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The Data Intensive Computing Environments group has been developing data grid
technology for twenty years. Two generations of technology were created, the
Storage Resource Broker - SRB (1994-2006) and the integrated Rule Oriented Data
System - iRODS (2004-2014). When developed, both products represented
pioneering technology in distributed data management and were widely applied by
communities interested in sharing data, publishing data, and preserving data.
Applications included national data grids, national digital libraries, national
archives, and international collaborations. The success of the software was strongly
driven by basic concepts that still represent the state-of-the-art for data
management systems. These foundational concepts are built upon evolutionary
concepts in virtualization and the abstractions needed to manage data, information,
and knowledge. The concepts included policy-based data management, collection
life cycle, and federation. The development, evolution, and application of these
concepts in distributed data management systems is reviewed in this paper.

I. Introduction:

The implementation of two successful data grid software systems - the Storage
Resource Broker (SRB) [2] and the integrated Rule Oriented Data System (iRODS)
[13], represents an example of a software development life cycle. User requirements
from the academic Science community drove the implementation of data grid
technology, and the evolution data grids from data management to information and
knowledge management. These systems pioneered significant conceptual ideas and
technologies in large-scale data management and indeed added multiple terms to
the ever changing vocabulary of the field. The current emergence of Big Data as a
full-fledged field can be traced to some of the concepts implemented by these two
systems — concepts such as data-intensive computing, infrastructure independence,
virtualization and policy-based data management. The two software systems were
developed by the Data Intensive Computing Environments group (DICE), which was
started in 1994 at the San Diego Supercomputer Center (SDSC) to pursue the goal of
implementing software systems that would enable collaborative research through
large-scale sharing of multi-disciplinary data files. In the following we track the
history of this development.

The selection of the initial software development goal was based on observations of
research requirements in computational plasma physics, observations of technology
management requirements within the San Diego Supercomputer Center, results
from a prior collaboration on an Alternative Architecture study for the Earth



Observing System [1], and research in high-performance networking within the
CASA Gigabit Network project [2]. For example, in computational plasma physics,
the analysis of the stability of toroidal plasma physics configurations was being
done at institutions on the East and West coasts of the United States in the 1980s. A
collaboration environment was needed to enable researchers to compare stability
analyses and independently verify results. This required the ability to share input
files, as well as output results, across institutional boundaries.

Within the San Diego Supercomputer center, which started in 1986, technology was
replaced every three years to track and take advantage of the emergence of cheaper
and higher performance systems. In particular, by 1994, the third version of an
archival storage system had been implemented, using a third generation of tape
technology. A mechanism was needed to simplify migration of the archived data
between old and new systems.

The Earth Observing System analysis proposed that data products should be
organized as a collection, and that relational database technology should be used to
manage the system state information. Data replication was proposed between two
centers, with data streaming to support processing of the contents.

In the CASA Gigabit Network, theoretical predictions were made of the maximal
achievable performance of a distributed, heterogeneous computational
environment. The concept of superlinear speedup through the federation of
heterogeneous computing resources was analyzed, and a practical demonstration
was made that showed a speedup of a factor of 3.3 across two supercomputers. This
indicated that management of heterogeneous resources was important for
optimizing performance across distributed systems.

The combination of these prior research efforts pointed to the need for researchers
to be able to provide a context for interpreting shared data, while managing
technology evolution. These requirements for a distributed data management
system were the seeds for the development of the first data grid software - the
Storage Resource Broker data grid system. Its essential capabilities included:

* Management of data from multiple institutions as a shareable collection
through virtualization mechanisms. This was implemented by managing
universal name spaces for files, collections, users, and storage systems
independently of the physical storage systems where the objects were
stored, and independently of the administrative domains at each institution.
Authentication and authorization on the universal user name space was
implemented as third-party services, mapping logically named resources into
physically located storage systems.

* Organization of data files as a collection - independently of the physical
characteristics of the data file. That is, a collection provides a virtual
“grouping” of files that might be stored on distributed resources of various
types, created and owned by multiple users and groups but having some



common properties that warrant bundling them into the same virtual group.
Not all objects in the collection need to be files, but can also be dynamic
relational queries, sensor streams or self-aggregated/described objects such
as tar files or HDF files.

Association of descriptive metadata with objects in a collection to provide a
context for interpreting the data and capturing domain-centric and systems-
centric structured information.

Management of system state information in a relational database. System
metadata were associated with files, collections, users, and storage systems.
This enabled rapid queries on a much richer set of attributes than normally
provided by file systems. The abstraction of a common set of attributes
masked the differences between the types of resources being used in the
physical layer and provided a uniform system information management
layer.

Management of the properties of the collection, independently of the
properties of the storage system in which the files were stored. This was a
key goal based on the virtualization of the data collection instead of the
virtualization of the storage systems.

Implementation of a single sign-on authentication system. The files that
were shared were owned by the data grid. Users authenticated to the data
grid, and in turn, the data grid authenticated itself to the remote storage
system. The files were stored under an account that represented the data
grid. This meant that the data grid had to both authenticate users, and
authorize actions on resources and data. Access controls were managed by
the data grid independently of the administrative domain - again providing a
common service across the distributed environment.

An architecture based on a peer-to-peer server environment. Users could
connect to any server and the data grid would redirect the request to the
correct location for the desired file operation. This meant that users could
request a file without knowing where the file was located, without knowing
the local name of the file (physical path name), without having an account of
the remote storage system, and without knowing the network access
protocol required by the storage system. The data grid managed the
mapping from the logical file name to the physical path name, managed
information about the file location, translated the request by the user client
to the protocol required by the remote storage location, and initiated
operations on behalf of the user.

Fault-tolerant semantics. The intent was to build a system that tolerated
failure, by redirecting data storage to locations that could provide the space.
This was implemented through the concept of storage resource groups.
Writing to a resource group succeeded when a file was written to at least one
member of the group. Thus some of the storage systems could be off-line, or
down for maintenance, and the success of the operation could still be
ensured. Another type of fault tolerance was achieved through replication.
Since the data grid provided a mapping from the logical name to the physical



address location, it was easy to extend this mapping to multiple physical
addresses - hence providing management of synchronized copies of a data
object distributed across multiple resources. If access to one copy was
unavailable, the system automatically provided access to its replica.

II. Storage Resource Broker:

The development of the Storage Resource Broker was funded initially by DARPA
through the “Massive Data Analysis Systems” project [3]. The effort to build
software to manage distributed data was viewed as a sufficiently risky objective to
warrant DARPA funding. When the approach was presented at a meeting with the
tape storage vendor Storage Tek, the response was that they were used to leading
edge projects, but the DICE group was halfway down the cliff. The initial
development integrated multiple types of technology:

Use of relational database technology to manage the system state
information. As part of the EOSDIS alternative architecture study (1994), a
centralized architecture was proposed in which all data were managed by a
relational database. The SRB data grid was designed to store system state
information in a relational database, while maintaining links to files on
distributed storage systems. At that time, holding and accessing hierarchical
path information in relational systems was considered to be a performance
bottleneck. We chose to do this in order to achieve scalability, since the file
systems at that time dealt with less than 2 million files.

Virtualization of data collections versus virtualization of storage. The SRB
focused on managing the properties of the data collection, instead of
managing the storage systems. This made it possible to implement
operations directed at data manipulation in addition to data storage. Vendors
were beginning to implement storage virtualization but considered
data/collection virtualization to be too risky.

Support for heterogeneous storage systems. In order to manage interactions
with multiple types of storage system protocols, the SRB software was
designed to map from a standard protocol that was based on extensions to
Posix I/0, to the protocol used by a specific type of storage system such as
the IBM High Performance Storage System, the UniTree storage system, the
Network File System, and the Cray File System etc. The protocol conversion
was implemented as a modular and extensible software driver. The data grid
tracked all operations performed through the middleware, and updated
persistent state variables consistently.

Extended support for data manipulation operations. The SRB data grid
implemented operations for replication, versioning, synchronizing, auditing,
aggregation in containers, staging of files, archiving of files, checksum
creation, metadata extraction, and metadata loading. Since the additional
operations were initiated through both Unix utilities and web browsers, a
key property of the data grid was the decoupling of access mechanisms from
the data management middleware.



* Support for multiple types of client interfaces. A second layer of
virtualization was needed to manage mapping from the protocol used by
client software, to the standard [/0 protocol supported within the data grid.
For the SRB, the clients that were supported included web browsers, Java
load library, C 1/0 library, and Fortran I/0 library. The protocol used by the
client did not have to match the protocol required by the storage system. In
effect, the SRB implemented brokering technology between clients and
storage.

* Support for multiple authentication environments. Since the data grid
managed information that were spread across multiple administrative
domains, it needed to deal with the different types of authentication that
were supported by these system administrations. To perform authorization
across users as well as files, multiple types of authentication systems were
supported, including Unix passwords, Kerberos, and Grid Security
Infrastructure through the Generic Security Service API. For each type of
authentication environment, the associated information was stored in the
metadata catalog as attributes on the user account name. The authentication
mechanism used to authenticate a person to the data grid did not have to be
the same as the authentication mechanism used to authenticate data grid
access to a remote storage system. Hence, the system also worked as an
authentication broker.

* Schema indirection. Each user community had different definitions for the
descriptive metadata that they associated with files and collections. Schema
indirection was used to store a triplet consisting of the attribute name, the
attribute value, and an attribute unit or comment. This allowed each
community to use the data grid as generic infrastructure and implement
their domain specific descriptive metadata. Association of name spaces to
form an entity set (e. g. Dublin Core, FITS metadata, DICOM metadata, etc.)
was also possible.

* Extensible generic infrastructure. Since multiple types of applications built
upon the SRB data grid, new features were implemented through
appropriate forms of virtualization. This ensured that the system would
remain compatible with prior versions, and that extensions to the software
could build upon multiple versions of storage technology. The highly
extensible architecture ensured long-term sustainability of the software
through continued application to additional science and engineering
domains.

The SRB can be viewed as an interoperability mechanism that enabled use of
multiple types of storage technology, multiple types of authentication systems, and
multiple types of access clients. The interoperability enabled by the SRB software is
shown in Figure 1. The SRB data grid was implemented as multiple software
servers that may reside on different computers or may be co-located on a single
computer. Each software server ran as a user-level application on the computer.
The servers communicated over a network using a protocol written specifically for



the Storage Resource Broker. External clients accessed the data grid over a
network. Each access was authenticated, and each operation was authorized by the
data grid. One of the servers managed interactions with a metadata catalog, which
in turn composed the SQL needed to interact with a relational database that stores
the catalog. The SRB had drivers for interacting with multiple types of storage
systems (tape archives, file systems, objects in databases, object ring buffers) and
multiple databases (DB2, Oracle, Sybase, Postgres, mySQL, and Informix). Any of the
listed clients (C library, Java, Unix shell command, C++ library, web browser, Kepler
workflow actor, Python load library, Perl load library, Dspace digital library,
GridFTP transport tool) could discover, retrieve, or load files within the distributed
environment using a

uniform API or the
SRB communication _

protocol.

The development of
the SRB was funded by
22 projects that
represented
collaborations with
groups sharing data,
groups managing
large-scale distributed
data, groups
organizing digital
libraries, and groups
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very wide range of

applications ensured Figure 1. Storage Resource Broker Data Grid Components
that generic

infrastructure was developed, with appropriate virtualization mechanisms used to
support the domain features of each application.

III. Data Management Concepts:

Within each collaboration, data management concepts were developed to represent
how generic infrastructure could be used to support all types of data management
applications. The concepts are useful in that they help define standard semantics
for discussing data management. In many cases, the DICE group had to invent
terms, or extend the meaning of terms in order to describe what was being done.
Eventually, many terms gained broader acceptance within the academic world.
Each example of a concept is illustrated within the context of the collaboration
project that supported the development of the associated generic infrastructure. We
describe the various concepts and their timeline during the SRB development.




Logical File Name and Collection (1996): In the SRB data grid, we needed a term
that differentiated the name space used to organize distributed data from the names
used within the physical file system. We used the term “logical file name” to denote
the identifier for a file as managed by the data grid. The “logical file name” could be
organized into “logical collections”, making it possible to associate files that were
stored on different storage systems within the same logical collection.

Data Grid (1998): A data grid is the software infrastructure that organizes
distributed data into a shareable collection. A paper describing the Storage
Resource Broker data grid was presented at the CASCON conference in 1998 [4].
This paper subsequently won an award as one of the top fourteen CASCON First
Decade High Impact Papers.

Middleware definition (1998): Atan NSF middleware workshop, the question of
“What is middleware?” was discussed [5]. The answer based on the SRB data grid
was:

“Middleware is the software system that manages distributed state

information.”
This definition was extended to include support for services across the distributed
environment, but the relationship of middleware to network infrastructure was not
codified. Data grid middleware manages distributed state information about file
location and membership in collections. Networks also manage distributed state
information within their routing tables. The resolution of this dichotomy was
recently achieved within the iRODS data grid software, with the integration of
policy-based data management with policy-based network routing. See the concept
Software Defined Networks.

Persistent Archive (2000): In the Transcontinental Persistent Archive Prototype,
a project funded by the National Archives and Records Administration, the DICE
group needed a term to describe the preservation of an archive [6]. Note that the
word archive (from the computer science discipline) is used to denote the
infrastructure that is used to preserve records. In the preservation community, the
word “archives” is used to denote the records that are being preserved. A
“persistent archive” provides a way to archive a collection independently of the
preservation environment, and then retrieve the archives for instantiation of the
preservation environment on new technology, overcoming technology
obsolescence.

Preservation through Interoperability Mechanisms (2000): There is an
equivalence between access to heterogeneous resources across space versus access
to heterogeneous resources over time. At the point in time when records are
migrated to new technology, data grid middleware can provide the interoperability
mechanisms that enable access to both the old and the new technology [7]. Thus
preservation infrastructure needs to provide the virtualization mechanisms that
abstract preservation properties from the current choice of storage technology. In a
sense, application of interoperability across spatial resources was taken to the next



level by providing interoperability across time. The SRB provided a convenient
mechanism for performing the temporal jumps in a seamless manner. What resulted
is an “organic system” that enabled migration of data objects across time
overcoming technology obsolescence through codification of infrastructure
independence.

Persistent Objects (2003): Preservation communities previously considered two
basic approaches for long term preservation: 1) Emulation, in which the supporting
software infrastructure was emulated to ensure that the record could be parsed
using the original application; 2) Transformative migration, in which the format of
the record was transformed to the format that could be parsed by modern display
applications. Persistent objects is a third approach, in which the record is preserved
in an unaltered form, while the preservation environment virtualizes I/0
operations, enabling access to the record by modern access protocols. This
viewpoint considers that the purpose of the preservation environment is to provide
an interface between an original record and the ever-changing data management
technology.

Consider Figure 2. Data grid technology
implements persistent objects [8] by External World
mapping from the actions requested by the Preservation
display application to the protocol of the
storage system where the record is located.
In the iRODS data grid, this concept was Records
extended to include the ability to write a
display application in a rule language,
ensuring independence from the original
operating system that was used to support
the display application. In both cases, the
original record was not changed. Instead

Environment

Technologies

the preservation environment was Figure 2. Managing Technology
modified to support interactions with new Evolution - Persistent Objects
technologies.

Policy-based Data Management (2006): One of the applications of the Storage
Resource Broker was in the United Kingdom eScience Data Grid. The SRB ensured
consistency by encoding within the software middleware explicit management
constraints. The constraints were applied by each of the distributed servers,
ensuring that the properties of the system were appropriately conserved. However,
within the UK data grid, incommensurate management constraints were needed. An
archive collection was desired in which no changes to records was allowed, not even
by the data grid administrator. Also, a publication collection was desired in which
the data grid administrator could replace bad files. Finally, a research collection
was needed in which a researcher could replace files at will. Three different
management policies were needed within the same data grid.



In the iRODS policy-based data management system, we identified each location in
the software middleware where consistency constraints were imposed, and
replaced the control software with a policy-enforcement point. On execution of the
policy-enforcement point, the system would retrieve the appropriate rule from a
rule base, and then execute the associated procedure. The rule controlled the
procedure using state information stored in the data grid metadata catalog. Thus
the rule could retrieve the name of the collection, and then enforce the appropriate
deletion policy. This enables virtualization of policy management, providing both
administrators and users with a declarative way to define and control actions that
happen at the data storage level. Hence, one can view iRODS as defining a new
generation of servers that is completely configurable and capable of enforcing user-
centric actions.

Preservation as Communication with the Future (2008): The projects
sponsored by the National Archives and Records Administration focused on
development of an understanding of the principals behind data preservation. The
traditional preservation objectives are authenticity, integrity, chain of custody, and
original arrangement. These objectives are all aspects of a higher level goal, that of
enabling communication with the future. The traditional representation
information defined by the Open Archival Information System model provides a
context for correctly interpreting a record by a future knowledge community
through creation of preservation metadata. In the future, the knowledge community
will have enough information from the associated representation information to
correctly interpret a record. This viewpoint needed to be augmented with a
characterization of the representation information that describes the preservation
environment. Within policy-based data management systems, the environment
representation information is characterized by the policies and procedures that are
used to manage the records along with the associated system state information. Itis
then possible for an archivist in the future to verify communication from the past,
and validate that the preservation objects have been appropriately preserved [9].

If preservation is communication with the future, then policy-based systems enable
verification of the validity of communication from the past.

IV. Integrated Rule Oriented Data System

In 2006, the Storage Resource Broker development was deprecated, in favor of
developing an Open Source version of data grid technology. At the same time, a
decision was made to go beyond data and information virtualization, to also support
knowledge virtualization. The basic approach was to turn policies into computer
actionable rules, turn procedures into computer executable workflows, and use
policy enforcement points to decide when policies should be applied.



The architecture of the policy-based data management systems was similar to the
SRB, as shown in Figure 3. Multiple peer-to-peer servers managed interactions with
remote storage locations, and a central metadata catalog stored state information in

arelational database. The integrated Rule-Oriented Data System (iRODS) also
implemented servers to manage message passing, and to manage a queue of
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Figure 3. Policy-based Data Management Architecture

outstanding rule requests [10].

A comparison of policy-based systems with distributed data management systems
shows how the concepts related to data management have been evolving. Figure 4
illustrates the central concepts behind traditional file systems, and also behind the
Storage Resource Broker. External events interact with the data management
system through a well defined protocol. The data management system uses state
information to control the execution of operations on the stored files, and the state

information is appropriately updated.
The file system (i-nodes, v-nodes, etc.)
environment in some sense is
synonymous with the state information
that is managed about the files. A key
component of a file system is the
consistent update of the state
information after every operation that is
performed upon the files. The SRB
answered the challenge of self-
consistent update of state information
in a distributed environment, across
heterogeneous storage systems, across
multiple administrative domains.
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Figure 4. File System Characterization

10



In policy-based data management
systems, operations are replaced by State

Environment

policies that control updates through Information
procedures, and files are replaced by

objects that may include workflows,

active or realized objects, and Procedures
databases, as well as files. Figure 5 lists Events / Objects

the characteristics of policy-based data

management, representing the

evolution from traditional file-based Policies
systems to information and knowledge
based systems. As before, the data
management environment is
synonymous with the consistent
management of state information.
However, in the policy-based system, the environment is governed by the set of
policies that are implemented as computer actionable rules. Thus a description of
the environment must include not only the state information, but also the policies
and procedures that are being enforced. Similar to the SRB, the development of
iRODS also required several new concepts, which we describe along with a timeline.

Procedures

Figure 5. Policy-based System
Characterization

Computer Actionable Knowledge (2012): A major goal of data grid technology
has been the extension of data management systems to also support information
management and knowledge management through computer actionable forms. The
Storage Resource Broker augmented data management with information
management, by associating state information as metadata attributes on an
appropriate name space. The types of information that were managed included
provenance information, descriptive information, representation information, and
system administrative information.

Policy-based data management systems augment information management with
knowledge management. The knowledge required to execute a protocol, or
manipulate a file, or access a remote repository is encapsulated in procedures,
known as micro-services. In a sense, a file (or object) is not viewed in isolation, but
along with all policies and procedures that governs its usage and existence. The
application of knowledge requires the dynamic execution of procedures. The result
of the execution is stored as system state information, and is assigned as metadata
on objects within a name space. In effect, the reification of a knowledge procedure
is turned into administrative information that is stored as metadata in a relational
database. One can view the metadata as inherent properties (labels) on the objects
that codify the derived knowledge obtained through application of procedures.

This approach to knowledge management through computer actionable forms can

be quantified as follows:
* Data consists of bits (zeros and ones)
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* Information consists of labels applied to data
* Knowledge evaluates relationships between labels

* Wisdom imposes relationships between relationships.

Within the iRODS data grid, data are managed as files in a file system, or objects in
an object store. Information is managed as metadata in a relational database.
Knowledge is applied as computer actionable rules through a rule engine. Wisdom
(within the confines of the user-configurable iRODS system) is applied through
policy enforcement points which determine when and where the knowledge
procedures should be executed.

Note that the concept of relationships has been extended to include:

* Semantic or logical relationships

* Spatial or structural relationships

* Temporal or procedural relationships

* Functional or algorithmic relationships

* Systemic or epistemological relationships
Thus a procedure is the application of a functional relationship to a digital object to
generate either information about the digital object, or a new digital object [11].

The differentiation between information and knowledge is complex. In order to
assign a label to a digital object, a knowledge relationship between existing labels
needs to be evaluated. However each existing label required the prior application of
knowledge relationships. Information generation is an infinite recursion on the
application of knowledge procedures. Each knowledge procedure evaluates
relationships between labels that were previously generated. The recursive nature
is closed by reducing the information labels to a well known set that are interpreted
the same way by the entire user community. The simplest way to separate
information and knowledge is to view information as the reification of knowledge.
Information is a static property, while knowledge is the active evaluation of a
relationship.

The first attempt to characterize information and knowledge was expressed as a
matrix, with the goal of differentiating between ingestion, management, and access
services for digital objects [12]. This characterization focused on services that were
used to manipulate data, information and knowledge, within the context of a data
grid. Figure 6 shows the components of the characterization, with the data grid
represented by the matrix that links together the individual components related to
the types of service.
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This characterization is
realized in the iRODS
policy-based data
management system. The
services to manipulate
data are the operations
supported upon digital
objects. The storage
systems for data are
accessed through storage
drivers. The services to
manipulate information
are the operations
supported upon metadata
attributes. The
information repository is
the metadata catalog,
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Figure 6. Knowledge-based Grids

stored in a relational database. The knowledge relationships between concepts are
implemented as micro-services that are controlled by computer actionable rules.
The knowledge repository is implemented as a rule base. The knowledge-based grid
can be viewed spatially, as a shared distributed service or temporally, as a

persistent archive.

The access services remain an area of active development, and are further discussed
in the feature-based indexing concept.

Knowledge Virtualization (2010): The iRODS data grid provides virtualization of
data, information, and knowledge. Figure 7 shows a simple architecture view of the
interoperability mechanisms. An access interface virtualizes access by mapping
from the access protocol to the iRODS interaction protocol. Each interaction is
trapped at policy enforcement points where a rule base is consulted to determine
which policy to execute. The policies control the execution of procedures that are
composed by chaining together basic functions, called micro-services. This requires

that the middleware
manage exchange of
structured
information between
the chained micro-
services.

The micro-services
perform operations
suchas /0
manipulation,
metadata extraction,
and domain-specific

Access Interface

Data Grid

Bolicy linforcemen
Standard VIICro=services

<y

Standard /O Operations

| Storage Protocol |

Storage System

Trap actions requested
by the client at multiple
policy enforcement
points.

Map from policy to
standard micro-services.

Map from micro-services
to standard Posix I/O
operations.

Map standard 1/O
operations to the protocol
supported by the storage
system

Figure 7. iRODS data grid virtualization mechanisms

13




operations. Each micro-service invokes standard Posix based I/0 operations. The
data grid middleware then translates between the standard /0 and the protocol
required by the remote storage location. Thus the micro-services are operating
system independent. The same micro-services run on Windows, Unix, and Mac
computers, enabling the migration of policies and procedures across operating
systems. The ability to manage application of knowledge procedures, independently
of the choice of storage environment, can be viewed as a form of knowledge
encapsulation.

Policies as Intellectual Property (2013): A major goal of the development of
policy-based data grid middleware has been the conversion of management policies
into computer actionable rules that control computer executable procedures. This
enabled multiple communities, shown below, to apply the technology. The users of
the software span multiple science and engineering disciplines, and include national
data grids, national libraries, and international projects:

Archives Taiwan National Archive, Chronopolis

Astrophysics Auger supernova search

Atmospheric science NASA Langley Atmospheric Sciences Center
Biology Phylogenetics at CC IN2P3

Climate NOAA National Climatic Data Center

Cognitive Science Temporal Dynamics of Learning Center

Computer Science GENI experimental network

Cosmic Ray AMS experiment on the International Space Station
Dark Matter Physics Edelweiss II

Earth Science NASA Center for Climate Simulations

Ecology CEED Caveat Emptor Ecological Data

Engineering CIBER-U

High Energy Physics BaBar / Stanford Linear Accelerator

Hydrology Institute for the Environment, UNC-CH; Hydroshare
Institutional Repositories Carolina Digital Repository

Genomics Broad Institute, Wellcome Trust Sanger Institute, NGS
Libraries French National Library, Texas Digital Libraries
Medicine Sick Kids Hospital

Neuroscience International Neuroinformatics Coordinating Facility
Neutrino Physics T2K and dChooz neutrino experiments
Oceanography Ocean Observatories Initiative

Optical Astronomy National Optical Astronomy Observatory

Particle Physics Indra multi-detector collaboration at IN2P3

Plant genetics the iPlant Collaborative

Quantum Chromodynamics IN2P3

Radio Astronomy Cyber Square Kilometer Array, TREND, BAOradio
Seismology Southern California Earthquake Center

Social Science Odum, TerraPop

Each community implemented different choices for semantics, policies, and
procedures. A generalization of the observed usage patterns is to identify the
intellectual properties of each community with the policies and procedures that
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they implemented. The underlying data grid middleware was generic infrastructure
that provided the mechanisms needed to virtualize interactions with data,
information, and knowledge. The policies and procedures encapsulated the
knowledge that was needed to apply the middleware within each domain.

This means that intellectual property can be captured and applied within generic
data management infrastructure to cater to the specific needs of each domain. This
idea is extended in Figure 8, which describes a general approach towards
quantifying intellectual property.

Policy-based Data Management Concept Graph
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Figure 8. Conceptualizing intellectual property as policies and procedures.

Each domain is characterized by:

* Purpose driving the formation of a data collection. The purpose represents a
consensus of the persons collaborating on a data management project.

* Properties that will be maintained for the data collection. The properties
are dependent upon the driving purpose. If the intent is preservation, then
properties related to authenticity, chain of custody, integrity, and original
arrangement are desired. If the intent is formation of a local project
repository, then properties related to file format and access controls may be
desired. The properties comprise assertions made about the collection by
the developers of the collection. Other domain centric elements (such as
requisite metadata etc.) can also be defined as part of these properties.
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* Policies that enforce the desired properties. The policies control when and
where management procedures are executed. Multiple policies may be
needed for each desired property. In general, policies are needed to generate
the desired property. Policies are also needed to validate whether the
desired property has been maintained over time. Since the distributed
environment is subject to multiple forms of risk (network outage, storage
system maintenance, operator error, policy change), assessment criteria are
needed that can be checked to verify compliance with the desired collection
properties. Policies are turned into computer actionable rules. Example
domain centric policies include enforcing authority (e. g. HIPAA policies),
integrity checks, data cleansing, metadata extraction, etc..

* Procedures codify policies and apply the operations needed to generate a
desired property. Examples include procedures to create a replica, extract
metadata, set access controls, manage a quota, check a retention period,
apply disposition, etc. Procedures are turned into computer executable
workflows.

* Persistent state information is generated each time a procedure is run.
The persistent state is stored as metadata attributes on one of the name
spaces managed by the data grid. The state information can be queried for
compliance at a point in time. To verify compliance over time, the system
parses audit trails. Persistent state information in turn codify the properties
of a collection.

A viable policy-based data management system must be sufficiently sophisticated to
handle a wide variety of data management applications. The iRODS data grid
provides 317 micro-services that can be used to compose procedures, and manages
338 persistent state information attributes. In practice, each domain implements a
small number of policies. Out of the box, the iRODS data grid source provides 11
default policies for enforcing data sharing properties. Communities typically add
another 5 policies on the average to control desired features. However, the range of
policies that are required to support a fully customized data grid may be very large.

Each policy and procedure set encapsulates the domain knowledge needed to
manage a specific domain application.

Federation through Interoperability Mechanisms: Within the DataNet
Federation Consortium [14], the iRODS data grid is being used to create national
data cyberinfrastructure through the federation of existing data repositories. In the
process, interoperability mechanisms have been implemented that enable three
basic functions:

1. Micro-services that retrieve data from a remote repository using the protocol
of the remote repository. This is a traditional approach similar to brokering,
in which data are retrieved for analysis at the local computer. The data are
moved to the processing engine.
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2. Middleware servers that enable application of the desired operations at the
remote repository. In this case, the operations are moved to the data.
3. Policies that control where the operations are performed.
Using these three mechanisms, the DataNet Federation Consortium has been able to
support interoperability with web services, sensor networks, union catalogs, data
repositories, workflow environments, databases, message buses, and systems that
communicate over the internet.

The expectation is that these three interoperability mechanisms are sufficient to
federate all existing data management applications. The DataNet Federation
Consortium currently federates systems across national projects in oceanography,
cognitive science, plant biology, engineering, hydrology, and social science.

Quantifying the Broadening of Impact: A notable requirement for National
Science Foundation funding is the demonstration that the research results will
impact a broad user community. A mechanism has been needed to quantify the
impact. One way to do this has been the observation that the set of policies and
procedures used to manage a collection evolve over time to represent the current
requirements of each broader user community. It is possible to quantify impact by
tracking the policy evolution. This can be represented through a collection life
cycle:

* Project collection - usually the team members have complete tacit
knowledge about the acceptable semantics, data formats, and analysis
procedures used with the team data sets. The data sets are organized in a
project collection with minimal metadata. The data sharing is limited to the
group, and is mostly through shared and mounted file spaces.

¢ Shared collection - when data products are shared with other groups and
institutions, the tacit knowledge must be made explicit. Policies are needed
to govern the application of semantic terms, and the transformation of data
to required data formats. Policies are also needed to enforce authentication,
access controls and data distribution. Policies for data manipulation may
also be needed.

* Published collection - when the results are formally published, policies are
needed to enforce domain standards for semantics and data formats.
Policies are also needed to generate persistent identifiers, to validate
integrity, and to track provenance.

* Processing pipeline - when the data sets are used in an analysis service,
procedures are needed that support the manipulation and transformation of
the data.

* Preserved reference collection - when the results are archived for use by
future researchers, a sufficient context is needed that enables a person in the
future to interpret the data. This is typically encapsulated in representation
information. At the same time, the policies and procedures also need to be
preserved so a future archivist can verify that the collection was managed
correctly.
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The broadening of user impact can be quantified through the evolution of the
policies and procedures that are used to manage a data collection.

V. Future Data Management Infrastructure and Conclusion

The current generation of data grid middleware is still evolving. New opportunities
to apply policies to control the data management environment are emerging. We
consider three specific extensions, the inclusion of policies within storage
controllers, the integration of policy-based data management with policy-based
networks, and the extension of a knowledge grid into a wisdom grid.

Feature-Based Indexing: A major challenge in constructing a collection is the
assignment of appropriate descriptive metadata. This is a laborious task, which
potentially is non-scalable. A major question is whether the act of description can
be turned into the application of a knowledge procedure, that is automatically
applied by a policy-based system. Normally descriptive metadata are used to
provide a context for the contents of a file. An alternative approach is to use
descriptive metadata to define features present within a file. If the desired features
can be extracted by a knowledge procedure, than the generation of descriptive
metadata can be automated.

This approach is being explored in collaboration with storage vendors. The Data
Direct Networks storage controllers now support virtual machine environments
that can be used to run the iRODS data grid. When a file is written to the storage
system, the data grid can apply feature extraction procedures automatically, and
index the stored data by the features present within each record. Hence, one can
construct a domain-centric data-grid appliance that can perform automated data
management including automated data description.

Software Defined Networks (2013): Policy-based systems are also appearing
within networks that are based on the OpenFlow router. Routing decisions can be
controlled by policies that are used to manage path-selection within the router. A
demonstration of the use policy-based data grids to control policy-based routing
was given at the Supercomputing '13 conference [15]. The iRODS data grid
managed information about the location of files, their access controls, and the
availability of replicas. Within the iRODS data grid, a parallel data transfer was set
up, with subsets of the file sent in parallel over the network. The iRODS data grid
communicated with the OpenFlow router to select a disjoint network path for each
of the parallel data transfer channels.

The idea here is that a traditional data grid views the network as a black box (and
vice versa, the network is opaque with respect to the applications at the end-points
of the communication pipeline). If the data grid is able to export some of its policies
to be implemented by the network (through the OpenFlow router) and also is able
to get feedback from these routers about network topology, congestion and
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statistics, the two can work together to mutual advantage and improve
performance. Having this exchange of information can be used in multiple ways to
improve data grid operations.

One way to exchange information is through the integration of control policies
between data grids and networks. Since both systems are managing distributed
state information, it is reasonable to think about formally moving data grid
middleware into network routers. It will then be possible to access data by name
(or metadata attribute) instead of an IP address, enforce access controls within the
network, cache data within the network, and debug data transfers by single-
stepping through the data grid procedures (currently supported in iRODS).

The approach would rely upon the data grid to provide a context for the files
through their organization in collections. A file would be referenced by its
membership in a collection, with the data grid controlling the access (authentication
and authorization). The data grid would negotiate with the network for selection of
the replica to use as the starting point, and the network path to use for data delivery.
In the long term, data grid middleware should disappear as separate infrastructure,
and be subsumed within the network. The upshot of this would be collection-
oriented addressing of objects instead of name-oriented or ip-oriented addressing
for data ingestion, movement and access.

Wisdom: Current virtualization mechanisms focus on data, information, and
knowledge. Future data management systems will also need to support
virtualization of wisdom. If we can think of wisdom as the evaluation of
relationships between relationships, then we can build a computer actionable form
of wisdom. Within the iRODS data grid, wisdom is captured as hard-coded policy-
enforcement points. To make application of wisdom a dynamic process, the system
will need to implement mechanisms that enable wisdom-based decisions to be
selected as systemic processes that apply to all interactions. This will require
processing information about each access session, information about the collections,
and information about the user community to infer which set of knowledge
procedures should be applied.
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Appendix A

Multiple versions of the SRB and iRODS software were developed:

SRB releases

SRB 3.5 Dec 3, 2007
SRB 3.4 Oct 31, 2005
SRB 3.3 Feb 18, 2005
SRB 3.2 July 2 2004
SRB 3.1 April 19, 2004
SRB 3.0 Oct1,2003
SRB 2.0 Feb 18,2003
SRB 1.1.8 Dec 15, 2000
SRB 1.1.7 May 2000
SRB1.1.6 Nov 1999
SRB1.1.4 May 1999
SRB 1.1.3 Feb 1999

SRB 1.1.2 Dec 1998

SRB 1.1 Mar 1998
SRB 1.0 Jan 1998
iRODS releases

iRODS 3.3.1 Feb 24,2014
iRODS 3.3 July 17,2013
iRODS 3.2 Oct 3,2012
iRODS 3.1 March 16, 2012
iRODS 3.0 Sept. 30, 2011
iRODS 2.5 Feb 24,2011
iRODS 2.4 July 23,2010
iRODS 2.3 March 12,2010
iRODS 2.2 Oct 1, 2009
iRODS 2.1 July 10, 2009
iRODS 2.0 Dec 1, 2008
iRODS 1.1 June 27,2008
iRODS 1.0 Jan 23,2008
iRODS 0.9 June 1, 2007
iRODS 0.5 Dec 20, 2006

Bind variables, bulk replication, transfer restart
Master/slave MCAT, HDF5 integration

ACL inheritance, bulk move, GT3 GSI

Client initiated connections, Database access
Synchronization, trash can, checksums
Federation

Parallel I/0, bulk load, metadata access control
Encrypted passwords, large file size

GSI authentication

Stream support, Oracle support

Containers

Recursive replication

Monitoring daemon

Query support

Unix commands

SHAZ2 hash, Rule looping, WSO extensions
NetCDF support, HDFS, PAM authentication
WSO obijects, direct access resources
Tickets, locks, group-admin updates

New rule language, soft links

Database resources, Fortran [/0 library
Bulk upload, monitoring,

Extensible iCAT, quotas, group-admin

HPSS driver, S3 driver, compound resource
mySQL driver, Kerberos, policy enforcement
federation, master/slave catalog, bundling
GSI, mounted structured files, HDF5, Jargon
Oracle driver, FUSE interface, rule language
replication, metadata, trash, integrity checking
policy enforcement points, rule engine
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