
ISO/IEC 10514-1, the standard for Modula-2:Process AspectsC. PronkDelft University of TechnologyThe Netherlandsc.pronk@twi.tudelft.nl M. Sch�onhackerVienna University of TechnologyAustriaschoenhacker@eiunix.tuwien.ac.atJune 27, 19961 IntroductionOn June 1st, 1996, the long awaited standard for the programming language Modula-2 has been pub-lished as ISO/IEC 10514-1. In this article we will give some background on the process of standard-ization of the language and discuss some of the future activities of ISO/IEC JTC1/SC22/WG13, theworking group active at standardizing Modula-2. An accompanying article [9] will give an overviewof the most important clari�cations, changes and additions to the language.The language Modula-2 was originally de�ned in an ETH report [21]. Later de�nitions canbe found in the report sections of the various editions of `Programming in Modula-2' (`PIM'), themain book about the language that was written by Niklaus Wirth [22, 23, 24]. Unfortunately, thesede�nitions di�ered somewhat and were incomplete and/or ambiguous in some detailed areas. Anoverview of problems and di�erences has been given in [3]. As a result from these di�erencescompilers started to diverge, providing the impetus for standardization. One of the tasks of astandardization group is to identify these problems and try to produce a `better' de�nition.Early in the standardization process WG13 decided to use natural language (English) as well asa formal language (VDM-SL) to provide a precise de�nition of the language.In section 2 we will give a short overview of the standard and show how the use of VDM-SL hashelped us to give a much more precise meaning to the constructs in the language Modula-2.Because of the use of VDM-SL, checking the standard became a necessity. Section 3 will givesome details.Section 4 will give some details about existing ISO-compliant compilers.No doubt it will have been noticed by the reader that producing this standard has taken a longtime, if not a too long time. Section 5 will explain what we learned and show some of the di�cultiesencountered.Several additional extensions to the language have been proposed, and WG13 has turned someof them into `additional work items'. These will be described brie
y in section 6.Finally, section 7 will conclude this paper.

2 A quick look at the standard2.1 VDM-SLVDM-SL [6] is a model oriented speci�cation language based on denotational semantics [18, 19]. Itsdevelopment started at the Vienna Laboratories of IBM around 1970 as Vienna De�nition Language[8]. It was developed into META-IV by Bj�rner and Jones and used for the partial de�nition ofseveral programming languages [1]. The language was later extended by Jones to a more generalsoftware development method [6]. Currently VDM-SL is also subject to international standardizationunder ISO directives [11].Usually, a language de�nition is expressed using a syntax speci�cation notation (e.g. EBNF)and natural language to describe both the static semantics (normally checked at compile time)and the dynamic semantics (the `meaning' of the program, computed at run time). Such naturallanguage de�nitions are imprecise and ambiguous by their nature. Formal speci�cations can vastlyimprove the precision of a de�nition. Section 2.2 will give an example comparing a natural languagespeci�cation with a formal speci�cation written in the denotational speci�cation language VDM-SL.Fully introducing VDM-SL would not be appropriate for this paper. Therefore, we will only givea short description of the structure of such a speci�cation.The original Reports de�ne the concrete syntax of Modula-2 in a variant of EBNF, while theStandard uses a di�erent one [2]. As in compiler construction an abstract syntax is derived from theconcrete one. This abstract syntax is used as the basis for the other parts of the formal de�nition.The de�nition consists of two main parts: the de�nition of the static semantics, usually called Well-Formedness clauses (wf-predicates) and the de�nition of the dynamic semantics (Meaning functions(m-clauses)).In denotational semantics the meaning of a language construct is de�ned in terms of the meaningof its constituent parts. This process recurs to the lowest level where the meaning of a programis expressed in terms of mathematical entities like sets, maps and sequences. Section 2.2 gives thestatic semantics of the FOR statement (wf-for-statement), expressed in calls to functions checking(sub-)parts of that statement.2.2 An exampleAs an example of the precision one can achieve using a formal method we present an excerpt fromthe de�nition of the FOR statement as given by Wirth [23] and the way this has been handled inthe formal de�nition.The for statement indicates that a statement sequence is to be repeatedly executed whilea progression of values is to be assigned to a variable. This variable is called the controlvariable of the for statement. It cannot be a component of a structured variable, itcannot be imported, nor can it be a parameter. Its value should not be changed by thestatement sequence....The for statementFOR v := A TO B BY C DO SS ENDexpresses execution of the statement sequence SS with v successively assuming the valuesA, A+C, A+2C, ..., A+nC, where A+nC is the last term not exceeding B. v is called

the control variable, A the starting value, B the limit, and C the increment. A and Bmust be assignment compatible with v; C must be a constant of type INTEGER orCARDINAL. If no increment is speci�ed, it is assumed to be 1.It can be seen that this formal de�nition is (i) incomplete with respect to the type of the loopvariable and the allowed types of the initial and �nal expression (which are in fact called the startingvalue and the limit and could ambiguously be considered not to be expressions), (ii) does not statewhether it is possible to export a loop control variable, and (iii) unclear about the precise meaningof `its value should not be changed'.The way this has been made more precise using VDM-SL will be given here without muchexplanation. The reader is referred to books about VDM-SL [4, 6, 11].1.0 wf-for-statement : For-statement ! Environment ! B.1 wf-for-statement (For-statement (id ; initial ; �nal ; step; body))� 4.2 is-simple-identi�er (id)� ^.3 let type = t-entire-designator (Entire-designator (id))� in.4 is-ordinal-type (type)�^.5 wf-expression (initial)�^.6 wf-expression (�nal)�^.7 wf-expression (step)�^.8 is-assignment-compatible (type; t-expression (initial)�)�^.9 is-expression-compatible (host-type-of (type)�; t-expression (�nal)�)�^.10 is-constant-expression (step)�^.11 let stype = t-expression (step)� in.12 is-whole-number-type (stype)� ^.13 let by = evaluate-constant-expression (step)� in.14 wf-step-range (by) ^.15 wf-statement-sequence (body)�^.16 : is-threatened-in-statement-seq (id ; body)�annotations Check each of the components of the for statement. The check thatthe control variable is declared in a variable declaration part of the block that contains thefor statement is part of the consistency check for the procedure, function, or module thatcontains the for statement.end annotationsThe clause Its value should not be changed ... has been the subject of heated debates in WG13.The decision that came out of this discussion is that this test is now obligatory (note the call of thefunction :is-threatened-in-statement-seq(:::) which performs this check).The dynamic semantics (not given here) state that the value of the control variable shall beunde�ned after the FOR statement has been left; this even holds when the FOR statement is enclosedin a LOOP statement and the body of the FOR statement contains an EXIT statement which causesthe loop to be left prematurely.

3 TestingThis section describes two issues related to verifying the contents of the standard: checking thecorrectness of the formal de�nition and specifying so-called minimal requirements clauses.3.1 Testing the standardAs explained before, the standard contains a large amount of VDM-SL: approximately 200 type def-initions, 1800 function and operation de�nitions and some 20,000 lines of VDM-SL code. Obviously,like writing a program, writing such a formal de�nition is an error-prone process. Therefore thereis a strong need for mechanical checking.Concurrent with the development of the Modula-2 standard, the formal de�nition of the VDM-SLlanguage itself was also completed. To support the development of the VDM-SL, a front-end forVDM-SL was developed at Delft University of Technology. This front-end accepts a `program' inVDM-SL and performs lexical and static semantic analysis. The input expected for such a front-endis in the so-called ASCII syntax (Interchange Syntax) of VDM-SL.As may be seen from the example in section 2.2, a VDM-SL text may contain non-ASCIIcharacters. The usual way to compose such a text, and the way it has been done in the standard,is by using LaTEX [7] and the VDM-SL macros [5]. The �rst couple of lines from the example havebeen reproduced below in the LaTEX input format.\begin{vdm}\begin{fn}[e]{wf-for-statement}\signature{For-statement \To Environment \To \Bool}\parms*{(\reccons{For-statement}{id,initial,final,step,body})\rho}\fnapply{is-simple-identifier}{Id}\rho \And ... \\As can be deduced from the examples, neither the printed format nor the input text lend them-selves well as input to a tool doing a check of the VDM-SL code. The VDM-SL standard [20]contains a description of a third format expressly designed for the purpose of tool input: The In-terface Syntax (formerly called ASCII syntax). Some lines of the example are given in that formatbelow.functionswf_for_statement : For_statement -> Environment -> boolwf_for_statement (mk_For_statement (id,initial,final,step,body))(RHO) ==is_simple_identifier (id)(RHO) and ...To derive a text in the Interface Syntax it was decided to transform the DVI output of theLaTEXsystem into ASCII by processing it with a program called Dvi2Ascii, an adapted version ofthe dvitty program (see �gure 1). The pre and post processor in that �gure were needed becauseof some shortcomings of the Dvi2Ascii tool and because of some syntactic di�erences between theVDM-SL as used in the Modula-2 standard and standard VDM-SL. A full account of why this set-upwas chosen has been given in [12, 16, 17].All of the VDM-SL speci�cations in the Modula-2 standard have been tested for syntacticalaccuracy and semantic constraints. Thanks to the great dedication of the project editor and the useof the LaTEX macros only a modest number of errors was found.Unfortunately, lack of funding prohibited doing a complete type check and deriving a Modula-2interpreter from the formal de�nition.

Modula-2 interpreterVDM-SL front-endPostprocessorDvi2Ascii toolLaTEXPreprocessor??????-

Formal de�nition of Modula-2 in LaTEXModula-2 in LaTEXdvi �leASCII �leASCII �leModula-2Validation Suite Figure 1: Tool set-up3.2 Specifying minimal requirements clausesA formal de�nition precisely speci�es the syntax and semantics of a Modula-2 program. However,there are various kinds of limitations in practical compilers which can not be taken into account inthe formal de�nition. Such limitations mostly result from constraints in bu�er sizes, which in turnmay result from limitations in the underlying architecture (e.g. 64K boundaries). Two examplesof such limitations are: the minimal length of a string literal a compilers needs to accept, and theminimal number of nested constructs a compiler needs to accept. A set of `minimal requirementsclauses' was developed. To precisely describe such clauses a novel approach was taken. Each of theclauses was speci�ed by a Modula-2 program that, when executed, would generate another Modula-2program containing the speci�ed test. The following example shows a fragment of the generatingprogram for nested IF-THEN-ELSE-END clauses.PROCEDURE GenIf (n : CARDINAL);BEGINIF n = 0 THENGenStat;

ELSESTextIO.WriteString ("IF b");SWholeIO.WriteCard (n, 1);STextIO.WriteString (" THEN");STextIO.WriteLn;GenIf (n-1);STextIO.WriteString ("ELSE");STextIO.WriteLn;GenIf (n-1);STextIO.WriteString ("END;");STextIO.WriteLn;END;END GenIf;In order to specify `reasonable' values a large number of compilers was tested [14, 15]. Thesetests showed several unexpected results regarding the capabilities of compilers to handle the testprograms.4 ISO-compliant compilersIn this section we will give some details about ISO-compliant compilers. The authors have obtainedthe information in this section from various sources; they cannot be held responsible for the accuracyand completeness of the information. Mentioning a particular compiler system does not constitutea recommendation of that system by the authors of this paper. As the information in this sectionwill be quickly outdated, the reader is referred to the FAQhttp://www.cis.ohio-state.edu/hypertext/faq/usenet/computer-lang/Modula2-faq/part1/faq.html and .../part2/... for up-to-date information.4.1 GPMThe Gardens Point Modula-2 compiler system has been developed by J. Gough at QueenslandUniversity of Technology. The GPM compiler family began as a project to make the languageModula-2 available on contemporary machines; by now Oberon-2 is also available. The compilerfront-ends are based on the creation of abstract syntax trees. Native code back-ends exist for the386/486 (SVR4, Linux, DJGPP, WindowsNT and OS/2), Sparc (Solaris), R3000 (Ultrix), DECAlpha-AXP (OSF/1) and RS/6000 (AIX) range of systems. An MS-DOS version based uponinterpretation of intermediate code is also available. The compiler and libraries are ISO compliantwith the exception of the data types COMPLEX and LONGCOMPLEX.More information may be obtained at http://www.fit.qut.edu.au/CompSci/PLAS/GPM.4.2 XDSThe xTech Development System (XDS) is a programming system for Modula-2 and Oberon-2.The same programming environment is provided on all platforms ranging from MS-DOS to Win-dows 95/NT and Unix. An XDS translator to C and an XDS native-code compiler are available. Afull set of ISO/IEC 10514-1 libraries is available.More information is available from http://www.iis.nsk.su/xtech/xds.

4.3 P1This is a full ISO/IEC 10514-1 compliant compiler producing code for the 68k-based Apple Mac-intosh computers. A second back-end producing C code has also been implemented. A back-endfor generating code for the PowerMacs is in preparation. Except for the modules Semaphores andProcesses (which may come with MacOs 8) all of the non-required library modules are available.P1 Modula-2 has been designed as an MPW tool; to generate PowerPC native application theMPW C/C++ compiler as well as the Metrowerks compilers are supported.The full set of MacOs APIs is included. In non-standard mode, object oriented extensions areavailable.More information is available from the address contained in the FAQ.4.4 Stony BrookThis system is a Windows-95/NT hosted integrated development system (compiler, linker, librarian,make, debugger etc.). At the time of writing of this article the system is in beta test stage. Thecommercial release is expected to be available during the summer of 1996. The implementation willbe a full implementation of the standard with various extensions (which can be switched o�). Acomplete set of library modules as described in the standard will be provided. Native code can begenerated for DOS, DOS32, OS/2, WIN16 and WIN32.Further information is available from the address contained in the FAQ.5 Standardization experiencesThe ISO standardization process requires a future standard to go through a number of stages (NewWork Item NWI, Committee Draft CD, Draft International Standard DIS and, �nally, InternationalStandard IS). A transition to the next stage can be made after a successful international vote hastaken place. The whole process takes four years, at a minimum. The process is based upon technicalexperts meeting each other in person, trying to reach consensus on the technicalities of the futurestandard.1 Unfortunately, it is ill-de�ned what consensus means. While these technical experts arenominated by National Bodies (e.g. NNI, ON, DIN, ANSI/IEEE), their technical opinion may notbe the same as their National Bodies' opinion.In the ideal situation members of a working group are users of the language, people having acommercial interest in the language (like compiler builders) and academics using the language forteaching or academic research. In the usual case however, the users are missing.Unfortunately, there are no obvious criteria for optimality of language constructs and so one�nds several contradicting interests like ease of use/ease of learning, commonality with constructsin other languages (ease of switching), safety, orthogonal language design and time to market, allleading to long and heated discussions.In the long duration of the standardization process sometimes people lose interest, even getdisappointed, get ill or change jobs. WG13 members have been through some of these things, noneof which contributed to a quick realization of the standard.1Meanwhile, more e�ective standardization procedures are possible; also email correspondence is much more com-mon now.

6 Further workWG13 works on a number of topics aimed at extending the language and/or the libraries. In thissection we will give a short introduction to each of them. A general precondition to language exten-sions is that they should remain as close as possible to the original goals and style of the language.Additionally, no existing programs which adhere to the base standard should be invalidated. WG13has taken utmost care to comply with these requirements. Please note that the items described hereare under development and have not yet been agreed upon in any o�cial ISO voting process (exceptfor the creation of the projects), so they may be subject to change or even deletion.WG13 maintains a WWW home page located at http://sc22wg13.twi.tudelft.nl/. Thishome page gives access to current documents and the FAQ. Current documents are also availablevia anonymous ftp from dutiba.twi.tudelft.nl in the directory /pub/wg13/. Please note thatthis is all copyrighted material. Furthermore, ISO rules restrict the accessibility of any material assoon as it has reached the DIS (Draft International Standard) status.6.1 Object orientationModula-2 was intended to be a Systems Programming Language, which meant an emphasis on e�-ciency and access to machine facilities. Nevertheless, the use of Modula-2 for general programmingand teaching necessitated an extension with features for object oriented programming.The OO model chosen adds classes as a new syntactic construct. All objects are accessible viareferences only. The inheritance mechanism chosen is single inheritance, multiple roots. Addition-ally, syntax and semantics for safe/unsafe modules and traced/untraced variables as well as garbagecollection have been developed (�a la Modula-3 [10]).6.2 Generic facilitiesThe lack of a facility for generic programming has so far hampered full exploitation of Modula-2.The model chosen for introducing generics into Modula-2 is based upon so-called Generic De�ni-tion Modules and Generic Implementation Modules which are re�ned into regular de�nition andimplementation modules using re�ning de�nition and implementation modules. Local modules mayalso be re�ned. Note that the term `re�nement' was chosen for generics because `instantiation' wasalready in use by the OO extensions. Types and constants may be used as generic parameters,which results in facilities similar to those provided by C++.6.3 BindingsOne of the factors determining the success of a language is the number of application platforms itcan access, or in more modern terminology the number of APIs (X11, CORBA, POSIX, Windows,...) that is accessible. First, a set of modules providing access to the POSIX API [13] was developed,but unfortunately the WG member in charge of this project had to withdraw from these activities.It was quickly realized that providing interfaces to every available API would be impossible.On the other hand it was noted that currently most of the API speci�cations are provided in the Clanguage. Therefore it was considered more e�cient to develop a set of guidelines for bindings toAPIs de�ned in the C language. These guidelines will probably be published as a technical report.

6.4 PragmasCurrently, the standardized syntax allows pragmas (compiler directives) to be inserted in programtexts, but does not give any semantics to them. Portability of programs would bene�t from astandard set of pragmas. A working paper is currently under consideration in WG13.6.5 Other work itemsTwo other work items (`Further support for concurrent programming' and `Support for commercialprogramming in Modula-2') have little support at the moment, and at its recent meeting, the workinggroup decided to ask for their termination.7 ConclusionGiven that the example in section 2.2 pertains to just a very small part of the language, andconsidering the various problems described in section 5, it will now hopefully be clearer to thereader why the development of the standard took so long. However, this understanding should notturn into resignation about possible inadequacies of the standardization process. The authors stillfeel that programming language standards are necessary, and that the result for Modula-2 was worththe e�ort.Interestingly, problems tend to show in places where one would not have expected them at �rst,e.g. in trying to de�ne the term `consensus' before being able to reach one. Having said that, this isprobably one of the points that can not be addressed by guidelines. Instead, the success or failureof a project in international standardization (as in other areas) largely depends on individuals andtheir e�orts to try to understand other people's views, as well as their willingness to put work intoproposals that may in the end not �nd consensus and be dropped again.The authors gratefully acknowledge the contributions of many colleagues, in particular the formerWG13 convenors Roger Henry and Mark Woodman, the convenor of the VDM-SL working groupand author of large parts of the VDM-SL in the Modula-2 standard Derek Andrews, the editor ofthe �rst draft Don Ward, and everyone who has endured in the long and sometimes tedious processof standardizing Modula-2.References[1] D. Bj�rner and C.B. Jones. Formal Speci�cation and Software Development. Prentice Hall,1982.[2] BS 6154:1981, Method of de�ning Syntactic Metalanguage, 1981.[3] B. J. Cornelius. Problems with the Language Modula-2. Software - Practice & Experience,18(6):529{543, 1988.[4] J. Dawes. The VDM-SL Reference Guide. Pitman, 1992.[5] I. P. Dickinson. Typesetting VDM-SL with VdmSl. NPL document obtainable via ftp.[6] C.B. Jones. Systematic Software Development using VDM, Second Edition. Prentice Hall, NewYork, 1990.

[7] L. Lamport. LaTEX, a Document Preparation System. Addison-Wesley, 1994.[8] P. Lucas. On the Formal Description of PL/I. Ann.Rev.Aut.Progr., 6, 1969.[9] M. Sch�onhacker and C. Pronk. ISO/IEC 10514-1, the standard for Modula-2: Changes, Clari-�cations and Additions. Sigplan Notices, this issue, 1996.[10] G. Nelson. Systems Programming with Modula-3. Prentice Hall, 1991.[11] N. Plat and P.G. Larsen. An Overview of the ISO/VDM-SL Standard. ACM SIGPLANNotices,August 1992.[12] N. Plat, C. Pronk, and M. Verhoef. The Delft VDM-SL Front End. In S. Prehn and W. J.Toetenel, editors, VDM '91: Formal software development methods; 4th International Sympo-sium of VDM-Europe, number 551 in LNCS. Springer Verlag, 1991.[13] ISO/IEC 9945-1:1990, POSIX System Interface. ISO/IEC, 1990.[14] C. Pronk. Stress Testing of Compilers for Modula-2. Software - Practice & Experience,22(10):885{897, 1992.[15] C. Pronk. Specifying Minimal Requirements Clauses for Programming Languages Standardsusing VDM-SL. Computer Standards and Interfaces, 15(4):325{336, 1993.[16] C. Pronk, N. Plat, and A. W. W. M. Biegstraaten. Checking the formal de�nition of Modula-2.In E. Hill, editor, Safety Through Quality Conference, 1994.[17] C. Pronk, N. Plat, and A. W. W. M. Biegstraaten. The Use and Construction of Tools forChecking Large Language De�nitions. High Integrity Systems, 1996. To be published.[18] D.A. Schmidt. Denotational Semantics, A Methodology for Language Development. Allyn andBacon Co., 1986.[19] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming LanguageTheory. MIT Press, Cambridge, Mass, 1977.[20] VDM-Speci�cation Language, Base-Language. ISO/IEC DIS 13817-1.[21] N. Wirth. Modula-2. Technical Report 36, ETH Z�urich, 1980.[22] N. Wirth. Programming in Modula-2, second corrected edition. Springer-Verlag, Berlin, 1982.[23] N. Wirth. Programming in Modula-2, third corrected edition. Springer-Verlag, Berlin, 1985.[24] N. Wirth. Programming in Modula-2, fourth corrected edition. Springer-Verlag, Berlin, 1988.

