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Abstract—Consider a data publishing setting for a data set
with public and private features. The objective of the publisher
is to maximize the amount of information about the public
features in a revealed data set, while keeping the information
leaked about the private features bounded. The goal of this
paper is to analyze the performance of privacy mechanisms
that are constructed to match the distribution learned from the
data set. Two distinct scenarios are considered: (i) mechanisms
are designed to provide a privacy guarantee for the learned
distribution; and (ii) mechanisms are designed to provide a
privacy guarantee for every distribution in a given neighborhood
of the learned distribution. For the first scenario, given any
privacy mechanism, upper bounds on the difference between the
privacy-utility guarantees for the learned and true distributions
are presented. In the second scenario, upper bounds on the
reduction in utility incurred by providing a uniform privacy
guarantee are developed.

I. INTRODUCTION

The disclosure of data with both privacy and utility guaran-
tees is a recognized objective in many applications. A common
approach to this problem is to process the data set through
a privacy mechanism that seeks to fulfill certain privacy and
utility guarantees. Information theoretic methods for designing
privacy mechanisms often rely on the implicit assumption
that the data distribution is, for the most part, known [1]–
[4]. However, in practice, the data distribution may only be
accessed through a limited number of observed samples.

In this work, we revisit this assumption, and study the
robustness of privacy and utility guarantees of information-
theoretic privacy mechanisms to partial knowledge of the input
distribution. In practice, this inaccuracy stems from the limited
availability of samples which, in turn, produces a discrepancy
between the learned and the true data distribution. To mitigate
the effect of this discrepancy, we also study the performance
of privacy mechanisms that, by design, are robust: they assure
privacy for every data set drawn from a distribution within a
neighborhood. Here, the neighborhood is given by an `1-ball
of radius r ≥ 0 around a distribution estimated from a limited
number of samples. Our analysis can be applied when privacy
and utility are measured in terms of a broad range of metrics
based on f -divergences, or by probability of correct guessing.

Due to its natural interpretation and simplicity, we start
our analysis by letting r = 0. This corresponds to the
pointwise setting, where the privacy mechanism is fixed, and
its performance is evaluated in terms of a single distribution
learned from data. We provide bounds on the gap between
the privacy-utility guarantees computed under the empirical
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distribution and the de facto guarantees for the true data distri-
bution. This gap depends on the number of observed samples
and properties of the data (e.g. support size, probability of
least likely symbol), and improves and generalizes the results
presented by Wang and Calmon in [4].

We then extend our analysis to the more general uniform
setting. Here, a given level of privacy is uniformly assured for
all data sets drawn from distributions within a neighborhood
r > 0 of a target distribution (potentially learned from data).
Using large deviation results, we establish upper bounds on
the reduction in utility due to the uniform privacy guarantee
which, in turn, depend on the value of r.

The paper is organized as follows. In Section II-A we
recall the framework of privacy-utility trade-offs. The formal
definitions for the uniform privacy guarantees are introduced in
Section II-B. In Section II-C we recall basic results from large
deviation theory related to the distance between the empirical
and true distributions. The definitions of f -informations and
probability of correct guessing are recalled in Section II-D.
Our main results for the pointwise and uniform results are
presented in Sections III-A and III-B, respectively.

II. PROBLEM SETUP AND PRELIMINARIES

A. Privacy-Utility Trade-Offs

Suppose that S is a variable to be hidden (e.g. political
preference) and X is an observed variable (e.g. movie ratings)
that is correlated with S. In order to receive some utility
(e.g. personalized recommendations), we would like to disclose
as much information about X without compromising S. An
approach with rigorous privacy guarantees is to release a
new random variable Y produced by applying a randomized
mapping to X . This mapping, called the privacy mechanism,
is designed to fulfill a certain privacy constraint.

In the sequel we assume that S and X are discrete
and let PS,X denote their joint distribution. The support
of Y can be any discrete set. We let L(PS,X , PY |X) and
U(PS,X , PY |X) be the privacy leakage and the utility generated
by a mapping PY |X for the underlying distribution PS,X ,
respectively. Throughout this paper, specific instantiations of L
and U are f -informations and probability of correctly guessing.
The following definition captures the fundamental trade-off
between privacy and utility in the present setting.

Definition 1. For a given joint distribution PS,X and ε ≥ 0,
the privacy-utility function is defined as

H(PS,X ; ε) , sup
PY |X∈D(PS,X ;ε)

U(PS,X , PY |X), (1)

where D(PS,X ; ε) , {PY |X : L(PS,X , PY |X) ≤ ε}.



This type of privacy-utility trade-off (PUT) has been in-
vestigated for several measures of privacy and utility, see, for
example, [3]–[5]. When the distribution PS,X is known, the
privacy-utility function in Definition 1 quantifies the best utility
achievable by any privacy mechanism providing the desired
privacy guarantee. In practice, the designer may not have
access to the true distribution PS,X , but only to independent
samples {(si, xi)}ni=1 drawn from this distribution. In this case,
the privacy-utility guarantees for a distribution learned from
the samples, say P̂S,X , and the true distribution PS,X might
be different. For any given privacy mechanism PY |X , these
discrepancies are effectively quantified by

|L(PS,X , PY |X)− L(P̂S,X , PY |X)|, (2)

and
|U(PS,X , PY |X)− U(P̂S,X , PY |X)|. (3)

B. Uniform Privacy Guarantees

When privacy is a priority, a specific privacy guarantee for
the true distribution PS,X may still be required, even though
the designer has only access to a distribution P̂S,X estimated
from the samples {(si, xi)}ni=1. We propose the following
procedure to overcome this difficulty: (a) use large deviation
theory results to find an upper bound, say r, for the distance
between P̂S,X and PS,X ; (b) provide a privacy guarantee for
all distributions at distance less or equal than r from the P̂S,X .
In the sequel, we measure the distance between two probability
distributions P and Q by their `1-distance,

‖P −Q‖,
∑
z∈Z
|P (z)−Q(z)|. (4)

With this notation, we introduce the following definition.

Definition 2. Given P̂S,X , ε ≥ 0, and r ≥ 0, we define

P ∗Y |X(P̂S,X ; ε, r) , arg max
PY |X∈D(P̂S,X ;ε,r)

Ur(P̂S,X , PY |X), (5)

where D(P̂S,X ; ε, r) is the set of all mechanisms PY |X such
that L(QS,X , PY |X) ≤ ε for all QS,X with ‖P̂S,X−QS,X‖≤ r,
and

Ur(P̂S,X , PY |X) , inf
QS,X :‖P̂S,X−QS,X‖≤r

U(QS,X , PY |X). (6)

For a given privacy mechanism PY |X , the infimum in (6)
equals the worst case utility attained by PY |X over all the
distributions QS,X at a distance less than or equal to r from
P̂S,X . Thus, by definition, P ∗Y |X(P̂S,X ; ε, r) is the privacy
mechanism with the best worst-case performance among all
privacy mechanisms which ensure an ε-privacy guarantee for
all the distributions at a distance less than or equal to r
from P̂S,X . In this context, it is natural to investigate the
utility degradation incurred by providing such a robust privacy
guarantee. For this matter, we introduce the uniform utility-
degradation function as follows.

Definition 3. Given P̂S,X , PS,X , ε ≥ 0, and r ≥ 0, we define

∆(PS,X , P̂S,X ; ε, r) , H(PS,X ; ε)− U(PS,X , P
∗
Y |X), (7)

where P ∗Y |X = P ∗Y |X(P̂S,X ; ε, r).

Note that when r = 0, (7) measures the utility degradation
due to the mismatched estimation; while for r > 0, (7)
quantifies the utility degradation incurred by the uniform
privacy guarantee and the mismatched estimation.

C. Distance between the Estimated and True Distribution

The distance between the learned and true distributions is
the superposition of several errors, for example, estimation
error, observation and sampling errors, etc. All these effects
can be incorporated into the parameter r. Due to space
constraints, here we deal only with the estimation error.

A result by Devroye [6, Lemma 3] establishes that, for
every ε ≥

√
20k/n,

Pr

(
k∑
i=1

|Vi − npi|> nε

)
≤ 3 exp

(
− n

25
ε2
)
, (8)

where (V1, . . . , Vk) is a multinomial (n, p1, . . . , pk) random
vector. Note that the empirical distribution is a (normalized)
multinomial random vector. Hence, by taking k = M , |S||X |
and ε = λ

√
20M/n with λ ≥ 1, Devroye’s lemma implies

that, with probability at least 1− βλ,

‖P̂S,X − PS,X‖≤ λ
√

20M

n
, (9)

where βλ , 3 exp(−4λ2M/5) and P̂S,X is the empirical
distribution obtained from {(si, xi)}ni=1. Even though in this
paper we focus on large deviation results, it is worth pointing
out that the order O(

√
M/n) is present in other fundamental

settings, e.g., the minimax expected loss framework in [7,
Cor. 9].

D. f -Informations and Probability of Correct Guessing

We briefly introduce a few definitions that will be used
for privacy and utility metrics in the rest of the paper. Let
f : (0,∞) → R be a convex function with f(1) = 0. The
f -divergence between two probability distributions P and Q
with P � Q is given by [8]

Df (P‖Q) ,
∑
x

Q(x)f

(
P (x)

Q(x)

)
. (10)

More recent developments about the properties of f -
divergences can be found in [9], [10] and the references
therein. With this notation, the f -information between two
discrete random variables U and V is defined by

If (PU,V ) , Df (PU,V ‖PUPV )

=
∑
u,v

PU (u)PV (v)f

(
PU,V (u, v)

PU (u)PV (v)

)
.

(11)

Also, the probability of correctly guessing U , with no
additional information, is given by [11]

Pc(U) , max
u∈U

Pr(U = u). (12)

Similarly, the probability of correctly guessing U given V is

Pc(U |V ) ,
∑
v∈V

max
u∈U

Pr(U = u, V = v). (13)



III. MAIN RESULTS

A. Pointwise Privacy Guarantees

Now we study the discrepancy between the guarantees
provided for the empirical and true distributions by any fixed
mechanism when both privacy and utility are measured using
f -informations. For space brevity, all the results in this section
are stated using the same f -information to measure both
privacy and utility. It can be shown, mutatis mutandis, that
they hold true also when privacy and utility are measured using
different f -informations.

The main result of this section is based on the following
two technical lemmas. Before stating them, we recall the
following definitions. For a given function g : [0,∞) → R
and u > 0, we let

Kg,u , sup{|g(x)|: x ∈ [0, u−1]}. (14)

The constant Kg,u is the so-called supremum norm of g on
[0, u−1]. In addition, if g is Liptschitz on [0, u−1], we let Lg,u
be its Lipschitz constant, i.e.,

min{L ≥ 0 : |g(x)−g(y)|≤ L|x−y|,∀x, y ∈ [0, u−1]}. (15)

A function g : [0,∞) → R is called locally Lipschitz if, for
every t ≥ 0, it is Lipschitz on [0, t] with a Lipschitz constant
that may depend on t. For example, the function g(x) = x2 is
locally Lipschitz but not Lipschitz.

Lemma 1. Suppose that Si → Xi → Yi for i = 1, 2 and
PY1|X1

= PY2|X2
. Let mS , min{PSi

(s) : s ∈ S, i ∈ {1, 2}}
and mX , min{PXi(x) : x ∈ X , i ∈ {1, 2}}. For notational
simplicity, let

∆L , |If (PS1,Y1)− If (PS2,Y2)|, (16)

∆U , |If (PX1,Y1
)− If (PX2,Y2

)|. (17)

If f : [0,∞)→ R is locally Lipschitz, then, for all δ > 0,

∆L ≤
{
Af |S|δ +Bf,δ‖PS1,X1

− PS2,X2
‖ mS < δ,

Cf,mS
||PS1,X1 − PS2,X2 || δ ≤ mS ,

∆U ≤
{
Af |X |δ +Bf,δ‖PS1,X1

− PS2,X2
‖ mX < δ,

Cf,mX
||PS1,X1 − PS2,X2 || δ ≤ mX ,

where Af = 4Kf,mX
,

Bf,δ = Kf,mX
+ 2Kf,δ + (2δ−1 + 1)Lf,δ, (18)

and Cf,u = 2Kf,mX
+(2u−1+1)Lf,mX

with u ∈ {mS ,mX}.

Observe that the previous lemma implicitly assumes that
f(0) = limx→0+ f(x) is finite. Examples of f -divergences
satisfying the assumptions of Lemma 1 include the total
variation distance, the χ2-distance, and the Hellinger distance
of order α > 1 (a one-to-one transformation of the Rényi
divergence of the same order). See [12] for further examples.
Note that, however, KL-divergence cannot be handled by
Lemma 1 as |log(x)|→ ∞ as x→ 0+. Indeed, KL-divergence
has a different asymptotic behavior than the one obtained in
Theorem 1 below, see [13].

Due to limited sample size, not all outcomes of X may be
observable in the data set used to design the privacy mech-
anism, and can significantly impact performance depending

on the metric used. Indeed, by taking PS1,X1
= PS,X and

PS2,X2
= P̂S,X , we can see that the upper bounds for ∆L

and ∆U in Lemma 1 become larger as mX gets smaller.
In order to address this issue, we propose a pre-processing
technique which combines the symbols with less observations.
Specifically, for γ ≥ 0 and x0 a symbol not belonging to X , we
introduce the pre-processing technique Πγ with input alphabet
X and output alphabet

Xγ , {x ∈ X : P̂X(x) ≥ γ} ∪ {x0}, (19)

determined by

Πγ(x) =

{
x P̂X(x) ≥ γ,
x0 otherwise.

(20)

Consider the following lemma regarding this pre-processing
technique.

Lemma 2. Let γ ≥ 0. If X → X0 → Y0 is a Markov chain
with X0 = Πγ(X). Then, for every f -information,

If (PX,Y0
) = If (PX0,Y0

). (21)

Although this lemma may look counterintuitive at a first
glance, its proof relies on the fact that the conditional distribu-
tions PY0|X and PY0|X0

are essentially the same. Specifically,

PY0|X(y|x)

=

{
PY0|X0

(y|x) x ∈ {x ∈ X : P̂X(x) ≥ γ},
PY0|X0

(y|x0) x ∈ X \ {x ∈ X : P̂X(x) ≥ γ}.

The following theorem is the main result of this section.
It bounds the discrepancy of the privacy-utility guarantees
between the learned and true distributions.

Theorem 1. Let γ ≥ 0 and P̂S,X be the empirical distribution
of n i.i.d. samples drawn from PS,X . Assume that

S → X → X0 → Y0, (22)

where X0 = Πγ(X) and PY0|X0
is fixed. Let PS,Y0

and P̂S,Y0

be the joint distributions of (S, Y0) when the joint distributions
of (S,X) are PS,X and P̂S,X , respectively. Define PX,Y0 and
P̂X,Y0

in an equivalent manner. Let

mS , min{{PS(s) : s ∈ S} ∪ {P̂S(s) : s ∈ S}},
mX , min{{PX0

(x) : x ∈ Xγ} ∪ {P̂X0
(x) : x ∈ Xγ}}.

If f : [0,∞) → R is locally Lipschitz and mX ≤ mS , then,
with probability 1− βλ,

|If (P̂S,Y0)− If (PS,Y0)| ≤ Cf,mS
λ

√
20M

n
, (23)

|If (P̂X0,Y0
)− If (PX,Y0

)| ≤ Cf,mX
λ

√
20M

n
, (24)

where M = |S||X |, βλ = 3 exp(−4λ2M/5) with λ ≥ 1 and
Cf,u is defined in Lemma 1.

Proof of Theorem 1: We first apply Lemma 1 with
δ = mX , PS1,X1

= PS,X0
, and PS2,X2

= P̂S,X0
. In particular,

we obtain that

|If (P̂S,Y0
)− If (PS,Y0

)| ≤ Cf,mS
‖P̂S,X0

− PS,X0
‖, (25)

|If (P̂X0,Y0
)− If (PX0,Y0

)| ≤ Cf,mX
‖P̂S,X0

− PS,X0
‖. (26)



By the data processing inequality, we have

‖P̂S,X0
− PS,X0

‖≤ ‖P̂S,X − PS,X‖. (27)

By the inequality (9), with probability at least 1− βλ,

‖P̂S,X − PS,X‖≤ λ
√

20M

n
, (28)

where βλ = 3 exp(−4λ2M/5) and λ ≥ 1. Hence,

|If (P̂S,Y0)− If (PS,Y0)| ≤ Cf,mS
λ

√
20M

n
, (29)

|If (P̂X0,Y0)− If (PX0,Y0)| ≤ Cf,mX
λ

√
20M

n
. (30)

By Lemma 2, we have that

If (PX,Y0) = If (PX0,Y0). (31)

The result follows.

B. Uniform Privacy Guarantees

Let P denote the set of all probability distributions over S×
X . Assume that prior information about the joint distribution
of S and X is available. In this case, we let Q ⊆ P be all the
joint distributions compatible with the prior knowledge. For a
given P̂S,X ∈ P and r ≥ 0, we define

Qr(P̂S,X) , {QS,X ∈ Q : ‖QS,X − P̂S,X‖≤ r}. (32)

In this setting, a natural modification for the uniform privacy
mechanism P ∗Y |X is the following. Given P̂S,X ∈ Q, ε ≥ 0,
and r ≥ 0, let

P ∗Y |X(P̂S,X ; ε, r) , arg max
PY |X∈DQ(P̂S,X ;ε,r)

Ur(P̂S,X , PY |X) (33)

where

DQ(P̂S,X ; ε, r) ,
⋂

QS,X∈Qr(P̂S,X)

{
PY |X : L(QS,X , PY |X) ≤ ε

}
,

Ur(P̂S,X , PY |X) , inf
QS,X∈Qr(P̂S,X)

U(QS,X , PY |X).

Finally, recall that

∆Q(PS,X , P̂S,X ; ε, r) , H(PS,X ; ε)− U(PS,X , P
∗
Y |X). (34)

In order to simplify the notation, in what follows we
denote P̂S,X , PS,X , and QS,X by P̂ , P and Q, respectively.
For the privacy measures under consideration, f -information
and probability of correct guessing, it has been proved that
the optimal privacy mechanism for the PUT in Definition 1
requires an alphabet of size |X |+1, see [5], [14] and references
therein. With this in mind, let F be the set of all row stochastic
matrices of dimension |X |×(|X |+1). Note that the set F
models all privacy mechanisms PY |X with |Y|≤ |X |+1. In
this case, the privacy-utility function in Definition 1 equals

H(P ; ε) = sup
F∈F

L(P,F )≤ε

U(P, F ), (35)

for all P ∈ P. Note that, in principle, the robust privacy mecha-
nism in Definition 2, or the version in (33), may require the use
of more than |X |+1 output symbols. However, the following

lower bound for U(P, P ∗Y |X), which can be computed using
mechanisms with |X |+1 output symbols, will be enough for
our purposes,

U(P, P ∗Y |X) ≥ sup
F∈DQ(P̂ ;ε,r)

inf
Q∈Qr(P̂ )

U(Q,F ), (36)

where P̂ ∈ Q and

DQ(P̂ ; ε, r) ,
⋂

Q∈Qr(P̂ )

{F ∈ F : L(Q,F ) ≤ ε} ⊆ F. (37)

The main result of this section provides an upper bound for ∆Q
whenever the leakage and utility functions satisfy a Hölder-
like condition. Recall that a function f : R→ R is said to be
Hölder continuous of order α ∈ [0, 1] if there exists K ≥ 0
such that |f(x)− f(y)|≤ K|x− y|α for all x, y ∈ R.

Theorem 2. Assume that Q ⊆ P is a closed set and that for
every Q ∈ Q the functions

F 7→ L(Q,F ) and F 7→ U(Q,F ), (38)

are continuous and that (35) holds true. Furthermore, assume
that for a given P̂ ∈ Q there exist positive constants r0, α,
CL, and CU such that

|L(P̂ , F )− L(Q,F )|≤ CL‖P̂ −Q‖α, (39)

|U(P̂ , F )− U(Q,F )|≤ CU‖P̂ −Q‖α, (40)

for all Q ∈ Qr0(P̂ ) and all F ∈ F. If P ∈ Qr0(P̂ ), then, for
all ε > 0 and all rα ≤ min{rα0 , (ε−minF L(P̂ , F ))/CL},

∆Q(P, P̂ ; ε, r) ≤ H(P̂ ; ε+CLr
α)−H(P̂ ; ε−CLrα)+2CUr

α.
(41)

Remark 1. Under the assumptions of Theorem 2, if H(P̂ ; ·)
is Lipschitz continuous with Lipschitz constant L then

∆Q(P, P̂ ; ε, r) ≤ 2(CU + LCL)rα. (42)

The assumptions in (38), (39) and (40) might seem restric-
tive at a first glance. Nonetheless, as shown in the following,
they hold true for our measures of interest: f -informations and
probability of correct guessing.

1) f -Divergences: Assume that both privacy and utility are
measured by an f -information for a given convex function
f : (0,∞)→ R with f(1) = 0, i.e.,

L(QS,X , PY |X) , If (QS,Y ), (43)

U(QS,X , PY |X) , If (QX,Y ). (44)

A standard convexity argument, see, e.g., [14], shows that

H(QS,X ; ε) , sup
S→X→Y
If (QS,Y )≤ε

If (QX,Y ) (45)

admits the expression in (35), i.e., it is enough to consider
privacy mechanisms taking values on Y = {1, . . . , |X |+1}.
Example 1. Consider the parametric case where

Q ,

{
Q ∈ P :

∑
x∈X

Q(s, x) ≥ γ for all s ∈ S

}

∩

{
Q ∈ P :

∑
s∈S

Q(s, x) ≥ γ for all x ∈ X

}
(46)



for some γ > 0. Note that this corresponds to the case in which
S and X have full support and their marginal distributions are
bounded away from zero. In this case, Lemma 1 implies that
the assumptions of Theorem 2 are satisfied with r0 = ∞,
α = 1, and

CL = CU = 2Kf,γ + (2γ−1 + 1)Lf,γ . (47)

In particular, if f(x) = |x− 1|, then

CL = CU ≤ 4γ−1 + 1; (48)

and if f(x) = x2 − 1, then

CL = CU ≤ 8γ−2. (49)

2) Probability of Correct Guessing: For ease of notation,
let Y = {1, . . . , |X |+1}. In the setting of the PUT, let

L(Q,F ) =
∑
y∈Y

max
s∈S

∑
x∈X

Q(s, x)F (x, y), (50)

U(Q,F ) =
∑
y∈Y

max
x∈X

∑
s∈S

Q(s, x)F (x, y). (51)

The above choice corresponds to the case when the measures
of privacy and utility are Pc(S|Y ) and Pc(X|Y ), respectively.
In particular, for each ε ∈ [Pc(S), Pc(S|X)],

H(P ; ε) = sup
S→X→Y
Pc(S|Y )≤ε

Pc(X|Y ). (52)

This privacy-utility trade-off based on the probability of cor-
rectly guessing was recently studied by Asoodeh et al [5]. In
this case, it is possible to verify that L(P, ·) and U(P, ·) are
continuous.

For P̂ , Q ∈ P and F ∈ F, let ∆L , |L(P̂ , F )−L(Q,F )|.
It can be verified that, for ai, bi ≥ 0,

|max
i
ai −max

i
bi|≤ max

i
|ai − bi|, (53)

and, in particular,

∆L ≤
∑
y∈Y

∣∣∣∣max
s∈S

(P̂F )(s, y)−max
s∈S

(QF )(s, y)

∣∣∣∣ (54)

≤
∑
y∈Y

max
s∈S

∣∣∣(P̂F )(s, y)− (QF )(s, y)
∣∣∣ . (55)

Note that (QF )(s, y) =
∑
xQ(s, x)F (x, y). Thus, a straight-

forward manipulation shows that

∆L ≤
∑
y∈Y

max
s∈S

∑
x∈X
|P̂ (s, x)−Q(s, x)|F (x, y) (56)

≤
∑
s∈S

∑
x∈X

∑
y∈Y
|P̂ (s, x)−Q(s, x)|F (x, y) (57)

≤ ‖P̂ −Q‖. (58)

Similarly, it can be shown that

|U(P̂ , F )− U(Q,F )|≤ ‖P̂ −Q‖. (59)

Hence, the probability of correct guessing satisfies the assump-
tions of Theorem 2 with r0 =∞, α = 1, CL = CU = 1.

Example 2. For p, q ∈ [0, 1], we let

p#q =

(
(1− p)(1− q) (1− p)q

pq p(1− q)

)
, (60)

and Q = {p#q : p ∈ [1/2, 1], q ∈ [0, 1/2], p + q ≤ 1}. This
selection of Q captures the case when S is assumed to be
a Bernoulli random variable with Pr(S = 1) = p and the
channel between S and X is a binary symmetric channel with
crossover probability q. By Theorem 2 in [5], for all Q ∈ Q,

H(Q; ε) = 1− 1− q
p− q

(p+ q − 2pq) + ε
p+ q − 2pq

p− q
, (61)

whenever ε ∈ [p, 1− q]. Hence, the bound in (42) becomes

∆Q(P, P̂ ; ε, r) ≤ 2p̂(1− q̂)
p̂− q̂

r, (62)

where P̂ , p̂#q̂ ∈ Q. By (9), for λ ≥ 1, with probability at
least 1− βλ,

∆Q(PS,X , P̂S,X ; ε, 4λ
√

5/n) ≤ 8p̂(1− q̂)
p̂− q̂

λ

√
5

n
, (63)

where βλ , 3 exp(−16λ2/5).
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APPENDIX A
PROOF OF LEMMA 1

The following auxiliary lemma will be used in the proof
of Lemma 1.

Lemma 3. Let S, X and Y be random variables supported
over finite alphabets S, X and Y , respectively. Assume that
S → X → Y form a Markov chain in that order. Then, for
all s ∈ S, x ∈ X and y ∈ Y ,

max

{
PS,Y (s, y)

PS(s)PY (y)
,
PX,Y (x, y)

PX(x)PY (y)

}
≤
(

min
x∈X

PX(x)

)−1
.

(64)

Proof: Recall that∑
i ai∑
i bi
≤ max

i

ai
bi
, (65)

whenever ai ≥ 0 and bi > 0. For a given y ∈ Y , let Xy ,
{x ∈ X : PX,Y (x, y) > 0}. Note that, given s ∈ S and y ∈ Y ,

PS,Y (s, y)

PS(s)PY (y)
=

∑
x∈Xy

PS,X,Y (s, x, y)∑
x∈Xy

PS(s)PX,Y (x, y)
(66)

≤ max
x∈Xy

PS,X,Y (s, x, y)

PS(s)PX,Y (x, y)
(67)

= max
x∈Xy

PS,X(s, x)

PS(s)PX(x)
(68)

≤ max
x∈X

1

PX(x)
=

(
min
x∈X

PX(x)

)−1
, (69)

where the last inequality follows from the fact that Xy ⊆ X
and PS,X(s, x) ≤ PS(s) for all s ∈ S and x ∈ X . The rest of
the lemma is similar.

Proof of Lemma 1: First, let’s assume that mS < δ.
Let Si = {s ∈ S : PSi(s) < δ} for each i ∈ {1, 2} and
S+ = S \ (S1 ∪ S2). By the definition of f -information and
the triangle inequality, we have that

∆L = |If (PS1,Y1)− If (PS2,Y2)|≤ I + II + III, (70)

where

I =
∑
s∈S1

∑
y∈Y

PS1
(s)PY1

(y)

∣∣∣∣f ( PS1,Y1
(s, y)

PS1
(s)PY1

(y)

)∣∣∣∣ (71)

+
∑
s∈S1

∑
y∈Y

PS2
(s)PY2

(y)

∣∣∣∣f ( PS2,Y2(s, y)

PS2
(s)PY2

(y)

)∣∣∣∣ , (72)

II =
∑
s∈S2

∑
y∈Y

PS1
(s)PY1

(y)

∣∣∣∣f ( PS1,Y1(s, y)

PS1
(s)PY1

(y)

)∣∣∣∣ (73)

+
∑
s∈S2

∑
y∈Y

PS2(s)PY2(y)

∣∣∣∣f ( PS2,Y2
(s, y)

PS2(s)PY2(y)

)∣∣∣∣ , (74)

III =

∣∣∣∣ ∑
s∈S+

∑
y∈Y

(
PS1(s)PY1(y)f

(
PS1,Y1(s, y)

PS1(s)PY1(y)

)
(75)

−PS2(s)PY2(y)f

(
PS2,Y2(s, y)

PS2
(s)PY2

(y)

)) ∣∣∣∣.
(76)

By Lemma 3, we have that

max

{
PS1,Y1(s, y)

PS1
(s)PY1

(y)
,
PS2,Y2(s, y)

PS2
(s)PY2

(y)

}
≤ m−1X . (77)

In particular, we have that

I ≤ Kf,mX
(PS1(S1) + PS2(S1)). (78)

Since PS1
(S1) + PS2

(S1) = PS2
(S1)− PS1

(S1) + 2PS1
(S1),

the definition of S1 implies that

PS1
(S1) + PS2

(S1) ≤ 1

2
‖PS1

− PS2
‖+2|S|δ. (79)

Note that

max{‖PS1−PS2‖, ‖PX1−PX2‖} ≤ ‖PS1,X1−PS2,X2‖. (80)

Hence, (78) and (79) lead to

I ≤ 2Kf,mX
|S|δ +

Kf,mX

2
‖PS1,X1

− PS2,X2
‖. (81)

Using a similar argument, we conclude that

II ≤ 2Kf,mX
|S|δ +

Kf,mX

2
‖PS1,X1

− PS2,X2
‖. (82)

By the triangle inequality III ≤ III1 + III2, where

III1 =
∑
s∈S+

∑
y∈Y
|PS1

(s)PY1
(y)− PS2

(s)PY2
(y)|

×
∣∣∣∣f ( PS1,Y1

(s, y)

PS1(s)PY1(y)

)∣∣∣∣ , (83)

III2 =
∑
s∈S+

∑
y∈Y

PS2(s)PY2(y)

×
∣∣∣∣f ( PS1,Y1(s, y)

PS1
(s)PY1

(y)

)
− f

(
PS2,Y2(s, y)

PS2
(s)PY2

(y)

)∣∣∣∣ .
(84)

By the definition of S+, we have that, for all s ∈ S+ and
y ∈ Y ,

PS1,Y1
(s, y)

PS1
(s)PY1

(y)
=
PS1|Y1

(s|y)

PS1
(s)

(85)

≤ 1

PS1
(s)
≤ δ−1. (86)

Recall that |f(x)|≤ Kf,δ for all x ∈ [0, δ−1]. Hence,

III1 ≤ Kf,δ

∑
s∈S+

∑
y∈Y
|PS1

(s)PY1
(y)− PS2

(s)PY2
(y)|

≤ Kf,δ

∑
s∈S

∑
y∈Y

(PY1
(y)|PS1

(s)− PS2
(s)|

+PS2(s)|PY1(y)− PY2(y)|)
= Kf,δ (‖PS1

− PS2
‖+‖PY1

− PY2
‖) .

(87)

The data processing inequality implies that

‖PY1 − PY2‖≤ ‖PX1 − PX2‖, (88)

and by (80) we obtain that

III1 ≤ 2Kf,δ‖PS1,X1
− PS2,X2

‖. (89)



Similarly, for all s ∈ S+ and y ∈ Y we have that

max

{
PS1,Y1(s, y)

PS1
(s)PY1

(y)
,
PS2,Y2(s, y)

PS2
(s)PY2

(y)

}
≤ δ−1. (90)

Recall that f is Lipschitz on [0, δ−1] and Lf,δ is its Lipschitz
constant. In particular,

III2 ≤ Lf,δ
∑
s∈S+

∑
y∈Y

1

PS1(s)PY1(y)

×|PS2
(s)PY2

(y)PS1,Y1
(s, y)

− PS1(s)PY1(y)PS2,Y2(s, y)|.

(91)

By the triangle inequality,

|PS2(s)PY2(y)PS1,Y1(s, y)−PS1(s)PY1(y)PS2,Y2(s, y)| (92)

is upper bounded by
PS1,Y1

(s, y)|PS2
(s)PY2

(y)− PS1
(s)PY1

(y)|
+ PS1(s)PY1(y)|PS1,Y1(s, y)− PS2,Y2(s, y)|. (93)

Since PS1,Y1
(s, y) ≤ PY1

(y) for all s ∈ S and y ∈ Y , (91)
leads to

III2 ≤ Lf,δ
∑
s∈S+

∑
y∈Y

1

PS1(s)
|PS2

(s)PY2
(y)− PS1

(s)PY1
(y)|

+ Lf,δ
∑
s∈S+

∑
y∈Y
|PS1,Y1(s, y)− PS2,Y2(s, y)|

≤ δ−1Lf,δ
(
‖PY1 − PY2‖+‖PS1 − PS2‖

)
+ Lf,δ‖PS1,Y1

− PS2,Y2
‖.

(94)
By assumption, PY1|X1

= PY2|X2
and hence

‖PS1,Y1 − PS2,Y2‖≤ ‖PS1,X1 − PS2,X2‖. (95)

Therefore,

III2 ≤
(
2δ−1 + 1

)
Lf,δ‖PS1,X1 − PS2,X2‖. (96)

Since ∆L ≤ I + II + III1 + III2, we obtain the upper bound

∆L ≤ 4Kf,mX
|S|δ +Bf,δ‖PS1,X1 − PS2,X2‖, (97)

where Bf,δ = Kf,mX
+ 2Kf,δ + (2δ−1 + 1)Lf,δ .

Now assume that δ ≤ mS . In particular, we have that S1 =
S2 = ∅ and hence ∆L ≤ III1 +III2 with III1 and III2 defined
as in (83) and (84), respectively. By Lemma 3,

max

{
PS1,Y1

(s, y)

PS1
(s)PY1

(y)
,
PS2,Y2

(s, y)

PS2
(s)PY2

(y)

}
≤ m−1X . (98)

In particular, we have that

III1 ≤ 2Kf,mX
‖PS1,X1

− PS2,X2
‖. (99)

III2 ≤
(
2m−1S + 1

)
Lf,mX

‖PS1,X1 − PS2,X2‖. (100)

Hence,
∆L ≤ Cf,mS

‖PS1,X1 − PS2,X2‖, (101)

where Cf,mS
= 2Kf,mX

+ (2m−1S + 1)Lf,mX
.

Mutatis mutandis, setting Xi = {x ∈ X : PXi(x) < δ} for
each i ∈ {1, 2} and X+ = X \ (X1∪X2), it can be shown that

∆U ≤ 4Kf,mX
|X |δ +Bf,δ‖PS1,X1 − PS2,X2‖, (102)

when mX < δ. If δ ≤ mX , it can be shown that

∆U ≤ Cf,mX
‖PS1,X1 − PS2,X2‖, (103)

where Cf,mX
= 2Kf,mX

+ (2m−1X + 1)Lf,mX
.

APPENDIX B
PROOF OF LEMMA 2

Proof of Lemma 2: First, we define X1 , {x ∈
X : P̂X(x) ≥ γ}. By the construction of X0, we have that
PX0|X(x′|x) = 1 whenever x ∈ X1 and x′ = x, or x ∈ X c1
and x′ = x0; in all other cases PX0|X(x′|x) = 0. In particular,

PX0(x0) =
∑
x∈X c

1

PX(x) and PX0(x) = PX(x) for x ∈ X1.

(104)
By the law of total probability and Markovianity

PX,Y0
(x, y) =

∑
x′∈X1∪{x0}

PX(x)PX0|X(x′|x)PY0|X0
(y|x′),

(105)
for all x ∈ X and y ∈ Y . In particular, for all x ∈ X1,

PX,Y0(x, y) = PX(x)PY0|X0
(y|x). (106)

Similarly, for x ∈ X c1 ,

PX,Y0
(x, y) = PX(x)PY0|X0

(y|x0). (107)

By the definition of f -information, (104), (106), and (107),

If (PX,Y0
) =

∑
x∈X1

∑
y∈Y

PX(x)PY0
(y)f

(
PX,Y0

(x, y)

PX(x)PY0(y)

)
(108)

+
∑
x∈X c

1

∑
y∈Y

PX(x)PY0
(y)f

(
PX,Y0

(x, y)

PX(x)PY0
(y)

)
(109)

=
∑
x∈X1

∑
y∈Y

PX0
(x)PY0

(y)f

(
PX0,Y0(x, y)

PX0
(x)PY0

(y)

)
(110)

+
∑
y∈Y

PX0(x0)PY0(y)f

(
PX0,Y0(x0, y)

PX0
(x0)PY0

(y)

)
(111)

=If (PX0,Y0
), (112)

as required.

APPENDIX C
PROOF OF THEOREM 2

Proof of Theorem 2: First we show that, for all r and
ε with P ∈ Qr(P̂ ),

H(P ; ε) ≤ H(P̂ ; ε+ CLr
α) + CUr

α. (113)

Since, for fixed P , both L(P, ·) and U(P, ·) are continuous,
there exists F ∈ F such that L(P, F ) ≤ ε and

H(P ; ε) = U(P, F ). (114)

By assumption, we have that

|U(P̂ , F )− U(P, F )|≤ CU‖P̂ − P‖α≤ CUrα. (115)

In particular,

H(P ; ε) ≤ U(P̂ , F ) + CUr
α. (116)

Similarly, since

|L(P̂ , F )− L(P, F )|≤ CL‖P̂ − P‖α≤ CLrα, (117)



we have

L(P̂ , F ) ≤ L(P, F ) + CLr
α ≤ ε+ CLr

α. (118)

Therefore, from inequality (116) and Definition 1, we have

H(P ; ε) ≤ H(P̂ ; ε+ CLr
α) + CUr

α. (119)

Next, we prove that

H(P̂ ; ε− CLrα)− CUrα ≤ U(P, F ∗) (120)

where we denote P ∗Y |X by F ∗. Let F0 ∈ F be such that
L(P̂ , F0) ≤ ε− CLrα and

U(P̂ , F0) = H(P̂ ; ε− CLrα). (121)

Since for a fixed P̂ , both U(P̂ , ·) and L(P̂ , ·) are continuous,
there exists at least one such F0. By assumption, we have for
any Q ∈ Qr(P̂ ),

|L(P̂ , F0)− L(Q,F0)|≤ CL‖P̂ −Q‖α≤ CLrα. (122)

In particular, we have that L(Q,F0) ≤ L(P̂ , F0) +CLr
α ≤ ε.

Hence, F0 ∈ DQ(P̂ ; ε, r) and, from the lower bound in (36),

inf
Q∈Qr(P̂ )

U(Q,F0) ≤ U(P, F ∗). (123)

Since, by assumption,

|U(P̂ , F0)− U(Q,F0)|≤ CU‖P̂ −Q‖α≤ CUrα, (124)

we have that

U(Q,F0) ≥ U(P̂ , F0)− CUrα (125)

= H(P̂ ; ε− CLrα)− CUrα. (126)

In particular, this implies that

inf
Q∈Qr(P̂ )

U(Q,F0) ≥ H(P̂ ; ε− CLrα)− CUrα. (127)

Combining (127) and (123), inequality (120) holds. Combining
(113) and (120) together, we get the desired conclusion.


