
ParallelDualCoordinateDescentMethod forLarge-scaleLinear
Classification inMulti-coreEnvironments

Wei-Lin Chiang, Mu-Chu Lee and Chih-Jen Lin
Department of Computer Science & Information Engineering, National Taiwan University

Introduction
• Dual coordinate descent (CD) method is one of the most

effective approaches for large-scale linear classification
(e.g., linear SVM).

• However, its sequential design makes the parallelization
difficult.

• In this work,
– We investigate multi-core dual CD methods for linear

classification.
– We propose a new framework to parallelize dual CD

and establish its theoretical convergence properties.

• Further, we demonstrate through experiments that the
method is robust and efficient.

Formulations
• Given training data (xi, yi) ∈ Rn × {−1, 1}, i = 1, . . . , l.

• Linear classification obtains its model vector w by solv-
ing:

min
w

1

2
wTw + CL(w) (1)

where L(w) =
l∑

i=1

ξ(w;xi, yi). (2)

Eq. (2) is the loss function, and two losses are considered:

ξ(w;xi, yi) ≡

{
max(0, 1− yiwTxi) L1-loss SVM,

max(0, 1− yiwTxi)
2 L2-loss SVM.

• If (1) is referred to as the primal problem, then a dual CD
method solves the following dual problem:

min
α

1

2
αT Q̄α−

l∑
i=1

αi

subject to 0 ≤ αi ≤ U,∀i = 1, . . . , l,

where Q̄ = Q+D withQij = yiyjx
T
i xj , andD is diagonal

with

Dii =

{
0
1

2C

U =

{
C for L1-loss SVM,

∞ for L2-loss SVM.

• Each time an αi is selected and a one-variable sub-
problem is solved:

min
d
f(α+ dei) subject to 0 ≤ αi + d ≤ U, (3)

where ei = [0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0]T . Clearly,

f(α+ dei) =
1

2
Q̄iid

2 +∇if(α)d+ constant.

The solution of (3) can be easily seen as

d = min

(
max

(
αi −

∇if(α)

Q̄ii
, 0

)
, U

)
− αi.

• A crucial observation in Hsieh et al. [2008] notes that if

w ≡
l∑

j=1

yjαjxj (4)

is maintained, then∇if(α) can be easily calculated by

∇if(α) = (Q̄α)i − 1 =
l∑

j=1

Q̄ijαj − 1

= yiw
Txi − 1 +Diiαi.

(5)

We can then update α and maintain the weighted sum in
(4) by

αi ← αi + d and w ← w + dyixi. (6)

• The main computation for updating an αi includes two
O(n) operations in (5) and (6).

• Unfortunately, the procedure is inherently sequential.

A Practical Implementation for Dual CD

1: Specify a feasible α and calculate w =
∑

j yjαjxj

2: while true do
3: for i = 1, . . . , l do
4: G← yiw

Txi − 1 +Diiαi / O(n)

5: PG (proj. grad.) =


G if 0 < αi < U,

min(0, G) if αi = 0,

max(0, G) if αi = U.

6: if |PG| ≥ 10−12 then
7: d← min(max(αi −G/Q̄ii, 0), U)− αi

8: αi ← αi + d
9: w ← w + dyixi / O(n)

Existing Works: Mini-batch Dual CD

• Instead of running through i = 1, . . . , l in line 3 one by
one, run a batch of i in parallel.

• For convergence, the step size d in line 7 is scaled down

αi ← αi + βd, where β < 1

Takáč et al. [2015] discussed the condition of β and proved
the convergence with suitable β.

• However, using conservative steps may cause slower
convergence.

• In line 9, race conditions occur for multi-threading.

w ← w +
∑

i in a batch
diyixi (7)

Lee et al. [2015] detailed study this issue in a multi-core
Newton method. They consider atomic and reduce oper-
ations.
– However, even with careful settings, the overhead of (7)

is significant because of the small batch size.
– A simple comparison between parallel mini-batch CD

and single-thread dual CD (LIBLINEAR)
rcv1 covtype

• Therefore, we may give up parallelizing (7) in multi-core
environments.

Existing Works: Asynchronous Dual CD

• To address the slow convergence of mini-batch CD, Hsieh
et al. [2015] and Tran et al. [2015] parallelize the for loop
(line 3) so each thread updates αi asynchronously. For
line 9, w can be updated by atomic operations.

• Since the processors are running concurrently, w may
change between the start (line 4) and the end (line 9) of
one CD step.

• For convergence, the iteration lag τ is the key variable for
analysis. Specifically, the sequence {αk} should satisfy

k ≤ k̄ + τ

where k̄ is the iteration index when iteration k starts.

• The iteration lag τ must satisfy some conditions. How-
ever, the conditions may not hold, so asynchronous CD
may diverge.

Our Idea and Design

• For convergence, we don’t use asynchronous updates.

• We sequentially updatew due to the race condition in (7).
However, we ensure that this takes a small portion while
others are parallelizable.

Proposed Parallel Dual CD Method

• In CD a selected αi may not need to be updated. After calculat-
ing ∇if(α), we know if that’s the case in line 6. Practically we
have

αk
1 , . . . , α

k
i ,︸ ︷︷ ︸

unchanged

αk
i+1, αk

i+2, . . . , α
k
j ,︸ ︷︷ ︸

unchanged

αk
j+1, . . .

• If we know αk
i is unchanged, then ∇if(α) doesn’t need to be

calculated.

• Idea: a setting to guess that some αi are unchanged
– Calculate∇if(α),∀i ∈ B̄ in parallel.
– Select a much smaller subset B from B̄ to do sequential CD

updates.
That is, we conjecture αi, i ∈ B̄ \B need not be updated.

• A new framework:
1: while true do
2: Select a set B̄
3: Calculate∇B̄f(α) in parallel
4: Select B ⊂ B̄ with |B| � |B̄|
5: Sequentially update αi, i ∈ B

Implementation of the Proposed Framework

• The selection of B is essential. An example:
– {1, . . . , l} splits to B̄1, . . . , B̄T

– For each B̄ in B̄1, . . . , B̄T select elements in B̄
with larger project gradient as B.

• Theoretical convergence is established.

• Other selections of B are possible.

• The block size |B̄| is also important
– too small |B̄|may cause parallelization overhead
– too large |B̄|may cause slower convergence
Fortunately, we found that the training time is
about the same when |B̄| is set to be a few hun-
dreds.

• Shrinking technique in Hsieh et al. [2008] for re-
moving some unnecessary αi can be incorporated.

Comparison: asynchronous CD, our proposed method and single-core LIBLINEAR

• x-axis is the training time in seconds, y-axis is the relative error, and “New” is our method.

• l1 loss
rcv1 KDD2010-b covtype url_combined

webspam HIGGS yahoo-japan yahoo-korea

• l2 loss
rcv1 KDD2010-b covtype url_combined

webspam HIGGS yahoo-japan yahoo-korea

• Asynchronous CD is efficient, but may fail when using more threads.

Conclusions
• We propose an effective parallel dual CD framework for multi-core environments.

• Future direction: dual CD in multi-CPU environments.

• Multi-core LIBLINEAR is available at:
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multicore-liblinear


