Tile Size Selection for Optimized Memory Reuse in
High-Level Synthesis

Junyi Liu, John Wickerson and George A. Constantinides
Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ, United Kingdom
{junyi.liul3, j.wickerson, g.constantinides}@imperial.ac.uk

Abstract—High-level synthesis (HLS) is well capable of gen-
erating control and computation circuits for FPGA accelerators,
but still requires sufficient human effort to tackle the challenge
of memory and communication bottlenecks. One important
approach for improving data locality is to apply loop tiling on
memory-intensive loops. Loop tiling is a well-known compiler
technique that partitions the iteration space of a loop nest
into chunks (or ‘tiles’) whose associated data can fit into size-
constrained fast memory. The size of the tiles, which can sig-
nificantly affect the memory requirement, is usually determined
by partial enumeration. In this paper, we propose an analytical
methodology to select a tile size for optimized memory reuse in
HLS. A parametric polyhedral model is introduced to capture
memory usage analytically for arbitrary tile sizes. To determine
the tile size for data reuse in constrained on-chip memory,
an algorithm is then developed to optimize over this model,
using non-linear solvers to minimize communication overhead.
Experimental results on three representative loops show that,
compared to random enumeration with the same time budget,
our proposed method can produce tile sizes that lead to a 75%
average reduction in communication overhead. A case study with
real hardware prototyping also demonstrates the benefits of using
the proposed tile size selection.

I. INTRODUCTION

High-level synthesis (HLS) has been successful at improv-
ing the design productivity for many FPGA applications. It is
well known that a computation-intensive loop can be signifi-
cantly accelerated in FPGAs by using loop unrolling, pipelin-
ing [1] and memory partitioning [2] in modern HLS such as
Xilinx Vivado HLS [3], Inte]l FPGA SDK for OpenCL [4] and
LegUp [5]. However, when loops process a large amount of
data, the communication overhead can become a performance
bottleneck, limiting possible computational parallelism.

Current HLS has limited support for managing on-chip
memory efficiently. Unlike CPUs, FPGA accelerators lack a
comprehensive cache system integrated into the logic fabric.
However, given a loop nest shown in Listing 1, loop tiling
can be applied to execute partial loop iterations with limited
on-chip memory. Generally, the hardware implementation of
loop tiling can be abstracted as in Fig. 1, where all three loop
levels are tiled, and the loop tile consists of the inner three
loop dimensions. The interface is in charge of loading and
storing the data set through various interconnects with different
bandwidth specifications. Some buffers need to be instantiated
in on-chip memory to keep the relevant data locally for the
loop tile. When Si = Ni, Sj = Nj, and Sk = Nk, there is
enough on-chip memory to store all the data for computation,
so that the interface only needs to transfer the entire dataset

for (i=0; i<Ni: 1i++) {
for (j=0; J<Nj: J++) {
for (k=0; k<Nk: k++) {
B[i][J] += A[i]1[10xj+kl; }}}

Listing 1: A three-dimensional loop nest.

CPUs/DRAMs/FPGAs for(i=0; i<Ni; i+=Si){
for (j=0; Jj<Nj; j+=83){
for (k=0; k<Nk; k+=8Sk) {
Interconnect‘ load memory through interconnect
FPGA

Interface for(ti=i; ti<min(i+8i,Ni); ti++){

[~ for(tj=J; tj<min(j+83j,Nj); tj++){
for (tk=k; tk<min(k+Sk,Nk); tk++){

access on-chip memory

11}

L

Computation store memory through interconnect

1981

Fig. 1: Loop tiling and its mapping to a general FPGA
accelerator system.

in and out once. When the original loop nest requires much
more memory than is available on-chip, the tile size need
to be reduced significantly. For example, an extreme case
is that S1 = Sj = Sk = 1, where the associated data
needs to be transferred for every iteration of the loop body.
When there are data reuse patterns in the memory accesses
as shown in Listing 1, smaller on-chip memory can lead to
more frequent data transfer and especially keeping less reused
data on chip. Such communication overhead can consume
a lot of time in the execution of the FPGA accelerator.
Therefore, using the on-chip memory efficiently in hardware
design involves the difficult problem of optimizing data reuse.

To exploit data locality, recent research [6], [7], [8] has
suggested applying loop transformations to gather data-related
iterations into a loop tile. The data elements accessed by
these iterations are close to each other in terms of addressing
distance, and therefore they can be packed into the on-chip
memory. However, how to determine the size of loop tiles
in order to maximize data reuse in HLS has not been well
investigated. Different memory accesses in loop statements
are related to different loop dimensions, which also leads to
different data reuse patterns. For example, in Listing 1, the
write access to the array B is not related to iterator k, and
some read accesses to the array A may visit the same data
elements among the loop iterations of j. Additionally, the

memory access functions can be even more complex after
loop transformations. Given limited on-chip memory, it can
be hard in practice to decide which loop dimensions should
be assigned with more iterations for less communication
overhead. Therefore, in this paper, we formally reason about
how to determine the tile size instead of finding one by
exhaustive or random enumeration.

The objective of this work is to provide a mathematical
approach that quickly selects a tile size for optimized data
reuse. We start from the symbolic analysis of data reuse
patterns and the associated data layouts in on-chip memory.
Our approach generates a parametric polyhedral model of the
memory mapping from the iterations of a loop tile, where the
tile sizes, e.g. Si, SJ, and Sk in Fig. 1, are treated as a set
of parameters. The model can provide parametric expressions
to calculate memory usage, which are then optimized over, to
determine the tile size with optimization solvers. In particular,
we make the following contributions:

o A symbolic approach to generate a parametric polyhedral
model for calculating the memory usage of a tiled loop from
its sizing parameters (Section III).

o An optimization algorithm that uses non-linear solvers to
find, for a given amount of on-chip memory, the tile size
for minimizing communication overhead (Section IV).

« An evaluation with three representative loop kernels, which
compares our selection approach against time-constrained
random enumeration (Section V-B).

o A case study of a loop nest from a convolutional neural net-
work (CNN) with large memory usage, which evaluates our
approach in real HLS-based FPGA design (Section V-C).

II. RELATED WORK

Loop tiling is a widely used loop transformation that
improves the data locality, and the loop performance can
also be affected by the tile size selection. Bindhugula et
al. [6] developed an automatic tool using polyhedral model
to optimize the data locality of loop tiling on multi-core
processors. In software compilation, tile size selection is
focused on optimizing data reuse for the cache systems in
CPUs [9], [10]. Following [6], Pouchet et al. [7] developed
the polyhedral analysis of data reuse in loop tiling for HLS.
To determine a tile size, they only enumerated 100 tile sizes
with different power-of-two values on each loop dimensions.
Unlike such limited enumeration, Peemen et al. [8] propose to
construct a specific cost model considering both data reuse and
loop transformation for a given loop. Then, they use a bounded
enumeration with this model, but its search time can still grow
quickly when the search space expands with the increase of
available on-chip memory. In many recent works on designing
FPGA accelerators, large-scale enumeration is widely used to
select a tile size. Especially for CNN accelerators, exhaustive
enumeration (as used in [11]) and random enumeration (as
used in [12]) are used for design space exploration. However,
all these enumeration approaches are time consuming when
there is a large space of tile sizes to explore.

III. SYMBOLIC ANALYSIS OF MEMORY MAPPING

As shown in Fig. 1, the FPGA accelerator could spend a
significant amount of time to transferring data due to limited
on-chip memory. It is worthwhile evaluating the size of on-
chip memory required from the symbolic loop tile size so that
we can further understand how data reuse is affected by tile
size selection. In this section, we start by analysing memory
mapping used for the local buffers in an FPGA accelerator.
A symbolic approach is introduced to construct a modular
memory mapping [13] from the array accesses in a given loop.
This analysis enables the calculation of the memory usage of
a loop tile with the tile size as parameters.

A. Modular Memory Mapping

For a given array access in a loop nest, after loop tiling, the
on-chip memory contains — at any given point in time — only
some of the data elements from the original array. An intuitive
memory mapping is to use the original array index function to
link loop iterations to on-chip memory elements. Intuitively,
these data elements can be stored with the same layout in the
on-chip memory as in the off-chip memory. However, using
the same data addressing scheme for all tile sizes can cost
much more on-chip memory than necessary in some cases. For
example, if we use the original form A[ti] [10+tj+tk] as
the read access in the loop tile of Fig. 1, the number of on-chip
data elements #M = Six (10x (Sj—1)+(sk—1)+1).If,
say, tile sizes Si = 4, Sj = 2, and Sk = 2 are selected,
then 48 on-chip data elements need to be used. However,
the alternative form A[ti] [tj] [tk] can be used instead
for on-chip memory mapping, because Sk < 10. In this
case, #M = Si x Sj x Sk, which just requires 16 on-chip
data elements. Such significant memory reduction is already
demonstrated in a particular form of loop tiling as shown
in [14], where a modular memory mapping is used to generate
similar transformations. Therefore, our analysis is based on
the construction of the following modular mapping from the
original array accesses in the loop.

Definition 1 (Modular Mapping). Given a n-dimensional loop
nest, a modular mapping is defined as a function of the form

g(v) = Gv mod s, (1)

where G € """, s € N and “mod” represents element-
wise modulo. This function maps the n-dimensional iteration
vector v to the index vector of an n-dimensional array. The
size of each dimension of this array is determined by the
corresponding value in s, and the memory size required by
this mapping is at most H?:l S;.

Unfortunately, the technique developed in [14] required
numerical constants for the loop bounds. This is inapplicable
when we are trying to determine loop tile sizes, as these
sizes are undetermined at compile time and therefore remain
as symbolic constants. Therefore, in this paper, we extend
the approach of [14] to the parametric case. The result is —
rather than a number indicating the required memory size — an
explicit function from tile size vector to memory requirement,

opening up the possibility to optimize this function directly.
The main innovation of our methodology is the symbolic
approach of generating the modular memory mapping.

B. Abstracting Parametric Sets from the Loop Tile

Given a n-dimensional loop tile (e.g., the inner three loop
dimensions shown in Fig. 1), the analysis starts with the
iteration domain of this tile.

Definition 2 (Tile Iteration Domain). The tile iteration domain
is a parametric set of iteration vectors from a rectangular tile,
of the form

’D”’b:{UEZ”|p§v§p+b},

where p € 7™ represents the parametric start points of the
loop tile in all loop dimensions, and b € N" represents the
parametric size of the loop tile.

Also, we need to capture the array access patterns from the
original loop before tiling.

Definition 3 (Array Indexing Function). Given a w-
dimensional array access in the original loop, its indexing
function is an affine expression of the form:

f(v) = Av e,

where v € DPP A € ZW*" s q coefficient matrix, and c is a
integer constant vector.

For the example loop shown in Listing 1, we have v =
[ti,t,tk]T, and the array indexing function of the original
read access A[ti] [10«tj+tk] is f(v) = [} 4 §]v.

Data reuse happens when a memory element is accessed
by multiple loop iterations. For example, when f(v) = f(v'),
iterations v and v’ access the same memory element. We can
further derive A(v —v’") = 0, where v — v’ represents the
iteration difference vector.

Definition 4 (Tile Iteration Difference Set). The tile iteration
difference set is the parametric set of difference vectors § =
v— for v,v' € DPP, ie.

KP={5]|-b<s<b}.

We will later make use of the property that this parametric
set is always a O-symmetric polytope [13] independent of
parameters p.

Remark. This analysis is focused on rectangular tiling, which
is widely used in compiler optimizations for both software and
HLS. It is believed that the extension to other tiling shapes can
also be supported by using the general Minkowski sum ® to
calculate K® = DP* @ (—DPb), but we leave this extension
for future work.

C. Analyzing the Basis Vectors of Data Reuse

With f(v) from Definition 3 and § € K from Definition 4,
we can abstract the data reuse pattern from the set of equations:
Ad = 0. In linear algebraic terms, we are interested in that
part of the kernel (null space) of the coefficient matrix A also
within K?, i.e. ker(A) N K. It is convenient to represent this

kernel as a linear combination of a set of ¢ < n basis vectors
such that Ad = AAeuset = 0, where Ayeuse = [A1, A2y -+, Ag
is the reuse basis, and ¢ is the nullity of A.

Since ¢ is an arbitrary integer vector, we use the Hermite
normal form [15] of A to determine A,cyse SO that AA cyse is @
zero matrix. Calculation of the Hermite normal form involves
determining a unimodular matrix U,eyse Such that

[Hrcusc 0] - AUrcuse
=0= [Hreuse O] [0 I]T = AUreuse [O I]T
= Areuse — Ureuse [0 I}T

where Hiouse 1S a lower triangular matrix, and I is a g X
q identity matrix. For example, the read access to array A
in Listing 1 has its Areuse = [0, 1, —10]7 with ¢ = 1, because

0 10 0 0
1 00 1 0 0
o = 00 1 0].
{010}|:‘| {O 10 1}{ ‘||:j|
: : 1 y 0 1 -10| |1
————

reuse

2

To characterize the data reuse patterns by the vectors in
ker(A) N Kb, we use the following parametric constraints to
capture potentially redundant basis vectors, generalising Liu
et al.’s observations to the parametric case [14]:

Areuset € ICb = b S Areuset S b.

With these inequalities, symbolic Fourier-Motzkin elimina-
tion [15] is applied to derive the projected constraints on each
dimension of ¢, which has the affine form:

—alb— v <t; <alb+y,

where 1 <17 < g, t; corresponds to the i-th dimension of the
subspace of Ajeuse, and «;, 7y; are constant vectors.

In the context of loop tiling, b has a upper bound corre-
sponding to the maximal tile size. If |¢;| < 1 is proved to be
always true, the i*" basis vector can be removed because its
integer coefficient ¢; can only be zero. When |¢;| < 1 is not
always true, we keep this basis vector but record the condition
d;(b) under which it can be removed:

di(b) = b+ < 1. (3)

For example, the condition d; (b) of the A,euse Of the array A
in Listing 1 is b3/10 < 1. These various conditions will be
applied to adapt the final memory mapping during the tile size
selection described in Section IV.

D. Constructing the Kernel of the Modular Mapping

From the reuse basis of the given array access, we can gen-
erate a new basis A” of the form A’ = [A cuse Af’miq] S/
This basis represents the parametric kernel of the final modular
mapping, where the original reuse patterns are preserved by
the existence of the reuse basis A;cyse. The parametric basis
vectors in Aﬁniq are required to be linearly independent of
Ateuse- Moreover, they should not introduce additional reuse
patterns into the modular mapping, i.e.

G(A’ . t)mod s =0AAAL . 1) #A0=A" . t¢ K" (4

uniq uniq uniq
These constraints ensure that no unwanted reuse patterns

from Ayniq are in Kb, Therefore, the basis vectors of Af’miq

'iimz“ _ " Fig. 2: Vertex projection for the array A
» 5 ¢ in Listing 1 when b = [10,101,101]7:
| | the eight vertices in the original 3D
-0l o] 10 pm1 Space are projected into the 2D space
| | | of Aqren, and the symbolic coordinates
oo of Vix1 are (by, 10 % by /101 + b3 /101).

correspond to the unique memory accesses in the loop tile,
which also affect the memory size of the modular mapping.

Based on the method discussed in [13] and [14], we derive
Aﬁmq as a symbolic lattice in the orthogonal space of Ajcuse-
In linear algebra, the null space of AL is orthogonal to the
column space of Ajeuse; in other words, the kernel of AL
is orthogonal to the basis vectors of A,cuse. Thus, this kernel,
denoted by A With n — ¢ basis vectors, is derived by the
Hermite normal form of AL _ as in (2). For example, the
array A in Listing 1 has its Aoren = [§ ?}T.

To satisfy the conditions in (4), we need to find a lattice
LY in the subspace corresponding to Agp, so that Aunlq =
AortnL?, and Agpen LVt ¢ K° when t # 0. In geometric terms,
this lattice should have no intersection with the polytope of
Kb except the zero point. To characterize the shape of K,
we project the parametric vertices of K onto the subspace
corresponding to Aoy The vertices of K are represented
by a matrix V® where each column vector contains the
coordinates of a vertex. Generally, they are obtained by the
vertex enumeration of KP. In this analysis, since Kb can be
geometrically represented as a parametric box, its vertices can
be enumerated by the combination of upper or lower bound
from each dimension. Then, we apply the following linear

transformation to generate the projected parametric vertices:
‘/obrth = (Ag;thAOTth)_lAg;tth7 &)

where V2 € Z(=0xNvww Vb ¢ gnxNewe and Ny, = 27,

For example, as illustrated in Fig. 2, we have Vobrth

[(1) 10/0101 1/(1)01] V? for the array A in Listing 1.

With the projected vertices, we need to generate a proper
dense lattice, which can minimize the memory requirement
affected by Aoren L. The reader is referred to [13] for more
details about the theory and methods of constructing such a
lattice. However, it is noteworthy that we restrict our symbolic
analysis to select a rectangular lattice in this step, which makes
L® become an (n — q) x (n — q) parametric diagonal matrix.
The diagonal property of LY is exploited in generating the
modular mapping in Section III-E. To make the lattice dense,
LY is determined by the symbolically maximal element in each

row vector of V2, = [r}, 73, ... ,rh_ T in (5) such that
LY = diag ([13,13,...,15_]) (6)

where 12 = |max(r?)| + 1 is the i-th diagonal element and
1 < i < n —q On the i-th basis vector of Agpp, 10 is
the smallest integer value greater than the maximal projected
vertex coordinate of K?. For example, we have lll’ =b+1
and 15 = [10%b2/101 + b3/101] + 1 in Fig. 2. Therefore, due
to the O-symmetry of the projected vertices, it is guaranteed
that the selected dense lattice only intersects the parametric

polytope of K’ at the zero point.

Finally, we can construct A’ = [Ajcuse Aortnl’] as the
kernel of the modular mapping of the given array access.

E. Calculating the Memory Size

According to Proposition 2 in [13], the modular mapping
shown in (1) can be derived from the Smith normal form [15]
of A such that

S = GAU, (7
where G and U are unimodular matrices, and S = diag(s) is
a diagonal matrix whose diagonal entries are the elements of
s. However, in our symbolic analysis, we propose an alterna-
tive approach that avoids checking divisibility of multivariate
polynomials from 1” when calculating the Smith normal form.

The first change is to use matrix diagonalization instead of
the Smith normal form. In general, matrix diagonalization is
the first step of computing the Smith normal form, as used
n [16]. The second step is to make the diagonal elements of
S satisfy that s; divides s;11 for 1 <i < n—1. We note that
these conditions of divisibility are not necessary for calculating
the memory size of the modular mapping in (1). Therefore,
it is safe to skip the second step of the Smith normal form.
Since the proof of using (7) to construct modular mapping is
also valid for matrix diagonalization, we can still use (7) to
represent the form of matrix diagonalization.

The second change is to avoid the symbolic calculation
of the greatest common divisor when diagonalizing A®. The
parameters of A’ are introduced by L?, which can be separated
out as Ab = Aconst [é I?b} where Aconst = [Areuse Aorth] is
constant. Then, we transform diagonalizing Aconst into (7):

X = GAconstY

—1
= X[l =GN L] YIi o] ®)
where Y is a unimodular matrix, and X = diag(x). For

example, the A.opst Of the read access to array A in Listing 1
has the following diagonalization:

10 0 0 1 0110
01 O0)|=]1 0 1000 0 1
0 0 101 —-10 0 1 0 -10

X G Aconst Y
We can make (8) equivalent to (7) when [(I) Lob]il Y [é l?b]
is a unimodular integer matrix. Since the determinant of this
matrix is already £1, we just need to ensure the entries are
also integers. This leads to the following constraints of our

symbolic approach:

— —
o
[S
—
(=
o = o
|
—_ O -
o

for all 1 < j <g,
for all ¢ < j < m,

Ysi,; mod lb =0,

(y3,51%) mod zf_q =0,
for all ¢ +1 < ¢ < n. In practice, we note that all of
these constraints can be easily satisfied due to simple column
manipulation in the matrix diagonalization of A.qpns. For all
of our benchmark loops in Section V, the (g + 1)-th to n-th
row vectors of Y~ are found to be equal to [0 ("~ *(n=a)],

Based on (8), we can obtain the symbolic form of the

modulus vector s in (1) from X and L° in (6), so that

©))

det(S) = det(X) det(L) = H 1:[|max(r?) |+1) (10)

Therefore, we can use det(X)det(L?) to calculate the sym-
bolic memory size of the modular mapping for loop tiling,
which is only related to the parametric tile size vector b.

For the generated modular mapping, the actual size of the ¢-
th dimension of the memory access is g;b, where g; represents
the i-th row vector of G. As mentioned in [14], some modulus
s; may be larger than g;b, so g;b can be used to calculate a
tighter memory size. In our symbolic analysis, we will use g;b
instead of s; for the memory size calculation only when g;b
is proved to be always smaller than s; for all tile sizes.

IV. TILE SIZE SELECTION ALGORITHM

In this section, we use the memory model generated in Sec-
tion III to establish a communication cost model of the entire
tiled loop. Then, an optimization algorithm is introduced to
find the tile size leading to the minimum communication cost.

A. Model of Communication Cost

A given loop may have several read/write memory accesses
to different arrays. Each of these array accesses can be related
to a different subset of the loop iterators. For a given array
access in the un-tiled loop, the position of the innermost
loop dimension related to this access is denoted by pos. In
this paper, the loop dimension is counted from outermost to
innermost in a variable vector. For instance, b; represents the
tile size on the outermost loop dimension, and b,, corresponds
to the innermost. In the example loop shown in Listing 1,
the pos of the access to the array B is equal to 2. The
original loop size is denoted by a vector b™?*, which also
represents the maximal tile size. In the same example loop,
b"®* = Ni is the maximal value of Si for the iterator ti in
the loop tile. Then, we can use [[12] (b +1)/(b; + 1))
to calculate the communication frequency, which represents
number of loads from or stores to off-chip memory occurs.
This calculation is accurate for the nested loops with constant
and/or parametric trip counts. When a trip count varies with
the iterators of its outer loops, the communication frequency
will be over-approximated. For example, given a triangular
iteration space, we count the number of tiles in its rectangular
hull, which roughly doubles the exact number. Since the tile
shape is already fixed, our later optimization of minimizing
data transfer is still valid with such over approximation.

To calculate the volume of transferred data for a given
array access k, we can multiply its on-chip memory size
derived from (10) by its communication frequency. The total

communication cost can be formulated as
N

POk pmax 4 1
Cost(b) = Z (c;.C det(X}) det(L?) 1) , (11)
k=1 o bl

where N is the number of distinct array accesses, and the
coefficient ¢, € {1,2} is determined by whether the k-th
array access requires only a single load/store per iteration
or both a load and a store. The data reuse between each
pair of consecutive data transfers considered in [7], [8] can
also be incorporated into our approach to further reduce the
communication overhead, but we leave this for the future work.

Algorithm 1 optSize (): solve the optimization problem

Input: memory budget M bet maximal tile sizes b™?*, addi-
tional constraints f(b).
bGP < solveGP(Cost(b), M 8t ™% (b))
bPre < round(b®F)
if 3i.6¢7 < 1.5 then

b'®s « solveBNB(Tile(b), M8t pPre pmax | f(p))
else o

b*®s < solveBNB(Cost(b), Mt ppre pmax_ f(p))
end if
return b

e A A R ol S

Because of the non-trivial non-linearity introduced by (b; +
1)~"and det(L}) = [T;Zy(|max(r} ;) |+1) derived from (6),
we propose to optimize over the following approximated total
communication cost modified from (11):

N POSk 3 max
Cost(b) = » <ck det(Xy) det(L'y) [[b?‘b) . (12)
k=1 i=1

where det(L'}) = [0/ (max(r} ;) + 1). In this cost model,
the floor operators in det(L}) are removed, and the two
“4+1” in the calculation of the communication frequency are
dropped. Thus, (12) is a posynomial and can be optimized as
a geometric programming problem [17]. Moreover, the max()
operation can be handled by the toolbox used for solving the
optimization problem in Section IV-C.

B. Optimization Algorithm

The goal of our tile size selection is to reduce the overhead
of communication as much as possible with a given on-chip
memory budget M/ P8t for all array accesses. This optimization
can be realized by minimizing the cost model in (12) subject to
a constrained on-chip memory size. Nevertheless, the limita-
tion of using this model is that the value of some posynomial
item may be dominated by 1/b; when b; is close to zeros,
i.e. when only one iteration from the i-th loop dimension is
executed in the loop tile.

As shown in Algorithm 1, we propose a two-stage opti-
mization algorithm that uses geometric programming (GP) and
branch-and-bound (BNB) solvers. In Line 1, the continuous
GP problem below is first solved:

min Eo\s/t(b)
beR™

st 0<b<bm™™ f(b) <0,
SOV det(Xy) det(L'h) < MPst

13)

The tile size b is constrained in a box so that each dimension
of the loop tile can have at least one iteration and up to
the number of iterations in the original loop. f(b) represents
the additional constraints that may be introduced for fixing
or limiting the size of some loop tile dimensions. The last
constraint ensures that on-chip memory usage is within the
budget MP8t. Then, the elements of the generated bCF are
rounded to their nearest integer values in Line 2 as ¢, which

Algorithm 2 OptSelect: Select an optimized tile size

Input: memory budget M bgt maximal tile sizes b™**, basis
changing conditions d(b), additional constraints f(b).
beUT ¢ opt Size(MPudoet pmax f(p))
em® +— Cost(b)
d'(b) < checkCond(d(b™) < 1))
while d'(b) # () do

d(b) < d(b) \ d'(b)

f(0) « f()Ud'(b)

modifyMemMap(d' (b))

bRV < opt Size(MPet pmax f(b))

em™®¥ < Cost(b™*V)
10: if cm™V < em®™ then
bCur <_ bIleW
12: emY — cm
13: end if
14: d'(b) < checkCond(d(b™) < 1))
15: end while
16: return b

R A A R ol S

new

is used as the start point for the second optimization stage. In
this stage, we solve a mixed-integer optimization problem:

fe o)
st bt =ppre 0 < b < pmax) f(b) <0,
SN det(Xy) det(L'}) < MPbst

where Obj(b) represents the objective function, and b™
represents the start point of the BNB solver. When any element
of bCF is found to be close to zero in Line 3, we propose to use
the alternative objective function T'le(b) (in Line 4) instead of
Cost(b) (in Line 6) to address the limitation of (12). Tile(b)
is formulated to reflect the volume of tile iterations such that
Tile(b) = = 32—, (0" + 1),

where m; is the number of significant array accesses with
pos > i (e.g. my = mo = 2 and m3 = 1 in Listing 1). The
power of m; helps to differentiate the contribution of each loop
dimension to the size of accessed memory. Starting from the
initial point bP™®, this alternative optimization is to maximize
the number of tile iterations with a given memory size.

The process of selecting an optimized tile size is abstracted
in Algorithm 2. In Line 1, optSize () is used to produce a
tile size based on the initial modular mapping generated by (8).
Then, Cost(b) in (11) is calculated as the communication cost
to indicate the quality of the input tile size. In Line 4-15,
we iteratively modify the modular mapping and regenerate
a new tile size. The conditions from (3) are evaluated in
checkCond(d(b*™) < 1) to find which basis vectors in
Arcuse can be removed. The satisfied conditions stored in
d'(b) are removed from d(b) and added into the additional
constraints f(b). In Line 7, according to d’(b), a new modular
mapping is constructed with the same symbolic analysis as
in Sections III-D and III-E. Based on the new cost model
and the associated constraints, a new optimization problem is
solved to produce a new tile size in Line 8. After this, the
communication costs of the current tile size b"" and the new

(14)

tile size b"°V are compared, so that the size with lower cost
will be kept for the next iteration. In the end, when no more
basis vectors can be removed from A,eus according to (3),
we take "' as the final tile size selection.

C. Implementation

Both the symbolic analysis and the tile size selection
algorithm have been implemented in MATLAB as a single
toolbox, which is open-source in a public GitHub repository
(https://github.com/Junyi-Liu/PolyTSS). The symbolic analy-
sis of memory mapping uses the MATLAB Symbolic Math
Toolbox. The selection algorithm uses YALMIP [18] to model
and solve the optimization problems, which utilizes fmincon
and bnb solvers from the MATLAB Optimization Toolbox.

V. EXPERIMENTS

We have also implemented a time-constrained random enu-
meration for comparison. Two different approaches are run in
MATLAB R2016a on a desktop PC with Intel i7-3770 CPU.

A. Benchmarks

MMM (matrix-matrix multiplication). We consider the
loop calculating C900%300 — A500x400 p400x300 ¢ jg 5 3-
dimensional loop with three array accesses, and transfers at
least 4.7 x 10° elements (include loading and storing).

FSME (full search motion estimation). This is a critical loop
of image processing in video coding. We use an 8-dimensional
loop processing 1280x720 images from [8]. It contains three
main array accesses and transfers at least 5.67 x 105 elements.

CNNLayer (convolutional neural network layer). We use
the 6-dimensional loop of the third convolutional layer in
AlexNet [19], which processes largest amount of data among
all five convolutional layers. It has three array accesses and
transfers at least 5.32 x 10° elements.

B. Comparison to Random Enumeration

For our benchmarks, it is infeasible to finish the exhaus-
tive enumeration in a reasonable amount of time. Therefore,
we choose to use a time-constrained random enumeration
(RandEnum) for comparing tile size selection. It use the same
model from the analysis in Section III to calculate memory
size and communication cost without the feature of modifying
the memory mapping. In our experiments, we run RandEnum
with a time limit and select the best tile size from all assessed
sizes. For each run of RandEnum, we shuffle the seed of
the random number generator and use uniform distribution for
enumerating tile sizes. For a given time limit, RandEnum
is run for 100 times so that the statistics of all selected
communication costs can be derived for evaluation.

1) Selection quality: In our experiments for comparing
selection quality, we firstly run our approach (OptSelect)
with a series of power-of-two memory budgets for all bench-
marks. The summary of the execution time of OptSelect
and RandEnum is shown in Table I. OptSelect can have
varying execution time due to the iterative behaviour in Algo-
rithm 2. To have a fair comparison, we give two approaches the

108

— — Lower Bound
——QOptSelect
——RandEnum_Median

— — Lower Bound
—4—OptSelect
——RandEnum_Median

Communication Cost

T T T 10°
— — Lower Bound
—4—OptSelect
3 ——RandEnum_Median g
o o
S107¢ 800k
© ©
kel ©
= c
=3 =)
£ £
£ £
S 8
108 F 7
10
26 25 210 212 214 216 215 25 28 210
Memory Elements
(a) MMM

Memory Elements

(b) FSME

Memory Elements

(c) CNNLayer

Fig. 3: Comparing the quality of tile size selection.

TABLE I. Experimental details of comparing selection quality.

OptSelect RandEnum
Benchmark | Minimal | Average | Maximal Search Average Search
Time (s) | Time (s) | Time (s) | Time (s) | Samples Space
MMM 0.25 1.51 3.34 4 334 6.0 x 107
FSME 1.71 10.13 20.39 21 956 7.6 x 10°
CNNLayer 0.55 1.94 5.69 6 302 7.5 x 107

same amount of time to find a solution. For each benchmark,
the time allotted to RandEnum is set to the ceiling of the
maximal execution time of OptSelect.

In Fig. 3, the communication costs of the tile size selected
by two approaches are plotted, where the cost values are
calculated by (11). The lower bound represents the minimal
amount of array elements that needs to be transferred. For
each memory budget, the median cost from 100 different
runs of RandEnum is compared to the solution selected by
OptSelect. As shown in Table I, RandEnum only has
time to assess a very small number of samples from the
large search space. When there is a small amount of memory
elements available, RandEnum can frequently fail to find any
valid tile size in the time limit. It is shown in Fig. 3 that
RandEnum can produce the selections satisfying memory
constraints in over 50% runs only when the given memory
budget is larger than 1024 elements. Moreover, Opt Select
performs the selection much better than RandEnum in terms
of minimizing the communication overhead. Here, we consider
the cost gap as the decrease between the communication costs
of RandEnum and OptSelect. As shown in Fig. 3, this cost
gap becomes smaller with the increase of available memory
elements, because large on-chip memories are more likely
to allow more data reuse even with randomly selected tile
sizes. Compared to RandEnum, our approach can reduce the
communication overheads of MMM, FSME and CNNLayer
by 51.65%, 88.45% and 84.27% on average.

2) Selection speed: We further evaluate the selection speed
with the benchmark loop of CNNLayer. In these experiments,
we run RandEnum for a wide range of time limits and adjust
the execution time of OptSelect by changing the internal
iteration limit of solveBNB in Algorithm 1. Specifically,
the time limit of RandEnum is incremented from 2 to 20
seconds with a interval of 2 seconds, and the iteration limit
of solveBNB is incremented from 0 to 300 with a interval

10® T T ,
— — Lower Bound
——OptSelect

95" Percentile
—e—Median

5" Percentile

Communication Cost

0 2 4 6 8 10 12 14 16 18 20
Time(s)

(a) 4096 (212) memory elements
107 T T T T T T

— — Lower Bound
——OptSelect

95" Percentile
—e—Median

5™ Percentile

Communication Cost

0 2 4 6 8 10 12 14 16 18 20
Time(s)

(b) 32768 (215) memory elements

Fig. 4: Comparing the selection speed with CNNLayer.

of 30. In Fig. 4, for each time limit, the median, 5th and 95th
percentile of the communication costs selected by RandEnum
are plotted. In addition, OptSelect did not modify the
memory mapping for the two chosen memory budgets. Thus,
we can observe that the execution time of OptSelect only
spans within a small range of time.

Given a small amount of memory as shown in Fig. 4a,
RandEnum cannot provide steady tile size selection with
respect to the communication cost. Its variation and median of
the selected communication costs can become slightly smaller
when time limit increases, but the reduction of communication
overhead still remains to be as large as 53.85% at the time limit
of 20 seconds. Then, we increase the memory budget to 32768
memory elements, which is to compare the selection speed
when on-chip memory is relatively large. As shown In Fig. 4b,
our approach still performs much better, with over 79%
reduction of communication overhead, and its communication
cost is close to the lower bound. It can also be observed that
RandEnum requires a lot of time to produce a relatively good
tile size with little variation.

: : :
[Measured Communication Time | |

i [JAnalysed Communication Cost
hhﬂﬂﬂm

2103 2M4 226 2'%12 2'%26 2952 2'%68
Memory Elements / BRAMs

Normalized to the Baseline
o = N W A~ 0o N
T

Fig. 5: Evaluating HLS-generated accelerators of CNNLayer.

C. Case Study

In this case study, Xilinx SDSoC 2016.1 is used as the
HLS tool, and a ZedBoard with Xilinx Zynq SoC XC7Z020 is
used for real hardware prototyping. We have implemented the
FPGA accelerator of CNNLayer by HLS, which has the same
hardware architecture as shown in Fig. 1. Both the accelerator
and its communication network are clocked at 100 MHz. The
loop tile is fully pipelined without unrolling and memory
partitioning. Each datum is stored as a 16-bit unsigned integer
number, and the data set is instantiated in the off-chip memory.
To transfer the data in burst mode, the accelerator uses the
master interfaces connected to the SoC bus through the high-
performance AXI ports.

At first, we have synthesized a naive accelerator by HLS,
which buffers all the data without loop tiling. This imple-
mentation requires 608 18Kb block RAMs (BRAMs), while
there are only 280 BRAMs available on the chip. As shown
in Fig. 3c, the accelerator with 2'¢ elements can already
achieve the minimal communication cost, and therefore, we
choose to use this memory budget as the baseline. In our
experiments, we have prototyped the accelerators with the tile
sizes selected for seven memory budgets (< 26 elements).
Their execution times 7,,.. are measured with real hardware
implementation. Then, we obtain the communication time with
Teom = Texee — Liite X Teir, where Ly . represents the clock
cycles of executing one loop tile (derived from HLS synthesis
report) and T, = 10ns is the clock period.

In Fig. 5, both the communication time 7., and the
communication cost Cost(b) from (11) are normalized to those
of the accelerator with the baseline memory budget. When
the cost overhead is under 50% (at 2'3), the overhead of the
communication time are similar to those estimated by the
cost model. When the memory budget is smaller than 2!3
elements, a substantial increase of the communication time
is observed. Since in these cases there are much frequent
and small-amount accesses to the off-chip DDR memory, we
believe that the gap of overhead is caused by the extra long
latencies introduced in these access patterns. According to the
BRAM usage shown in Fig. 5, it will be reasonable to use
just 26 (instead of 608) BRAMs with the selected tile size
to achieve fairly small communication overhead. Overall, this
case study demonstrates that our tile size selection can be
used at compile time to identify which memory budget is the
minimum that covers most of data reuse and will not lead to
significant communication overhead.

VI. CONCLUSION

In this paper, we introduce a mathematical method of
selecting a tile size for optimized memory reuse. We intro-
duce a symbolic analysis to calculate the on-chip memory
size for loop tiling. And with the analyzed cost model, we
also develop an optimization algorithm to select a tile size
with the consideration of modifying memory mapping. The
experimental results show that our approach can produce a
tile size selection fast with high quality. Also, a case study
demonstrates the advantages of using our selection approach
in HLS for FPGA implementation.

ACKNOWLEDGMENTS

The support of the EPSRC grants EP/1020357/1 and
EP/K034448/1, the Royal Academy of Engineering, and Imag-
ination Technologies is gratefully acknowledged. We thank the
anonymous reviewers for their helpful suggestions.

REFERENCES

[1] Z. Zhang and B. Liu, “SDC-based modulo scheduling for pipeline
synthesis,” in ICCAD, 2013.

[2] Y. Wang, P. Li, and J. Cong, “Theory and algorithm for generalized
memory partitioning in high-level synthesis,” in FPGA, 2014.

[3] Xilinx, Vivado Design Suite User Guide: High-Level Synthesis.

[4] Intel, Intel FPGA SDK for OpenCL Programming Guide.

[5] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “LegUp: High-level synthesis for FPGA-
based processor/accelerator systems,” in FPGA, 2011.

[6] U.Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A prac-
tical automatic polyhedral parallelizer and locality optimizer,” SIGPLAN
Not., vol. 43, no. 6, pp. 101-113, Jun. 2008.

[7]1 L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, “Polyhedral-based
data reuse optimization for configurable computing,” in FPGA, 2013.

[8] M. Peemen, B. Mesman, and H. Corporaal, “Inter-tile reuse optimization
applied to bandwidth constrained embedded accelerators,” in DATE,
March 2015, pp. 169-174.

[9] S. Coleman and K. S. McKinley, “Tile size selection using cache
organization and data layout,” SIGPLAN Not., vol. 30, no. 6, pp. 279—
290, Jun. 1995.

[10] S. Mehta, G. Beeraka, and P.-C. Yew, “Tile size selection revisited,”
ACM Trans. Archit. Code Optim., vol. 10, no. 4, pp. 35:1-35:27, Dec.
2013.

[11] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in FPGA, 2015.

[12] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop opera-
tion and dataflow in FPGA acceleration of deep convolutional neural
networks,” in FPGA, 2017.

[13] A. Darte, R. Schreiber, and G. Villard, “Lattice-based memory alloca-
tion,” IEEE Transactions on Computers, vol. 54, no. 10, pp. 1242-1257,
Oct 2005.

[14] Q. Liu, G. A. Constantinides, K. Masselos, and P. Y. K. Cheung,
“Automatic on-chip memory minimization for data reuse,” in FCCM,

2007.

[15] A. Schrijver, Theory of linear and integer programming. John Wiley
& Sons, 1998.

[16] T. Hu, Integer programming and network flows. Addison-Wesley Pub.
Co., 1969.

[17] S. Boyd and L. Vandenberghe, Convex optimization.
university press, 2004.

[18] J. Lotberg, “YALMIP : a toolbox for modeling and optimization in
MATLAB),” in 2004 IEEE International Conference on Robotics and
Automation, Sept 2004, pp. 284-289.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural In-
formation Processing Systems 25. Curran Associates, Inc., 2012, pp.
1097-1105.

Cambridge

