Skip to content

Commit 22695e9

Browse files
authored
Merge pull request #1233 from modelscope/z-image-release
Z-Image and Z-Image-i2L
2 parents ffb7a13 + 9829019 commit 22695e9

File tree

12 files changed

+266
-4
lines changed

12 files changed

+266
-4
lines changed

‎README.md‎

Lines changed: 8 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -33,6 +33,8 @@ We believe that a well-developed open-source code framework can lower the thresh
3333
3434
> Currently, the development personnel of this project are limited, with most of the work handled by [Artiprocher](https://github.com/Artiprocher). Therefore, the progress of new feature development will be relatively slow, and the speed of responding to and resolving issues is limited. We apologize for this and ask developers to understand.
3535
36+
- **January 27, 2026**: [Z-Image](https://modelscope.cn/models/Tongyi-MAI/Z-Image) is released, and our [Z-Image-i2L](https://www.modelscope.cn/models/DiffSynth-Studio/Z-Image-i2L) model is released concurrently. You can use it in [ModelScope Studios](https://modelscope.cn/studios/DiffSynth-Studio/Z-Image-i2L). For details, see the [documentation](/docs/zh/Model_Details/Z-Image.md).
37+
3638
- **January 19, 2026**: Added support for [FLUX.2-klein-4B](https://modelscope.cn/models/black-forest-labs/FLUX.2-klein-4B) and [FLUX.2-klein-9B](https://modelscope.cn/models/black-forest-labs/FLUX.2-klein-9B) models, including training and inference capabilities. [Documentation](/docs/en/Model_Details/FLUX2.md) and [example code](/examples/flux2/) are now available.
3739

3840
- **January 12, 2026**: We trained and open-sourced a text-guided image layer separation model ([Model Link](https://modelscope.cn/models/DiffSynth-Studio/Qwen-Image-Layered-Control)). Given an input image and a textual description, the model isolates the image layer corresponding to the described content. For more details, please refer to our blog post ([Chinese version](https://modelscope.cn/learn/4938), [English version](https://huggingface.co/blog/kelseye/qwen-image-layered-control)).
@@ -269,9 +271,14 @@ image.save("image.jpg")
269271
270272
Example code for Z-Image is available at: [/examples/z_image/](/examples/z_image/)
271273
272-
| Model ID | Inference | Low-VRAM Inference | Full Training | Full Training Validation | LoRA Training | LoRA Training Validation |
274+
|Model ID|Inference|Low VRAM Inference|Full Training|Validation After Full Training|LoRA Training|Validation After LoRA Training|
273275
|-|-|-|-|-|-|-|
276+
|[Tongyi-MAI/Z-Image](https://www.modelscope.cn/models/Tongyi-MAI/Z-Image)|[code](/examples/z_image/model_inference/Z-Image.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image.py)|[code](/examples/z_image/model_training/full/Z-Image.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image.py)|[code](/examples/z_image/model_training/lora/Z-Image.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image.py)|
277+
|[DiffSynth-Studio/Z-Image-i2L](https://www.modelscope.cn/models/DiffSynth-Studio/Z-Image-i2L)|[code](/examples/z_image/model_inference/Z-Image-i2L.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-i2L.py)|-|-|-|-|
274278
|[Tongyi-MAI/Z-Image-Turbo](https://www.modelscope.cn/models/Tongyi-MAI/Z-Image-Turbo)|[code](/examples/z_image/model_inference/Z-Image-Turbo.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-Turbo.py)|[code](/examples/z_image/model_training/full/Z-Image-Turbo.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image-Turbo.py)|[code](/examples/z_image/model_training/lora/Z-Image-Turbo.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image-Turbo.py)|
279+
|[PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1](https://www.modelscope.cn/models/PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1)|[code](/examples/z_image/model_inference/Z-Image-Turbo-Fun-Controlnet-Union-2.1.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-Turbo-Fun-Controlnet-Union-2.1.py)|[code](/examples/z_image/model_training/full/Z-Image-Turbo-Fun-Controlnet-Union-2.1.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image-Turbo-Fun-Controlnet-Union-2.1.py)|[code](/examples/z_image/model_training/lora/Z-Image-Turbo-Fun-Controlnet-Union-2.1.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image-Turbo-Fun-Controlnet-Union-2.1.py)|
280+
|[PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps](https://www.modelscope.cn/models/PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1)|[code](/examples/z_image/model_inference/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.py)|[code](/examples/z_image/model_training/full/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.py)|[code](/examples/z_image/model_training/lora/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.py)|
281+
|[PAI/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps](https://www.modelscope.cn/models/PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1)|[code](/examples/z_image/model_inference/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.py)|[code](/examples/z_image/model_training/full/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.py)|[code](/examples/z_image/model_training/lora/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.py)|
275282
276283
</details>
277284

‎README_zh.md‎

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -33,6 +33,8 @@ DiffSynth 目前包括两个开源项目:
3333
3434
> 目前本项目的开发人员有限,大部分工作由 [Artiprocher](https://github.com/Artiprocher) 负责,因此新功能的开发进展会比较缓慢,issue 的回复和解决速度有限,我们对此感到非常抱歉,请各位开发者理解。
3535
36+
- **2026年1月27日** [Z-Image](https://modelscope.cn/models/Tongyi-MAI/Z-Image) 发布,我们的 [Z-Image-i2L](https://www.modelscope.cn/models/DiffSynth-Studio/Z-Image-i2L) 模型同步发布,在[魔搭创空间](https://modelscope.cn/studios/DiffSynth-Studio/Z-Image-i2L)可直接体验,详见[文档](/docs/zh/Model_Details/Z-Image.md)
37+
3638
- **2026年1月19日** 新增对 [FLUX.2-klein-4B](https://modelscope.cn/models/black-forest-labs/FLUX.2-klein-4B)[FLUX.2-klein-9B](https://modelscope.cn/models/black-forest-labs/FLUX.2-klein-9B) 模型的支持,包括完整的训练和推理功能。[文档](/docs/zh/Model_Details/FLUX2.md)[示例代码](/examples/flux2/)现已可用。
3739

3840
- **2026年1月12日** 我们训练并开源了一个文本引导的图层拆分模型([模型链接](https://modelscope.cn/models/DiffSynth-Studio/Qwen-Image-Layered-Control)),这一模型输入一张图与一段文本描述,模型会将图像中与文本描述相关的图层拆分出来。更多细节请阅读我们的 blog([中文版](https://modelscope.cn/learn/4938)[英文版](https://huggingface.co/blog/kelseye/qwen-image-layered-control))。
@@ -271,7 +273,12 @@ Z-Image 的示例代码位于:[/examples/z_image/](/examples/z_image/)
271273
272274
|模型 ID|推理|低显存推理|全量训练|全量训练后验证|LoRA 训练|LoRA 训练后验证|
273275
|-|-|-|-|-|-|-|
276+
|[Tongyi-MAI/Z-Image](https://www.modelscope.cn/models/Tongyi-MAI/Z-Image)|[code](/examples/z_image/model_inference/Z-Image.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image.py)|[code](/examples/z_image/model_training/full/Z-Image.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image.py)|[code](/examples/z_image/model_training/lora/Z-Image.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image.py)|
277+
|[DiffSynth-Studio/Z-Image-i2L](https://www.modelscope.cn/models/DiffSynth-Studio/Z-Image-i2L)|[code](/examples/z_image/model_inference/Z-Image-i2L.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-i2L.py)|-|-|-|-|
274278
|[Tongyi-MAI/Z-Image-Turbo](https://www.modelscope.cn/models/Tongyi-MAI/Z-Image-Turbo)|[code](/examples/z_image/model_inference/Z-Image-Turbo.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-Turbo.py)|[code](/examples/z_image/model_training/full/Z-Image-Turbo.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image-Turbo.py)|[code](/examples/z_image/model_training/lora/Z-Image-Turbo.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image-Turbo.py)|
279+
|[PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1](https://www.modelscope.cn/models/PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1)|[code](/examples/z_image/model_inference/Z-Image-Turbo-Fun-Controlnet-Union-2.1.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-Turbo-Fun-Controlnet-Union-2.1.py)|[code](/examples/z_image/model_training/full/Z-Image-Turbo-Fun-Controlnet-Union-2.1.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image-Turbo-Fun-Controlnet-Union-2.1.py)|[code](/examples/z_image/model_training/lora/Z-Image-Turbo-Fun-Controlnet-Union-2.1.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image-Turbo-Fun-Controlnet-Union-2.1.py)|
280+
|[PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps](https://www.modelscope.cn/models/PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1)|[code](/examples/z_image/model_inference/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.py)|[code](/examples/z_image/model_training/full/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.py)|[code](/examples/z_image/model_training/lora/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.py)|
281+
|[PAI/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps](https://www.modelscope.cn/models/PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1)|[code](/examples/z_image/model_inference/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.py)|[code](/examples/z_image/model_training/full/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.py)|[code](/examples/z_image/model_training/lora/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.py)|
275282
276283
</details>
277284

‎docs/en/Model_Details/Z-Image.md‎

Lines changed: 11 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -50,9 +50,14 @@ image.save("image.jpg")
5050

5151
## Model Overview
5252

53-
| Model ID | Inference | Low VRAM Inference | Full Training | Validation After Full Training | LoRA Training | Validation After LoRA Training |
54-
| - | - | - | - | - | - | - |
55-
| [Tongyi-MAI/Z-Image-Turbo](https://www.modelscope.cn/models/Tongyi-MAI/Z-Image-Turbo) | [code](/examples/z_image/model_inference/Z-Image-Turbo.py) | [code](/examples/z_image/model_inference_low_vram/Z-Image-Turbo.py) | [code](/examples/z_image/model_training/full/Z-Image-Turbo.sh) | [code](/examples/z_image/model_training/validate_full/Z-Image-Turbo.py) | [code](/examples/z_image/model_training/lora/Z-Image-Turbo.sh) | [code](/examples/z_image/model_training/validate_lora/Z-Image-Turbo.py) |
53+
|Model ID|Inference|Low VRAM Inference|Full Training|Validation After Full Training|LoRA Training|Validation After LoRA Training|
54+
|-|-|-|-|-|-|-|
55+
|[Tongyi-MAI/Z-Image](https://www.modelscope.cn/models/Tongyi-MAI/Z-Image)|[code](/examples/z_image/model_inference/Z-Image.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image.py)|[code](/examples/z_image/model_training/full/Z-Image.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image.py)|[code](/examples/z_image/model_training/lora/Z-Image.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image.py)|
56+
|[DiffSynth-Studio/Z-Image-i2L](https://www.modelscope.cn/models/DiffSynth-Studio/Z-Image-i2L)|[code](/examples/z_image/model_inference/Z-Image-i2L.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-i2L.py)|-|-|-|-|
57+
|[Tongyi-MAI/Z-Image-Turbo](https://www.modelscope.cn/models/Tongyi-MAI/Z-Image-Turbo)|[code](/examples/z_image/model_inference/Z-Image-Turbo.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-Turbo.py)|[code](/examples/z_image/model_training/full/Z-Image-Turbo.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image-Turbo.py)|[code](/examples/z_image/model_training/lora/Z-Image-Turbo.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image-Turbo.py)|
58+
|[PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1](https://www.modelscope.cn/models/PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1)|[code](/examples/z_image/model_inference/Z-Image-Turbo-Fun-Controlnet-Union-2.1.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-Turbo-Fun-Controlnet-Union-2.1.py)|[code](/examples/z_image/model_training/full/Z-Image-Turbo-Fun-Controlnet-Union-2.1.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image-Turbo-Fun-Controlnet-Union-2.1.py)|[code](/examples/z_image/model_training/lora/Z-Image-Turbo-Fun-Controlnet-Union-2.1.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image-Turbo-Fun-Controlnet-Union-2.1.py)|
59+
|[PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps](https://www.modelscope.cn/models/PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1)|[code](/examples/z_image/model_inference/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.py)|[code](/examples/z_image/model_training/full/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.py)|[code](/examples/z_image/model_training/lora/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.py)|
60+
|[PAI/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps](https://www.modelscope.cn/models/PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1)|[code](/examples/z_image/model_inference/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.py)|[code](/examples/z_image/model_training/full/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.py)|[code](/examples/z_image/model_training/lora/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.py)|
5661

5762
Special Training Scripts:
5863

@@ -75,6 +80,9 @@ Input parameters for `ZImagePipeline` inference include:
7580
* `seed`: Random seed. Default is `None`, meaning completely random.
7681
* `rand_device`: Computing device for generating random Gaussian noise matrix, default is `"cpu"`. When set to `cuda`, different GPUs will produce different generation results.
7782
* `num_inference_steps`: Number of inference steps, default value is 8.
83+
* `controlnet_inputs`: Inputs for ControlNet models.
84+
* `edit_image`: Edit images for image editing models, supporting multiple images.
85+
* `positive_only_lora`: LoRA weights used only in positive prompts.
7886

7987
If VRAM is insufficient, please enable [VRAM Management](/docs/en/Pipeline_Usage/VRAM_management.md). We provide recommended low VRAM configurations for each model in the example code, see the table in the "Model Overview" section above.
8088

‎docs/zh/Model_Details/Z-Image.md‎

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,12 @@ image.save("image.jpg")
5252

5353
|模型 ID|推理|低显存推理|全量训练|全量训练后验证|LoRA 训练|LoRA 训练后验证|
5454
|-|-|-|-|-|-|-|
55+
|[Tongyi-MAI/Z-Image](https://www.modelscope.cn/models/Tongyi-MAI/Z-Image)|[code](/examples/z_image/model_inference/Z-Image.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image.py)|[code](/examples/z_image/model_training/full/Z-Image.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image.py)|[code](/examples/z_image/model_training/lora/Z-Image.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image.py)|
56+
|[DiffSynth-Studio/Z-Image-i2L](https://www.modelscope.cn/models/DiffSynth-Studio/Z-Image-i2L)|[code](/examples/z_image/model_inference/Z-Image-i2L.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-i2L.py)|-|-|-|-|
5557
|[Tongyi-MAI/Z-Image-Turbo](https://www.modelscope.cn/models/Tongyi-MAI/Z-Image-Turbo)|[code](/examples/z_image/model_inference/Z-Image-Turbo.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-Turbo.py)|[code](/examples/z_image/model_training/full/Z-Image-Turbo.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image-Turbo.py)|[code](/examples/z_image/model_training/lora/Z-Image-Turbo.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image-Turbo.py)|
58+
|[PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1](https://www.modelscope.cn/models/PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1)|[code](/examples/z_image/model_inference/Z-Image-Turbo-Fun-Controlnet-Union-2.1.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-Turbo-Fun-Controlnet-Union-2.1.py)|[code](/examples/z_image/model_training/full/Z-Image-Turbo-Fun-Controlnet-Union-2.1.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image-Turbo-Fun-Controlnet-Union-2.1.py)|[code](/examples/z_image/model_training/lora/Z-Image-Turbo-Fun-Controlnet-Union-2.1.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image-Turbo-Fun-Controlnet-Union-2.1.py)|
59+
|[PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps](https://www.modelscope.cn/models/PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1)|[code](/examples/z_image/model_inference/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.py)|[code](/examples/z_image/model_training/full/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.py)|[code](/examples/z_image/model_training/lora/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image-Turbo-Fun-Controlnet-Union-2.1-8steps.py)|
60+
|[PAI/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps](https://www.modelscope.cn/models/PAI/Z-Image-Turbo-Fun-Controlnet-Union-2.1)|[code](/examples/z_image/model_inference/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.py)|[code](/examples/z_image/model_inference_low_vram/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.py)|[code](/examples/z_image/model_training/full/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.sh)|[code](/examples/z_image/model_training/validate_full/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.py)|[code](/examples/z_image/model_training/lora/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.sh)|[code](/examples/z_image/model_training/validate_lora/Z-Image-Turbo-Fun-Controlnet-Tile-2.1-8steps.py)|
5661

5762
特殊训练脚本:
5863

@@ -75,6 +80,9 @@ image.save("image.jpg")
7580
* `seed`: 随机种子。默认为 `None`,即完全随机。
7681
* `rand_device`: 生成随机高斯噪声矩阵的计算设备,默认为 `"cpu"`。当设置为 `cuda` 时,在不同 GPU 上会导致不同的生成结果。
7782
* `num_inference_steps`: 推理次数,默认值为 8。
83+
* `controlnet_inputs`: ControlNet 模型的输入。
84+
* `edit_image`: 编辑模型的待编辑图像,支持多张图像。
85+
* `positive_only_lora`: 仅在正向提示词中使用的 LoRA 权重。
7886

7987
如果显存不足,请开启[显存管理](/docs/zh/Pipeline_Usage/VRAM_management.md),我们在示例代码中提供了每个模型推荐的低显存配置,详见前文"模型总览"中的表格。
8088

0 commit comments

Comments
 (0)