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Abstract

Reconstructing daily hand interactions often struggles with
severe occlusions, such as when two hands overlap, which
highlights the need for robust feature learning in 3D hand
pose estimation (HPE). To handle such occluded hand im-
ages, it is vital to effectively learn the relationship be-
tween local image features (e.g., for occluded joints) and
global context (e.g., cues from inter-joints, inter-hands, or
the scene). However, most current HPE methods still rely
on ResNet for feature extraction, and such CNN’s induc-
tive bias may not be optimal for 3D HPE due to its lim-
ited capability to model the global context. To address this
limitation, we propose an effective and efficient framework
for visual feature extraction in 3D HPE using recent state
space modeling (i.e., Mamba), dubbed Deformable Mamba
(DF-Mamba). DF-Mamba is designed to capture global
context cues beyond standard convolution through Mamba’s
selective state modeling and the proposed deformable state
scanning. Specifically, for local features after convolution,
our deformable scanning aggregates these features within
an image while selectively preserving useful cues that rep-
resent the global context. This approach significantly im-
proves the accuracy of structured prediction tasks like 3D
HPE, with improved inference speed over ResNet50. Our
experiments involve extensive evaluations on five datasets
that cover diverse scenarios, including single-hand and
two-hands estimation, hand-only and hand-object interac-
tions, as well as RGB and depth modalities. We demonstrate
that DF-Mamba outperforms the latest image backbones,
including VMamba and Spatial Mamba, on all datasets and
achieves state-of-the-art performance.

1. Introduction
Daily human activities often involve complex hand inter-
actions, such as interacting with two hands [24, 28] and
grasping an object [2, 7, 27], which necessitates effective
and efficient inference models that reconstruct 3D hands

*Equal contribution.

Figure 1. Deformable scan for DF-Mamba. (a) Conventional
sweep scan uses a fixed grid pattern [22, 38] in the state space
equations. (b) Our deformable scan adaptively adjusts the scan-
ning pattern with multiple anchors ak by predicting offset vectors
ok,t dependent on visual feature input.

to comprehend such challenging scenarios. These intri-
cate interactions with severe occlusions make it cumber-
some to perform 3D hand pose estimation (HPE) from vi-
sual data, including single RGB images [9, 16, 26], depth
images [32], egocentric views [7, 21], etc. In parallel, devel-
oping compact models with improved inference speed has
become crucial to support real-time applications, especially
in AR/VR devices [3, 19]. Given these challenges, limited
attention has been paid to the inductive biases introduced by
backbone architectures (e.g., CNNs) and their synergy with
HPE. This highlights the need for designing backbones that
are both effective in capturing complex hand interactions
and efficient for real-time inference.

To enable robust feature learning for complex hand inter-
actions, it is essential to learn the relationship between local
image features (e.g., for occluded joints) and global context
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(e.g., cues from inter-joints, inter-hands, hand-object, or the
scene). A popular backbone in HPE is CNN, particularly
ResNet-50 [13] used in numerous works [6, 15, 16, 20, 21,
24, 25, 27, 29, 30, 37]. These CNN backbones rely on con-
volution operations with local receptive fields, resulting in
a favorable balance between accuracy and inference speed.
Nevertheless, these local convolutions lack an explicit ca-
pability to model global context. In contrast, existing trans-
former methods [12, 14, 16, 18, 31, 33, 34, 36] enable non-
local feature learning; for instance, Jiang et al. [16] encour-
age self-attention across local anchor points and pyramid
image features. However, these transformer methods in-
deed follow a hybrid approach, combining ResNet-50’s fea-
ture extraction in an initial stage with a subsequent trans-
former that learns across the extracted features using atten-
tion.” This underscores that most current HPE methods still
heavily depend on CNN’s inductive bias, indicating signif-
icant room for improvement in backbone architectures to
achieve better feature learning for hand pose.

As an emerging foundational architecture, Mamba [10]
based on state space modeling (SSM) has garnered consid-
erable attention, which have been originally proposed for
natural language processing tasks. The Mamba model ex-
cels at efficiently selecting input tokens (i.e., focusing on or
ignoring particular signals), which serves to model global
context cues from long sequential tokens. Several recent
studies have extended it to image backbones. For example,
VisionMamba [38] introduced the Vim block, which em-
ploys a 2D bidirectional scan for spatially-aware sequence
modeling. VMamba [22] further proposed the VSS block
based on four different scanning paths. However, these
scanning mechanisms employ a fixed grid as illustrated in
Figure 1(a), which limits their ability to capture intricate
hand pose variations when applied to 3D HPE.

Given this limitation, we introduce an effective and effi-
cient backbone, Deformable Mamba (DF-Mamba), with
deformable state space modeling (DSSM) that encourages
robust visual feature extraction in 3D HPE. The core idea
of DF-Mamba is to perform feature extraction by dynami-
cally modeling local features after convolution and global
context with flexible state spaces. Specifically, our DSSM
blocks aggregate the convoluted local features according to
a deformable path and selectively store useful cues to repre-
sent the global context. The scanning path is adjusted with
deformable point sampling with local anchors and learnable
offsets dependent on the given input features (Figure 1(b)).

The overall architecture of DF-Mamba is a tribrid de-
sign composed of three blocks: convolution blocks, DSSM
blocks, and gated convolution blocks, along with a compa-
rable model size with ResNet50. This approach efficiently
leverages the complementary strengths of each block type:
extracting features via convolution blocks at lower layers,
adaptively enhancing features with DSSM blocks at higher

Figure 2. Computational flow of SSM and DSSM. (a) Conven-
tional SSM utilizes four matrices Ā, B̄,C,D, to compute the
output y from an input x through intermediate representation h.
(b) Our DSSM incorporates weights bk and offsets ok for de-
formable scan into SSM.

layers after downsampling, and further refining visual rep-
resentations using gated convolution blocks without SSM.

In our experiments, we integrate DF-Mamba into two
representative 3D HPE frameworks proposed by Jiang et
al. [16] and Zhou et al. [37]. Since both frameworks orig-
inally utilize a ResNet50 backbone for feature extraction,
we replace the backbone with our DF-Mamba. We then
perform extensive evaluations on five public datasets: In-
terHand2.6M [24], RHP [39], NYU [32], DexYCB [2] and
AssemblyHands [27]. These datasets cover diverse inter-
action scenarios, including single-hand and two-hands pose
estimation, hand-only and hand-object interactions, as well
as RGB and depth modalities. We demonstrate that DF-
Mamba outperforms the latest image backbones, including
VMamba [22] and SpatialMamba [35], on all datasets and
achieves state-of-the-art performance. We also find that DF-
Mamba maintains computational complexity comparable to
or even lower than that of ResNet50. These results suggest
that DF-Mamba is a more effective and efficient backbone
than ResNet-50 in 3D HPE.

In summary, our contributions are three-fold:
1) We propose DSSM, a novel approach to modeling dy-

namic systems with flexible state spaces to represent the
global context.

2) We introduce DF-Mamba, a novel Mamba-based back-
bone for 3D HPE. It adopts a tribrid design composed
of six stages using three types of blocks: convolution
blocks, DSSM blocks and gated convolution blocks.

3) DF-Mamba outperforms the latest image backbones in
3D HPE scenarios and consistently improves perfor-
mance on five different datasets with faster inference.

2. Method
We introduce Deformable State-Space Modeling
(DSSM), a novel approach to modeling dynamic systems
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Figure 3. DF-Mamba backbone architecture. By combining three types of blocks, DF-Mamba improves the accuracy of 3D HPE while
maintaining computational complexity comparable to or even lower than that of ResNet50.

with flexible state spaces. The core idea behind DSSM
is to integrate local visual cues after convolution with a
deformable scan mechanism that serves to capture global
context. The proposed deformable scanning in DSSM
aggregates these local features within an image while
selectively preserving useful cues as the global features.
Below, we begin with a preliminary review of state-space
equations, and then introduce our DSSM.
Preliminary. The Mamba model [10] follows state-space
modeling (SSM), where the input x(t) and output y(t) are
linked by a dynamic linear system with a latent state h(t) [1,
17]; see Figure 2(a). The discrete state-space equations [8,
11] are given by:{

h(t) = Āh(t− 1) + B̄x(t)

y(t) = Ch(t) +Dx(t)
, (1)

Gu et al. [10] introduce selective SSM that adaptively re-
members or forgets inputs by computing B̄ and C depen-
dent on the input X , each through a learnable linear layer.
Sweep Scan. To apply SSM to image data, visual features
need to be sequentialized. This process, known as the scan
scheme, replaces the 1D input x(t) in Eq. (1) with a 2D
visual feature map x(pt), where pt ∈ R2 indicates a 2D
position. The sweep scan scheme shown in Figure 1(a) is a
representative approach.

However, in 3D HPE, the fixed grid pattern introduces
inefficiency, limiting the ability to capture intricate hand
variations. For example, background pixels do not provide
any cues for local joint positions, while the center region
of the input image has a higher density of joints. These
observations necessitate a flexible solution to model spatial
locality bias and global context adaptively to the input.

2.1. Deformable State-Space Modeling
To overcome the SSM’s limitation, we introduce data-
driven, adaptive capabilities to the SSM blocks. Our DSSM
incorporates a deformable scan, which adaptively adjusts
the sampling points by introducing learnable offsets into the
input sampling. This allows us to dynamically balance its

receptive fields, selectively aggregating relevant local cues
to accommodate intricate interactions. Specifically, we de-
fine DSSM for 1D inputs by the following dynamic system:{

h(t) = Āh(t− 1) + B̄x(t+ δt)

y(t) = Ch(t) +Dx(t)
, (2)

where δt ∈ R is a small offset predicted from x.
DSSM improves the flexibility of SSM because the offset

allows the input to be adaptively shifted. However, apply-
ing DSSM to image data is not straightforward, as the offset
requires two degrees of freedom. To accommodate this, we
effectively handle such a large freedom by introducing spa-
tially allocated K anchors, which sample multiple points
from the input image. Specifically, we define DSSM for 2D
inputs as follows:
h(t) = Āh(t− 1) + B̄

K∑
k=1

bkx(pt + ak + ok,t)

y(t) = Ch(t) +Dx(pt)

, (3)

where ak ∈ R2 is a fixed anchor, ok,t ∈ R2 is an offset
vector, and bk ∈ R is a weight coefficient. Both ok,t and bk
are predicted from x, each through a learnable linear layer.

The computational flow of DSSM is shown in Fig-
ure 2(b). The K anchors are symmetrically defined as
ak ∈ {(i, j) : i, j ∈ {−1, 0,+1}}, inspired by deformable
convolution operations [4]. This provides a complete initial
distribution for local relative offsets, requiring 3D anchors
for D spatial dimensions (i.e., D = 2 and K = 9 for this
case). From these starting points, the anchor spatial distri-
bution becomes learnable via the offset mechanism, allow-
ing dynamic adaptation of sampling locations based on in-
put context. Technically, the weight coefficients and offset
vectors are predicted from the input visual features. This
balances initial coverage of the anchors with data-driven
flexibility by 2D scanning, a core DSSM strength.

2.2. DF-Mamba Backbone
With the proposed DSSM, we construct the overall back-
bone architecture, DF-Mamaba, as shown in Figure 3. To
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Table 1. Performance comparison of backbone architectures across various datasets. Best results are highlighted in bold. Numbers in
parentheses indicate performance differences compared to ResNet50, with green denoting improvement and red denoting degradation.

Backbones Venue FPS ↑ Size ↓
InterHand2.6M RHP NYU DexYCB AssemblyHands

Single ↓ Two ↓ All ↓ EPE ↓ Mean Err. ↓ MPJPE ↓ AUC ↑ MPJPE ↓ AUC ↑

ResNet50 [13] CVPR16 109.2 42M 8.10 10.96 9.63 17.75 8.43 19.36 84.80 19.35 85.24

ViT-S [5] ICLR21 75.4 42M – – – – – 24.63
(+4.73)

78.76
(-6.04)

23.11
(+3.76)

79.29
(-5.95)

Swin-T [23] ICCV21 103.4 45M 8.15
(+0.05)

10.84
(-0.12)

9.59
(-0.04)

17.65
(-0.10)

8.48
(+0.05)

23.52
(+4.16)

80.59
(-4.21)

19.88
(+0.53)

84.03
(-1.21)

VMamba-T [22] NeurIPS24 100.8 46M 8.06
(-0.04)

10.97
(+0.01)

9.61
(-0.02)

17.22
(-0.53)

8.62
(+0.19)

19.84
(+0.48)

84.45
(-0.35)

19.64
(+0.29)

84.89
(-0.35)

SpatialMamba-T [35] ICLR25 92.8 43M 8.44
(+0.34)

10.93
(-0.03)

9.77
(+0.14)

17.96
(+0.21)

8.78
(+0.35)

22.73
(+3.37)

80.37
(-4.43)

21.44
(+2.09)

81.88
(-3.36)

DF-Mamba (Ours) – 112.2 42M 7.94
(–0.16)

10.53
(–0.43)

9.32
(–0.31)

17.16
(–0.59)

7.96
(–0.47)

17.80
(–1.56)

87.31
(+2.51)

18.78
(-0.57)

86.12
(+0.88)

balance its effectiveness and efficiency, DF-Mamba consists
of a convolution stem for fine-grained feature extraction and
six stages of feature enhancement, including a tribrid de-
sign from three types of blocks: (i) convolution blocks, (ii)
DSSM blocks, and (iii) gated convolution blocks. This ap-
proach efficiently leverages the complementary strengths of
different blocks by extracting features through convolution
blocks at lower layers, while adaptively enhancing visual
feature maps using DSSM blocks at higher layers.

Specifically, the gated convolution block forms the sim-
plest structure by omitting the SSM layer. Given X ′ =
Norm(X), which is the visual feature map obtained af-
ter layer normalization, the block first computes Z1 =
σ(Conv(Linear(X ′))) and Z2 = σ(Linear(X ′)), where
σ is a SiLU activation function, Conv is a depth-wise 1D
convolution layer, and Linear is a linear layer. An ad-
ditional linear layer is then applied to the gated output
Z1⊙Z2 followed by a skip connection as Y = Linear(Z1⊙
Z2) +X . The SSM block proposed in the original Mamba
model [10] inserts the SSM layer into the computation of
Z1 as Z1 = SSM(σ(Conv(Linear(X ′)))). Inspired by this
SSM block, our DSSM block inserts the DSSM layer as
Z1 = DSSM(σ(Conv(Linear(X ′)))). This effectively en-
hances visual feature map through the deformable scan.

3. Experiments

We conduct extensive experiments to validate the ability
of DF-Mamba over state-of-the-art backbone architectures.
Specifically, we perform evaluations on five datasets that
cover diverse scenarios, including InterHand2.6M [24] for
two-hands pose, RHP [39] for single-hand pose, NYU [32]
for depth-based estimation, DexYCB [2] for object inter-
action, and AssemblyHands [27] for egocentric perception.
We integrate DF-Mamba into two HPE frameworks pro-
posed by Jiang et al. [16] (for InterHand2.6M, RHP, and
NYU) and Zhou et al. [37] (for the rest). We choose base-
lines whose model size is closest to that of ResNet-50.
Comparison to SOTA backbones. Table 1 compares DF-

Mamba with state-of-the-art backbones on the five datasets.
We observe that Swin-T and VMamba-T improve perfor-
mance on InterHand2.6M and RHP, while vision trans-
former baselines (ViT-S and Swin-T) exhibit suboptimal re-
sults, especially in DexYCB and AssemblyHands, because
CNN’s locality bias is better suited for heatmap regres-
sion [37]. In contrast, our DF-Mamba achieves the best
and consistently improves over ResNet50 in all the scenar-
ios, namely two interacting hands [24], synthetic data with
diverse backgrounds [39], depth images [32], hand-object
scenes [2], and egocentric views [27].

Not only do we find performance gains, but DF-Mamba
also improves inference speed compared to ResNet50,
while preserving a smaller model size against Swin-T and
the other Mamba baselines. We observe that feature ex-
traction at lower layers of ViT-S, Swin-T, VMamba-T,
and SpatialMamba-T increases computational time (lower
FPS), as applying attention or state-space modeling to high-
resolution feature maps is expensive. We also find a major
bottleneck of ViT-based backbones in inference speed, lim-
iting the potential for real-time applications [3, 19]. Overall,
our tribrid architecture successfully addresses these limita-
tions by efficiently extracting features at lower layers sim-
ilar to ResNet50, and effectively enhancing these features
via DSSM at higher layers. These results highlight the su-
periority of DF-Mamba over those SOTA backbones.

4. Conclusion

We propose DF-Mamba, a novel backbone architecture
for 3D hand pose estimation that combines efficient con-
volutional feature extraction in the lower layers with a de-
formable state-space representation in the higher layers.
Through extensive experiments on five datasets covering
single- and two-hand interactions, hand-object interactions,
and both RGB and depth modalities, we demonstrate that
DF-Mamba consistently outperforms the existing backbone
architectures while reducing computational cost.
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