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Abstract. Current applications deployed on the cloud use the microser-
vice programming model to enable rapid deployment. Due to the loosely
coupled nature of the interactions between microservices, they are well
suited for the distributed nature of cloud systems. However, we are seeing
a trend of increasing core counts on newer server hardware and schedul-
ing microservices agnostic to the local organization of cores and memory
on these systems leads to sub-optimal performance. In this paper, we
propose a placement scheme to map containers of a microservice to var-
ious cores on such machines to maximize performance. We further study
the impact of various parameters such as packet sizes and database sizes
on the placement scheme and demonstrate that our placement scheme
increases throughput by 22% while simultaneously lowering tail latency.
Finally, we propose a mechanism to dynamically coalesce services on
commonly called paths into a single container and demonstrate a further
7.5% improvement in throughput.
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1 Introduction

A microservice has been defined as a cohesive, independent process interacting
via messages [20] and a microservice-based architecture is a method of designing
software where all the modules are microservices. This is in contrast to a mono-
lithic application whose modules cannot be executed independently [20] and as
a result, monolithic applications scale poorly. Microservice based deployments
using containers are becoming more popular in today’s world as they offer the
following advantages over monolithic deployments-

– Each loosely coupled service scales independently.
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– The codebase is more modular and debugging is easier.
– Decoupled services are easier to reconfigure to serve different purposes.

Due to the many advantages, the most popular internet-based services such
as Netflix [39] and Amazon [34] have adopted the microservice-based architec-
ture. These microservice-based applications are deployed on a large number of
servers to take advantage of the resources provided by a cluster of hosts. This
has led to research on how optimally place the containers on a cluster of systems
to maximize application performance [26–30,35,36,45,52,53]. These efforts con-
sider different factors such as hardware resource requirements, communication
affinities, and resource contentions between containers to find the best placement
of the containers on the set of available hosts.

Recent development in server hardware to deliver performance scalability has
seen the introduction of high core-count server CPUs are based on multi-chip
module designs with multiple non-uniform memory access (NUMA) domains
per socket. As a result, these CPUs behave like a mini-distributed system. On
such systems, the performance impact of NUMA is more pronounced and a lack
of knowledge of underlying topology leads to a loss in performance [14]. This
performance impact due to NUMA is significant for large scale web-service ap-
plications on modern multicore servers [48]. Previous work on process scheduling
lays emphasis on minimizing resource contentions. Resource contentions cause
concurrently executing workloads interference leading to performance degrada-
tion as well as inefficient utilization of system resources [12,19,37,38,40,41,50].
In addition to minimizing resource contentions, minimizing communication over-
head between tasks has been shown to benefit performance as well [13, 17,23].

Similarly, in the case of container scheduling, minimizing resource contentions
as well as the communication overhead between them is very important. In a
microservice-based architecture, large amounts of data are exchanged between
services, and when deployed using Docker containers, there is a non-negligible
overhead due to network virtualization [11, 21, 51]. Hence co-locating heavily
communicating containers helps reduce the communication latency and benefits
performance. In the case of high core-count systems, communication between
containers co-located on the same core complex (CCX), i.e a group of cores
sharing an L3 cache (as illustrated in Fig. 1), have mean latencies that are 34%
lower than that between containers located on adjacent CCXs. In Section 7, we
show that co-located containers take advantage of the L3 cache to communicate
and hence, communicate faster. In this research, we introduce the ‘Topology
and Resource Aware Container Placement and Deployment’ scheduler
(TRACPAD). TRACPAD is a local container scheduler that strategically sched-
ules multiple containers on a single system while reducing resource contentions
and communication latencies between containers.

These latencies become very relevant in the case of end-to-end user-facing
applications [44] such as social networks, search engines, and streaming services
where overall application latency needs to be minimized to ensure smooth user
experience. Hence, such applications have strict quality of service (QoS) con-
straints specified in the form of throughput and latency. As the number of users
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Fig. 1: AMD EPYC 7401 Architecture with 2 CCXs

increases, tail latency becomes an extremely important factor in characterizing
performance [18]. Hence, in our work we use throughput, mean latency, 95th

percentile tail latency, and 99th percentile tail latency to measure application
performance.

Most of the research on container scheduling is focused on how to schedule
containers on a set of hosts and does not consider the topology of each server as a
factor while placing a group of containers on a server. As today’s servers act like
mini-distributed systems, it becomes important to schedule containers in accor-
dance with each system’s underlying architecture. Recent research demonstrates
that strategically placing containers on a large core count system improves appli-
cation performance [14], but to the best of our knowledge, there is no automated
scheduler that does the same. Our contributions are summarized as follows -

– A workload independent local scheduler – TRACPAD, that uses historical
runtime data to find a CCX-container mapping that improves application
performance and a detailed evaluation of our scheduler across 4 represen-
tative microservice applications. TRACPAD boosts application throughput
by up to 22% and decreases mean latency by up to 80%.

– An understanding of how TRACPAD improves application performance and
the factors that impact the scheduling policies generated by TRACPAD.

– An algorithm to strategically coalesce containers in order to eliminate the
communication overhead and the performance benefits of using such a method.
Coalescing containers significantly reduces application latencies. We show
how our method reduces mean latency by up to 40% and 99th percentile tail
latency by up to 60%.

The remainder of this paper is organized as follows. Section 2 goes over previ-
ous research and related work. Section 3 explains the implementation specifics of
the TRACPAD scheduler and Section 4 outlines the experimental setup used for
this study. Section 5 briefly introduces the microservice applications used in our
study. Section 6 presents the evaluation of the scheduler and Section 7 explains
why TRACPAD improves performance. Section 8 goes over two major factors
that affect the scheduling policies generated by TRACPAD. Section 9 introduces
the methodology to coalesce containers and goes over the performance impact of
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using this method. Finally, Section 10 concludes the paper and discusses further
work.

2 Related Work

Virtual machines (VMs) have paved the way for containers in today’s server
ecosystem. Research on VM scheduling algorithms gives useful insights regard-
ing what factors to consider while scheduling containers. Novaković et al. [41]
and Nathuji et al. [40] emphasise on minimizing performance interference while
co-locating VMs. Starling [46] and AGGA [15] show how performance can be
improved by placing co-communicating VMs on the same hosts as this reduces
the cost of network communication. This trade-off between scheduling heavily
communicating processes, and trying to minimize resource contentions is also
extremely valid in the case of container scheduling. Hu et al. [27] introduce
a multi-objective container scheduler that generates deployment schemes that
distribute the workload across servers to reduce resource contentions with the
primary goal of providing multi-resource guarantees. They model the problem as
a vector bin packing problem with heterogeneous bins. This scheduler also uses
dependency awareness between containers to co-locate containers that heavily
communicate. Many such schedulers that take into account container resource
utilization affinity and resource contentions have been implemented [26,35,45].

Containerized microservice environments are sensitive to many operating sys-
tem parameters [25] and hence the problem of container scheduling has also been
tackled in many other ways using a large set of heuristics and a larger set of al-
gorithms. Zhang et al. [53] propose a container scheduler that tries to minimize
host energy consumption as one of its objectives. They use a linear programming
based algorithm to schedule containers. ECSched [28] highlights the advantages
of concurrent container scheduling over queue-based container scheduling. They
model the scheduling problem as a minimum cost flow problem and incorporate
multi-resource constraints into this model. Fig. 2 illustrates a simple classifica-
tion of the different types of schedulers surveyed as part of this research.

Fig. 2: Simple Classification of Schedulers
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Kubernetes [4] and Docker Swarm [2] are the most commonly used container
orchestration tools. These technologies do not factor in historical run-time data
to analyze the characteristics of the application while scheduling containers on
servers. Resource requirements of microservices vary with the workload they are
servicing and historical runtime data is very useful while characterizing these
dynamic workloads. Kubernetes placement algorithms schedule containers on
nodes in a cluster based on the resource limits and tags preset by the developers.
They do not consider the relationship between microservices while formulating
a placement scheme. Kubernetes also recently added the topology manager [5]
which tries to place containers on the same NUMA node based on different
heuristics and user-specified criteria. However, this method does not consider
previous runtime information to make an informed choice on which containers
to co-locate on the same NUMA node whereas, the TRACPAD scheduler uses
historical runtime data to make a more informed choice on which containers to
co-locate.

REMaP [45] is another container scheduler that tries to solve some of the
shortcomings of the common container management tools used today by using
runtime adaptation. Each pair of microservices are assigned affinity scores based
on the amount of data they exchange. REMaP tries to group microservices with
high affinities on the same server to minimize the number of hosts while max-
imizing the affinity score of each host. The placement scheme also takes into
account the amount of resources available on the server and approximates the
amount of resources the microservice needs by using historical runtime data. It
only co-locates a pair of microservices if the host has enough free resources to
handle them. All these contributions present methods to schedule containers on
a cluster of systems and do not consider the underlying topology of each server.
This work presents a method that finds a placement scheme for containers that
would benefit the application performance after taking into consideration the
architecture of a server with a large core count. Previous works also shed light
on how granular resource allocation can benefit performance. PARTIES [16] and
CLITE [42] use fine-grained resource allocation to co-locate latency-critical jobs
without violating their respective QoS targets. Sriraman [47] presents a method
that uses A/B testing to tune configurable server parameters, such as core fre-
quency and transparent hugepages, specifically for a microservice, so that it
performs better on that server. Kaffes et al. [31] outline the benefits of a cen-
tralized core granular scheduler such as reducing interference. Octopus-Man [43]
uses a core granular scheduling method to bind processes to cores in servers that
have both brawny and wimpy cores in such a way that QoS constraints are not
violated, throughput is improved and the energy consumption is reduced. The
TRACPAD scheduler uses granular resource allocation to avoid resource con-
tentions between containers while reducing the Docker network communication
overhead.
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3 Implementation of TRACPAD

This section explains how our method arrives at a partition and then allocates re-
sources to containers dynamically based on the partition. This section is divided
into 5 modules which describe how the whole scheduling process is automated.

3.1 The Container Resource Utilization model

Fig. 3 depicts a sample container resource utilization model for the ’Get Prod-
ucts’ workload of the TeaStore application. The edge weights quantify the com-
munication between two services while the node weights represent the CPU
utilization of the service. In TRACPAD we use a bi-criteria approximation
graph partitioning algorithm to [32] to partition the container resource utiliza-
tion model based on two criteria -

– Minimization of the edgecut, i.e the sum of the edge weights between parti-
tions is minimized.

– Even distribution of node weights, i.e the node weights are balanced across
all partitions.

The edge weights in the model represent the amount of data transferred
between the containers. The partitioning will, therefore, reduce network com-
munication between the partitions. The node weights represent the CPU utiliza-
tion of each container. Hence, each partition will have a balanced CPU utiliza-
tion, thereby, reducing the CPU contentions in each partition. TRACPAD uses
the ‘Container Resource Utilization Model’ to generate different partitioning
schemes.

Fig. 3: Container Resource Utilization Model - Get Products Workload
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3.2 Collection of Container Specific Data

Every container in an application requires adequate server resources for smooth
functioning. This module identifies the CPU-intensive containers for a particu-
lar workload. Docker Stats is used to obtain container resource usage statistics
for the duration of the workload. This is how TRACPAD uses historical run-
time data to generate an informed placement scheme. TRACPAD uses this data
to calculate average CPU utilization for every container. The CPU utilization
metrics act as the node weights in the container resource utilization model.

3.3 Monitoring Network Traffic

This module establishes which sets of containers are communicating and the
amount of data being transferred between them during any given workload.
First, the ID of the Docker-bridge being used for communication is obtained. All
network packets used to communicate between containers are sent on the Docker
bridge. Tshark [10] is used to monitor the Docker bridge and records every
packet that is transmitted. The packet headers contain the source container’s
IP address, destination container’s IP address, and the payload size. TRACPAD
uses the data in the packet headers to characterize container resource utilization
patterns during the course of the workload.

A single request from the client may result in several packets being sent be-
tween containers. Different network protocols of the application layer and trans-
port layer in the TCP/IP stack may be used to communicate between different
containers and we need to capture all these packets. For example, in the social
network application, Apache Thrift RPCs are used to communicate between the
microservices only. To communicate with their respective databases, they use
TCP, UDP, or Memcache protocols. The networkX library [7] is used to gener-
ate a container resource utilization model as illustrated in Fig. 3. TRACPAD
aggregates all the data communicated between two containers in one direction
irrespective of the protocol used for data transfer and assigns the sum of the
payload sizes to the weight of that edge in the model.

3.4 Generation of the TRACPAD Partitioning Scheme

Algorithm 1 details the TRACPAD generates container placement schemes that
map containers to CCXs. Note that this mapping is workload-specific. Thus,
different workloads will have different placement schemes. Once the container
resource utilization model has been partitioned, a Container-CCX mapping is
generated. This mapping is invariant, i.e it remains the same for the correspond-
ing configuration of the application on that system and respective workload as
long as the communication patterns for the workload do not change. Hence, it
can be used to partition the application on the system multiple times in case
the application needs to restart or if the server goes down. The next step is to
affinitize the containers to the CPUs based on the mapping.
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Algorithm 1: TRACPAD Partition Generator

Result: List of Tuples that map CCXs to Containers.
Require: Set of all Containers, CCXList

/* List of CCXs allocated to application */
Initialize CRM ← [] // Container Resource Utilization Model
Initialize PartitionList ← []
Initialize ContainerCCXMapping ← []
Initialize NoOfPartitions ← Length(CCXList)

NodeWeightsi ← CPU-Util(Ci) ∀ Ci ∈ ContainerSet
Edges i,j ← BytesSent(Ci, Cj) ∀ Ci, Cj ∈ ContainerSet
CRM ← [NodeWeights, Edges]

PartitionList ← generatePartitions(CRM, NoOfPartitions)
/* PartitionList is a list of sets, All containers in a set belong to the same partition
as shown in Fig. 9 */

while !empty(PartitionList) do
ContainerSet ← pop(PartitionList)
CCX ← pop(CCXList)
for all Container ∈ ContainerSet do

push(ContainerCCXMapping, (Container, CCX))
end for

end while

3.5 Dynamic Provisioning of Resources

Once the Container-CCX mapping has been generated, TRACPAD redistributes
server resources, in this case, CPUs, across all the containers according to the
partitioning scheme. This is done on the fly, i.e, there is no need to stop and
restart the containers. Since this redistribution of resources happens on the fly,
the transition in performance is seamless. The cost of redistribution is system
dependent. In our experiments, it took approximately 1.7 seconds to redistribute
resources among the 30 containers spawned by the social-network application.

4 Experimental Setup

All our studies were conducted on a dual-socket AMD EPYC 7401 24-Core pro-
cessor server with 128GB of NUMA RAM and 2 TB Storage Capacity. The server
consists of 16 core-complexes with each core-complex consisting of 3 cores (with
2-way SMT providing 6 logical CPUs) sharing an 8 MB L3 cache as illustrated
in Fig. 1. Each physical core has a private 64 KB L1 instruction cache, 32KB L1
data cache, and a 512 KB L2 cache.

The microservice-based applications were deployed on socket-0 and the HTTP
workload generator on socket-1. We deployed both the client and the application
on the same system to avoid any performance impact of network latency across
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multiple runs. The applications were allocated 24 Logical Cores across 4 CCXs
and the TRACPAD algorithm was configured to generate four partitions, one
per CCX. In the case of the Social Network Application and Media Service Ap-
plication, the Nginx container was given access to all 24 logical cores in case of
all scheduling policies so that the number of requests serviced by the application
was not limited by the number of cores given to the Nginx server.

5 Microservice Benchmarks and Workloads

This section briefly introduces a variety of representative microservice bench-
marks and workloads that have been used to evaluate the TRACPAD scheduler.

The DeathStar Bench Suite [22] provides two applications – a social network
and a media service application. Workloads provided by both these applications
are used to conduct our evaluations. These applications are heterogeneous, using
C/C++, Java, Go, Scala, JavaScript, and many others. This makes the applica-
tions more representative as different functionalities are developed using different
languages. The third application used is TeaStore [33] which is an end-to-end
e-commerce application that is used to sell different types of tea and tea prod-
ucts. The last application used in this study is Sock Shop [9]. This is another
end-to-end e-commerce application that sells socks to customers. All these ap-
plications have been used in previous microservices-based performance studies
as suitable proxies for real-world applications [14,22,45,51]. Section 5.1 explains
the social network application in detail to provide an example of the complexity
and functioning of all these applications.

Table 1 summarizes the applications and lists the workloads that are used in
this study.

Table 1: Summary of the Applications and Workloads

Application Workload No. of Containers Storage Backends

Compose Post
Social Network Read Home Timeline 30 MongoDB, Redis, Memcached

(DeathStarBench) [22] Read User Timeline

Media Service Compose Review 33
(DeathStarBench) [22] MongoDB, Redis, Memcached

TeaStore [33] Get Products 7 MariaDB
Add to Cart

Sock Shop [9] Get Catalogue 15 MongoDB
MySQL
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5.1 The Social Network Application

It is an end-to-end application that implements a broadcast-style social network
with unidirectional follow relationships. This application uses 14 microservices
spawned across 30 containers. The microservices communicate with each other
using Apache Thrift RPCs. This application uses Memcached and Redis for
caching data and MongoDB for persistent storage of posts, profiles, and media.
Each storage backend is implemented using an individual container. The Jaeger
tracing application uses a Prometheus backend for storage and is a monitor-
ing service implemented to trace packets. The architecture of the application is
shown in Fig. 4.

Fig. 4: Social Network Application Architecture

Source: https://github.com/delimitrou/DeathStarBench

To test the impact of database load on the scheduling policy, we used two
social network databases [3] to conduct our tests on the social network applica-
tion.

– Reed 98 Social Network - 962 Users and 18812 Edges
– Penn Social Network - 43,000 Users and 1.3M Edges

6 Evaluation of the TRACPAD Scheduler

To evaluate the TRACPAD scheduler, 6 workloads from four end-to-end mi-
croservice applications were used. Application performance was evaluated using
four metrics -

– Application throughput
– Mean latency
– 95th percentile tail latency
– 99th percentile tail latency

These are the four important metrics that are commonly used to measure
the performance of user-facing applications. The wrk HTTP workload generator
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[24] was used to measure application throughput and application latency was
measured using the wrk2 HTTP workload generator [49].

First, all the partitions were generated after running the tool with each work-
load for 3-5 minutes. The tool collected all the required metrics and generated
the partition. As the underlying graph partitioning algorithm is extremely par-
allelized, TRACPAD can generate partitions within a few milliseconds once the
workload-specific runtime data points are collected.

As a baseline, we first measured these metrics for all the applications without
any affinitization, i.e all application containers could migrate between any of
the 24 logical cores allocated to them. Fig. 5a illustrates the relative gain in
throughput observed for each workload.

The TRACPAD scheduler boosts the throughput by an average of 10.34%
across all 6 workloads. Fig. 5b illustrates the percentage reduction in latencies
when the TRACPAD scheduler is used as compared to the naive policy of al-
locating all cores to all containers that Docker uses by default. Across all the
workloads, on average, there is a 56.11% drop in mean latency, a 63.11% drop
in 95th percentile tail latency, and a 68.15% drop in 99th percentile tail latency.
As an example, Fig. 6 illustrates a comparison of the cumulative latency distri-
butions between the naive policy and the policy generated by TRACPAD for
the ‘Get Products’ workload of the TeaStore application. There is a drop in la-
tencies throughout the latency percentile distribution demonstrating the ability
of the TRACPAD scheduler to improve latencies by the strategic allocation of
resources.

(a) Comparison of Baseline Throughput
with TRACPAD Throughput

(b) Comparison of Baseline Latencies with
TRACPAD Latencies

Fig. 5: Performance Comparison between TRACPAD and Baseline

These improvements in performance can be explained by the observations
in Section 7. They are a result of lower communication latency between co-
located containers, reduced resource contentions due to the graph partitioning,
and reduced CPU migrations and context switches. There may be cases wherein
a container needs more logical cores than provided by 1 CCX, like the Nginx
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Fig. 6: Comparison of Cumulative Latency Distribution of the Get Products
Workload

container in our case, and in such cases, it is necessary to allocate more cores
to the container. The TRACPAD scheduler has been developed with the aim of
scaling up performance and can be implemented in tandem with schedulers that
improve performance by using scale-out methodologies.

7 Analysis of TRACPAD

This section helps explain the factors that are responsible for the improvement
in application performance. TRACPAD affinitizes containers to a set of cores
belonging to the same CCX. We observed that this led to a reduction in both
CPU thread migrations and context switches. CPU thread migrations can be
very expensive on multi-socket systems with multiple NUMA domains in cases
where threads migrate between NUMA domains as this either results in remote
memory accesses, which have higher latencies than local memory accesses, or
memory migration to the new node. Linux perf [8] was used to measure both
metrics for the workloads listed in Table 1. Fig. 7 illustrates the relative drop in
these two metrics when the TRACPAD scheduler was used as compared to the
naive case where containers have access to all cores allocated to the application.

TRACPAD also co-locates communicating containers on the same CCX. This
helps reduces the communication latency between the containers and hence,
improves performance. To illustrate this we used Netperf [6], which measures the
network latency by sending packets between a client and a server. The server
and client were containerized and the network latency was measured in 3 cases -

– Case 1: Server and client are placed on the same CCX.
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Fig. 7: Drop in Context Switches and CPU Migrations by using TRACPAD

– Case 2: Server and client are placed on adjacent CCXs on the same NUMA
node.

– Case 3: Server and client are placed on adjacent NUMA nodes on the same
socket.

Fig. 8 compares the mean latencies, 90th percentile and 99th percentile tail
latencies. It illustrates that there is a significant increase in all these metrics
when the server and client are not placed on the same CCX. This happens
because they can no longer use the L3 cache to communicate. To validate this,
AMD µProf [1] was used to measure L3 miss rates for the CCX that the server
and client were placed on for two packet sizes - 5KB and 2MB.

– A packet size of 5KB is much smaller than the 8MB capacity of the L3 cache
and in this case, the L3 miss rates, as well as the network latencies, were
extremely low.

– A packet size of 2MB will exhaust the capacity of the L3 cache quickly and
in this case, the L3 miss rate increased by 4 times as compared to the 5KB
case and the network latencies shot up as well.

To explain the impact of cross CCX communication highlighted in Fig. 8, L3
miss rates were measured when the client and server were placed on the same
CCX and when they were placed on different CCXs. AMD µProf showed that
the L3 miss rate increased by 10 times when the server and client were placed on
different CCXs. This points to the explanation that co-locating communicating
containers on the same CCX reduces the communication latency between them
as they use the shared L3 cache to communicate. TRACPAD takes this into
account and creates placement schemes that co-locate heavily communicating
containers on the same CCX to reduce the impact of the communication over-
head induced by Docker. The placement schemes can be sensitive to factors like
request packet sizes, database sizes, and data access patterns. Section 8 explores
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the impact of the request packet sizes and database sizes on the partitioning
schemes.

Fig. 8: Latency Comparison using Netperf

8 Factors Affecting the Scheduling Policy

This section investigates the impact of request packet size and database size on
the scheduling policies generated by TRACPAD. Fig. 9a and Fig. 9b depict the
TRACPAD scheduling policies for different Request Packet Sizes for the Com-
pose Post Workload on the same underlying database, i.e, The Reed98 Social
Network. Fig. 9c, which depicts the TRACPAD policy for a packet size of 256
bytes with the Penn Social Network as the underlying DB. The different TRAC-
PAD policies improved application performance in each case after factoring in
the changes in request packet size and database size.

8.1 Effect of Database Size on Scheduling Policy

TRACPAD scheduling policies can change with the size of the underlying database
as evidenced by Fig. 9c and 9b. This may be because, as the database sizes in-
crease, database operations like querying and sorting start utilizing more CPU.
Therefore, the containers housing these databases also utilize resources differ-
ently. This alters the node weights in the container resource utilization model
and hence, affects the scheduling policy.

8.2 Effect of Request Packet Size on Scheduling Policy

TRACPAD scheduling policies can change with the request packet size as evi-
denced by Fig. 9a and 9b. One of the reasons for this change is that a change
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in the request packet size can lead to a change in the amount of data processing
done by the containers. If a container is performing compute-intensive opera-
tions (Ex. String Search) on the payload, then as the payload size increases, the
container’s CPU utilization will increase. This alters the node weights in the
container resource utilization model and affects the scheduling policy. A change
in the request packet size can also alter the edge weights of the container resource
utilization model as this change can change the amount of data exchanged be-
tween application containers. This will also modify the scheduling policy. In the
next section, we introduce a novel method to merge communicating containers so
that the data exchanged between them is not routed through the Docker bridge
and discuss how this method can be used along with TRACPAD to further
improve performance.

(a) Request Packet Size 2
kB, Reed98 Database

(b) Request Packet Size
256 B, Reed98 Database

(c) Request Packet Size
256 B, Penn Database

Fig. 9: TRACPAD policies for different configurations of the Compose Post
Workload

9 Container Coalescing

In microservice environments, as a result of loose coupling between different mod-
ules, huge amounts of data are exchanged between different microservices. The
communication overhead induced by Docker can negatively impact performance
while huge amounts of data are being exchanged over the network. TRACPAD
scheduler improves performance because it tries to minimize the communica-
tion overhead. Container coalescing further reduces the impact of communica-
tion overhead by eliminating all communication overhead by merging frequently
communicating containers. This section outlines the factors to consider before
merging containers and shows that strategic coalescing of containers can improve
application performance.

9.1 Design Considerations

Containers that functioned as storage backends were not coalesced to ensure
business continuity and prevent loss of data on failure. A greedy method was



16 V. Rao et al.

Algorithm 2: Coalescer

Result: One New Coalesced Image.
Require: ContainerCommunicationTuples

// Tuple - (SrcContainer, DstContainer, PayloadSize)
Initialize CCTuples ← ContainerCommunicationTuples();

sort(CCTuples) // Descending order of payload size
IsCoalesced ← False

for all T ∈ CCTuples do
SrcBase ← getBaseImage(T.SrcContainer)
DstBase ← getBaseImage(T.DstContainer)
if !IsCoalesced ∧ Coalescable(SrcBase, DstBase) then

CoalescedImage ← CreateNewImage(SrcBase, DstBase)
CreateNewEntryPoint(CoalescedImage)
IsCoalesced ← True

end if
end for
/* Edit the Docker-compose files and any other
application files to support the new image */

used to coalesce the containers, i.e the two containers that communicated the
most during the course of a workload were coalesced if they were compatible.
Determining whether a pair of containers were compatible, comprised of checking
whether there were any dependency conflicts and if the two containers were using
the same set of internal ports to expose their functionality. In either case, the
pair of containers cannot be coalesced.

9.2 Methodology

Algorithm 2 outlines the method we have used to coalesce a pair of containers.
The ’Coalescable’ function in the algorithm checks if the two containers can
be coalesced and whether they violate the design considerations outlined in the
previous section. While creating a new base image, a new Docker entry point is
required. The new entry point should execute the entry point commands of the
images being combined in the appropriate order.

9.3 Experimental Setup

To evaluate the impact of the container coalescing methodology, we used two
single-socket AMD EPYC 7301 16-Core processors with 64GB of NUMA RAM
on each server. Each server consists of 8 CCXs with each CCX consisting of 2
cores (with 2-way SMT providing 4 logical CPUs) sharing an 8MB L3 cache.
Each physical core has a private 64 KB L1 instruction cache, 32KB L1 data
cache, and a 512 KB L2 cache. The client and the application were deployed on
different servers.
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9.4 Results

The impact of coalescing was evaluated using three simple workloads from Table
1. The most heavily communicating containers were coalesced in the case of each
of these workloads as listed in Table 2.

Table 2: Workloads and Coalesced Containers

Workload Containers Coalesced

Read Home Timeline Home Timeline Service
Post Storage Service

Read User Timeline User Timeline Service
Post Storage Service

Add to Cart Web UI Service
Persistence Service

On coalescing, the amount of data transmitted over the network reduced by
over 10%. Fig. 10 illustrates the improvement in performance for the ‘Get Prod-
ucts’ workload. After the containers were coalesced, the TRACPAD scheduler
was applied to further improve performance. Fig. 11 illustrates the combined
performance gain of coalescing and scheduling for the workloads. TRACPAD
schedules the new set of containers, both original and coalesced, to reduce re-
source contentions and further reduce the impact of the network communication
overhead.

Fig. 10: Relative gain in Performance after Coalescing.
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Fig. 11: Combined Performance Gain of Coalescing and TRACPAD

10 Conclusion and Further Work

This paper presents a local container scheduler that creates placement schemes
based on the underlying server architecture. The scheduler is evaluated using
4 representative microservice applications and using the scheduler improves the
application performance. A detailed analysis of improvement in application per-
formance is also studied. The scheduler tries to minimize resource contentions as
well as minimize the communication overhead induced by Docker. To eliminate
this overhead between a pair of communicating containers, a container coalescing
methodology is outlined in the latter sections of this paper. This method also
improves performance and combined with the TRACPAD scheduler, can offer
significant reductions in user-perceived latencies.

As part of future work, we plan to implement NUMA node based memory
scheduling by factoring in the memory utilization of each container. This will
help reduce the memory contentions between the containers scheduled on the
same NUMA node and as a result, improve application performance. We also
plan to investigate the security implications of coalescing containers and develop
a coalescing strategy that does to impact the security provided by containers
adversely. Our final goal is to automate the process of container coalescing and
integrate it with the TRACPAD scheduler so that their combined performance
gains can benefit application performance.
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