
Gaze-Sensing LEDs for Head Mounted Displays
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Figure 1. Adding gaze tracking to Head Mounted Displays (HMDs) by exploiting sensing capability of Light Emitting Diodes (LEDs): An off-the-shelf
HMD system is modified to demonstrate gaze tracking support only with LEDs (left). LEDs are placed in front of a human subject’s eyes for sensing
and illumination. The prototype comprises only a smartphone, two microcontrollers, and a low number of LEDs with a supervised adaptive pattern
recognition algorithm. The overall system estimates the gaze direction of a human subject in real-time over a smartphone screen seen through a pair of
magnifier lenses.

ABSTRACT
We introduce a new gaze tracker for Head Mounted Displays
(HMDs). We modify two off-the-shelf HMDs to be gaze-
aware using Light Emitting Diodes (LEDs). Our key con-
tribution is to exploit the sensing capability of LEDs to cre-
ate low-power gaze tracker for virtual reality (VR) applica-
tions. This yields a simple approach using minimal hardware
to achieve good accuracy and low latency using light-weight
supervised Gaussian Process Regression (GPR) running on a
mobile device. With our hardware, we show that Minkowski
distance measure based GPR implementation outperforms the
commonly used radial basis function-based support vector re-
gression (SVR) without the need to precisely determine free
parameters. We show that our gaze estimation method does
not require complex dimension reduction techniques, feature
extraction, or distortion corrections due to off-axis optical
paths. We demonstrate two complete HMD prototypes with
a sample eye-tracked application, and report on a series of
subjective tests using our prototypes.
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INTRODUCTION
Head Mounted Displays use a variety of sensors to provide
immersive interaction with engaging virtual reality experi-
ences. Emerging consumer HMDs for VR use gyroscopes,
accelerometers, various optical sensors, and so on, either em-
bedded in the headset or grouped into an external unit. These
sensors track head orientation, user motions, whether or not
a user is wearing the device, to provide user controls, and in
short to enhance the user’s experience in a virtual world.

Using gaze as an input modality [11, 20] can be natural, fast,
and has the potential to enhance the user experience in an
HMD system. While decoupled non-mouse input modali-
ties as a pointing mechanism for large displays has proven
awkward, gaze-supported target acquisition has been found
fast and natural [34, 39, 42, 43]. Hence, industry has been
pushing towards employing gaze tracking as a key part of
future HMD systems. Current prototype solutions are typi-
cally expensive (e.g., FoveVR, Tobii-Starbreeze, SMI’s HMD
upgrade for Oculus Rift), but there is also a growing inter-
est towards low-cost gaze trackers with some promising re-
sults [35, 36, 12, 21].

We believe major challenges remain for conventional gaze
tracking hardware and software:



1. Conventional gaze trackers rely on imaging techniques,
which have relatively high power demands and may not
be truly suitable for low-power mobile solutions;

2. Imaging equipment typically introduces complexity in the
software, adding an extra image processing block in the
pipeline; and,

3. Conventional gaze trackers work with high-dimensional in-
puts (high-resolution images) and thus introduce latency at
multiple stages, including the capture hardware, communi-
cation protocols, and image processing-based gaze estima-
tion pipeline.

We are motivated to address these issues by decreasing hard-
ware and software complexity, seeking the simplest possible
solution that provides useful-quality eye tracking. We use
Light Emitting Diodes (LEDs) as the core of our gaze track-
ing hardware design. Commonly used as illumination de-
vices, LEDs in fact have well-known bi-directional charac-
teristics [7, 33] with the ability to sense and emit light. Since
they are also inexpensive, can perform color selective sens-
ing, can illuminate and sense from the same physical location,
and are easily controlled without a dedicated custom circuitry,
LEDs constitute a good choice as a hardware solution.

In this paper, we describe how to take advantage of LED’s bi-
directional characteristics to allow both light capture and illu-
mination. We position an array of LEDs in front of a human
subject’s eyes for the task of gaze estimation, in the context of
an HMD system. As a human subject observes a scene pro-
jected at a fixed virtual plane, we illuminate the subject’s eye
with infrared (IR) light from different perspectives in a time
multiplexed fashion. We capture and digitize the intensities
of IR light reflecting off the eye from different perspectives
with high refresh rates. Using our supervised adaptive pat-
tern recognition implementation, we accurately estimate the
gaze location of the human subject at the virtual image plane.

Contributions
All-in-one Sensor Technology: The core item in our design,
an LED, can be used as an illuminator or as a sensor for inte-
grating light intensity over a certain field of view (FOV) and
exposure interval. To our knowledge, this is the first time that
LEDs are used in a gaze tracker both for capture and illumi-
nation.

Less Hardware and Lower Cost: Our design employs fewer
components. To our knowledge, our design has the sim-
plest electronics design yet demonstrated. We believe that
our hardware design leads the category of ultra-low cost gaze
tracker. While decreasing cost, we show that accuracy and
sampling rates can match existing devices.

Supervised Adaptive Gaze Estimation Algorithm: We use
a supervised adaptive pattern recognition algorithm with our
sensor technology. We show that our method has low compu-
tational demands and runs fast enough on a conventional mo-
bile platform. We compare against the most common meth-
ods from the literature, and demonstrate equivalent or better
accuracy with a much simpler hardware.

Complete Prototype: We demonstrate two different com-
plete custom HMD systems, created by modifying off-the-
shelf items. We also demonstrate example eye tracked appli-
cations with our prototype, and provide results of an informal
subjective test with human subjects.

Benefits and Limitations
Benefits: Today’s HMD manufacturers are competing to cre-
ate the least bulky HMD. One way to achieve this goal is
to reduce the bulk caused by each component of the system.
Off-the-shelf LEDs are lighter and smaller than off-the-shelf
cameras. Thus, our proposed method uses less volume and
less weight than an alternative using single or multiple cam-
era(s).

LEDs also offer an advantage in power consumption over
camera based solutions. Possible heat dissipation related
issues caused by cameras are also avoided with our low
power consuming system. Additionally, our gaze estimation
pipeline is computationally light-weight. Thus, our proposed
technique is a good match for battery operated applications.
Since we only employ a small number of sensors, compared
to camera-based solutions (which have millions of sensing
pixels), latency within the hardware and software is reduced
and results in higher sensing rates.

Our method offers good accuracy. We show that mean angu-
lar error can be as low as 1.1o with a median angular error of
0.7o.

Limitations: While providing sufficient accuracy for a va-
riety of VR applications, due to their poor sensing charac-
teristics compared to photodiodes LEDs may not be suit-
able choice for applications requiring very high accuracy
(error < 0.5o), such as in psychological, neurological and
reading research [10].

Our proposal requires a larger amount of calibration data than
conventional imaging based gaze tracking systems, thus the
initial phase of calibration is comparably longer.

Conventional HMDs can shift slightly on a subject’s face,
commonly due to fast head movements. In turn, this causes
the sensing hardware to shift relative to the subject’s eyes.
Using the original calibration data makes gaze estimates less
reliable. We share this common problem with other gaze
trackers. We choose to recalibrate in such cases, which can
be burdensome to users.

RELATED WORK
Sensing with LEDs: LEDs are known to be reliable light

sensors, and have been used in other bi-directional systems
such as visible light communication (VLC) systems [6, 37],
temperature and pressure sensing systems [16], bidirectional
reflectance distribution function (BRDF) measurement sys-
tems [2], color sensing and illumination mimicking applica-
tions [17, 18], and human shape sensing with VLC [19, 1].

To our knowledge, this is the first time LEDs are used as sen-
sors in a gaze tracker application.

Gaze Tracker Hardware: The foundation of any gaze
tracker is the hardware used to capture the raw data. The



”scleral search coil,” for instance, requires the user to wear
a contact lens with copper coils on top while exposed to an
alternating magnetic field [31]. The scleral search coil is re-
ported to provide 15 arc seconds of angular resolution with
1000 Hz sampling capabilities. Despite this impressive ac-
curacy, the scleral search coil fails to to provide a comfort-
able user experience and is not an option for consumer prod-
ucts. Another common methodology is electro-oculography
(EOG) [22], which uses electrodes placed around the eye
along the horizontal and the vertical axes. However, the tech-
nique is generally known to suffer from resolution limitations,
and shares the same discomfort problem with a scleral search
coil.

Gaze trackers using light are categorized as imaging and
non-imaging optical devices. Relatively few imaging gaze
trackers have explicitly tackled the problem related to power-
consumption and computation-intensity: iShadow [25], an
imaging system, reported a 70 mW power consumption and
30 Hz estimation rate with an angular resolution of 3 de-
grees. OLED-on-CMOS technology [45] has been demon-
strated for capturing an eye’s images from a large spectrum
of light (600 − 900 nm) and displaying those images, how-
ever, in its current state, the technology’s display resolution
is very limited, and negatively effecting a display’s fill factor.

Non-imaging gaze trackers provide another approach. Nau-
gle and Hoskinson [27] demonstrated two different methods
using binary gaze tracking with a pair of LEDs and a pho-
todiode for a low field-of-view (FOV) (< 20o) HMD. While
this setup reduces the power consumption of the display by
over 75 %, it only provides limited information on whether
the user is actively wearing the display or not.

More closely related to our proposal, Topal et al. [41]
demonstrate a low-computational overhead, non-imaging
gaze tracker based on IR light-emitting diodes and IR sensors
around an eyeglasses frame. Another similar non-imaging
gaze tracker [8] contains a ring of LED emitters that are stim-
ulated in sequence. Unlike our proposal, the tracker contains
photodiode sensors, which are measured for each LED stim-
ulation. These systems, however, require head pose to be
completely fixed or stabilitized with a mechanism such as a
bite-bar. In contrast, our prototype hardware does not depend
on fixed head pose, does not use photodiodes nor sophisti-
cated or custom light-sensing circuits, and is embedded in an
HMD context without producing occlusion in front of the eye.
Our algorithmic approach is also simpler and less demanding
on the hardware, using Gaussian Regression Processes (GPR)
[30] for gaze estimation rather than a model-based linear or
non-linear mapping — thus avoiding tuning of algorithm pa-
rameters.

We believe our solution provides the simplest hardware de-
sign yet for a gaze tracker embedded inside an HMD.

Adaptive Gaze Estimation Algorithms: Because each hu-
man subject introduces multiple differences for the input of
a non-imaging gaze tracker, we believe that the task of gaze
estimation, in this case, is a better match for an adaptive su-
pervised pattern recognition technique rather than finding a

good model for noisy sensor input. Traditionally, supervision
of such pattern recognition techniques in gaze trackers has
been incorporated into a calibration procedure.

Within the realm of imaging gaze trackers, the relevance vec-
tor regression (RVR) [23] method was found to be more ef-
fective than support vector regression (SVR). RVR shares
the same functional form as SVR. Unlike SVR, however,
RVR tries to find the weights of the regressor from train-
ing data. We have experimented with SVR with radial basis
function (RBF) as the kernel, and we found that GPR with
a non-parametric similarity measure provides an accurate re-
sult without the comptuational burden of finding the correct
weights using RVR. This is important since finding correct
weights online may not be a feasible task for limited process-
ing power on mobile devices.

Noris et al. [29] show that imaging gaze trackers can benefit
from GPR for calibration-free operation. Their implementa-
tion used principle component analysis (PCA) for feature di-
mension reduction. As our technique depends on a low num-
ber of sensory inputs, we did not find dimension reduction
necessary for our gaze estimation algorithm, and instead we
use GPR directly for the task of gaze estimation.

Using cost effective hardware (albeit with a relatively power
hungry imaging gaze tracker), Sewell and Komogortsev [38]
demonstrated effective usage of a neural network for offline
training, and demonstrated a relatively low error (< 3.68o).
Our method achieves a much lower error, and we also demon-
strate that in specific applications, online training can be en-
abled.

SYSTEM OVERVIEW
Gaze tracking devices for HMDs estimate where a user is
gazing relative to a virtual image plane as seen through the
HMD’s lenses. The task of gaze estimation is a layered prob-
lem that requires the integration of sensors, optical design,
image/signal processing, and electronics design. The follow-
ing sections describe our approach in addressing each of these
tasks.

Sensing with LEDs
At the core of our design, LEDs are used to capture light and
to illuminate the eye. LEDs with infrared light emission
are typically used in HMD gaze tracker hardware, since hu-
mans are insensitive to IR illumination [14]. A human eye’s
cornea has similar absorption and reflection characteristics in
the near IR as in visible light [44]. Furthermore, IR LEDs
have a narrow bandwidth (typically ∼ 50 nm), avoiding
cross-talk with other wavelengths.

LEDs provide illumination when a forward voltage is applied
to their two electrical terminals. However, LEDs can also act
as photodetectors [7] by following three steps: 1 Apply a
reverse voltage pulse for a short time duration. 2 Discharge
LED’s capacitance immediately afterwards. 3 Measure the
voltage across LED to determine how much discharge of ca-
pacitance took place after a certain time. Figure 2 illustrates
each of the explained steps.



Figure 2. Illustration of different modes of a bi-directional LED (from
left to right): (1) applying a forward voltage of VDC , in which the
LED emits light with a wavelength of λout and an emission cone angle,
ΘFOV ; (2) applying a reverse voltage pulse, Vreverse, for a short time
duration, discharging LED with incoming light that has a wavelength of
λin for a specific time, ∆texp, with an reception cone angle of ΘFOV ;
and (3) measuring a voltage, Vmeasurement, from the LED.

These steps can be easily implemented by wiring the LED
to a microcontroller for full control over charge, discharge,
and measure. The microcontroller is controlled by and relays
measurements to a host. Typically, LEDs are most sensitive
to wavelengths λin that are shorter than their emission spec-
trum (so λin < λout) [16]. Thus, larger exposure times are
required if LEDs with the same emission spectrum are used.
To achieve lowest possible latency with a given configura-
tion, we choose to use different LEDs that have intersecting
emission and sensing spectra in the IR range.

Eye safety is also important when a user is exposed to infrared
radiation; ∆texp and maximum irradiance of an LED must be
considered according to safety regulations for infrared light
sources [3].

Positioning of LEDs: To use LEDs for capture and illumi-
nation, LEDs must be placed at specific locations in front of
an eye, or optical path must be relayed to have the same ef-
fect. Currently the most common configuration for the optics
of a commercial HMD, as shown in Figure 3, uses a pair of
magnifier lenses placed in front of a display to create a virtual
image at some distance in front of a user. Such an HMD set-
ting typically includes a distance from eye, called eye relief
drelief of 25 − 30 mm, and an additional spacing dobject of
35 − 50 mm between the magnifier lens and display, which
is determined by the focal length of the magnifier lens. This
leaves two obvious options of where to place the LEDs – be-
tween the lens and the eye or between the magnifier lens and
the display.

From the stand point of integrating our solution, the easiest
place to put the LEDs would be directly in front of the user’s
eyes, as shown in Figure 3. This arrangement also has the
advantage that it minimizes light loss due to scattering off
the other optical elements of the HMD. However, LEDs po-
sitioned on-axis in front of an eye would occlude parts of the

Figure 3. A sketch showing our proposed configuration within a conven-
tional HMD.

image. Placing LEDs in an off-axis arrangement avoids such
occlusions.

We rely on the experimental study from Nguyen et al. [28] to
determine the best positions. A maximal amount of corneal
and pupil reflection can be achieved, when the sensing LEDs
are close to the illuminating LEDs. We thus place LEDs side-
by-side in a ring around the magnifier lens. Front view in
Figure 5 shows a layout for positioning of LEDs in our pro-
totype. We arrange the LEDs as groups of two sensing LEDs
with an illuminating LED in between.

Estimation Using Captured Data
Our capture hardware hosts a fixed number M of sensing
LEDs. The capture hardware transmits a data capture vector
to the host (PC, smartphones, and etc.). This vector contains
measured data as

s(t) = [s0(t), s1(t), . . . , sM (t)], (1)

where each sm(t) represents the output of them-th LED con-
nected to the capture hardware. We construct a calibration
matrix that represents the relation between a captured vector
and the gaze locations as follows. First, pre-defined locations
are highlighted on the virtual image plane in random order,
and users are asked to dwell on each of the highlighted loca-
tions for a certain duration ∆tfix. During this time, we sample
s multiple times at fixed intervals ∆tv, and store the mean of
the measurements as c̄p =

∑
t s(t) for each predefined loca-

tion p. To ensure a meaningful calibration, we check that the
variance of all the measurements for a location p is below a
certain threshold, otherwise we discard the measurements for
that location. Figure 4 summarizes the procedure for creation
of a calibration matrix.

The pre-defined calibration points can be at any location.
Typically, we use a grid of 2× 2 to 5× 5 evenly spaced loca-
tions. Starting from this small number of calibration points,
we need to derive the gaze location given a set of new mea-
surements s(t). At a later stage, calibration data is enlarged
online through a gaming application, in which a user’s task is
to gaze and destroy opponents. Using collected data, we have
evaluated two different regression methods: support vector
regression (commonly used in prior research), and gaussian
process regression (our choice).



Figure 4. A sketch showing construction of a calibration matrix in a
simplified way. A user gazes at a certain point at a virtual image plane
for a time period of ∆tfix. During that time data is captured, and the
arithmetic mean value of the capture, c̄p is stored at a corresponding
row of the calibration matrix.

Support Vector Regression: SVR has a generalized form as[
ex
ey

]
= kT

[
ux
uy

]T
, (2)

where ex and ey represents estimated gaze position along x
and y, kT represents a vector that contains the similarity mea-
sures between the captured s(t), and the calibration vectors
c̄p. Finally, ux and uy represent vectors that correspond to
the x and y position of each c̄p.

A regression technique depends on a distance measure, that
indicates how similar the captured data is to the stored cali-
bration data. Such a comparison using any method will pro-
vide a similarity vector as in

k =

κ(s(t), c̄1)
...

κ(s(t), c̄P )

 , (3)

where κ(a, b) donates the used distance function to determine
similarity in between vector a and b, k represents the distance
vector. Our choice of distance measure for SVR calculations
is the commonly used radial basis function (RBF) [23, 29].

Gaussian Process Regression: Through our experiments,
we found GPR to be a robust and accurate regression method.
GPR takes the following general form:[

ex
ey

]
= kTC−1

[
ux
uy

]T
, (4)

with variables as described above. The covariance matrix C
is calculated as

C =

κ(c̄0, c̄0) . . . κ(c̄0, c̄p)
...

κ(c̄p, c̄0) . . . κ(c̄p, c̄p)

 . (5)

Distance Measures: Comparing a vector with another vec-
tor can be accomplished in multiple ways. Although, we
have evaluated multiple different distance measures (Cosine,
Minkowski, Manhattan, Canberra) [4, 15, 30], we found the
Minkowski distance measure to be the most effective to be

used with the GPR algorithm:

κ(a, b) =

(
n∑

i=1

wi |ai − bi|m
)1/m

, (6)

where a and b are two vectors to be compared, wi is the
weighting factor for a certain channel in the captured data,
m is the degree of the norm, and i is the index of the element.
We findm = 2 and settingwi = 1 to yield good results; more
details will be presented in Section .

For the SVR algorithm, we employed the RBF kernel:

κ(a, b) = e−
||a−b||

2σ2 , (7)

in which σ represents a free parameter. We use a grid-search
to find the optimal σ.

IMPLEMENTATION
Two different off-the-shelf HMDs are transformed into a gaze
sensing HMD using our methodology. In this section, we in-
troduce both design choices with practical aspects. Our pro-
totypes are shown in Figure 5.

Our first prototype consists of 3 LEDs per eye functioning as
light sources, 6 LEDs per eye functioning as light sensors,
a smartphone, an Arduino Nano microcontroller (uC) per
eye, a controller, and a VR headset as a housing. Our gaze
tracking algorithm runs on a smartphone in synchronism with
two uCs driving LEDs.

Our second prototype consists of 6 LEDs per eye functioning
as both light sensors and light sources, an Arduino Nano mi-
crocontroller (uC) per eye, a HDMI supported 2K resolution
display, a controller, and a VR headset as housing. This time,
our gaze tracking algorithm runs on a desktop computer.

Optics: Our both prototypes use a pair of magnifier lenses
in front of a display, as shown in Figure 3. Considering the
magnification of the lens, and the distances between LCD,
lenses, and eyes, and the display’s pixel density, each pixel
corresponds to a visual angle of 0.12 degrees in our both pro-
totypes.

Sensing Electronics: LEDs are hooked to the two uCs for
both prototypes, so that they can be programmed accord-
ingly. In the case of our first prototype, illuminator LEDs
are attached to digital input/output (IO) pins, and the sensing
LEDs’ anodes were attached to digital IOs, and their cathodes
were attached to Analog-to-Digital (ADC) pins of the uC. In
the case of our second prototype, LEDs are only attached in
the same way as the sensing LEDs in our first prototype. Each
time a LED is requested to sense, it follows the pattern of 1 -
2 - 3 from Section and Figure 2. LEDs have a soft-coded

mechanism that adjust ∆texp per LED basis, so that satura-
tion caused by varying light conditions can be avoided for
each LED.

Identical two LEDs typically have a limited overlap in their
emission-sensing spectra. Thus, leading to low resolution
capture with less sampling frequency when identical LEDs
are used. In our first prototype, we choose to dedicate two



Front view of Prototype ITop View of Prototype I Front view of Prototype IITop View of Prototype II

Figure 5. Left: A pair of photographs showing top and front view of our first prototype. Zoomed region in top view shows a microcontroller. Zoomed
region in front view shows three LEDs, center one that is highlighted in red is used in illumination source mode, and neighbouring two that are
highlighted in green are in receiver mode in our driving scenario. Note that all LEDs in our prototype can switch to both modes upon request. Right:
A pair of photographs showing top and front view of our second prototype. Zoomed region in front view highlights six LEDs that are used for both
sensing and illumination.

different LEDs to specific tasks to maintain good resolution.
However, with our second prototype, we also evaluated a con-
figuration that uses the identical LEDs for illumination and
sensing.

In our first prototype, an illuminator LED is turned on shortly
before taking a measurement from its pair of neighbouring
sensing LEDs. In our second prototype, all the remaining
LEDs are illuminating the scene at the time of a capture from
a LED. In our prototypes, used uC only allows a time mul-
tiplexed capture routine -one capture from a single LED at a
time-. However, a simultaneous capture from different LEDs
can be achieved with a different uC that has discrete ADCs
for each analog pin. Thus, the effective sampling rate would
increase significantly and latency would reduce even further.

User-interface application: The uC works hand-in-hand
with the user-interface application using a USB connection.
Our application deals with a number of predefined tasks: (1)
collecting measurements from each LED by requesting them
from the two uCs, (2) updating the user interface, (3) pro-
ducing the actual gaze estimation using GPR, and (4) keep-
ing logs related to captured data (event time stamps, and so
forth).

EVALUATION
Success of a regression algorithm for the task of gaze estima-
tion is heavily affected by a number of factors, such as noise
levels in the captured signal, positioning of LEDs in front of
an eye, the used distance measures, and the number of stored
points in a calibration matrix. We evaluate our method with
respect to each factor.

Our first prototype uses 18 illuminating LED and 12 sensing
LED in total. Our first prototype is supplied by a voltage
source with galvanic isolation (smartphone’s battery), thus
leading to more reliable analogue to digital conversions. On
the other hand, our second prototype uses 12 LEDs in total
for both illumination and capture. Our second prototype in-
terfaces with a personal computer that is typically known to
suffer more from noise caused by electromechanical parts,
power-supply and supply-line. Noises can propagate through
data and power lines. Thus, it requires more levels of fil-
tering in circuitry and in digital means, which are causing la-

tency both in digital estimation and analogue signal. We try to
tackle noise problems at most with an additional layer of first
order Infinite Impulse Response (IIR) digital low-pass filters,
and a physical USB isolator. At extreme, a custom dedicated
circuitry for analogue to digital conversions can outperform
other options.

We report our findings on accuracy, and number of calibration
data using our first prototype. We extend our subjective tests
using our second prototype. Thus, we also report on prac-
ticality, and inter-intra personal differences using the second
prototype. We also share our findings on sampling rates of
both prototypes. Our evaluation method depends on the ex-
perimental procedure summarized in Table 1. We have con-
ducted a series of subjective tests using this procedure, and
recorded each session for analysis.

Instructions, levels and hints for a session

L1 User wears the headset.
L2 User starts the application by pressing ”X” button in the con-

troller.
L3 User is verbally asked about image quality. If not satisfactory,

session is terminated. Otherwise user continues with the session.
L4 Application shows a visual containing a rabbit character together

with a text that states press ”X” button and follow the rabbit.
L5 Rabbit on the screen stops after a while, a text in the visual ap-

pears, which commands a user to gaze at the rabbit constantly
until it disappears.

L6 Another visual appears with an instruction, which commands a
user to gaze at a red dot constantly, press ”X” button on controller,
and gaze constantly until red dot turns to green. Once it is green,
another red dot appears at a different location, and user repeat his
previous actions until there is no more red dot in the screen.

L7 User follows the instructions from L6 for each event objects.
L8 Another visual appears with a new instruction, which states that

there will be a ghost character among with multiple characters
in the next screen. Task is to destroy ghost, the user has to gaze
at it for a certain time period. If user is gazing at the ghost, the
ghost turns blue or other objects are changing colors; the user is
asked to keep on gazing at the ghost and press ”X” button on the
controller.

L9 As the user is gazing at each object, the calibration data is aug-
mented with the new incoming measurements from each failure
case.

Table 1. Our experimental procedure, including the guidance provided
to our participants.



Figure 6. Top row shows angular positions of a target on a screen along X axis in red color among with the outputs of GPR with Minkowski and
SVR with RBF in green and blue color respectively. Middle row shows angular positions of a target on a screen along Y axis in red color among
with the outputs of GPR with Minkowski and SVR with RBF in green and blue color respectively. Both in top and middle rows, Regions highlighted
with Magenta color shows blink events, and regions highlighted with yellow color shows Saccadic Reaction Time (SRT) with a gaze transition (saccade).
Bottom row shows normalized histograms of angular errors for GPR with Minkowski and SVR with RBF in green and blue color respectively. There are
82 calibration points in this sample dataset (16 from calibration grid, 66 from VR gaming). Captured data used in making is from our first prototype.

Accuracy: The accuracy of a gaze tracker system refers to
the difference between the true and the measured gaze direc-
tion. Given a set of sample input data, we estimate the gaze
locations using both GPR with Minkowski distances and SVR
with RBF as the regressor. We show the angular locations of
the target gaze locations along with the estimates from both
methods in Figure 6. Our error metric here is visual angu-
lar errors, which is calculated using Euclidean distances in
between output of estimations and gaze targets. Figure 6 con-
tains histograms of visual angular errors recorded over a fixed
time duration for both techniques using a set of captured data
from our first prototype. We have conducted a comparison of
multiple different distance measures using GPR and SVR, a
detailed analysis of these can be found in the supplementary
material.

We point out that regions highlighted with magenta color in
Figure 6 show blinks, which lead the estimated gaze direction
to have sharp jumps. Regions highlighted with yellow color
in Figure 6 show regions, where a gaze target changes posi-
tion in space. Humans are known to have a response time be-
fore an event of gaze change (Saccade) [26], which is known
as Saccadic Reaction Time (SRT). SRT may vary from in-
dividual to individual, affected by biological factors such as
age and health conditions. Angular errors have been calcu-
lated by excluding highlighted regions. We have performed a
user study among 5 subjects with varying age, and eye pre-
scription. Using GPR with Minkowski distances, we report
our findings for each subject in terms of accuracy in Table 2.

Commercial gaze trackers (SMI, FOVE VR, etc.) for HMDs
claim to have an accuracy ranging from 0.2o − 1.5o in a con-
trolled laboratory environment. We show that our mean an-
gular accuracy can be as low as 1.10o with a much simpler
hardware setup in casual use case. We believe that our ap-
proach is a promising alternative to existing methods.

Mean Median Standard Deviation
Subject 1 1.34 0.83 2.49
Subject 2 2.10 1.23 2.80
Subject 3 1.90 1.84 1.43
Subject 4 1.40 1.04 1.10
Subject 5 1.10 0.66 2.14

Total Mean 1.57 1.12 2.00
Table 2. Mean, median, and Standard Deviation values of each subjects
using data collected from each subject. Angular errors are reported only
for the case of using GPR with Minkowski distances.

Number of calibration points and LEDs: The number of
calibration points and LEDs are other important variables in
our design space. Thus, we investigate the resulting angular
error when varying their number. Given a small number of
calibration points, we have started our evaluation using only
four channels with the highest variation in digital signals and
have iteratively increased the number of channels. We have
repeated this evaluation utilizing an increasing number of cal-
ibration points. Our findings suggest that smaller numbers of
LEDs can produce similar angular accuracy levels. Adding
more LEDs seem to only marginally enhance accuracy. How-
ever, we would like to highlight that an LED’s contribution to
the gaze estimate depends on its physical location and direc-
tion relative to a particular subject. I.e., depending on a sub-
ject’s physiognomy (smaller vs. larger eyes, distance between
eyes, and so forth), a particular sensing LED may contribute
more or less. Thus, a larger number of LEDs compensate for
such differences and add robustness.

Practicality and inter-intra personal differences: We ex-
tended our experiments using our second prototype. Total
number of independent different subjects are 10 males and 4
females. At each experiment, a subject has to complete four
independent sessions, in which a user takes brakes and wears
the HMD at the beginning of each session. A subject typi-



cally complete four sessions within 45− 60 minutes in total.
First two sessions follow the usual routine from Table 1 with
a task of choosing a predefined target object from multiple
choices (varying randomly from three to eight choices). At
each task, a target object appears at a new random location
chosen from uniformly distributed sample locations. Total
number of target selection task in a single session is 50. Def-
inition of success at a task is being able to choose the target
object by gazing at the target object at least for 3 seconds. On
the other hand, definition of a failure case can be expressed as
follows: If our system fails to detect the case of gazing cor-
rectly, user continuously gaze at the target, and push a button
to give a feedback to the system. System uses this as an online
training data, and takes advantage of the new data for the up-
coming tasks within a session. Third and fourth sessions fol-
lows the same routine as in first two sessions. However, those
sessions does not go through the calibration phase. A third
session is initiated with the calibration data captured from the
same user during a second session. A fourth session is ini-
tiated with the captured data from an another subject during
an another session in the past. Figure 7 summarizes results of
our early extended experiments.

Figure 7. Violin-box diagrams showing distribution of success rations
from different scenarios. Small and large red vertical lines indicates
mean, and median values respectively. Dashed bars indicates 1.5 times
interquartile range (IQR), and the blue boxes indicates first and third
quartiles from a distribution.

According to our early investigation in Table 7, task of choos-
ing by gazing at a target is likely to be more successful with
a calibration phase at the beginning of a session. We also
observed that system can be initiated with a calibration data
from a previous session with lower success rations. Thus,
requiring further online training during usage. At the ex-
treme, our findings suggest that it is possible to initiate the
system with a calibration data from a different person with
least amount of success rations and maximum amount of on-
line training during usage.

Sampling Rates and latency: Given our current hardware
and uC, we are able to sample up to 250Hz with our first pro-
totype coupled to a mini computer (Raspberry Pi model B).
On the other hand, our second prototype coupled to a personal
computer samples at 100 Hz. A better uC with a dedicated
ADC for each analogue pin can sample all channels simul-
taneously, thus such a uC can increase sampling rates up to
kHz range. We observe that the smartphone’s USB does not
provide a reliable serial communication at 250 Hz. Thus, we
intentionally use only a 100 Hz sampling rates with our first
prototype. Our GPR implementation can easily run at above
100 Hz even on the smartphone (our datasets all contain less
than 100 calibration points).

DISCUSSION
We believe that gaze tracking is a critical feature that will con-
tribute to the success of HMDs in the consumer market. We
propose a new sensor technology that enables gaze tracking
at low cost and in a small form factor, ideal for the HMD use
case.

Feedback from subjects: In informal feedback, subjects
found our system to be accurate for the given tasks shown
during a subjective test.

One common problem reported by the subjects was sudden
jumps in gaze estimation after and during a blink. Similarly,
slightly closing an eye lid was found to cause a shift in the
gaze estimation. In the future work we plan to address these
problems by detecting blinks from the LED inputs as well
as predicting the eye lid status. Some subjects experienced
lower spatial accuracy in certain regions within the screen.
We believe this to be due to differences in eye sizes, rela-
tive eye locations, and eye distances. Simply adding more
channels to each eye should help to address this problem. Fi-
nally, the initial calibration phase with a four-by-four grid was
found to be cumbersome, and we will continue to investigate
on how to further decrease the number of calibration points.
Self-calibration through saliency maps [40] may be an option.

Future Work: Kalman filtering is a common method to en-
hance accuracy (but may add latency), as are visual anchors
[13]. Expanding the subject pool can also help us in cluster-
ing subjects for estimating a good initial calibration data for
each person. We will evaluate these methods in the near fu-
ture. An analogy from coded aperture optics is an inspiring
direction for our future work: merging our technique with
backlights of Spatial Light Modulators (SLMs) could poten-
tially provide an interesting all-in-one solution for sensing
and illumination, similar to bi-directional displays [9, 45].

Our subject pool contains subjects with and without eye pre-
scriptions. During a subjective test, subjects with eye pre-
scriptions were asked to take off their glasses and wear con-
tact lenses instead. If our technique was to be used in a
non-HMD scenario, corrective glasses would need to be sup-
ported.

In a near future, VR users may also benefit from wearable
facial recognition techniques using photo-reflective sensors
[24] or from vital sign monitoring, such as heart-rate and



blood oxygenation, which have been estimated remotely us-
ing photodiodes [5] in the past. A similar methodology us-
ing LEDs could be explored through simple changes in our
circuitry. Thus, those methodologies may allow us to im-
prove in accuracy by considering effects of facial changes due
to mood, respiration or heart-rate. Saccadic reaction times
(SRTs) are well explored by the medical community as a ba-
sis for health condition prediction techniques [26]. Our cur-
rent prototype can also be trained to detect SRTs (yellow re-
gions in Figure 6) in the future. Rogers et al. [32] recently
demonstrated that blinks and head movements captured using
infrared, accelerometer, and gyroscope sensors in a HMD can
be used for the task of user identification. All these sensors
are readily available in our prototypes. User identification di-
mension can be added to our demonstration by merging [32]’s
findings with our proposal.

CONCLUSION
Gaze sensing HMDs promise to provide a dataset for a set
of useful tasks: foveated rendering, predicting a user’s mood
and health, predicting visual saliency at a personal level, and
providing a VR experience that is unique, that is a natural fit
for you.

We describe a novel gaze tracker methodology using only
LEDs. Our proposal’s main contribution is exploiting the
sensing capability of LEDs with a GPR implementation using
Minkowski distances inside a HMD system. We provide a de-
tailed description of our algorithms and our hardware, which
we believe is the simplest gaze-detecting design to date. We
have shown two unique prototypes that validates our proposal
in the context of a traditional off-the-shelf HMD. As gaze-
sensing HMDs are poised to enter the market, we hope to
inspire more research on simple, low-power non-imaging ap-
proaches such as ours.
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