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Nested Inductive Types

Justified and Usable Nested Inductive Types in Lean and Rocq
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MATTHIEU SOZEAU, Inria, France
NICOLAS TABAREAU, Inria, France

Inductive types are a fundamental abstraction mechanism in type theory and proof assistants, supporting
the definition of data structures and rich specifications. Nested inductive types extend this mechanism by
allowing constructors to use parametric types instantiated with the type being defined (e.g., lists or trees of the
type to be defined). They are widely used in large verification projects – including CompCert, Iris, Verinum,
and MetaRocq – to express complex, structured specifications. Despite this widespread use, the treatment of
nested inductive types in both Lean and Rocq is unsatisfactory. Lean rejects many practical definitions while
Rocq accepts definitions for which no usable elimination principle can be defined. Neither system provides
reliable automatic generation of elimination principles. As a result, developers must define custom eliminators
by hand, leading to fragility, duplication, and significant proof engineering overhead. This paper introduces a
novel validity criterion for nested inductive types that guarantees that they can be elaborated into well-formed
mutual inductive types. Under this criterion, the elimination principle for the original nested definition is
provably equivalent to that of its elaborated mutual form. Our condition strictly generalizes Lean’s current
check while ruling out exactly the problematic cases accepted in Rocq. Using this foundation, we give a
systematic method for automatically generating correct elimination principles for nested inductive types, and
we provide an implementation integrated into Rocq, along with an implementation plan for Lean.

1 Introduction

In type theory, inductive types are a fundamental construct playing a role similar to data structures
in programming language. They enable the representation of canonical notions of mathematics and
computer science such as natural numbers, syntax, and other tree-like structures. However, inductive
types go beyond classical data structures by offering a natural and expressive framework for
specifying and reasoning about programs and their properties within a rigorous logical foundation,
such as typing relations, logical relations, or intrinsically typed syntax.

Inductive Types. To ensure logical consistency in the presence of (recursive) inductive types, not
all inductive types can be accepted. A so-called strict positivity criterion is required, prohibiting
definitions where the inductive type appears in a non-strictly positive position – for example,
to avoid the definition of an indudctive type equivalent to its own negation. Concretely, strict
positivity requires that in the type of a constructor for an inductive type I, all occurrences of I
appear only on the right-hand side of function arrows in each of the constructor arguments’ types.
This criterion naturally generalizes to mutually inductive definitions as well, and both Lean and
Rocq enforce the same condition.1

The word inductive comes from the fact that all the terms of an inductive type are combinations of
its constructors. This fundamental principle gives rise to elimination principles. Giving an inductive
type satisfying the strict positivity criterion, it is possible to define an elimination principle. For
the case of list, the elimination principle has type:

1Rocq and Lean appear to enforce the same condition for mutual but non-nested inductive types, although this is not
explicitly documented in Lean’s manual, making it difficult to confirm with certainty.
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list_elim : ∀(A : Type) (P : list A → Type),

P nil → (∀(a : A) (l' : list A), P l' → P (cons a l')) → ∀l : list A, P l.

Coarsely, this elimination principle, for a given predicate P: list A → Type, is generated by asking
the user to provide a proof that the predicate holds for each constructor—here, P nil and P (cons

a l')—assuming that it holds for all the recursive occurrences that have been deemed positive—
here P l' for the list A argument of cons. Elimination principles are also often called induction
principles (with a more logical connotation) or recursion principles (with a more computational
connotation)—we simply say elimination principle in this paper and mean all variants by this.

Depending on the foundational system and proof assistant, elimination principles are either added
as primitives at definition time, or can be defined in terms of other primitives of the proof assistant.
In Lean, elimination principles are added as new axioms with their associated computation rules,
while in Rocq, they are automatically generated as a combination of fixpoints and pattern matching
that are primitives in Rocq. This difference does really not matter for the rest of the paper as our
work applies to both design choices, even if it has slightly different technical implications.

Nested Inductive Types. To capture more sophisticated forms of recursion and structure, nested
inductive types extend the expressive power of inductive types, analogous to nested datatypes
in programming languages [11]. Nested inductive types allow constructor arguments to have a
recursive reference to the defined types below other type constructors—most commonly below list

or other parameterized types. This added flexibility allows, for instance, the concise representation
of arbitrary 𝑛-ary operations or richly structured syntax trees. Such constructs occurs for instance
in functional languages such as OCaml, in formalisations of (first-order) logic, 𝑛-ary application in
𝜆-calculus, or type theory.
Probably the most well-known example of nested inductive type is the type of trees with

arbitrary many subtrees, a.k.a. Rose Trees2, but such nesting with lists occurs also naturally e.g.,

when formalising syntax. Let us look at a typical definition of syntax for a 𝜆-calculus with a switch

case-analysis construct.
Inductive term := lam : term → term | . . . | switch : term → list term → term.

It uses nesting by instantiating the parameter of the inductive type list with the type term to be
defined in order to encode the different branches of a pattern matching, the first argument (of type
term) being the discriminee. Here, list would be called a container type. Note that in this paper,
we do not cover so-called truly nested inductive types, which use themselves as container [26].

Using types like list and option allows the reuse of facilities for the construction of complex
data structures and the integration with existing libraries. As a result, nested inductive types are
particularly well-suited for defining and reasoning about complex structures or specifications that
are compositionally built from simpler container types. This includes not only common containers
but also more advanced constructions such as maps [24].
An important example is the typing judgment for our 𝜆-calculus: since terms are nested, the

typing judgment will be as well. For a switch to be well-typed, the discriminee has to have finite
type, and all branches the return type3. This is implemented by nesting with the unary parametricity
translation of list, called All : (A → Prop) → list A → Prop, ensuring that a predicate P holds
for all elements of a list.
Inductive typing : term → ty → Prop := . . .

| typing_switch (discr : term) (brs : list term) (n : nat) (return_type : ty) :

typing discr (finite n) → All (fun a ⇒ typing a return_type) brs →
2https://en.wikipedia.org/wiki/Rose_tree
3A complete definition would have to deal with a context for variables, but this is not necessary to illustrate our point.

https://en.wikipedia.org/wiki/Rose_tree
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typing (switch discr brs) return_type.

Nested inductive types are crucially used in large-scale formalization efforts in Rocq: They are
used in one of the fundamental type definitions of CompCert; in program verification frameworks
such as the Verified Software Toolchain (using CompCert’s C) and the Iris project, in the verification
of numerical algorithms in Verinum, and are omnipresent in formalisations of type theory e.g.
for Martin-Löf type theory in Agda [2] or Rocq [3], and the MetaRocq project of Sozeau et al.
[28], which amongst other things specifies the type theory of Rocq and implements a verified type
checker for it in Rocq. In Lean, lack for more wider support for nested inductive types is wished
for by users in software verification, e.g., to be able to nest over maps [18].

Broken Support in Rocq and Lean. Considering the importance of nested inductive types, one
would expect Rocq and Lean to offer good support for them, yet neither one does. They both fail
to generate usable elimination principles, and surprisingly accept a different set of nested inductive
types, Rocq being too permissive, whereas Lean is too restrictive.

Broken Support in Rocq. Rocq is not able to generate a useful elimination principle for any nested
inductive type. This lacking feature frequently confuses users and results in many questions in
online forums, while in large-scale verification projects it leads to manual elimination principle
definitions taking hundreds of lines, which have to be maintained by hand.

For the type of terms, it generates an elimination principle which does not contain any induction
hypothesis for the branches of the pattern-matching. For containers such as list in a simple
type fragment, it is folklore the elimination principle will make use of the (unary) parametricity
translation for containers, as described in the Coq’Art book in 2004 [9]. For the case of terms, one
would want the elimination principle for the constructor switch to be:

∀(discr : term) (brs : list term), P discr → All P brs → P (switch discr brs))

While Rocq does not generate this elimination principle, it can be manually proved by users using
fixpoints and pattern-matching.

This has been worked out formally in a line of work by Johann et al. [19–21]. Seminal work by
Tassi [30] attempted to lift this intuition to dependent type theory. Key to the validity of generating
induction principles via parametricity is that one can generate proofs of the fundamental lemma of
the parametricity translation. As observed by Tassi, this is in general impossible: For some inductive
types, the fundamental lemma only holds externally, and cannot by proved in all generality inside
the type theory. Consequently, this approach falls short for some nesting containers, see Section 2.4.

Another issue of Rocq’s implementation is that it proves to be excessively permissive. It accepts
nested inductive types that lack a mutual encoding and are challenging to analyze or reason about
within the meta-theory. Moreover, for types that cannot be encoded as mutual inductives, it seems
to be impossible to define the expected elimination principle even manually, making them unusable
in practice, in which case rejecting the nested definition is arguably a better behavior.

Broken Support in Lean. Switching to Lean does not resolve the situation either. Lean’s approach
is to compute an equivalent mutual inductive encoding of a given nested inductive type and then
generate directly in the kernel an elimination principle that mirrors the one of this mutual encoding.
For the type of terms, it generates a principle
term.rec : ∀(P : term → Sort u), ∀(P' : list term → Sort u),

(∀discr brs, P discr → P' brs → P (switch discr brs)) →
P' nil → (∀t l, P t → P' l → P' (x :: l)) → ∀t, P t

However, in this approach, the mutual encoding leaks into the elimination principle, as the user must
explicitly provide an additional predicate P' on list term. In practice, P' can be instantiated with
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All P, but this workaround highlights the need for a more systematic treatment of the problem—one
that avoids such leakage of the internal encoding. More problematic, since a straightforward mutual
encoding becomes impractical in more complex scenarios, Lean ultimately rejects some nested
definitions that are theoretically valid—and often crucial for advanced specifications. For example,
defining typing in version 4.24.0 produces the following error message:

> (kernel) invalid nested inductive datatype ’All’, nested inductive datatypes parameters

cannot contain local variables.

Contributions. These implementation shortcomings likely stem from an incomplete founda-
tional understanding of nested inductive types. In this paper, we argue that, just as the strict
positivity condition guarantees the existence of an eliminator for mutual inductive types, a similar
well-formedness condition must be established for nested inductive types to ensure their elimina-
tors can be derived. However, the nested setting introduces additional complexity: the positivity
condition itself must be employed in the very definition of the elimination principle.
In this paper, we set the theoretical and practical foundations to make nested inductive types

justified and usable in both Lean and Rocq. To do so:

• We introduce a novel positivity condition for nested inductive types based on strictly positive

parameters, which guarantees the existence of the elimination principles expected by users.
• In order to generate nested elimination principles, we build on a sparse variant of parametricity,
which provides a lightweight yet powerful tool for ensuring correctness while preserving practical
usability. Our novel positivity condition and the use of sparse parametricity together ensure that
the fundamental lemma can always be proved, resolving the issues observed by Tassi.

• To justify our positivity criterion, we show that every nested inductive type can be encoded as
a positive, non-nested mutual inductive type: the elimination principle for the original nested
type can be systematically defined for its translation, and proven using the mutual elimination
principle.

Our work lays the theoretical and practical groundwork for robust and automated support for nested
inductive types, addressing the core limitations in both Lean and Rocq. In Lean, it extends the
mutual encoding approach to arbitrarily complex cases while preventing the encoding from leaking
into the generated eliminators. In Rocq, it enables correct and systematic eliminator generation for
all valid nested definitions, ruling out ill-formed cases where no eliminator can exist. It bridges the
gap between usability and meta-theory, enabling proof assistants to better accommodate large-scale
formal developments while reducing the manual effort required from users.

We also contribute actual implementations and formal proofs of our results:

• The reduction from nested inductive to mutual inductive and the proof that it produces a valid
mutual inductive has been mechanized in MetaRocq .4

• We demonstrate the feasibility and utility of our approach in practice by providing a prototype
plugin for Rocq along with our formalization and a corresponding port to OCaml, part of a
pull request on Rocq to replace and subsume the actual mechanism for generating elimination
principles. We also outline a plan for integration in Lean.

Note that we have not mechanized the encoding of the elimination principle as it is currently out
of reach: it would require a framework for verified meta-programming capable of building complex
type derivations which currently does not exist.

4We use MetaRocq as the analogous Lean4Lean formalisation [15] is still work in progress. References to the formalization
are made using [Foo.v]. All links have been anonymized, but can be retrieved from anonymous supplementary material.

formalization/Foo.v
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Outline of the Paper. After reviewing the current support for nested inductive types in Section 2,
Section 3 introduces our notion of positivity for nested inductive types and proves that every positive
nested inductive type corresponds to a strictly positive mutual inductive type. Then, Section 4
presents sparse parametricity, which we use to derive the appropriate elimination principles for
nested inductive types. After discussing related work in Section 5, we describe our implementation
in Section 6 and conclude in Section 7.

2 Current Support for Nested Inductive Types

Different proof assistants based on dependent type theory—such as Rocq and Lean—have adopted
divergent design choices regarding nested inductive types, each with its own set of limitations. In
this section, we begin by reviewing commonly accepted practices, then examine the specific design
decisions made by these systems along with their associated constraints. We conclude by analyzing
the recent technique based on parametricity proposed by Johann and Polonsky [21] and Tassi [30],
and highlight its advantages and shortcomings.

2.1 Folklore

Nested inductive types enable the definition of complex inductive structures—such as optional or
arbitrary branching—by leveraging existing inductive types. A well-known example is the rose
tree, a tree structure in which each node may have an arbitrary number of subtrees. As shown
in the introduction, rose trees can be naturally encoded using a nested inductive type, typically
defined as rose_tree A, with a constructor that recursively takes a list of rose trees as input:
Inductive rose_tree A : Type :=
| leaf : A → rose_tree A

| node : list (rose_tree A) → rose_tree A.

Encoding Nested Inductive Types as Mutual Inductive Types. The folklore foundational justification
for nested inductive types is that they can be encoded as mutual inductive types. Consequently,
they are not expected to introduce any additional logical power. Their purpose is purely practical:
to simplify formalization and improve modularity. The core idea behind this correspondence is to
replace each occurrence of the nesting container—i.e., the inductive type used for nesting—with a
specialized copy of its definition, instantiated to operate solely on the nested inductive type.

For the case of rose trees, rose_tree_mut is mutually defined with list_rose_tree_mut as follows
Inductive rose_tree_mut A : Type :=

| leaf_mut (a : A) : rose_tree_mut A

| node_mut (l : list_rose_tree_mut A) : rose_tree_mut A

with list_rose_tree_mut A : Type :=
| nil_mut : list_rose_tree_mut A

| cons_mut : rose_tree_mut A → list_rose_tree_mut A → list_rose_tree_mut A.

The need for a dedicated version of list in the mutual definition highlights the practical value of
nested inductive types: they allow shared use of existing definitions and properties of common
container types. Without support for nested inductives, the entire library developed for lists
would have to be duplicated for the specialized type list_rose_tree_mut, significantly increasing
redundancy and maintenance effort.
This encoding naturally raises the question of which nested inductive types are valid through

corresponding to a mutual inductive definition. In particular, it is not possible to nest over non-
uniform parameters or indices, as no general translation to mutual inductive types then exists. We
discuss why this is not possible in Appendix B using power lists as an example.



Thomas Lamiaux, Yannick Forster, Matthieu Sozeau, and Nicolas Tabareau

Elimination principles for Nested Inductive Types. For a non-nested inductive type, the elimination
principle closely follows the structure of the inductive type, and generating it and inhabiting it is
straightforward. This is much less trivial to derive the elimination principle for nested inductive
types, in particular to define appropriate recursion hypotheses.
It is folklore that elimination principles for nested inductive types require the notion of para-

metricity to define the recursion hypotheses for nested arguments, as introduced by Reynolds
[27] and extended to type theory by Bernardy et al. [8], Keller and Lasson [23]. Parametricity is a
principle that formalizes the idea that polymorphic functions must behave uniformly across all
their instantiations. More precisely, it states that a term of a polymorphic type cannot depend on
the specific structure of its type arguments, but only on their abstract behavior. This leads to "free
theorems," or properties that can be derived purely from the type of a function, without needing
to inspect its definition. The idea is to leverage the parametricity predicate to enforce that the
motives we are trying to prove hold on all the subterms. This is possible as in dependently typed
settings, parametricity can be expressed via a syntactic translation that associate a term with a
logical relation or predicate [8, 23].

The standard example of the literature is to define the elimination principle for rose_tree that is
nested on list, using the unary parametricity list𝜀 of list to generate the recursion hypothesis [9].
In the case of unary parametricity, the predicate associated to list is given by the following inductive
type, which requires a predicate A𝜀 : A → Type on the parameter A, and enforces this predicate
holds on all subterms of type A.

Inductive list𝜀 A (A𝜀 : A → Type) : list A → Type :=
| nil𝜀 : list𝜀 A A𝜀 nil

| cons𝜀 : ∀a (a𝜀 : A𝜀 a) l (l𝜀 : list𝜀 A A𝜀 l), list𝜀 A A𝜀 (cons a l).

Note that list𝜀 actually corresponds to the inductive predicate All presented in the Introduction.
Concretely, list𝜀 is used in the induction hypothesis to ensure that the motive we aim to prove
holds for all the subterms, in this case, for all the elements of the list. This gives us the following
elimination principle:

Definition expected_ty_rose_tree_elim :=
∀(A : Type) (P : rose_tree A → Type) (Pleaf: ∀a, P (leaf a)),

∀(Pnode : ∀l, list𝜀 (rose_tree A) P l → P (node l)) (t:rose_tree A), P t.

Inhabiting the elimination principle as in Rocq or via the mutual encoding requires some form of
a local version of the fundamental lemma for the parametricity to prove the recursion hypotheses
hold. For list, it requires that any term of type list A gives rise to a witness that list𝜀 A A𝜀 l if
any term of type A gives rise to a witness that A𝜀 a. The proof that any list is parametric is obtained
by doing an induction on the list, so the elimination principle list_elim is crucial in the proof of
the fundamental lemma for lists.

Definition list𝜀
𝑓 𝑙 A (A𝜀 : A → Type) (a𝜀 : ∀a, A𝜀 a) (l : list A) : list𝜀 A A𝜀 l

:= list_elim (list𝜀 A A𝜀) nil𝜀 (fun r ⇒ cons𝜀 r (a𝜀 r)) l.

Generalizing this idea to automatically derive elimination principles is far from straightforward
because parametricity, while closely related, is not entirely suited to the task. One of the contribu-
tions of this paper is to clarify that this connection, while strong, is not perfect. In particular, when
nesting through types like vectors instead of simple lists, blindly applying parametricity results
in the generation of unnecessary predicates and overly complex recursion hypotheses. These, in
turn, significantly hinder the usability of the resulting elimination principles. As we will see in
Section 2.4, this can even lead to elimination principles that are unusable in practice. To solve
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this problem, we provide a comprehensive description of a modified version of parametricity that
properly scales to nested inductive definitions in Section 4.

2.2 Nested Inductive Types in Rocq

Positivity Condition in Rocq. Positivity checking for nested inductive types in Rocq proceeds
similarly to the case of non-nested inductive types (see Appendix A for a comprehensive definition),
with the key difference being in how nested occurrences are handled.

When the positivity checker encounters a nested occurrence such as list (rose_tree A), Rocq
performs the following steps:

(1) It verifies that the type used for nesting (e.g., list A) is not a mutual inductive type, and is
only nested on uniform parameters: nesting over non-uniform parameters or indices is not
possible as discussed in Appendix B.

(2) It substitutes the recursive occurrence (e.g., rose_tree A) into the types of the constructors
of the nesting type. For instance, it substitutes rose_tree into the types of nil and cons for
list, and then recursively checks that the resulting types are strictly positive.

While this appears perfectly reasonable it suffers from several issues. First, Rocq currently
forbids nesting with mutual inductive types which is fundamentally strange if nested inductive
types are justified by having a mutual encoding, as it would allow nesting with rose_tree but not
with its encoding rose_tree_mut. As we will see, this limitation is artificial and likely reflects the
broader uncertainty and lack of understanding surrounding nested inductive definitions.

Second, this approach ensures that nested inductive definitions remain well-founded and consis-
tent by reducing the positivity check to a form of "dynamic inlining" of the nesting type’s structure.
A particularity of this positivity check is that it can accept nested inductives that could not be
accepted by a purely syntactic check. For instance, consider the inductive type depends_on_b which
takes a boolean b:bool and a type parameter A:Type.
Inductive depends_on_b (b : bool) (A : Type) :=
| cst : (if b then A else (A → bool)) → depends_on_b b A.

If the boolean b is true, then nesting on A is allowed as it reduces to A which is strictly positive, but
it is not allowed if b is false as in this case it reduces to A → bool which is not positive.

Moreover, there are no checks to prevent nested inductive types from corresponding to inductive-
inductive types. The positivity checker operates on the specialized version but only checks strict
positivity, and not well-typedness which ensures inductive types are not inductive-inductive. Thus,
because the specialized version is not type-checked independently, certain patterns slip through
and Rocq currently accepts a small subset of nested inductive types that, in effect, correspond to
inductive-inductive definitions. Consider the type Fnat, representing natural numbers where the
Fnat_succ constructor takes two equal variables rather than one.
Inductive Fnat : Type := Fnat_zero : Fnat | Fnat_succ : ∀(n m : Fnat), n = m → Fnat.

In this case, the equality n = m expands to eq Fnat n m, where eq is itself an inductive type. The
recursive dependency via eq introduces an inductive-inductive structure, but Rocq accepts it because
the strict positivity checker does not reject such cases. And indeed the corresponding mutual
encoding Fnat_mut of Fnat is strictly positive as can be seen below. Yet, the type of Fnat_mut_eq
must have an index of type Fnat to be instantiated in n and m, making it inductive-inductive.
Fail Inductive Fnat_mut : Type :=
| Fnat_mut_zero : Fnat_mut | Fnat_mut_succ : ∀(n m : Fnat_mut), Fnat_mut_eq m n → Fnat

with Fnat_mut_eq : Fnat_mut → Fnat_mut → Type :=
| eq_refl_mut : ∀(n : Fnat_mut), Fnat_mut_eq n n.
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All the nested inductive types accepted by Rocq that happen to correspond to inductive-inductive
definitions appear to be harmless, as they fall within a very limited and well-behaved fragment of
such definitions. In particular, these cases probably do not compromise consistency, although we
have no proof of that. However, even though such definitions may be accepted, Rocq lacks proper
support for inductive-inductive reasoning, making it difficult to do anything meaningful with
them. For instance, the expected elimination principle for Fnat—defined using fix and match—is
not accepted by the guardedness condition. As a result, no structurally recursive functions can be
written over such types in practice.

Elimination Principle through Fixpoints and Pattern-Matching. When Rocq encounters a nested
occurrence during the generation of an elimination principle—such as list term—it fails to generate
any induction hypothesis for the nested components. As a result, the derived elimination principle
is incomplete and effectively unusable for reasoning about such structures.

However, the correct principle can be defined manually, using the underlying primitive constructs
fix and match, using the ability to nest fixpoint expressions. Appendix C provides an illustration
for rose trees and typing.
The lack of automatic support for elimination principles of nested inductive types require the

users to do boilerplate work manually. Even though the elimination principle generated by Rocq can
be copied and adapted to add the missing induction hypotheses, this process is extremely tedious
when the inductive types get more involved. For example, the definition typing of MetaRocq/PCUIC
is about 100loc, the type of the elimination principle 150loc, and its proof 300loc.

2.3 Nested Inductive Types in Lean

Positivity Condition in Lean. To decide if a nested inductive type is well-formed, Lean translates it to
mutually inductive types, and checks that it is well-formed as a mutual inductive type. Checking for
well-formedness and not just positivity, prevents Lean from accepting wrongly inductive-inductive
types as Rocq does. However, as Rocq, Lean accepts types that can only be accepted dynamically
like depends_on_b. Moreover, as mentioned in the introduction, Lean relies on too naive mutual
translation resulting in ill-typed mutual inductive definitions for more complex situations—even
in cases where a more refined encoding would succeed. This forces Lean to prevent users from
using previously seen arguments in nested occurrences, and hence to reject definitions such as
typing, as it cannot handle variables. Yet, as we will demonstrate in Section 3, a more sophisticated
translation can accommodate such definitions correctly.

Elimination Principle Based on the Mutual Encoding. In Lean, the elimination principle of the
corresponding mutual type is used to implement the elimination principles for the nested inductive.
Thus, this elimination principle involves a predicate for rose_tree_mut as well as a predicate for
list_rose_tree_mut, and four conditions mixing those dealing with rose trees and those with lists:

rose_tree_mut_elim :

∀(A : Type) (Pr : rose_tree_mut A → Type) (Pl : list_rose_tree_mut A → Type),

(∀a : A, Pr (leaf_mut a)) →
(∀l : list_rose_tree_mut A, Pl l → Pr (node_mut l)) →
Pl nil_mut →
(∀r : rose_tree_mut A, Pr r → ∀l, Pl l → Pl (cons_mut r l)) →
∀r : rose_tree_mut A, Pr r.

The implementation of Lean tries to hide this encoding to the user by redefining a dedicated
elimination principle generated from this one by refolding the original definitions of list and
rose_tree and adding the corresponding reduction rules.



Nested Inductive Types

This approach is rather unsatisfactory, as the resulting elimination principle does not match
what users typically expect. In particular, the original mutual elimination principle leaks into the
user interface. This is evident from the explicit induction cases for nil and cons, which prevent the
reuse of generic definitions and lemmas over standard lists. Instead, users are forced to manually
inline or reimplement these definitions, undermining modularity and compositional reasoning.
Moreover, the reduction rule for cons exposes the elimination principle for list_mut, which itself
has been unfolded back into list. This leads to unnecessary complexity and verbosity. Another
major drawback is the potential blowup in size: mutual encodings generate an inductive block for
every distinct nested occurrence. As a result, a motive like P0 must be added for each such block,
along with corresponding assumptions like Pnil for each constructor. This makes the resulting
elimination principles impractical for complex types such as typing, which already involve many
nested and non-trivial occurrences. That said, these mutual induction principles are still useful: in
practice, they can be employed to define the elimination principles that users expect. However, this
translation is neither automatic nor trivial, as it relies on the availability of a fundamental lemma
for parametricity.

2.4 Limitations of Using Full Parametricity

The main challenge with nested elimination principles lies in automatically generating and proving
suitable recursion hypotheses that ensure the motive holds for all subterms.

To address this generically, Tassi [30] adopts the folklore intuition and generates an intermediate
elimination principles using unary parametricity, which is then instantiated to recover the elimi-
nation principles expected by users. Independently, Johann and Polonsky [21] tackled this issue
using categorical semantic for Algebraic Data Types (ADT), a non-dependent fragment of Rocq
or Lean inductive types, but covering truly nested inductive types. Their elimination principles
coincide with Tassi [30]’s intermediate ones. Therefore, providing a categorical justification to
Tassi [30]’s approach for the Algebraic Data Types fragment. Unfortunately, as we now show, using
parametricity does not scale in the presence of type dependency.

Concept. Tassi’s [30] approach proceeds in two steps. First, it uses parametricity to generate an
intermediate elimination principle, then it instantiates it to obtain a usable elimination principle.
To explain how it works, we use rose trees as a running example.

The generation of the type of the intermediate elimination principle of an inductive block is
done using parametricity via the following procedure [30, Section 5.4]:
(1) The parameters of the inductive type A:X are quantified, and for each of them a new hypothesis

is added whose type is the parametricity witness of A, that is PA:JXK𝜀 A.
(2) Amotive is added for each inductive block following the usual procedure except that a hypothesis

using parametricity is added for each index.
(3) To each constructor c:T of each inductive block, an hypothesis whose type is the parametricity of

T is added, except that the inductive blocks are not translated by their parametricity predicates
but by their motives, which have the same type. We write it Pc:JTKP c for this version of
parametricity.

(4) The conclusion states that the motive holds when parametricity of the inductive block holds.
Following this procedure for rose_tree, gives us one new hypothesis PA : JTypeK𝜀 A as rose_tree
only has one parameter A : Type. Moreover, as rose_tree it is not a mutual nor indexed inductive
type, only one motive is added which is the usual one P : rose_tree A → Type. This gives us
the following intermediate elimination principle of rose_tree A, where the hypotheses generated
using parametricity are shown after simplification in comments.
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Definition ty_rose_tree_elim_param :=
∀(A : Type) (PA : JTypeK𝜀 A) (* (PA : A → Type) *) (P : rose_tree A → Type),

∀(Pleaf: JA → rose_tree AKP leaf), (* (Pleaf: ∀a, PA a → P (leaf a)) *)

∀(Pnode : Jlist (rose_tree A) → rose_tree AKP node),

(* (Pnode : ∀l, list𝜀 (rose_tree A) P l → P (node l)) *)

∀t, rose_tree𝜀 A PA t → P t

The type ty_rose_tree_elim_param corresponds to the expected elimination principle, up to two
key modifications.

First, it introduces an additional predicate PA : A → Type along with a proof PA a in the type of
the Pleaf constructor. This extra hypothesis arises from the parametricity translation: being a purely
syntactic and uniform transformation, parametricity introduces a predicate for every constructor
argument, regardless of its type. Because parametricity is oblivious to semantic intent—such as
whether A should be treated as a constant type—it generates a predicate PA unconditionally. As
a result, the elimination principle must include PA to provide a definition for the parametricity
witness of any term a : A.

Second, the elimination principle requires an additional hypothesis of the form rose_tree𝜀 PA t

in order to establish that P t holds. This requirement arises as a workaround for the (unnecessary)
introduction of the predicate PA. Without this assumption, it would generally be impossible to
prove P t by structural recursion—using fix and match on t—since one cannot assume that PA a

holds for arbitrary a : A. Indeed, in the case where t := leaf a, there is no reason to expect PA a

to hold—PA could just as well be defined as the constantly false predicate. Consequently, Tassi [30]’s
intermediate elimination principle requires an additional hypothesis rose_tree𝜀 PA t to ensure
that PA a holds in the case t := leaf a. This intermediate principle can then be inhabited using fix

and match over the parametricity proof, relying on the functoriality of the type used for nesting to
bridge the parametricity predicates and the target motives. In the case of rose_tree, this translation
uses the functoriality of list𝜀 , namely the existence of a term:

list𝜀_funct : ∀A P Q (H : ∀a, P a → Q a), ∀l, list𝜀 A P l → list𝜀 A Q l

This allows one to recursively convert the parametricity witness list𝜀 (rose_tree A) (rose_tree

𝜀 A PA) l into the desired goal list𝜀 (rose_tree A) P l.
The second step of the construction consists in automatically deriving the expected elimination

principle from the intermediate one. This is achieved by instantiating the auxiliary predicates
introduced by parametricity with trivial ones—typically predicates that always hold—and then
automatically proving a form of local fundamental lemma, that parametricity holds for the consid-
ered nested inductive type under this instantiation. For the rose_tree example, this amounts to
instantiating PA with fun _ ⇒ True, and automatically constructing a proof of the fundamental
lemma for rose trees: ∀t, rose_tree𝜀 (fun _ ⇒ True) t. If this step can be achieved, this provides
us with a usable elimination principle very close to the one expected by users, though polluted
with trivial hypotheses.

Advantages. The main advantage of the approach proposed by Tassi [30] is that it offers a generic
and modular method for generating recursion hypotheses, ensuring that the motive holds on all
relevant subterms. Because this approach is driven by parametricity, it automatically handles more
complex nesting patterns without requiring any special treatment. Likewise, the method is robust
to situations where the inductive type used for nesting is itself nested. For instance, if we define
a new inductive type that nests using rose_tree, the recursion hypothesis will naturally involve
rose_tree𝜀 , without requiring any additional encoding effort.
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In many cases, this allows the automatic generation of both an intermediate elimination principle
and a final elimination principle close to what users expect—albeit still cluttered with trivial
hypotheses. Compared to the current support in Rocq and Lean, which either omits such principles
or generates unsatisfactory ones, this represents a significant improvement in automation.

Limitations. The main limitation of Tassi’s [30]’s approach is that it relies on two non-trivial
ingredients: the functoriality of the inductive types used in nesting, and a local fundamental lemma
for parametricity itself. Unfortunately, both are sometimes difficult to establish—even for non-nested
inductive types—due to unnecessary hypotheses introduced by the parametricity translation.

The fundamental lemma for parametricity states that if a term t is well-typed in a context Γ ⊢ t :

T, then its parametricity translation JtK𝜀 is well-typed in the translated context JΓK𝜀 ⊢ JtK𝜀:JTK𝜀 t.
This means that parametricity must also hold over every constant of the environment used, and
over context, and thus must handle open terms correctly—including variable bindings introduced
by type constructors.
While these are hard proofs to generate in many cases, in the general case it turns out to be

impossible, due to parametricity only holding externally. Notably, this happens when types quantify
over arbitrary type variables. As a minimal and striking example, consider the inductive type
closed𝑖𝑑 , which is non-recursive and has only one constructor, together with is translation:

Inductive closed𝑖𝑑 := c𝑖𝑑 : (∀X, X → X) → closed𝑖𝑑.

Inductive closed𝑖𝑑𝜀 : closed𝑖𝑑 → Type :=
c𝑖𝑑𝜀:∀(f:∀X,X → X), (∀X (PX:X → Type) (x:X), PX x → PX (f x)) → closed𝑖𝑑𝜀 (c𝑖𝑑 f).

To prove the fundamental lemma—namely, that closed𝑖𝑑𝜀 t holds for any t : closed𝑖𝑑 , one most
construct a value of type closed𝑖𝑑𝜀 (c𝑖𝑑 f), and thus prove: ∀X (PX : X → Type) (x : X), PX x

→ PX (f x). This is clearly impossible without further assumptions on f, since we cannot derive
parametricity internally for such higher-rank polymorphic functions. Although the fundamental
lemma of parametricity holds externally (i.e., semantically), it cannot be internalized in intensional
type theory without significant extensions, as discussed in [7, 25]. This is especially unfortunate
since the standard elimination principle for closed𝑖𝑑 is trivial—it merely requires a pattern match
on a non-recursive type. Thus, the parametricity-based translation ends up overcomplicating a
case that should be elementary and cannot be used as a default method as it would not support
inductive types that are currently supported.

3 From Nested Inductive Types to Mutual Inductive Types

In this paper, we adapt the approach of Tassi [30], propagating predicates modularly through the
nested structure. However, we rely on a sparse variant of parametricity that introduces only the
hypotheses that are strictly necessary. To achieve this, we must precisely control which subterms of
each constructor argument require recursive application of parametricity. When such recursion is
unnecessary, we classify the argument as constant. This is not achievable using the current positivity
conditions – which elaborate the nested encoding and only check positivity after reduction – as
this allows for dynamic nesting, like depends_on_b (Section 2.2), making it impossible to decide
positivity purely syntactically.
To overcome this issue, we define a new positivity condition to syntactically decide if a nested

inductive type is positive or not, ruling out these ill-behaved nested inductive types. The core idea
is to only allow nesting on the parameters that are arities—of the form ∀X0 . . . X𝑛, Type—and that
occur in strictly positive position, with arguments that are themselves strictly positive. We call
these parameters strictly positive parameters. This approach ensures, statically, that strict positivity
is preserved during elaboration into a mutual inductive definition: substituting a strictly positive
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position with a strictly positive parameter preserves strict positivity. Moreover, it guarantees that
hypotheses are only generated for strictly positive parameters, which enables a sparse form of
parametricity. This, in turn, allows us to generate recursion hypotheses selectively and automatically
derive the elimination principles users expect.
In this section, we first define the mutual encoding of nested inductive types and identify the

necessary conditions for this encoding to be well-defined. We then introduce a new positivity
criterion for nested inductive types, based on the notion of strictly positive parameters, and show
that this condition is preserved under the mutual encoding.

Technical Preliminaries. From this point on, we assume that terms are represented by the type term

of MetaRocq [28], representing Rocq’s kernel abstract syntax trees and supporting constructs
such as products, functions, n-ary applications, and inductive types. To enable reasoning about
strictly positive parametricity, we further assume that each inductive type is associated with a
function check_nestable, which determines whether its parameters are strictly positive. The role
of the strict positivity condition is to guarantee the correctness of this function: that is, it defines
what it means for parameters to be strictly positive. As a result, check_nestable can be computed
directly from the requirements imposed by the strict positivity criterion. For readability, we present
examples using named variables; the accompanying formalization provides full details, including
the handling of De Bruijn indices, encoded using the constructor tRel of term. Moreover, we do
not distinguish indices from non-uniform parameters for inductive types as they behave exactly as
indices for the generation of elimination principles.

3.1 Encoding Nested Inductive Types

Intuitively, to encode nested inductive types as mutual ones one has to substitute parameters
with their instantiations. However, in a dependently typed setting, this substitution is far from
straightforward, as the instantiations may depend on earlier arguments in the constructor. As
a result, naively performing substitution can lead to ill-scoped terms—expressions that refer to
variables no longer present in the context. Care must therefore be taken when defining the mutual
encoding: the transformation must preserve well-scopedness and avoid generating ill-formed
inductive definitions.

Case Study. Consider the nested inductive type typing of the introduction. Among others, it takes an
argument return_type which appear in the nested argument using All. Substituting the predicate
P in All with this instance would lead to the following signature for All_cons_mut which would be
ill-scoped as return_type is not in its context.

∀a l, typing_mut a return_type → All_mut return_type l → All_mut return_type (a::l)

It is not possible to prevent such arguments to appear in the instantiation as done in Lean (Sec-
tion 1) without excluding typing which is perfectly valid and actually needed for large scale
formalization like MetaRocq. Thus, we need to ensure that any arguments on which the instantia-
tions depend remain in scope. Since the parameters must be shared across all mutual inductive
blocks, we must include the relevant arguments as indices to keep them available. However, we
cannot simply add all arguments as indices, because some of them may be recursive and including
such recursive arguments as indices would result in an inductive-inductive definition, which we
want to avoid. For instance, for typing, adding all the previously seen arguments to the indices of
All_mut would give the following signature which is clearly inductive-inductive as its type refers
to typing.

All_mut : ∀(discr ind : term), term → list term → typing discr ind → Type

https://metarocq.github.io/html/MetaRocq.Template.Ast.html#term
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Inductive typing_mut : term → term → Type :=
| typing_mut_switch (discr : term) (branches : list term) (n : nat) (return_type : term)

:

typing_mut discr (fintype n) → All_mut return_type branches → typing_mut (switch

discr branches) return_type

with All_mut : term → list term → Type :=
| All_mut_nil return_type : All_mut return_type []

| All_mut_cons return_type a l : typing_mut a return_type → All_mut return_type l →
All_mut return_type (a::l).

Fig. 1. Encoding of typing.

Consequently, we can only retain non-recursive arguments and must enforce that recursive
occurrences do not appear within the instantiation of nested arguments. This restriction also applies
to strictly positive parameters: although they are allowed in principle, substituting them further
could still lead to inductive-inductive definitions. In the case of typing, optimizing to retain only
the necessary arguments leads to the encoding in Figure 1.

Encoding. The encoding proceeds as follows: for each nested argument, the (potentially mutual)
inductive types used for nesting are first specialized so that their definitions no longer mention the
nested inductive type in their signatures. These specialized inductive blocks are then incorporated
into themutual inductive definition, and the nested arguments are replacedwith their corresponding
specialized instantiations.
To define the specialization of an inductive block, let us first specify the context of a nesting

argument appearing in a given constructor. We note paramsg the list of types of parameters of
the constructor, argsg the list of types of arguments appearing before the nested occurrence and
largsg the list of types of arguments of the nested occurrence , and 𝜎 the instantiation used in
the nesting argument, such that paramsg, argsg, largsg ⊢ 𝜎 . Given an inductive block indl of the
inductive type used for nesting, let paramsl, indicesl be its parameters and indices, that is, such
that indl : paramsl → indicesl → Type.
We first need to define the type of the specialization of a block. The parameters must be the

same for all the inductive blocks, therefore, the parameters of the specialization of indl must be
paramsg. We also need to define the indices. As some parameters can appear in indices, we must
substitute 𝜎 in indicesl. For 𝜎 to be well-scoped, we need to add argsg, largsg as indices. Yet, as
explained above, doing so directly could create an inductive-inductive type. Consequently, we need
to first strengthen argsg to remove recursive occurrences. This obviously includes recursive and
nested arguments, but also strictly positive parameters as they could become recursive if nested
upon. We write ↑argsg as the strengthening of argsg. Thus, the signature of the specialized block is:

indl_mut paramsg : ↑argsg → largsg → 𝜎(indicesl) → Type.

Given a constructor c : ∀x1 . . . x𝑛, ind paramsl t1 . . . t𝑛 , we need to substitute 𝜎 in the def-
inition. First, for this to be well-scoped, we need to add ↑argsg, largsg as arguments. Second,
as we have changed the parameters and added new indices, we cannot simply substitute in the
definition. Recursive argument instantiated with paramsl inst_indices must be translated now
instantiated with paramsg args largs 𝜎(inst_indices). We still abuse the notation and note 𝜎(_)
for this variant of substitution. Put altogether, this gives the following type for the specialization of
the constructor.

c_mut : ∀(a:↑argsg) (l:largsg) 𝜎(x1) . . . 𝜎(x𝑛), indl_mut paramsg a l 𝜎(t1) . . . 𝜎(t𝑛).
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This procedure describes only a single-layer encoding: if either 𝜎 or indl is itself nested, then
the specialization will also still be nested. As a result, the process must be repeated recursively on
the specialized version.

3.2 Positivity Conditions

To formally define the mutual encoding—and more importantly, to specify the sparse parametricity
translation and elimination principle in Section 4—we require structural information about the
nested inductive type, which is typically entangled with the strict positivity condition.

A key technical contribution of our work is to recognize that this structural information can be
decoupled from the positivity condition and described independently via a notion of view on the
nested inductive type. Strict positivity then guarantees that these views are computed correctly—for
instance, that arguments marked as constant (i.e., that does not mention the recursive blocks or the
strictly positive parameters) are indeed constant. This separation not only clarifies the structure of
nested inductive types, but also provides a principled and modular foundation for presenting the
strict positivity condition.

View of a Nested Inductive Type. We define a view argument (see [Positvity_condition.v]) that decom-
poses the shape of arguments of constructors of nested inductive types. An argument is either:

(1) A constant t : term which is recorded by arg_is_cst.
(2) Of the form ∀largs, X inst_args where largs are constants, and X is either (a) a recursive

occurrence of the nested inductive type, (b) a strictly positive parameter we can nest on, or (c) a
nested argument.

In the latter case, the view on the terms X and inst_args is further decomposed:
(a) X it is an inductive block at position pos_block of themutual inductive type. In that case, inst_args

is decomposed between the instantiations of the parameters which are not recorded as they can
be inferred and the instantiations of the indices inst_indiceswhich are supposed to be constants.
Thus, the view on arguments is recorded as arg_is_ind largs pos_block inst_indices.

(b) X is a strictly positive parameter A𝑘 and the argument is recorded through its position k as
arg_is_sup largs k inst_args.

(c) X is an nesting inductive type ind and then inst_args is decomposed between the instantiations
of the parameters inst_params and the instantiations of the indices inst_indices which are
supposed to be constants. As the parameters can be nested on—provided they are arities of
the form ∀llargs, Type—we further decompose each instantiation as functions fun llargs ⇒
arg to recover arg : term of the nested term. llargs : list term are potentially empty, and
considered as constants. This gives us an instantation of parameters of type list (list term *

term). The argument is then recorded as arg_is_nested largs ind inst_params inst_indices.
Put altogether, this leads us to the inductive definition of argument given in Appendix D representing
our view on a nested inductive type. We can define a function arg_of_term : term → argument

that unfold and accumulates products in largs, until reaching the head of the product. Once the head
is reached, if it is a strictly positive parameter, or an inductive or nested argument, it is decomposed
as explained above, otherwise the original term is considered as a constant. Conversely, there is
a function term_of_arg : argument → term, that keeps track of the context, refolds the products
and applications, and insert parameters for recursive arguments (see Appendix E for an illustration
of the view on All_cons).

Positivity condition for Nested Inductive Types. Our strict positivity condition extends the standard
strict positivity condition for mutual inductive types by incorporating both strictly positive parame-
ters and nested arguments. The extension is minimal: except for the handling of arguments—where

formalization/Positvity_condition.v
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two new cases are introduced—our condition aligns closely with the traditional one. The key
distinctions are that:
(1) strictly positive parameters are not permitted to appear in positions that are not strictly positive
(2) recursive occurrences are not permitted to appear in nested arguments, nor in strictly positive

parameters as they could be replaced by nested arguments if substituted.
A mutual inductive type is strictly positive if all of its inductive blocks are positive. An inductive

block ind params : indices → Type is positive provided that all its constructors are positive,
and that the indices do not refer to the inductive blocks nor the strictly positive parameters. A
constructor c : x1 . . . x𝑛, ind params t1 . . . t𝑛 is positive provided that all its arguments are
positive, and that the instantiation of the indices t1 . . . t𝑛 does not refer to the inductive blocks
nor to the strictly positive parameters.
To present the strict positivity condition for arguments clearly, we rely on the argument view.

Since our strict positivity condition is a conservative extension of the standard one, the first two
cases remain unchanged—except for the additional treatment of strictly positive parameters that
should not appear in constants. To handle nested arguments, we introduce two additional cases:
one for the nested arguments themselves, and another for strictly positive parameters, which are
now treated as a primitive notion via the constructor arg_is_sup.
(1) a constant arg_is_cst t then t must not refer to the inductive blocks or strictly positive

parameters
(2) a recursive argument arg_is_ind largs pos_block inst_indices then: largs, inst_indices

must nor refer to the inductive blocks and the strictly positive parameters; pos_block must be
strictly inferior to the total number of inductive block.

(3) a strictly positive parameter arg_is_sup largs k inst_args, then: largs, inst_args must nor
refer to the inductive blocks and k-th parameter does correspond to a strictly uniform parameter.
To ensure the encoding is not inductive-inductive, we also need that recursive occurrences do
not appear in in largs, inst_indices.

(4) a nested argument largs ind inst_params inst_indices, then largs, inst_indices must nor
refer to the inductive blocks and the strictly positive parameters. Moreover, for each instantiation
(largs, arg) : list term * term of a parameter, llargsmust nor refer to the inductive blocks
or the strictly positive parameter; and if the parameter is strictly positive then arg must be
positive, otherwise it must not refer to the inductive blocks or the strictly positive parameters.
To ensure the encoding is not inductive-inductive, we also need that recursive occurrences do
not appear in largs, nor in llargs and args.

The complete formal definition of positive_argument can be found in [Positvity_condition.v].

3.3 Preservation of Positivity Through the Encoding

To prove that the encoding preserves positivity, it suffices to prove that the specialization of the
nesting containers preserve positivity, as the only modifications in the original inductive blocks
are switching from nested arguments to recursive arguments which is trivial.

The encoding have been fully formalized using the MetaRocq project in [Nested_to_Mutual.v]. The
lemma stating that the mutual encoding is strictlcy positive is proven in [Nested_to_Mutual_proof.v]

as pos_nested_to_mutual. While conceptually close to the informal presentation, the formalization
is significantly more involved due to the use of De Bruijn indices for variables and various low-level
issues, which we briefly review here.

The main overhead comes from De Bruijn indices: contexts must be explicitly tracked to verify
whether parameters appear in terms due to a lack of a verified meta-programming framework,
adding substantial complexity to the formalization part. This is especially cumbersome due to the

formalization/Positvity_condition.v
formalization/Nested_to_Mutual.v
formalization/Nested_to_Mutual_proof.v
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many interacting contexts involved in the encoding and in the specialization of inductive blocks
(e.g., params, argsg, largsg, . . .). Another source of complexity lies in our use of (a variant of) the
view argument’s. While essential to the formalization to separate definitions from proof, it forces us
to port many definitions and properties from term to argument. Finally, Rocq supports non-uniform
parameters, which behave like indices. We refer to the formalization for their precise treatment.
Despite those overheads, nothing is conceptually difficult, and we believe this formalization offers
an excellent benchmark for verified meta-programming frameworks.

4 Eliminators For Nested Inductive Types

The main advantage of our new positivity condition is that it precisely identifies the parameters that
can be nested on—namely, the strictly positive ones. As a result, we only need to generate predicates
and recursion hypotheses for these parameters. This enables the definition of a sparse version of
parametricity, which introduces only the necessary recursion hypotheses. Strict positivity now
exactly characterizes which subterms can be treated as constants, avoiding unnecessary overhead.
Furthermore, sparse parametricity is always provable, provided the associated predicates hold. This
is guaranteed by the fact that all uses of the predicates are confined to strictly positive positions.
This property is crucial to derive recursion hypotheses for nested arguments defined via sparse
parametricity without requiring additional preconditions, in contrast to the approach of Tassi [30].
In the following, we use the Rocq, i.e., fixpoints and pattern-matching in definitions. However,

our approach can be adapted to the Lean setting by relying solely on elimination principles and
reduction rules. All the code presented has been formally defined within Rocq, together with the
corresponding proofs.
To understand how it solves our problem, consider the type All that is used to nest in typing,

introduced in Section 1 (this example is treated in more details in Appendix E). We do not want
to generate predicates for A as it appears in the indices, and hence cannot be nested on. We only
want to add a predicate for the predicate P that we can actually nest on. As a consequence, A and
List A are constants, and there is no need to generate additional hypotheses for them. We only
need to add hypotheses for P a, and All P l. This gives us the following sparse parametricity for
All (noted with suffix 𝑠 ), which is much simpler than the usual parametricity (noted with suffix 𝜖 ).

Inductive All𝑠 {A} {P : A → Type} (PP : ∀a, P a → Type): ∀{l}, All P l → Type :=
| All𝑠_nil : All𝑠 PP All_nil

| All𝑠_cons a l : ∀(ra : P a), PP a ra → ∀(x : All P l), All𝑠 PP x →
All𝑠 PP (All_cons a l ra x).

Supposing that all the added predicates hold, in this case that PP holds, the sparse parametricity
holds. Indeed, the only hypotheses added outside recursive ones are predicate in strictly positive
positions, which all hold by hypotheses. For instance, we can easily prove the local fundamental
lemma for All using that PP was only added in strictly positive positions.

Fixpoint lfl_All𝑠 {A} {P : A → Type} {PP : ∀a, P a → Type} (HPP : ∀a pa, PP a pa)

: ∀l (t : All P l), All𝑠 PP t := fun l t ⇒ match t with

| All_nil ⇒ All𝑠_nil

| All_cons a l ra x ⇒ All𝑠_cons a l ra (HPP a ra) x (lfl_All𝑠 HPP l x) end.

This local fundamental lemma is crucial to define eliminators as it enables to prove the recursion
hypotheses defined using sparse parametricity for nested arguments. For instance, it is possible
to prove the elimination principle of typing by fix and match on the argument of type typing t T

using the local fundamental lemma to prove All𝑠 PP x. Therefore, the approach provides a general
method without the intermediate eliminator needed by Tassi [30]. We now make these ideas formal.
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We define sparse parametricity, nested eliminators, and show how they can be encoded with
eliminators of their mutual encoding.

4.1 Sparse Parametricity for Nested Inductive Types

To define sparse parametricity as an inductive predicate on the original inductive type, we need to
quantify all the parameters and indices of the original inductive type for it to be well-defined. In
addition, for each strictly positive parameter A: ∀llargs, Type, we add a predicate PA : ∀llargs
, A llargs → Type. In contrast to standard parametricity, we do not introduce hypotheses for
llargs, as they are assumed to be constant. Similarly, we do not add hypotheses for non-strictly
positive parameters or indices, as it is impossible to nest on them. This can be summarized as
follows, where A1 . . . A𝑛 are the parameters, and PA1 . . . PA𝑛 are the predicates that are added for
the strictly positive parameters. We underline the arguments added by sparse parametricity and
present the original term alongside its parametricity translation, separated by a dashed line.

ind A1 . . . A𝑛 : indices → Type

--------------------------------------------------------------------

ind𝑠 A1 PA1 . . . A𝑛 PA𝑛 : ∀(ins : indices), ind A1 . . . A𝑛 ins → Type

Given a constructor of an inductive block, sparse parametricity consists in adding a hypotheses
or not for each argument depending on its shape using the function Jx:TK𝑠 defined below.

| c : ∀(x1 : T1) . . . (x𝑛 : T𝑛), ind params t1 . . . tn

----------------------------------------------------------------------

| c𝑠 : ∀(x1 : T1) (x1𝑠 : Jx1 : T1K𝑠) . . . (x𝑛 : T𝑛) (x𝑛𝑠 : Jx𝑛 : T𝑛K𝑠),
ind𝑠 params t1 . . . tn (c x1 . . . x𝑛)

For each argument x : T, we add a hypothesis or not depending on the shape of T. Thanks to the
view argument, we can add hypotheses only for non-constant variables as constant variables have
already been preprocessed, that is t, largs, inst_indices, inst_args, and hence can be ignored.
More specifically, given an argument:
(1) If it is a constant, we do not need to generate an extra hypothesis.
(2) If it is a strictly positive parameter A𝑘 , we generate a proof of the associated predicate PA𝑘 .
(3) If it is an inductive block block pos_block, we generate a recursive block of the sparse para-

metricity block𝑠 i.
(4) If it is a nested argument, for each instantiation of a nestable parameter, we recursively

compute the recursion hypothesis. If it is Some P, we return P. If it is None which means it is
not nested, then we return a trivial predicate fun _ ⇒ True.

Sparse parametricity is implemented in [sparse_parametricity.v]. The key advantage of it over the
standard one is that it allows us to prove that the translation holds locally, provided the added pred-
icates hold—since no unnecessary hypotheses are introduced. This gives rise to a local fundamental
lemma for sparse parametricity (see [local_fundamental_lemma.v] for an implementation).

Theorem 4.1 (local fundamental lemma). Given an inductive block of an inductive type ind A1
. . . A𝑛 : indices → Type, then assuming that the added predicates PA𝑘 hold with witness HPA𝑘 , then

the sparse parametricity holds for each inductive block. Namely, we have a term lft_ind𝑠 inhabiting

the following type:

lft_ind𝑠 : ∀A1 PA1, HPA1 . . . A𝑛 PA𝑛, HPA𝑛 (ins : indices),

∀(t : ind pos_block A1 . . . A𝑛 ins), ind𝑠 pos_block A1 PA1 . . . A𝑛 PA𝑛 ins t

Proof. The proof is done very directly by fix and match on t, as it suffices to inhabit the added
hypotheses. Given an argument:

/theories/SparseParametricity/sparse_parametricity.v
/theories/SparseParametricity/local_fundamental_lemma.v
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(1) The constant case is trivial as no hypothesis is added
(2) The strictly positive parameter case holds by hypothesis.
(3) The recursive case is inhabited by recursion.
(4) The nested case holds recursively as the theorem hold for the inductive type used for nesting,

and the predicates added for nesting hold recursively. □

4.2 Eliminators for Nested Inductive Types

Wehave now defined sparse parametricity and proven the local fundamental lemma. The elimination
principles are generated following the usual procedure, except that we use sparse parametricity to
define the recursion hypotheses of nested arguments, and the local fundamental lemma to prove
them. In particular, this means the elimination principles we obtain are the same as usual one
for non-nested inductive types, making our approach a conservative extension of the non-nested
case. This was demonstrated through a backward-compatible pull request to Rocq, as discussed in
Section 6.

Elimination Principles. Given an inductive block with its indices:
(1) Each parameter of the inductive type is quantified par : params

(2) Each inductive block ind par : indices → Type corresponds to a predicate P𝑖 : ∀(ins :

indices), ind𝑖 par ins → Type

(3) For each constructor of each inductive block c, an assumption Pc is added whose definition is
stated below

(4) We conclude the predicate of the ith blocks holds ∀ins (t : ind𝑖 par ins), P𝑖 ins t

Given a constructor c : ∀x1 . . . x𝑛, block pos_block inst_indices, for each argument, we add
a recursion hypothesis or not depending on its type, that is Pc : ∀(x1 : T1) (IHx1 : IH𝑠 x1 T1)

. . . (x𝑛 : T𝑛) (IHx𝑛 : IH𝑠 x𝑛 : T𝑛) , P inst_indices (c x1 . . . x𝑛)where IH𝑠 : term → term

→ option term computes the recursion hypothesis. This function is easy to define using argument.
For constants and strictly positive parameters we do not return a recursion hypotheses as there is no
recursion happening. For inductive blocks, we return a proof of the motive. For nested arguments,
we use sparse parametricity that we instantiate by recursively computing the recursion hypotheses
for the instantiation of the parameters.

Inhabiting Elimination Principles. Thanks to the local fundamental lemma for sparse parametricity,
nested elimination principles can easily be inhabited using fix and match. Indeed, we need to
inhabit each added recursion hypotheses. The ones added for recursive arguments hold trivially by
recursion as usual. The ones added for nested arguments hold using the local fundamental lemma
for sparse parametricity, and that the recursion hypotheses used for nesting hold by recursion. The
formal definition of this procedure can be found in [eliminators.v]. For example, for typing nested
with All, this gives the definition of typing_elim given in Appendix C.

In Rocq, this guarantees that elimination principles can be automatically generated, provided
the guard condition accepts the nested fixpoints. As long as the proof of the local fundamental
lemma is transparent and can be unfolded, recursion proceeds only on strictly smaller subterms,
thereby ensuring termination.
In Lean, elimination principles can be postulated directly, with their reduction rules defined

using the pattern-matching branches from the corresponding fixpoint definition. In this setting,
the local fundamental lemma appears on the right-hand side of the reduction rules, as for instance
lfl_All_s in the reduction of typing_elim in Appendix C.
To justify that we have generated the correct eliminators for nested inductive types, we show

in Appendix F that they can also be defined and proven for their mutual encoding. The resulting

/theories/Eliminators/eliminators.v


Nested Inductive Types

elimination principles satisfy the reduction rules only up to propositional equality, making them
useful primarily as a sanity check rather than as first-class definitions.
5 Related work

In Section 2.4, we discuss the works of Johann and Polonsky [21], Tassi [30], which are the closest
to our own, and highlight their limitations that we address in the remainder of the paper. We now
discuss work in settings fundamentally different to ours.

Impredicative Encoding. Regarding other variants of dependent type theory, Cedille [29] aims at
being foundationally more sparse than systems like Rocq or Lean, not implementing any inductive
types and instead implementing them through impredicativity and Church encodings. Nested
induction is supported via course-of-values induction schemes [17].
Indutive-Inductive Encoding. Considering other major proof assistants, Agda supports several

variants of inductive types (via compiler flags), including nested and inductive–inductive types. In
principle, our proposed positivity criterion could extend to Agda ’s setting, where direct mutual
encoding may yield inductive–inductive definitions. However, since Agda lacks automatic gen-
eration and systematic use of elimination principles, evaluating the practical usability of nested
inductive types in this context remains difficult. In particular, the standard approach to defining
functions on nested inductive types in Agda relies on sized types, which would require significant
modifications to generate the elimination principle this way.
Categorical Perspective. Regarding a categorical view, Abbott et al. [1] treat a translation of a

categorical version of nested inductive “types” to a categorical version of W-“types”. Johann and
Ghiorzi [19], Johann et al. [20] also considered parametricity categorically for System F extended
with “true” nested inductive types, that is including the inductive type Bush.

Direct Encoding. The most complete treatment of encodings for inductive types is carried out in
Isabelle/HOL, where (co)datatypes are not native outside of a few primitive ones, like bool, nat or
sum. Instead, inductive types are explicitly encoded using Bounded Natural Functors (BNFs) that are
closed by design under the primitive datatypes, composition, and initial algebra and final coalgebra
[10, 31]. This provides Isabelle/HOL with a modular and powerful support for datatypes, including
mixed inductive coinductive datatypes like infinite finitely branching trees without extending
the theory. It was further used and developed to provide a better support to corecursion [14],
non-uniform parameters [13], or binders [12].

The concept of Quotient Polynomial Functors (QPFs) was developed in Lean as an alternative to
BNF [6]. The authors leverage Lean’s native support for quotients to extend the class of polynomial
functors to quotient polynomial functors, and prove that like BNFs, QPFs are closed under compo-
sition, initial algebra and final coalgebra. They further show that QPFs are more expressive than
BNFs [6, Section 5], while being more natural in type theory, e.g. by avoiding cardinality conditions
or preservation of weak pullback which is required for BNF to be expressible in Isabelle/HOL
[31, Section 3.C]. However, compared to Isabelle/HOL, the automatic generation of QPFs and
of the encoding on top of it is still very limited, though recent progresses have been made [22].
A categorical encoding of inductive types was also achieved in Rocq’s Unimath library [4, 5]
using univalent categories, 𝜔-cocontinuous functors, and algebra, only assuming basic inductive
types like nat. Compared to our work, neither of this approach support dependent types. This
greatly limits their use for nesting and specifications in dependent type theory, as they are not
expressive enough to define inductive types like All or Typing. In the non-dependent case, the
eliminator we generate coincide with theirs as sparse parametricity applied to constant predicate
amounts to functoriality. For instance, when defining a function f by recursion, the expression
All𝑠 (fun _ ⇒ B) l is the equivalent to the pair (l, map f l). However, BNF and QPF have the
advantage to support mixes of inductive and coinductive type, which elaborating nested inductive
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types to mutual inductive cannot justify. Yet, to make QPF scale to dependent types, one would
most likely need to adopt a variant of our sparse parametricity to deal with dependencies.
Induction Principle Generation. Previous tools have been provided to generate induction prin-

ciples for nested inductive types and predicates. Notably, Tassi’s study came with a usable tool
implemented in Rocq Elpi [30], which however does not treat mutual nested types, a requirement
e.g. for MetaRocq. Ullrich [32] has used MetaRocq’s meta-programming support to implement
a similar approach to Tassi’s, similarly not covering mutual inductives, and also experiencing
problems with the fundamental lemma for the non-sparse parametricity translation.

6 Implementation

MetaRocq plugin. We prototyped our approach in MetaRocq, the metaprogramming framework
for Rocq, by formalizing the full elaboration pipeline from nested to mutual inductive types together
with automatic generation of sparse-parametric elimination principles. The implementation relies
critically on the view mechanism introduced in MetaRocq, which provides a stable, syntax-directed
interface to the internal representation of inductive types. This design isolates our transformations
from low-level kernel details and enables robust rewriting even as the interactive theorem prover
evolves. The plugin has successfully generated the appropriate elimination principle for the real
world example of typing of MetaRocq5 which specifies the complete typing rules for Rocq’s kernel
and contains a dozen of nested occurrences with complex containers.
Integration in Rocq. As further evidence of the usefulness of the view mechanism, we have

submitted a pull request—not linked to preserve anonymity—to replace Rocq’s old generation of
elimination principles, including mutual ones. Although sparse parametricity is not yet included,
the PR shows that all existing Rocq developments compile without modification, providing strong
empirical confirmation of the conservativity of our approach.

Integration in Lean. Our approach could be integrated into Lean in two senses: First, our transla-
tion of nested inductive types to mutual inductive types properly treating indices could be integrated
in Lean’s kernel, extending the nested inductives it accepts. Secondly, our generation of induction
principles via sparse parametricity could be included, allowing Lean’s induction tactic to work for
nested inductive types. This change could be done outside of the kernel, making working with the
already accepted nested inductive types easier for users.

7 Conclusion

In this work, we have set a theoretical foundation to add nested inductive types to Rocq and Lean,
which makes them practical to use, while maintaining consistency. To do so, we have introduced
a new strict positivity condition for nested inductive types that ensures statically that a nested
inductive has a mutual encoding. Using this new positivity condition, we have defined a sparse
parametricity for nested types and proved a local fundamental theorem for it, which enabled us to
automatically generate useful eliminators for nested inductive types as showcased by the highly
nested typing definition of MetaRocq. We have justified this preserves the consistency of the type
system by encoding the nested elimination principles with the elimination principles of their mutual
encoding. We have not formalized the encoding of eliminators for these types, as it remains out
of reach: no verified meta-programming framework currently provides the infrastructure needed
to manage the intricate typing derivations involved. We believe that supporting such encodings
would represent a realistic and meaningful challenge for advances in verified meta-programming.
An interesting direction for future work is the extension of our approach to truly nested inductive

5https://metarocq.github.io/html/MetaRocq.Template.Typing.html#typing

https://metarocq.github.io/html/MetaRocq.Template.Typing.html#typing
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types, i.e., types that use themselves as containers. Such types are currently rejected by all existing
systems.
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A Strict Positivity for (Non-Nested) inductive Types

Let us consider an inductive type definition of the form:

Inductive I (x1 : A1) . . . (x_n : A_n) : Type := c1 : T1 | . . . | c𝑛 : T𝑛.

The type constructor I is said to satisfy the strict positivity condition if, in each constructor type
T𝑖 , any recursive occurrence of I appears only in strictly positive positions. Formally:

Definition A.1 (Strict Positivity for Non-Nested Inductive Types). An inductive type I occurs strictly
positively in a type T if it satisfies the following inductive rules:

(1) Base cases:
• I does not occur in T.
• I occurs as I t1 . . . t𝑛 and I does not occur in any of the 𝑡𝑖 .

(2) Function types: If T converts to ∀a:A, B, then I is strictly positive in T if:
• I does not occur in A (the domain), and
• I is strictly positive in B (the codomain).

Note that it is not possible in general to rely on a weaker notion known simply as the positivity
criterion, which permits recursive occurrences on the left-hand side of an arrow, provided they are
under an even number of arrows (e.g., (I → False) → False is considered positive). However,
this weaker criterion has been shown to be too permissive in the presence of impredicativity,
as demonstrated by Coquand and Paulin [16]. Their argument, based on a variant of Cantor’s
diagonalization, constructs a contradiction using an inductive type in Propwith a seemingly positive
recursive occurrence of the form (I → Prop) → Prop.6

B Impossibility of Nesting on Non-Uniform Parameters and Indices

It is not possible to nest over non-uniform parameters or indices, as no general translation to
mutual inductive types exists. To illustrate this, consider attempting to nest over the non-uniform
parameter of the power list type plist, where an attempt to define a type PowerTree A is rejected
in Rocq for positivity issues:

Inductive plist (A : Type) : Type :=
| pnil : plist A | pcons : A → plist (A * A) → plist A.

Fail Inductive PowerTree A : Type :=
| leaf (a : A) : PowerTree A | node (l : plist (PowerTree A)) : PowerTree A.

This is because the mutual inductive encoding used for rose trees does not lift to PowerTree A.
Indeed, applying the same technique would give rise to a local copy plist_mut A representing
plist (powerTree A). However, ther recursive argument of pcons_mut, which should correspond
to plist (powerTree A * powerTree A), cannot be expressed using plist_mut A alone. In contrast,
for rose trees using list, it is essential that the parameter A is uniform—meaning that all re-
cursive occurrences of the container are also applied to the same A. As a result, each instance
of list_rose_tree_mut A directly corresponds to the encoding of list (rose_tree_mut A) in the
mutual definition. What happens for plist is that its parameter is non-uniform: the recursive oc-
currence appears on A * A instead of A. This non-uniformity prevents us from inlining PowerTree A

directly into a mutual inductive definition.

6It remains an open question whether the positivity criterion is sufficient in a purely predicative setting.
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C Examples of Elimination Principles for Nested Inductive Types

The elimination principle expected for rose trees can be defined as (note the need for list𝜀 𝑓 𝑙 , the
fundamental lemma of parametricity for lists, to inhabit the induction hypothesis for Pnode):

Fixpoint rose_tree_elim A P Pleaf Pnode (t : rose_tree A) {struct t} : P t :=
match t with

| leaf a ⇒ Pleaf a

| node l ⇒ Pnode l (list𝜀
𝑓 𝑙 (rose_tree A) P (rose_tree_elim A P Pleaf Pnode) l)

end.

Note that in the definition, we can directly use list𝜀 𝑓 𝑙 as parametricity and sparse parametricity
coincide for the lists.

Similarly, the elimination principle for typing is:

Fixpoint typing_elim (P : ∀t T, typing t T → Type)

(Pswitch : ∀discr branches n return_type,

∀(ty_discr : typing discr (fintype n)), P discr (fintype n) ty_discr →
∀(ty_br : All (fun a ⇒ typing a return_type) branches),

All𝑠 (fun a ty_a ⇒ P a return_type ty_a) ty_br →
P _ _ (typing_switch discr branches n return_type ty_discr ty_br)) :

∀t T ty_tT, P t T ty_tT :=
fun t T ty_tT ⇒ match ty_tT with

| typing_switch discr br n return_type ty_discr ty_br ⇒
Pswitch discr br n return_type ty_discr (typing_elim P Pswitch _ _ ty_discr)

ty_br (lfl_All𝑠 (fun t ⇒ typing_elim P Pswitch t return_type) _ ty_br)

end.

In Lean, the elimination principle can simply be postulated, with the corresponding rewrite
rules. For instance, in the case of typing_elim the rewrite rule is

typing_elim P Pcse t T (typing_switch discr ind br return_type ty_discr ty_br) ⇝
Pswitch discr ind br return_type ty_discr (typing_elim P Pswitch _ _ ty_discr)

ty_br (lfl_All_s (fun t ⇒ typing_elim P Pswitch t return_type) _ ty_br)

D View and Positivity

The inductive type argument is used to define the view on the type of constructors of inductive
definitions.

Inductive argument : Type :=
| arg_is_cst (t : term)

| arg_is_ind (largs : list term) (pos_block : nat) (inst_indices : list term)

| arg_is_sup (largs : list term) (k : nat) (inst_args : list term)

| arg_is_nested (largs : list term) (ind : inductive)

(inst_params : list (list term * term)) (inst_indices : list term).

The file [Positvity_condition.v] contains this definition together the formal definition of sparse para-
metricity.

E Example of Sparse Paramericity

For example, for All we add a hypothesis for P, but not for A as it is not positive as it appears in
indices. After simplification, this gives us the following type for the sparse parametricity of All:

formalization/Positvity_condition.v
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Inductive All {A : Type} (P : A → Type) : list A → Type

-----------------------------------------------------------------------------------

Inductive All𝑠 {A} {P : A → Type} (PP : ∀a, P a → Type) : ∀{l}, All P l → Type

For the constructor All_cons of type

∀(a : A) (l : list A), P a → All P l → All P (a::l)}

which is only nestable on the parameter P the computation of the view tells us that:
• A and list A are constants as A cannot be nested on, and are hence recorded with var_is_cst,
that is var_is_cst A and var_is_cst (list A).

• P a is a strictly positive parameter P, the first parameter starting from 0, with arguments a. As
it is a trivial product, largs := [], and it is recorded by arg_is_sup [] 1 [a,b].

• Similarly, All R l is a recursive argument recorded by arg_is_ind [] 0 [l].
This gives us the following constructor All_cons𝑠 which simplifies after computing the sparse

parametricity as many arguments are constant, and do not create additional hypotheses.

| All_cons : ∀(a : A) (l : list A) (r : P a) (x : All P l), All P (a::lA)

---------------------------------------------------------------------------------------

| All_cons𝑠 : ∀a (a𝑠 : Ja : AK𝑠) l (l𝑠 : Jl : list AK𝑠) r (r𝑠 : Jr : P aK𝑠)
x (x𝑠 : Jx : All P lK𝑠), All𝑠 PP (All_cons a l r x)

F Encoding Nested Eliminators with Their Mutual Encoding

To justify that we have generated the correct eliminators for nested inductive types, we show
that they can also be defined and proven for their mutual encoding, as described in Section 3.1.
The resulting elimination principles satisfy the reduction rules only up to propositional equality,
making them useful primarily as a sanity check rather than as first-class definitions.

Case Study. First, to be able to define the nested elimination principle for its mutual encoding
typing_mut, we need it to have the same type as typing. This is the case as the types of the original
inductive blocks are preserves by the encoding. Second, we need to define the constructors of typing
over typing_mut. In our case, it means defining typing_switch' using typing_mut_switch whose
only difference is using a nested argument versus a recursive argument, as showed underlined
below:

typing_mut_switch discr ind branches return_type :

typing_mut discr ind → All_mut return_type branches →
typing_mut (switch discr branches) return_type

------------------------------------------------------------------------------

typing_switch' discr ind branches return_type :

typing_mut discr ind → All (fun a => typing_mut a return_type) branches →
typing_mut (switch discr branches) return_type

To do so, we need to prove the nested argument can be proven out of their mutual encoding, and vice
versa. That is given the context of the nested argument return_type branches, we need to define
a type equivalence in the sense of Homotopy Type Theory (HoTT) and Univalent Foundations
Program [33].

All_mut return_type branches � All (fun a : term ⇒ typing' a return_type) branches.

The construction of the two transport functions (All_to_All_mut and All_mut_to_All) is done by
induction and a direct application of each constructor as by definition of the encoding this amounts
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to relabeling. The proof that they form an equivalence involves basic HoTT machinery. It is then
possible to define typing_switch' as

typing_switch' discr ind branches return_type ty_discr ty_branches :=
typing_mut_switch discr ind branches return_type ty_discr

(All_to_All_mut ty_branches).

We can now state the nested elimination principle instantiated for typing_mut, and try to prove
it using the mutual eliminator of typing_mut which requires one predicate P on typing_mut and one
predicate P0 on All_mut. The main difficulty is to deal with homogeneity, and switching between
All and All_mut. Indeed, we need to instantiate P0 with the sparse parametricity. Yet, as it expects
a predicate on All_mut, we need to transport sparse parametricity, as:

P0 := fun return_type branches ty_branches ⇒
All𝑠 (fun a ty_a ⇒ P a return_type ty_a) (All_mut_to_All ty_branches)

However, combined with the encoding of typing_switch', this naturally leads to a back and forth be-
tween the use of All_to_All_mut and All_mut_to_All. Consequently, we need to rewrite hypothesis
(using the # notation for transport) with the equality All_mut_eq coming from the equivalence be-
tween All and All_mut. The goal then follows from the hypotheses as the remaining All_mut_to_All

as already been added to the hypotheses through the instantiation of P0. Third, we have to prove
that P0All_mut_nil and P0All_mut_cons. As transports computes on constructors, this simplifies
and amounts to inlining a proof of the local fundamental lemma. Put altogether, this gives us the
following application where we underline transports.

Definition typing_elim2

(P : ∀t T, typing_mut t T → Type)

(Pswitch' : ∀discr ind branches return_type,

∀(ty_discr : typing_mut discr ind), P discr ind ty_discr →
∀(ty_branches : All (fun a ⇒ typing_mut a return_type) branches),

All𝑠 (fun a ty_a ⇒ P a return_type ty_a) ty_branches →
P _ _ (typing_switch' discr ind branches return_type ty_discr ty_branches)) :

∀t T ty_tT, P t T ty_tT :=
typing_mut_All_mut_rec

(P := fun t T ty_tT ⇒ P t T ty_tT)

(P0 := fun return_type branches ty_branches ⇒
All𝑠 (fun a ty_a ⇒ P a return_type ty_a) (All_mut_to_All ty_branches)).

(fun discr ind branches return_type ty_discr Pty_discr ty_branches Pty_branches ⇒
(All_mut_eq ty_branches) # (Pswitch' discr ind branches return_type

ty_discr Pty_discr (All_mut_to_All ty_branches) Pty_branches))

(fun return_type ⇒ All𝑠_nil)

(fun return_type a l ty_a Pty_a ty_l Pty_l ⇒ All𝑠_cons a l ty_a Pty_a

(All_mut_to_All ty_l) Pty_l)

To get a full-encoding, we also need to show that the definitional equality of the elimination
principle are preserved. This is not the case here due to back and forth transport between All and
All_mut that are inverse only propositionally, and only definitionally on closed terms. Therefore, the
encoding of the nested eliminator verify the computation rules only propositionally, or definitionally
on closed terms. The proof is non-trivial and requires us to simplify and to cancel transports,
followed by showing that the two proofs of the fundamental lemma are equal—something that can
be established by induction. We refer the interested reader to the companion Rocq formalization
for full details of the proof.
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As a consequence, this encoding justifies only the consistency of the nested inductive types and
nested eliminators, and not that termination of the type checking is preserved. However, this not
an issue as type checking is not decidable in Lean, and it is ensured in Rocq by the guard checking
which is simple for nested eliminators as it reduces on strict subterms.

General Case. This method seem to generalize directly to arbitrary complex nested inductive types.
For each nested argument, we define transport back and forth between the nested instantiation
and its specialization, prove they are inverses to define the encoding of the eliminators, and proven
to satisfy a coherence law to prove the propositional equality. These are direct applications of
the elimination principles as it consists in renaming, modulo a small simplification of transports
for the coherence law. The nested constructors can then be defined by appropriately inserting
transport, which succeeds as by the positivity condition nested arguments can not depend on
previous nested arguments. Finally, the encoding of the eliminators can be proven using the mutual
encoding instantiated using sparse parametricity up to transport, by rewriting with the equality as
for typing. The propositional rule then follows by simplifying the transports, and proving both
proofs of the fundamental lemma are the same which is trivial.

Although we are fairly confident this method succeeds, we emphasize that, due to the complexity
of inductive types, without a verified meta-programming framework to build complex typing
derivations and certify this proof, absolute certainty remains unattainable. In particular, the absence
of definitional computational rules for the encoding of the nested eliminators might force us to
move to an extensional type theory for a correctness proof.
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