of each operation.

As the example of the binary counter shows, the amortized running time for a single
call of an operation can be much better than the worst-case time. Thus amortized
analysis is unsuitable in a real-time context where worst-case bounds on every call of
an operation are required.

Amortized analysis of some data structure is valid if the user of that data structure
never accesses old versions of the data structure (although in a functional language
one could). The binary counter shows why that invalidates amortized analysis: start
from O, increment the counter until all bits are 1, then increment that counter value
again and again, without destroying it. Each of those increments takes time O(k) and
you can do that as often as you like, thus subverting the analysis. In an imperative
language you can easily avoid this “abuse” by making the data structure stateful: every
operation modifies the state of the data structure. This shows that amortized analysis
has an imperative flavour. In a purely functional language, monads can be used to
restrict access to the latest version of a data structure.

The Potential Method

The potential method is a particular technique for amortized analysis. The key idea
is to define a potential function ® from the data structure to non-negative numbers.
The potential of the data structure is like a savings account that cheap calls pay into
(by increasing the potential) to compensate for later expensive calls (which decrease
the potential). In a nutshell: the less “balanced” a data structure is, the higher its
potential should be because it will be needed to pay for the impending restructuring.

227

https://isa-afp.org/entries/Amortized_Complexity.html

228 Chapter 19 Amortized Analysis

The amortized running time (or complexity) is defined as the actual running
time plus the difference in potential, i.e. the potential after the call minus the potential
before it. If the potential increases, the amortized running time is higher than the
actual running time and we pay the difference into our savings account. If the potential
decreases, the amortized running time is lower than the actual running time and we
take something out of our savings account to pay for the difference.

More formally, we are given some data structure with operations f, g, etc., with
corresponding time functions Ty, Ty, etc. We are also given a potential function &.
The amortized running time function A; for f is defined as follows:

Ap s =T s+ @ (fs) — &5 (19.1)

where s is the data structure under consideration; f may also have additional
parameters. Given a sequence of data structure states sg, ..., s, where s;11 = f 55,
it is not hard to see that

E?;lo As i = E?;lo T si + @ s, — @ s

If we assume (for simplicity) that € sq = 0, then it follows immediately that the
amortized running time of the whole sequence is an upper bound of the actual running
time (because ® is non-negative). This observation becomes useful if we can bound
A s by some closed term ub; s. Typical examples for ub; s are constants, logarithms,
etc. Then we can conclude that f has constant, logarithmic, etc. amortized complexity.
Thus the only proof obligation is

Ar s < ubs s

possibly under the additional assumption tnvar s if the data structure comes with an
invariant invar.

In the sequel we assume that sg is some fixed value, typically “empty”, and that its
potential is 0.

How do we analyze operations that combine two data structures, e.g. the union of
two sets? Their amortized complexity can be defined in analogy to (19.1):

Ay s1 50 =Ty 81 50+ @ (gs182) — (P s1+ @ sp)

So far we implicitly assumed that all operations return the data structure as a result,
otherwise ¢ (f s) does not make sense. How should we analyze so-called observer
functions that do not modify the data structure but return a value of some other
type? Because the data structure is not modified, we have s;11 = s; and thus A; s =
T; s. In a nutshell, amortized analysis is irrelevant for pure observer functions.

Now we study two classical examples of amortize analyses. More complex applica-
tions are found in later chapters.

19.2 Binary Counter 229

19.2 Binary Counter
The binary counter is represented by a list of Booleans where the head of the list is the
least significant bit. The increment operation and its running time are easily defined:

incr :: bool list = bool list

incr [| = [True]

incr (False # bs) = True # bs
incr (True # bs) = False # incr bs

Tincr :: bool list = real

Tincr [] =1
Tiner (True # bs) = Tiner bs + 1

The potential of a counter is the number of True’s because they increase Tingr

$:: bool list = real
® bs = |filter (A\z. z) bs|

Clearly the potential is never negative.
The amortized complexity of incr is 2:

Tiner bs + @ (ian bS) — ® bs =2

This can be proved automatically by induction on bs.

19.3 Dynamic Tables

A dynamic table is an abstraction of a dynamic array that can grow and shrink
subject to a specific memory management. At any point the table has a certain size
(= number of cells) but some cells may be free. As long as there are free cells, inserting
a new element into the table takes constant time. When the table overflows, the whole
table has to be copied into a larger table, which takes linear time. Similarly, elements
can be deleted from the table in constant time, but when too many elements have
been deleted, the table is contracted to save space. Contraction involves copying into
a smaller table. This is an abstraction of a dynamic array, where the index bounds
can grow and shrink. It is an abstraction because we ignore the actual contents of the
table and abstract the table to a pair (n, l) where [is its size and n < [the number
of occupied cells. The empty table is represented by (0, 0).

19.3.1

230 Chapter 19 Amortized Analysis

Below we state the complexity results only informally, e.g. “The amortized cost
of insertion is 3”, because the formal counterpart Ajns s = 3 is obvious. Nor do we
comment on the formal proofs because they are essentially just case analyses (as
dictated by the definitions) plus (linear) arithmetic.

Insertion
The key observation is that doubling the size of the table upon overflow leads to an
amortized cost of 3 per insertion: 1 for inserting the element, plus 2 towards the later
cost of copying a table of size ! upon overflow (because only the /2 elements that
lead to the overflow pay for it).

Insertion always increments n by 1. The size increases from 0 to 1 with the first
insertion and doubles with every further overflow:

ins :: nat x nat = nat x nat

ins (n,!)=(n+1,ifn < lthen lelse if | = 0 then 1 else 2-1)
This guarantees the load factor n/! is always between 1/2 and 1:

invar :: nat x nat = bool
invar (n, 1) = (/2 <nAn<l

Function Tj,s below is not derived from ins (otherwise it would be 0), but from a
version of ins that acts on an actual table and performs copying upon overflow:

Tins :: nat X nat = real

Tins (n, 1) = (if n < lthen 1 else if [= 0 then 1 else n + 1)

The potential of a table (n, [)is 2-(n — [/2) = 2-n — [following the intuitive
argument at the beginning of the Insertion section.

$:: nat x nat = real
®(n,)=2-n-1

The potential is always non-negative because of the invariant.

Note that in our informal explanatory text we use “/” freely and assume we are
working with real numbers. In the formalization we often prefer multiplication over
division because the former is easier to reason about.

19.3.2

19.3 Dynamic Tables 231

Insertion and Deletion

A naive implementation of deletion simply removes the element but never contracts the
table. This works (Exercise 19.2) but wastes space. It is tempting to think we should
contract once the load factor drops below 1/2. However, this can lead to fluttering:
Starting with a full table of size [, one insertion causes overflow, two deletions cause
contraction, two insertion causes overflow, and so on. The cost of each overflow and
contraction is [but there are at most two operations to pay for it. Thus the amortized
cost of both insertion and deletion cannot be constant. It turns out that it works if
we allow the load factor to drop to 1/4 before we contract the table to half its size:

del :: nat x nat = nat x nat

del (n,l)=(n—1,ifn =1thenOelseif 4-(n — 1) < [then [div 2 else [)

Tgel :: nat x nat = real

Tget (n, 1) = (if n =1then 1 elseif 4-(n — 1) < [then n else 1)

Now the load factor is always between 1/4 and 1. It turns out that the lower bound
is not needed in the proofs and we settle for a simpler invariant:

invar :: nat x nat = bool

invar (n, 1) = (n <)
The potential distinguishes two cases:

$:: nat x nat = real

® (n,l)=(fn<l/2theni/2 — nelse2-n — 1)

The condition 2-n > [concerns the case when we are heading up for an overflow
and has been dealt with above. Conversely, 2-n < [concerns the case where we are
heading down for a contraction. That is, we start at (I, 2-1) (where the potential is
0) and [/2 deletions lead to ({ /2, 2- 1) where a contraction requires { /2 credits, and
indeed ® ({/2, 2-1) = /2. Since [/2 is spread over [/2 deletions, the amortized
cost of a single deletion is 2, 1 for the real cost and 1 for the savings account. The
amortized cost of insertion is unchanged.

Note that the case distinction in the definition of & ensures that the potential is
always > 0 — the invariant is not even needed.

19.4

232 Chapter 19 Amortized Analysis

Exercises

Exercise 19.1. Generalize the binary counter to a base b counter, b > 2. Prove that
there is a constant ¢ such that the amortized complexity of incrementation is at most
c for every b > 2.

Exercise 19.2. Prove that in the dynamic table with naive deletion (where deletion
decrements n but leaves ! unchanged), insertion has an amortized cost of at most 3
and deletion of at most 1.

Exercise 19.3. Modify deletion as follows. Contraction happens when the load factor
would drop below 1/3,i.e. when 3-(n — 1) < L Then the size of the table is multiplied
by 2/3, i.e. reduced to (2-!) div 3. Prove that insertion and deletion have constant
amortized complexity using the potential ® (n, 1) = |2-n — .

Chapter Notes

Amortized analysis is due to Tarjan [1985]. Introductions to it can be found in most
algorithm textbooks. This chapter is based on work by Nipkow [2015] and Nipkow
and Brinkop [2019] which also formalizes the meta-theory of amortized analysis.

20.1

20.2

Queues

Alejandro Gémez-Londono and Tobias Nipkow

Queue Specification 7

A queue can be viewed as a glorified list with function eng for adding an element
to the end of the list and function first for accessing and deq for removing the first
element. This is the full ADT":

ADT Queue =
interface empty :: 'q
eng = 'a = 'g=>'q
deq :: 'g = 'q
first 2 'qg = 'a
is_empty :: 'q = bool
abstraction list :: 'q = ‘a list
invariant invar :: 'q = bool
specification list empty = |[]
tnvar ¢ — list (eng = q) = list ¢ @ [z]
mvar ¢ — list (deq q) = tl (list q)
mvar g A list ¢ # [| — first ¢ = hd (list q)
mvar ¢ — is_empty q = (list ¢ = [])
mmvar empty
tnvar ¢ — nvar (eng ¢ q)
tnvar ¢ — wnvar (deq q)

A trivial implementation is as a list, but then engq is linear in the length of the queue.
To improve this we consider two more sophisticated implementations. First, a simple
implementation where every operation has amortized constant complexity. Second,
a tricky “real time” implementation where every operation has worst-case constant
complexity.

Queues as Pairs of Lists ©
The queue is implemented as a pair of lists (fs, rs), the front and rear lists. Function
enq adds elements to the head of the rear rs and deq removes elements from the head

233

https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Queue_Spec.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Data_Structures/Queue_2Lists.html

Figure 20.1

234 Chapter 20 Queues

norm :: ‘a list x 'a list = 'a list x 'a list

norm (fs, rs) = (if fs =[] then (itrev rs [], []) else (fs, rs))

enq :: 'a = 'a list x 'a list = 'a list x 'a list

enqg a (fs, rs) = norm (fs, a # rs)

deq :: 'a list x 'a list = 'a list x 'a list
deq (fs, rs) = (if fs =[] then (fs, rs) else norm (tl fs, rs))

first :: 'a list x 'a list = 'a
first (a # ,)=a

is_empty :: 'a list X 'a list = bool

is_empty (fs,) = (fs =)

Queue as a pair of lists

of the front fs. When fs becomes empty, it is replaced by rev rs (and rs is emptied) —
the reversal ensures that now the oldest element is at the head. Hence s is really the
reversal of the rear of the queue but we just call it the rear. The abstraction function
is obvious:

list :: 'a list x 'a list = 'a list

list (fs, rs) = fs @ rev rs

Clearly enq and deq are constant-time until the front becomes empty. Then we
need to reverse the rear which takes linear time (if it is implemented by itrev, see
Section 1.5.1). But we can pay for this linear cost up front by paying a constant
amount for each call of enq. Thus we arrive at amortized constant time. See below
for the formal treatment.

The implementation is shown in Figure 20.1. Of course empty = ([], []). Function
norm performs the reversal of the rear once the front becomes empty. Why does not
only deq but also enq call norm? Because otherwise enq z, (...(enq z, empty)...)
would result in ([], [z, ..., 1]) and first would become an expensive operation because

20.3

20.3 A Real-Time Implementation & 235

it would require the reversal of the rear. Thus we need to avoid queues ([], 7s) where
rs # [|. Thus norm guarantees the following invariant:

invar :: 'a list x 'a list = bool

invar (fs, rs) = (fs = [| — rs =[])

Functional correctness, i.e. proofs of the properties in the ADT Queue, are straight-
forward. Let us now turn to the amortized running time analysis. The time functions
are shown in Appendix B.8.

For the amortized analysis we define the potential function

® :: 'a list x 'a list = nat

® (_, rs) =|rs|

because |rs| is the amount we have accumulated by charging 1 for each eng. This is
enough to pay for the eventual reversal. Now it is easy to prove that both enq and
deq have amortized constant running time:

Teng a (fs, rs) + & (enq a (fs, rs)) — @ (fs, rs) < 2
Taeq (fs, rs) + @ (deq (fs, rs)) — @ (fs, rs) <1
The two observer functions first and is_empty have constant running time.

Exercise 20.1. A min-queue is a queue that supports an operation ming that
returns the minimal element in the queue. Formally, the ADT Queue is extended as
follows: we assume ‘a :: linorder, extend the interface with ming :: ‘¢ = ’a and the
specification with

tnvar g A list ¢ # [] — ming ¢ = Min (set (list q))

Implement and verify a min-queue with amortized constant time operations. Hint:
follow the pair-of-lists idea above but store additional information that allows you to
return the minimal element in constant time.

A Real-Time Implementation 7

This sections presents the Hood-Melville queue, a tricky implementation that
improves upon the representation in the previous section by preemptively performing
reversals over a number of operations before they are required.

https://isa-afp.org/entries/Hood_Melville_Queue.html
https://isa-afp.org/entries/Hood_Melville_Queue.html

20.3.1

20.3.2

236 Chapter 20 Queues

Stepped Reversal
Breaking down a reversal operation into multiple steps can be done using the following
function:

rev_step :: 'a list x 'a list = 'a list x 'a list

rev_step (z # s, ys) = (zs, ¢ # ys)
rev_step ([l, ys) = ([], vs)

where z # zs is the list being reversed, and = # ys is the partial reversal result.
Thus, to reverse a list of size 3 one should call rev_step 3 times:

rev_step ([1, 2, 3], []) = ([2, 3], [1]
rev_step (rev_step ([1, 2, 3], []))
rev_step (rev_step (rev_step ([1, 2

~—

(13, 2, 1]
3L) = (0,132, 1))

Note that each call to rev_step takes constant time since its definition is non-recursive.
Using the notation f™ for the n-fold composition of function f we can state a simple
inductive lemma:

Lemma 20.1. rev_stepl®! (zs, ys) = ([], rev zs @ ys)

As a special case this implies rev_step!®! (zs, [|) = ([], rev zs).

A Real-Time Intuition

Hood-Melville queues are similar to those presented in Section 20.2 in that they use a
pair of lists (f, 7) (front and rear — for succinctness we drop the s’s now) to achieve
constant running time deq and enq. However, they avoid a costly reversal operation
once f becomes empty by preemptively computing a new front fr = f @ rev r one
step at a time using rev_step as enqueueing and dequeueing operations occur. The
process that generates fr consists of three phases:

1. Reverse r to form 7', which is the tail end of fr
2. Reverse f to form f'

3. Reverse f’ onto 7’ to form fr

All three phases can be described in terms of rev_step as follows:

1. ' = snd (rev_step!”! (r,]))
2. f' = snd (rev_step! (f,)
3. fr = snd (rev_step\'l (f', ')

20.3 A Real-Time Implementation & 237

Phases (1) and (2) are independent and can be performed at the same time. Hence,
when starting from this configuration,

r r!

f f!
o[Tw]] [l e [

after max |f| |r| steps of reversal, the state would be the following:

f f r 'r’
- A

Phase (3) reverses f' onto r’ to obtain the same result as a call to list:

fr = snd (rev_stepl'l (', 7)) by definition of fr
= revf@r using Lemma 20.1

= revf @ snd (rev_stepl”l (r,]])) by definition of 7/

= revf'@revr using Lemma 20.1

= rev (snd (rev_step! (f,]]))) @ rev ' by definition of f’

= rev(revf)Qrevr using Lemma 20.1
fQ@revr by rev involution

The resulting front list fr contains all elements previously in f and 7r:

fr
QG | - | Im | 9m+1 ‘ ‘ dn ‘

~

f revr

A Hood-Melville queue spreads all reversal steps across queue-altering operations,
requiring careful bookkeeping. To achieve this gradual reversal, additional lists front
and rear are used for enqueuing and dequeuing, while internal operations rely only
on f, f', r, and r'. At the start of the reversal process, rear is copied into r and
emptied; similarly, front is copied into f, but its contents are kept as they might need
to be dequeued. Moreover, to avoid using elements from f or f' that may have been
removed from front, a counter d records the number of dequeuing operations that
have occurred since the reversal process started; this way, only |f'| — d elements are
appended into r to form fr. Once the reversal finishes, fr become the new front and
the internal lists are cleared. When the queue is not being reversed, all operations are
performed in a manner similar to previous implementations. The configuration of a
queue at the beginning of the reversal process is as follows:

https://isa-afp.org/entries/Hood_Melville_Queue.html

20.3.3

20.3.4

238 Chapter 20 Queues

f f! T r!

T Te]) [ele [
7front rear
deq— @[|an| d=0 | —eng
o] an @ | <o

abstract queue

The Reversal Strategy

A crucial detail of this implementation is determining at which point the reversal
process should start. The strategy is to start once |rear| becomes larger than |front|.
This ensures that all reversal steps are done before front runs out of elements or rear
becomes larger than the new front (fr).

With this strategy, once |rear| = n+1 and |front| = n, the reversal processes
starts. The first two phases take n+ 1 steps (max |front| |rear|) to generate f’ and
r', and the third phase produces fr in n steps. A complete reversal takes 2n + 1 steps.
Because the queue can only perform n deq operations before front is exhausted,
2n + 1 steps must be performed in at most n operations. This can be achieved by
performing the first two steps in the operation that causes rear to become larger than
front and two more steps in each subsequent operation. Therefore, 2(n + 1) steps can
occur before front is emptied, allowing the reversal process to finish in time.

Finally, since at most n enq or deq operations can occur during reversal, the largest
possible rear has length n (only enq ops), while the smallest possible fr has length
n+1 (only deq ops). Thus, after the reversing process has finished, the new front (fr)
is always larger than rear.

Implementation
Queues are implemented using the following record type:

record 'a queue = lenf :: nat
front :: 'a list
status :: 'a status
rear :: 'a list
lenr :: nat

20.3 A Real-Time Implementation & 239

A record is a product type with named fields and inbuilt construction, selection,
and update operations. Values of 'a queue are constructed using make :: nat = 'a
list = 'a status = 'a list = nat = 'a queue were each argument corresponds to
one of the fields of the record in canonical order. Additionally, given a queue g we can
obtain the value of, for example, field front with front g, and update its content using
g(front := [])). Multiple updates can be composed, e.g. g(front := [], rear := []).

All values in the queue, along with its internal state, are stored in the various fields
of 'a queue. Fields front and rear contain the lists over which all queue operations
are performed. The lengths of front and rear are recorded in /enf and lenr to avoid
calling length, whose complexity is not constant. Finally, stafus tracks the current
reversal phase of the queue in a 'a status value:

datatype 'a status =
Idle |
Rev nat (‘a list) (‘a list) (‘a list) (‘a list) |
App nat ('a list) ('a list) |
Done ('a list)

Each value of ‘a status represents either a phase of reversal or the queue’s
normal operation. Constructor /dle signals that no reversal is being performed. Status
Rev ok f f' r r' corresponds to phases (1) and (2) where the lists f, /', , and 7’ are
used for the reversal steps of the front and the rear. The App ok f' r' case corresponds
to phase (3) where both lists are appended to form the new front (fr). In both App
and Rev, the first argument ok :: nat keeps track of the number of elements in f'
that have not been removed from the queue, effectively ok = |f'| — d, where d is the
number of deq operations that have occurred so far. Last, Done fr marks the end of
the reversal process and contains only the new front list fr.

In the implementation, all of the steps of reversal operations in the queue are
performed by functions exec and invalidate; they ensure at each step that the front
list being computed is kept consistent w.r.t. the contents and operations in the queue.

Function exec :: ‘a status = 'a status performs the incremental reversal of the
front list by altering the queue’s status one step at a time in accordance with the
reversal phases. Following the strategy described in Section 20.3.3, all queue operations
call exec twice to be able to finish the reversal in time. On /dle queues exec has
no effect. The implementation of exec is an extension of rev_step with specific
considerations for each stafus value and is defined as follows:

https://isa-afp.org/entries/Hood_Melville_Queue.html

240 Chapter 20 Queues

exec :: 'a status = 'a status

exec (Rev ok (z # f) f' (y#) r') = Rev (ok + 1) f (z # f') r (y # ')
exec (Rev ok [f' [y] ') = App ok f' (y # ')

exec (App 0 _ r') = Done r'

exec (App ok (z # f') r') = App (ok — 1) f' (z # ')

exec s = s

If the status is Rev ok f f' r r', then exec performs two (or one if f = []) simultaneous
reversal steps from f and r into f’ and 7’; moreover ok is incremented if a new element
has been added to f’. Once f is exhausted and r is a singleton list, the remaining
element is moved into 7' and the status is updated to the next phase of reversal. In
the App ok f' r' phase, exec moves elements from f' to 7' until ok = 0, at which
point 7’ becomes the new front by transitioning to Done r'. In all other cases exec
behaves like the identity function. As is apparent from its implementation, a number
of assumptions are required for exec to function properly and eventually produce
Done. These assumption are discussed in Section 20.3.5.

If an element is dequeued during the reversal process, it also needs to be removed
from the new front list (fr) being computed. Function invalidate does this:

invalidate :: 'a status = 'a status

invalidate (Rev ok f f' rr') = Rev (ok — 1) ff rr’
invalidate (App 0 _ (_ # r')) = Done r'

invalidate (App ok f' r') = App (ok — 1) f' r'
invalidate s = s

By decreasing the value of ok, the number of elements from f’ that are moved into 7’
in phase (3) is reduced; since exec produces Done early, once ok = 0, the remaining
elements of f' are ignored. Furthermore, since f’ is a reversal of the front list, elements
left behind in its tail correspond directly to those being removed from the queue.

The rest of the implementation is shown below. Auxiliary function exec2 applies
exec twice and updates the queue accordingly if Done is returned.

exec2 :: 'a queue = 'a queue
exec2 q = (case exec (exec (status q)) of

Done fr = q(status := Idle, front := fr|) |
st = g(status = st))

20.3.5

20.3 A Real-Time Implementation & 241

check :: 'a queue = 'a queue

check q
= (if lenr g < lenf g then exec2 q
else exec2
(q(lenf := lenf g + lenr g, status := Rev 0 (front q) [] (rear q)],

rear := [], lenr := 0))))

empty :: 'a queue
empty = make 0 [] Idle [] 0

first :: 'a queue = 'a
first ¢ = hd (front q)

enq :: 'a = 'a queue = 'a queue

enqg z g = check (q(rear := z # rear g, lenr := lenr q + 1))

deq :: 'a queue = 'a queue
deq g
= check
(q(lenf .= lenf q — 1, front := {l (front q), status := invalidate (status q)|))

The two main queue operations, enq and deq, alter front and rear as expected and
update lenf and /enr accordingly. To perform all “internal” operations, both functions
call check. Additionally, deq uses invalidate to mark elements as removed.

Function check calls exec2 if lenr is not larger than /enf. Otherwise a reversal
process is initiated: rear is emptied and lenr is set to 0; lenf is increased to the size of
the whole queue since, conceptually, all element are now in the soon-to-be-computed
front; the new status is initialized as described in Section 20.3.2.

The time complexity of this implementation is clearly constant, since there are no
recursive functions.

Correctness

To show this implementation is an instance of the ADT Queue, we need a number of

invariants to ensure the consistency of ‘a queue values are preserved by all operations.
Initially, as hinted by the definition of exec, values of type 'a status should have

specific properties to guarantee a Done result after a small enough number of calls to

exec. The predicate inv_st defines these properties as follows:

https://isa-afp.org/entries/Hood_Melville_Queue.html

242 Chapter 20 Queues

inv_st :: 'a status = bool

inv_st (Rev ok £ f' ') = (If| + 1 = |r| A [f'] = || A ok < |f'])
inv_st (App ok f' ') = (ok < |£'] A If] < |r'])

inv_st Idle = True

inv_st (Done) = True

Case Rev ok f f' r r' ensures that f and r follow the reversal strategy, and counter
ok is only ever increased as elements are added to f'. Similarly, for App ok f' ', it
must follow that 7' remains larger than f', and |f'| provides an upper bound for ok.

The queue invariant invar is an extension of inv_st and considers all the other
fields in the queue:

invar :: 'a queue = bool

invar q
= (lenf q = |front_list q| A lenr g = |rear_list q| A lenr g < lenf g A
(case status g of
Revok ff _ _ =
2-lenrq < |f'| Aok #O0AN2-|f| + o0k +2<2-|front g
| App ok _ 7= 2-lenrq < |r| A ok + 1 < 2 - |front q|
| _ = True) A
(Irest. front_list g = front ¢ @ rest) A
(A fr. status ¢ = Done fr) A
inv_st (status q))

The condition lenr ¢ = |rear_list q| ensures lenr is equal to the length of the queue’s
rear, where function rear_list = rev o rear produces the rear list in canonical order.
Similarly for lenf ¢ = |front_list q| where front_list warrants special attention because
it must compute the list representing the front of the queue even during a reversal:

front_list :: 'a queue = 'a list

front_list ¢ = (case status g of
ldle = front q |
Rev ok ff' rr' = rev (take ok f') @ f @ revr @ 7' |
App ok f' z = rev (take ok f') @ z |
Done f = f)

20.3 A Real-Time Implementation & 243

In case App ok f' ', the front list corresponds to the final result of the stepped reversal
(20.1), but only elements in f’ that are still in the queue, denoted by take ok f’,
are considered. Analogously for Rev ok f f' r ', both stepped reversal results are
appended and only relevant elements in f’ are used, however, rear lists » and 7' are
reversed again to achieve canonical order.

Continuing with invar, inequality lenr ¢ < lenf g is the main invariant in our
reversal strategy, and by the previous two equalities must hold even as internal
operations occur. Furthermore, Jrest. front_list ¢ = front ¢ @ rest ensures front q
is contained within front_list g, thus preventing any mismatch between the internal
state and the queue’s front. Given that exec?2 is the only function that manipulates a
queue’s status, it holds that 7 fr. status ¢ = Done fr since any internal Done result
is replaced by /dle.

The case distinction on status g places size bounds on internal lists front and rear
ensuring the front does not run out of elements and the rear never grows beyond lenr q
< lenf q. In order to clarify this part of invar, consider the following correspondences,
which hold once the reversal process starts:

e lenr q corresponds to the number of enq operations performed so far, and
2 - lenr g denotes the number of exec applications in those operations.

e |front q| corresponds to the number of deq operations that can be performed
before front g is exhausted. Therefore, 2 - |front q| is the minimum number of
exec applications the queue must perform to complete the reversal in time.

e In case Rev ok f f' r 7', |f'| corresponds to the number of exec’s performed
so far and the internal length of front being constructed. Expression |r| is the
analogue for App ok f r.

e From a well formed App ok f r it takes ok + 1 applications of exec to reach
Done: the base case of App is reached after ok applications, and the transition
to Done takes an extra step.

e From a well formed Rev ok f f' r r' it takes 2 - |f'| + ok + 2 applications
of exec to reach Done: the base case of Rev is reached after |f'| applications
(incrementing ok by the same amount), the transition to App takes one step, and
ok + |f'| extra steps are needed to reach Done from App.

In the Rev ok f f' r r' case, 2 - lenr ¢ < |f'| ensures f' grows larger with every
enq operation and the internal list is at least twice the length of the queue’s rear.
Additionally, the value of ok cannot be O as this either marks the beginning of a
reversal which calls exec2 immediately, or signals that elements in front ¢ have run
out. Finally, to guarantee the reversal process can finish before the front q is exhausted

https://isa-afp.org/entries/Hood_Melville_Queue.html

244 Chapter 20 Queues

the number of exec applications before reaching Done must be less than the minimum
number of applications required, denoted by 2 - |f| + ok + 2 < 2 - |front ¢|.

Case App ok f r has similar invariants, with equation 2 - lenr ¢ < |r| bounding
the growth of » as it was previously done with f’. Moreover, ok + 1 < 2 - |front q|
ensures front q is not exhausted before the reversal is completed.

With the help of invar and this abstraction function

list :: 'a queue = 'a list

list ¢ = front_list ¢ @ rear_list q

all properties of the Queue ADT can be proved. The proofs are mostly by cases on
the status field followed by reasoning about lists. It is essential that the invariant
characterizes all cases precisely.

Chapter Notes

The representation of queues as pairs of lists is due to Burton [1982]. Hood-Melville
queues are due to Hood and Melville [1981]. The implementation is based on the
presentation by Okasaki [1998, section 8.2.1.].

The idea underlying Hood-Melville queues can be generalized to double-ended
queues. This was explained by Hood [1982, section 4.2], rediscovered in more detail
by Chuang and Goldberg [1993] and verified by T6th and Nipkow [2023].

Okasaki [1998] shows how both single and double-ended real-time queues can be
defined more simply with the help of lazy evaluation. However, reasoning about the
running time under lazy evaluation is nontrivial, as the verification by Pottier et al.
[2024] of the amortized running time of some queue implementations shows.

21.1

Splay Trees [/

Tobias Nipkow

Splay trees are fascinating self-organizing search trees: the tree is modified upon access
(including isin) to improve the performance of subsequent operations. Concretely,
every splay tree operation moves the element concerned to the root. Thus splay trees
excel in applications where a small fraction of the entries are the targets of most of
the operations. In general, splay trees perform as well as any static binary search tree.

Splay trees have two drawbacks. First, their performance guarantees (logarithmic
running time of each operation) are only amortized. Self-organizing does not mean
self-balancing: splay trees can become unbalanced, in contrast to, for example, red-
black trees. Second, because isin modifies the tree, splay trees are less convenient to
use in a purely functional language.

Implementation 7

The central operation on splay trees is splay :: ‘a = 'a tree = ’'a tree. It searches a
tree for a given element = and rotates = (or the last element found before the search
for z hits a leaf) to the root by two specific double-rotations (and their mirror images):

zig-zig: () ——— (@)

@ /\ ANJO
@ /B\ /BN (5)
ANV /B\ /o\
®
@ /o\
/A @)
/BN /B

245

zig-zag:

https://isa-afp.org/entries/Splay_Tree.html
https://isa-afp.org/browser_info/current/AFP/Splay_Tree/Splay_Tree.html

246 Chapter 21 Splay Trees

splay ¢ (AB, b, CD)
= (case cmp z b of
LT = case AB of
() = (AB, b, CD) |
(4, a, B) =
case cmp z a of
LT = if A = () then (4, a, (B, b, CD))
else case splay = A of
(A1, 2, A3) = (A1, 2, (As, a, (B, b, CD))) |
EQ = (A, a, (B, b, CD)) |
GT = if B = () then (4, a, (B, b, CD))
else case splay = B of
(B1, ¢/, B2) = {(A, a, Bi1), &', (B2, b, CD)) |
EQ = (AB, b, CD) |
GT = case CD of
() = (AB, b, CD) |
(C, ¢c, D) =
case cmp z c of
LT = if C = () then ((AB, b, C), ¢, D)
else case splay = C of
(Cy, z', C3) = ((AB, b, Cy), z', (C3, ¢, D)) |
EQ = ((AB, b, C), ¢, D) |
GT = if D = () then ((AB, b, C), ¢, D)
else case splay z D of
(D1, 2', D2) = (((4B, b, C), ¢, D1), 2, D2))

Figure 21.1 Function splay

One of zig-zig and zig-zag is simply the composition of two single rotations (see
Section 5.5), one isn’t — which one is which?

The full definition of splay is shown in Figure 21.1. Function /sin has a trivial
implementation in terms of splay:

isin :: 'a tree = 'a = bool

isint z = (case splayz tof () = False | (_, a, _) = z = a)

21.1 Implementation 7 247

Note that splay creates a new tree that needs to be returned from a proper isin as
well, to achieve the amortized logarithmic complexity. This is why splay trees are
inconvenient in functional languages. For the moment we ignore this aspect and stick
with the above isin because it has the type required by the Set ADT.

The implementation of insert z t below is straightforward: let (I, a,) = splay z
t; if a = z, return (I, a, 7); otherwise make z the root of a suitable recombination of

l, a and .

insert :: 'a = 'a tree = 'a tree

insert z t
= (it ¢ = () then ((), z, ())
else case splay = t of
(I, a, vy = case cmp z a of
LT = {1, z, ((), a, 7)) |
EQ= (l,a,)|
GT = {{, a, ()), z, 7))

The implementation of delete z t below starts similarly: let (I, a,) = splay z ¢;
if a # =z, return (I, a, r). Otherwise follow the deletion-by-replacing paradigm
(Section 5.2.1): if I # (), splay the maximal element m in ! to the root and replace z
with it.

delete :: 'a = 'a tree = 'a tree

delete z ¢
= (if ¢ = () then ()
else case splay z t of
{, a, 1y =
if z # a then (i, a, 7)
else if | = () then r
else case splay_max lof (I', m, _) = (I', m, 7))

Function splay_max below returns a tree that is just a glorified pair: if ¢ # () then
splay_max t is of the form (t', m, ()). The equation splay_max () = () is not really
needed (splay_max is always called with non-() argument) but some lemmas can be
stated more simply with this definition.

https://isa-afp.org/browser_info/current/AFP/Splay_Tree/Splay_Tree.html

21.2

248 Chapter 21 Splay Trees

splay_max :: 'a tree = 'a tree

splay_max () = ()
splay_max (4, a, ()) = (4, a, ())
splay_max (A, a, (B, b, CD))
= (if CD = () then ((4, a, B), b, ())
else case splay_max CD of (C, ¢, D) = ({({(4, a, B), b, C), ¢, D))

Correctness
The inorder approach of Section 5.4 applies. Because the details are a bit different
(everything is reduced to splay) we present the top-level structure.

The following easy inductive properties are used implicitly in a number of subse-
quent proofs:

splayat ={() +— t=)
splay_maxt = () +— t =)
Correctness of /sin
sorted (inorder t) — isin t ¢ = (z € set (inorder t))
follows directly from this easy inductive property of splay:

splay z t = (l, a,) A sorted (inorder t) —
(z € set (inorder t)) = (z = a)

Correctness of insert and delete
sorted (inorder t) — inorder (insert z t) = ins_list z (inorder t)
sorted (inorder t) — inorder (delete z t) = del_list z (inorder t)
relies on the following characteristic inductive properties of splay:
inorder (splay = t) = inorder t (21.1)

sorted (inorder t) A splay zt = (I, a,) —
sorted (inorder | @ z # inorder r)

Correctness of delefe also needs the inductive proposition

splay_max t = (l, a,) A sorted (inorder t) —
inorder I @ [a] = inorder t A r = ()

Note that inorder (splay = t) = inorder t is also necessary to justify the proper
isin that returns the newly created tree as well.

21.3

21.3 Amortized Analysis 7 249

Automation of the above proofs requires the lemmas in Figure 5.2 together with
a few additional lemmas about sorted, ins_list and del_list that can be found in the
Isabelle proofs.

Recall from Section 5.4 that correctness of insert and delete implies that they
preserve bst = sorted o inorder. Similarly, (21.1) implies that splay preserves bst.
Thus we may assume the invariant bst in the amortized analysis.

These two easy size lemmas are used implicitly below:

|splay a t| = || |splay_max t| = |t]

Amortized Analysis 7
This section shows that splay, insertion and deletion all have amortized logarithmic
complexity.

We define the potential & of a tree as the sum of the potentials ¢ of all nodes:

® :: 'a tree = real
() =0
®(l,a,")=p{,a,)+ S+ &7

pt=1g|th

The central result is the amortized complexity of splay. Function Tgpjay is shown
in Appendix B.9. We follow (19.1) and define

Asplay at = Tspay at + & (splay at) — @t

First we consider the case where the element is in the tree:

Theorem 21.1. bstt A (I, z, r) € subtrees t —
Asplay zt <3 - (pt —p (l,z, 7)) + 1
Proof by induction on the computation of splay. The base cases involving () are
impossible. For example, consider the call splay = t where ¢t = ({), b, C) and = < b:
from (I, z, r) € subtrees t it follows that z € set_tree t but because bst t and z < b,
this implies that z € set_tree (), a contradiction. There are three feasible base cases.
The case t = (_, =,) is easy. We consider one of the two other symmetric cases.
Let t = ((A, z, B), b, C)and t' =splay z t = (A, z, (B, b, C)).
Asplayzt = t' — @t +1 by definition of Agpjay and Tspiay
=t + (B, bC)—pt—p (A z B)+1 by definition of &
=9 (B,b,C)—¢@ (A z, B) +1 by definition of ¢

https://isa-afp.org/browser_info/current/AFP/Amortized_Complexity/Splay_Tree_Analysis.html
https://isa-afp.org/browser_info/current/AFP/Amortized_Complexity/Splay_Tree_Analysis.html

250 Chapter 21 Splay Trees

<pt—9 (A z, B)+1 because ¢ (B, b, C) < ¢ t
<3-(pt—9p (A z B)+1 because ¢ (A, z, B) < p t
=3-(pt—9p{,z,r)+1 because bst t A (I, z, r) € subtrees t

There are four inductive cases. We consider two of them, the other two are
symmetric variants. First the zig-zig case:

® B —— @

@ /o\ @ /o\ ANJO
/A B\ — @ /8 /BN (B
ANV /B\ /o\

This is the case where z < a < b and A # (). On the left we have the input and on
the right the output of splay z. Because A # (), splay ¢ A = (A4, 2, As) =: A’ for
some A1, ' and A;. The intermediate tree is obtained by replacing A by A’. This tree
is shown for illustration purpose only; in the algorithm the right tree is constructed
directly from the left one. We abbreviate compound trees like (A, a, B) by the names
of their subtrees, in this case AB. Similarly Ir = (I, z, r). First note that

¢ A1AyBC = ¢ ABC (*)
because |A’| = |splay z A| = |A|. We can now prove the claim:

Asplay © ABC = Toprgyz A + 1 + & AjA,BC — & ABC
=Tpayz A+ 1+ @A +PA+9p AyBC+ 9 BC - % A—¢p AB
by (%) and definition of &
=Tpayz A+ P A —pA - A+ 9 AyBC+ ¢ BC — 9 AB +1
=Aspay T A+ 9 AsBC+ 9o BC — 9 AB —p A" +1
<3 - pA+9pABC+ 9 BC —@p AB —p A —3-plr+2
by IH and ir € subtrees A
=2 -9 A+ Ay BC+ 9 BC —p AB -3 ¢ lr + 2
because ¢ A = p A’
<pA+ 9 AsBC+ ¢ BC -3 - lr +2 because ¢ A < ¢ AB
<@ ABC+ 2 -9 ABC -3 -plr+1
because 1 + gz + lgy < 2-1lg (z + y)ifz,y >0
<3-(p ABC —pIr) +1 because ¢ A;BC < ¢ ABC

21.3 Amortized Analysis 7 251

Now we consider the zig-zag case:

@ /o\ @ /o
/A /BN — [a\ @)
/BN /BN

This is the case where a < z < b and B # (). On the left we have the input and on
the right the output of splay z. Because B # (), splay ¢ B = (B1, ¢', B2) =: B’ for
some Bi, z' and B,. The intermediate tree is obtained by replacing B by B’. The

proof is very similar to the zig-zig case, the same naming conventions apply and we
omit some details:

Asplay T ABC = Tgpjgyz A+ 1+ & AB1B,C — & ABC
=Aspay 2B+ ¢ AB1 + ¢ BoC — 9 AB —p B' +1
using ¢ AB1B>,C = ¢ ABC
<3.-9B+@AB, + ¢ B,C—9pAB - 0B —3-¢lr+2
by IH and ir € subtrees B
=2- 9B+ 9 AB; + ¢ BsC— 9 AB -3 - lr +2
because ¢ B = ¢ B’
<@pB+ 9 AB1 + ¢ BoC -3 - lr+2 because ¢ B < ¢ AB
<@eB+2-pABC —3-plr+1
because 1l + Igz + lgy < 2-1g (z + y)if z,y >0
<3-(p ABC —plr)+1 because ¢ B < ¢ ABC O

Because ¢ (I, z, r) > 1, the above theorem implies
Corollary 21.2. bstt ANz € set treet — Agpigy zt <3 - (pt —1) +1

If z is not in the tree we show that there is a ¥ in the tree such that splaying with
y would produce the same tree in the same time:

Lemma 21.3. t # () A bstt —
(Jyeset_tree t. splay y t = splay z t A Tspiay y t = Tspiay = t)

Element y is the last element in the tree that the search for z encounters before it
hits a leaf. Naturally, the proof is by induction on the computation of splay.

Combining this lemma with Corollary 21.2 yields the final unconditional amortized
complexity of splay on BSTs:

Corollary 21.4. bstt — Agpay zt <3 -t + 1

https://isa-afp.org/browser_info/current/AFP/Amortized_Complexity/Splay_Tree_Analysis.html

21.4

252 Chapter 21 Splay Trees

The “— 1" has disappeared to accommodate the case t = ().
The amortized analysis of insertion is straightforward now. From the amortized
complexity of splay it follows that

Lemma 21.5. bstt — Tipsert zt + @ (insertzt) — dt<4-¢pt+2

We omit the proof which is largely an exercise in simple algebraic manipulations.
The amortized analysis of deletion is similar but a bit more complicated because of
the additional function splay_max whose amortized running time is defined as usual:

Asplay_max t = Tsp/ay_max t+ @ (splay_max t) -%t

Like in the analysis of Agpjay, an inductive proof yields
t# () — Asplaymax t <3-(pt—-1)+1
from which
Aspiay_max t <3 -t +1

follows by a simple case analysis. The latter proposition, together with Corollary 21.4,
proves the amortized logarithmic complexity of delete

bstt — Tyelete a t + & (delete at) — 2t <6-pt+2

in much the same way as for insert (Lemma 21.5).
A running time analysis of isin is trivial because isin is just splay followed by a
constant-time test.

Exercises
Exercise 21.1. Find a sequence of numbers ny, ns, ... ng such that the insertion of
theses numbers one by one creates a splay tree of height k.

Chapter Notes
Splay trees were invented and analyzed by Sleator and Tarjan [1985] for which they
received the 1999 ACM Paris Kanellakis Theory and Practice Award [Kanellakis]. In
addition to the amortized complexity as shown above they proved that splay trees
perform as well as static BSTs (the Static Optimality Theorem) and conjectured that,
roughly speaking, they even perform as well as any other BST-based algorithm. This
Dynamic Optimality Conjecture is still open.

This chapter is based on earlier publications [Nipkow 2015, 2016, Nipkow and
Brinkop 2019, Schoenmakers 1993].

22.1

Skew Heaps (7

Tobias Nipkow

Skew heaps are heaps in the sense of Section 14.1 and implement mergeable priority
queues. Skew heaps can be viewed as a self-adjusting form of leftist heaps that attempt
to maintain balance by unconditionally swapping all nodes on the merge path when
merging two heaps.

Implementation of ADT Priority Queue Merge 7
The central operation is merge:

merge :: 'a tree = 'a tree = ‘a tree

merge () t =t

merge t () =t

merge (<l1, a, 7”1) =H tl) (<l2, as, 7’2> =H tz)

= (if a; < a; then (merge t, r1, a1, l1) else (merge t; 73, as, l2))

The remaining operations (empty, insert, get_min and del_min) are defined as in
Section 14.1.
The following properties of merge have easy inductive proofs:

|merge ty ta] = [t1| + |t2]
mset_tree (merge t; t;) = mset_tree t; + mset_tree t,
heap t; A heap to — heap (merge t; t2)

Now it is straightforward to prove the correctness of the implementation w.r.t. the
ADT Priority_ Queue_ Merge.
Skew heaps attempt to maintain balance, but this does not always work:

Exercise 22.1. Find a sequence of numbers ni, no, ...ng such that the insertion
of these numbers one by one creates a tree of height k. Prove that this sequence will
produce a tree of height k.

Nevertheless, insertion and deletion have amortized logarithmic complexity.

253

https://isa-afp.org/entries/Skew_Heap.html
https://isa-afp.org/browser_info/current/AFP/Skew_Heap/Skew_Heap.html

22.2

254 Chapter 22 Skew Heaps

Amortized Analysis 7
The key is the definition of the potential. It counts the number of right-heavy (rh)
nodes:

® :: 'a tree = nt

@, ,rY=@1+®r+rhir

rh :: 'a tree = 'a tree = nat

rh 1 r = (if || < |r| then 1 else 0)

The rough intuition: because merge descends along the right spine, the more right-
heavy nodes a tree contains, the longer merge takes.

Two auxiliary functions count the number of right-heavy nodes on the left spine
(Irh) and left-heavy (= not right-heavy) nodes on the right spine (r/h):

Irh :: 'a tree = nat
Irh () =0
Irh{l, ,ry=rhlr+Ihl

rih :: 'a tree = nat
rlh () =0
rlh{l, ,ry=1—rhilr+rihr

The following properties have automatic inductive proofs:
2lrhtg|t|+1 2rlht5|t|+1
They imply
Irh t < lg || rih t < Ig |t|1 (22.1)

Now we are ready for the amortized analysis. All time functions can be found in
Appendix B.10. The key lemma is an upper bound of the amortized complexity of
merge in terms of Irh and rih:

Lemma 22.1. Tmerge t1 i + @ (merge ty tz) - %t — Pty
< Irh (merge t; t3) + rlht; + rlh t; + 1

https://isa-afp.org/browser_info/current/AFP/Amortized_Complexity/Skew_Heap_Analysis.html

22.2 Amortized Analysis 7 255

Proof by induction on the computation of merge. We consider only the node-node
case: let t; = (l1, a1, r1) and t2 = (l2, az, 72). W.lo.g. assume a; < as. Let m =
merge t, 71.

Tmerge t1 t2 + ® (merge t1 t2) — & t1 — & to

=Tmergetari +1+@m+ L +rhmiy — @t — &t

=Tmergetami+1+@m+rhmily —®ry —rhlyr — @t

<Ithm+riht; +rlhry +rhmi, +2—rhl; r; by IH
=lrhm+rlhty +rlht; +rhmiy +1
= Irh (merge t1 tz2) + rlht; + rlh t5 + 1 O

As a consequence we can prove the following logarithmic upper bound on the amor-
tized complexity of merge:

Tmerge t1 t2 + ® (merge ti t2) — & t1 — @ t,

<rh (merge t1 t3) + rlht; + rlh t5 + 1 by Lemma 22.1
< lg |merge ti t2|1 + 19 |t1]1 + g |t2]1 + 1 by (22.1)
< g (|ti|1 + |t2]1 — 1) + g |t1]1 + 19 |ta]1 + 1

because |merge t1 ta| = |t1] + |t2

<19 (Itils + [t2l1) + 2 g ([ta]s + [t2)1) + 1

=3- /g (|t1|1 + |t2|1) +1
The amortized complexities of insertion and deletion follow easily from the complexity
of merge:
3-Jg (Jt]s +2)+1
3-lg (|t +2) +1

Tinsert a t + ® (insertat) — &t <
Tdel mint + ® (del_mint) — & t <
Chapter Notes

Skew heaps were invented by Sleator and Tarjan [1986] as one of the first self-
organizing data structures. Their presentation was imperative. Our presentation
follows earlier work by Nipkow [2015] and Nipkow and Brinkop [2019] based on the
functional account by Kaldewaij and Schoenmakers [1991].

https://isa-afp.org/browser_info/current/AFP/Amortized_Complexity/Skew_Heap_Analysis.html

23.1

Pairing Heaps ©

Tobias Nipkow
The pairing heap is another form of a self-adjusting priority queue.

Implementation 7

A pairing heap is a heap in the sense that it is a tree with the minimal element at
the root — except that it is not a binary tree but a tree where each node has a list of
children:

datatype ‘a hp = Hp ‘a (‘a hp list)
type_synonym ’a heap = ‘a hp option

To accommodate the empty heap, we have put option on top. We could have avoided
the option layer by defining datatype 'a hp = Empty | Hp 'a (‘a hp list). The
drawback of this one-step definition is that Empty may occur inside a non-Empty
hp. The amortized analysis needs to rule out such ill-formed heaps, i.e. it requires an
invariant, something we can avoid altogether (at the expense of two types rather than
one). The invariants and abstraction functions follow the heap paradigm:

php :: 'a hp = bool
php (Hp = hs) = (Vheset hs. (Vye,mset_hp h. = < y) A php h)

invar :: 'a heap = bool

invar ho = (case ho of None = True | Some h = php h)

mset_hp :: 'a hp = 'a multiset
mset_hp (Hp z hs) = {z} + sum_list (map mset_hp hs)

mset_heap :: 'a heap = 'a multiset

mset_heap ho = (case ho of None = {} | Some h = mset_hp h)

257

https://isa-afp.org/entries/Pairing_Heap.html
https://isa-afp.org/browser_info/current/AFP/Pairing_Heap/Pairing_Heap_List2.html

258 Chapter 23 Pairing Heaps

The implementations of empty and get_min are obvious, and insert follows the
standard heap paradigm:

empty = None

get_min :: 'a heap = 'a
get_min (Some (Hpz)) ==

insert :: 'a = 'a heap = 'a heap

insert ¢ None = Some (Hp z [])
insert ¢ (Some h) = Some (link (Hp z []) h)

link :: 'a hp = ‘a hp = 'a hp
link (Hp I hSl) (Hp To th)
= (lf 1 < z5 then Hp Tq (Hp Ty hsy #]’L.Sl) else Hp To (Hp z; hs; # I’LSQ))

Auxiliary function /ink simply adds one of the two heaps to the front of the other,
depending on the root values.
Function merge is not recursive but delegates to link:

merge :: 'a heap = 'a heap = 'a heap

merge ho None = ho
merge None ho = ho
merge (Some hy) (Some hy) = Some (link hy hs)

Thus merge and insert have constant running time. All the work is offloaded on
del_min which delegates to a 2-pass algorithm:

del_min :: 'a heap = 'a heap

del_min None = None
del_min (Some (Hp _ hs)) = passz (passi hs)

passt :: 'a hp list = 'a hp list

pass; (h1 # ho # hs) = link hy hy # pass; hs
pass; hs = hs

23.1.1

23.1 Implementation 7 259

passy :: 'a hp list = 'a heap

passz [| = None
passz (h # hs) = Some (case passy hs of None = h | Some h' = link h h')

The following diagram exemplifies both passes:

passz (passy hs) =

passy hs =
hs =

Pass 1 links pairs of adjacent hps (hence the name pairing heap) and pass 2 links
the resulting list of Aps in a cascade into a single heap.

Clearly del_min can take linear time but it will turn out that the constant-time
insert saves enough to guarantee amortized logarithmic complexity for both insertion
and deletion.

Comparing pairing heaps and binomial heaps and forests we find: Type hp is almost
identical to type tree in the representation of binomial heaps and function /ink is
almost identical to its namesake on binomial heaps. However, insert and merge are
constant-time, in contrast to their namesakes on binomial forests.

Exercise 23.1. The composition of pass; and passy has the drawback of creating an
intermediate list. Define a single-pass function merge_pairs that behaves like pass;
o pass; and is no slower but does not create an intermediate list. Prove

merge_pairs hs = passy (passi hs)
Tmerge_pairs hs < Tpass, hs + Tpass, (passs hs)

Correctness
The properties in the specifications Priority_ Queue(_ Merge) are easily established.
Function del_min requires the following lemmas (all proofs are routine inductions):
ho # None — mset_heap (del_min ho) = mset_heap ho — {get_min ho}
ho # None — get_min ho €, mset_hp (the ho)
ho # None A invar ho A z €, mset_hp (the ho) — get_min ho < z
invar ho — invar (del_min ho)

https://isa-afp.org/browser_info/current/AFP/Pairing_Heap/Pairing_Heap_List2.html

260 Chapter 23 Pairing Heaps

23.2 Amortized Analysis (7

The potential function & is defined in terms of a size function. More precisely, we need
size functions for the three types under consideration: ‘a hp list, ‘a hp and ‘a heap.
For readability we defined three instances of an overloaded function sz:

sz :: 'a hp list = nat

Sz (Hp = hsl # hsr) = sz hsl + Sz hsr + 1
sz[]=0

sz : 'a hp = nat
szh =sz (hps h) + 1

Sz :: 'a heap = nat
sz = lift_hp 0 sz

lift_hp :: '6 = (‘a hp = 'b) = 'a heap = 'b
lift_hp ¢ _ None = c
lift_hp f (Some h) = fh

hps :: 'a hp = 'a hp list
hps (Hp _ hs) = hs

Function sz essentially just counts the number of constructors.
The potential function & is overloaded in the same way:

® :: 'a hp list = real
3 =0
® (Hp z hsl # hsr) = ® hsl + & hsr + Ig (Sz hsl + sz hsr + 1)

® ::'a hp = real
® h=2& (hps h) + lg (sz (hps h) + 1)

® :: 'a heap = real
® = lift_hp0o &

https://isa-afp.org/browser_info/current/AFP/Amortized_Complexity/Pairing_Heap_List2_Analysis.html

23.2 Amortized Analysis 7 261

These definitions may look a bit mysterious. Section 23.3 shows how they follow from
a simple uniform definition where heaps are represented by binary trees.

It is straightforward to prove that the non-recursive insert and merge have
amortized logarithmic complexity:

Tinsert @ ho + @ (insert a ho) — & ho < Ig (sz ho + 1)

Tmerge hoi hoy; + & (merge ho; hOz) — ® ho; — @ hosy
<2-lg(sz hoy + 8Z hos + 1)

The analysis of del_min is more work. Its running time on Some h is linear in the
length of hps h. Therefore we have to show that the potential change compensates
for this linear work. Our main goal is this:

Theorem 23.1. $ (del_min (Some h)) — & (Some h)
<2-lg(sz(hpsh)+ 1) — |hps h| + 2

We will prove it in two steps: First we show that pass; frees enough potential to
compensate for the work linear in |hs| and increases the potential only by a logarithmic
term. Then we show that the increase due to passy is also only at most logarithmic.
Combining these results one easily shows that the amortized running time of del_min
is indeed logarithmic.

First we analyze the potential difference caused by pass;:

Lemma 23.2. $ (pass; hs) — ® hs < 2-1g (sz hs + 1) — |hs| + 2

Proof by induction on the computation of passy. The base cases are trivial. We focus
on the induction step. Let hs' = hy # ho # hs, hy = Hp _ hsy, ho = Hp _ hsa,
ni1 = SZ hs1, no = SZ hsy and m = SZ hs.

® (passy hs') — & hs'

=lg(ni+na+1)—lg(n.+m+ 1)+ & (passs hs) — & hs

<lg(ni+no+1)—lg(ne+m+1)+2-lg(m+1)—|hs|+2 bylH

<2-lg(ni+nye+m+1)—Ilg(na+m+1)+1Ig (m+ 1) — |hs|
because gz + Igy +2<2-lg(z + y)ifz,y >0

2-1g (n1 + ny + m + 2) — |hs|

=2-1lg (sz hs') — |hs'| + 2

<2-1lg(szhs" + 1) — |hs'| + 2 O

Now we turn to passy:

Lemma 23.3. hs # [| — & (passz hs) — ® hs < Ig (Sz hs)

Proof by induction on hs. The base case is trivial. The induction step Hp _ hs; #
hs is trivial if hs = []. We assume hs # [|]. Thus pass, hs = Some (Hp _ hs;) for
some hsy. We also need that for all As

https://isa-afp.org/browser_info/current/AFP/Amortized_Complexity/Pairing_Heap_List2_Analysis.html

23.3

262 Chapter 23 Pairing Heaps

Sz (passz hs) = sz hs

The proof is a straightforward induction on As. This implies Sz hs = Sz hsy + 1.
Moreover, by definition of /ink we have

® (link hqy hy) = ® hsy + @ hsy + lg (n1 + n2 + 1) + Ig (n1 + n2 + 2) (%)
Finally note that the IH hs # [| — & (passz hs) — ® hs < Ig (sz hs) reduces to

® hsy; — P hs <0 (%)
The overall claim follows:

® (passz (h1 # hs)) — @ (hy # hs)
=& (link hy hy) — ($ hsy + @ hs + g (n1 + Sz hs + 1))

=® hsy +1lg(ny +na+1) — P hs by (%)
<lg(ny +ny +1) by (xx)
< lg (sz (h1 # hs)) O

Corollary 23.4. ¢ (passz hs) — ® hs < Ig (sz hs + 1)
Theorem 23.1 follows easily:

® (del_min (Some h)) — @ (Some h)

= & (passy (passt hs)) — (lg (sz hs + 1) + & hs) where h = Hp _ hs
< & (passy hs) — & hs by Corollary 23.4
<2-1lg(szhs+ 1) — |hs| + 2 by Lemma 23.2

Combining the following inductive upper bound for the running time of the two
passes

Tp3532 (paSS1 hS) + Tpass1 hs S 2 + |hS|
with Theorem 23.1 yields the third and final amortized running time:

Thus we have proved that insertion, merging and deletion all have amortized
logarithmic running times.

Pairing Heaps as Trees 7
Pairing heaps can be represented as binary trees as follows: a heap Hp z hs is
represented by the tree (trees hs, z, ()) where

trees :: 'a hp list = 'a tree

trees [| = ()
trees (Hp z lhs # rhs) = (trees lhs, z, trees rhs)

https://isa-afp.org/browser_info/current/AFP/Amortized_Complexity/Pairing_Heap_Tree_Analysis.html

23.3 Pairing Heaps as Trees U 263

None is represented by () and Some is dropped. Although it is like working with
untyped LISP S-expressions, it has the big advantage that we now have to deal only
with a single type, trees. This is particularly relevant for the amortized analysis,
where a single size and potential function suffice. In fact, the size function is simply
the standard size function on trees and ¢ is (almost) the potential function used for
splay trees:

® :: 'a tree = real
®()=0
@z, ry=@1+&7r+Ig|{ z r)

The tree representation simplifies both the analysis and the implementation.
Conversely, via the above mapping trees from heaps to trees we can derive the
definitions of sz and @ in Section 23.2 from the definitions of size and $ on trees.
For example, from the (alternative) definition sz hs = |irees hs|, the two defining
equations for sz on ‘a hp list in Section 23.2 follow directly from the definition of
trees.

Chapter Notes

Pairing heaps were invented by Fredman et al. [1986] as a simpler but competitive
alternative to Fibonacci heaps. The authors gave the amortized analysis presented
above (but using binary trees as sketched in Section 23.3) and conjectured that it
can be improved. Later research confirmed this [Iacono 2000, Iacono and Yagnatinsky
2016, Pettie 2005] but the final analysis is still open. An empirical study [Larkin et al.
2014] showed that pairing heaps do indeed outperform Fibonacci heaps in practice.
This chapter is based on an article by Nipkow and Brinkop [2019].

https://isa-afp.org/browser_info/current/AFP/Amortized_Complexity/Pairing_Heap_Tree_Analysis.html

Part V

Selected Topics

265

Graph Algorithms (7

Mohammad Abdulaziz

Graphs are a fundamental structure in mathematics and computer science, and
algorithms processing them span some of the most basic in computer science, like
the ones we will discuss here, up to some of the deepest, like algorithms for matching
and other combinatorial optimisation problems. Indeed, much of this very book is
dedicated to studying trees, which are a certain type of graphs, and their application
in storing and manipulating data. In this chapter we focus on a more general class of
graphs, namely, directed graphs, algorithms for processing them, and formal reasoning
about those algorithms, in which we prove, using a theorem prover, desired properties
of those algorithms.

The first step in the process of reasoning about graph algorithms is that of
representing or modelling a (directed) graph in a theorem prover. Earlier in the book,
for instance, graphs were represented using weight mappings, where an infinite weight
indicates a lack of an edge. Here we choose a different model of directed graphs: a
directed graph is a set of pairs, each of which is modelling an edge, formally, (‘v x
'v) set. This model emphasises the view of a graph as a set, which makes automatic
reasoning easier as it glosses over implementation details. For such graphs, we define a
number of auxiliary functions and predicates to enable reasoning about them. These
are

e A function returning the set of vertices in a directed graph:

dVs :: ('v x 'v) set = 'v set
dVs G = U {{’Ul, ’Uz} | (’Ul, ’UQ) € G}

e A function returning the neighbourhood of a vertex

neighbourhood :: (‘v x 'v) set = v = 'v set
neighbourhood G v = {v | (u, v) € G}

e A predicate indicating that a list of vertices forms a walk in the graph:

267

https://isa-afp.org/entries/Graph_Algorithms.html

241

2411

268 Chapter 24 Graph Algorithms

vwalk :: ('v x 'v) set = 'v list = bool

vwalk]
vwalk E [v] = (v € dVs E)
vwalk E (u # v # vs) = ((u, v) € E AN vwalk E (v # vs))

e An auxiliary predicate indicating that a list of vertices constitutes a walk between
two given vertices:

vwalk_bet :: ('v x 'v) set = 'v = v list = v = bool

vwalk_bet Gupv = (vwalk Gp Ap #[| AN hdp =u A last p = v)

Although there is a myriad of other properties that could be defined for directed
graphs, the ones we defined above are enough for our purposes for now as we will
mainly be studying algorithms that reason about reachability between vertices in a
given directed graph.

We note that, although this book is mainly about executable algorithms, this
representation of graphs cannot be used for specifying executable algorithms. It glosses
over implementation details, making it more suitable for mathematical reasoning. On
the other hand it is not guaranteed to be finite, which complicates any computational
interpretation of the type.

Depth-First Search

The first algorithm we will consider here is depth-first search (DFS). DFS is a so-
called graph-traversal algorithm, which is a class of algorithms that process vertices
of a directed graph in a given traversal order. For DFS, that order is, as one could
guess from the name, depth-first. This means that, while processing a vertex, the
algorithm processes one neighbouring vertex and all its descendants, before moving
on to any of its other neighbours. Figure 24.1 shows a number of depth-first traversals.
In its simplest form, such a traversal has the goal of finding a vertex-walk between a
given source vertex (called s henceforth) and a target vertex (called ¢ henceforth). In
particular, we would like an implementation of DFS to satisfy one property: it finds
a vertex-walk iff there is one.

Modelling Graphs: an Algorithmic Perspective
Now, as we have a general understanding of what is required from DFS, we start
with the specifics of implementing and reasoning about DFS. The first aspect is

Figure 24.1

24.1 Depth-First Search 269

A directed graph, and illustrations of two of its depth-first traversals rooted at vertex
a. In each of those, vertices are numbered according to the ’time’ at which they had
been traversed. Only traversed edges are shown in the latter two graphs.

modelling directed graphs. Recall that we have already provided a formal model of
directed graphs — using which one can formally prove any result on directed graphs.
Nonetheless, that model of directed graphs does not immediately allow executability.
For instance, a common operation in graph algorithms is picking a neighbour of a
vertex and then processing it. In that representation it is not immediately obvious
how this could be implemented because the set of neighbours is a mathematical set
with no notion of ordering that allows one to deterministically pick a neighbour. One
naive way to handle such nondeterminism is to use lists as a representation of sets, i.e.
the neighbourhood of a vertex would be a list of vertices, and the graph itself would be
a list of pairs, and so on. This approach would solve the problem of nondeterminism,
as choosing a neighbour, for instance, could be achieved by taking the head of the list
of neighbours. However, this approach presents two problems:

1. It fixes an implementation of sets, which is inflexible and slower than it needs
to be. E.g. finding whether a vertex is in the neighbourhood of another vertex
can be done in time linear, in the worst case, in the size of the neighbourhood.
This is much worse than the logarithmic time achievable if the set is represented
efficiently by a tree.

2. Proving graph-theoretic facts about graphs represented as lists can be cumber-
some and adds an unneeded layer of complexity.

Figure 24.2

270 Chapter 24 Graph Algorithms

ADT Set_ Choose = Set +

interface
sel 2 's = 'a

specification
s # empty — isin s (sel s) (choose)

ADT Set_ Choose

To solve the first problem, we follow the approach of Abstract Data Types (ADTs)
employed earlier in this book to parametrically specify DFS, where we parameterise
it over an efficient representation of a map, used for adjacency, and a set, used to
represent neighbourhoods of vertices. For that, we need two ADTs. The first ADT is
that of sets with a choice operator, i.e. a function that returns an arbitrary element of
the set, if the set is not empty. This ADT has the same interface as that of Set from
Chapter 6, but with one additional function that selects an arbitrary element of the
set, if the set is not empty. The ADT is shown in Figure 24.2.

The next ADT here represents the graph that is to be processed by an algorithm. The
details of that ADT are shown in Figure 24.3. We note a number of points. First, this
ADT does not introduce any new operations of its own; it is merely an ADT that uses
and renames the operations of the Map ADT from Chapter 6 and the Set_ Choose
ADT, where the latter is used to model neighbourhoods of vertices and the former is an
adjacency map mapping every vertex to its neighbourhood. Because we introduce no
new operations, we do not need new specifications or abstraction functions. However,
we need to take care of two things: 1. to make sure that the types of the two ADTs
are consistent, e.g. the adjacency map maps vertices to neighbourhoods of the same
type as the type Set_ Choose; and 2. to make sure that constants in the interfaces of
the two used ADTs do not have the same names.

We note that the two ADTs do not provide direct access to crucial operations
needed for manipulating graphs, like adding edges to a graph. Such operations can be
implemented as shown below, in terms of the ADTs’ interfaces:

add_edge :: 'adjmap = 'v = v = 'adjmap
add_edge G u v
= (case lookup G u of
None =
let vset’ = insert v Oy ; digraph’ = update u vset' G in digraph’

Figure 24.3

24.1 Depth-First Search 271

ADT Pair_ Graph_ Specs = adjmap: Map + vset: Set_ Choose +

interface

0c :: 'adjmap (renaming adjmap.empty)

update 1 'v = 'vset = ‘adjmap = 'adjmap (renaming adjymap.update)
lookup :: 'adjmap = 'v = 'vset option (renaming adjmap.lookup)
adymap_inv :: ‘adjmap = bool (renaming adjmap.inv)

0y :: 'vset (renaming vset.empty)

insert i1 'v = 'vset = 'vset (renaming vset.insert)
isin : 'vset = 'v = bool (renaming vset.isin)
t_set :: 'vset = ‘v set (renaming vset.set)
vset__inv :: 'vset = bool (renaming vset.inv)

sel :: 'vset = 'v (renaming vset.sel)

ADT Pawr_ Graph_ Specs. Note: renaming indicates that, although the new ADT
extends existing ADTs, it will use a different name to refer to members of the interface
of the ADT it extends.

| Some vset =
let vset = the (lookup G u); vset' = insert v vset;
digraph’ = update u vset' G
in digraph')

neighb :: 'adymap = 'v = ‘vset
Ng G v = (case lookup G v of None = 0y | Some vset = wvset)

The Pair_ Graph_ Specs ADT solves the first problem we mentioned above, namely,
it gives us flexibility by not fixing an implementation of neighbourhoods and graphs.
However, to prove facts about it, we define the following abstraction function con-
necting the ADT Pair_ Graph_ Specs to the more abstract representation (‘v x 'v)
set, which is more amenable to mathematical reasoning:

digraph_abs :: ‘adjmap = (‘v x 'v) set

24.1.2

272 Chapter 24 Graph Algorithms

[Glg = {(u, v) | v €Eg Ng G u}

Note: in the rest of this chapter, we will use [.] to denote the mathematical abstraction
of a given structure. We use [G]g for graphs and [vset], for sets.

This abstraction function is used to connect our two representations of directed
graphs using the following lemmas:

graph_inv G — (v € [Ng G uls) = ((u, v) € [Glg)
graph_inv G — [N G u]s = neighbourhood [G|c u
graph_inv G — [add_edge G u v]g = insert (u, v) [Gla

Note that all the above lemmas are conditional on the graph satisfying some invari-
ant, denoted by graph_inv. This invariant is not specified in the Pair_ Graph_ Specs’s
specification, but rather defined in terms of invariants of Map and Set_ Choose as
follows:

graph_inv :: 'adymap = bool

graph_inv G
= (adgmap_inv G N (Vv vset. lookup G v = Some vset — wvset_ inv vset))

Again, for the operations we defined on directed graphs, we need to know that they
preserve this invariant. This is derived here from the fact that the operations in the
interfaces of Map and Set_ Choose preserve the invariants of these respective ADTs.

graph_inv G — graph_inv (add_edge G u v)
graph_inv G — graph_inv (delete_edge G u v)

The above lemmas connecting Pair_ Graph_ Specs and the abstract model of
graphs allow us to specify algorithms in terms of the ADT Pair_ Graph_ Specs,
yet at the same time prove and specify properties of the algorithm in terms of the
abstract model of directed graphs.

Modelling DFS

Now, given those two models of directed graphs and their connection, we are ready to
specify and reason about graph algorithms. Although DF'S can be modelled as a simple
recursive functional program, we model DFS following a methodology that can scale
to modelling significantly more involved iterative algorithms. The first thing we note
is that the algorithm will be implemented in terms of the ADT Pair_ Graph_ Specs,
providing a model of the graph and operations on it, and the ADT Set2 from

Figure 24.4

24.1 Depth-First Search 273

ADT DFS = Graph: Pair_ Graph_ Specs + set_ ops: Set2 +

interface

(Ug) it 'vset = 'vset = 'vset (renaming set_ ops.union)
(Ng) :: 'vset = 'vset = 'vset (renaming set_ ops.inter)
(—g) == 'vset = 'vset = 'vset (renaming set_ ops.diff)

G :: 'adjmap
sy
t v

Interface of DF'S. We omit the interface Pair_ Graph_ Specs and Set2 as they are
unchanged from Figure 24.3. We only layout the additional elements of the interface:
the graph G :: 'adjmap, the source s :: ‘v, the target ¢ :: v, and the ADT of binary
set operations (Ug), (Ng), and (—¢).

Figure 10.1, providing binary set operations. Its interface will additionally fix the
graph which it processes, G, a source vertex s and a target vertex ¢. This is shown in
Figure 24.4.

In addition to those operations, another element of modelling DF'S is its program
state, i.e. the local variables that would appear in an imperative presentation of the
algorithm. We model the state of DF'S using the following record:

record (v, ‘vset) DFS_ state = stack :: 'v list
seen :: 'vset
return :: return

The last element of the above record is an indicator as to whether the target vertex
can be reached from the source vertex. It is defined as the following algebraic data

type:

datatype return = Reachable | NotReachable

The last remaining part is the actual implementation of DFS, which we do as
follows:

24.1.3

274 Chapter 24 Graph Algorithms

DFS :: ('v, 'vset) DFS_ state = ('v, 'vset) DFS_ state

DF'S dfs_ state
= (case stack dfs_ state of [| = dfs_ state(return := NotReachable)
| v # stack_tl =
if v = t then dfs_ state(return := Reachable)
else if Ng v —¢ seen dfs_ state # Dy
then let u = sel (Ng v —g seen dfs_ state);
stack! = u # stack dfs_ state;
seen' = insert u (seen dfs_ state)
in DF'S (dfs_ state(stack := stack’, seen := seen’))
else let stack’ = stack_tl
in DFS (dfs_ state(stack := stack')))

In this definition, we model a while-loop which performs DF'S as a recursive function.
This recursive function explicitly manipulates a program state by changing the
members of the record modelling the local variables. The algorithm keeps track of
the vertices it still has to process in the stack stack and all the vertices it finished
processing in a set called seen. If the stack is empty, then the algorithm concludes
the target cannot be reached from the source. Otherwise, vertices are processed from
the top of the stack. To process a vertex, we check if it is the target. If it is, then we
are done. If it is not, then we select one neighbour of the vertex and push it to the
top of the stack for processing. If the current vertex has no neighbours, it is removed
from the stack and added to seen. Note that, since G::’adjmap is fixed, we do not
pass it as the first argument from Ng v.

Reasoning About DFS

Recall that the function DFS is implemented as a recursive function. Thus, the most
natural way to reason about it is by mathematical induction. As stated in the first
chapter of this book, for programs that are not primitive recursive, reasoning is
primarily done by computation induction, in which the induction principle is based
on and follows the terminating computation performed by the program. Standard
approaches [Krauss] can already automatically synthesise and prove such induction
principles. However, for DFS, for instance, an automatically generated induction
principle would have two problems. First, the induction principle will be conditional on
the state we are reasoning about. In particular, we have to assume that DFS terminates
on that state for the induction principle to be applicable. This is of course because we
have not (yet) proved that the algorithm terminates in general. We thus first prove

24.1 Depth-First Search 275

the function partially correct, by showing that the desired properties hold starting at
any state from which the function terminates. Then we later show termination of the
function for the desired set of states.

Second, the induction principle would be hard to manipulate in interactive proofs,
even for a simple algorithm like DFS, let alone other more involved algorithms, as it
would contain the entire algorithm and its control flow. The first step we perform is
to create definitions corresponding to the different execution paths that each iteration
could take. For each such execution path, we define 1. a predicate indicating that
this path will be taken and 2. a function modelling the effect of the iteration on
the state in this specific path. For DFS, we have four such execution paths, two of
which are non-recursive. Below we show the auxiliary predicate indicating that the
second recursive path will be taken and a function performing the same update that
happens to the state when this execution path is taken. The other three predicates are
called DFS_cond;, DFS_ret_condy, and DFS_ret_condp, and the update functions
are called DFSy, DFS_ret;, and DFS_ret,, for the first recursive call, and the two
non-recursive calls, respectively.

DFS_condy :: ('v, 'vset) DFS_ state = bool

DFS_cond, dfs_ state

= (Jv stack_ tl.
v #£tANguv —g seen dfs_ state = By A
stack dfs_ state = v # stack_ tl)

DFSy :: ('v, 'vset) DFS_state = ('v, 'vset) DFS_ state
DFS, dfs_ state = dfs_ state(stack := tl (stack dfs_ state))

We now prove the following theorem characterising DFS’s computation induction
principle in terms of the auxiliary predicates and functions we defined.

DFS_dom dfs_ state A

(V dfs_ state.
DFS_dom dfs_ state A
(DFS_cond; dfs_ state — P (DFS; dfs_ state)) A
(DFS_condy dfs_state — P (DFSy dfs_ state)) —
P dfs_ state) —

P dfs_state

241.4

276 Chapter 24 Graph Algorithms

Note: the above induction principle is a streamlined version of an automatically
generated computation induction principle. Also note that, since we did not prove
that DFS terminates for all inputs, the induction principle is conditional: it applies
to states satisfying a predicated DFS_dom, which is a predicate indicating that the
function terminates for the given state.

Proving DFS correct

Now that we have modelled DFS and setup reasoning principles, we are ready to prove
it correct. To do so, we devise a number of properties that, if true for a state, will
hold for all states encountered throughout the execution of the algorithm, a.k.a. loop
invariants. There are two main loop invariants. The first is the following:

invar_stack_walk :: ('v, 'vset) DFS_ state = bool
invar_stack_walk dfs_ state = vwalk [G]g (rev (stack dfs_ state))

That invariant implies that, if the algorithm terminates with success, the stack can
be used to find a walk between the source and the destination.
The second invariant is the following:

invar_visited_through_seen :: ('v, 'vset) DFS_ state = bool

invar_visited_through_seen dfs_ state
= (Vve[seen dfs_ state]s.
Vp. vwalk_bet [G]e v p t A distinct p —
set p N set (stack dfs_ state) # {})

That invariant implies that the target vertex is not reachable from the source if the
algorithm finishes without success, i.e. if return (DFS dfs_ state) = NotReachable.

To prove that either one of these is indeed an invariant, we use the induction
principle we derived earlier. That means that, for each invariant, we have to consider
the two recursive execution paths, leading to four proof obligations, two per invariant.
To prove those obligations, however, we need the following further auxiliary invariants:

invar_well_formed :: ('v, 'vset) DFS_ state = bool

invar_well_formed dfs_ state = vset_ inv (seen dfs_ state)

24.1 Depth-First Search 277

invar_seen_stack :: ('v, 'vset) DFS_ state = bool

invar_seen_stack dfs_ state

= (distinct (stack dfs_ state) A
set (stack dfs_ state) C [seen dfs_ state]s A
[seen dfs_ state], C dVs [Glg)

invar_s_in_stack :: ('v, 'vset) DFS_ state = bool
invar_s_in_stack dfs_ state

= (stack dfs_ state # [| — last (stack dfs_ state) = s)

Naturally, each of these auxiliary invariants needs proving, increasing the number of
proof obligations. We note that all proof obligations for all invariants, except one,
which we discuss below, were automatically provable using standard automated proof
tools, after setting them up to use results that we have proved about abstract graphs
of the type (‘v x 'v) set. The only obligation that was not proved automatically is
the following:

Lemma 24.1. DFS_cond, dfs state A invar_well_formed dfs state A
invar_seen_stack dfs_ state A invar_visited_through_seen dfs_ state —
invar_visited_through_seen (DFS» dfs_ state)

Proof. Assume we have a walk p starting at v; and ending at ¢, and intersecting with
the old stack v, # stack tl. We have to show that p intersects with stack tl. We
have two cases:

e Case 1: If the point of intersection of the walk is in stack_ tl, then we are done.
e Case 2: If it intersects the old stack at v, which is the more interesting case as
vz will not be in the new stack stack_ tl. First, this means that p = p; @ [v3]
@ p,, for some walks p; and ps.
Since the invariant holds for the old state, then [v3] @ p, intersects the old stack
vy # stack_ tl. There are two cases which we need to consider here:

* Case a: p» = [] This cannot be the case, since it would imply that vy = ¢
(recall that t is the target vertex), which violates the assumption of us being
in the second recursive execution branch.

* Case b: py # [| From the current branch’s assumptions, we know that hd
p2, which is a neighbour of v,, is in seen dfs_ state. This means that, from
the invariant at the current state dfs_ state, we can conclude that v, #

278 Chapter 24 Graph Algorithms

po intersects with the old stack. However, since v, # p-, is distinct, from
invar_seen_stack, that means that p, cannot contain v,. This means that
p2 intersects stack_ tl, which implies that p intersects with stack_ tl. This
finishes our proof. O

After proving that the invariants hold, we have theorems of the following form:

Lemma 24.2. DFS_dom dfs _state A invar_well_formed dfs state A
invar_seen_stack dfs_ state A invar_visited_through_seen dfs_ state —
invar_visited_through_seen (DFS dfs_ state)

This theorem only states that, starting at a state for which we know DFS terminates
and that the state satisfies the invariant, the state returned by DFS will also satisfy
the invariant.

This leaves us with the task of showing that DFS terminates for all relevant program
states. A standard method to show termination of recursive functions is by devising
measure functions, i.e. functions mapping states to natural numbers, and showing
that the value of the measure function decreases with every recursive call. An obvious
measure function for DFS is the following:

call_1_measure :: ('v, 'vset) DFS_ state = nat
call_1_measure dfs_ state = card (dVs [G]e — [seen dfs_ state],)

This measure function decreases the more vertices we have in the set of seen vertices.
Note, however, that the value of this measure function only decreases in the first
recursive execution branch; in the second recursive execution branch its value stays
the same, as in that branch we only remove a vertex from the stack. We thus devise
a second measure function for the second recursive execution branch:

call_2_measure :: ('v, 'vset) DFS_ state = nat
call_2_measure dfs_state = card (set (stack dfs_ state))

Having more than one measure function somewhat complicates the termination proof,
as we do not have one function that always decreases with recursive calls. A standard
way to deal with that is by constructing a lexicographic ordering on the program
states by combining different measure functions. This is specified as follows:

24.1 Depth-First Search 279

DFS_term_rel :: (('v, 'vset) DFS_state x (v, 'vset) DFS_ state) set
DFS_term_rel = call_1_measure <xmlezx> call_2_measure <xmlezx> {}

This relation holds for two states dfs_ state; and dfs_ state, iff, either

e call_1_measure dfs_state; < call_1_measure dfs_state, or

e call_1_measure dfs state; = call_1_measure dfs state, and
call_2_measure dfs_state; < call_2_measure dfs _states.

We show that, in both recursive calls, the resulting state is ’less than’ the starting
state w.r.t. this order.

DFS_cond; dfs_ state A invar_well_formed dfs_ state A
invar_seen_stack dfs_ state —
(DFS; dfs_ state, dfs_ state) € DFS_term_rel

DFS_cond» dfs_ state A invar_well_formed dfs_ state A
invar_seen_stack dfs_ state —
(DFS, dfs_ state, dfs_ state) € DFS_term_rel

Note the dependence on the fact that the starting state satisfies some of our invariants.
This indicates that the algorithm only terminates for states satisfying those invariants.
Indeed, we show that DFS terminates on any state satisfying those invariants:

invar_well_formed dfs_ state A invar_seen_stack dfs_ state —
DFS_dom dfs_ state

The last step here is to show that termination holds for an initial state satisfying
those invariants. This state is defined as follows:

initial_state :: ('v, 'vset) DF'S_ state

initial_state
= (stack = [s], seen = insert s Oy, return = NotReachable)

After showing that this state satisfies the invariants, which is trivial, we can finally
show that DFS is correct.

Theorem 24.3. return (DFS initial_state) = NotReachable —
(Pp. distinct p A vwalk_bet [G]g s p t)

241.5

24.2

24.2.1

280 Chapter 24 Graph Algorithms

Theorem 24.4. return (DFS initial_state) = Reachable —
vwalk_bet |Gl s (rev (stack (DFS initial_state))) t

We finally note that the correctness of the algorithm is proved, assuming that DFS
axioms hold. This predicate summarises the assumptions we have on the implemen-
tations of the different ADTs we used and that the source is a vertex belonging to the
graph in which we are searching. It is formally defined as follows:

DFS_axioms
= (graph_inv G A finite (dom (lookup G)) A (Yuset. finite [vset]s) A
s € dVs [Glg)

Executability

The final part of implementing and verifying an algorithm using our approach is mak-
ing it executable by providing correct implementations to the Pair_ Graph_ Specs
and the Set2 ADTs. This is done using exactly the same approach discussed earlier
in this book for providing implementations of the Set and Map ADTs, e.g. using
red-black trees to implement sets of vertices and adjacency maps.

Breadth-First Search

Another standard way of traversing a graph is by traversing it breadth-first.
Implementation-wise, this could be done by replacing the stack in DF'S with a queue.
Like DF'S, there are many applications for breadth-first traversal, most notably, search-
ing for a target vertex, i.e. breadth-first search (BFS). If one does that, in addition to
the two guarantees we had for DF'S (namely, DFS will find a walk iff there is one), we
have the extra guarantee that there is not a shorter walk than the one found by BFS
between the source and target.

Notions of Distance in a Directed Graph

As stated earlier, the main motivation for choosing a breadth-first traversal of a graph
over a depth-first one is the guarantee it offers on the length of the returned walk,
if there is such a walk. Here we formalise, for our abstract notion of directed graphs,
notions that enable us to formally express properties related to walk-length optimality.
The first such concept is the distance between two vertices:

d: ('v x v) set = 'v = v = enat
d G uv = (INF p. if vwalk_bet G u p v then enat (|p| — 1) else o)

24.2.2

24.2 Breadth-First Search 281

Above, Inf (range f) could be read as argmin,f(p) in standard computer science
literature, i.e. the p that minimises f p, for a function f Note that the distance’s
value is of the type enat, which is constituted of all natural numbers and infinity (for
a natural number z, enat ¢ denotes the corresponding enat). The distance from a
vertex u to v is considered to be infinite if there is not a walk from u to v.

The most important property of the concept of distance within a directed graph is
that of the triangle inequality:

Theorem 24.5. d Guw <dGuv +dGovw

Another concept we need to define here is that of shortest walks.

shortest_walk :: ('v x 'v) set = 'v = v list = 'v = bool

shortest_ walk G up v = (d G uwv = enat (|p| — 1) A vwalk_bet G v p v)

Finally, we define another notion of distances, whose use will become evident later
on. This notion of distances is between a set of vertices and a vertex and is defined as
follows:

D :: ('v x 'v) set = 'vset = v = enat
DGUwv=(INFueU.d G uv)

Intuitively, this is the distance between v and the closest member of U.

Modelling the Algorithm

In many applications (e.g. Aingworth et al. [1999]’s algorithm to bound graph diam-
eters), one devises an algorithm that performs a breadth-first traversal and returns a
BFS-tree. A BFS-tree is a subgraph of the directed graph, s.t. an edge is in the tree
iff that edge was ’processed’ during the breadth-first traversal of the directed graph
under consideration. Figure 24.5 shows a directed graph and a BFS-tree! resulting
from a BFS traversal. The important property that is needed in any application that
uses BFS-trees is that the distance from the root to any vertex in the tree is equal to
the distance between the two vertices in the traversed graph.

Below we model an algorithm that creates a slightly more general structure: a BFS
directed acyclic graph (DAG). These are similar BFS-trees, but they can have multiple
roots and are not forests, i.e. there could be more than one walk between a root and a
vertex. These structures have applications in matching algorithms, e.g. Hopcroft and

IThere could be more than one BFS-tree, depending on the non deterministic choice of neighbours
to add to the queue.

282 Chapter 24 Graph Algorithms

L L,

Figure 24.5 A directed graph, one of its BFS-trees rooted at vertex a, its BFS-DAG rooted at
vertices a and b. In the latter two graphs, vertices are colour-coded (similar colours
indicating similar distances) based on their distance from the root(s).

Karp [1973]’s algorithm for bipartite matching. Figure 24.5 shows a directed graph
and a BFS-DAG resulting from a BFS traversal. A pseudo-code of the algorithm is
shown below:

visited := current
while visited != empty do
visited += current
for each u in current do
for each v in ((neighbourhood u) - wvisited) do
parents += {(u,v)}
current’ += {v}
current := current’

current’ := empty

The algorithm maintains variables modelled by the following state:

record (‘adjmap, 'vset) BF'S_ state = current::'vset
visited::'vset
DAG:: 'adjmap

24.2.3

24.2 Breadth-First Search 283

As the names of the elements of the state suggest: current is the set of vertices to be
processed in the current iteration, visited is a set of vertices that were processed, and
DAG is the BFS-DAG constructed by the algorithm.

To model this algorithm, we make a number of decisions demonstrating the process of
modelling an algorithm for verification. The first such decision is, similar to DFS, that
of using the existing ADTs for the needed operations. The next, and more relevant
decision, is the level of detail at which we model the algorithm. A problem with
modelling the algorithm as shown in the pseudo-code is that we have multiple nested
loops. That would complicate the process of verifying the algorithm, as we would need
multiple nested inductions, one per-iterative construct, to prove any fact about the
algorithm. A way to avoid that is, instead of fully specifying the for each loop,
we only assume a function that performs the computation expected from the for
each loop. We then use the assumed properties of these functions to prove that
the algorithm satisfies what is expected, if an implementation of these functions is
provided. The way we do that is by using the interface for BFS in Figure 24.6. Based
on that interface, we specify the algorithm as follows:

BFS :: ('adgmap, ‘vset) BFS_ state = ('adjmap, 'vset) BFS_ state

BF'S bfs__state
= (if current bfs_ state # By
then let vis’ = visited bfs_ state Ug current bfs_ state;
par’ = expand_ tree (DAG bfs_ state) (current bfs_ state) wis';
cur’ = next_ frontier (current bfs_ state) vis'
in BFS (bfs_ state(parents := par', visited := wis', current := cur')))
else bfs_ state)

We note that in addition to the applications of BFS-DAGs, here we consider an
algorithm computing such DAGs as proving it correct requires some more involved
graph-theoretic reasoning than that required in DFS or in a version of BF'S that only
computes a path between one source and one target. This helps deliver the main
message of this chapter: demonstrating a methodology for the development of correct
algorithms that need somewhat deep mathematical background/reasoning.

Proving BFS Correct

As discussed earlier, we have chosen to model BFS in a way that minimises com-
plicated control flow. Thus, we do not have much complexity regarding the number
of proof obligations we need to prove if we want to use the computation induction
principle of BFS. Indeed, there is only one obligation, as there is only one recursive

Figure 24.6

284 Chapter 24 Graph Algorithms

ADT BF'S = Graph: Pair_ Graph_ Specs + set_ ops: Set2 +

interface

G :: 'adjmap

sres i 'vset

expand_ tree :: 'adymap = 'vset = 'vset = 'adjmap

next_ frontier :: 'vset = 'vset = 'vset

specification

graph_inv BES_tree A vset_inv frontier A vset_inv vis A graph_inv G —
graph_inv (expand_ tree BFS_ tree frontier vis)

graph_inv BES_tree A vset_inv frontier A vset_inv vis A graph_inv G —
[ezpand_ tree BF'S_ tree frontier vis|g
= [BFS_ tree]g U

{(u, v) | v € [frontier]s A v € neighbourhood [Glc u — [vis]s}

vset_wnv frontier A vset_wnv ws A graph_inv G —
vset_inv (next_ frontier frontier vis)

vset__inv frontier A vset_inv wis A graph_inv G —
[next_ frontier frontier visls
= |J {neighbourhood [Glc v | u € [frontier]|s} — [vis]s

Interface of BFS. We omit the interface elements that come from either the ADTs
Pair_ Graph_ Specs or Set2, as they are the same as the interface of DFS. The
other elements of BF'S’s interface are the input graph, the set of source vertices from
which the traversal starts, and two functions expand_tree and nezt_ frontier that
are specified to compute what the for each loops are supposed to compute. The
former function extends the BFS-DAG, and the latter one changes the current set of
vertices being processed.

24.2 Breadth-First Search 285

execution branch. However, the complexity here is mainly graph-theoretic. We need
to show the following two properties for the computed BFS-DAG:

e The distance, in the BFS-DAG, between a root vertex of the BFS-DAG and any
vertex that is not a root is the same as the distance between the two vertices in
the original directed graph.

e Any walk in the BFS-DAG between a root vertex and another vertex is a shortest-
walk in the BFS-DAG. Note that we need to show this property, as we are not
computing a BFS-tree, i.e. we have no guarantee of uniqueness of walks.

Again, to show those two properties we first prove a number of loop-invariants.
Those loop invariants are as follows:

invar_dist :: (‘adjmap, 'vset) BFS_ state = bool

invar_dist bfs__ state

= (VvedVs [Glg — [sres]s.
v € [visited bfs_ state]s U [current bfs_ state], —
D [Gla [srcs]s v = D [DAG bfs_ state]g [srcs]s v)

invar_parents_shortest_paths :: (‘adjmap, 'vset) BFS_ state = bool

invar_parents_shortest_paths bfs_ state
= (Vug[sres]s.
Vp v. vwalk_bet [DAG bfs_ state]lc u p v —
enat (|p| — 1) = D [G]g [sres]s v)

invar_goes_through_current :: (‘adjmap, 'vset) BFS_ state = bool

invar_goes_through_current bfs__ state
= (Vug|visited bfs_ state]|s U [current bfs_ state]s.
Vu. v ¢ [visited bfs_ state]s U [current bfs_ state], —
(Vp. vwalk_bet [Gleg up v —
set p N [current bfs_ state]s # {}))

Note that the last invariant is to make sure that, when the algorithm terminates, i.e.
when current is empty, the BFS-DAG covers all vertices reachable from at least one
of the roots.

286 Chapter 24 Graph Algorithms

Now, we give an overview of the proof that one of those three invariants holds,
namely, invar_dist. We do so primarily to demonstrate abstract/graph-theoretic rea-
soning that is feasible using our approach of modelling graphs algorithmically and
mathematically and the abstraction functions connecting the two representations.

Lemma 24.6. BFS_axiom A BFS_cond; bfs state A invar_subsets bfs state A
invar_well_formed bfs__ state A invar_dist_bounded bfs_ state A

invar_dist bfs__state —

invar_dist (BFS; bfs_ state)

Note that above BFS_cond; and BFS; are the auxiliary predicate and function
characterising the only recursive execution branch of BFS.

Before we discuss the proof, we first note the auxiliary assumptions and invariants
needed to show that this invariant is preserved. The first is an assumption stating the
well-formedness of the graph which the algorithm processes; the second is an invariant
ensuring that the well-formedness of the state is preserved; the third is an invariant
stating important properties of the BFS-DAG and its relation to the input directed
graph G.

BFS_axiom :: bool

BFS_axiom

= (graph_inv G A finite_graph G A finite_vsets A
[sres]s C dVs [Glag A
(Yu. finite (neighbourhood [Glag u)) A [sres]s # {} A
vset_ inv srcs)

invar_well_formed :: ('adjmap, 'vset) BFS_ state = bool

invar_well_formed bfs__ state

= (vset_inv (visited bfs_ state) A
vset_inv (current bfs_state) A
graph_inv (DAG bfs_ state) A finite [current bfs_ state]s A
finite [visited bfs_ state]s)

invar_subsets :: ('adjmap, 'vset) BFS_ state = bool

invar_subsets bfs_ state
= ([DAG bfs_state]g C [G]a A [visited bfs_ state]s C dVs [Gla A

24.2 Breadth-First Search 287

[current bfs_ state]s C dVs [Glg A
dVs [DAG bfs_ state]lg C [visited bfs_ state]s U [current bfs_ state]s A
[sres]s C [visited bfs_state]s U [current bfs_ state]s)

Note: those two auxiliary invariants are proved independently of invar_dist, but we
will not go into the details of those proofs.

Proof of Lemma 24.6. First, let visitedy denote visited bfs_ state, visited; denote
visited (BFS¢ bfs_ state), DAG, denote DAG bfs_ state, DAG; denote DAG (BFS;
bfs_ state), currenty denote current bfs_ state, and current; denote current (BFS;
bfs_ state).

To prove that invariant invar_dist holds, consider a vertex v € [uisited;]s U
[current;]s. For this vertex, we need to show that D [G|g [srcs]s v = D [DAGi]a
[srcs]s v. Informally, we need to show that the distance from the sources to v in
the input graph is the same as the distance in the BFS-DAG, after an iteration. We
perform a case analysis.

e Case 1: D [G]g [sres]s v = oo, i.e. there is not a walk between any source and
v. We know that [DAG;]e¢ C [G]e from the invariant invar_subsets bfs_ state.
The proof is finished by the following property of distances:

GCG —DG Vsv<DGVsuwu (24.1)

e Case 2: D [G]g [srcs]s v # oo, i.e. there is a walk between some source u and
v. Again, here we consider two further cases:

* Case 2.a: v € [uisitedp]s U [currenty]s, i.e. v was already in the BFS-DAG
before the current iteration starts. First, we have that D [DAGy|a [sres]s v
= D [G]g [srcs]s v because the invariant invar_dist bfs_ state holds. We also
have D [DAGy]g [srcs]s v = D [DAG1]a [sres]s v because 1. [DAGyle C
[DAG1]¢ holds, implying that D [DAG1]g [sres]s v < D [DAGy]a [sres]s
v, and 2. D [DAGqlg [srcs]s v = D [DAG1]a [srcs]s v, because D [Gla
[srcs]s v < D [DAG4]g [sres]s v, using Inequality 24.1, and D [DAG]a
[sres]s v < D [DAGo|g [sres]s v, also using Inequality 24.1.

* Case 2.b: v ¢ [visitedg]s U [currentg]s, i.e. v has been added to the BFS-
DAG during the current iteration. Since v € [visited;]s; U [current;]s, there
must exist v/, s.t. v € neighbourhood [G]g v' and v' € [currentys. First,

288

Chapter 24 Graph Algorithms

note that we have that

D [G]g [srcs]s v= D [G]g [sres]s v/ + 1 (24.2)
= D [DAGy)g [sres]s v/ + 1 (24.3)
=D [DAGi]g [sres]s v' + 1 (24.4)

We now prove the theorem by contradiction, i.e. by assuming D [G]g [srcs]s
v # D [DAG]g [sres]s v. From this assumption, since [DAG;]e C [Gla,
and from Inequality 24.1, we have that D [Glg [srcs]s v < D [DAGi]e
[srcs]s v. From this and the above three equations, we have that D [DAG]a
[sres]s v' + 1 < D [DAG]g [sres]s v. This leaves us with a contradiction
since v € neighbourhood [G|s v, since v' € [currenty]s and from the
assumption of this case, i.e. v ¢ [visitedg]s U [currentg]s, which means that
v was added to DAGI in this iteration. We now prove the three equations
from above, to finish the proof.

Equation 24.2 is the most involved here. To see why it holds, we refute the
two cases which violate it. First, D [G]g [srcs]s v/ + 1 < D [Gla [sres]s v
cannot hold, as that would violate the triangle inequality. Second, consider
the case when D [G]g [sres]s v < D [G]g [sres]s v' + 1 holds. Deriving a
contradiction here depends on assuming that invariant invar_dist_bounded
holds. The definition of this invariant is as follows:

invar_dist_bounded :: (‘adjmap, 'vset) BFS_ state = bool

invar_dist_bounded bfs_ state
= (Vve|visited bfs_ state]s U [current bfs__ state]s.
Vu. D [Gla [sres]s w < D [Glg [sres]s v —
u € |visited bfs_ state]s U [current bfs_ state];)

The contradiction follows from the assumption of this case (i.e. Case 2.b)
and the fact that v’ € [currento]s.

Equation 24.3 holds because this invariant that we are proving holds in
the initial state, i.e. invar_dist bfs_ state, and since v' € [currentg]s.
Equation 24.4 holds because we have 1. D [DAG;]e v/ < D [DAGola
v', since [DAGyle C [DAGi]e holds by construction, 2. D [Glg v’ <
D [DAG4]g ', since [DAG1]¢ C [G]g holds from invar_subsets, and,
lastly, 3. D [G]e v' < D [DAGq]e v/, since invar_dist bfs_ state holds by
assumption, and since v' € [currento)s. O

We note a number of points regarding this proof. First, in addition to the three main

invariants, we had to show four further auxiliary invariants, e.g. invar_dist_bounded.

24.2 Breadth-First Search 289

For the majority of those invariants, the arguments were about distances and deriving
contradictions from different properties of distances. The only exception was proving
the invariant invar_goes_through_current, where the argument was mainly about
properties of walks. We will not discuss the details of those proofs here. Some of
the more involved properties of distances we used other than the triangle inequality
include the following:

DGUv#ooANueUANdGuv=DGUv —
(3p. shortest_ walk G u (u # p) v AsetpnN U ={})

DGUv=dGuvAuec UAshortest walk Gup v AN we setp —
DGUw=dGuw

DGUv=dGuuvAu€e U A shortest walk G u (p; @ w # p2) v A
weVANUVeV.DGUV =dGuw) —
DG(UUV)v=DGUv—-dGuw

Deriving these properties for distances is not immediately straightforward. However,
the fact that we proved them on the abstract representation of directed graphs made
deriving them much easier compared to proving them directly on graphs as rep-
resented by Pair_ Graph_ Specs. Although our algorithm was defined in terms of
Pair_ Graph_ Specs as a graph model, the proofs were made easier by the abstrac-
tion functions connecting Pair_ Graph_ Specs and the abstract mathematical repre-
sentation; and our configuring basic proof automation to translate goals automatically
using the abstraction functions.

For termination, we used the following measure functions and lexicographic order-
ing:

call_1_measure_1 :: ('adjmap, 'vset) BFS_ state = nat

call_1_measure_1 bfs_ state
= card (dVs [G]g — (|visited bfs_ state]s U [current bfs_ state]s))

call_1_measure_2 :: (‘adjmap, 'vset) BFS_ state = nat
call_1_measure_2 bfs_ state = card [current bfs_ state];

BFS_term_rel :
(('adjmap, 'vset) BFS_ state x ('adjmap, 'vset) BFS_ state) set

24.3

290 Chapter 24 Graph Algorithms

BFS_term_rel
= call_1_measure_1 <xmlex*> call_1_measure_2 <xmlezx> {}

The main intuition here is that in all iterations, except the last one, we visit more
vertices, thus decreasing the first measure function. In the last iteration, we visit no
more vertices, but empty the set current.

The initial state, which we prove is terminating and for which we have the final
correctness theorems is the following:

initial_state :: (‘adjmap, 'vset) BFS_ state
initial_state = (parents = g, current = srcs, visited = Qv

Finally, the main three properties we show for the algorithm are as follows:

Theorem 24.7. BFS_axiom A u € [srcs]s A t ¢ [visited (BFS initial_state)]s —
(Ap. vwalk_bet [G]g u p t)

Theorem 24.8. BFS_axiom A t € |visited (BFS initial_state)]; — [srcs]s —
D [G]g [srcs]s t = D [DAG (BFS initial_state)|a [srcs]s t

Theorem 24.9. BFS_axiom A u € [srcs]s A
vwalk_bet [DAG (BFS initial_state)]g u p v —
enat (|p| — 1) = D [G]g [sres]s v

Chapter Notes
Our representation of directed graphs does not allow for singleton vertices in the
graph, i.e. any vertex in the graph is connected to another vertex via an edge. Another
alternative is to represent the graph as a pair (V, E), with a set of vertices and a set
of edges. There is a complication with this: one has to make sure that all the graph’s
edges are incident only to its vertices. There is also the representation of graphs by
Noschinski [Noschinski 2015]. This representation is more abstract than the one we
use here, but has not been tested in substantial algorithmic developments. Other
representations of graphs have been investigated in the course of other verification
efforts of graph algorithms [Lammich and Nipkow 2019, Lammich and Sefidgar 2019].
Our way of modelling iterative algorithms has the main advantage that it
requires little extra machinery than basic specification of recursive functions.
There are other ways of modelling iterative algorithms, most notably using while-

24.3 Chapter Notes 291

combinators [Berghofer and Nipkow 2002] or monads [Lammich and Tuerk 2012].
The use of these other methods is primarily geared towards enabling more automatic
proofs using program logics, like Hoare logic or separation logic. Such automation
is most useful for reasoning at the level of the data structures, pointers, or program
implementation more generally. The methodology we used here is largely manual,
and it pays off if the primary effort in proving the algorithm correct is of an abstract
mathematical nature, rather on program or data structure specific constructs, e.g. if
reasoning about mathematical properties of concepts like matchings [Abdulaziz et al.
2019] or flows [Lammich and Sefidgar 2019] constitutes most proof effort.

Our proofs of correctness of DF'S and BFS are performed at a relatively abstract
mathematical level. This is in comparison to other expositions [Cormen et al. 2009],
where correctness proofs are performed on full implementations, where the behaviour
of data structures is not abstracted away. In our case, this is enabled by 1. using ADTs
to specify the data structures, 2. devising a background theory on directed graphs that
is suited for conducting proofs at a mathematical level, and 3. connecting the ADTs
to the background library on directed graphs using abstraction functions, allowing us
to state all specifications and conduct almost all proofs in terms of the abstract graph
library.

In essence, the approach we followed is one implementation of step-wise refine-
ment [Wirth 1971], where our graph abstraction lemmas and theorem prover automa-
tion can be seen as basic data refinement infrastructure. There are other more involved
approaches to implement step-wise refinement within a theorem prover. One such
implementation is by Lammich [Lammich 2019]. In his approach, one would start
with an abstract mathematical description of an algorithm, prove it correct, and then
derive a more concrete version, and prove their equivalence. His approach emphasises
custom automation techniques and the use of separation logic to provide imperative
implementations of the ADTs, which can be much faster in practice than the purely
functional implementations of ADTs discussed here. However, this comes at a cost of
low-level tinkering of automation and usually pays off when the main goal is a high-
performance piece of verified software. Another approach is that taken by Greenaway
et al. [Greenaway et al. 2012], where one would start with a C-language implementa-
tion, and tooling is provided to parse the programs as well as derive equivalent abstract
mathematical functions, and automatically proving the data refinement relations.

Another interesting approach is that of lifting and transfer [Huffman and Kun-
car 2013]. That approach implements parametric reasoning as first noted by
Wadler [Wadler 1989]. There the focus is on showing an equivalence between two
types and then using that equivalence to derive theorems about one type from corre-
sponding theorems on the other type. This method has the advantage of making the

292 Chapter 24 Graph Algorithms

automation connecting the two representations of the graphs more principled than
general purpose theorem proving methods, which we use here.

Fast String Search
by Knuth—Morris—Pratt ©

Lawrence C. Paulson

Nothing could be simpler than searching for occurrences of a string in a text file, yet
we have two sophisticated algorithms for doing this: one by Knuth, Morris and Pratt
(KMP), the other by Boyer and Moore. Both were published in 1977, when 1 MB was
thought to be a lot of memory. Nowadays strings can be orders of magnitude longer,
making the need for efficiency all the greater. Bioinformatics requires searching truly
gigantic strings: of nucleotides (when working with genomes) and amino acids (in the
case of proteins). Here we look at KMP, the simpler of the two algorithms.

The naive algorithm aligns the pattern p with the text string a, comparing
corresponding characters from left to right, and in case of a mismatch, shifting one
position along a and starting again. This is actually fine under plausible assumptions.
The alphabet surely has more than one character, and if furthermore the characters
in the string are random then the expected length of a partial match will be finite,
since it involves the sum of a geometric series. Ergo, linear time.

But if the text is not random then the worst-case time is O(mn), where m and n
are the lengths of p and a. For suppose that p and a both have the form xxx. . .xy,
consisting entirely of the letter x except having a single y at the end. The naive
algorithm will make m comparisons, failing at the last one; then it will shift p one
position along a even though there is no hope of a match. This wasteful search will
continue until a is exhausted.

The idea of KMP is to exploit the knowledge gained from the partial match, never
re-comparing characters that matched. At the first mismatched character, it shifts p
as far to the right as is safely possible. To do so, it consults a precomputed table,
based on the pattern p, identifying repeated substrings for which the current, failed
partial match could become the first part of a full match.

In the case of our example, the successful match of the first part of the pattern,
namely x. . .x, means we already know the previous m — 1 characters of a, so instead
of shifting one position along and checking p from the beginning, we can check from
where we left off, i.e. its penultimate character. The search will still fail until the final

293

https://isa-afp.org/entries/KnuthMorrisPratt.html
https://isa-afp.org/entries/KnuthMorrisPratt.html

25.1

25.2

294 Chapter 25 Knuth—Morris—Pratt String Search

vy is reached, but without any superfluous comparisons. The algorithm takes ©(m +n)
time, where the ®(m) part comes from the pre-computation of the table.

Preliminaries: Difference Arrays

Our task is to take an imperative algorithm designed nearly half a century ago and
express it in a functional style, retaining the possibility of efficient execution. Strictly
speaking, there are two algorithms: the computation of the table, and the string search
using the table. Neither would normally be seen as functional, but both algorithms
are simple while loops, easily expressed as tail-recursive functions. Arrays are used,
and random access is necessary. However, in the building phase, the table entries are
added one after another, and the search does no array updates at all.

Because the original algorithms are imperative, their use of arrays is single-
threaded. That means there is a single thread of updates starting from the initial
value to the final array. It implies that updates can be done without copying: the
previous array value can safely be destroyed. This conception can be realised by an
ordinary array as supported by the hardware, augmented with a difference structure
to deal with any array accesses that are not single-threaded. Provided there are none
of those, performance can be good.

This data structure is called a difference array, and is part of the Collections
framework [Lammich 2009]. This chapter uses the following notation for array opera-
tions:

e A !l n tolook up an array element (indexed from 0)
e A[n ::= z] to update an array
e ||A|| for the number of elements

e array = n to create an n-element array, all elements filled with z.

All but the last of these is assumed to take constant time.

Matches between Strings
A key concept is that of an n-character match between two strings a and b, starting
at positions ¢ and j, respectively (indexed from 0).

matches :: 'a array = nat = 'a array = nat = nat = bool

matches a1 b jn
=(+n<|a||Ag+n<|b|A(Vek<n.a'(z+k)=0b! (5 + k)))

Figure 25.1

25.3

25.3 The Next-Match Table 295

XY ZXY 2Z2X2ZXY
XY 2XY 2ZX2XY
XYy ZXY2Z2ZXZZXY

XY 2Z2XY 2ZX2Z2XY

Identifying prefixes in the search pattern

Most of its properties are obvious. It always holds when n = 0, provided : and j lie
within the range of their respective strings. A simple but valuable fact is weakening
to get a shorter match: if matches a ¢ b 7 n and k < n then

matches a 1 b j k and matches a (i + k) b (7 + k) (n — k).

Sometimes we look for matches between the pattern p with the text a, but when
building the table we will be matching prefixes of p with other sections of p.

The Next-Match Table

As noted above, the table identifies repetitions in the pattern that open the possibility
that the current failed match may yet form part of a successful match. For example,
suppose our search pattern p is xyzxyzxzxy. And suppose we have matched xyzx
in the string followed by a mismatch. The point is that the final x could be the start
of an occurrence of p in the string. Similarly, if we have matched xyzxy, xyzxyz
or xyzxyzx, the underlined section is a partial match of p and the search for a full

match should continue from that point. But if we match xyzxyzxz, no suffix of this
matches a prefix of p. Finally, matching xyzxyzxzx let us use the final z as the
start of a match. (Matching the whole of p would leave xy as the start of another
possible match, but the algorithm below stops after the first.) Figure 25.1 illustrates
the situation.

The corresponding next-match table is

XYy 2 XY Z X 2Z XY
0000123401

These numbers are indices into p, numbering from 0. So for example 4 above tells us
that at the position shown, we have successfully matched the first four characters of
p and should start comparing at p[4], which is y.

Now we are ready for the following predicate, which defines the next available match
following a failed comparison:

296 Chapter 25 Knuth—Morris—Pratt String Search

is_next :: 'a array = nat = nat = bool

is_nextpjn

(n <3 Amatchesp (j —n) p0n A
(Vm.n < m < j — — matches p (j — m) p 0 m))

In other words, n is the largest possible that is less than 7 and with an n-character
match of a prefix of p with a substring of p ending at 7.

The following two lemmas capture the essence of this. First, if the first 7 characters
of the pattern already match (ending at position 7 in the text), and n is the next
match, then indeed the first n characters of p match the text (again ending at 7).

Lemma 25.1. matches a (1 — n) p 0 n, provided

e matches a (i — j) p0J
eis_nextpjn
«j <

Proof. We have matches a (1 — n) p (j — n) n by weakening the given assumption.
Moreover, we have matches p (5 — n) p 0 n by the definition of is_next. The
conclusion is immediate by transitivity. O

The second lemma considers the same situation (a j-character match ending at 1)
and tells us that the “next match”, n, is really maximal: there does not exist a full
match of p ending at k for any k, where 1 — 7 < k <1 — n.

Lemma 25.2. - matches a k p 0 ||p||, provided

e matches a (i — j) p0J
eis_nextpjn

«j <1

el —j<k<i-n

Proof. Let m denote ¢ — k. Then - matches a (¢ — m) p 0 m by the definition
of is_next and weakening. Further weakening using m < ||p|| yields the desired
- matches a (i — m) p 0 ||p||. O

Therefore, using the next-match table to shift the pattern along will give us a
partial match, which we can hope to complete, safe in the knowledge that there are
no matches starting in the skipped-over region. All we have to do is build this table.

25.4 Building the Table: Loop Body and Invariants 297

25.4 Building the Table: Loop Body and Invariants
Although this is a book of functional algorithms, here we basically have a while
loop. Maintaining 7 < 7 < ||p||, it builds a match of the first j characters of p with a
substring of p ending at ¢, meanwhile filling the next table nzt with the corresponding
7 values. At a mismatch, it consults its own table—exactly as the main string search
will do—for the longest possible match that still holds. In the imperative pseudo-code,
m denotes ||p||, the length of p.

nxt[l] := 0; 1 :=1; j := 0;
while i < m-1 do
if pli] = p[J] then

begin i := i+1l; j := j+1; nxt[i] := j end
else

if j = 0 then begin i := i+l; nxt[i] := 0 end

else j := nxt[7j]

The loop body, expressed as a function, takes the pattern p and the three loop
variables nzt, ¢, 7:

buildtab_step ::

'a array = nat array = nat = nat = nat array X nat X nat

buildtab_step p nzt 1 7
=(ifplle=plljthen (nzt[t + L =35+ 1,2+ 1,7 + 1)
else if 7 = 0 then (nzt[s + 1 == 0], « + 1, 7) else (nzt, i, nzt ! 7))

To verify the while loop requires defining the loop invariant: a property of the
loop variables that holds initially and is preserved in each iteration.

buildtab_invariant :: 'a array = nat array = nat = nat = bool

buildtab_invariant p nzt 1 j

= (llnzt]| = llpll A ¢ < |lpll A7 <2 A matchesp (i —3) pOJ A
(Vk.0 < k<i-—is_nextpk (nzt ' k)) A
(Vk.j+1<k<i+1— —matchesp (1 + 1 — k) p0 k))

It’s natural to regard this as the conjunction of six simpler invariants, some of
which obviously hold, but some are nontrivial and depend on one another. The length
of nzt obviously doesn’t change, and since 2 + 1 < ||p|| holds prior to execution of

298 Chapter 25 Knuth—Morris—Pratt String Search

the loop body, 7 < ||p|| holds and this inequality could even be strict. As for j < 1,
the critical case is when p !! = # p !! 7 and 7 > 0; the point is that nzt !! § < 7 by
the definition of is_next and the corresponding invariant. The invariant that we have
a match of length 7 has the same critical case and holds for the same reason.

We are left with two nontrivial invariants, and must prove they are preserved by
every execution of the loop body.

e That the next-match table is indeed built correctly (up to ¢)

e That there cannot exist a match of length > j+1 starting earlier in p than the
match we have.

Lemma 25.3. is_next p k (nzt' !! k), provided

o (nzt', ', 7') = buildtab_step p nxt i j
e buildtab_invariant p nxt i j
ei+1<|pl

e 0 < k<7

Proof. Consider buildtab_step p nzt 1 5. Ilf p ! ¢t = p ! jthen ¢ = ¢ + 1 and j' =
j + 1; then matches p (i — j) p 0 (+ 1) using the matches part of the invariant,
hence is_next p (¢ + 1) (+ 1) by definition and the prior invariant. Therefore, the
updated table, nzt’ = nzt[t + 1 = 7 + 1], satisfies the conclusion.

So we can assume p !! ¢ # p !! 5. If j = 0 then ' = 7 + 1. The character clash
implies = matches p (1 — j) p 0 (j + 1) and therefore is_next p (i + 1) 0, validating
the updated next-match table, nzt’ = nzt[i + 1 ::= 0]. In the final case, when 5 > 0,
both 7 and nzt are left unchanged, making the conclusion trivial. O

Lemma 25.4. = matches p (' + 1 — k) p 0 k, provided
e (nzt', v/, 5') = buildtab_step p nxt ¢ j
e buildtab_invariant p nzt 1 j
o llpll > 2
o1+ 1<|pl
e+ 1<kt +1

Proof. Consider buildtab_step p nzt 1 5. Ilf p!! ¢ = p ! jthen s = ¢ + 1 and j' =
7 + 1; the conclusion follows from the same invariant for ¢ and 7. So we can assume
ple#pllyIfj =0 then we need to show

—matchesp (1 +2 —k)p0k if 1< kandk <1t + 2.

Ifk=2theni+2 — k =1and weknowp !! 2 # p !l 0, so matches p ¢ p 0 k is
false; otherwise it follows by instantiating the same invariant with & — 1.

25.5

25.5 Building the Table: Outer Loop 299

The remaining caseis when p ! 4 #2 p !! jand j > 0. Then ¢’ = 7 and j' = nat !! 7,
so we need to show

—matchesp (1 +1—k)p0k if nzt!lj+ 1< kand k <1+ 2.

This is trivial if K > 5 + 1 because the invariant holds beforehand, and if kK =5 + 1
because p ! © # p ! 5. So we can assume k < j and assume for contradiction that
the match holds. Write ¥’ = k — 1. Then we have

- matches p (7 — k') p 0 k', by the invariant is_next p j (nzt !! 7)
matches p (7 — k') p (¢ — k') k', by the invariant matches p 0 p (¢ — j) J
matches p (v — k') p 0 k', weakening the negated conclusion

The desired contradiction follows by the transitivity of matches. O

To summarize: we have proved that buildtab_invariant is preserved by buildtab:
Corollary 25.5. buildtab_invariant p nzt' i’ j', provided

e (nzt', 7', ') = buildtab_step p nzt i j
e buildtab_invariant p nxt i j
ot + 1< |pl

Building the Table: Outer Loop
Now that we know that the loop body preserves the invariant, we are ready to define
the actual function to build the next-match table. The loop itself is the obvious

recursion:

buildtab :: 'a array = nat array = nat = nat = nat array

buildtab p nzt 1 5
= (if i + 1 < |[p]|
then let (nzt', ¢/, j') = buildtab_step p nzt ¢ j
in buildtab p nzt' ' 7’
else nzt)

The key correctness property of the constructed table is not hard to prove. We
must assume that the invariant holds initially.

Lemma 25.6. is_next p k (buildtab p nzt i 7 ! k), provided

e buildtab_invariant p nxt 1 j
* 0 <k <|lpl

25.6

300 Chapter 25 Knuth—Morris—Pratt String Search

Proof by computation induction on buildtab. If 1 + 1 < ||p||, buildtab_step yields
(nzt', ', 7') also satisfying the invariant (by Corollary 25.5) and by IH the result of
the recursive call has the desired is_next property. Conversely, if not 7 + 1 < ||p]|,
the invariant implies the desired property of nzt. O

It is convenient to define a top-level function to call buildtab. It starts the loop with
appropriate initial values, which can trivially be shown to establish the invariant, and
catches a degenerate case to return a null table when p is trivial.

table :: 'a array = mnat array
table p = (if 1 < ||p|| then buildtab p (array 0 ||p||) 1 0 else array 0 ||p||)

By Lemma 25.6 we have all we need to know about the table-building function:

0 <j <|pl| — is_nextpj (table p ! 7) (25.1)

Building the Table: Termination
It turns out that buildtab does not terminate on all inputs. For example, if : = 0,
i=1Lpll>Lp"e#p!jplj =7 then buildtab_step p nzt i j = (nzt, 1, 7)
and thus buildtab loops. We have not encountered non-termination before in this book
and it raises two fundamental questions: is computation induction valid and can we
even define buildtab in a logic of total functions, which HOL is.

Luckily, buildtab terminates on all inputs that satisfy the invariant: At every
recursive call, either

e ¢ increases by 1, with 7 unchanged or increased by 1, or

e 1 stays unchanged while j is replaced by nzt !! j, and nzt !! 7 < j by the invariant.

In each of these cases, the integer quantity 2 - ||p|| — 2 - ¢ + 7 decreases, and it
is nonnegative because ¢ < ||p|| by the invariant. Therefore, execution terminates,
and the number of calls to buildtab_step is linear in ||p||. Since each step—a couple
of comparisons and a couple of assignments—clearly takes constant time, the overall
running time is linear.

The proof of termination justifies the use of computation induction whenever we
can assume that the invariant holds initially.

Defining functions that need non terminate is a subtle issue in a logic of total
functions like HOL. Luckily, buildtab is tail-recursive (which is not a coincidence:
every while loop corresponds to a tail-recursive function). That fact allows us to
define buildtab without having to prove termination: it is consistent to assume the

25.7

25.7 KMP String Search: Loop Body and Invariants 301

existence of f satisfying f(z) = f(z + 1), since any constant function will do, unlike
the apparently similar f(z) = f(z+1)+1.

We conclude this section with a formal counterpart of the above informal linear
running time argument by means of a running time function for buildtab. Ironically,
the very difficulty of buildtab’s termination proof complicates this step. T'ime functions
are defined by equations of the form Ty p = T[e] + 1, which are not tail-recursive (if
f occurs in e). For example, f (C) = fz induces Ty (C z) = Tf = + 1. However, we
can easily turn T; into a tail-recursive function with an accumulating time parameter:
T; (Cz) t = Tf = (t + 1). This leads to the following definition of Tpyigtap:

Thuilgtap :: 'a array = nat array = nat = nat = nat = nat

Thuildtab P nxt 17 &
=(if7 + 1 < ||p|
then let (nzt', ¢/, j') = buildtab_step p nzt ¢ j
in Thuigtap p nxt' 7' 3' (¢t + 1)
else t)

The following result is proved similarly to Lemma 25.6.

Lemma 25.7. buildtab_invariant p nzt 1 j —
Thuiltab p nxt 15t <2 - [|pl[=2 -1+ 7 + 1

Plugging in the initial values, we find that

2 < |lpll — Thuictap p (array 0 J|p|l) 100 < 2 - ([[p[| — 1)

The precondition 2 < ||p|| is required because buildtab_invariant holds initially only
in that case: 2 < ||p|| — buildtab_invariant p (array 0 ||p||) 1 0

The summary so far: we can build the next-match table, and in linear time. Now
we are ready to search.

KMP String Search: Loop Body and Invariants

Like last time, let’s begin with a while loop and then analyse the corresponding
functional version. In this pseudocode, m and n denote the lengths of p and a,
respectively. It closely resembles the previous algorithm, except it doesn’t build a
table, and it compares p with a rather than with itself.

302 Chapter 25 Knuth—Morris—Pratt String Search

i :=0; j := 0; nxt := table(p);
while j<m and i<n do

if a[i]l] = p[]j] then

begin i := i+1l; j := j+1 end
else

if j = 0 then 1 := i+l

else j := nxt[7j];

if j=m then i-m else 1

The last line returns the result of the algorithm: if 7 = m, the whole pattern has been
matched and ¢ — m is the beginning of the (first) occurrence of the pattern; otherwise
1 will be n, an indication that the pattern has not been found.

In the loop body, only ¢ and j are modified, but the string, the pattern and the
next-match table also need to be available. Hence the functional version takes all of
them as arguments, but returns only the new values of 7 and j:

KMP_step :: 'a array = nat array = 'a array = nat = nat = nat X nat

KMP_step p nzt a t j
=(ifalli=pljthen (s + 1,5 + 1)
else if 7 = 0 then (2 + 1, 0) else (7, nzt !! j))

Once again, we need an invariant relating these quantities, which must be preserved
at every loop iteration. This invariant is simpler because the tough intellectual work
has been done already. It asserts that there is a match between the first 7 characters
of p and the text, ending at 7; moreover, there is no match of the whole of p with the
text prior to that point.

KMP_invariant :: 'a array = 'a array = nat = nat = bool

KMP_invariant p a © 3
=G <IpllAj<iAi<llall A matches a (i —) pOj A
(Vk<i — j. = matches a k p 0 ||p|]))

This property is preserved in each step provided j < ||p|| and ¢ < ||a||. If a ! 7 =
p ! 3,orif 7 = 0, then the conclusion is trivial. The only interesting case is when a !! ¢
p 1 3 and 7 > 0. Then we need to show the existence of a match of length nzt !! 7,
but that is immediate by the already established correctness of the next-match table.
Finally, we need to show — matches a k p 0 ||p|| for £k < ¢ — nzt !! 7. We know

25.8

25.9

25.8 KMP String Search: Outer Loop 303

that £ # ¢+ — 7 by the mismatch that just occurred, so either £ < ¢ — j, when the
result is immediate by the given invariant, or ¥ > ¢ — 7, when the result holds by
Lemma 25.2.

KMP String Search: Outer Loop

Like last time, we express the while loop using recursion. The two active loop variables
are ¢ and 7, but the function takes additional arguments m, n and nzt to prevent their
being re-computed at every iteration. Their values will be ||p||, ||a||, and table p,
respectively.

search ::
nat = nat = nat array = ‘a array = ‘a array = nat = nat = nat x nat

search mnnztp aij

=(ifj<mAi<n
then let (¢, ') = KMP_step p nzt a ¢ j in search m n nzt p a ¢’ 7'
else (s, 7))

The following function is the “top level” version, invoking the search loop with
appropriate initial values. That includes building the table, and the loop invariant is
established vacuously.

KMP_search :: 'a array = 'a array = nat x nat
KMP_search p a = search ||p|| ||a|| (table p) p a 0 0

Note that the definition of search raises the same termination problems we already
faced with buildtab. Termination again requires nzt !! 7 < 7. This time it follows from
the correctness of table (25.1) if we know nzt = fable p.

KMP String Search: Correctness

The following predicate expresses the correctness of the result (as computed in the
last line of the imperative algorithm). There are two possibilities. Termination before
the end of the text string is reached (r < ||a||) signifies success. Conversely, » = ||a]|
implies failure.

first_occur :: 'a array = 'a array = nat = bool

first_occur p a r
= ((r < ||a|]| — matches a r p 0 ||p||) A (Vk<r. = matches a k p 0 ||p||))

304 Chapter 25 Knuth—Morris—Pratt String Search

Lemma 25.8. first_occur p a (if 7/ = ||p|| then 7' — ||p|| else '), provided

o (¢, 5') = search ||p|| ||al| (table p) p aij
e KMP_invariant p a © 3

Proof by computation induction on search. We have j < m and ¢ < n by the
invariant. If 7 < m and 7 < n then we obtain the result by IH (because KMP_step
preserves the invariant). Conversely, if j = m or ¢« = n then the success or failure,
respectively, follows by the invariant. O

As a corollary we obtain correctness of KMP_search because KMP_search estab-
lishes KMP_invariant.

Corollary 25.9. (i, 7) = KMP_search p a —
first_occur p a (if 7 = ||p| then 7 — ||p|| else 2)

The proof of linearity of search is almost identical to that of Lemma 25.6, except
that the quantity that decreases is 2 - ||a|| — 2 - % + 7, which is nonnegative because
1 < ||a||- Its initial value is 2 - ||a|| because those of ¢ and j are both zero. So the loop
body can execute at most 2 - ||a|| times. It’s not hard to see that this worst possible
outcome occurs with the pathological string search mentioned at the beginning of this
chapter. Even so, it is linear.

Chapter Notes

Acknowledgement. This development closely follows a formal verification of the
Knuth—-Morris—Pratt algorithm by Jean-Christophe Fillidtre using Why3. Due to the
need for high performance in the era of gigabyte memories, innumerable variations
exist. This version already achieves linear worst-case performance, and exhibits a
pleasing symmetry between the table-building and search algorithms.

The original paper on KMP [Knuth et al. 1977], seemingly written by Knuth
himself, is extremely clear. The realities of computing in the 1970s are evident in
his suggestion that the string being searched might be held on an external file and
that the naive search algorithm could introduce buffering issues, since after every
failure of a match the algorithm would go back and rescan characters possibly no
longer in main memory.

26.1

Huffman’s Algorithm (7

Jasmin Blanchette

Huffman’s algorithm [Huffman 1952] is a simple and elegant procedure for constructing
a binary tree with minimum weighted path length—a measure of cost that considers
both the lengths of the paths from the root to the leaf nodes and the weights associated
with the leaf nodes. The algorithm’s main application is data compression: by equating
leaf nodes with characters and weights with character frequencies, we can use it to
derive optimum binary codes. A binary code is a map from characters to nonempty
sequences of bits.

This chapter presents Huffman'’s algorithm and its optimality proof. In a slight
departure from the rest of this book, the emphasis is more on graphical intuitions and
less on rigorous logical arguments.

Binary Codes

Suppose we want to encode strings over a finite source alphabet as sequences of bits.
Fixed-length codes such as ASCII are simple and fast, but they generally waste space.
If we know the frequency w, of each source symbol a, we can save space by using
shorter code words for the most frequent symbols. We say that a variable-length code
is optimum if it minimizes the sum) w,d,, where §, is the length of the binary
code word for a.

As an example, consider the string abacabad. Encoding it with the code

Cy={a—0,b+ 10, c— 110,d — 111}

gives the 14-bit code word 01001100100111. The code C; is optimum: no code that
unambiguously encodes source symbols one at a time could do better than C; on the
input abacabad. With a fixed-length code such as

C>={a—00,b+ 01,c+— 10,d~ 11}

we need at least 16 bits to encode the same string.
Binary codes can be represented by binary trees. For example, the trees

305

https://isa-afp.org/browser_info/current/AFP/Huffman/Huffman.html

26.2

306 Chapter 26 Huffman’s Algorithm

and

correspond to C; and C5. The code word for a given symbol can be obtained as follows:
start at the root and descend toward the leaf node associated with the symbol one
node at a time. Emit a 0 whenever the left child of the current node is chosen and a
1 whenever the right child is chosen. The generated sequence of Os and 1s is the code
word.

To avoid ambiguities, we require that only leaf nodes are labeled with symbols. This
ensures that no code word is a prefix of another. Moreover, it is sufficient to consider
only full binary trees (trees whose inner nodes all have two children), because any
node with only one child can advantageously be eliminated by removing it and letting
the child take its parent’s place.

Each node in a code tree is assigned a weight. For a leaf node, the weight is the
frequency of its symbol; for an inner node, it is the sum of the weights of its subtrees.
In diagrams, we often annotate the nodes with their weights.

The Algorithm

Huffman’s algorithm is a very simple procedure for constructing an optimum code
tree for specified symbol frequencies. It works as follows: first, create a list of leaf
nodes, one for each symbol in the alphabet, taking the given symbol frequencies as
node weights. The nodes must be sorted in increasing order of weight. Second, pick
the two trees

and

with the lowest weights and insert the tree

26.2 The Algorithm 307

into the list so as to keep it ordered. Finally, repeat the process until only one tree is

left in the list.

As an illustration, executing the algorithm for the frequencies f; =3, f, =11, f: =5,

fs =7, and f, = 2 gives rise to the following sequence of states:

1.
Z d f e
2 3 5 11
2.
e
11
z d
2 3
3.
5 @ e
7 11
z
2
4.
- (17)
11
f

308 Chapter 26 Huffman’s Algorithm

The resulting tree is optimum for the given frequencies.

26.3 The Implementation

The functional implementation of the algorithm relies on the following type:
datatype 'a tree = Leaf nat 'a | Node nat (‘a tree) (‘a tree)

Leaf nodes are of the form Leaf w a, where a is a symbol and w is the frequency
associated with a, and inner nodes are of the form Node w t; t,, where t; and ¢,
are the left and right subtrees and w caches the sum of the weights of ¢; and ;. The
cachedWeight function extracts the weight stored in a node:

cachedWeight :: 'a tree = nat

cachedWeight (Leaf w) = w
cachedWeight (Node w) = w

The implementation builds on two additional auxiliary functions. The first one,
uniteTrees, combines two trees by adding an inner node above them:

uniteTrees :: 'a tree = 'a tree = 'a tree

uniteTrees t; to = Node (cachedWeight t, + cachedWeight t>) t; t,

The second function, insortTree, inserts a tree into a list sorted by cached weight,
preserving the sort order:

26.4

26.4 Basic Auxiliary Functions Needed for the Proof 309

insortTree :: 'a tree = 'a tree list = 'a tree list

insortTree u [| = [u]

insortTree u (t # ts)

= (if cachedWeight u < cachedWeight t then u # t # ts
else t # insortTree u ts)

The main function that implements Huffman'’s algorithm follows:

huffman :: 'a tree list = 'a tree

huffman [t] = ¢
huffman (t1 # t2 # ts) = huffman (insortTree (uniteTrees ti t;) ts)

The function should initially be invoked with a nonempty list of leaf nodes sorted by
weight. It repeatedly unites the first two trees of the list it receives as argument until

a single tree is left.

Basic Auxiliary Functions Needed for the Proof
This section introduces basic concepts such as alphabet, consistency, and optimality,
which are needed to state the correctness and optimality of Huffman’s algorithm. The
next section introduces more specialized functions that arise in the proof.

The alphabet of a code tree is the set of symbols appearing in the tree’s leaf nodes:

alphabet :: 'a tree = 'a set
alphabet (Leaf a) = {a}
alphabet (Node t; t;) = alphabet t; U alphabet t,

A tree is consistent if for each inner node the alphabets of the two subtrees
are disjoint. Intuitively, this means that a symbol occurs in at most one leaf node.
Consistency is a sufficient condition for §, (the length of the code word for a) to be
uniquely defined. This well-formedness property appears as an assumption in many
of the lemmas. The definition follows:

310 Chapter 26 Huffman’s Algorithm

consistent :: 'a tree = bool

consistent (Leaf) = True
consistent (Node t; t,)
= (alphabet t; N alphabet t = {} A consistent t; A consistent t,)

The depth of a symbol (which we wrote as 6, above) is the length of the path from
the root to that symbol, or equivalently the length of the code word for the symbol:

depth :: 'a tree = 'a = nat
depth (Leaf) =0
depth (Node t; t3) a
= (if a € alphabet t, then depth t; a + 1
else if a € alphabet t; then depth t; a + 1 else 0)

By convention, symbols that do not occur in the tree or that occur at the root of
a one-node tree are given a depth of 0. If a symbol occurs in several leaf nodes (of
an inconsistent tree), the depth is arbitrarily defined in terms of the leftmost node
labeled with that symbol.

The height of a tree is the length of the longest path from the root to a leaf node,
or equivalently the length of the longest code word:

height :: 'a tree = nat
height (Leaf) =10
height (Node _ ti t;) = max (height t,) (height t;) + 1

The frequency of a symbol (which we wrote as w, above) is the sum of the weights
attached to the leaf nodes labeled with that symbol:

freq :: 'a tree = 'a = nat

freq (Leaf w a) b = (if b = a then w else 0)
freq (Node t; t;) b=1freqt, b+ freqta b

For consistent trees, the sum comprises at most one nonzero term. The frequency is
then the weight of the leaf node labeled with the symbol, or 0 if there is no such node.

Two trees are comparable if they have the same alphabet and symbol frequencies.
This is an important concept because it allows us to state not only that the tree

26.5 Other Functions Needed for the Proof 311

constructed by Huffman’s algorithm is optimum but also that it has the expected
alphabet and frequencies.
The weight function returns the weight of a tree:

weight :: 'a tree = nat
weight (Leaf w) = w
weight (Node _ t; t;) = weight t, + weight t,

In the Node case, we ignore the weight cached in the node and instead compute the
tree’s weight recursively.
The cost (or weighted path length) of a consistent tree is the sum

> freqta - depthta
a€ alphabet t

which we wrote as), w,d, above. It is defined recursively by

cost :: 'a tree = nat

cost (Leaf) =0
cost (Node t, t;) = weight t, + cost t; + weight t, + cost t,

A tree is optimum iff its cost is not greater than that of any comparable tree:

optimum :: 'a tree = bool

optimum t
= (Yu. consistent u A alphabet t = alphabet v A freq t = freq u —
cost t < cost u)

Tree functions are readily generalized to lists of trees, or forests. For example, the
alphabet of a forest is defined as the union of the alphabets of its trees. The forest
generalizations have a subscript ‘7’ attached to their name (e.g., alphabetF).

26.5 Other Functions Needed for the Proof
The optimality proof needs to interchange nodes in trees, to replace a two-leaf subtree
with weights w; and w, by a single leaf node of weight w; + w, and vice versa, and to
refer to the two symbols with the lowest frequencies. These concepts are represented
by seven functions: swapSyms, swaplLeaves, swapFourSyms, mergeSibling, sibling,
splitLeaf, and minima.

312 Chapter 26 Huffman’s Algorithm

The interchange function swapSyms takes a tree ¢t and two symbols a, b, and
exchanges the symbols:

swapSyms :: 'a tree = 'a = 'a = 'a tree

swapSyms t a b = swapleaves t (freq t a) a (freq t b) b

The definition relies on the following auxiliary function:

swapleaves :: 'a tree = nat = 'a = nat = 'a = ’a tree

swapleaves (Leaf w. ¢) w, a wp b

= (if ¢ = a then Leaf w;, b else if ¢ = b then Leaf w, a else Leaf w. c)
swaplLeaves (Node w t1 t3) w, a wy b

= Node w (swapLeaves t; w, a wy b) (swaplLeaves t» w, a wy b)

The following lemma captures the intuition that to minimize the cost more frequent
symbols should be encoded using fewer bits than less frequent ones:

Lemma 26.1. consistent t A a € alphabet t A b € alphabet t A
freqta < freqtb A depthta < depthtb —
cost (swapSyms t a b) < cost t

The four-way symbol interchange function swapFourSyms takes four symbols a, b,
¢, dwith a# band c# d, and exchanges them so that a and b occupy c’s and d’s posi-
tions. A naive definition of this function would be swapSyms (swapSyms t a ¢) b d.
This naive definition fails in the face of aliasing: if a = d, but b # ¢, then swap-
FourSyms a b ¢ d would wrongly leave a in b’s position. Instead, we use this defini-
tion:

swapFourSyms :: 'a tree = ‘a = 'a = 'a = 'a = ‘a tree
swapFourSyms t a b ¢ d
= (if a = d then swapSyms t b ¢
else if b = ¢ then swapSyms t a d
else swapSyms (swapSyms t a c¢) b d)

Given a symbol a, the mergeSibling function transforms the tree

26.5 Other Functions Needed for the Proof 313

into

ﬂ‘ﬂ /DN

The frequency of a in the resulting tree is the sum of the original frequencies of a and

b. The function is defined by the equations

mergeSibling :: 'a tree = 'a = 'a tree

mergeSibling (Leaf wy b) = Leaf wp b
mergeSibling (Node w (Leaf w, b) (Leaf w, c)) a
= (ifa = bV a = cthen Leaf (wp + w,) a
else Node w (Leaf wy b) (Leaf w. c))
mergeSibling (Node w (Node v va vb) t3) a
= Node w (mergeSibling (Node v va vb) a) (mergeSibling t, a)
mergeSibling (Node w t; (Node v va vb)) a
= Node w (mergeSibling t1 a) (mergeSibling (Node v va vb) a)

The sibling function returns the label of the node that is the (left or right) sibling
of the node labeled with the given symbol a in tree t. If a is not in #’s alphabet or it
occurs in a node with no sibling leaf node, we simply return a. This gives us the nice
property that if ¢ is consistent, then sibling t a # a if and only if a has a sibling. The
definition, which is omitted here, distinguishes the same cases as mergeSibling.

Using the sibling function, we can state that merging two sibling leaf nodes with
weights w, and w;, decreases the cost by w, + wp:

Lemma 26.2. consistent t A sibling t a # a —
cost (mergeSibling t a) + freq t a + freq t (sibling t a) = cost t

The splitLeaf function undoes the merging performed by mergeSibling: given two
symbols a, b and two frequencies w,, wp, it transforms

into

A ®

26.6

314 Chapter 26 Huffman’s Algorithm

In the resulting tree, a has frequency w, and b has frequency wy,. We normally invoke
splitLeaf with w, and wy such that freq t a =w,+ wy. The definition follows:

splitLeaf :: 'a tree = nat = ‘a = nat = 'a = ‘a tree

splitLeaf (Leaf w. c) w, a wp b

= (if ¢ = a then Node w. (Leaf w, a) (Leaf w;, b) else Leaf w. c)
splitLeaf (Node w t; t3) w, a wp b

= Node w (splitLeaf t; w, a wy b) (splitLeaf t2 w, a wp b)

Splitting a leaf node with weight w, + wy into two sibling leaf nodes with weights
w, and wp increases the cost by w, + ws:

Lemma 26.3. consistentt A a € alphabett A freq t a = w, + wp —
cost (splitLeaf t w, a wp b) = cost t + w, + wp

Finally, the minima predicate expresses that two symbols a, b have the lowest
frequencies in the tree ¢ and that freq t a < freq t b:

minima :: 'a tree = 'a = 'a = bool

minima t a b
= (a € alphabet t A b € alphabett A a # b A
(V cealphabet t.
c#Fa—c#b—freqgta<freqtcAfreqtd < freqtc))

The Key Lemmas and Theorems
It is easy to prove that the tree returned by Huffman’s algorithm preserves the
alphabet, consistency, and symbol frequencies of the original forest:

ts # [| — alphabet (huffman ts) = alphabetr ts
consistentg ts A ts # [| — consistent (huffman ts)

ts # [| — freq (huffman ts) a = freqr ts a

The main difficulty is to prove the optimality of the tree constructed by Huffman’s
algorithm. We need to introduce three lemmas before we can present the optimality
theorem.

First, if @ and b are minima and c and d are at the very bottom of the tree, then
exchanging a and b with ¢ and d does not increase the tree’s cost. Graphically, we
have

26.6 The Key Lemmas and Theorems 315

4] - 5]
o] — 2] 4]

Lemma 26.4. consistentt A minima t a b A

¢ € alphabet t N d € alphabet t N

depth t ¢ = height t A depth t d = heightt A ¢ # d —
cost (swapFourSyms t a b ¢ d) < cost t

Proof by case analysis on a= ¢, a=d, b= c and b= d. The cases are easy to prove
by expanding the definition of swapFourSyms and applying Lemma 26.1. [

The tree splitLeaf t w, a wy b is optimum if ¢is optimum, under a few assumptions,
notably that freq t a = w, + wp. Graphically:

optimum @2 optimum

Lemma 26.5. consistent t A optimum t A

a € alphabett A b ¢ alphabet t A freq t a = w, + wp A
(Vcealphabet t. w, < freqtc A wy < freq t c) —
optimum (splitLeaf t w, a wy b)

Proof. We assume that t's cost is less than or equal to that of any other comparable
tree v and show that splitLeaf t w, a wp b has a cost less than or equal to that of
any other comparable tree u. For the nontrivial case where height t > 0, it is easy to
prove that there must be two symbols ¢ and d occurring in sibling nodes at the very
bottom of u. From u, we construct the tree swapFourSyms w a b ¢ d in which the
minima a and b are siblings:

316 Chapter 26 Huffman’s Algorithm

The question mark reminds us that we hardly know anything about u’s structure.
Merging a and b gives a tree comparable with ¢, which we can use to instantiate v:

cost (splitLeaf t a w, b wp) = costt + w, + wp

by Lemma 26.3

< cost (mergeSibling (swapFourSyms u a b c d) a) + w, + wp

< cost u

cost (swapFourSyms v a b ¢ d)

by optimality assumption
by Lemma 26.2
by Lemma 26.4 [

Once it has combined two lowest-weight trees using uniteTrees, Huffman’s algo-
rithm does not visit these trees ever again. This suggests that splitting a leaf node
before applying the algorithm should give the same result as applying the algorithm

first and splitting the leaf node afterward.

Lemma 26.6.
consistentg ts A ts # [| A a € alphabetr ts A freqr ts a = w, + wp —
splitLeaf (huffman ts) w, a wy b = huffman (splitLeafg ts w, a wp b)

The proof is by straightforward induction on the length of the forest ts.
As a consequence of this commutativity lemma, applying Huffman'’s algorithm on
a forest of the form

We

Wq

Wy

We

gives the same result as applying the algorithm on the “flat” forest

We

Wo+Wp

W,

26.6 The Key Lemmas and Theorems 317

followed by splitting the leaf node a into two nodes a and b with frequencies w,, wp.
The lemma provides a way to flatten the forest at each step of the algorithm.
This leads us to our main result.

Theorem 26.7.
consistentg ts A heightg ts = 0 A sortedByWeight ts A ts # [| —
optimum (huffman ts)

Proof by induction on the length of ¢ts. The assumptions ensure that s is of the form

W, Wp We Wy Wy

with w, < wp < w, < wg <--- < w,. If ts consists of a single node, the node has cost 0
and is therefore optimum. If ¢s has length 2 or more, the first step of the algorithm
leaves us with a term such as

c d z
We Wq W,

a b
Wy Wy

huffman

In the diagram, we put the newly created tree at position 2 in the forest; in general,
it could be anywhere. By Lemma 26.6, the above tree equals

splitLeaf <huffman € a di ... |=) We @ wy b
We Wy + Wy Wy W,

To prove that this tree is optimum, it suffices by Lemma 26.5 to show that

huffman | € o i i
We Wq+Wp Wq Wy
is optimum, which follows from the induction hypothesis. O

In summary, we have established that the huffman program, which constitutes
a functional implementation of Huffman’s algorithm, constructs a binary tree that
represents an optimum binary code for the specified alphabet and frequencies.

318 Chapter 26 Huffman’s Algorithm

Chapter Notes

The sorted list of trees constitutes a simple priority queue (Part III). The time
complexity of Huffman’s algorithm is quadratic in the size n of this queue. By
using a binary search to implement insortTree, we can obtain an O(nlgn) imperative
implementation. An O(n) implementation is possible by maintaining two queues, one
containing the unprocessed leaf nodes and the other containing the combined trees
[Knuth 1997].

Huffman'’s algorithm was invented by Huffman [1952]. The proof above was inspired
by Knuth's informal argument [Knuth 1997]. This chapter’s text is based on a
published article [Blanchette 2009], with the publisher’s permission. An alternative
formal proof, developed using Coq, is due to Théry [2004].

Knuth [1982] presented an alternative, more abstract view of Huffman’s algorithm
as a “Huffman algebra.” Could his approach help simplify our proof? The most tedious
steps above concerned splitting nodes, merging siblings, and swapping symbols. These
steps would still be necessary as the algebraic approach seems restricted to abstracting
over the arithmetic reasoning, which is not very difficult in the first place. On the other
hand, with Knuth'’s approach, perhaps the proof would gain in elegance.

27.1

Figure 27.1

Alpha-Beta Pruning (7

Tobias Nipkow

This chapter is about searching for the best possible move in a game tree. Alpha-beta
pruning is a technique for decreasing the number of nodes that need to be examined
by discarding whole subtrees during the search. There are many variations on this
theme and we progress from the simple to the more sophisticated.

Game Trees and Their Evaluation

A game tree represents a two-player game, such as tic-tac-toe or chess. Each node
in the tree represents a possible position in the game. Each move is represented by
an edge from one position to a child node, the successor position. There may be any
finite number of successor positions and thus children. An example game tree is shown
in Figure 27.1. In a two-player game, the players take turns. Thus each level in the

0|0 X
X
0| X
/ \
0| X [0} I X [0} X
X X
O X [0} X
0| X 0| X O[O 0|0 0|0 X O[O
X | X X | X O X X 0| X X
X X|0 0| X 0| X O|X|X O X
0 wins O wins
[0} 0|0|X 00| X [0}
X | X XXX X|X|X X | X
O|X|X O|X|O O|X|0O X
draw X wins X wins draw

Tic-tac-toe game tree

tree is associated with one of the two players, the one who is about to move, and this

319

https://isa-afp.org/browser_info/current/AFP/Alpha_Beta_Pruning/Alpha_Beta_Lattice.html

320 Chapter 27 Alpha-Beta Pruning

alternates from level to level. Leaf nodes in a game tree are terminal positions. The
rules of the game must determine the outcome at a leaf, i.e. who has won or if it is a
draw. More generally, what the value of that leaf is, because the game might involve,
for example, money that one player loses and the other wins.

We model game trees by the following datatype:

datatype ‘a tree = Lf 'a | Nd (‘a tree list)

The interpretation: ‘a is the type of values, Lf v is a leaf of value v and Nd ts is a
node with a list of successor nodes ts. In an induction on trees, the induction step
needs to prove P (Nd ts) under the IH that P is true for all ¢ in ts: Vteset ts. P t.

Usually the type of values is fixed to be some numeric type extended with co and
— 00, e.g. the extended real numbers (type ereal in Isabelle). Instead, we will only
assume that 'a is a linear order with least and greatest elements | and T:

1 <a a<T

This is a bounded linear order. Until further notice we assume that ‘a is a bounded
linear order. For concreteness, the reader is welcome to think in terms of some extended
numeric type.

Type tree is an abstraction of an actual game tree (as in Figure 27.1) because the
positions are not part of the tree. This is justified because we will only be interested
in the value of a game tree, not the positions within it. Given a game tree, we want
to find the best move for the start player, i.e. which of its successor nodes it should
move to. Essentially equivalent is the question of the value of the game tree. This
is the highest value of all leaves that the start player can reach, no matter what the
opponent does, who will try to thwart those efforts as best as it can. Formally, there
is a maximizing and a minimizing player. Thus the value of a game tree depends on
who is about to move. Function maxmin maximizes and minmax minimizes:

maxmin :: 'a tree = 'a
maxmin (Lf z) = z
maxmin (Nd ts) = maxs (map minmax ts)

minmax :: 'a tree = 'a
minmax (Lfz) = z
minmax (Nd ts) = mins (map maxmin ts)

Figure 27.2

27.1 Game Trees and Their Evaluation 321

maxs :: 'a list = 'a

maxs] = L1
maxs (z # xs) = max z (maxs zs)

mins :: 'a list = 'a
mins[] =T
mins (z # zs) = min ¢ (mins zs)

The two evaluation functions maxmin and minmax should be considered the (exe-
cutable) specification of what this chapter is about, namely more efficient evaluation
functions that do not always examine the whole tree.

Figure 27.2 shows a game tree where each node is labeled with its value. The final
level are the leaves. The squares are maximizing nodes, the circles are minimizing
nodes. The value 3 at the root shows that the maximizer can reach a leaf of value at
least 3, no matter which moves the minimizer chooses.

max
min

max

Game tree evaluation with maxmin

It is usually impossible to build a complete game tree because it is too large.
Therefore the tree is typically only built up to some (possibly variable) depth. For
simplicity we do not model this building process but start from the generated game
tree where the leaves are not necessarily terminal positions (whose value would be
determined by the rules of the game) but arbitrary ones where the tree building
has stopped (e.g. due to some depth limit) and the value is given by some heuristic
evaluation function. However, by starting with a game tree we abstract from all of
these issues.

322 Chapter 27 Alpha-Beta Pruning

27.2 Alpha-Beta Pruning
27.2.1 Intuition
Consider this partially evaluated game tree:

max

min

After we have determined the values 3 and 1, there is no need to evaluate further
children of node O because the maximizer would never move from the root to this
node because then the minimizer could achieve 1, whereas the maximizer can already
ensure 3 by moving to the first successor of the root.

In general: If we already have a bound a on the value of node n; (belonging to
player 1) and are exploring a successor node n, of n; (belonging to player 2), we can
stop exploring the successors of n, once we have found a successor that permits player
2 to achieve a better (from its perspective) value than a: player 1 would never move
to no because it can achieve the better (for itself) value a elsewhere.

This situation is found twice in Figure 27.3 (the tree with the by now familiar leaf
sequence, but evaluated with alpha-beta pruning; ignore the a,b labels for now), once
for the maximizer and once for the minimizer.

max
min

max

Figure 27.3 Alpha-beta pruning

In contrast to the examples seen so far, pruning may happen at arbitrarily deep
levels below the node where the bound (here: 3) comes from:

3

27.2.2

27.2 Alpha-Beta Pruning 323

Implementation

Alpha-beta pruning is parameterized by two bounds a and b (or a and S) where a is
the maximum value that the maximizer is already assured of and b is the minimum
value that the minimizer is already assured of (by the search so far, assuming optimal
play by both players). The maximizer searches its successor positions and increases a
accordingly. Once a > b, the search at this level can stop: if a > b, the minimizer
would never allow the maximizer to reach the parent node because the minimizer can
already enforce b elsewhere; if a = b, the minimizer will only allow the maximizer to
reach the parent node if the remaining successor positions do not yield a value > a.
In summary, the open interval from a to b is the window in which alpha-beta pruning
searches for nodes that increase a until the interval becomes empty. Dually for the
minimizer. This is the actual code:

ab_max :: 'a = 'a = 'a tree = 'a

ab_max (Lfz) =1z
ab_max a b (Nd ts) = ab_maxs a b ts

ab_maxs :: 'a = 'a = 'a tree list = 'a

ab_maxsa [[=a

ab_maxs a b (t # ts)

= (let '’ = max a (ab_min a b t) inif b < o’ then o' else ab_maxs a’ b ts)

ab_min :: 'a = 'a = 'a tree = 'a

ab_min _ (Lfz) ==z
ab_min a b (Nd ts) = ab_mins a b ts

ab_mins :: 'a = 'a = 'a tree list = 'a

ab_mins b =0

ab_mins a b (t # ts)

= (let b’ = min b (ab_max a b t) in if b’ < a then V' else ab_mins a b’ ts)

Figure 27.3 shows the behaviour of alpha-beta pruning on our example game tree.
Each node is annotated with the a,b values with which it is searched and with the
final value returned at the end of the search.

There are more compact ways to formulate these functions (Exercise 27.2) but the
explicitness of the above code leads to more elementary proofs where the min cases
are completely dual to the max cases. If we only consider one of the two cases in a

27.2.3

324 Chapter 27 Alpha-Beta Pruning

definition, a lemma or a proof, the other one is completely dual. An example is this
simple inductive property of ab_maxs

a < ab_maxsabts (27.1)

where we leave the dual property of ab_mins unstated.
Many properties of alpha-beta pruning require a < b, property (27.1) being an
exception.

Correctness and Proof
This is the top-level correctness property we want in the end:

ab_max L T t = maxmin t (27.2)

Of course, a proof will require a generalization from | and T to arbitrary a and b.
Unsurprisingly, ab_max a b t = maxmin t does not hold in general. Thus we first
need to find a suitable generalization of (27.2).

The following relations between ab_max and maxmin state that ab_max coincides
with maxmin for values inside the (a,b) interval and that ab_max bounds maxmin
outside that interval:

ab_maxabt<a — maxmint < ab_max a bt (27.3)
a<ab_maxabt<b — ab_maxabt= maxmint (27.4)
ab_maxabt>b — maxmint > ab_max a bt (27.5)

These properties do not specify ab_max uniquely but they are strong enough to imply
(as we see below) the key correctness property (27.2).
To facilitate the further discussion, we define the following abbreviation:

ab < v (mod a,b) =

((ab < a — v < ab) A

(a <abANab<b— ab=v)A

(b < ab — ab < v)) (27.6)

The conjunction of (27.3)—(27.5) is ab_max a b t < maxmin t (mod a,b). The no-
tation ab < v (mod a,b) symbolizes that ab is closer to the interval (a,b) than v (or
they are equal).

Although “< mod” is a relation, it can also be read as a function that tells us in
which of the three intervals (not lists!) [L,ad], [ab,ab] or [ab,T] v is located, depending
on where ab lies w.r.t. a and b.

Correctness can now be shown simultaneously for all four functions:

27.2 Alpha-Beta Pruning 325

Theorem 27.1.

a < b— ab_maxabt < maxmint (mod a,b) (27.7)
a < b— ab_maxs a b ts < maxmin (Nd ts) (mod a,b)

a<b— ab_minabt < minmax t (mod a,b)

a < b— ab_mins a b ts < minmax (Nd ts) (mod a,b)

Proof by simultaneous induction on the computation of ab_max and friends. The
only two nontrivial cases are the ones stemming from the recursion equations for
ab_maxs and ab_mins. We concentrate on ab_maxs. For succinctness we introduce
the following abbreviations:

abt = ab_mina bt abts = ab_maxs a' bts a = max a abt
vt = minmax t vts = maxmin (Nd ts)

The two IHs are

abt < vt (mod a,bd) (IH1)
a’ < b — abts < vts (mod a',d) (IH2)

and we need to prove abtts < vtts (mod a,b) where

abtts = ab_maxs a b (t # ts)
vtts = maxmin (Nd (t # ts)) = max vt vts

We focus on the most complex part of abtts < vtts (mod a,b), conjunct 2. That is,
we assume a < abtts < b and prove abtts = vtts by case analysis. The case b < a’ is
impossible because it would imply o’ = abtts, which, combined with the assumption
abtts < b, would imply b < b. Hence we can assume a’ < b and thus abtts = abts
and a < abts < b. Hence we now need to prove

abts = max vt vts

For the following detailed arguments we display and name the relevant conjuncts of
IH1 and IH2 (where the premise a’ < b is now assumed):

abt < a — vt < abt (IH11)
a<abt <b — abt = vt (IH12)
abts < a' — vts < abts (IH21)
a’ < abts < b — abts = uts (IH22)

The proof continues with a case analysis. First assume abt < a. Hence a’ = a and
thus IH22 and a < abts < b yield abts = vts. Moreover, vt < vts follows from IH11,
abt < a, a < abts and abts = vts. Together this proves abts = max vt vts.

Now assume a < abt. This implies a' = abt, abt = vt (using IH12) and abt < b
(using a’ < b). From (27.1) we obtain a’ < abts and perform another case analysis.

27.24

326 Chapter 27 Alpha-Beta Pruning

First assume a’ < abts. Because abts < b, IH22 yields abts = wts. Assumption
a' < abts implies abt < abts and thus vt < vts which proves abts = max vt vts.
Now assume a' = abts. IH21 implies vts < abts. Moreover, abts = a’ = abt = vt.
Together this implies abts = max vt vts. O

The top-level correctness property ab_max L T ¢t = maxmin t (27.2) is a
consequence of (27.7) where a = 1 and b = T. Let us first deal with the standard
case that L < T. Then (27.7) yields ab_max a b t < maxmin t (mod a,b). The
claim ab_max L T t = maxmin t follows from this general property of “< mod”

y<z(mod L,T) —mz=y

which is easy to prove: If | < y < T, the definition yields the result directly. If
y < L then the definition implies z < y and uniqueness of L yields z = y (= L).
The case y > T is dual.

Now consider the corner case which does not arise for numeric types, namely
- 1 < T In that case, everything collapses (exercise!)

2l <T —2z=y
and (27.2) trivially holds.

Fail-Soft

Function ab_maxs is less precise than it could be: ab_maxs a b ts = a even if
ab_minabt < a for all t € set ts. But in this case maxmin (Nd ts) < a and
ab_maxs could have produced a better bound for maxmin (Nd ts) if it did not return
a but L at the end of the list. These are the improved ab_max functions:

ab_max' :: 'a = 'a = 'a tree = 'a

ab_max’ (Lfz) ==z
ab_max' a b (Nd ts) = ab_maxs' a b L ts

ab_maxs' :: 'a = 'a = 'a = 'a tree list = 'a

ab_maxs' m [=m
ab_maxs' a b m (t # ts)
= (let m' = max m (ab_min’ (max m a) b t)

in if b < m' then m' else ab_maxs' a b m' ts)

In the literature, ab_maxs is called the fail-hard variant (because it brutally cuts off
at a) and ab_maxs' the fail-soft variant (because it “fails” more gracefully).

27.2 Alpha-Beta Pruning 327

For a start we have that ab_max’ bounds maxmin (and is thus correct w.r.t.
maxmin):
Theorem 27.2. a < b — ab_max’ a b t < maxmin t (mod a,b)
max ma < b — ab_maxs' a b m ts < maxmin (Nd ts) (mod max m a,b)

This is similar to the correctness theorem for ab_max but slightly more involved

because of the additional parameter of ab_max’. The proof is also similar, including

the need for the lemmas m < ab_maxs' a b m ts and ab_mins' a b m ts < m.
Moreover, ab_max bounds ab_max’:

Theorem 27.3. a < b — ab_max a bt < ab_max’ a b t (mod a,b)
max ma < b — ab_maxs (max m a) b ts < ab_maxs' a b m ts (mod a,b)

The proof is similar to that of the previous theorem but requires no lemmas.

In summary, we now know that ab_max’ bounds maxmin at least as precisely
as ab_max does. In fact, it can be more precise, as the following example shows:
ab_max’ 01 (Nd []) = maxmin (Nd []) = L but ab_max01 (Nd[]) =0> L.

Both variants search the same part of the trees. To verify this, we define functions
that return the part of the trees that ab_max(’) and ab_maxs(’) traverse.

abt_max :: 'a = 'a = 'a tree = 'a tree

abt_max (Lfz)=Lfz
abt_max a b (Nd ts) = Nd (abt_maxs a b ts)

abt_maxs :: 'a = 'a = 'a tree list = 'a tree list

abt_maxs [=1]

abt_maxs a b (t # ts)

= (let w = abt_min a b t; o' = max a (ab_min a b t)
in u # (if b < o' then || else abf_maxs a' b ts))

abt_max’ :: 'a = 'a = 'a tree = 'a tree

abt_max’ __ (Lfz) =Lfz
abt_max' a b (Nd ts) = Nd (abt_maxs' a b L ts)

abt_maxs' :: 'a = 'a = 'a = 'a tree list = 'a tree list

abt_maxs' [=1]

abt_maxs' a b m (t # ts)

= (let w = abt_min' (max m a) b t; m' = max m (ab_min’ (max m a) b t)
in u # (if b < m' then [] else abt_maxs' a b m' ts))

27.2.5

328 Chapter 27 Alpha-Beta Pruning

Indeed, they search the same part of the trees:

Theorem 27.4. a < b — abt_max' a bt = abt_ max a bt
max m a < b — abt_maxs' a b m ts = abt_maxs (max m a) b ts

The proof is the usual simultaneous induction and relies on Theorem 27.3.
The following section answers the question how the improved precision of the soft
variant can be exploited to optimize the search further.

From Trees to Graphs

Game trees are in fact graphs, because different paths may lead to the same position.
Moreover, positions have symmetries, and different positions may be equivalent, for
example by rotating or reflecting the board. For efficiency reasons it is vital to factor
in these symmetries when searching the graph. This is usually taken care of by a
so-called transposition table, which is a cache for storing evaluations of previously
seen positions (modulo symmetries). However, evaluations of the same position from
different parts of the graph typically come with different a,b windows. Nevertheless,
the result of a previous evaluation can help to narrow the a,b window in later
evaluations of the same position. In the following little lemma, we assume that abf :
‘a = 'a = 'a tree = 'a is some function (e.g. ab_max’) that bounds maxmin:

Yab. abf a bt < maxmin t (mod a,b) (%)

If in a previous call b < abf a b t, then (%) implies abf a b ¢t < maxmin t. Thus
abf a b t can be used as a lower bound for future abf calls. That is, in a call abf a’ b’ ¢
we can replace a’ by max a' (abf a b t), provided this does not push us above b’ (in
which case there is no need to call abf again):

b<abfabtAmaxa (abfabdt) < b —
abf (max a' (abf a b t)) b’ t < maxmin t (mod a',b’)

Similarly, if abf a b t < a, then abf a b t can be used as an upper bound for future
abf calls, i.e. we can replace b’ by min b’ (abf a b t). Hence ab_max’ has the edge
over ab_max in this scenario: it can lead to smaller search windows.

Of course, if a < abf a bt < b, then abf a b ¢ = maxmin t and we can return the
exact value right away.

The advantage of narrowing the a,b window is that the search space decreases. The
intuitive reason is clear: as b decreases, a will reach b more quickly (and conversely).
More precisely, the search space with a smaller window is a prefix of that with the
larger window in the following sense:

27.2.6

27.2 Alpha-Beta Pruning 329

prefix :: 'a tree = 'a tree = bool
prefix (Lf z) (Lfy) = (z = y)

prefix (Nd ts) (Nd us) = prefixs ts us
prefix = False

prefixs :: 'a tree list = 'a tree list = bool

prefixs [| = True
prefixs (t # ts) (u # us) = (prefix t w A prefixs ts us)
prefixs (_ #) [] = False

Now we can employ the abt functions (Section 27.2.4) to obtain the searched space:

Theorem 27.5.

a<bAad <aAnb< b — prefix (abt_max' a bt) (abt_max’' a' b t)
maxma<bAad <aAb<bVAM <m-—

prefixs (abt_maxs' a b m ts) (abi_maxs' a' b’ m' ts)

The proof is by the usual computation induction but also requires a lemma. It
expresses that when we narrow the search window, the result becomes less precise:

Lemma 27.6.

a<bAd <aAb<b —ab max' abt < ab_max' o' b t (mod a,bd)
maxma<bAad <aAb<bAmM <m-—

ab_maxs’ a b m ts < ab_maxs' a' b’ m' ts (mod max m a,b)

This lemma can be proved directly, i.e. without requiring further lemmas.

Exercises

Exercise 27.1. We can get away without | and T if we require that the list of succes-
sor positions, i.e. the arguments of Nd, are nonempty. Formalize this requirement as
a predicate invar :: 'a tree = bool, define new versions of maxs, mins, maxmin and
minmax (without using L and T!) and prove invar t — maxmin1 t = maxmin t
(where the new versions are distinguished by an appended 1).

Exercise 27.2. The functions ab_max/ab_min and the functions ab_maxs/ab_mins
are completely dual to each other. Similarly for maxmin/minmax. Eliminate this dupli-
cation by defining uniform versions of these functions that are suitably parameterized
(e.g. by the ordering or by a boolean flag) and can play both the min and the max
part. Prove that the uniform functions (with the right arguments) are equal to the
corresponding old functions.

330 Chapter 27 Alpha-Beta Pruning

Exercise 27.3. Prove that “< mod” (27.6) can be expressed as follows if a < b:
ab < v (mod a,b) «— minvb<abAab< maxva

Exercise 27.4. Consider this weaker version of “< mod”:
z 2 y (mod a,b) =
(y<a—z<a)A(a<yANy<b—y=z)A(b<y—b<1)

~

Again we have z = y (mod L, T) — z = y. Prove
a < b— maxmint = ab_max a bt (mod a,b)

following the proof of Theorem 27.1. Do not simply employ that y < z (mod a,b)

~

implies z 2 y (mod a,b).

Exercise 27.5. Consider the operation max a (min z b) that squashes z into the
closed interval [a,b] (assuming a < b) by returning a if < a and b if z > b and
leaving = unchanged otherwise. Note that if a < b, then the order of max and min is
irrelevant: a < b — max a (min z b) = min b (max z a).

Prove that with the help of this operation, = (see Exercise 27.4) can be expressed
purely equationally if @ < b:

z = y (mod a,b) +— max a (min z b) = max a (min y b)

Because the right-hand side is symmetric in z and y, it follows that = is symmetric

~

aswell: a < b — 2z ¥ y (mod a,b) +— y = z (mod a,b).
Exercise 27.6. Consider the max a (min z b) operation from Exercise 27.5 and
modify ab_max(s) (and analogously ab_min(s)) as follows:

ab_max2 :: 'a = 'a = 'a tree = 'a

ab_max2 a b (Lf) = max a (min z b)
ab_max2 a b (Nd ts) = ab_maxs2 a b ts

ab_maxs2 :: 'a = 'a = 'a tree list = 'a

ab_maxs2a [|=a
ab_maxs2 a b (t # ts)
= (let '’ = ab_min2 a b tin if a’ = b then a’ else ab_maxs2 a' b ts)

Both max and min have moved to the Lf cases, thus assuring that the result of all
ab_ functions lies in the closed interval [a,b]. Prove the following correctness theorem

a <b— ab_max2 a bt = max a (min (maxmin t) b)

The corollary ab_max2 L T t = maxmin t is immediate.

27.3

27.3.1

27.3 Negative Values 331

Negative Values

In this section we examine a popular approach to exploiting the symmetries between
maximizer and minimizer. As a result, we only need two instead of four functions, both
for game tree evaluation and alpha-beta pruning. It can be seen as another variation
of the approaches sketched in Exercise 27.2. This time we exploit the symmetries
between positive and negative values. A value v for one player can be viewed as a
value —v for the other player: one player’s gain is the other player’s loss. This seems
to work only for numeric value types, but it turns out that the following properties
are sufficient to make it work more generally:

—(—z)=12
—minzy =max (— z) (— y) (27.8)

We call a bounded linear order satisfying the above two properties a De Morgan
order because of the second, De-Morgan-like property. For the rest of this section, we
assume that ‘a is a De Morgan order. For concreteness you may think of the extended
reals. Of course De Morgan orders satisfy many other properties that follow easily, in
particular the dual De Morgan property

—maxzy = min (- z) (- y)

We will not list them here because they are all familiar from extended numeric types.

Game Tree Evaluation
With the help of negation we can unify the evaluation functions maxmin and minmax
into a single function negmax:

negmax :: 'a tree = 'a
negmax (Lfz) =z
negmax (Nd ts) = maxs (map (At. — negmax t) ts)

Figure 27.4 shows the evaluation of the same tree as in Figure 27.2 but with
negmax. We have to negate the leaves because they belong to the minimizer but
the root (which we evaluate) belongs to the maximizer.

Function negate b t performs the negation of the minimizer leaves of ¢, where b =
True iff the root of ¢ is a minimizer level:

332 Chapter 27 Alpha-Beta Pruning

Figure 27.4 Game tree evaluation with negmax

negate :: bool = 'a tree = 'a tree

negate b (Lf z) = Lf (if b then — z else z)
negate b (Nd ts) = Nd (map (negate (— b)) ts)

Now we can express that negmax correctly mimics the behaviour of maxmin and

minmax:
maxmin t = negmax (negate False t) (27.9)
minmax t = — negmax (negate True t) (27.10)

The proof is by simultaneous induction on the computations of maxmin and minmax.
We focus on the induction step. By IH the equation holds for all ¢ € set ts. The IH
will be combined with the following general congruence property for map:

(Vzesetzs. fz = gz) — map fzs = map g zs (27.11)
The proof of (27.9) follows:

(
in (Nd ts) = maxs (map minmax ts)
= maxs (map (A\t. — negmax (negate True t)) ts) by (27.11) and IH
(map ((At. — negmax t) o negate True) ts)
((At. — negmax t) (map (negate True) ts))

by map f (map g zs) = map (f o g) zs
= negmax (Nd (map (negate True) ts))
= negmax (negate False (Nd ts))

map

The proof of (27.10) is almost dual but also uses a generalization of (27.8) to lists,
which follows easily by induction:

— mins (map f zs) = maxs (map (Az. — fz) zs)

27.4 Alpha-Beta Pruning for Distributive Lattices 333

27.3.2 Alpha-Beta Pruning

27.3.3

27.4

Alpha-beta pruning for De Morgan orders is easily derived from the ab_max/min
functions using negation and swapping a and b when switching between players:

ab_negmax :: 'a = 'a = 'a tree = 'a

ab_negmax (Lfz) ==z
ab_negmax a b (Nd ts) = ab_negmaxs a b ts

ab_negmaxs :: 'a = 'a = 'a tree list = 'a

ab_negmaxsa [|=a

ab_negmaxs a b (t # ts)

= (let o' = max a (— ab_negmax (— b) (— a) t)
in if b < a’ then o’ else ab_negmaxs a’ b ts)

Correctness can be proved easily by simultaneous induction

a < b— ab_negmax a bt < negmax t (mod a,b)
a < b — ab_negmaxs a b ts < negmax (Nd ts) (mod a,b)

using this simple inductive fact: a < ab_negmaxs a b ts.

Exercises
Exercise 27.7. It is straightforward to connect ab_negmax and ab_max

ab_max a b t = ab_negmax a b (negate False t)

by simultaneous computation induction involving a further three analogous equations
connecting pairs of alpha-beta functions.

Exercise 27.6 carries over to negative values, mutatis mutandzs.

Alpha-Beta Pruning for Distributive Lattices

Although alpha-beta pruning is customarily presented for linear orderings, it also
works for the more general domain of distributive lattices. This has applications to
games with incomplete information such as many card games because distributive
lattices can represent sets of possible situations. For games of complete information
such as chess, distributive lattices have applications too. They support heuristic
evaluations with multiple components (e.g. material, mobility, etc.) without being
forced to combine them into a single value or order them linearly because tuples of
numbers form a distributive lattice.

27.41

27.4.2

334 Chapter 27 Alpha-Beta Pruning

Lattices

A lattice on some type ‘a is a partial order (<) such that any two elements have
a greatest lower and a least upper bound. These two operations are denoted by the
following constants and are also called also called infimum and supremum:

(M:='a="'a="a
(W) :'a="'a="a

They fulfill these properties:

zNy<z zNy<y z<yNz<z—z<yMz

<
<

z<zUuy y<zUy y<zANz<z—yUz<z

That is, M is the greatest lower and LI the least upper bound. Note that M has a higher
precedence than L: ¢ U y M z means z LI (y M z). Just like A/V and N/U.

Any linear order is a lattice where M = min and U = max. An example of a lattice
that is not a linear order is the type of sets where M = N and U = U.

It turns out that M and U have very nice algebraic properties: both are associative
and commutative and enjoy these absorption properties:

zNz ==z zN(zly =¢
tlz ==z tlUzNy==z

A distributive lattice is a lattice where M and U distribute over each other:

cUyMNz=(zUy)N (zU=2)
zN(yUz)=zNyUznNz

Clearly, linear orders and sets form distributive lattices. Moreover, the Cartesian
product of distributive lattices is again a distributive lattice.

In the rest of this section we work in a distributive lattice. Often we also assume
that the lattice is bounded, i.e. has a least and a greatest element | and T. Of course
bounded lattices satisfy the obvious properties L Mz =1, TNz =2, L Uz ==¢
and TUz=T.

In the sequel, we rarely enlarge on parts of a proof that follow by distributive lattice
laws alone; we take those for granted. For concreteness the reader may think in terms
of sets rather than distributive lattices and will not be misled.

Alpha-Beta Pruning
Both game tree evaluation and alpha-beta pruning are completely analogous to
before, except that min and max are generalized to M and L. The result is shown
in Figure 27.5. We only cover fail-hard here but have also formalized fail-soft.

We will prove ab_sup L T t = supinf t, but we cannot proceed via the following
naive generalization of Theorem 27.1

27.4 Alpha-Beta Pruning for Distributive Lattices 335

supinf :: 'a tree = 'a
supinf (Lfz) = z
supinf (Nd ts) = sups (map infsup ts)

infsup :: 'a tree = 'a
infsup (Lfz) = z
infsup (Nd ts) = infs (map supinf ts)

sups :: 'a list = 'a

sups] = L
sups (z # zs) = z L sups zs

infs :: 'a list = ‘a
infs| =T
infs (z # zs) = z N infs zs

ab_sup :: 'a = 'a = 'a tree = ‘a

ab_sup (Lfz)==z
ab_sup a b (Nd ts) = ab_sups a b ts

ab_sups :: 'a = 'a = 'a tree list = 'a

ab_supsa [[=a

ab_sups a b (t # ts)

=(leta' =aUab_infabtinif b < a' then o else ab_sups a’ b ts)

ab_inf :: 'a = 'a = 'a tree = 'a
ab_inf _ (Lfz) ==
ab_inf a b (Nd ts) = ab_infs a b ts

ab_infs :: 'a = 'a = 'a tree list = ‘a

ab_infs _b[]=1b

ab_infs a b (t # ts)

=(letd =bmab_supabdtinifd < athen b’ else ab_infs a V' ts)

Figure 27.5 Game tree evaluation and alpha-beta pruning for lattices

27.4.2.1

2743

336 Chapter 27 Alpha-Beta Pruning

a<b-— ab_sup abdt < supinft (mod a,b) (27.12)

because it does not hold.

Counterexamples

Property (27.12) does not hold in general as the following counterexample for the
distributive lattice bool set shows. Let a = {False}, b = {False, True} (a < b!) and
t = Nd [Lf {True}]. Then supinft = {True} =: v and ab_sup a b t = {False, True}
=: ab But although ab > b, we don’t have v > ab as (27.12) would require.

More generally, the definition of ab < v (mod a,b) implicitly assumes that ab, the
result of alpha-beta pruning, satisfies one of the three alternatives ab < a,a < ab < b
or b < ab. In a distributive lattice this may no longer be the case. Take a = {}, b =
{True} and t = Nd [Lf {False}]. Then supinft = {False} =: v and ab_sup a b t =
{True} =: ab. But now all three comparisons ab < a, a < ab A ab < band b < ab
are false. Thus we cannot draw any conclusion about v from ab.

In summary, for distributive lattices, (27.12) is unsuitable for relating the result of
alpha-beta pruning to the true tree value.

Correctness and Proof
We will phrase correctness by means of the operation a LI £ M b that projects
(“squashes”) z into the closed interval [a,b], if a < b:

a<b—a<alUzNnb<d

Ifa <z <bthen a U z M b= z Note also that if a < b, then the order of LI and
Misirrelevant: a < b — alUzNb=(alz)Nbd

Although a U z M b has particularly nice properties if a < b, it can be manipulated
algebraically even in the absence of a < b. As an example we have this weak form of
the preceding associativity property:

aldzNb=alUynNbdb+— (alUz)Nb=(aly)nbd
In analogy with 22 (see Exercise 27.5) we define £ ~ y to mean that z and y are
the same modulo “squashing”

z~y(modab)=allzNb=alynbd

It turns out that the result of alpha-beta pruning is ~ to the real value. This can be
shown simultaneously for all four functions:

27.4 Alpha-Beta Pruning for Distributive Lattices 337

Theorem 27.7.

ab_sup a bt ~ supinft (mod a,b)
ab_sups a b ts ~ supinf (Nd ts) (mod a,b)
ab_inf a b t ~ infsup t (mod a,b)

ab_infs a b ts ~ infsup (Nd ts) (mod a,b)

Proof by simultaneous computation induction. The only two nontrivial cases are the
ones stemming from the recursion equations for ab_sups and ab_infs. We concentrate
on ab_infs. For succinctness we introduce the following abbreviations:

abt = ab_sup a bt abts = ab_infs a (b N abt) ts
vt = supinf t vts = infsup (Nd ts)

The two IHs are

alabtNb=alUuvtnbd (IH1)
= b1 abt < a— abts ~ vts (mod a,b M abt) (TH2)

and we need to prove
ab_sups a b (t # ts) ~ supinf (Nd (t # ts)) (mod a,bd)

The proof is by cases. First we assume b M abt < a. Together with IH1 this implies
a U vt M b= a Now we prove the main equation:

b_sups a b (t # ts) ~ b N abt (mod a,bd) because b 1M abt < a

=alabtnd

=alUvtnbd by IH1

=alUvtnNbUvNutsMb

=alUvtMNutsnbd because a Ll vt M b = a
a U supinf (Nd (t # ts)) N b

Now we assume = b < a U abt. IH2 together with a simple inductive property of
ab_infs, namely ab_infs z y ts < vy, implies

alabtsMb=alabtNoutsnb (IH2")

Now we prove the main equation:

ab_infs a b (t # ts) ~ abts (mod a,bd) because = b < a U abt
=alabtNutsNb by IH2’
=alUvtNutsnbd by IH1
= (a U infsup (Nd (t # ts))) M b O

Because z ~ y (mod L,T) implies z = y, we obtain:

Corollary 27.8. ab_sup L T t = supinft (27.13)

338 Chapter 27 Alpha-Beta Pruning

27.4.4 Negative Values

We can deal with negative values in the context of bounded distributive lattices by
requiring the same properties as for De Morgan orders, but with (M) instead of min:

—(—z)=12
—(zNy)=—2zU -y

The resulting structure is called a De Morgan algebra. Just as in Section 27.3 we
can define game tree evaluation

negsup :: 'a tree = ‘a
negsup (Lfz) = z
negsup (Nd ts) = sups (map (At. — negsup t) ts)

and alpha-beta pruning for De Morgan algebras:

ab_negsup :: 'a = 'a = 'a tree = 'a
ab_negsup (Lfz)=1z
ab_negsup a b (Nd ts) = ab_negsups a b ts

ab_negsups :: 'a = 'a = 'a tree list = 'a
ab_negsups a [= a
ab_negsups a b (t # ts)
= (let o' = a U — ab_negsup (— b) (— a) t
in if b < a’ then a' else ab_negsups a’ b ts)

We can relate the ordinary and the negated versions
negsup t = supinf (negate False t)

ab_sup a bt = ab_negsup a b (negate False t)

by induction (details omitted, especially the three simultaneous propositions required
for the proof of the second proposition) and conclude

ab_negsup L T t = negsup t

with the help of (27.13) (and the inductive lemma negate f (negate f t) = t).

27.4 Alpha-Beta Pruning for Distributive Lattices 339

27.4.5 Exercises
Exercise 27.8. In Exercise 27.3 we considered a reformulation of “< mod”. This
reformulation generalizes to lattices in the standard manner. Define

abC v (mod ab)=bNv<abAab<alw

It turns out that this is a suitable correctness notion for alpha-beta pruning in
distributive lattices. Give a detailed proof of this generalization of Theorem 27.7:

ab_sup a bt C supinft (mod a,b)

Obviously ab_sup L T t = supinf t follows immediately.
Give a detailed proof of ab C v (mod a,b) — ab ~ v (mod a,b) and a
counterexample to the reverse implication.

Exercise 27.9. There is also a fail-soft version of alpha-beta pruning for distributive
lattices:

ab_sup’ :: 'a = 'a = 'a tree = 'a

ab_sup’ (Lfz)=1z
ab_sup' a b (Nd ts) = ab_sups’ a b L ts

ab_sups' :: 'a = 'a = 'a = ‘a tree list = ‘a

ab_sups' m[=m
ab_sups' a b m (t # ts)
=(letm'=m U ab_inf (mUa)bt
in if b < m' then m' else ab_sups' a b m' ts)

Prove its correctness (for “C mod” see Exercise 27.8):

ab_sup' a bt C supinft (mod a,b)
ab_sups' a b m ts C supinf (Nd ts) (mod a LI m,b)

Exercise 27.10. Based on the definition of “C mod” in Exercise 27.8, prove

ab_negsup a b t C negsup t (mod a,b)
ab_negsups a b ts C negsup (Nd ts) (mod a,b)

directly, i.e. without going back to the non-negative relatives. You may need the lemma
a < ab_negsups a b ts.

Exercise 27.11. The algorithm considered in Exercise 27.6 carries over to distributive
lattices, mutatis mutandis. Prove

a<b-— ab_sup2abt=alsupinftnd

Obviously ab_sup2 L T t = supinf t follows immediately.

340 Chapter 27 Alpha-Beta Pruning

Chapter Notes

Variants of alpha-beta pruning have a long history in the literature. It appears that
the first reasonably precise correctness proof was given by Knuth and Moore [1975]
via the relation “2 mod” (Exercise 27.4). The improvement from fail-hard to fail-soft
was proposed by Fishburn [1983] with the suggestion of using it to narrow the a,b
window in future searches of the same position. Marsland [1986] spells out the details
of the code. Fishburn [1983] contrasts the correctness property “= mod” that Knuth
and Moore proved of the fail-hard variant with his own stronger correctness property
“< mod” (27.6) of the fail-soft variant. He does not seem to have realized that fail-hard
already satisfies (27.6) and that the distinguishing property is that fail-hard bounds
fail-soft (Theorem 27.3).

Hughes [1989] derives a version of alpha-beta pruning for numbers from the
definition of maxmin. However, he ends up with shallow pruning only, i.e. function
F1 by Knuth and Moore [1975], not F'2, the real alpha-beta pruning. In their historic
survey, Knuth and Moore [1975, pp.303-304] point out that this mistake has been
made frequently, including by Knuth himself.

The fact that alpha-beta pruning extends to distributed lattices was discovered
twice. First by Bird and Hughes [1987], who (like Hughes [1989]) derive an algorithm
from the definition of maxmin. Confusingly they talk about Boolean algebras although
they merely work in a distributive lattice. Their version of alpha-beta pruning could
be classified as fail-extremely-hard because it always returns a result in the interval
[a,b] (see Exercise 27.11). Ginsberg and Jaffray [2002] rediscovered that alpha-beta
pruning also works in distributed lattices. Li et al. [2022] extend alpha-beta pruning
in distributive lattices to fail-soft on a game graph using a cache. They employ the
squashing operation a U z M b introduced by Bird and Hughes [1987] to state
correctness. Both Ginsberg and Jaffray [2002] and Li et al. [2022] are unaware of
the work by Bird and Hughes [1987] who in turn seem unaware of the work by Knuth
and Moore [1975].

De Morgan algebras were introduced and studied by Moisil [1936, p. 91] (without
the assumption of boundedness). The term “De Morgan order” is not standard and
was coined by the author in analogy with De Morgan algebras.

Pearl [1980, 1982] provided the definitive quantitative analysis of alpha-beta prun-
ing and showed that, for random game trees, alpha-beta pruning is optimal.

Part VI

Appendix

341

List Library

The following functions on lists are predefined:

length :: 'a list = nat

0l =0

|z # zs| = |zs| + 1

(@) :: 'a list = 'a list = 'a list

[@uys=uys
(z #2s) Qys =z # zs @ ys

set :: 'a list = 'a set

set] = {}

set (z # zs) = {z} U set zs

map :: (‘la = 'b) = 'a list = b list
[

map f (z # zs) = fz # map fzs

filter :: ('a = bool) = 'a list = ’a list
filterp [= []
filter p (z # zs) = (if p z then z # filter p zs else filter p zs)

concat :: 'a list list = 'a list

concat [| =[]
concat (z # zs) = =z @ concat zs

take :: nat = 'a list = 'a list

take [=1
take n (z # zs) = (case nof 0 = [| | m + 1 = z # take m zs)

343

344 Appendix A List Library

drop :: nat = ‘a list = 'a list

drop _ [] =]

dropn (z # zs) = (case nof 0 = = # zs | m + 1 = drop m zs)
hd :: 'a list = 'a

hd (z # zs) =z

H:: 'a list = 'a list

] =

tl (z # zs) = s

butlast :: 'a list = 'a list

butlast [] = []
butlast (z # zs) = (if zs = [] then [] else = # butlast zs)

rev :: 'a list = ’a list

rev [=]

rev (z # zs) = rev zs Q [z]
(1) :: 'a list = nat = ‘a

(z # zs)!n=(casenof 0=z |k+ 1= zs!k)

list_update :: 'a list = nat = 'a = 'a list

0 =_1=1

(z #zs)[t:=v]=(case tof 0= v # zs|j+ 1=z # xs[j := v])
upt :: nat = nat = nat list

[..<0] =]

[t..<g + 1] = (if « < j then [i..<j] @ [5] else [])

replicate :: nat = 'a = 'a list

replicate 0 _ =[]
replicate (n + 1) z = z # replicate n z

distinct :: 'a list = bool

distinct [| = True
distinct (z # zs) = (z ¢ set zs A distinct zs)

sum_list :: 'a list = 'a

sum_list [| =0
sum_list (z # zs) = =z + sum_list zs

min_list :: 'a list = 'a
min_list (z # zs)
= (case zsof [| = z | _ # _ = min z (min_list zs))

sorted_wrt :: ('a = ‘a = bool) = 'a list = bool
sorted_wrt P [| = True

sorted_wrt P (z # ys) = ((Vyeset ys. Pz y) A sorted_wrt P ys)

345

Time Functions

Time functions that are 0 by definition have already been simplified away.

Lists

Tappena = 'a list = 'a list = nat

Tappena [| _ =1
Tappend (_ # x5) ys = Tappenad Ts ys + 1

Tlength = 'a list = nat

7—/ength [] =1
7—/ength (_ # 373) = Tlength zs + 1

Tmap = ('a = nat) = ‘a list = nat

Thiter =2 ('a = nat) = 'a list = nat

Thiter TP [| = 1
Tﬁ/ter TP (m # ms) = TPz + Tﬁ[ter TP zs + 1

Tiake = nat = 'a list = nat

Ttake_ []:1
Tiake n (_ # zs) =(case nof 0 = 0| m + 1 = Tipe mas) + 1

Tarop :: nat = 'a list = nat

7-drop_ []:1

Thtn 2 'a list = nat = nat

Ton (_ # zs)n=(casenof 0=>0|z+ 1= Tpmasz) + 1

347

348 Appendix B Time Functions

Simple properties:

Tappend zs Ys = |333 | + 1

Tlength zs = |zs| + 1

Tmap Tf zs = (3,0 4 Tfz) + |z8| + 1
Titer TP zs = (3., s TP z) + |zs| + 1
Tiake n s = min n |zs| + 1
Tarop m xs = min n |zs| + 1

n<|zs| — Tppzsn=n+1

B.2 Selection

Tchop = mat = 'a list = nat
Tchop O = 1

Tehop _ [I =1
Tehop m s = Tiake n 25 + Tgrop n T + Tohop m (drop n zs) + 1

Tpartitions : 'a = 'a list = nat
Tpartitions _ =1
Tpartitions T (_ # ys) = Tpartitions T ys + 1

Tsiow_select :: nat = ‘a list = nat

Tsiow_select k €5 = Tinsort T + Tpn (insort xs) k

Ts[owimed/an 00 Ia lZst = nat

Tsiow_median T8 = Tiength ©5 + Tsiow_select ((|zs| — 1) div 2) zs

Simple properties:
Tehop d zs <5 - |zs| + 1
Tpartitions T s = |zs| + 1
k < |zs| — Tsiow_select k s < |zs|* + 3 - |zs| + 1

zs # [| — Tsiow_median s < |zs|* + 4 - |zs| + 2

B.3 2-3 Trees 349

B .3 2-3 Trees

Tioin_adj :: 'a tree23s = nat

Tioin_agj (TTs _ _ (T _)) =1

Tioin_agj (TTs _ _ (TTs _ _ (T _))) =1

Tjoin,adj (TTs (TTs __ ts)) = join_adj ts + 1

Tioin_ai :: 'a tree23s = nat

Tioin_an (T _) =1
Tioin_an ts = Tjoin_adj ts + Tjoin_an (Join_adj ts) + 1

Tieaves :: 'a list = nat

7—/e‘:-zves [] =1
Tieaves (_ # as) = Tieaves as + 1

Tiree23 of ist :: 'a list = nat

Tiree23_of_list a5 = Tieaves as + Tjoin_all (leaves as)

B.4 Arrays via Braun Trees

Thodes :: 'a tree list = 'a list = 'a tree list = nat

Tnodes (_ #1s) (_ # 2s) (_ # 7s) = Thodes Iszs rs + 1
(_

Trodes (_ # 1s) (_ # @) [| = Tnodes Is zs] + 1
Thodes [| (_ # zs) (_ # 75) = Thodes [] zs 7s + 1
Thodes [] (_ # 25) [] = Thodes [] s [] + 1

Tnodes _ [] =1

B.5 Leftist Heaps

Tmerge = ('a x nat) tree = ('‘a x nat) tree = nat

Tmerge <> _ = 1
Tmerge _ () =1
Tmerge ((I1, (a1, n1), r1) =: t1) ((l2, (a2, n2), T2) =: ta)

350 Appendix B Time Functions

== (if ai S QAo then Tmerge T1 t2 e|Se Tmerge t]_ 7‘2) ‘I‘ 1

Tinsert == 'a = (‘a x nat) tree = nat

Tinsert ¢ t = 7-merge (O (=, 1),) t

Tdel_min = ('a x nat) tree = nat

Tdel_min () =0
Tael_min (1, > T) = 7-merge Ir

Tmerge_ai = ('a x nat) tree list = nat

Tmerge,all [] =0
Tmerge_all [_] =0
Tmerge_ail ts = Tmerge_an (merge_adj ts) + Tmerge_adj ts

Tiheap_iist == 'a list = nat

Tineap_iist 8 = Tmerge_an (Map (Az. ((), (z, 1), ())) zs)

B.6 Priority Queues Based on Braun Trees

Tinsert :: 'a = 'a tree = nat

Tinsert _ () =1
T-insert a <_, J:, T> = (if a < T then 7-jnser[T else ﬂnsert a T) + 1

Tael_min :: 'a tree = nat

Tdel,min () 0
Tdel,min (() > _> =0
Tael_min (I, _» 7) = Taeriert 1 + (let (y, I') = del_left Lin Tsizt_gown 7y U')

b

Tael_left = 'a tree = nat

Tael_tert (), _, _) =1
Taertet (I, _» _) = Tqelser 1 + 1

Tsift_down :: 'a tree = 'a = 'a tree = nat

Tsitt_down () _ _ =1
Tsitt_down (O» _,) (=1

B.7 Binomial Priority Queues 351

Tsift_down <l1) T, Tl) a (l2; T2, T2>
=(ifa<z; ANa<zthen0
else if z; < zy then Tsift_down li a ry else Tsift_down Iy a 7’2) +1

B.7 Binomial Priority Queues
The functions Tjink, Trank, Troot and Tpmin are 0 everywhere and have been eliminated
from the following definitions.

Tins_tree = 'a tree = 'a tree list = nat

Tins_tree _ [] =1
Tins_tree t1 (tz # ts)
= (if rank t; < rank t, then 0 else Tiss tree (link t1 t3) ts) + 1

Tinsert 2 'a = 'a tree list = nat

Tinsert T ts = Tins_tree (NOde 0 z []) ts

Tmerge :: 'a tree list = 'a tree list = nat

Tmerge _ [] =1
7-merge [] _ = 1
7_merge (t1 # ts1 =: hy) (t2 # tso =: ho)
= (if rank t, < rank t; then Tperge tsi hy
else if rank t, < rank t; then Tpege by tso
else Tmerge tsy tso + Tins,tree (/Ink t1 tg) (merge ts1 th)) +1

Tget_min : 'a tree list = nat

Tget_m/'n [_] =1
Tget_min (_ # ts) = Tget_min ts + 1

Tget_min_rest = 'a tree list = nat

Tget_m/'n_rest [_] = 1l
Tget_min_rest (_ # ts) = Tget_min_rest ts + 1

Tdel_min :: 'a tree list = nat

Tdel_min ts
= 7—get_min_rest ts +

352 Appendix B Time Functions

(case get_min_rest ts of
(NOde o tS]_, t32) :> 7-jtrev tS]_ [] + Tmerge (ItfeV tS]_ []) th)

B.8 Queues

Thorm :: 'a list x 'a list = nat

Tnorm (fs, rs) = (if fs =[] then Ty, 7s [] else 0)

Teng it 'a = 'a list x 'a list = nat
Tenq a (fs, 7‘5) = Tnorm (fs, a # TS)

Taeq :: 'a list x 'a list = nat
Taeq (fs, rs) = (if fs =[] then 0 else Tporm (Ul fs, 7s))

B.9 Splay Trees

Tspiay :: 'a = 'a tree = nat
Tsplay _ <> =1
Tepay (AB, b, CD)
= (case cmp z b of
LT = case AB of
()= 0]
(A, a, B) = case cmp z a of
LT = if A = () then 0 else Tspay = A |
EQ= 0]
GT = if B = () then 0 else Tgpay = B |
EQ = 0|
GT = case CD of
()=0]
(C, ¢, D) = case cmp z c of
LT = if C = () then 0 else Tspzy = C |
EQ=0]
GT = if D = () then 0 else Tz z D) + 1

B.10 Skew Heaps 353

Tsplay_max :: 'a tree = nat

7-splay_max <> =1

7-splay_max <_1 _ =1

7—sp/ay_max <_1 _ (_a _ CD)>

= (if CD = () then 0 else Tz max CD + (case splay_max CD of

(_, _,_)Y=0))+1

Tinsert : 'a = 'a tree = nat

Tinsert ¢ t = (if t = () then 0 else Tspay t)

Tdelete :: 'a = 'a tree = nat
Tdelete Tt
= (if t = () then 0
else Tepay =t +
(case splay z t of
(I, a, _) =
if z # athen 0
else if | = () then 0
else Topiay_max | + (case splay_max lof (_, _,) = 0)))

B.10 skew Heaps

Tmerge :: 'a tree = 'a tree = nat

Tmerge <> _ = 1

7-merge _ () =1

Tmerge <ll, a, 7‘1) (12, a2, 7‘2>

= (lf a; < as then Tmerge <lg, as, 7‘2) r, else Tmerge <l1, ai, 7‘1) 7‘2) +1

Tinsert = 'a = 'a tree = int

Tinsert a t = Tmerge (), a, () ¢

Tael_min :: 'a tree = int

Toel_min t = (case tof () = 0| (t1, _, ta) = Tmerge t1 t2)

354 Appendix B Time Functions

B.11 Pairing Heaps
The functions Tjpkx and Tmerge are 0 everywhere and have been eliminated from the
following definitions.

Tinsert :- 'a = 'a hp option = nat
Tinsert _ None =0
Tinsert _ (Some) =0

Tdel_min :: 'a hp option = nat
Tael_min None = 0
Toel_min (Some (Hp _ hs)) = Tpass, ks + Tpass, (Passi hs)

Tpass, = 'a hp list = nat

Tpass; (_ # o # hs) = Tpass, hs + 1
Tpass, = 1

Tpass, = 'a hp list = nat

Tpass, [| = 1
Tpass, (_ # hs) = Tpass, hs + (case passz hs of None = 0| _ = 0) + 1

C-1

Notation

Symbol Table

The following table gives an overview of all the special symbols used in this book and

how to enter them into Isabelle. The second column shows the full internal name of
the symbol; the third column shows additional ASCII abbreviations. Either of these
can be used to input the character using the auto-completion popup.

|/\m|mDC3cmm<>JTUIlﬂm<>\H\II|>»

Code ASCII abbrev. Comment
\<lambda> % function abstraction
\<equiv> == meta equality
\<noteqg> ~=

\<And> 1! meta V-quantifier
\<forall> ! HOL V-quantifier
\<exists> ?

\<Longrightarrow>
\<longrightarrow>
\<longleftrightarrow>
\<Rightarrow>
\<leftarrow>
\<not>

\<and>

\<or>

\<in>

\<notin>

\<union>

\<inter>

\<Union>

\<Inter>
\<subseteqg>
\<subset>

\<le>

<-> or <-—>
=>

<—

/\ or &

\/ or |

Un
Int
Union or UN

Inter or INT

355

meta implication

HOL implication

arrow in function types

list comprehension syntax

union/intersection
of a set of sets

C.2

356 Appendix C Notation

Code ASCII abbrev. Comment
Z \<ge> >=
o \<circ> function composition
X \<times> <> cartesian prod., prod. type
| \<bar> | absolute value
| \<1floor> [
floor
J \<rfloor> .]
|— \<lceil> [. »
ceiling
—| \<rceil> .
> \<Sum> suM)
see Section C.3
I1 \<Prod> PROD

Note that the symbols “{” and “}” that are used in the notation for multisets in this
book do not exist in Isabelle; instead, the ASCII notation {# and #} is used (cf.
Section C.3).

Subscripts and Superscripts
In addition to this, subscripts and superscripts with a single symbol can be rendered
using two special symbols, \<*sub> and \<*sup>. The term zq for instance can be
input as x\<"*sub>0.

Longer subscripts and superscripts can be written using the symbols \<*bsub>...
\<*esub> and \<"bsup>...\<*esup>, but this is only rendered in the somewhat
visually displeasing form « ..., and »...x by Isabelle/jEdit.

C3

C.3 Syntactic Sugar 357

Syntactic Sugar

The following table lists relevant syntactic sugar that is used in the book or its
supplementary material. In some cases, the book notation deviates slightly from the
Isabelle notation for better readability.

The last column gives the formal meaning of the notation (i.e. what it expands to).
In most cases, this is not important for the user to know, but it can occasionally be
useful to find relevant lemmas, or to understand that e.g. if one encounters the term
sum f A, this is just the n-contracted form of Y z€A. fz.

The variables in the table follow the following convention:
e z and y are of arbitrary type
e m and n are natural numbers
e P and @ are Boolean values or predicates
e zs is a list
e Aisaset

o M is a multiset

Book notation Isabelle notation Internal form

Arithmetic (for numeric types)

Ty T kY times z y

z /vy or § z /vy divide z y (for type real)
z div y z div y divide z y (for type nat or int)
|z| |z| abs z

lz] |z] floor z

[z] [z] ceiling

z" T n power z n

358 Appendix C Notation

Book notation Isabelle notation Internal form
Lists
|zs| length zs
i I Nil
T # s T # s Cons z zs
[z, Y] [z, Y] T H#y#
[m..<n] [m..<n] upt mn
zs!n zs!n nthzs n
zs[n = y] zs[n = y| list_update zs n y
Sets
{ {} empty
{z, vy} {z, v} insert = (insert y {})
z €A z €A member z A
z ¢ A z ¢ A -(z € A)
AUB AUB union A B
ANB AnNB inter A B
ACB ACB subset_eq A B
ACB ACB subset A B
f A fA image f A
{z | Pz} {z. Pz} Collect P
{z € A| Pz} {z€A. Pz} {z. Pz Nz € A}
{fzyl| Pzy} {fzylzy. Pzy} {z.3zy.z=fzy AN Pzy}
Uses 2 UzeA fa UG * 4)
VzeA Pz VzeA. Pz Ball A P

JdzcA. Pz Jdz€A. Pz Bex A P

Book notation

Isabelle notation

C.3 Syntactic Sugar 359

Internal form

Multisets
| M| size M
{} {#} 0 :: 'a multiset
{z, v} {#z, y#} add_mset = (add_mset y {#})
T, M T EH# M T € set_mset M
T ¢, M z ¢# M ~(z €4 M)
{z e, M| Pz} {# zc# M. Pz #} filter_mset P M
{fz|ze, M} {# fz. z €# M #} image_mset f M
Vze,M. Pz Vze#M. Pz Vzeset_mset M. P x
Jdze,M. Pz dze#M. Pz dzeset_mset M. Pz
MC, M M C#H# M’ subseteq_mset M M'
Sums
A A sum (Az. z) A
Yeca f 2T Sz€eA fz sumf A
I fk Sk=i.j. fk sum f {i..j}
Y. M oM sum_mset M
ZIE#M fz Sze#M. fz sum_mset (image_mset f M)
Yore s f T Yzezs. fz sum_list (map f xs)
(analogous for products)
Intervals (for ordered types)
{z..} {z..} atlLeast =
{.y} {-v} atlLeast y
{z..y} {z..y} atLeastAtMost = y
{z..<y} {z..<y} atLeastLessThan = y
{z<..y} {z< .y} greaterThanAtMost z y
{z<..<y} {z<..<y} greaterThanLessThan = y

Bibliography

M. Abdulaziz, K. Mehlhorn, and T. Nipkow. 2019. Trustworthy graph algorithms (invited pa-
per). In The 44th International Symposium on Mathematical Foundations of Computer
Science (MFCS), volume 138, pp. 1:1-1:22. DOI: 10.4230/LIPIcs. MFCS.2019.1.

S. Adams. 1993. Efficient aets—A balancing act. J. Funct. Program., 3(4): 553-561.
https://doi.org/10.1017/50956796800000885.

G. M. Adel’son-Vel'skii and E. M. Landis. 1962. An algorithm for the organization of
information. Soviet Mathematics Doklady, 3: 1259-1263.

D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. 1999. Fast Estimation of Diameter and
Shortest Paths (Without Matrix Multiplication). SIAM Journal on Computing, 28(4):
1167-1181. DOI: 10.1137/S0097539796303421.

M. Akra and L. Bazzi. 1998. On the solution of linear recurrence equations. Computa-
tional Optimization and Applications, 10(2): 195-210. https://doi.org/10.1023/A:
1018373005182.

S. Aluru. 2017. Quadtrees and octrees. In D. P. Mehta and S. Sahni, eds., Handbook of
Data Structures and Applications. Chapman and Hall/CRC, 2nd. https://doi.org/
10.1201/9781315119335.

A. Appel, 2011. Efficient verified red-black trees. https://www.cs.princeton.edu/
~appel/papers/redblack.pdf.

A. W. Appel and X. Leroy. 2023. Efficient extensional binary tries. J. Autom. Reason.,
67(1): 8. https://doi.org/10.1007/s10817-022-09655-x.

C. Ballarin. Tutorial to Locales and Locale Interpretation. https://isabelle.in.tum.
de/doc/locales.pdf.

R. Bayer. 1972. Symmetric binary B-trees: Data structure and maintenance algorithms. Acta
Informatica, 1: 290-306. DOI: https://doi.org/10.1007/BF00289509.

J. L. Bentley. 1975. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9): 509517. https://doi.org/10.1145/361002.361007.

J. L. Bentley and R. Sedgewick. 1997. Fast algorithms for sorting and searching strings.
In M. E. Saks, ed., Symposium on Discrete Algorithms, pp. 360-369. ACM/SIAM.
https://dl.acm.org/doi/10.5555/314161.314321.

S. Berghofer and T'. Nipkow. 2002. Executing Higher Order Logic. In Types for Proofs and
Programs, pp. 24-40. Berlin, Heidelberg. DOI: 10.1007/3-540-45842-5 2.

S. Berghofer and M. Wenzel. 1999. Inductive datatypes in HOL - lessons learned in
formal-logic engineering. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin-Mohring,
and L. Théry, eds., Theorem Proving in Higher Order Logics, TPHOLs’99, volume 1690
of LNCS, pp. 19-36. Springer. https://doi.org/10.1007/3-540-48256-3_3.

361

https://doi.org/10.1017/S0956796800000885
https://doi.org/10.1023/A:1018373005182
https://doi.org/10.1023/A:1018373005182
https://doi.org/10.1201/9781315119335
https://doi.org/10.1201/9781315119335
https://www.cs.princeton.edu/~appel/papers/redblack.pdf
https://www.cs.princeton.edu/~appel/papers/redblack.pdf
https://doi.org/10.1007/s10817-022-09655-x
https://isabelle.in.tum.de/doc/locales.pdf
https://isabelle.in.tum.de/doc/locales.pdf
https://doi.org/10.1145/361002.361007
https://dl.acm.org/doi/10.5555/314161.314321
https://doi.org/10.1007/3-540-48256-3_3

362 BIBLIOGRAPHY

R. S. Bird and J. Hughes. 1987. The alpha-beta algorithm: An exercise in program
transformation. Inf. Process. Lett., 24(1): 53-57. https://doi.org/10.1016/
0020-0190(87)90198-0.

J. C. Blanchette. 2009. Proof pearl: Mechanizing the textbook proof of Huffman'’s algorithm
in Isabelle/HOL. J. Autom. Reason., 43(1): 1-18. https://doi.org/10.1007/
s10817-009-9116-y.

G. E. Blelloch, D. Ferizovic, and Y. Sun. 2022. Joinable parallel balanced binary trees. ACM
Trans. Parallel Comput., 9(2): 7:1-7:41. https://doi.org/10.1145/3512769.

M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. 1973. Time bounds
for selection. J. Comput. Syst. Sci, 7(4): 448-461. https://doi.org/10.1016/
S50022-0000(73)80033-9.

F. W. Burton. 1982. An efficient functional implementation of FIFO queues. Inf. Process.
Lett., 14(5): 205-206. https://doi.org/10.1016/0020-0190(82)90015~-1.

S. Cho and S. Sahni. 1998. Weight-biased leftist trees and modified skip lists. ACM J. Ezp.
Algorithmics, 3: 2. https://doi.org/10.1145/297096.297111.

T.-R. Chuang and B. Goldberg. 1993. Real-time deques, multihead Turing machines, and
purely functional programming. In Functional programming languages and computer
architecture - FPCA ’93, pp. 289-298. ACM. https://doi.org/10.1145/165180.
165225.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to Algorithms,
3rd Edition. MIT Press.

C. A. Crane. 1972. Linear Lists and Priority Queues as Balanced Binary Trees. PhD
thesis, Stanford University. STAN-CS-72-259.

K. Culik II and D. Wood. 1982. A note on some tree similarity measures. Inf. Process.
Lett., 15(1): 39-42. https://doi.org/10.1016/0020-0190(82) 90083-7.

R. De La Briandais. 1959. File searching using variable length keys. In Western Joint
Computer Conference, IRE-AIEE-ACM '59 (Western), pp. 295-298. ACM. http://
doi.acm.org/10.1145/1457838.1457895.

M. Eberl. 2017a. The number of comparisons in quicksort. Archive of Formal Proofs. http:
//isa-afp.org/entries/Quick_Sort_Cost.html, Formal proof development.

M. Eberl. 2017b. Proving divide and conquer complexities in Isabelle/HOL. J. Autom.
Reason., 58(4): 483-508. https://doi.org/10.1007/s10817-016-9378-0.

M. Eberl, M. W. Haslbeck, and T. Nipkow. 2018. Verified analysis of random binary tree
structures. In J. Avigad and A. Mahboubi, eds., Interactive Theorem Proving (ITP
2018), volume 10895 of LNCS, pp. 196-214. Springer. https://doi.org/10.1007/
978-3-319-94821-8_12.

J. Fillidtre and P. Letouzey. 2004. Functors for proofs and programs. In D. A. Schmidt, ed.,
Programmang Languages and Systems, ESOP 2004, volume 2986 of LNC'S, pp. 370-384.
Springer. https://doi.org/10.1007/978-3-540-24725-8_26.

J. P. Fishburn. 1983. Another optimization of alpha-beta search. SIGART Newsl., 84: 37-38.
https://doi.org/10.1145/1056623.1056628.

https://doi.org/10.1016/0020-0190(87)90198-0
https://doi.org/10.1016/0020-0190(87)90198-0
https://doi.org/10.1007/s10817-009-9116-y
https://doi.org/10.1007/s10817-009-9116-y
https://doi.org/10.1145/3512769
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/0020-0190(82)90015-1
https://doi.org/10.1145/297096.297111
https://doi.org/10.1145/165180.165225
https://doi.org/10.1145/165180.165225
https://doi.org/10.1016/0020-0190(82)90083-7
http://doi.acm.org/10.1145/1457838.1457895
http://doi.acm.org/10.1145/1457838.1457895
http://isa-afp.org/entries/Quick_Sort_Cost.html
http://isa-afp.org/entries/Quick_Sort_Cost.html
https://doi.org/10.1007/s10817-016-9378-0
https://doi.org/10.1007/978-3-319-94821-8_12
https://doi.org/10.1007/978-3-319-94821-8_12
https://doi.org/10.1007/978-3-540-24725-8_26
https://doi.org/10.1145/1056623.1056628

BIBLIOGRAPHY 363

E. Fredkin. 1960. Trie memory. Commun. ACM, 3(9): 490—499. https://doi.org/10.
1145/367390.367400.

M. L. Fredman, R. Sedgewick, D. Sleator, and R. Tarjan. 1986. The pairing heap: A new
form of self-adjusting heap. Algorithmica, 1(1): 111-129. https://doi.org/10.1007/
BF01840439.

J. H. Friedman, J. L. Bentley, and R. A. Finkel. 1977. An algorithm for finding best
matches in logarithmic expected time. ACM Trans. Math. Softw., 3(3): 209226. https:
//doi.org/10.1145/355744.355745.

K. Germane and M. Might. 2014. Deletion: The curse of the red-black tree. J. Funct.
Program., 24(4): 423-433. https://doi.org/10.1017/50956796814000227.

M. L. Ginsberg and A. Jaffray. 2002. Alpha-beta pruning under partial orders. In R. J.
Nowakowski, ed., More Games of No Chance, volume 42 of MSRI Publications, pp.
37-48. http://library.msri.org/books/Book42/files/ginsberg.pdf.

D. Greenaway, J. Andronick, and G. Klein. 2012. Bridging the Gap: Automatic Verified
Abstraction of C. In Interactive Theorem Proving, pp. 99-115. Berlin, Heidelberg. DOI:
10.1007/978-3-642-32347-8 8.

L. J. Guibas and R. Sedgewick. 1978. A dichromatic framework for balanced trees.
In Symposium on Foundations of Computer Science (FOCS), pp. 8-21. https:
//doi.org/10.1109/SFCS.1978.3.

F. Haftmann. a. Haskell-style type classes with Isabelle/Isar. http://isabelle.in.
tum.de/doc/classes.pdf.

F. Haftmann. b. Code generation from Isabelle/HOL theories. http://isabelle.in.
tum.de/doc/codegen.pdf.

F. Haftmann and T. Nipkow. 2010. Code generation via higher-order rewrite systems.
In M. Blume, N. Kobayashi, and G. Vidal, eds., Functional and Logic Programmaing
(FLOPS 2010), volume 6009 of LNCS, pp. 103-117. Springer. https://doi.org/10.
1007/978-3-642-12251-4_09.

Haskell. Haskell website. https://www.haskell.org.

R. Hinze. 2018. On constructing 2-3 trees. J. Funct. Program., 28: e€l9. https:
//doi.org/10.1017/50956796818000187.

C. A. R. Hoare. 1961. Algorithm 65: Find. Commun. ACM, 4(7): 321-322. https:
//doi.org/10.1145/366622.366647.

C. M. Hoffmann and M. J. O’Donnell. 1982. Programming with equations. ACM Trans.
Program. Lang. Syst., 4(1): 83-112. https://doi.org/10.1145/357153.357158.

R. Hood. 1982. The Efficient Implementation of Very-high-level Programmang Language
Constructs. PhD thesis, Department of Computer Science, Cornell University. https:
//hdl.handle.net/1813/6343.

R. Hood and R. Melville. 1981. Real-time queue operation in pure LISP. Inf. Process. Lett.,
13@)15}54.https://doi.org/lO.1016/0020—0190(81)90030—2

R. R. Hoogerwoord. 1992. A logarithmic implementation of flexible arrays. In R. Bird,
C. Morgan, and J. Woodcock, eds., Mathematics of Program Construction, volume 669

https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/367390.367400
https://doi.org/10.1007/BF01840439
https://doi.org/10.1007/BF01840439
https://doi.org/10.1145/355744.355745
https://doi.org/10.1145/355744.355745
https://doi.org/10.1017/S0956796814000227
http://library.msri.org/books/Book42/files/ginsberg.pdf
https://doi.org/10.1109/SFCS.1978.3
https://doi.org/10.1109/SFCS.1978.3
http://isabelle.in.tum.de/doc/classes.pdf
http://isabelle.in.tum.de/doc/classes.pdf
http://isabelle.in.tum.de/doc/codegen.pdf
http://isabelle.in.tum.de/doc/codegen.pdf
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://www.haskell.org
https://doi.org/10.1017/S0956796818000187
https://doi.org/10.1017/S0956796818000187
https://doi.org/10.1145/366622.366647
https://doi.org/10.1145/366622.366647
https://doi.org/10.1145/357153.357158
https://hdl.handle.net/1813/6343
https://hdl.handle.net/1813/6343
https://doi.org/10.1016/0020-0190(81)90030-2

364 BIBLIOGRAPHY

of LNCS, pp. 191-207. Springer. https://doi.org/10.1007/3-540-56625-2_14.

J. E. Hopcroft and R. M. Karp. 1973. An n5/2 Algorithm for Maximum Matchings in
Bipartite Graphs. STAM J. Comput., 2(4): 225-231. DOI: 10.1137/0202019.

B. Huffman and O. Kuncar. 2013. Lifting and Transfer: A Modular Design for Quotients in
Isabelle/HOL. In Certified Programs and Proofs - Third International Conference, CPP
2013, Melbourne, VIC, Australia, December 11-13, 2013, Proceedings, volume 8307, pp.
131-146. DOI: 10.1007/978-3-319-03545-1 9.

D. A. Huffman. 1952. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9): 1098-1101. https://doi.org/10.1109/JRPROC.
1952.273898.

J. Hughes. 1989. Why Functional Programming Matters. The Computer Journal, 32(2):
98-107. https://doi.org/10.1093/comjnl/32.2.98.

J. Tacono. 2000. Improved upper bounds for pairing heaps. In M. M. Halldérsson,
ed., Algorithm Theory - SWAT 2000, volume 1851 of LNCS, pp. 32—-45. Springer.
https://doi.org/10.1007/3-540-44985-X_5.

J. Jacono and M. V. Yagnatinsky. 2016. A linear potential function for pairing heaps. In
T. H. Chan, M. Li, and L. Wang, eds., Combinatorial Optimization and Applications,
COCOA 2016, volume 10043 of LNCS, pp. 489-504. Springer. https://doi.org/10.
1007/978-3-319-48749-6_36.

C. B. Jones. 1990. Systematic Software Development using VDM, 2nd. Prentice Hall
International.

S. Kahrs. 2001. Red black trees with types. J. Funct. Program., 11(4): 425-432.
https://doi.org/10.1017/S0956796801004026.

A. Kaldewaij and B. Schoenmakers. 1991. The derivation of a tighter bound for top-
down skew heaps. Inf. Process. Lett., 37: 265-271. https://doi.org/10.1016/
0020-0190(91)90218-7.

Kanellakis. ACM Paris Kanellakis Theory and Practice Award. https://awards.acm.
org/kanellakis.

R. M. Karp. 1994. Probabilistic recurrence relations. J. ACM, 41(6): 1136-1150. https:
//doi.org/10.1145/195613.195632.

D. J. King. 1994. Functional binomial queues. In K. Hammond, D. N. Turner, and P. M.
Sansom, eds., Glasgow Workshop on Functional Programming, Workshops in Computing,
pp. 141-150. Springer. https://doi.org/10.1007/978-1-4471-3573-9_10.

D. E. Knuth. 1971. Optimum binary search trees. Acta Informatica, 1: 14-25. https:
//doi.org/10.1007/BF00264289.

D. E. Knuth. 1982. Huffman’s algorithm via algebra. J. Comb. Theory, Ser. A, 32(2):
216-224. https://doi.org/10.1016/0097-3165(82)90021-8.

D. E. Knuth. 1997. The Art of Computer Programmaing, vol. 1: Fundamental Algorithms,
3rd. Addison—Wesley.

D. E. Knuth and R. W. Moore. 1975. An analysis of alpha-beta pruning. Artif. Intell., 6(4):
293-326. https://doi.org/10.1016/0004-3702(75)90019-3.

https://doi.org/10.1007/3-540-56625-2_14
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1093/comjnl/32.2.98
https://doi.org/10.1007/3-540-44985-X_5
https://doi.org/10.1007/978-3-319-48749-6_36
https://doi.org/10.1007/978-3-319-48749-6_36
https://doi.org/10.1017/S0956796801004026
https://doi.org/10.1016/0020-0190(91)90218-7
https://doi.org/10.1016/0020-0190(91)90218-7
https://awards.acm.org/kanellakis
https://awards.acm.org/kanellakis
https://doi.org/10.1145/195613.195632
https://doi.org/10.1145/195613.195632
https://doi.org/10.1007/978-1-4471-3573-9_10
https://doi.org/10.1007/BF00264289
https://doi.org/10.1007/BF00264289
https://doi.org/10.1016/0097-3165(82)90021-8
https://doi.org/10.1016/0004-3702(75)90019-3

BIBLIOGRAPHY 365

D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt. 1977. Fast pattern matching in strings.
SIAM Journal on Computing, 6(2): 323-350.

A. Krauss. Defining Recursive Functions in Isabelle/HOL. http://isabelle.in.tum.
de/doc/functions.pdf.

A. Krauss. 2006. Partial recursive functions in higher-order logic. In U. Furbach and
N. Shankar, eds., Automated Reasoning,[JCAR 2006, volume 4130 of LNCS, pp. 589-603.
Springer. https://doi.org/10.1007/11814771_48.

P. Lammich. November 2009. Collections framework. Archive of Formal Proofs. https:
//isa-afp.org/entries/Collections.html, Formal proof development.

P. Lammich. 2019. Refinement to Imperative HOL. Journal of Automated Reasoning, 62(4):
481-503. DOI: 10.1007/s10817-017-9437-1.

P. Lammich and T. Nipkow. 2019. Proof Pearl: Purely Functional, Simple and Efficient
Priority Search Trees and Applications to Prim and Dijkstra. In J. Harrison, J. O’Leary,
and A. Tolmach, eds., Interactive Theorem Proving (ITP 2019), volume 141 of Letbniz
International Proceedings in Informatics (LIPIcs), pp. 23:1-23:18. Schloss Dagstuhl-
Leibniz-Zentrum fiir Informatik. https://doi.org/10.4230/LIPIcs.ITP.2019.23.

P. Lammich and S. R. Sefidgar. 2019. Formalizing Network Flow Algorithms: A Refinement
Approach in Isabelle/HOL. J. Autom. Reason., 62(2): 261-280. DOI: 10.1007/s10817-
017-9442-4.

P. Lammich and T. Tuerk. 2012. Applying Data Refinement for Monadic Programs to
Hopcroft’s Algorithm. In Interactive Theorem Proving, pp. 166-182. Berlin, Heidelberg.
DOI: 10.1007/978-3-642-32347-8 12.

D. H. Larkin, S. Sen, and R. E. Tarjan. 2014. A back-to-basics empirical study of priority
queues. In C. C. McGeoch and U. Meyer, eds., 2014 Proceedings of the Meeting on
Algorithm Engineering and Ezxzperiments, ALENEX 2014, pp. 61-72. SIAM. https:
//doi.org/10.1137/1.9781611973198.7.

T. Leighton, 1996. Notes on better master theorems for divide-and-conquer recurrences. Lec-
ture notes, MIT. https://courses.csail.mit.edu/6.046/spring04/handouts/
akrabazzi.pdf.

J. Li, B. Zanuttini, T. Cazenave, and V. Ventos. 2022. Generalisation of alpha-beta search for
AND-OR graphs with partially ordered values. In L. D. Raedt, ed., International Joint
Conference on Artificial Intelligence, IJCAI 2022, pp. 4769-4775. ijcai.org. https:
//doi.org/10.24963/1jcai.2022/661.

T. A. Marsland. 1986. A review of game-tree pruning. J. Int. Comput. Games Assoc., 9(1):
3-19. https://doi.org/10.3233/ICG-1986-9102.

D. Meagher. 1982. Geometric modeling using octree encoding. Comput. Graph. Image
Process., 19(2): 129-147. https://doi.org/10.1016/0146-664X(82)90104-6.

R. Meis, F. Nielsen, and P. Lammich. 2010. Binomial heaps and skew binomial heaps. Archive
of Formal Proofs. http://isa-afp.org/entries/Binomial-Heaps.html, Formal
proof development.

G. C. Moisil. 1936. Recherches sur l'algébre de la logique. Annales scientifiques de
I’Unwversité de Jassy, 122: 1118.

http://isabelle.in.tum.de/doc/functions.pdf
http://isabelle.in.tum.de/doc/functions.pdf
https://doi.org/10.1007/11814771_48
https://isa-afp.org/entries/Collections.html
https://isa-afp.org/entries/Collections.html
https://doi.org/10.4230/LIPIcs.ITP.2019.23
https://doi.org/10.1137/1.9781611973198.7
https://doi.org/10.1137/1.9781611973198.7
https://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf
https://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf
https://doi.org/10.24963/ijcai.2022/661
https://doi.org/10.24963/ijcai.2022/661
https://doi.org/10.3233/ICG-1986-9102
https://doi.org/10.1016/0146-664X(82)90104-6
http://isa-afp.org/entries/Binomial-Heaps.html

366 BIBLIOGRAPHY

D. R. Morrison. 1968. PATRICIA - practical algorithm to retrieve information coded
in alphanumeric. J. ACM, 15(4): 514-534. https://doi.org/10.1145/321479.
321481.

P. Miiller. 2018. The binomial heap verification challenge in Viper. In P. Miiller and
I. Schaefer, eds., Principled Software Development, pp. 203-219. Springer. https:
//doi.org/10.1007/978-3-319-98047-8_13.

D. R. Musser. 1997. Introspective sorting and selection algorithms. Software:
Practice and FEzperience, 27(8): 983-993. https://doi.org/10.1002/ (SICI)
1097-024X(199708)27%3A8%3C983%3A%3AAID-SPE117%3E3.0.C0%3B2-%23.

T. Nipkow. Programming and Proving in Isabelle/HOL. http://isabelle.in.tum.
de/doc/prog-prove.pdf.

T. Nipkow. 2015. Amortized complexity verified. In C. Urban and X. Zhang, eds.,
Interactive Theorem Proving (ITP 2015), volume 9236 of LNCS, pp. 310-324. Springer.
https://doi.org/10.1007/978-3-319-22102-1_21.

T. Nipkow. 2016. Automatic functional correctness proofs for functional search trees. In
J. Blanchette and S. Merz, eds., Interactive Theorem Proving (ITP 2016), volume 9807
of LNCS, pp. 307-322. Springer. https://doi.org/10.1007/978-3-319-43144-4__
19.

T. Nipkow and H. Brinkop. 2019. Amortized complexity verified. J. Autom. Reason., 62(3):
367-391. https://doi.org/10.1007/s10817-018-9459-3.

T. Nipkow and G. Klein. 2014. Concrete Semantics with Isabelle/HOL. Springer.
http://concrete-semantics.org.

T. Nipkow and T. Sewell. 2020. Proof pearl: Braun trees. In J. Blanchette and C. Hritcu,
eds., Certified Programs and Proofs, CPP 2020, pp. 18-31. ACM. https://doi.org/
10.1145/3372885.3373834.

T. Nipkow and D. Somogyi. 2018. Optimal binary search trees. Archive of Formal Proofs.
https://isa-afp.org/entries/Optimal_BST.html, Formal proof development.
T. Nipkow, L. Paulson, and M. Wenzel. 2002. Isabelle/HOL — A Proof Assistant for

Higher-Order Logic, volume 2283 of LNCS. Springer.

L. Noschinski. 2015. A Graph Library for Isabelle. Math. Comput. Sci., 9(1): 23-39. DOI:

10.1007/S11786-014-0183-Z.

OCaml. OCaml website. https://ocaml.org.

C. Okasaki. 1997. Three algorithms on Braun trees. J. Funct. Program., 7(6): 661-666.
https://doi.org/10.1017/s0956796897002876.

C. Okasaki. 1998. Purely Functional Data Structures. Cambridge University Press.

L. C. Paulson. 1989. The foundation of a generic theorem prover. J. Autom. Reason., 5:
363-397.

L. C. Paulson. 1996. ML for the Working Programmer, 2nd. Cambridge University Press.

J. Pearl. 1980. Asymptotic properties of minimax trees and game-searching procedures.
Artif. Intell., 14(2): 113-138. https://doi.org/10.1016/0004-3702 (80) 90037-5.

https://doi.org/10.1145/321479.321481
https://doi.org/10.1145/321479.321481
https://doi.org/10.1007/978-3-319-98047-8_13
https://doi.org/10.1007/978-3-319-98047-8_13
https://doi.org/10.1002/(SICI)1097-024X(199708)27%3A8%3C983%3A%3AAID-SPE117%3E3.0.CO%3B2-%23
https://doi.org/10.1002/(SICI)1097-024X(199708)27%3A8%3C983%3A%3AAID-SPE117%3E3.0.CO%3B2-%23
http://isabelle.in.tum.de/doc/prog-prove.pdf
http://isabelle.in.tum.de/doc/prog-prove.pdf
https://doi.org/10.1007/978-3-319-22102-1_21
https://doi.org/10.1007/978-3-319-43144-4_19
https://doi.org/10.1007/978-3-319-43144-4_19
https://doi.org/10.1007/s10817-018-9459-3
http://concrete-semantics.org
https://doi.org/10.1145/3372885.3373834
https://doi.org/10.1145/3372885.3373834
https://isa-afp.org/entries/Optimal_BST.html
https://ocaml.org
https://doi.org/10.1017/s0956796897002876
https://doi.org/10.1016/0004-3702(80)90037-5

BIBLIOGRAPHY 367

J. Pearl. 1982. The solution for the branching factor of the alpha-beta pruning algorithm and
its optimality. Commun. ACM, 25(8): 559-564. https://doi.org/10.1145/358589.
358616.

S. Pettie. 2005. Towards a final analysis of pairing heaps. In Symposium on Foundations of
Computer Science (FOCS), pp. 174-183. IEEE Computer Society. https://doi.org/
10.1109/SFCS.2005.75.

F. Pottier, A. Guéneau, J.-H. Jourdan, and G. Mével. jan 2024. Thunks and debits in
separation logic with time credits. Proc. ACM Program. Lang., 8(POPL). https:
//doi.org/10.1145/3632892.

L. Pournin. 2014. The diameter of associahedra. Advances in Mathemat-
ics, 259: 13-42. https://www.sciencedirect.com/science/article/pii/
50001870814000978.

M. Rau. May 2019. Multidimensional binary search trees. Archive of Formal Proofs.
https://isa-afp.org/entries/KD_Tree.html, Formal proof development.

C. Reade. 1992. Balanced trees with removals: An exercise in rewriting and proof. Scz.

Comput. Program., 18(2): 181-204. https://doi.org/10.1016/0167-6423(92)
90009-2.

M. Rem and W. Braun, 1983. A logarithmic implementation of flexible arrays. Memorandum
MR83/4. Eindhoven University of Techology.

H. Samet. 1984. The quadtree and related hierarchical data structures. ACM Comput.
Surv., 16(2): 187-260. https://doi.org/10.1145/356924.356930.

H. Samet. 1990. The Destgn and Analysis of Spatial Data Structures. Addison-Wesley.

D. Sands. 1990. Calculr for time analysis of functional programs. PhD thesis, Imperial
College London. http://hdl.handle.net/10044/1/46536.

D. Sands. 1995. A naive time analysis and its theory of cost equivalence. J. Log. Comput.,
5(4): 495-541. https://doi.org/10.1093/logcom/5.4.495.

B. Schoenmakers. 1993. A systematic analysis of splaying. Inf. Process. Lett., 45: 41-50.
https://doi.org/10.1016/0020-0190(93)90249-9.

D. D. Sleator and R. E. Tarjan. 1985. Self-adjusting binary search trees. J. ACM, 32(3):
652—686. https://doi.org/10.1145/3828.3835.

D. D. Sleator and R. E. Tarjan. 1986. Self-adjusting heaps. STAM J. Comput., 15(1): 52—69.
https://doi.org/10.1137/0215004.

D. D. Sleator, R. E. Tarjan, and W. P. Thurston. 1986. Rotation distance, triangulations,
and hyperbolic geometry. In J. Hartmanis, ed., Symposium on Theory of Computing,
1986, pp. 122-135. ACM. https://doi.org/10.1145/12130.12143.

R. E. Tarjan. 1985. Amortized computational complexity. SIAM J. Alg. Disc. Meth., 6(2):
306-318. https://doi.org/10.1137/0606031.

L. Théry. 2004. Formalising Huffman’s algorithm. Technical Report TRCS 034, Depart-
ment of Informatics, University of L’Aquila. https://hal.science/hal-02149909/
document.

https://doi.org/10.1145/358589.358616
https://doi.org/10.1145/358589.358616
https://doi.org/10.1109/SFCS.2005.75
https://doi.org/10.1109/SFCS.2005.75
https://doi.org/10.1145/3632892
https://doi.org/10.1145/3632892
https://www.sciencedirect.com/science/article/pii/S0001870814000978
https://www.sciencedirect.com/science/article/pii/S0001870814000978
https://isa-afp.org/entries/KD_Tree.html
https://doi.org/10.1016/0167-6423(92)90009-Z
https://doi.org/10.1016/0167-6423(92)90009-Z
https://doi.org/10.1145/356924.356930
http://hdl.handle.net/10044/1/46536
https://doi.org/10.1093/logcom/5.4.495
https://doi.org/10.1016/0020-0190(93)90249-9
https://doi.org/10.1145/3828.3835
https://doi.org/10.1137/0215004
https://doi.org/10.1145/12130.12143
https://doi.org/10.1137/0606031
https://hal.science/hal-02149909/document
https://hal.science/hal-02149909/document

368 BIBLIOGRAPHY

B. Té6th and T. Nipkow. 2023. Real-time double-ended queue verified (proof pearl).
In A. Naumowicz and R. Thiemann, eds., Interactive Theorem Prouving, ITP 2023,
volume 268 of LIPIcs, pp. 29:1-29:18. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik.
https://doi.org/10.4230/LIPIcs.ITP.2023.29.

J. Vuillemin. 1978. A data structure for manipulating priority queues. Commun. ACM,
21(4): 309-315. https://doi.org/10.1145/359460.359478.

P. Wadler. 1989. Theorems for Free! In Proceedings of the Fourth International Confer-
ence on Functional Programming Languages and Computer Architecture, FPCA 1989,
London, UK, September 11-13, 1989, pp. 347-359. DOI: 10.1145/99370.99404.

M. Wenzel. 2002. Isabelle/Isar — A Versatile Environment for Human-Readable Formal
Proof Documents. PhD thesis, Institut fiir Informatik, Technische Universitdt Miinchen.
https://mediatum.ub.tum.de/?1d=601724.

J. Williams. 1964. Algorithm 232 — Heapsort. Communications of the ACM, 7(6): 347-348.
https://doi.org/10.1145/512274.512284.

S. Wimmer, S. Hu, and T. Nipkow. 2018a. Monadification, memoization and dynamic
programming. Archive of Formal Proofs. https://isa-afp.org/entries/Monad_
Memo_DP.html, Formal proof development.

S. Wimmer, S. Hu, and T. Nipkow. 2018b. Verified memoization and dynamic programming.
In J. Avigad and A. Mahboubi, eds., Interactive Theorem Proving (ITP 2018), volume
10895 of Lecture Notes in Computer Science, pp. 579-596. Springer. https://doi.
org/10.1007/978-3-319-94821-8_34.

N. Wirth. 1971. Program Development by Stepwise Refinement. Commun. ACM, 14(4):
221-227. DOI: 10.1145/362575.362577.

D. S. Wise. 1985. Representing matrices as quadtrees for parallel processors. Inf. Process.
Lett., 20(4): 195-199. https://doi.org/10.1016/0020-0190(85) 90049-3.

D. S. Wise. 1986. Parallel decomposition of matrix inversion using quadtrees. In Interna-
tional Conference on Parallel Processing, ICPP’86, pp. 92-99. IEEE Computer Society
Press.

D. S. Wise. 1987. Matrix algebra and applicative programming. In G. Kahn, ed., Functional
Programmang Languages and Computer Architecture, volume 274 of LNCS, pp. 134-153.
Springer. https://doi.org/10.1007/3-540-18317-5_09.

F. F. Yao. 1980. Efficient dynamic programming using quadrangle inequalities. In Symposium
on Theory of Computing, STOC, pp. 429-435. ACM. https://doi.org/10.1145/
800141.804691.

B. Zhan. 2018. Efficient verification of imperative programs using auto2. In D. Beyer and
M. Huisman, eds., Tools and Algorithms for the Construction and Analysis of Systems,
TACAS 2018, volume 10805 of LNCS, pp. 23-40. Springer. https://doi.org/10.
1007/978-3-319-89960-2_2.

https://doi.org/10.4230/LIPIcs.ITP.2023.29
https://doi.org/10.1145/359460.359478
https://mediatum.ub.tum.de/?id=601724
https://doi.org/10.1145/512274.512284
https://isa-afp.org/entries/Monad_Memo_DP.html
https://isa-afp.org/entries/Monad_Memo_DP.html
https://doi.org/10.1007/978-3-319-94821-8_34
https://doi.org/10.1007/978-3-319-94821-8_34
https://doi.org/10.1016/0020-0190(85)90049-3
https://doi.org/10.1007/3-540-18317-5_9
https://doi.org/10.1145/800141.804691
https://doi.org/10.1145/800141.804691
https://doi.org/10.1007/978-3-319-89960-2_2
https://doi.org/10.1007/978-3-319-89960-2_2

Authors

Mohammad Abdulaziz
Department of Informatics
King’s College London

Jasmin Blanchette
Institut fiir Informatik
Ludwig-Maximilians-Universitdt Miinchen

Manuel Eberl
Department of Computer Science
University of Innsbruck

Alejandro Gémez-Londoiio?
Department of Computer Science and Engineering
Chalmers University of Technology

Peter Lammich
Electrical Engineering, Mathematics and Computer Science
University of Twente

Tobias Nipkow
Department of Computer Science
Technical University of Munich

Lawrence C. Paulson
Computer Laboratory
University of Cambridge

Christian Sternagel®
Department of Computer Science
University of Innsbruck

Simon Wimmer!
Department of Computer Science
Technical University of Munich

Bohua Zhan'
Institute of Software
Chinese Academy of Sciences

1 Research conducted while at the given address

369

Index

=,2 ADT, 77
2 Akra—Bazzi Theorem, 41
[, 2 almost complete tree, 52
(#), 2 alpha-beta pruning, 319
=2 amortized analysis, 227
0,2 amortized running time, 228
(=_),3 array, 127, 294
=3 array, 128
{} 4 augmented tree, 56
(€,), 4 AVL tree, 105
|1, 4
Z#, 4 balance factor, 112
(), 47 balanced search trees, 85
(., .,)47 Bellman-Ford algorithm, 216
|_|, 48 BF'S, 284
|_|1, 48 BFS-tree, 281
—, 80 binary code, 305
(~_),80 binary search tree, 59
0q, 271 binary tree, 47
Oy, 271 binary trie, 151
(Ug), 273 binomial forest, 196
(Ng), 273 binomial heap, 196, 202
(—g), 273 binomial priority queue, 195, 196
(<xmlez*>), 278 binomial tree, 195
|_|, 343 black height, 96
(@), 343 bool, 2
(1), 344 bounded lattice, 334
[= _], 344 bounded linear order, 320
[.< _], 344 box, 172

braun, 129
abstract data type, 77 Braun tree, 128, 129
abstraction function, 78 breadth-first, 280
acomplete, 52 BST, 59

370

bst, 59
butlast, 344

child, 47

cmp, 60

coercion, 3

complete, 51

complete tree, 51
computation induction, 6
concat, 343

Cons, 2

De Morgan algebra, 338

De Morgan order, 331

del_min, 181, 191, 200

del _man, 179

delete, 61, 82, 89, 100, 109, 115, 150,

152, 247

delete, 77, 78, 81

deletion by joining, 62

deletion by replacing, 61

depth, 47

depth-first, 268

degq, 233

DF'S, 273

diff, 121

diff, 118

difference array, 294

directed graph, 267

distinct, 345

distributive lattice, 334

divide-and-conquer
recurrence, 10

dom, 211

double-ended queue, 244

drop, 344

dynamic programming, 205

dynamic table, 229

empty, 61, 150, 152, 181

INDEX 371

empty, 77, 78, 81, 179, 233
eng, 233

fail-hard, 326
fail-soft, 326
False, 2

Fibonacci tree, 111
filter, 343
filter_mset, 4

first, 233

fst, 2

game tree, 319
get_min, 181, 200
get__man, 179
graph, 267
graph-traversal, 268

h, 49

hd, 344

head, 2

heap, 180

heap, 180

height, 49
height-balanced tree, 111
Hood-Melville queue, 235
Huffman’s algorithm, 305
hypercube, 172
hyperrectangle, 172

IH, 5

image_mset, 4

inclusion, 3

induction, 5

Induction Hypothesis, 5

infimum, 334

inorder, 48

insert, 61, 87, 98, 107, 113, 150, 152, 181,
191, 198, 247

wnsert, 77, 78, 179

372 INDEX

insertion sort, 14

int, 3

inter, 121

inter, 118

interface of ADT, 77
interval tree, 71
invariant, 78

invariant preservation, 79
1s__empty, 233

isin, 61, 86, 97, 150, 152, 246
isin, 77, 78

itrev, 8

join, 124
join approach, 118

k-d region tree, see k-d tree
k-d tree, 172, 175
Knuth-Morris-Pratt algorithm, 293

lattice, 334

Leaf, 47

leftist heap, 183
leftist tree, 183

len, 128

length, 343

level, 47

lg, 3

linear order, 13
linking, 197

linorder, 13

list, 2, 233

list extensionality, 133
list-form, 68

locale, 78

lookup, 81

lookup, 81, 128

loop invariant, 276, 297

Map, 81

map, 343
map_of, 83
map_tree, 48
master theorem, 10, 35, 189
match, 294
matrix quadtree, 168
Max, 58
median, 35-41
of medians, 36-41
memoization, 206
merge, 184, 199
merge, 180
merge sort
bottom-up, 19
natural, 21
top-down, 17
mergeable priority queue, 179
mh, 49
Min, 179
min_height, 49
min_list, 345
Min_mset, 179
monadification, 214
move in game, 319
mset, 4
mset, 179
multiset, 3
multiset, 4

nat, 3

natural merge sort, 21
neighbourhood, 267
Nil, 2

Node, 47

None, 2

observer functions, 228
optimal binary search tree, 220
option, 2

pair, 2

pairing heap, 257, 259
Patricia trie, 154

pivot, 16, 34-38

pixels, 161

position in game, 319
position in tree, 69
potential function, 227
potential method, 227
preorder, 48

preservation of invariant, 79
priority queue, 179
Priority_ Queue, 179
Priority_ Queue_ Merge, 180

quadtree, see region quadtree

Queue, 233

queue, 233

quickselect, see selection, quickselect, 35
quicksort, 16, 34

real, 3

record, 238

recurrence relation, 10, 41
red-black tree, 95

region quadtree, 161
replicate, 344
resolution, 161

rev, 344

right-heavy, 254

root, 47

rose trees, 51

rotation, 67

rotation distance, 76
running time, 6

running time function, 6
runs, 21

selection, 31
in worst-case linear time, 38

INDEX 373

introselect, 44

specification, 31
Set, 78
Pair _Graph_Specs, 271
Set Choose, 270
set, 343
set (type), 2
set_mset, 4
set_tree, 47
size, 48
sizel, 48
skew heap, 253
snd, 2
Some, 2
sorted, 13, 64
sorted_wrt, 345
sorting, 13
specification of ADT, 77
spine, 47
splay tree, 245
split_min, 61, 73, 89, 100, 119
stability of sorting, 26
stable, 26
string search, 293
strong induction, 42
structural induction, 5
subtrees, 49
sum_list, 345
sum_mset, 4
supremum, 334

T,6

tail, 2

take, 343

ternary trie, 158

time function, see running time function
tl, 344

transposition table, 328

tree, 47

374 INDEX

2-3 tree, 85

triangle inequality, 281
trie, 149

True, 2

tuple, 2

type class, 13

type of interest, 77
type variable, 2

unbalanced, 59

union, 121

union, 118

uniqueness of selection, 31
uniqueness of sorting, 25
unat, 2

update, 82

update, 81, 128

value of game tree, 320

walk, 267
weakening, 295
weighted path length, 49, 221, 311

zig-zag, 245
zig-zig, 245

	Basics
	I Sorting and Selection
	Sorting
	Selection

	II Search Trees
	Binary Trees
	Binary Search Trees
	Abstract Data Types
	2-3 Trees
	Red-Black Trees
	AVL Trees
	Beyond Insert and Delete: , and -
	Arrays via Braun Trees
	Tries
	Region Quadtrees

	III Priority Queues
	Priority Queues
	Leftist Heaps
	Priority Queues via Braun Trees
	Binomial Priority Queues

	IV Advanced Design and Analysis Techniques
	Dynamic Programming
	Amortized Analysis
	Queues
	Splay Trees
	Skew Heaps
	Pairing Heaps

	V Selected Topics
	Graph Algorithms
	Knuth–Morris–Pratt String Search
	Huffman's Algorithm
	Alpha-Beta Pruning

	VI Appendix
	List Library
	Time Functions
	Notation
	Bibliography
	Authors
	Index

