
The Fourth Generation Make
Glenn Fowler

gsf@research.att.com

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Abstract

Make is a program that is widely used to maintain and update programs and libraries on UNIX* systems. This
paper introduces the Fourth Generation Make which embodies major semantic and syntactic enhancements to the
standard make program. The enhancements include support for source files distributed among many directories,
an efficient shell interface that allows concurrent execution of update commands, dynamic dependency
generation, dependencies on conditional compilation symbols and a powerful new meta language for constructing
default rules. A complete rewrite of the standard make code has resulted in a unified software construction
program that also provides improved functionality and performance. Improved performance includes an average
five to ten times decrease in makfile size and an average two to five times decrease in execution time. It is
assumed that the reader is familiar with the features and operation of the standard make.

1 INTRODUCTION

Since it first appeared in 1976[1], make has changed little, and most of these changes have been syntactic in
nature[2]. However, the build variant of make[3] introduced a major semantic change. Build has viewpaths that
allow source files to reside in more than one directory. Viewpaths support the sharing of source files between
many users and help eliminate the proliferation of source copies. The semantics of multiple directories, however,
conflict with the flat, single directory approach of old-make (old-make refers to the make distributed with the
System 5 UNIX system and new-make refers to the Fourth Generation make). Build must link or copy files into
the current directory to comply with the single directory nature of old-make. Without build , multiple directories
are usually handled by using recursive makes. Because of the large data area (which must be copied on fork)
and the time consumed by the startup mechanisms (parsing builtin rules, scanning directories, etc.), recursive
make calls are inefficient.

The Fourth Generation make is the result of a research effort to improve the execution and semantics of old-make
and to update the model of make to be more consistent with such concepts as multiple source directories and
concurrent execution of update commands.

The main features of the Fourth Generation make are that it:

• Efficiently supports both source and targets in multiple directories.

• Provides a more efficient interface to the shell .

• Decreases redundancies inherent in old makefiles.

• Refines the granularity from the file to the variable level.

• Provides mechanisms for writing portable makefiles.

• Provides a powerful metalanguage for constructing builtin rules.

* UNIX is a trademark of AT&T Bell Laboratories.

- 2 -

• Supports program configuration and generation for many UNIX system environments.

• Compiles makefiles into binary form for reduced startup time.

• Provides an abbreviated syntax to accommodate the most common uses of make.

• Provides optional dynamic dependency generation.

• Provides a natural interface for object library maintenance.

• Provides a natural interface to SCCS.

This paper describes the motivation and design of the new features of the Fourth Generation make and also
discusses the advantages of using new-make. Some of these advantages are:

• Decreased makefile size – most new makefiles consist of one or two lines of source file dependencies.
Conversion of the BSD and 3B2 kernel makefiles shows a factor of ten decrease in makefile size.

• Consolidation of makefiles – usually, recursive configurations of old makefiles can be replaced by one
makefile. This occurred in the conversion of BSD and 3B2 kernel makefiles.

• Improved consistency checking – duplicate source and header files are reported. Additionally, missing
header files are reported before compilation takes place.

• User definable builtin rules – the default builtin rules are just a compiled makefile binary, so there is no
loss of efficiency when other default rules are used. The default rules can either be completely bypassed or
augmented, depending on the input options to make.

• Decreased execution time – experiments on large makefiles (when all targets are up to date) show a factor
of ten average decrease in execution time. The shell interface also eliminates one fork and one exec for each
makefile command line executed. In contrast to old-make, which forks for each command line, new-make
forks only once to initialize the shell co-process. After this initialization the shell is the only forked process.

• Efficient file sharing – software development teams can easily share single copies of source and object files.

• Improved software organization – the multiple directory nature of new-make encourages the organization of
large software project files into more than one directory. Unlike build , new-make allows files to be
distributed over arbitrary directory structures.

Since the full functionality of new-make cannot be realized using the restricted model provided by old-make,
new-make does not support old makefiles. This is because the research effort of new-make emphasizes increased
execution speed and simplicity of use over issues of backward compatibility.

The remaining sections elaborate on the features and improvements introduced in new-make. This paper is not a
tutorial and so does not contain a detailed description of specific command arguments, options or actions. All
timing estimates are based on the user and sys times of programs running on a VAX/750*.

2 MAKEFILES

Makefiles are typically at the source of software portability problems. More often than not, makefiles are run in
combination with shell scripts to determine the current environment parameters. In the worst cases, the user is
interactively prompted for the desired information.

A major goal of new-make is to encapsulate as much information as possible into a single makefile. A new shell
interface and makefile preprocessor make this encapsulation possible. As a result it is possible for the same

* VAX is a trademark of Digital Equipment Corporation.

- 3 -

makefile to run on different machines and even on different versions of the UNIX system.

2.1 Preprocessing

Each makefile is preprocessed by the C preprocessor cpp , making the full flexibility of include files and macro
definitions available to makefile users. The version of cpp distributed with the new-make also contains some
changes that improve makefile portability. #if statements may use the following builtin tests:

exists(file)
Returns 1 if file can be found using the #include search rules. File may optionally be enclosed in
< >, just as in the #include statement. This test can be used to tailor software generation for specific
UNIX variants and environments.

identifiers(file,id1,...)
Searches file for the null terminated identifiers id1 ... and returns the number of identifiers found.
Initial _ characters in both id1 ... and identifiers in file are ignored. If file is an archive with a
symbol directory then only the symbol directory is searched. Therefore, this test can be used to
determine if a function or global symbol is present in an object library.

Additional function predicates are defined by #assert statements in the include file <default.h> which is
automatically included by cpp before the first input file is read. #assert predicate(value) makes assertions that
can be tested in #if expressions. Such assertions are only recognized within #if expressions and do not conflict
with #define variable expansions. Most assertions deal with the current machine environment:

system(system-name)
Defines the operating system name. Example values for system-name are unix and gcos.

release(system-release)
Defines the operating system release name. Example values for system-release are apollo, bsd,
research, sun, system5, uts, and venix.

version(release-version)
Defines the operating system release version. Example values for release-version are 4.1c and 4.2
for release(bsd), 7 and 8 for release(research) and 5.0 etc. for release(system5).

model(model-name)
Defines the hardware model name that also encompasses workstation names. Example values for
model-name are apollo, sun, ibm-pc and unix-pc.

architecture(architecture-name)
Defines the processor architecture name. Example values for architecture-name are 3b, 68000, ibm,
pdp11, and vax.

machine(architecture-version)
Defines the processor architecture version. Example values for architecture-version are 2, 20 and 20s
for architecture(3b), 70 etc. for architecture(pdp11) and 750, 780 and micro for architecture(vax).

2.2 Compilation

When all targets are up to date, old-make spends most of its time parsing the builtin rules and input makefiles,
whereas new-make avoids this problem by compiling makefiles into binary make object files. The input makefile
x .mk is automatically compiled into the make object file x .mo whenever the object file is out of date with the
corresponding makefile.

Compilation takes place after the makefiles are read and parsed and involves writing the internal structures to a
file in relocatable form. The time spent compiling is negligible compared to the parsing time and loading
compiled makefiles saves an average of 2 seconds on program startup.

- 4 -

Whereas old-make must parse its builtin rules on program startup, new-make loads the standard builtin rules from
a compiled makefile. Since the standard builtin rules are placed in a compiled makefile, substituting local builtin
rules for the standard ones results in no loss of performance. Local builtin rules can be specified either on the
make command line or in the MAKERULES environment variable.

2.3 Operators

New-make supports (two character) operators that may be defined in the builtin rules file. The usage syntax of
these operators is exactly like the : dependency operator, but the semantics depend on the specific operator
definitions.

Only one new operator, ::, is provided in the standard builtin rules. Unlike the : dependency operator, which
typically specifies object file dependencies, :: may be used to specify source file dependencies:

program : p1.o p2.o p3.o
$(CC) -o program p1.o p2.o p3.o -lm

can be specified as

program :: program.mk p1.y p2.l p3.c -lm

Using :: eliminates the duplication of file name lists and also provides other important features (see Dependency
Generation and Common Actions below).

3 BINDING

A basic internal operation is the binding of rule names to objects (e.g., files and variables) in the system.
Binding enables files to be placed in more than one directory and also allows targets to depend on variable
definitions as well as files.

3.1 Files

Rule names are bound to file names using the dependencies of the special .SOURCE and .SOURCE.x rules.
The dependencies of these rules are directories to be scanned when searching for files. The current directory is
always scanned first. Then, files with suffix .x are searched for in the directories specified by .SOURCE.x.
Finally, the .SOURCE directories are searched. The left to right .SOURCE dependency ordering is important;
make warns when a file is found in more than one directory, but continues with the first file found.

3.2 State Variables

A state variable is a variable whose modify time and definition is stored from one invocation of make to the
next. State variables have two basic forms: (variable) is a makefile or environment variable and file(variable) is
a variable corresponding to a #define statement in file . For example:

x.o : header.h(DEBUG) (MACHINE)

specifies that x.o depends on the definition of the variable DEBUG in the file header.h and the definition of
MACHINE from the current makefile. If either definition changes from one invocation to the next then x.o will
become out of date and will be regenerated.

A file is scanned for #define definitions only if it has been modified since the last time it was scanned. The first
#define definition for a variable is used and all other definitions are ignored.

The state variable definitions are stored in the state file base .ms where base is the base name of the first makefile
in the argument list. The state file is implemented as a compiled make object file, resulting in little maintenance
overhead. Some dependency information is also stored in the state file (see Dependency Generation below).

- 5 -

4 VARIABLE EXPANSION

The basic actions of new-make are controlled by the builtin rules, with most of the expressive power concentrated
in variable definitions and expansions. The addition of operators and editing to variable expansions has resulted
in a powerful makefile metalanguage. As a testimony to the strength of this metalanguage, most new make
features and ideas have resulted in changes to the standard builtin rules (written as a makefile) rather than in
changes to the make C source files.

The metalanguage produces a more complex set of builtin rules, but in turn allows simple, concise and easy to
maintain user makefiles.

4.1 Assignment

There are three variable definition operators:

variable = value Value is assigned to variable without expansion.

variable := value Value is expanded and then assigned to variable. This allows a variable to contain all or
portions of its previous value.

variable += value Value is expanded and appended to the current value of variable . This allows lists to be
generated in variable values.

4.2 Expansion

Each occurrence of $(variable) in a makefile is replaced by the assigned value of variable . The substitution is
recursive in that value is checked for other variable expansions before being substituted. $(variable:operator)
causes value to be edited according to the specifications in operator before being substituted. : is used to
separate multiple operators . The general form for operator is op[=arg] where op is a single character operator
name and arg is an optional operator argument. The operators are applied to each space separated token in the
expanded variable value. The variable name itself is expanded before the value is determined, implementing
primitive variable subscripting.

4.2.1 File Components Because of the multiple directory nature of new-make it is important to be able to separate
a file name into its individual components. File names are divided into the following five basic components:

M machine All characters up to and including the last !. Null if no ! appears. The machine
component is supported but not used in the current implementation.

D directory All characters after the last ! up to and including the last /. Null if no / appears.

P prefix All characters after the last / up to and including the first .. Null if there are less than
two .’s or if . is the first character.

B base All characters after the first . up to but not including the last ..

S suffix All characters from the last . to the end. Null if no . appears.

Here is an example using file name component editing:

FILES = a.y dir/s.x.c bozo!.profile

$(FILES) -> a.y dir/s.x.c bozo!.profile
$(FILES:B:S=.o) -> a.o x.o .profile.o
$(FILES:DBS) -> a.y dir/x.c .profile
$(FILES:M) -> bozo!

4.2.2 Matching Space separated tokens in variable values can be matched using the shell file pattern matching
characters in the :N=pattern: :N!=pattern: edit operators. The matching occurs before component editing takes
place. Using FILES as an example:

- 6 -

$(FILES:N=*.c) -> dir/s.x.c
$(FILES:N!=*.c) -> a.y bozo!.profile
$(FILES:N=*.[cy]:BS=.o) -> a.o x.o

4.2.3 Substitution Tokens in variable values can be substituted using the :Coldnew: substitute
edit command. may be any character and C/ may be abbreviated by /. For example:

$(FILES:/ /\:/) -> a.y:dir/s.x.c:bozo!.profile
$(FILES:C%/%--%) -> a.y dir--s.x.c bozo!.profile

Notice that the : must be escaped to distinguish it from the : edit operator.

4.2.4 Binding Variable value tokens may also be bound and selected by type using the :T=type: edit operator.
The types are:

A Each token that can be bound to an archive is expanded.

D Each token that can be bound to a state variable is expanded using the state variable definition. The
expanded definitions may be used as arguments to the cc command.

F Each token that can be bound to a file is expanded using the bound file name.

N If variable has a null value then the null string is expanded, otherwise # is expanded. This can be
used to specify conditional makefile input.

O Each token that is bound neither to a file nor to a state variable is expanded.

S Each token that can be bound to a state variable is expanded.

V If variable has a non-null value then the null string is expanded, otherwise # is expanded.

For example:

FILES = x.c (DEBUG) (TEST) libc.a
TEST =
DEBUG = 1

$(FILES:T=D) -> -DDEBUG
$(FILES:T=F) -> x.c /lib/libc.a
$(FILES:T=S) -> (DEBUG) (TEST)
$(TEST:T=V) -> #
$(FILES:T=V) ->

5 RULE ATTRIBUTES

New-make uses rule attributes to control the disposition of rules and targets. For example, the .ARCHIVE
attribute specifies that a bound rule is to be treated as an object file archive. This attribute allows the following
concise archive dependency specification:

lib.a :: a.c b.c c.y x.s

Attributes also allow new-make to assume some system dependent maintenance responsibilities. For example, on
Berkeley variants of the UNIX system, .ARCHIVE targets are automatically updated using ranlib .

Some attributes are assigned automatically, some are determined by the suffix of the current target (.a files are
given the .ARCHIVE attribute) and others may be assigned explicitly in the makefile.

Another attribute .USE allows a single command update sequence to be shared by many targets. For example:

- 7 -

a.o : (DEBUG)
$(CC) $(CCFLAGS) -S $(>)
$(FIXUP) $(>:BS=.s)
$(CC) -c $(>:BS=.s)
$(RM) $(RMFLAGS) $(>:BS=.s)

b.o : (PROFILE)
$(CC) $(CCFLAGS) -S $(>)
$(FIXUP) $(>:BS=.s)
$(CC) -c $(>:BS=.s)
$(RM) $(RMFLAGS) $(>:BS=.s)

can be replaced by

a.o : .FIXUP (DEBUG)
b.o : .FIXUP (PROFILE)

.FIXUP : .USE
$(CC) $(CCFLAGS) -S $(>)
$(FIXUP) $(>:BS=.s)
$(CC) -c $(>:BS=.s)
$(RM) $(RMFLAGS) $(>:BS=.s)

A brief description of the attributes and special rules appears in the attached manual pages.

6 DEPENDENCY GENERATION

The main task of make is to verify that any changes made to source files are reflected in the corresponding object
files. This verification, however, relies on the proper dependencies being placed in the controlling makefiles. A
single omitted dependency can cause inconsistencies between the source and object files.

New-make eliminates some of these inconsistencies by dynamically generating file dependencies from a given set
of source files. Such dependencies are automatically generated when the :: dependency operator is used. The
generated dependencies are stored in the state file along with the state variable definitions.

The file dependencies are determined by scanning the files for #include statements. A file is only scanned if it
has been modified since the last time it was scanned. In the worst cases, automatic dependency generation only
doubles the execution time of make (not including the time spent updating the targets).

#include dependencies within conditional #if constructs are given the .DONTCARE attribute that allows make to
continue if the corresponding files cannot be found.

A minor drawback is that the files depend on all #include dependencies, even if some of the dependencies are
from ‘‘compiled out’’ parts of the source files. However, for a given application the ‘‘compiled out’’
dependencies are rarely modified. A proposed alternative is to use cpp to produce the exact dependencies, and
feasibility experiments are now underway. Initial results show that cpp scanning may be appropriate only after
major changes to the source files, and that the basic #include scanning is sufficient for most applications.

In any event, even the basic dynamic #include file dependency generation provides a more consistent
environment than statically generated dependencies using old-make.

7 SHELL INTERFACE

The execution of update commands has undergone major performance and semantic changes in new-make. All
update commands are sent to a single copy of the shell, keeping the shell environment intact between command
executions. This includes the effects of cd and shell parameter assignments.

- 8 -

Since only one copy of the shell is used, new-make forks just once to initialize the shell as a co-process. While
commands are being executed by the shell, new-make continues by checking the dependencies of the next target.
Thus the next update command is almost always determined by the time the current command completes.

An added advantage is that command aliasing and shell functions are preserved in update command blocks.
Old-make uses either the system or exec call to execute each command line. In old-make, if a line contains shell
metacharacters ($  ()><) then it is sent to the shell via system, otherwise the command is executed via a fork and
exec. Aliases in the latter case are ignored by old-make.

7.1 Command Blocks

The new makefile structure supports natural shell command specification. Update command lines for a particular
target are sent to the shell as a block, allowing shell case, for, if and while constructs to cross newline
boundaries without intervening backslash and semicolon characters.

With this co-process arrangement makefiles can be viewed as labeled shell scripts. The labels (targets) merely
determine when the corresponding command blocks are executed.

To avoid confusion between the use of $ in new-make and the shell, only the $(...) forms are expanded by new-
make ($$(...) expands to $(...)). $ in any other context is passed untouched to the shell.

7.2 Communication

Pipes are used for communication between new-make and the shell. Make sends commands to the shell on one
pipe and receives status information from the shell on a second pipe . The status information is organized into
four message packets:

error exit-code
Sent when a command returns a non-zero exit code.

exit
Sent when a command block completes.

read make-command
Sends make-command back to make to be parsed as if it originated in a makefile. This allows
dynamic makefile generation, but this feature has not been used (or recommended) in any major
applications.

start process-id
This packet associates a command block with a subshell process id when concurrent execution is
enabled. This allows make to wait for its children for proper time accounting.

It is sometimes desirable for make to continue with other targets even after an error has occurred. A trap on
command error was added to the shell to handle this case in a co-process environment. In addition, since entire
command blocks are sent to the shell, the –x execution trace flag of the shell is used to echo each individual
command as it is executed. New-make places control commands between the command update blocks and
constantly switches between the –x and +x options. So as not to clutter the execution trace with set +x
commands, the shell suppresses the execution trace of set +x when set –x is in effect. Many thanks to Dave
Korn for adding these two features to ksh[4] . Although new-make works best with KSH, it also runs with the
Bourne shell[5].

7.3 Concurrent Execution

With the shell as a co-process it is a trivial matter to add concurrent command execution to new-make.
Internally each command block is simply enclosed by { and }& and a jobs table is used to associate targets with
process ids. The dependency graph specified by the input makefiles is then used to determine when new-make
must wait for certain targets to complete.

- 9 -

The –jn command line option is used to specify the maximum number of concurrent jobs. By default only one
job is used, but if n is greater than 1 then each update command block is sent to a new subshell (background
shell). Background shells inherit the environment of the main shell (foreground shell) and the foreground shell
inherits the environment of new-make. It is important to note that no makefile changes are necessary to support
concurrent execution.

Concurrent execution should have a major effect on multi–processor machines and on systems equipped with
compiler ‘‘black boxes.’’ On such machines it would be possible for each command block to execute on
different processors.

8 OPTION GENERATION

The builtin rules automatically generate the proper –D, –I and –L options of cc in the $(CCFLAGS) variable.
The –D options are generated from state variable dependencies, the –I options are generated from the
dependencies of the .SOURCE.h rule and the –L options are generated from the dependencies of the
.SOURCE.a rule. State variable dependencies specified using the :: operator apply to all dependencies of the
corresponding target (global dependencies), otherwise the dependencies apply only to the individual target of
each : operator.

9 COMMON ACTIONS

When the :: operator is used several common action targets are automatically defined. The common action target
xxx is defined as .XXX in the builtin rules. If xxx appears as a command line target and xxx has not been defined
by the input makefiles then the target .XXX is made. The common actions are:

clean Deletes all object files corresponding to the current makefile.

clobber Executes the clean action and also deletes the target(s) corresponding to the current makefile.

cpio Creates a cpio archive of the source files listed after each :: operator. The archive is placed in the
file main .cpio where main is the base name of the main target rule.

install Makes the main target and copies it to the directory $(INSTALLDIR). By default,
$(INSTALLDIR) is $(ROOT  HOME)/bin (use $(ROOT) if it is defined otherwise use
$(HOME)) for executable targets and $(ROOT  HOME)/lib for object archive targets. The
commands associated with the rule .DOINSTALL are used to do the copy.

lint Runs lint on the input source files. The proper –D and –I options are associated with each source
file (see Option Generation). Any .l and .y source files are automatically preprocessed if necessary.

print The source files are printed by passing them through the filter $(PR) and listing them with $(LP).

tar Creates a tar archive of the source files listed after each :: operator. The archive is placed in the file
main .tar where main is the base name of the main target rule.

ucpio Same as cpio except that only those source files modified since the last ucpio are archived. If
$(UTIME) is defined then it is taken to be a file name whose modify time is used to determine the
files to be archived; only those files newer than this modify time are archived.

uprint Same as print except that only those source files modified since the last uprint are printed.

utar Same as tar except that only those source files modified since the last utar are archived.

10 SCCS INTERFACE

The SCCS[6] interface is enhanced by the addition of prefix rules. The prefix rule p. specifies how the file x is
to be generated from the file p.x. The following rules provide complete support for SCCS files:

- 10 -

.PREFIXES : s.

s. :
$(GET) $(GETFLAGS) $(>) > $(<)
...
$(UNGET) $(<)

The ... separates the update blocks into pre–commands and post–commands. The pre–commands are executed
to update the target, whereas the post–commands are stacked (first in first out) until the last target has been
updated.

This implementation eliminates the proliferation of ˜ rules found in old-make and build .

11 CONCLUSION

The Fourth Generation make is being used successfully by a growing community of users. The program
performs well enough that users are not tempted to bypass make by manually issuing compile and touch
commands.

After nearly five months of constant use the program has settled into a panic-free steady state and is ready for
wider experimental distribution. The features and performance gains of this program should make it an attractive
software construction tool for both individual users and large projects. The average tenfold decrease in makefile
size should be of particular interest to large software project managers.

- 11 -

REFERENCES

1. S. I. Feldman, Make – A Program for Maintaining Computer Programs , Software – Practice and
Experience, Vol. 9 No. 4, pp. 256-265, April 1979.

2. Augmented Version of Make , UNIX System V – Release 2.0 Support Tools Guide, pp. 3.1-3.19, April 1984.

3. V. B. Erickson and J. F. Pellegrin, Build – A Software Construction Tool , AT&T Bell Laboratories Technical
Journal Vol. 63 No. 6 Part 2, pp. 1049-1059, July-August 1984.

4. D. G. Korn, KSH – A Shell Programming Language , USENIX Toronto 1983 Summer Conference
Proceedings, pp. 191-202, 1983.

5. S. R. Bourne, The UNIX Shell , AT&T Bell Laboratories Technical Journal, Vol. 57 No. 6 Part 2, pp. 1971-
1990, July-August 1978.

6. L. E. Bonnani and C. A. Salemi, Source Code Control System User’s Guide , System V Programmer’s
Manual.

- 12 -

12 Appendix A: MAKEFILE EXAMPLE

#
old makefile
#

DEBUG = -DDEBUG
MAX = 123

CFLAGS = -O -I$(HOME)/include $(DEBUG)

CFILES = dir/a.c b.c c.c d.c
HFILES = c.h
OFILES = a.o b.o c.o d.o

command : $(OFILES)
$(CC) -o command $(OFILES) $(HOME)/lib/lib.a -lm

a.o : dir/a.c $(HOME)/include/a.h
$(CC) $(CFLAGS) dir/a.c

b.o : $(HOME)/include/b.h c.h

c.o : c.c
$(CC) $(CFLAGS) -DMAX=$(MAX) c.c

print :
pr Makefile $(HFILES) $(CFILES) | lp

lint :
lint $(CFLAGS) $(CFILES)

/*
* new makefile
* all files recompiled if DEBUG value changes
* c.o recompiled if MAX value changes
*/

DEBUG = 1
MAX = 123

.SOURCE.h : $(HOME)/include

.SOURCE.a : $(HOME)/lib

.SOURCE : dir

command :: Makefile c.h a.c b.c c.c d.c lib.a -lm (DEBUG)

c.o : (MAX)

- 13 -

13 Appendix B: MANUAL PAGE

