Pattern-oriented API Refactoring: Addressing Design Smells and
Stakeholder Concerns

Mirko Stocker
Eastern Switzerland University of
Applied Sciences (OST)
Switzerland
mirko.stocker@ost.ch

Abstract

In distributed systems, remote Application Programming Interfaces
(APIs) let architectural components such as microservices commu-
nicate with each other; interoperability and satisfactory developer
experience are key stakeholder concerns. In response to changing
requirements and insights from development and operations, API
endpoints and the request and response messages of the exposed
operations are actively designed and then modified during the en-
tire life cycle of the system. Refactoring is a crucial practice in agile
software development, widely adopted in practice at the code level.
Architectural refactoring has been researched but has not been
adopted nearly as widely as code-level refactoring. This paper con-
tinues our work on refactoring remote APIs, which we introduced
at EuroPLoP 2023. We present a second slice of seven API refactor-
ings pulled from our online Interface Refactoring Catalog, many of
which target API design patterns: Extract Information Holder, Inline
Information Holder, Extract Operation, Rename Operation, Make Re-
quest Conditional, Encapsulate Context Representation, and Introduce
Version Identifier. Besides context, problem, and step-by-step solu-
tion, we also motivate the refactorings by stakeholder concerns and
identify the design smells that refactoring can address. All refac-
torings are illustrated with implementation code snippets, excerpts
from API specification, and/or examples of messages exchanged at
runtime. The paper concludes with an outlook to future work.

CCS Concepts

« Software and its engineering — Patterns; Designing software.

Keywords

application programming interface, cloud computing, design pat-
terns, enterprise application integration, interface definition lan-
guages, refactoring, software

ACM Reference Format:

Mirko Stocker, Olaf Zimmermann, and Stefan Kapferer. 2024. Pattern-
oriented API Refactoring: Addressing Design Smells and Stakeholder Con-
cerns. In 29th European Conference on Pattern Languages of Programs, People,
and Practices (EuroPLoP 2024), July 03-07, 2024, Irsee, Germany. ACM, New
York, NY, USA, 24 pages. https://doi.org/10.1145/3698322.3698334

This work is licensed under a Creative Commons Attribution-NoDerivs International
4.0 License.

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1683-6/24/07
https://doi.org/10.1145/3698322.3698334

Olaf Zimmermann
Eastern Switzerland University of
Applied Sciences (OST)
Switzerland
olaf.zimmermann@ost.ch

Stefan Kapferer
Eastern Switzerland University of
Applied Sciences (OST)
Switzerland
stefan.kapferer@ost.ch

1 Introduction

Creating robust, scalable, and maintainable software systems is a
constant challenge. Developers have to adapt and enhance their
software to meet changing requirements, accommodate new fea-
tures, and address different quality aspects that meet the goals and
expectations of stakeholders. Refactoring and design patterns play a
key role in shaping the quality and longevity of software solutions.

Refactoring is the disciplined activity of restructuring code with-
out altering its external behavior. It is an essential agile practice that
allows developers to eliminate technical debt, enhance code read-
ability, and improve the overall maintainability of software systems
[9]. Refactoring serves as a cornerstone for maintaining a codebase,
eliminating design and architectural smells that can accumulate
over time. Design smells signal potential issues in the code’s struc-
ture and design. By recognizing and addressing these design smells
through thoughtful refactoring, developers can ensure the long-
term technical sustainability of their software solutions. Refactoring
is typically aimed at code-level elements such as classes, methods,
and variables. However, the same principles can be applied to APIs
and their architectural elements.

Design patterns complement the principles of refactoring. Pat-
terns encapsulate best practices and “communicate wisdom and
insight in computer/software systems design” [23]. They provide a
common language for developers to communicate and share knowl-
edge. Through refactoring, software can also be aligned with a
design pattern to improve its understandability [18]. Many of the
patterns that our refactorings use come from a pattern language for
microservice and remote API design, first published in EuroPLoP
proceedings 2017 to 2020 [21, 32, 35, 36, 40] and published in book-
length in “Patterns for API Design: Simplifying Integration with
Loosely Coupled Message Exchanges” [41]. Appendix A provides
an overview of the API design patterns from this book that are
referenced in this paper.

This paper presents a catalog of refactorings that target APIs and
their architectural elements. We call these refactorings interface
refactorings to distinguish them from code-level refactorings. In our
API domain model in “Patterns for API Design” [41], we describe
an API as “a collection of endpoints” that offer “operations” to
“communication participants” (also called “API clients” and “API
providers” depending on their role in the communication). Clients
of the API exchange structured request and response messages with
the API provider. Figure 1.1 shows the targets of our refactorings
in terms of this domain model.

The Interface Refactoring Catalog (IRC) currently features 24
refactorings. Many of these refactorings use API design patterns
as their targets. A first slice of eight IRC entries was published

https://orcid.org/0009-0002-2928-1646
https://orcid.org/0009-0003-7923-9777
https://orcid.org/0009-0007-1097-7965
https://doi.org/10.1145/3698322.3698334
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3698322.3698334

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

API Refactorings:
— Tighten Evolution Strategy
— Relax Evolution Strategy

Mirko Stocker, Olaf Zimmermann, and Stefan Kapferer

Endpoint Refactorings:

— Rename Endpoint

— Merge Endpoints

Y¢ Segregate Commands from Queries

Endpoint

Address location
APIPattern role

Evolution Refactorings:
% Introduce Version Identifier

¢ Introduce Version Mediator

rication Particiy

] E

¢

Operation Refactorings:

* Extract Operation Operation

— Move Operation -

% Rename Operation String name

Y¢ Split Operation APIPattern responsibility
Y¢ Merge Operations =) T

Client Refactorings:
— Split Application Frontend

B'r\,-|AP| client | [API Provider

Response Message Payload

KeyValuePairs protocolHeaders
RepresentationElements requestPayload

KeyValuePairs protocolHeaders

Request Message Payload ‘
RepresentationElements responsePayload

Backend Refactorings:
— Split Application Backend

]

|

Message Refactorings 1/2:
Y Introduce Data Transfer Object
% Extract Information Holder

|

Message Refactorings 2/2:
Y& Add Wish List
— Add Wish Template

% Inline Information Holder
¢ Introduce Pagination
Y Rename Representation Element

— Bundle Requests

* Make Request Conditional
% Encapsulate Context Representation

% Presented in this paper
Y¢ Published in Stocker and Zimmermann [31]
— In progress, preview available on website

Figure 1.1: Refactorings by targeted API element (as defined in API domain model from Zimmermann et al. [41])

in “API Refactorings to Patterns: Catalog, Template and Tools for
Remote Interface Evolution” [31] (Note that we use the terms API
refactoring and interface refactoring interchangeably). This paper
presents the next slice; the entire catalog is available at interface-
refactoring.github.io. Five of the refactorings in this paper target
API design patterns (Extract and Inline Information Holder, Make
Request Conditional, Encapsulate Context Representation, Introduce
Version Identifier); the remaining two ones change API structure
and names (Extract Operation, Rename Operation).

While the refactorings captured in this template are not patterns
in the classical sense [11], they share many properties with soft-
ware design patterns: refactorings are also applied in a specific
context to solve a particular problem. Different forces apply, re-
quiring trade-offs and decisions. While patterns are mined from
known uses, our refactorings are derived from our own professional
experience. Their presentation is inspired by literature such as the
“Refactoring” book [9], with selected code refactorings from the
book being transcribed and transferred to the domain of APIs.

Usage examples of the refactorings are shown in the context of
Lakeside Mutual, a fictitious insurance company that serves as an
example scenario to demonstrate microservices [39] and domain-
driven design [3]. The example also demonstrates many of the API
design patterns from Zimmermann et al. [41]; its sample applica-
tions consist of several Spring Boot microservices that provide APIs

to frontends to create, read, update, and delete insurance policies
as well as product and customer master data.

The refactorings are introduced on the API contract level a) using
OpenAPI Specification (OAS), a notation to describe HTTP APIs,
b) Context Mapper Language (CML) [16], a Domain-specific Lan-
guage (DSL) for Domain-Driven Design (DDD), and ¢) Microservice
Domain-Specific Language (MDSL), a DSL that allows describing
APIs in a technology-agnostic way. To show the changes before and
after the refactorings from a client’s perspective, we also use the
curl command line tool that shows HTTP request and response mes-
sages as well as git diff output. Examples at the code level examples
are given as well.

The remainder of this paper is structured in the following way.
Section 2 discusses related patterns and pattern languages. Sec-
tion 3 gives an overview of our interface refactoring catalog and
presents the refactorings mentioned above. Section 4 summarizes
and concludes the paper.

Our layout conventions are as follows: Refactorings are set in
Italics; those not presented in this paper either link to the IRC web-
site or to our previously published paper (Stocker and Zimmermann
[31]). Pattern names appear in SMALL CaPs. We use #hash-tags for
quality attributes, e.g., #performance, to discern them from smell
names such as God endpoint. When elements in the code examples
are referenced in the text, their names are set in Courier.

https://interface-refactoring.github.io
https://interface-refactoring.github.io
https://github.com/Microservice-API-Patterns/LakesideMutual
https://www.openapis.org/
https://microservice-api-patterns.github.io/MDSL-Specification/index
https://microservice-api-patterns.github.io/MDSL-Specification/index
https://curl.se/

Pattern-oriented APl Refactoring: Addressing Design Smells and Stakeholder Concerns

2 Related Work

We already covered related work on the subject rather extensively in
our EuroPloP 2023 paper [31]. Therefore, this section concentrates
on related patterns.

Most of the interface refactorings presented in this paper use
API design patterns from the “Patterns for API Design” [41] book as
their targets. Other pattern languages and individual patterns cover
API design aspects as well; some of our API refactorings target
those patterns. We summarize particularly important ones in the
following.

The DATA TRANSFER OBJECT (DTO) pattern of the “Patterns of
Enterprise Application Architecture (P of EAA)” [8] book by Martin
Fowler is used in many API designs. A DTO is “an object that carries
data between processes in order to reduce the number of method
calls. [...] The fields in a Data Transfer Object are fairly simple,
being primitives, simple classes like strings and dates, or other
Data Transfer Objects” STRANGLER FIG APPLICATION by Martin
Fowler, or the BACKENDs FOR FRONTENDS pattern by Sam Newman,
cover relevant aspects and are used in our refactorings. Similarly,
some patterns of the Domain-Driven Design (DDD) approach by
Evans [3] such as PUBLISHED LANGUAGE, AGGREGATE or ENTITY
touch on aspects of remote API design; a practitioner view on the
interrelation of remote APIs and DDD is presented in [29]. Likewise,
the Cloud Computing Patterns by Fehling et al. [4] cover aspects
such as workload types and application tiers that are not only
relevant in cloud computing scenarios but for software architecture
in general and for API design as well.

Lilienthal and Schwentner [20] present Domain-Driven Refac-
torings to transform software systems to improve the maintainabil-
ity of legacy systems. Hohpe and Pillai introduce Refactoring to
Serverless to “improve the design of your serverless application by
replacing application code with automation code, while using the
same programming language.”

In the following Section 3 we discuss related work for each
refactoring in the seven subsections called “Related Content”.

3 The Interface Refactoring Catalog (Second
Slice)

In this section, we present seven refactorings. Five of them target
the introduction of API design patterns: Extract Information Holder,
Inline Information Holder, Make Request Conditional, Encapsulate
Context Representation, Introduce Version Identifier. We also intro-
duce two refactorings changing API structure and names, Extract
Operation and Rename Operation.

Table 1 lists the refactorings along with the design smells and
the stakeholder concerns that they address.

All refactorings presented in this section start from a context and
motivation and introduce several stakeholder concerns, including
quality attributes and design forces. An initial position sketch shows
which API parts or architectural elements are targets of the refactor-
ing. In addition to the stakeholder concerns, each refactoring also
lists design smells that indicate problems with an existing solution.
Smells are “structures in the design that indicate violations of fun-
damental design principles and negatively impact design quality”
[33]. See our website for navigating the refactorings by stakeholder
concerns and by smells. Starting from the initial position, a series

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

of instructions transforms the design into a target solution sketch
that details how the refactoring can be applied and validated. Each
refactoring comes with a concrete example that shows the refactor-
ing in action. A discussion of hints and pitfalls to avoid follows. The
coverage of each refactoring closes with a subsection about related
content.

3.1 Refactoring: Extract Information Holder

3.1.1 Context and Motivation. An API operation returns multiple
related, possibly deeply nested data structures to provide clients
with a rich dataset in a single response. We call such data elements
EMBEDDED ENTITIES [39]. For example, in an e-commerce applica-
tion, the request for the profile of a customer might also return their
complete purchasing history. This API is very convenient for clients
requiring all the information simultaneously. However, it might
not be appropriate for all use cases; some API clients might want
to retrieve selected purchasing data through subsequent individual
requests when they need it.

As an API client, I prefer to retrieve related data elements step-by-
step over having to process large structured data sets appearing in
a single response message so that I can process individual responses
and the data in them quickly and on demand.

3.1.2 Stakeholder Concerns.

#performance, #green-software Assembling, transferring,
and processing a response utilizes resources both on the
provider and client side. These resources should not be
wasted but handled with care and respect for the environ-
ment and the energy consumed. Bandwidth and computing
power are examples of valuable and costly resources.

#evolvability, #coupling Systems and components evolve at
different speeds. Hence, they should not depend on each
other unless this is justified in the business requirements.
Data dependencies often introduce unwanted coupling that
is difficult to detect and resolve.

#data-currentness Data returned by an API might age at dif-
ferent rates. In the e-commerce shop scenario, for instance,
the master data of customers (e.g., names, shipping addresses)
will change less frequently than transactional data (such as
orders). API clients might want to cache some of the data re-
trieved, which is harder if faster-changing data is embedded
in slower-changing data.

#security Not all API clients have the same access privileges.
More fine-grained data RETRIEVAL OPERATIONS make it eas-
ier to enforce related controls and rules, avoiding the risk
that restricted data “slips through” accidentally. To revisit
the e-commerce scenario, what if the shop software also
includes public ratings of products that show the name and
picture of the rating customer? Here, only limited and care-
fully selected information about the customer should be
returned.

3.1.3 Initial Position Sketch. The API implementation shown in
Figure 3.1 (a) returns DATA ELEMENTS that contain further nested
data.

The refactoring targets response messages in API operations
that return rich data representation elements.

https://martinfowler.com/bliki/StranglerFigApplication.html
https://samnewman.io/patterns/architectural/bff/
https://serverlessland.com/refactoring-serverless/intro
https://serverlessland.com/refactoring-serverless/intro
https://interface-refactoring.github.io/refactorings/by-stakeholder-concerns/
https://interface-refactoring.github.io/refactorings/by-stakeholder-concerns/
https://interface-refactoring.github.io/refactorings/by-smells-drivers/

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

Mirko Stocker, Olaf Zimmermann, and Stefan Kapferer

Refactoring

Design Smells Addressed

Stakeholder Concerns

Extract Information Holder (Section 3.1)

As an API client, I prefer to retrieve related data elements
step-by-step over having to process large structured data
sets appearing in a single response message so that I can
process individual responses and the data in them quickly
and on demand.

God endpoint, data lifetime
mismatches, overfetching,
sell what is on the truck

#performance, #green-software,
#evolvability, #coupling,
#data-currentness,

#security

Inline Information Holder (Section 3.2)

As the API provider, I want to reduce indirection by embed-
ding referenced information holder resources so that clients
have to issue fewer requests when working with linked data.

Underfetching, leaky encapsulation

#performance, #green-software,
#usability, #developer-experience,
#offline-support

Extract Operation (Section 3.3)

As the API provider, I want to focus the responsibilities of
an endpoint on a single role so that a) API clients serving
a particular stakeholder group understand the API design
intuitively and b) the release roadmap and scaling of the
endpoint can be optimized for each group of stakeholders
and clients.

Role and/or responsibility diffusion,
low cohesion, REST principle(s)
constraints, god endpoint, wrong
cuts

#reliability, #stability,
#single-responsibility-principle,
#independent-deployability,
#scalability, #security

Rename Operation (Section 3.4)

As an API provider, I want to express the responsibilities of
an operation in its name so that client developers, API devel-
opers, and non-technical stakeholders (end users, product
managers) understand the API — and each other in conver-
sations about the APL

Curse of knowledge, role and/or
responsibility diffusion,
ill-motivated naming conventions,
sloppy naming, cryptic or
misleading name

#maintainability, #understandability
(including #explainability and
#learnability)

Make Request Conditional (Section 3.5)

As an API provider, I want to be able to tell clients that they
already have a recent version of some data so that I do not
have to send this data again.

High latency/poor response time,
spike load, polling proliferation

#performance, #green-software,
#data-access-characteristics,
#developer-experience, #simplicity

Encapsulate Context Representation (Section 3.6)
As a conversation participant, I want to consolidate all techni-
cal metadata in a single place and keep it close to the domain

Tight coupling to a communication
protocol, quality-of-service (QoS)
fragmentation and dispersion

#developer-experience,
#learnability, #interoperability,
#modifiability, #security,

data so that clients and providers can prepare and process #auditability

it jointly and so that protocols can be switched if that is

required to satisfy requirements and constraints that change

over time.

Introduce Version Identifier (Section 3.7) Tacit semantic changes up to #maintainability,
As an API provider, I want to communicate versions and incompatibilities creep in, #compatibility,

their compatibility properties explicitly so that clients can
react accordingly on changes that affect them during API
evolution.

resistance to change caused by
uncertainty

#developer-experience

Table 1: Refactorings in the order in which they are presented in this paper along with a goal statement expressed in the form
of a user story, the addressed design smells, and the affected stakeholder concerns in the form of quality attributes.

Pattern-oriented APl Refactoring: Addressing Design Smells and Stakeholder Concerns

API Client

1

k=)
I

0@

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

API Provider

Resource

Entity is

Repository
Repository

embedded

T 'R
‘ @ 1 @ @ Data Element
S ~———

Figure 3.1 (a): Extract Information Holder: Initial Position Sketch: An API provider responds to a request from a client (1) with
a message (2) that contains several, possibly nested, Data ELEMENTS. The client does not require all the received data.

3.1.4 Design Smells. 3. (Optional) If the API operation does not already use a ded-

God endpoint The endpoint offering this operation might icated DaTa TRANSFER OBJECT (DTO), apply the Introduce

have to access many data sources or backend systems to
assemble the response. Derived from the “God Class” smell
in object-oriented design, the term describes a class or an
object that controls numerous other system parts [27]. Many
such dependencies on external systems and data make the
API implementation harder to operate and evolve.

Data lifetime mismatches Conflating Data ELEMENTS with

different lifetimes makes caching, especially cache invalida-
tion, harder. This may happen when slow-changing master
data contains fast-changing transactional data (for example,
in an OPERATIONAL DATA HOLDER), but also if transactional
data that is often refreshed by clients contains embedded
master data that infrequently changes.

Overfetching Clients throw away parts of the received data

because the API design follows a one-size-fits-all approach,
and the provider includes all data in responses that any
present or future client might be interested in. For example,
in an e-commerce API, product procurement information
might only interest a few clients, while most want to learn
about current prices and items in stock.

Data Transfer Object [31, pages 4-7] refactoring to decou-
ple the API response message from the internal data model.
The presence of a DTO allows changing the response mes-
sage structure without affecting the internal data model.
Depending on how deep the EMBEDDED ENTITY is nested
in the response data structure, the Introduce Data Transfer
Object [31, pages 4-7] refactoring may have to be applied
several times. You might be using a programming language
or framework where this step is not required. In that case,
you can just skip it as long as you have a means to modify
the response message structure.

Replace an EMBEDDED ENTITY with a LINKED INFORMATION
HoLpER in the following steps:

1.

Add a Link ELEMENT to the response message that points
clients to a RETRIEVAL OPERATION in an INFORMATION
HoLpER RESOURCE. This link realizes/applies the LINKED
INFORMATION HOLDER pattern; when a DTO is present, it is
placed in it.

. Adjust the tests to the new response structure and run them

to observe the changed responses.

Sell what is on the truck Implementation data is exposed 3. (Optional) Deprecate or remove the EMBEDDED ENTITY in
just because it is there, without any client-side use case. the original response message.
. . . 4. Clean up the implementation code. For example, services,
Instruct/?ns. Asa prep aration for the refactoring, make sure utilities, or repositories previously used to retrieve the em-
that the following preconditions are met: bedded data might not be required anymore here; hence,
1. Decide on which parts of the message to extract. See the Em- they should either be moved or removed.
BEDDED ENTITY and LINKED INFORMATION HOLDER patterns 5. Check security policies to ensure that clients can access the
for advice [41]. linked data.
. Ensure the API offers a dedicated RETRIEVAL OPERATION for 6. Adjust API clients under your control to issue additional API

the data that is currently embedded and will be extracted.
If this is not already the case, apply the Split Operation [31,
pages 12-15] refactoring first. An Extract Operation or Segre-
gate Commands from Queries [31, pages 20-22] refactoring
might also be appropriate to avoid the god endpoint smell.

calls to retrieve the data available at the endpoint referenced
in the new LINK ELEMENT as needed.

. Update API DESCRIPTION [22], version number, sample code,

tutorials, etc., as required. API directories and gateways
might have to be updated as well.

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

3.1.6 Target Solution Sketch (Evolution Outline). The client can use
the LNk ELEMENT returned in response to the initial request to
retrieve the related data in a follow-up call, as shown in Step 3 in
Figure 3.1 (b).

To reap the full benefits of this refactoring, backward compati-
bility has to be given up. In the first step, the EMBEDDED ENTITY
could be marked as deprecated to give the clients time to adjust.
At a time defined and announced when applying the refactoring,
the EMBEDDED ENTITY is removed from the message payload. The
LimiTED LIFETIME GUARANTEE pattern in Libke et al. [21] describes
this lifecycle management strategy in detail.

3.1.7 Example(s). The following API DESCRIPTION shows an end-
point to retrieve a CustomerProfileDTO, which includes the Em-
BEDDED ENTITY PurchaseOrderDTOs.

API description ECommerceAPI
data type CustomerProfileld {"id": ID<string>}

data type CustomerProfileDTO {
"id": CustomerProfileld,
"name": Data<string>,
<<Embedded_Entity>> "purchaseHistory": PurchaseOrderDTO*

}
data type PurchaseOrderDTO "DTODesignToBeContinued"

endpoint type CustomerProfileEndpoint
serves as INFORMATION_HOLDER_RESOURCE
exposes
operation getCustomerProfile
with responsibility RETRIEVAL_OPERATION
expecting payload CustomerProfileld
delivering payload CustomerProfileDTO

API provider ECommerceAPIProvider
offers CustomerProfileEndpoint

API client ECommerceClient
consumes CustomerProfileEndpoint

This example uses the MDSL notation introduced in Zimmer-
mann et al. [41].

Having applied the refactoring, the client will now receive a link
(notice the purchaseHistory link in CustomerProfileDTO):

data type CustomerProfileDTO {
"id": CustomerProfileld,
"name": Data<string>,
--- <<Embedded_Entity>> "purchaseHistory": PurchaseOrderDTOx
+++ <<Linked_Information_Holder>>
+++ "purchaseHistory": Link<string>

}
data type PurchaseOrderDTO "DTODesignToBeContinued"

+++ endpoint type PurchaseHistoryEndpoint

+++ serves as INFORMATION_HOLDER_RESOURCE

+++ exposes

+++ operation getPurchaseHistory

+++ with responsibility RETRIEVAL_OPERATION

Mirko Stocker, Olaf Zimmermann, and Stefan Kapferer

+++ expecting payload CustomerProfileld
+++ delivering payload PurchaseOrderDTO*

API provider ECommerceAPIProvider
offers CustomerProfileEndpoint
+++ offers PurchaseHistoryEndpoint

3.1.8 Hints and Pitfalls to Avoid. Comparing the Target Solution
Sketch from Figure 3.1 (b) with the Initial Position Sketch shown
in Figure 3.1 (a) shows that the first resource now accesses fewer
repositories to assemble the response message. This enables further
architectural refactorings such as Split Application Backend.

Monitor the API to maintain and challenge the rationale for
pattern usage. If most or all client calls follow the given LINKED
INFORMATION HOLDER, consider embedding the target element in
the original representation again using the Inline Information Holder
refactoring. A deeper discussion of the benefits and liabilities of the
two patterns involved in this refactoring and its inverse, EMBEDDED
ENTITY and LINKED INFORMATION HOLDER, can be found in the
pattern texts in Zimmermann et al. [41].

For the specific question of whether it is preferable to exchange
several small messages or a few larger ones, please refer to our
article What is the Right Service Granularity in APIs?

3.1.9 Related Content. The inverse API refactoring is Inline Infor-
mation Holder.

If there is no operation to retrieve the linked data yet, the Split
Operation [31, pages 12-15] refactoring can be used to create one.

After a Split Operation refactoring, Extract Information Holder can
be used to further “split” the response messages of the operations.

The WisH LisT and WisH TEMPLATE patterns (and related Add
Wish List [31, pages 7-10] and Add Wish Template refactorings)
offer alternative solutions to the problem of how an API client can
inform the API provider at runtime about the data it is interested
in.

Context Mapper [15], a modeling framework and Domain-
specific Language (DSL) for Domain-Driven Design (DDD), im-
plements a refactoring called Split Aggregate by Entity. A DDD
AGGREGATE [3] establishes a transactional boundary around a group
of ENTITIES that are persisted together; a data-centric AGGREGATE
could be exposed via an INFORMATION HOLDER RESOURCES on
the API level. Splitting such an AGGREGATE therefore can be seen
to correspond to splitting or extracting parts from an API-level
INFORMATION HOLDER RESOURCE.

As another example not related to APIs but Web application fron-
tend design, consider the difference between single and multi-page
websites. All information is available on a single page regardless
of whether it is relevant to each reader. In a multi-page design,
the home page gives an overview, and additional information is
provided via hyperlinks that can be followed on demand.

3.2 Refactoring: Inline Information Holder

3.2.1 Context and Motivation. An API provides several endpoints
that give clients access to data-centric INFORMATION HOLDER RE-
SOURCES. The resources are related and refer to each other, for
instance, via hyperlinks. For example, operational data such as
an order in an e-commerce shop may reference a MASTER DATA
HoLpER describing the products.

https://interface-refactoring.github.io/refactorings/splitapplicationbackend
https://www.informit.com/articles/article.aspx?p=3153211
https://interface-refactoring.github.io/refactorings/addwishtemplate
https://contextmapper.org/docs/ar-split-aggregate-by-entities/

Pattern-oriented APl Refactoring: Addressing Design Smells and Stakeholder Concerns

API Client

.
=

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

API Provider

Repository

Resource

‘@ ® © npatatlement | @ | Link Element
J

Figure 3.1 (b): Extract Information Holder: Target Solution Sketch: An API client requests (1) a resource from a provider, which
responds with a message (2) containing a LINKED INFORMATION HOLDER. The client can then request (3) this data when it needs
this data. The provider responds (4) with a Data ELEMENT that was embedded in the response in the Initial Position Sketch.

Clients of the API are interested in the data of several of these
linked INFORMATION HOLDER RESOURCES. To access this distributed
data, the clients have to send multiple requests.

As the API provider, I want to reduce indirection by embedding
data that is available from one or more referenced Information
Holder Resources so that my clients have to issue fewer requests
when working with linked data.

3.2.2 Stakeholder Concerns.

#performance, #green-software Both API clients as well as
providers are interested in keeping the latency and band-
width usage low and using as few resources as possible.

#usability, #developer-experience An API that provides
clients all the required data with as few requests as pos-
sible may be easier to use than an API where the client has
to issue many requests and requires complex state manage-
ment on the client side to keep track of multiple API calls.
See the blog post API Design Review Checklist: Questions
Concerning the Developer Experience (DX) for hints on
improving the developer experience.

#offline-support When the connection is unstable or if one
wants to build offline functionality into an app, one large
request is often better than many small ones.

3.2.3 Initial Position Sketch. The initial response shown in Figure
3.2 (a) contains a LINK ELEMENT that refers to another information
holder of the APL The client has to follow the link to retrieve the
data of the referenced resource.

In terms of the API specification, the response DATA TRANSFER
OsjecT (DTO) PolicyDto contains the customerId of the refer-
enced customer and a link to it (notation: OpenAPI Specification,
simplified for brevity):
paths:

'/policies/{policyId}":

get:
summary: Get a single policy.
parameters:
- name: policyId
in: path
description: the policy's unique id
required: true
type: string
responses:
200" :
description: A single policy.
schema:
$ref: '#/definitions/PolicyDto’
definitions:
PolicyDto:
type: object
properties:

customerId:
type: string
link:
type: string

The response message uses a DTO to transfer the data.
This refactoring targets an operation in an endpoint and its
response message.

3.24 Design Smells.

Underfetching Clients have to issue many requests to get the
required data, harming performance.

Leaky encapsulation The implementation data model is leak-
ing through the API For example, a relational database has
been exposed via an API with an endpoint for each table in
the database, and now clients must resolve the foreign key
relationships between tables.

https://ozimmer.ch/patterns/2023/03/20/DXChecklist.html
https://ozimmer.ch/patterns/2023/03/20/DXChecklist.html

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

API Client

.
=

Mirko Stocker, Olaf Zimmermann, and Stefan Kapferer

API Provider

Repository

Resource

‘@ ® © npatatlement | @ | Link Element
J

Figure 3.2 (a): Inline Information Holder: Initial Position Sketch: A response message (2) of an API operation that is requested
(1) contains a link to a secondary resource that the client has to retrieve using a follow-up request (3, 4). Note that this figure is
identical to Figure 3.1 (b), which presents the Target Solution Sketch of the inverse refactoring Extract Information Holder.

3.2.5 Instructions. Instead of providing clients with a hyperlink to
fetch the related data, the response message of the API operation
includes the referenced data:

1. Decide which linked data to inline/embed into the message.
For a discussion of the tradeoffs involved, see the EMBEDDED
ENTITY and LINKED INFORMATION HOLDER patterns [41].

2. To transfer the data, insert a new attribute to the DTO.

3. Retrieve the additional entity or value from the repository
and add it to the DTO instance.

4. If present, e.g., when using Hypertext as the Engine of Ap-
plication State (HATEOAS), remove the superfluous link to
the resource whose data is now inlined. Only perform this
removal if backward compatibility is not needed.

5. Adjust the tests to the new response structure.

6. Clean up the implementation code if necessary (observing
the “Rule of Three” of refactoring'), for example, by moving
duplicated code to a common location.

7. Adjust API clients under your control to remove obsolete
API calls, but find and use the inlined data instead.

8. Adjust API DESCRIPTION, version number, sample code, tu-
torials, etc., as needed.

The link to the referenced resource can be kept in the response
message to maintain backward compatibility. In this case, old clients
can still follow the link, and updated clients can use the inlined
data directly.

3.2.6 Target Solution Sketch (Evolution Outline). After the refac-
toring, the linked information is included in the initial response,
saving the client an additional request. This solution is sketched in
Figure 3.2 (b).

IThe Rule of Three states that when you copy and paste code for the third time,
you should extract it into a method [9]. Not to be confused with the Rule of Three
of the Patterns community: call it a pattern if there are at least three known uses
(https://wiki.c2.com/?RuleOf Three).

The implementation effort on the client also decreases: state
management is less complex when fewer requests are needed to
fetch required data. These benefits are countered by increased mes-
sage size, leading to longer transfer times and higher processing
and database retrieval effort for the endpoint, which might not be
needed by clients after all.

Regarding the API specification, the response DTO now contains
the additional data (see the lines at the bottom marked with +++).
The link to the referenced resource can be removed if backward
compatibility is not needed (see the lines marked with ---).

paths:
'/policies/{policyId}’
get:
summary: Get a single policy.
parameters:
- name: policyId
in: path
description: the policy's unique id
required: true
type: string
responses:
'200":
description: A single policy.
schema:
$ref: '#/definitions/PolicyDto’
definitions:
PolicyDto:
type: object
properties:

customerId:
type: string
+++ customer:
+++ type: object
+++ properties:
+++ customerId:

https://wiki.c2.com/?RuleOfThree

Pattern-oriented APl Refactoring: Addressing Design Smells and Stakeholder Concerns

API Client

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

API Provider

Repository

Entity is

embedded

‘6 @: @ Data Element

Figure 3.2 (b): Inline Information Holder: Target Solution Sketch: The client requests (1) a resource through the API. The API
implementation responds with a rich response message (2) that contains all the data. Note that this figure is identical to Figure
3.1 (a), which presents the Initial Solution Sketch of the inverse refactoring Extract Information Holder.

+++ type: string
+++ firstname:

+++ type: string
+++ lastname:

+++ type: string
--- link:

- type: string

3.2.7 Example(s). The Policy Management backend microservice
of Lakeside Mutual, a fictitious insurance company, contains an
endpoint to retrieve the details of a specific policy, along with a
reference to the customer through their customerId. The following

listing shows two requests made using the curl command line tool.

It sends an HTTP GET request to the specified URL. The response
to this request is a JSON object.

curl http://localhost/policies/fvoSpkgerr

{
"policyId" : "fvo5pkgerr",
"customerId" : "rgppOwkpec",
"creationDate" : "2021-07-07T13:40:52.201+00:00",
"policyPeriod" : {
"startDate" : "2018-02-04T23:00:00.000+00:00",
"endDate" : "2018-02-09T23:00:00.000+00:00"
1,
}

curl http://localhost/customers/rgpp@wkpec

{
"customerId" : "rgppowkpec",
"firstname" : "Max",
"lastname" : "Mustermann",
}

We start the refactoring by adding a new attribute to the DTO:

public class PolicyDto extends RepresentationModel {
private String policyId;

--- private String customerld;

+++ private CustomerDto customer;
private Date creationDate;

Depending on the backward compatibility requirements, the
customerId can be kept in the DTO. Otherwise, it can be removed,
as shown above. To fetch the data for the customer, the endpoint
implementation uses the customerService, a Java class residing
in the business logic layer of the sample application, to look up the
customer and add it to the response DTO:

@ApiOperation(value = "Get a single policy.")
@GetMapping(value = "/{policyId}")
public ResponseEntity<PolicyDto> getPolicy(
@ApiParam(value = "the policy's unique id")
@PathVariable PolicyId policyId) {
logger.debug("Fetching policy with id "{}'",
policyld.getId());
Optional<PolicyAggregateRoot> optPolicy =
policyRepository.findById(policyId);
PolicyAggregateRoot policy = optPolicy.get();
PolicyDto response = PolicyDto.fromDomainObject(policy);
+++ CustomerDto customer = customerService.
+++ getCustomer(policy.getCustomerId());
+++ response.setCustomer (customer);
return ResponseEntity.ok(response);

Note that we use the Java Web framework Spring Boot in this
example. The annotations @GetMapping and @PathVariable are
used to instruct Spring that this is an HT TP endpoint that expects a
PolicyId in its path. The annotations prefixed with @Api are used
to generate an OpenAPI Specification file from the source code and
serve as further documentation.

The customer data is now part of the response message. The
client can access the data without issuing a second request:

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

curl http://localhost/policies/fvo5pkgerr

{
"policyId" : "fvo5pkgerr",
"customer" : {
"customerId" : "rgpp@wkpec",
"firstname" : "Max",
"lastname" : "Mustermann",
3,
"creationDate" : "2021-07-07T13:40:52.201+00:00",
"policyPeriod" : {
"startDate" : "2018-02-04T23:00:00.000+00:00",
"endDate" : "2018-02-09T23:00:00.000+00:00"
3
}

3.2.8 Hints and Pitfalls to Avoid. The referenced information holder
should be part of the same API endpoint. Otherwise, performing
the refactoring might introduce undesired dependencies between
backend services.

An API endpoint may now interact with more backends or
databases than before. This additional dependency might not be de-
sired from a separation of concerns standpoint, for instance, when
considering role- or attribute-based authorization [13].

See the EMBEDDED ENTITY and LINKED INFORMATION HOLDER
patterns for a deeper discussion of the benefits and liabilities of
each pattern.

3.2.9 Related Content. Extract Information Holder inverses this
refactoring.

The WisH LisT and WisH TEMPLATE patterns both offer alterna-
tive solutions to the problem of how an API client can inform the
API provider at runtime about the data it is interested in, known as
response shaping.

The BAckENDs FOrR FRONTENDS pattern by Sam Newman is an-
other approach to tailoring a backend to the specific needs of a
client.

As also mentioned in the inverse refactoring Extract Information
Holder, Context Mapper [15] implements these refactorings on
domain-level (DDD). While Extract Information Holder corresponds
to Split Aggregate by Entity, Inline Information Holder would be
established with Merge Aggregates in Context Mapper and DDD.

3.3 Refactoring: Extract Operation

3.3.1 Context and Motivation. One or more API endpoints, for in-
stance, HT TP resources, have been developed, tested, and deployed.
One of these endpoints offers multiple operations for clients to call.
These operations work with multiple domain concepts. Their func-
tional and technical responsibilities differ regarding stakeholder
groups (users, developers, etc.) and their addressed quality concerns.
Some operations are process- or activity-oriented, while others offer
data storage. At least one operation differs concerning read and/or
write access characteristics, access control policies, and data protec-
tion requirements. As a consequence, the endpoint serves multiple
roles in the API architecture. The operations differ regarding their
evolution (e.g., the frequency of changes requiring/leading to new
releases).

Mirko Stocker, Olaf Zimmermann, and Stefan Kapferer

As the API provider, I want to focus the responsibilities of an end-
point on a single role so that API clients serving a particular stake-
holder group understand the API design intuitively, and the release
roadmap and scaling of the endpoint can be optimized for each
group of stakeholders and clients.

3.3.2 Stakeholder Concerns.

#reliability and #stability Independent endpoints that do
not share the same execution context and resources can be
deployed independently; operations co-located in a single
endpoint, however, share their deployment characteristics.
For instance, if a long-running operation causes an API
provider-internal error, its sibling operations might suffer
from quality-of-service degradations as well. Nygard [25]
uses the term stability: “A robust system keeps process-
ing transactions, even when transient impulses, persistent
stresses, or component failures disrupt normal processing.”

#single-responsibility-principle Architectural principles
are affected positively or negatively when APIs are refec-
tored. Here, the Purposeful, style-Oriented, Isolated, channel-
Neutral, and T-shaped (POINT) principles for API design
apply; extracting an endpoint can improve P, O, and I (but
might harm T when looking at a single endpoint and not an
entire API).

#independent-deployability, #scalability Endpoints can
be deployed and then scaled separately, which is one of
the defining tenets of microservices-based systems [34]. The
fewer operations an endpoint exposes, the easier it is to
optimize the scaling for those operations.

#security With multiple operations co-located within a single
endpoint, it can be challenging to enforce fine-grained access
control policies. Refactoring this endpoint into multiple spe-
cialized ones allows for more granular control over access
permissions and authorization rules. The security require-
ments for the data an API endpoint exposes may also differ;
hence, separating operations can make it easier to apply data
protection measures that ensure confidentiality.

3.3.3 Initial Position Sketch. The design for this interface refactor-
ing looks as follows (notation: MDSL):

endpoint type SomeEndpoint
exposes
operation operationi

expecting payload "RequestMessagel"
delivering payload "ResponseMessagel"
operation operation2
expecting payload "RequestMessage2"
delivering payload "ResponseMessage2"

See Figure 3.3 (a) for a graphical representation of this Initial
Position Sketch.

The refactoring targets are an API endpoint (for instance, an
HTTP resource identified with a URI) and one of its operations (for
instance, an HT TP verb/method supported by the resource).

https://samnewman.io/patterns/architectural/bff/
https://contextmapper.org/docs/ar-split-aggregate-by-entities/
https://contextmapper.org/docs/ar-merge-aggregates/
https://medium.com/olzzio/apis-should-get-to-the-point-c79113efa31c
https://medium.com/olzzio/apis-should-get-to-the-point-c79113efa31c
https://microservice-api-patterns.github.io/MDSL-Specification/

Pattern-oriented APl Refactoring: Addressing Design Smells and Stakeholder Concerns

API Client

Client

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

API Provider

Endpoint 1

Repository

Operation 2

Figure 3.3 (a): Extract Operation: Initial Position Sketch. A client uses two different operations (message exchanges 1-2 and 3-4)

in an API endpoint for its communication with the APL

3.3.4 Design Smells.

Role and/or responsibility diffusion The endpoint is both
an INFORMATION HOLDER RESOURCE and a PROCESSING RE-
SOURCE, or an INFORMATION HOLDER RESOURCE exposes dif-
ferent types of data in different operations (for instance, both
master data and operational data). The endpoint operations
may have rather diverse functional and technical responsi-
bilities (read vs. write, for instance). As a consequence of one
or more of these smells, it is hard to explain the endpoint
purpose.

Low cohesion The operations in the endpoint deal with multi-
ple, not necessarily related domain concepts. Consequently,
the endpoint has more than one reason to change during
its evolution. It serves multiple stakeholder groups and/or
its implementation is developed and maintained by multiple
teams.

REST principle(s) constraints A key design constraint im-
posed by the REST style used by many HTTP APIs is the
“unified interface,” which mandates the use of standard HT TP
verbs (POST, GET, PUT, PATCH, DELETE, etc.). These verbs
come with certain restrictions; for instance, GET and PUT op-
erations should be idempotent. Sometimes, REST constraints
limit extensibility when a resource identified by a single URI
runs out of verbs for its operations [28].

God endpoint The endpoint and its operations implementa-
tions might have to access many data sources or backend
systems to assemble responses to requests. Many such de-
pendencies on external systems and data make the API im-
plementation more complicated to operate and evolve. In
object-oriented design, a class or object that controls many
other system parts is called a “God Class” [27].

Wrong cuts The endpoint might have been designed to serve
multiple purposes, and the operations might have been cho-
sen to be co-located in the same endpoint. This design deci-
sion might have been made based on the wrong assumptions
or requirements, leading to a design that is hard to maintain
and evolve.

3.3.5 Instructions. Follow these steps to extract an endpoint:

1. Remove the operation from the API DEscrIPTION of the
source endpoint.

2. Check the general security policies and the client rights man-
agement. For example, authorization rules that use endpoint
existence and names to determine whether a client appli-
cation and end-user are permitted to perform an operation
might have to be adjusted.

3. Refactor at the code level. For instance, create an additional
REST controller class when working with Java and HTTP in
Spring and move the implementation of the chosen opera-
tion.

4. Create an API DEscRIPTION for the new endpoint that only
exposes the extracted operation.

5. Adjust the existing integration tests or add additional ones
to verify that the original and new endpoints meet their
API DEscripTIONS (both in terms of functional and non-
functional characteristics).

6. Evaluate whether the roles and responsibilities of the two
endpoints are well-separated and that the refactoring re-
sulted in endpoints with higher cohesion.

7. Inform all API clients about the change and the version that
will introduce it. Provide migration information (or support
the transition on a technical level, for instance, with an HT TP
redirect [7]).

If necessary, repeat these steps with the remaining operations un-
til the roles and responsibilities of the endpoint have been clarified
and the smells resolved.

3.3.6 Target Solution Sketch (Evolution Outline). The following sim-
ple and abstract MDSL sketch specifies the result of the refactoring
at an abstract level (see Figure 3.3 (b) for a graphical representation):

endpoint type SomeEndpoint
exposes
operation operationl
expecting payload "RequestMessagel"
delivering payload "ResponseMessagel"

endpoint type ExtractedNewEndpoint
exposes

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

operation operation2
expecting payload "RequestMessage2"
delivering payload "ResponseMessage2"

Note that this sketch does not show signs of bad smells in terms
of semantics or qualities; the following example does.

3.3.7 Example. Sometimes, it makes sense to separate commands
from queries (see Segregate Commands from Queries [31, pages 20-
22]). This refactoring is a particular case of endpoint extraction.
Hence, the following example can be seen as an example of both
Segregate Commands from Queries and Extract Operation. It starts
from a Domain-Driven Design (DDD) featuring a single AGGREGATE
[3].
Aggregate PublicationEndpoint {
Service PublicationManagementFacade {
// a state creation/state transition operation:
@PaperId add(@PublicationEntryDTO newEntry);

// retrieval operations:

@PublicationArchive dumpPublicationArchive();

Set<@PublicationEntryDTO>
lookupPublicationsFromAuthor (String author);

String exportAsBibtex(@PaperId paperId);

// computation operations (stateless):
String convertToBibtex(@PublicationEntryDTO entry);

The notation in the above snippet is Context Mapper Domain-
Specific Language (CML) [15]. Context Mapper is a modeling frame-
work for DDD that provides a domain-specific language. DDD can
be seen as a form of pattern-oriented, object-oriented analysis and
design; “Design Practice Reference” contains introductions to tactic
and strategic DDD[37].

This single publication management AGGREGATE (and API end-
point) can be split into two, leading to this design:

Aggregate PublicationCommandsEndpoint {
Service PublicationManagementCommandFacade {
// a state creation/state transition operation:
@PaperId add(@PublicationEntryDTO newEntry);

// computation operations (stateless):
String convertToBibtex(@PublicationEntryDTO entry);
3
3

Aggregate PublicationQueriesEndpoint {
Service PublicationManagementQueryFacade {
// retrieval operations:
@PublicationArchive dumpPublicationArchive();
Set<@PublicationEntryDTO>
lookupPublicationsFromAuthor (String author);
String exportAsBibtex(@PaperId paperId);
3
3

Note that this design violates principles such as single respon-
sibility, high cohesion, and low coupling because Bibtex-related
operations appear in both endpoints. In response, the Move Op-
eration refactoring can be applied on convertToBibtex. A third

Mirko Stocker, Olaf Zimmermann, and Stefan Kapferer

endpoint that exposes the two BibTeX-related operations can also
be introduced.

3.3.8 Hints and Pitfalls to Avoid. When applying this refactoring,
API designers have to make sure that:

e Concurrent access to business logic and database from two
presentation layers, ak.a. API endpoints, does not cause
issues such as lost updates, phantom reads, deadlocks, and
so on [8].

e Performance and independent deployability improve as de-
sired (loose coupling of the original and new endpoint). Ex-
tracting an endpoint to focus on a single role redistributes
the existing responsibilities and logic across multiple end-
points. This redistribution could affect the performance of
the API, especially if there are increased interdependencies
or additional network calls are introduced. Proper load test-
ing and performance analysis should be conducted to ensure
that the refactored API can handle the expected workload
and achieve satisfactory response times.

e Maintainability does not suffer because of design erosion,
duplication of PUBLISHED LANGUAGE [3], and so on. The
refactored endpoints may depend on other services or re-
sources within the system. It is essential to carefully manage
and coordinate these dependencies to ensure the refactored
endpoints can operate independently and reliably.

3.3.9 Related Content. The Extract Information Holder refactoring
can be applied in preparation for this refactoring.

When following the BACKENDS FOR FRONTENDSs pattern, it might
be helpful to extract an endpoint to serve a particular frontend.

This refactoring is reverted by Merge Endpoints. Segregate Com-
mands from Queries [31, pages 20-22] describes endpoint extraction
for a particular reason. Move Operation has a similar purpose and
nature but does not create a new endpoint.

The STRANGLER FIG APPLICATION pattern describes an approach
to migrating a legacy system incrementally by replacing specific
functionality with new applications and services instead of replac-
ing it immediately. The Extract Operation refactoring applied to the
strangled legacy system can support such an approach. A backend
system exposing multiple service endpoints is generally easier to up-
date incrementally (and replace eventually) than a more monolithic
one. The blog post “Refactoring Legacy Code with the Strangler
Fig Pattern” provides detailed step-by-step explanations.

3.4 Refactoring: Rename Operation

3.4.1 Context and Motivation. An API endpoint, for instance, an
HTTP resource, has been developed, tested, and deployed. The
name of one of the operations of the endpoint does not represent
its semantics well; there is a mismatch between the operation name
and the performed operation. It is not easy to comprehend.

As an API provider, I want to express the responsibilities of an oper-
ation in its name so that client developers, API developers, operators,
and non-technical stakeholders such as end users and product man-
agers understand the APl — and each other in conversations about
the APL

https://contextmapper.org/docs/language-reference/
https://contextmapper.org/docs/language-reference/
https://interface-refactoring.github.io/refactorings/moveoperation
https://interface-refactoring.github.io/refactorings/moveoperation
https://samnewman.io/patterns/architectural/bff/
https://interface-refactoring.github.io/refactorings/mergeendpoints
https://martinfowler.com/bliki/StranglerFigApplication.html
https://shopify.engineering/refactoring-legacy-code-strangler-fig-pattern
https://shopify.engineering/refactoring-legacy-code-strangler-fig-pattern

Pattern-oriented APl Refactoring: Addressing Design Smells and Stakeholder Concerns

API Client

Client

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

API Provider

Repository

Endpoint 2

Operation 2

Figure 3.3 (b): Extract Operation: Target Solution Sketch. The two conversations (message exchanges 1-2 and 3-4) with the API

now go to operations residing in two different API endpoints.

3.4.2 Stakeholder Concerns.

#maintainability APIs should be changed as much as re-
quired and as little as possible, and ripple effects be avoided,;
source code and documentation on client and provider side
using a particular name have to be updated if this name
changes. Expressive operation names help with orientation
during API evolution. Debugging and trouble shooting is
also easier if logs and error reports contain meaninfgul
names.

#understandability (incl. #explainability, #learnability)
All stakeholders involved in development and operations
should be able to grasp what an API is supposed to do (and
actually does) with ease; it should be straightforward to
teach API usage. On the contrary, educated guesses and
implicit assumptions are likely to cause misunderstandings
that lead to technical risk and defects later on.

3.4.3 Initial Position Sketch. This refactoring deals with a single
operation.

This is a rather trivial initial design to be improved with this
refactoring, specified in the Microservice Domain-Specific Lan-
guage (MDSL) notation:
endpoint type GenericEndpointOfUnknownRole
exposes

operation hardToGraspName

expecting payload "SomeRequestMessage"

It is unlikely that an identifier such as hardToGraspName is part
of the vocabulary of any application domain or genre that the
API deals with (such as finance, e-commerce/retail, or distributed
control system in a factory).

3.4.4 Design Smells.

Curse of knowledge The operation name is easy to compre-
hend - but only for the developers of the API implementation
on the provider side. On the contrary, client developers miss
required context information.?

2The term “curse of knowledge” originates from technical writing. See, for instance, hint
5 in the blog post “Technical Writing Tips and Tricks” https://ozimmer.ch/authoring/

Role and/or responsibility diffusion The operation is doing
something, but the effects of the operation execution are not
clear. For instance, it is not specified whether it reads and/or
writes provider-side data and application state. The domain
model abstractions/concepts that it works with remain fuzzy.
Precision might be harmed and ambiguities introduced.

Ill-motivated naming conventions Knowing what no one
else knows could be seen as a pragmatic approach to job
security; obscuring operation names might be part of such
a strategy. However, the attitude driving such naming de-
cisions can be considered unprofessional or unethical [38];
API design and documentation should be seen as a service
provided to the client community (and other stakeholders).

Sloppy naming Another example of good intentions gone
wrong is trying to be funny when naming program(ming)
artifacts; endpoint and operation names are not the most
suited places for humor or irony because they distract from
the facts.

Cryptic or misleading name The name of the operation is
not only difficult to understand but also misleading. It might
suggest that the operation does something that it does not,
which may have been caused by a change in the implemen-
tation of the operation without updating the name.

3.4.5 Instructions.

1. Rename the operation in the abstract API contract and any
technical API DEscripTION (for instance, its OpenAPI de-
scription).

2. Refactor on the code level; for instance, apply “Rename Ele-
ment” or “Rename Method” as offered by many Java IDEs. Op-
tionally, implement a new stub that merely redirects clients
to the new endpoint operation; in HTTP, this can be achieved
with URL redirection and status code 301 [7].

3. Adjust the test cases and run them (to keep the builds
“green”).

2020/04/24/TechWritingAdvice html and a video lecture by Steven Pinker referenced

in that post.

https://microservice-api-patterns.github.io/MDSL-Specification/
https://microservice-api-patterns.github.io/MDSL-Specification/
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://www.openapis.org/
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html
https://ozimmer.ch/authoring/2020/04/24/TechWritingAdvice.html

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

4. Update all supporting documentation such as API reference
and guides, examples, and tutorials. Check and update secu-
rity rules if necessary.

5. Inform all known API clients about the change, ideally with
detailed instructions how to migrate. Code snippets that
can be copy-pasted easily will be appreciated by the client
maintainers.

3.4.6 Target Solution Sketch (Evolution Outline). The following
MDSL sketch outlines how to improve the naming on an abstract,
conceptual level:
endpoint type DomainNounAndRDDRoleStereotype
exposes
operation verbFromDomainlLanguage
expecting payload "DomainLevelTransferObject1"
delivering payload "DomainLevelTransferObject2"

Note that two similar refactorings were applied as well, Rename
Endpoint and Rename Representation Element [31, pages 18-20].

3.4.7 Example. In a publication management system, the remote
service layer of a Web application might expose a CommuNITY API
for BACKEND INTEGRATION, two foundational API patterns. The
service might look as follows:

Service JabrefAPI {
@PaperId add(@PublicationEntryDTO newEntry);

The notation in this example is CML, the tactic domain-driven de-
sign language supported by Context Mapper. Renaming the rather
generic names yields this API design:

Service PublicationManagementFacade {

// a state creation/state transition operation

// (DTO = Data Transfer Object)

@PaperId addPublicationToArchive(

@PublicationEntryDTO publicationInformation);

Endpoint name, operation name, and parameter name are now
free of technical jargon (except for the pattern names Facade and
DTO, with the acronym being explained in the comment).

3.4.8 Hints and Pitfalls to Avoid. Consider consulting the following
artifacts (before and after the refactoring):

e Naming conventions on organization, unit, or project level.
If you cannot locate such conventions, use this opportunity
to establish them. Rename consistently and document the
rationale for your naming decisions. For instance, such con-
ventions might state that operation names start with verbs
and followed by a noun from the domain vocabulary (see
example above).

o Glossaries and the UB1QuUITOUS LANGUAGE established by a
domain model [37]. Note that some community members
advise that BankAccountAggregate is a bad choice of name
while others recommend this domain-pattern pairing con-
vention.

e Coding guidelines, both general and language-specific.

Avoid special characters such as underscore _ in operation names
because middleware and tools might not handle them correctly. The
same holds for natural language-specific characters such as German

“Umlaute”.?

3As atest, do 4, 6, it render properly when you read this?

Mirko Stocker, Olaf Zimmermann, and Stefan Kapferer

Be careful with metaphors when naming things. Some might
not be understood by parts of the target audience, others might
cause unwanted reactions. Baseball fans, for example, know what
a “curveball” and a “pitcher” are, but this sport is not as global as
others. Apply the ones that you do choose consistently and do not
mix them wildly.* Ask yourself: Would the current name also work
in another domain? In how many projects/APIs can this name be
found?

Note that this refactoring is not straightforward to apply in
HTTP resource APIs due to the REST principle “uniform interface”:
One cannot rename the predefined HTTP PUT verb to something
that has domain semantics. This constraint represents a deliberate
design decision and is inherent to/in the REST style. It is one reason
the Web works: it is not necessary to recompile the Web browser
when there is a breaking change in the HTML layout of a web-
site. URIs, however, can be changed; hence, the Rename Endpoint
refactoring often is eligible.

3.4.9 Related Content. This refactoring reverts itself. In code refac-
toring, there is Rename Method [9].

Move Operation is another operation-level refactoring.

The hints in “The Art of Readable Code” [2] also apply to API
naming. Many programming language communities also have nam-
ing guidelines, such as the C++ Core Guidelines feature naming
suggestions. A CppCon 2019 talk by Kate Gregory titled “Naming is
Hard: Let’s Do Better” has good advice that applies when choosing
API element names.

3.5 Refactoring: Make Request Conditional

3.5.1 Context and Motivation. An API endpoint provides data that
changes rarely, and thus, some clients request and receive the same
data frequently. Preparing and retransmitting data already available
to the clients is unnecessary and wasteful.

As an API provider, I want to be able to tell clients that they already
have the most recent version of certain data so that I do not have to
send this data again.

3.5.2 Stakeholder Concerns.

#performance, #green-software Response, throughput, and
processing times concern API clients and providers. Unused
data that is prepared, transported, and processed wastes
resources, which should be avoided.

#data-access-characteristics API clients might use caching
and do not want to retrieve data they already have.

#developer-experience, #simplicity Knowing when and
how long to cache which data might be challenging for
API clients and providers. Permanent or temporary storage
is required. These valid concerns have to be balanced with
the desire for performance.

3.5.3 Initial Position Sketch. Figure 3.5 (a) shows the initial position
sketch for this refactoring. The client requests some data from the
API Later, the client wants to ensure that the data is still up to date
and sends a second request for the same data.

4What happens if an elephant enters a room as a Visitor or crosses a Bridge? Should
the Flyweight pattern be applied then? Or does it make sense to build a Factory in this
case? What will Observers think about this Strategy? [10]

https://interface-refactoring.github.io/refactorings/renameendpoint
https://interface-refactoring.github.io/refactorings/renameendpoint
https://contextmapper.org/docs/language-reference/
https://ozimmer.ch/index/2020/10/30/DrivenByTLAs.html
https://interface-refactoring.github.io/refactorings/renameendpoint
https://interface-refactoring.github.io/refactorings/moveoperation
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-naming
https://isocpp.org/blog/2020/07/cppcon-2019-naming-is-hard-lets-do-better-kate-gregory

Pattern-oriented APl Refactoring: Addressing Design Smells and Stakeholder Concerns

API Client

=]

The same
data is
returned

=)

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

API Provider

‘ @ Data Element

Figure 3.5 (a): Make Request Conditional: Initial Solution Sketch: In the first message exchange (1-2), the endpoint returns one
or more Dara ELEMENTS. Later on (3), the client requests the data from the endpoint again. Because nothing has changed, the

provider returns the same data (4) as in the previous response.

This refactoring targets a single API operation and its request
and response messages.

3.5.4 Design Smells.

High latency/poor response time Load on the API provider
is unnecessarily high because the same data is processed and
transferred many times over.

Spike load Regular requests for large amounts of data can
cause PERIODIC WORKLOAD or UNPREDICTABLE WORKLOAD
[4] for CPU and memory, for instance, when a relatively
large JSON object representing the requested data has to be
constructed (on the provider side) and read (on the client
side).

Polling proliferation Clients that participate in long-running
conversations and API call orchestrations ping the server
for the current status of processing (“are you done?”). They
do so more often than the provider-side state advances.

3.5.5 Instructions. Instead of transmitting the same data repeat-
edly, the request can be conditional. Condition information is ex-
changed as metadata to allow the communication participants to
determine whether the client already has the latest data version.

1. Decide for one of the two variants of the CoNDITIONAL RE-
QUEST pattern: data can a) be timestamped or b) responses
be fingerprinted (by calculating a hash code of the response
body) [41].

2. Adjust the API specification and implementation to include
a conditional METADATA ELEMENT in both request and re-
sponse messages. The request metadata should be optional
so that it can be omitted in initial requests; optionality also
brings backward compatibility. For the response message,
check if the transport protocol provides a special status for
this case and consider using it (such as HTTP status code
304 Not Modified).

3. In the API implementation, evaluate the condition - for ex-
ample, by comparing the previously mentioned timestamps
or fingerprints/hashes — and respond with an appropriate
message.

4. Create additional unit or integration tests for the API imple-
mentation that validate combinations of metadata presence
or absence (with changed and unchanged data).

5. If several operations in the API use CONDITIONAL REQUESTS,
investigate whether your framework offers a way to imple-
ment this functionality in a generic way.

6. Adjust the API client implementations that you oversee (for
instance, API usage examples) to utilize the new feature:
send conditions and keep previously received data. Adjust
the API tests as well.

7. Document the changes, for example, in a changelog data
release notes, and release a new API version.

This refactoring can be applied incrementally, for instance, to a
single operation or a group of operations. Backwards compatibility
is preserved by making the condition metadata optional in the
request.

3.5.6 Target Solution Sketch (Evolution Outline). Comparing the
solution in Figure 3.5 (b) to the initial position sketch, we see that
follow-up requests return a special response message indicating
that the data has not changed. The client can then continue to use
the data it has already received.

3.5.7 Example(s). The Customer Core microservice of the Lakeside
Mutual sample application implements conditional requests in its
WebConfiguration class. Classes annotated with @onfiguration
can be used to customize the configuration of the Spring MVC frame-
work. The fingerprint-based variant of CONDITIONAL REQUEST is
applied in its request and response messages:

@Configuration
public class WebConfiguration implements WebMvcConfigurer {

* This is a filter that generates an ETag value based

* on the content of the response. This ETag is compared
* to the If-None-Match header of the request. If these
* headers are equal, the response content is not sent,

* but rather a 304 "Not Modified" status instead.

https://github.com/Microservice-API-Patterns/LakesideMutual/blob/master/customer-core/src/main/java/com/lakesidemutual/customercore/interfaces/configuration/WebConfiguration.java

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

API Client

=]

«not modified»

Mirko Stocker, Olaf Zimmermann, and Stefan Kapferer

API Provider

Resource

Repository

‘ @ Data Element

‘o | Metadata
‘g ‘\g Element

Figure 3.5 (b): Make Request Conditional: Target Solution Sketch: The first exchange (1-2) is the same as in the initial position.
In the second request though, the client includes the condition metadata (3) in its request, which in turn allows the provider to
respond with a special “not modified” message (4) if the data has not changed.

*

* By marking the method as @Bean, Spring can call this

* method and inject the dependency into other components,

* following the inversion of control principle.
*x %/
@Bean
public Filter shallowETagHeaderFilter() {
return new ShallowEtagHeaderFilter();

}

The ShallowEtagHeaderFilter class is already included in the
Spring Framework. Because it is implemented as a filter applied to
all requests and responses, the implementation of the individual
operations does not have to be adjusted. A consequence of this
implementation, and the reason why it is called “shallow” ETag, is
that responses are still assembled, hashed and replaced with a 304
Not Modified response if the hash matches the ETag header.

Alternatively, a VERSION IDENTIFIER could be introduced in the
(meta)data to avoid having to retrieve and hash the entire data.
This is also supported by Spring Data REST for classes that have
an @Version property:

@Entity
public class CustomerAggregateRoot implements RootEntity {

@Version
Long version;

@EmbeddedId
private CustomerId id;

3.5.8 Hints and Pitfalls to Avoid. Before and when making requests
conditional, ask yourself:

o How does the additional overhead to calculate the hashes, or
the extra storage used by timestamps and versioning num-
bers compare to the expected savings?

e Does the condition cover all the data returned in the re-
sponse? For example, when the data contains nested struc-
tures, a change in a contained element must be detected.
Otherwise, clients might work with stale data.

e How does a CONDITIONAL REQUEST count towards a RATE
Livrr [41]?

Be careful when combining CONDITIONAL REQUESTs with a WisH
LisT or WisH TEMPLATE. The data might not have changed, but the
client could request different parts of it. In this case, the cached
data is unlikely to be sufficient.

Do not mindlessly start caching all API responses on the client
side. Cache design is hard to get right. For instance, knowing when
to invalidate cache entries is not trivial [17].

The CoNDITIONAL REQUEST pattern and this refactoring assume
that the server is responsible for evaluating the condition. However,
it may make sense for the client to evaluate the condition in order
to avoid sending a request to the server. For example, a client
could consult the HTTP Expires header to decide whether the data
retrieved from the server is still current [5]. This doesn’t guarantee
that the client has the latest data, but depending on the use case,
that may not be a problem.

3.5.9 Related Content. The online presentation of the CoNDI-
TIONAL REQUEST pattern coverage presents an example leveraging
the Spring framework.

An operation that returns nested data holders that change more
or less often than the containing data can prevent this refactoring
from being applied. In that case, applying the Extract Information
Holder refactoring first to separate the nested data holders from
the containing data can help. Chapter 7 of Zimmermann et al. [41]
provides a comprehensive introduction to API quality.

Our catalog includes an Introduce Version Identifier refactoring
that focuses on versioning endpoints, not DATA ELEMENTS.

Conditional requests in Hypertext Transfer Protocol (HTTP/1.1)
are defined by RFC 7232 [6].

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/filter/ShallowEtagHeaderFilter.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://docs.spring.io/spring-data/rest/docs/current/reference/html/#conditional
https://api-patterns.org/patterns/quality/dataTransferParsimony/ConditionalRequest#sec:ConditionalRequest:Example
https://api-patterns.org/patterns/quality/dataTransferParsimony/ConditionalRequest#sec:ConditionalRequest:Example

Pattern-oriented APl Refactoring: Addressing Design Smells and Stakeholder Concerns

3.6 Refactoring: Encapsulate Context
Representation

3.6.1 Context and Motivation. An API endpoint and its operations
have been defined. API client and provider must exchange context
information about their interaction, such as the client’s location,
Quality-of-Service (QoS) control data, or data used to authenticate,
authorize, and bill clients. API client-provider interactions might
be part of conversations within and across API endpoints, possibly
involving external systems as well.

As a conversation participant, I want to consolidate all context
information in a single place and keep it close to the domain data
so that clients and providers can prepare and process it along with
that data. This also allows switching protocols if that is required to
satisfy requirements and constraints that change over time.

3.6.2 Stakeholder Concerns.

#developer-experience and #learnability Accessing proto-
col headers is different from accessing message payload;
different local APIs and/or platform-specific libraries have to
be used. Consolidating information in the payload reduces
the learning and implementation effort.

#interoperability and #modifiability Less protocol-specific
functionality means fewer changes are required when one
protocol is replaced by another.

#security and #auditability Inmultiprotocol scenarios, end-
to-end security guarantees can only be given and enforced
when the information in protocol headers is aggregated and
correlated somehow. System and process assurance auditors
appreciate if all relevant compliance information can be
found in a single place (that is adequately protected) [12].

3.6.3 Initial Position Sketch. Technical metadata such as API Kgys,
session IDs, or other QoS properties (for example, correlation iden-
tifiers, priority levels, time-to-live information, transactional poli-
cies, bandwidth requirements, packet-loss tolerance, or latency
constraints) travel exclusively in the form of protocol headers. The
initial position sketch in Figure 3.6 (a) shows a response message
with a payload and several protocol headers.

The refactoring targets request and/or response messages of one
or more operations. Operations that form a conversation may or
may not appear in the same API endpoint.

3.6.4 Design Smells.

Tight coupling to a communication protocol Most of the
network and communication protocols define their own
header formats and fields; HTTP is an example. Some of
these protocols support custom headers, and others do not.
Using protocol-specific headers locks the communication
participant in; this can be positive or negative, depending
on context and requirements.

Quality-of-Service (QoS) fragmentation and dispersion
Several protocols might be used in conversations, such as
HTTP, gRPC, and asynchronous messaging (AMQP). API
clients and providers must go to multiple places to gather
or produce all required context information, which can be
error-prone, time-consuming, and cause technical debt.

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

3.6.5

1. Design a data structure, the CONTEXT REPRESENTATION, to
represent the context information.

2. Add this data structure to the request and/or response opera-
tions of the targeted operations, add DTOs where necessary.

3. Implement a client-provider message exchange that produces
and consumes instances of the new data structure.

4. Update the API DEscRIPTION with information about the
syntax and semantics of the new message payload part. Pro-
vide data usage examples in the documentation, including
valid and invalid values (or value ranges).

5. Inform clients about their new options and/or liabilities to
work with the new CONTEXT REPRESENTATION.

Instructions.

Note that it might be required to keep the context information
in its current place, e.g., in protocol headers, for backward compati-
bility reasons. In this case, the refactoring allows clients to choose
between the old and new ways of providing context information.

3.6.6 Target Solution Sketch (Evolution Outline). Applying these
steps leads to the solution sketched in Figure 3.6 (b).

3.6.7 Example(s). The following MDSL code snippet shows an API
endpoint with an operation that expects context information in the
headers:
data type KeyValuePair {

"name": ID<string>,

"property": D<string>

I+

endpoint type SampleService
exposes
operation sampleOperationInitial
expecting
headers {
"apiKey":ID<int>,
"sessionId":D<int>?,
"otherQosProperties":
KeyValuePairx
}
payload
"regularRequestPayload":D<string>
delivering
payload "someUnspecifiedResponseData"

After the context information has been encapsulated, the apiKey,
sessionld, and otherQosProperties from the header have moved.
They now appear in a DATA TRANSFER OBJECT called RequestContext
that is part of the request payload:
data type RequestContext {

"apiKey":ID<int>,

"sessionId":D<int>?,

"otherQosProperties": KeyValuePairx*

3

data type KeyValuePair {
"name": ID<string>,
"property": D<string> }+

endpoint type SampleService
exposes
operation sampleOperationTarget

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

API Client

Context information @
is transported in
protocol-specific

headers

000

-/

Mirko Stocker, Olaf Zimmermann, and Stefan Kapferer

API Provider

Resource

‘ g ‘ Data Element

(em | Metadat
DIDIDE==

Figure 3.6 (a): Encapsulate Context Representation: Initial Position Sketch. API client and provider exchange a message that
contains context information as METADATA ELEMENTS in the protocol header.

API Client

API Provider

Resource

Selected context
information is
transported with the
message payload

@ Context
) Representation

‘ 6 ‘ Data Element

S Metadata
‘o 6‘ Element

Figure 3.6 (b): Encapsulate Context Representation: Target Solution Sketch. In addition to protocol-specific metadata transported
in protocol headers, application-level METADATA ELEMENTS are bundled and included in the payload of the response message.

expecting
payload {
<<Context_Representation>>
"requestContext": RequestContext,
<<Data_Element>>
"regularRequestPayload" :D<string>

}
delivering
payload "someUnspecifiedResponseData"

3.6.8 Hints and Pitfalls to Avoid. Before and when encapsulating
context information, make sure to:

e Decide whether the context has a local or global scope with
respect to operation invocations in one or more API end-
points. The pattern variants discussed in Zimmermann et al.
[41] provide detailed information about this decision.

o Decide whether request or response messages should con-
tain a message payload-level CONTEXT REPRESENTATION
(or both). Contextualizing requests is more common; for in-
stance, think about client location, API user data, WisH LisT
items, as well as credentials used to authenticate, authorize,

and bill clients. Response contexts can also be observed in
practice.

e Strive for a reusable data structure design across operations
(and endpoints, if possible). Prefer de-jure or de-facto indus-
try standards over own creations to define the inner structure
of the QoS information in the CONTEXT REPRESENTATION if
possible. For example, RFC 7807 [24] defines a standard way
to carry problem details in HTTP response messages.

It might be required but not possible to encrypt the data in proto-
col headers; this would be a reason why this refactoring is eligible.
Suppose the payload is encrypted but contains context information
used for message routing (for instance, in an API GATEWAY [26]).
In that case, the refactoring might cause undesired decrypt/encrypt
steps in the intermediary.

3.6.9 Related Content. Steps 1 and 2 of this refactoring can be seen
as an instance of Introduce Data Transfer Object [31, pages 4-7].

Undoing the content encapsulation is possible, but our Interface
Refactoring Catalog does not contain an explicit inverse refactoring
at present.

Pattern-oriented APl Refactoring: Addressing Design Smells and Stakeholder Concerns

3.7 Refactoring: Introduce Version Identifier

3.7.1 Context and Motivation. An API has been deployed to a
production environment and is used by clients. The provider is
evolving the API with new or improved functionality. Existing
clients might have to be adjusted when a new version is released.

As an API provider, I want to indicate versions and their compatibil-
ity properties explicitly at design time and runtime so that clients
can react accordingly to changes that affect them during API evolu-
tion.

3.7.2 Stakeholder Concerns.

#maintainability There are many reasons to change an API
(besides quality refactorings [30]). It should be changed as
much as required and as little as possible, and ripple effects
be avoided. One of the first steps in related maintenance
tasks is determining which system parts should be changed.
The impact of the major and minor changes on other parts
should be kept at a minimum, but it is worth communicating
when such changes occur.

#compatibility Explicit versions, possibly introducing break-
ing changes, might appear costly and anti-agile or not REST-
ful at first glance. However, fixing bugs caused by not know-
ing about versioning mismatches is often expensive.

#developer-experience Since VERSION IDENTIFIERS can be
placed in protocol headers (in most protocols) or in the mes-
sage payload, additional learning and decision making is
required. Accessing protocol headers differs from access-
ing payload in terms of code to be written, tool and library
support, and portability.

3.7.3 Initial Position Sketch. The entire API or individual parts,
such as endpoints, operations, or message parts can be versioned.
Here, we primarily target endpoint versioning.

All clients invoke operations exposed by a single, unversioned
endpoint. Figure 3.7 (a) shows this rather simple Initial Position
Sketch.

3.7.4 Design Smells.

Tacit semantic changes up to incompatibilities creep in
While the technical API contract remains unchanged, the
meaning of the received or returned data might change over
time. Such semantic mismatches between older and newer
versions should be documented in the API DESCRIPTION
and examples and then caught during testing, ideally in
an automated fashion. Implicit versioning an applying the
TOLERANT READER pattern [1] might hide such changes and
their impact for quite some time.

Resistance to change caused by uncertainty API providers
may hesitate to implement necessary changes due to a lack
of clarity in their strategy for evolving the API. Clients might
be reluctant to upgrade to new versions because they are
unable to assess the imposed changes on their side.

See “Interface Evolution Patterns — Balancing Compatibility and
Extensibility across Service Life Cycles” [21] for other smells related
to API versioning and countermeasures.

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

3.7.5 Instructions. The introduction and continued use of explicit
an VERSION IDENTIFIER has to be planned, executed, and sustained:

1. Decide on scope and naming conventions for the VERsION
IDENTIFIER, for instance, following the Semantic Versioning
specification when assigning and communicating version
numbers (currently standing at Version 2.0.0).

2. Define an evolution roadmap, selecting one or more lifecycle
management strategies to define the lifetime of the version;
see the related refactorings Tighten Evolution Strategy and
Relax Evolution Strategy.

3. Decide where to place the VERsION IDENTIFIER for each API
element to be versioned. For instance, possible locations are
endpoint address, message payload, and protocol header.

4. Put the version-enhanced endpoint addresses in the API
implementation code or update the message construction
code, depending on where the VERSION IDENTIFIER has been
added.

5. Update the API documentation with the new VERsION IDEN-
TIFIER(s) and meta-information about the meaning of this
version information (for instance, consequences of certain
version numbers regarding compatibility).

The pattern description of VERSION IDENTIFIER provides more in-
formation about versioning scopes, identifier placement (location),
and compatibility considerations [41].

3.7.6 Target Solution Sketch (Evolution Outline). Once a VERSION
IDENTIFIER has been introduced, clients can choose which version
of an endpoint they want to work with (assuming that multiple
versions are supported, as described in the Two 1IN PRODUCTION
pattern). Figure 3.7 (b) illustrates this new, more flexible setup.

3.7.7 Example(s). Depending on the chosen location of the VER-
SION IDENTIFIER, clients enact their usage decision in the message
payload or a header (see section “Instructions” above). In HTTP, it
may be part of the endpoint address (relative URI path):

GET /customers/1234

Accept: text/json+customer; version=1.0

or
GET /v2/customers/1234

The API Stylebook compiled by “API Handyman” Arnaud Lauret
points at many additional examples in its design topic “Updates
and Versioning”.

3.7.8 Hints and Pitfalls to Avoid. Before and when applying this
refactoring, make sure to:

e Involve API clients in the decisions about and planning of
API evolution (assuming that they are known and willing to
participate).

e Stay backward-compatible whenever possible, but do not
hesitate to upgrade the major version when necessary.

e Provide migration aids such as change logs, code snippets,
and mappings of identifiers and parameters from old to new
versions.

Note that the Semantic Versioning specification has a VERs1ON IDENTIFIER and applies
SEMANTIC VERSIONING itself.

https://semver.org/
https://interface-refactoring.github.io/refactorings/tightenevolutionstrategy
https://interface-refactoring.github.io/refactorings/relaxevolutionstrategy
http://apistylebook.com/design/topics/versioning
http://apistylebook.com/design/topics/versioning

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

API Client

API Provider

Endpoint

Mirko Stocker, Olaf Zimmermann, and Stefan Kapferer

API Client

Figure 3.7 (a): Introduce Version Identifier: Initial Position Sketch. An API provider has deployed an API with a single endpoint

that clients use.

API Client

o

Payloads and headers
may include the
Version Identifier

API Provider

Version Identifiers
can be part of an
Endpoint name

“ Version Identifier 6 'I\E/Ilztrii?\tta

Figure 3.7 (b): Introduce Version Identifier: Target Solution Sketch. The API provider has introduced a VERSION IDENTIFIER to
the API, allowing clients to choose which version of an endpoint they want to work with.

e Be aware of design challenges caused by automatic routing.
For example, VERSION IDENTIFIERS in encrypted message
payloads might not be visible to intermediaries and, there-
fore, can not be used for routing purposes.

“Interface Evolution Patterns — Balancing Compatibility and
Extensibility across Service Life Cycles” provides further hints. For
example, “stick to a standardized and consistent versioning strategy,
e.g., decide which objects to version consistently (operations, data
types, etc.) or which versioning schema to use (e.g., SEMANTIC
VERSIONING)” [21].

3.7.9 Related Content. Other refactorings dealing with API evo-
lution are Introduce Version Mediator [31, pages 22-26], Tighten
Evolution Strategy, and Relax Evolution Strategy.

The evolution patterns in Zimmermann et al. [41] cover version-
ing. For instance, there is a pattern called SEMANTIC VERSIONING.
The concept of SERVICE LEVEL AGREEMENT (SLA) is captured in pat-
tern form as well; an SLA pertains to a single or multiple versions
and should specify and reference those versions explicitly.

Arnaud Lauret’s book on Web API design covers the topic [19],
and the blog post “5 Ways to Version APIs” also discusses options
with pros and cons.

James Higginbotham provides advice regarding “When and How
Do You Version Your API?.

4 Summary

In this paper, we introduced seven interface refactorings from our
Interface Refactoring Catalog: Extract Information Holder, Inline
Information Holder, Extract Operation, Rename Operation, Make Re-
quest Conditional, Encapsulate Context Representation, and Introduce
Version Identifier. These seven refactorings comprise the second
slice of our Interface Refactoring Catalog (IRC), which we first
presented at EuroPLoP 2023 [31].

Future work may concern collecting further API refactorings,
connecting our work with other refactoring initiatives (e.g., domain
model refactoring), and resuming tool research and development.
We are also interested in validating our refactorings with real-
world APIs and in exploring the relationship between interface
refactorings and interface definition languages, such as Smithy,
TypeSpec, and OpenAPL

API testing and monitoring are potential areas of future research
as well. We want to investigate how refactoring can improve the
testability, observability, and maintainability of APIs. In addition,
we are interested in green software and how refactoring can im-
prove the environmental sustainability of APIs. For example, by
transferring less data (Make Request Conditional, Extract Informa-
tion Holder), we can reduce the amount of data processed and
transferred, which can lead to energy savings and reduce the envi-
ronmental footprint of software systems [14].

https://nordicapis.com/5-ways-to-version-apis/
https://tyk.io/when-and-how-do-you-version-your-api/
https://tyk.io/when-and-how-do-you-version-your-api/
https://smithy.io
https://typespec.io/
https://www.openapis.org/

Pattern-oriented APl Refactoring: Addressing Design Smells and Stakeholder Concerns

Acknowledgments

We would like to thank the contributors to the interface refactoring
catalog. A big thank you goes to our EuroPLoP 2024 shepherd
Thomas Mejstrik for his comprehensive and insightful feedback,
which will make our work more accessible to a wider audience. We
also want to thank the participants of the EuroPLoP 2024 Writers’
Workshop B Andreas Fiesser, Diogo Maia, Eduardo Guerra, Joao
Francisco Daniel, Marc Schmidt, Paulo Gabriel Gadelha Queiroz,
Pierre Schnizer, and Waheedullah Sulaiman Khail for their valuable
feedback. A small project grant from the Hasler Foundation partially
supported the research presented in this paper.

References

(1]

[13

[14]

[15]

[16

[17

[18]
[19]
[20

[21

[22]

Robert Daigneau. 2011. Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services. Addison-Wesley.

Trevor Foucher Dustin Boswell. 2011. The Art of Readable Code. O’Reilly Media,
Inc.

Eric Evans. 2003. Domain-Driven Design: Tacking Complexity In the Heart of
Software. Addison-Wesley.

Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter
Arbitter. 2014. Cloud Computing Patterns: Fundamentals to Design, Build, and
Manage Cloud Applications. Springer. https://doi.org/10.1007/978-3-7091-1568-8
Roy T. Fielding, Mark Nottingham, and Julian Reschke. 2022. HTTP Caching.
RFC 9111. https://doi.org/10.17487/RFC9111

Roy T. Fielding and Julian Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1):
Conditional Requests. RFC 7232. https://doi.org/10.17487/RFC7232

Roy T. Fielding and Julian Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content. RFC 7231. https://doi.org/10.17487/RFC7231

Martin Fowler. 2002. Patterns of Enterprise Application Architecture. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Martin Fowler. 2018. Refactoring (2 ed.). Addison-Wesley, Boston, MA.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley.

Neil B. Harrison. 2003. Advanced Pattern Writing Patterns for Experienced
Pattern Authors. In Proc. Eighth European Conference on Pattern Languages of
Programs (EuroPLoP). 1-20.

Klaus Julisch, Christophe Suter, Thomas Woitalla, and Olaf Zimmermann. 2011.
Compliance by design - Bridging the chasm between auditors and IT architects.
Computers and Security 30 (09 2011), 410-426. https://doi.org/10.1016/j.cose.2011.
03.005

Stefan Kapferer and Samuel Jost. 2017. Attributbasierte Autorisierung in einer
Branchenlosung fiir das Versicherungswesen - Analyse, Konzept und prototypische
Umsetzung. Bachelor Thesis. University of Applied Sciences of Eastern Switzer-
land (HSR FHO), https://eprints.ost.ch/id/eprint/602/.

Stefan Kapferer, Mirko Stocker, and Olaf Zimmermann. 2024. Towards responsible
software engineering: combining value-based processes, agile practices, and
green metering. In IEEE International Symposium on Technology and Society,
ISTAS 2024, Puebla, Mexico, September 18-20, 2024. IEEE. accepted for publication.
Stefan Kapferer and Olaf Zimmermann. 2020. Domain-Driven Service Design.
In Service-Oriented Computing, Schahram Dustdar (Ed.). Springer International
Publishing, 189-208. https://doi.org/10.1007/978-3-030-64846-6_11

Stefan Kapferer and Olaf Zimmermann. 2021. Domain-Driven Architecture Mod-
eling and Rapid Prototyping with Context Mapper. In Model-Driven Engineering
and Software Development, Slimane Hammoudi, Luis Ferreira Pires, and Bran
Seli¢ (Eds.). Springer International Publishing, Cham, 250-272.

Phil Karlton. 2009. Two hard things. https://martinfowler.com/bliki/
TwoHardThings.html

Joshua Kerievsky. 2004. Refactoring to Patterns. Pearson Higher Education.
Arnaud Lauret. 2019. The Design of Web APIs. Manning.

Carola Lilienthal and Henning Schwentner. 2025. Domain-Driven Transformation:
Modularize and Modernize Legacy Software. Addison-Wesley Professional.
Daniel Liibke, Olaf Zimmermann, Cesare Pautasso, Uwe Zdun, and Mirko Stocker.
2019. Interface Evolution Patterns: Balancing Compatibility and Extensibility
across Service Life Cycles. In Proceedings of the 24th European Conference on
Pattern Languages of Programs (Irsee, Germany) (EuroPLop °19). Association
for Computing Machinery, New York, NY, USA, Article 15, 24 pages. https:
//doi.org/10.1145/3361149.3361164

Daniel Liibke, Olaf Zimmermann, Cesare Pautasso, Uwe Zdun, and Mirko Stocker.
2019. Interface Evolution Patterns: Balancing Compatibility and Extensibility
across Service Life Cycles. In Proceedings of the 24th European Conference on
Pattern Languages of Programs (Irsee, Germany) (EuroPLop ’19). Association
for Computing Machinery, New York, NY, USA, Article 15, 24 pages. https:

[29

[30

[31

[32

[33

(34]

(35]

(37]

(38]

[39]

[40]

[41]

A

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

//doi.org/10.1145/3361149.3361164

Gerard Meszaros and Jim Doble. 1997. A Pattern Language for Pattern Writing.
Pattern Languages of Program Design 3 (1997), 529-574.

Mark Nottingham and Erik Wilde. 2016. Problem Details for HTTP APIs. RFC
7807. https://doi.org/10.17487/RFC7807

Michael T. Nygard. 2018. Release It! (2 ed.). Pragmatic Bookshelf, Raleigh, NC.
https://learning.oreilly.com/library/view/release-it-2nd/9781680504552/

Chris Richardson. 2018. Microservices Patterns. Manning.

Arthur J. Riel. 1996. Object-Oriented Design Heuristics. Addison-Wesley, Reading,
MA.

Souhaila Serbout, Cesare Pautasso, Uwe Zdun, and Olaf Zimmermann. 2022.
From OpenAPI Fragments to API Pattern Primitives and Design Smells. In 26th
European Conference on Pattern Languages of Programs (Graz, Austria) (Euro-
PLoP’21). Association for Computing Machinery, New York, NY, USA, Article 21,
35 pages. https://doi.org/10.1145/3489449.3489998

Apitchaka Singjai, Uwe Zdun, and Olaf Zimmermann. 2021. Practitioner Views
on the Interrelation of Microservice APIs and Domain-Driven Design: A Grey
Literature Study Based on Grounded Theory. In 18th IEEE International Conference
On Software Architecture (ICSA 2021). https://doi.org/10.5281/zenodo.4493865
Mirko Stocker and Olaf Zimmermann. 2021. From Code Refactoring to API
Refactoring: Agile Service Design and Evolution. In Service-Oriented Computing,
Johanna Barzen (Ed.). Springer International Publishing, Cham, 174-193. https:
//doi.org/10.1007/978-3-030-87568-8_11

Mirko Stocker and Olaf Zimmermann. 2023. API Refactorings to Patterns: Cat-
alog, Template and Tools for Remote Interface Evolution. In Proceedings of the
28th European Conference on Pattern Languages of Programs (Irsee, Germany)
(EuroPLop °23). Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3628034.3628073

Mirko Stocker, Olaf Zimmermann, Daniel Liibke, Uwe Zdun, and Cesare Pautasso.
2018. Interface Quality Patterns - Communicating and Improving the Quality
of Microservices APIs. In 23rd European Conference on Pattern Languages of
Programs 2018. https://doi.org/10.1145/3282308.3282319

Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. 2014. Refac-
toring for Software Design Smells: Managing Technical Debt (1st ed.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Olaf Zimmermann. 2017. Microservices tenets. Comput. Sci. Res. Dev. 32, 3-4
(2017), 301-310. https://doi.org/10.1007/S00450-016-0337-0

Olaf Zimmermann, Daniel Liibke, Uwe Zdun, Cesare Pautasso, and Mirko Stocker.
2020. Interface Responsibility Patterns: Processing Resources and Operation
Responsibilities. In Proc. of the European Conference on Pattern Languages of
Programs (Online) (EuroPLoP °20).

Olaf Zimmermann, Cesare Pautasso, Daniel Liibke, Uwe Zdun, and Mirko Stocker.
2020. Data-Oriented Interface Responsibility Patterns: Types of Information
Holder Resources. In Proc. of the European Conference on Pattern Languages of
Programs (Online) (EuroPLoP "20).

Olaf Zimmermann and Mirko Stocker. 2021. Design Practice Reference - Guides and
Templates to Craft Quality Software in Style. LeanPub. https://leanpub.com/dpr
Olaf Zimmermann, Mirko Stocker, and Stefan Kapferer. 2024. Bringing ethical
values into agile software engineering. In Smart Ethics in the Digital World:
Proceedings of the ETHICOMP 2024. 21th International Conference on the Ethical
and Social Impacts of ICT. Universidad de La Rioja, 90-93.

Olaf Zimmermann, Mirko Stocker, Daniel Liibke, Cesare Pautasso, and Uwe Zdun.
2020. Introduction to Microservice API Patterns (MAP). In Joint Post-proceedings
of the First and Second International Conference on Microservices (Microservices
2017/2019) (OpenAccess Series in Informatics (OASIcs), Vol. 78), Luis Cruz-Filipe,
Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher,
and Sabine Sachweh (Eds.). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 4:1-4:17. https://doi.org/10.4230/OASIcs.Microservices.
2017-2019.4

Olaf Zimmermann, Mirko Stocker, Daniel Liibke, and Uwe Zdun. 2017. Interface
Representation Patterns - Crafting and Consuming Message-Based Remote APIs.
In 22nd European Conference on Pattern Languages of Programs (EuroPLoP 2017).
1-36. https://doi.org/10.1145/3147704.3147734

Olaf Zimmermann, Mirko Stocker, Daniel Liibke, Uwe Zdun, and Cesare Pautasso.
2022. Patterns for API Design: Simplifying Integration with Loosely Coupled Message
Exchanges. Addison-Wesley Professional.

Summary of Patterns for API Design

In the refactorings presented in this paper, we refer to 24 patterns
from Zimmermann et al. [41]. The pattern name, icon, problem
and solution summary statements are listed in Table 2 to provide
a quick reference. For more details, we refer the reader to the API
Patterns website and book.

https://doi.org/10.1007/978-3-7091-1568-8
https://doi.org/10.17487/RFC9111
https://doi.org/10.17487/RFC7232
https://doi.org/10.17487/RFC7231
https://doi.org/10.1016/j.cose.2011.03.005
https://doi.org/10.1016/j.cose.2011.03.005
https://doi.org/10.1007/978-3-030-64846-6_11
https://martinfowler.com/bliki/TwoHardThings.html
https://martinfowler.com/bliki/TwoHardThings.html
https://doi.org/10.1145/3361149.3361164
https://doi.org/10.1145/3361149.3361164
https://doi.org/10.1145/3361149.3361164
https://doi.org/10.1145/3361149.3361164
https://doi.org/10.17487/RFC7807
https://learning.oreilly.com/library/view/release-it-2nd/9781680504552/
https://doi.org/10.1145/3489449.3489998
https://doi.org/10.5281/zenodo.4493865
https://doi.org/10.1007/978-3-030-87568-8_11
https://doi.org/10.1007/978-3-030-87568-8_11
https://doi.org/10.1145/3628034.3628073
https://doi.org/10.1145/3282308.3282319
https://doi.org/10.1007/S00450-016-0337-0
https://leanpub.com/dpr
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.4
https://doi.org/10.1145/3147704.3147734
https://api-patterns.org
https://api-patterns.org

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany Mirko Stocker, Olaf Zimmermann, and Stefan Kapferer

Pattern Name Pattern Summary (Problem and Solution)

API DESCRIPTION Problem: Which knowledge should be shared between an API provider and its clients? How should
this knowledge be documented?

’@‘ Solution: Create an API DEscrIPTION that defines request and response message structures, error

reporting, and other relevant parts of the technical knowledge to be shared between provider and
client. In addition to static and structural information, also cover dynamic or behavioral aspects,
including invocation sequences, pre- and postconditions, and invariants. Complement the syntactical
interface description with quality management policies as well as semantic specifications and
organizational information.

API KEY Problem: How can an API provider identify and authenticate clients and their requests?
Solution: As an API provider, assign each client a unique token — the API Key — that the client can
present to the API endpoint for identification purposes.

BACKEND INTEGRATION Problem: How can distributed applications and their parts, which have been built independently and
are deployed separately, exchange data and trigger mutual activity while preserving system-internal
% conceptual integrity without introducing undesired coupling?

Solution: Integrate the backend of a distributed application with one or more other backends (of
the same or other distributed applications) by exposing its services via a message-based remote
BACKEND INTEGRATION APL

ComMMUNITY API Problem: How can the visibility of and the access to an API be restricted to a closed user group that
does not work for a single organizational unit but for multiple legal entities (such as companies,
nonprofit/nongovernment organizations, and governments)?

Solution: Deploy the API and its implementation resources securely in an access-restricted location
so that only the desired user group has access to it — for instance, in an extranet. Share the API
DEscripTION only with the restricted target audience.

CONDITIONAL REQUEST Problem: How can unnecessary server-side processing and bandwidth usage be avoided when
frequently invoking API operations that return rarely changing data?

Solution: Make requests conditional by adding METADATA ELEMENTS to their message representations
(or protocol headers) and processing these requests only if the condition specified by the metadata is
met.

o]

CONTEXT REPRESENTATION Problem: How can API consumers and providers exchange context information without relying on
any particular remoting protocols? How can identity information and quality properties in a request
be made visible to related subsequent ones in conversations?

Solution: Combine and group all METADATA ELEMENTS that carry the desired information into a
custom representation element in request and/or response messages. Do not transport this single
CONTEXT REPRESENTATION in protocol headers, but place it in the message payload. Separate global
from local context in a conversation by structuring the CONTEXT REPRESENTATION accordingly.
Position and mark the consolidated CONTEXT REPRESENTATION element so that it is easy to find and
distinguish from other DaTa ELEMENTS.

L)

Data ELEMENT Problem: How can domain/application-level information be exchanged between API clients and API
providers without exposing provider-internal data definitions in the API? How can API client and
API provider be decoupled from a data management point of view?

Solution: Define a dedicated vocabulary of DATA ELEMENTS for request and response messages that
wraps and/or maps the relevant parts of the data in the business logic of an API implementation.

L)

EMBEDDED ENTITY Problem: How can one avoid sending multiple messages when their receivers require insights about
multiple related information elements?

Solution: For any data relationship that the client wants to follow, embed a DATA ELEMENT in the
request or response message that contains the data of the target end of the relationship. Place this
EMBEDDED ENTITY inside the representation of the source of the relationship.

B

Table 2: Patterns from Zimmermann et al. [41] mentioned in this paper, with their problem and solution summaries.

Pattern-oriented APl Refactoring: Addressing Design Smells and Stakeholder Concerns EuroPLoP 2024, July 03-07, 2024, Irsee, Germany

Pattern Name Pattern Summary (Problem and Solution)
INFORMATION HOLDER Problem: How can domain data be exposed in an API, but its implementation still be hidden? How can
RESOURCE an API expose data entities so that API clients can access and/or modify these entities concurrently

without compromising data integrity and quality?

Solution: Add an INFORMATION HOLDER RESOURCE endpoint to the API, representing a data-oriented
entity. Expose create, read, update, delete, and search operations in this endpoint to access and
manipulate this entity. In the API implementation, coordinate calls to these operations to protect the
data entity.

LiMITED LIFETIME GUARANTEE Problem: How can a provider let clients know for how long they can rely on the published version of
' an API?

V‘HX Solution: As an API provider, guarantee to not break the published API for a fixed timeframe. Label
each API version with an expiration date.

LINK ELEMENT Problem: How can API endpoints and operations be referenced in request and response message
(\ payloads so that they can be called remotely?
@ Solution: Include a special type of ID ELEMENT, a LINK ELEMENT, to request or response messages.

Let these LINk ELEMENTS act as human- and machine-readable, network-accessible pointers to other
endpoints and operations. Optionally, let additional METADATA ELEMENTS annotate and explain the
nature of the relationship.

—

LINKED INFORMATION HOLDER Problem: How can messages be kept small even when an API deals with multiple information elements
(\ that reference each other?

@ Solution: Add a LINk ELEMENT to messages that pertain to multiple related information elements.
Let this LINk ELEMENT reference another API endpoint that represents the linked element.

MasTER DAaTA HOLDER Problem: How can I design an API that provides access to master data that lives for a long time, does

() not change frequently, and will be referenced from many clients?

Solution: Mark an INFORMATION HOLDER RESOURCE to be a dedicated MASTER DATA HOLDER endpoint
that bundles master data access and manipulation operations in such a way that the data consistency
is preserved and references are managed adequately. Treat delete operations as special forms of
updates.

METADATA ELEMENT Problem: How can messages be enriched with additional information so that receivers can interpret

the message content correctly, without having to hardcode assumptions about the data semantics?

0 Solution: Introduce one or more METADATA ELEMENTS to explain and enhance the other representation
elements that appear in request and response messages. Populate the values of the METADATA
ELEMENTS thoroughly and consistently; process them as to steer interoperable, efficient message
consumption and processing.

OPERATIONAL DATA HOLDER Problem: How can an API support clients that want to create, read, update, and/or delete instances of
> domain entities that represent operational data: data that is rather short-lived, changes often during
daily business operations, and has many outgoing relations?

Solution: Tag an INFORMATION HOLDER RESOURCE as OPERATIONAL DATA HOLDER and add API
operations to it that allow API clients to create, read, update, and delete its data often and fast.

PROCESSING RESOURCE Problem: How can an API provider allow its clients to trigger an action in it?

Solution: Add a PROCESSING RESOURCE endpoint to the API exposing operations that bundle and
wrap application-level activities or commands.

RATE LimIT Problem: How can the API provider prevent API clients from excessive API usage?
2 Solution: Introduce and enforce a RATE LimIT to safeguard against API clients that overuse the APL

EuroPLoP 2024, July 03-07, 2024, Irsee, Germany Mirko Stocker, Olaf Zimmermann, and Stefan Kapferer

Pattern Name Pattern Summary (Problem and Solution)

RETRIEVAL OPERATION Problem: How can information available from a remote party (the API provider, that is) be retrieved
to satisfy an information need of an end user or to allow further client-side processing?

Solution: Add a read-only operation ro: (in,S) -> out to an API endpoint, which often is
an INFORMATION HOLDER RESOURCE, to request a result report that contains a machine-readable
representation of the requested information. Add search, filter, and formatting capabilities to the
operation signature.

Problem: How can stakeholders compare API versions to detect immediately whether they are
compatible?

Solution: Introduce a hierarchical three-number versioning scheme x .y . z, which allows API providers
to denote different levels of changes in a compound identifier. The three numbers are usually called
major, minor, and patch versions.

Problem: How can an API client learn about the specific quality-of-service characteristics of an API
and its endpoint operations? How can these characteristics, and the consequences of not meeting
them, be defined and communicated in a measurable way?

Solution: As an API product owner, establish a structured, quality-oriented SERVICE LEVEL AGREEMENT
that defines testable service-level objectives.

Two IN PRODUCTION Problem: How can a provider gradually update an API without breaking existing clients but also
L without having to maintain a large number of API versions in production?
(v [Solution: Deploy and support two versions of an API endpoint and its operations that provide
v v variations of the same functionality but do not have to be compatible with each other. Update and
decommission the versions in a rolling, overlapping fashion.

VERSION IDENTIFIER Problem: How can an API provider indicate its current capabilities as well as the existence of pos-
sibly incompatible changes in order to prevent malfunctioning of API clients due to undiscovered
interpretation errors?

Solution: Introduce an explicit version indicator. Include this VERSION IDENTIFIER in the API DEscrIP-
TION and in the exchanged messages. To do the latter, add a METADATA ELEMENT to the endpoint
address, the protocol header, or the message payload.

WisH LisT Problem: How can an API client inform the API provider at runtime about the data it is interested in?
f? Solution: As an API client, provide a Wish List in the request that enumerates all desired data elements
-0 of the requested resource. As an API provider, deliver only those data elements in the response
-~ message that are enumerated in the WisH LisT ("response shaping”).
WisH TEMPLATE Problem: How can an API client inform the API provider about nested data that it is interested in?
I How can such preferences be expressed flexibly and dynamically?
%g Solution: Add one or more additional parameters to the request message that mirror the hierarchical
-~ structure of the parameters in the corresponding response message. Make these parameters optional

or use Boolean as their types so that their values indicate whether or not a parameter should be
included.

	Abstract
	1 Introduction
	2 Related Work
	3 The Interface Refactoring Catalog (Second Slice)
	3.1 Refactoring: Extract Information Holder
	3.2 Refactoring: Inline Information Holder
	3.3 Refactoring: Extract Operation
	3.4 Refactoring: Rename Operation
	3.5 Refactoring: Make Request Conditional
	3.6 Refactoring: Encapsulate Context Representation
	3.7 Refactoring: Introduce Version Identifier

	4 Summary
	Acknowledgments
	References
	A Summary of Patterns for API Design

