JavaScript-Livecode Cheat Sheet

Comments

Comments allow you to add explanations and annotations to your code.

/| These

[* are
commented
out */

-- these

are

/] all

/* commented
out */

Variables

Variables are used to to store information, the stored value can be changed or accessed when

you need it.

var myVar;
myVar = "str";
myVar = 1;

var arr = new Array();
arr["key"] = "val";

local tVar
put "str" into tVar
put 1into tVar

put "val" into tVar["key"]

Constants

Constants store a value that is defined at the point of declaration and never changes.

const FOO =15;

constant kFoo =15

String Processing

These examples show how string values can be manipulated.

General

str ="'a' + str;

str = str.slice(1);

str = str.replace("_", "-")

Regex
var found = /[0-9]/.exec("1");
var num = found[1];

str.split("\n").filter(function(elem) {
return pattern.exec(elem) != NULL;

b;

/| General

put "a" before tVar

delete char 1 of tVar
replace "_" with "-" in tVar

/| Regex
matchText("1", "([0-9])", tN) is true
tNis 1

filter lines of tVar with regex pattern
tPattern

Control Structures

Control structures are used to control what code is executed and how many times.

for (var i=0; i < text.length; i++) {
char = text.charAt(i);
}

for (var i=0; i < 10; i++) {

}

while (x < 10) {
X--;

}

if (value) {

} else if (other) {

} else {

}

switch (value) {
case "a":
break;
default:
break;

var list =[5, 2, 3,1, 4]
list.sort();

-> list==11, 2, 3, 4, 5]
list.reverse();

-> list ==[5, 4, 3, 2, 1]

var data = [[6, 1], [8, 3], [2, 21];
data.sort(function(a,b) {

return a[2] - b[2]

H;

-> data == [[6, 1], [2, 2], [8, 3]]

repeat for each char tChar in tVar
end repeat

repeat 10
end repeat

repeat with x =110 10
end repeat

repeat while x <10
subtract 1 from x
end repeat

if true then ... else ...

if tVar then

else if tOther then
else

end if

switch tVar

case "a"
break
default
break

end switch

Sorting
These examples show how to sort items and lists.

local tList

put "5,2,3,1,4" into tList

sort items of tList ascending numeric
-> tListis "1,2,3,4,5"

sort items of tList descending numeric
-> tListis "5,4,3,2,1"

local tData

put "6,1:8,3:2,2" into tData

set the lineDelimiter to ":"

sort lines of tData ascending numeric by
item 2 of each

-> tData is "6,1:2,2:8,3"

produce other values.

/| Logical

true && false == false
true || false == true
Ifalse == true

/| String

"foo" + "bar" == "foobar"
var strs = ['foo','bar'];
strs.join(" ") == "foo bar"

"str".startsWith("st");
"str".endsWith("g");

/| Chunks
"str.charAt(4) == "n"

var items = "a,b,c".split("");
items[2] == "c"

var words = "hi there".split(" ");
words[0] == "hi"

var lines = "a\nb".split("\n");
lines[2] == "b"

var lines = "a,b,c".split("\n")
var items = lines[1].split(",")
items[1].charAt(0) == "a"

Operators
Operators are ways of combining values such as boolean values, numbers or strings, to

/| Logical

true and false is false
true or false is true
not false is true

/] String

"foo" & "bar" is "foobar"
"foo" && "bar" is "foo bar"
"str" begins with "st"

"str" ends with "g"

/| Chunks

char 5 of "str" is "n"

item 3 of "a,b,c" is "c"

word 1 of "hi there" is "hi"

line 2 of "a" & return & "b"is "b"

/| Compound chunks

char 1 of item 1 of line 1 of "a,b,c" is "a"

User Input / Notification

These examples show how to pop up information dialogs, or prompts for user input.

var name = prompt("What is your name?");

alert("Something");

ask "What is your name?"
put it into tName

answer "Something"

Array Processing

These examples show how array values can be manipulated.

Split / combine

var list = "a,b,c".split(",")
list[1] is "b"

list = list.join("");

list == "a,b,c"

for (var key in array) {
Do something with array[key];

}

Length
array.length();

/] Split /| combine

put "a,b,c" into tVar
split tvar by ""
tVar[2] is "b"
combine tVar with ""
tVaris "a,b,c"

/| Iteration
repeat for each key tKey in tArray
-- Do something with tArray[tKey]
end repeat

repeat for each element tElement in tArray
end repeat

// Length
the number of elements in tArray

Custom Handlers

A custom handler is a function or command that you define yourself.

function foo(param) {

}

/| foo(value)

function foo pParam
end foo
/| get foo(tVar)

command bar pParam
end bar
/| bar 5

Event Handlers

An event handler is a hander that is triggered when an event occurs, such as the use of the
mouse or keyboard.

Mouse
function handleMouseUp {

}

<button onmouseup="handleMouseUp" />

function handleMouseDown {

}

<button
onmousedown="handleMouseDown" />

function handleMouseMove {

}

<div onmousemove="handleMouseMove"
/>

Keyboard
function handleKeyUp {

}
<input onkeyup="handleKeyUp" />

function handleKeyDown {

}

<input onkeydown="handleKeyDown" />

/| Mouse
on mouseUp pButton
end mouseUp

on mouseDown pButton
end mouseDown

on mouseMove
end mouseMove

/| Keyboard
on keyDown pKey
end keyDown

on keyUp pKey
end keyUp

