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 A B S T R A C T

As a novel and challenging task, referring segmentation combines computer vision and natural language 
processing to localise and segment objects based on textual descriptions. While Referring Image Segmentation 
(RIS) has been extensively studied in natural images, little attention has been given to aerial imagery, 
particularly from Unmanned Aerial Vehicles (UAVs). The unique challenges of UAV imagery, including 
complex spatial scales, occlusions, and varying object orientations, render existing RIS approaches ineffective. 
A key limitation has been the lack of UAV-specific datasets, as manually annotating pixel-level masks and 
generating textual descriptions is labour-intensive and time-consuming. To address this gap, we design an 
automatic labelling pipeline that leverages pre-existing UAV segmentation datasets and the Multimodal Large 
Language Models (MLLM) for generating textual descriptions. Furthermore, we propose Aerial Referring 
Transformer (AeroReformer), a novel framework for UAV Referring Image Segmentation (UAV-RIS), featuring 
a Vision-Language Cross-Attention Module (VLCAM) for effective cross-modal understanding and a Rotation-
Aware Multi-Scale Fusion (RAMSF) decoder to enhance segmentation accuracy in aerial scenes. Extensive 
experiments on two newly developed datasets demonstrate the superiority of AeroReformer over existing 
methods, establishing a new benchmark for UAV-RIS. The datasets and code are publicly available at https:
//github.com/lironui/AeroReformer.
1. Introduction

Referring Image Segmentation (RIS) aims to segment target objects 
in an image based on natural language expressions that describe their 
attributes or context (Li et al., 2018; Ding et al., 2022). Unlike tradi-
tional image segmentation methods that rely on predefined semantic 
labels and operate within a constrained set of categories (Simonyan 
and Zisserman, 2014; Ronneberger et al., 2015; Wang et al., 2022), 
referring image segmentation enables open-domain segmentation by 
utilising free-form textual descriptions as guidance (Hu et al., 2016; 
Liu et al., 2017; Lai et al., 2024). This capability significantly expands 
its applicability, allowing for more flexible and context-aware interpre-
tation of imagery. In terms of the aerial scenario, UAV Referring Image 
Segmentation (UAV-RIS) has broad applications in domains such as 
text-guided environmental monitoring (Sharma and Arya, 2022), land 
cover classification (Mienna et al., 2022), precision agriculture (Tahir 
et al., 2023), urban planning (Shao et al., 2021) and risk assess-
ment (Trepekli et al., 2022), where identifying and segmenting specific 
objects or regions based on natural language descriptions is crucial. By 
leveraging the multimodal integration of vision and language, UAV-RIS 
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can enhance the precision and adaptability of spatial analysis, making 
it easier to extract detailed, context-specific information from complex 
aerial imagery (see Fig.  1).

Recently, benefiting from the open-source datasets including Ref-
SegRS (Yuan et al., 2024), RRSIS-D (Liu et al., 2024) and RISBench
(Dong et al., 2024), the Referring Remote Sensing Image Segmentation 
(RRSIS) has attracted more and more attention (Lei et al., 2024; Shi and 
Zhang, 2025; Zhang et al., 2025; Chen et al., 2025; Li et al., 2025). De-
spite these promising advances, UAV-RIS poses additional complexities 
due to the lower altitudes and agile motion of UAV platforms, leading to 
more pronounced occlusions, rapidly shifting viewpoints, and varying 
scene contexts (Lyu et al., 2020; Li and Zhao, 2024; Zhang et al., 
2023). Moreover, building a large-scale, high-quality UAV dataset for 
referring segmentation remains labour-intensive, underscoring the need 
for automated or semi-automated approaches to annotation. Therefore, 
it remains under-investigated in aerial imagery, particularly for data 
captured by UAVs.

This paper addresses the challenges of UAV-RIS by introducing 
UAV-specific datasets and a novel framework, expanding the scope 
of referring image segmentation to UAV imagery and establishing 
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Fig. 1. The shifting viewpoints and varying scene contexts are very common 
for UAV-captured images.

a foundation for future research. Specifically, we develop an auto-
matic labelling pipeline that leverages open-source and pre-existing 
UAV segmentation datasets along with a Multimodal Large Language 
Model (MLLM). In our data generation process, segmentation masks 
are obtained from existing dataset annotations, and a cropped image 
paired with a well-designed prompt is fed into the MLLM to generate 
textual descriptions of the target object. This approach streamlines the 
annotation and description generation process, reducing the time and 
effort required for manual labelling.

Meanwhile, UAV imagery presents unique challenges compared 
to natural images, including significant scale variations, diverse ob-
ject orientations, and complex background clutter (Lyu et al., 2020; 
Li and Zhao, 2024; Zhang et al., 2023). To effectively bridge the 
gap between visual and linguistic modalities, we propose a UAV-
specific RIS model, i.e. AeroReformer, featuring a Vision-Language 
Cross-Attention Module (VLCAM) for robust cross-modal understand-
ing and a Rotation-Aware Multi-Scale Fusion (RAMSF) decoder to 
address spatial variations in UAV imagery. VLCAM dynamically aligns 
visual features with linguistic queries, ensuring that textual descrip-
tions are accurately mapped to corresponding image regions, even 
under complex conditions such as occlusions and scale variations. 
Meanwhile, RAMSF enhances the segmentation process by incorporat-
ing rotation-aware convolutions and multi-scale feature aggregation, 
preserving orientation consistency while maintaining high-resolution 
spatial details. The integration of these two modules enables our model 
to outperform existing methods, achieving state-of-the-art results on 
UAVid-RIS and VDD-RIS, two datasets generated by our proposed 
pipeline. The main contribution of this paper can be summarised as:

(1) An automatic dataset generation framework is designed, en-
abling the transformation of labelled segmentation datasets into 
their LLM-aided counterparts.
2 
(2) Two UAV-RIS datasets, UAVid-RIS and VDD-RIS, are constructed 
from open-source datasets, providing a benchmark for UAV-RIS 
research and evaluation.

(3) A novel UAV-RIS network, AeroReformer, is designed, incorpo-
rating a Vision-Language Cross-Attention Module (VLCAM) and 
a Rotation-Aware Multi-Scale Fusion (RAMSF) decoder, achiev-
ing state-of-the-art performance on UAVid-RIS and VDD-RIS.

The remainder of this paper is organised as follows: Section 2 re-
views related work. Section 3 presents the UAV referring segmentation 
dataset generation pipeline. Section 4 introduces the proposed AeroRe-
former model, explaining its architecture. Section 5 describes the ex-
perimental setup, dataset details, and evaluation metrics and presents 
a performance analysis. Finally, Section 6 concludes the research and 
discusses potential directions for future research.

2. Related work

2.1. Referring image segmentation for natural images

RIS is a fundamental task in vision-language understanding, where 
the goal is to segment objects in an image based on a given natural 
language expression (Li et al., 2018; Yu et al., 2016, 2018). This task 
demands a fine-grained alignment between textual descriptions and 
visual features to correctly localise and delineate the referenced objects. 
Compared to conventional segmentation tasks that rely on predefined 
categories, RIS enables a more flexible and user-specific segmentation 
process.

In the early stages, initial RIS models relied primarily on Convolu-
tional Neural Networks (CNNs) to extract visual features and Recurrent 
Neural Networks (RNNs) to process textual descriptions (Li et al., 2018; 
Hu et al., 2016; Nagaraja et al., 2016). These models performed feature 
fusion by concatenating visual and linguistic representations before 
feeding them into a segmentation head. Specifically, Hu et al. (2016) 
first introduced RIS to address the limitations of traditional semantic 
segmentation when handling complex textual descriptions. Later, Li 
et al. (2018) and Nagaraja et al. (2016) explored bidirectional inter-
actions between visual and textual features, improving the multimodal 
understanding of objects through structured representations. Further 
advancements introduced dynamic multimodal networks, such as the 
work by Margffoy-Tuay et al. (2018), which incorporated recursive 
reasoning mechanisms to enhance the integration of linguistic and 
visual information.

As RIS models evolved, researchers recognised the importance of 
cross-modal feature alignment, leading to the introduction of attention-
based strategies (Shi et al., 2018; Ye et al., 2019; Hu et al., 2020). 
For example, Shi et al. (2018) introduced a keyword-aware segmenta-
tion model, refining object-region relationships based on key linguistic 
cues. These approaches significantly improved object localisation and 
contextual interpretation in RIS tasks. Ye et al. (2019) proposed a cross-
modal self-attention module to capture long-range dependencies be-
tween textual and visual elements, improving multimodal fusion. Sim-
ilarly, Hu et al. (2020) developed a bidirectional cross-modal attention 
mechanism, enabling deeper interaction between the modalities.

The recent emergence of Transformer-based architectures has sig-
nificantly advanced RIS, offering global modelling capabilities and su-
perior multimodal integration. Unlike CNN-based methods, which rely 
on local receptive fields, Transformers enable long-range dependencies 
and self-attention mechanisms, making them particularly effective for 
RIS (Ding et al., 2022; Yang et al., 2022; Liu et al., 2023). Several 
notable works have leveraged this architecture. VLT designed a query-
based Transformer framework, enriching textual comprehension by 
dynamically generating language query embeddings (Ding et al., 2022). 
LAVT proposed language-aware attention mechanisms to enhance early 
fusion between the two modalities, enabling more precise segmenta-
tion (Yang et al., 2022). GRES further refined multimodal alignment by 
explicitly modelling dependencies between different textual tokens and 
visual regions, leading to more robust segmentation performance (Liu 
et al., 2023).
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2.2. Referring remote sensing image segmentation

Referring Remote Sensing Image Segmentation (RRSIS) is a spe-
cialised task that aims to extract pixel-wise segmentation masks from 
remote sensing imagery based on natural language expressions (Yuan 
et al., 2024; Liu et al., 2024). While it has significant applications in 
environmental monitoring, land cover classification, disaster response, 
and urban planning (Sun et al., 2022; Li et al., 2024), progress in this 
field hinges critically on suitable datasets that capture the complexity 
of remote sensing imagery. One of the earliest datasets was RefSegRS, 
introduced in Yuan et al. (2024), which enabled initial efforts to adapt 
RIS methods from natural images to the remote sensing domain. To 
enhance the diversity and improve the generalisability of trained mod-
els, Liu et al. (2024) proposed RRSIS-D, a substantially larger dataset 
for benchmarking mainstream RIS models in remote sensing image 
segmentation. More recently, RISBench (Dong et al., 2024) has also 
been introduced to further advance the development and evaluation 
of RRSIS methods.

Building on these datasets, recent RRSIS research has explored 
strategies to address scale variations, complex backgrounds, and orien-
tation diversity. LGCE (Yuan et al., 2024) pioneered a language-guided 
cross-scale enhancement module to fuse shallow and deep features 
for improved segmentation accuracy, whereas (Liu et al., 2024) pro-
posed the Rotated Multi-Scale Interaction Network (RMSIN), which 
integrates intra-scale and cross-scale interactions alongside rotated con-
volutions to better handle directional variations. Beyond scale-aware 
models, Pan et al. (2024) analysed the implicit optimisation mech-
anisms in existing models and proposed an explicit affinity align-
ment approach, incorporating a new loss function to improve textual-
visual feature interaction. More recent studies have introduced refined 
image-text alignment strategies to improve RRSIS performance. Specif-
ically, FIANet (Lei et al., 2024) introduced a fine-grained alignment 
module with object-positional enhancement, integrating a text-aware 
self-attention mechanism to refine segmentation accuracy. Similarly, 
CroBIM (Dong et al., 2024) leveraged a context-aware prompt mod-
ulation module, which optimises post-fusion feature interactions and 
employs a mutual-interaction decoder to refine segmentation masks. 
Recently, SBANet (Li et al., 2025) introduced a bidirectional align-
ment mechanism and a scale-wise attention module to enhance mutual 
guidance between vision and language features, effectively refining 
segmentation masks in referring remote sensing image segmentation. 
BTDNet (Zhang et al., 2025) employs a bidirectional spatial correlation 
module and a target-background twin-stream decoder to improve mul-
timodal alignment and fine-grained object differentiation, achieving 
improved segmentation performance.

2.3. Visual grounding for aerial images

Another active vision-and-language research in the remote sensing 
community is visual grounding for aerial images, focusing on localising 
target objects within aerial scenes using natural language queries (Sun 
et al., 2022; Zhao et al., 2021; Zhan et al., 2023). In contrast to 
RRSIS, which demands detailed pixel-level masks, visual grounding 
is primarily concerned with identifying object-level regions, typically 
represented as bounding boxes (Sun et al., 2022). This task leverages 
the unique characteristics of aerial imagery, where targets often exhibit 
complex spatial relationships and may not be visually prominent due 
to scale variations and cluttered backgrounds.

Early frameworks, such as GeoVG (Sun et al., 2022), pioneered 
this approach by integrating a language encoder that captures geospa-
tial relationships with an image encoder that adaptively attends to 
aerial scenes. By fusing these modalities, GeoVG established a one-
stage process that effectively translates natural language cues into 
object localisation. Building on this foundation, subsequent models 
have introduced advanced fusion strategies. For instance, modules 
like the Transformer-based Multi-Granularity Visual Language Fusion 
3 
(MGVLF) (Zhan et al., 2023) exploit both multi-scale visual features 
and multi-granularity textual embeddings, resulting in more discrimi-
native representations that address the challenges posed by large-scale 
variations and busy backgrounds. Vision-Semantic Multimodal Rep-
resentation (VSMR) enhanced multi-level feature integration, refining 
how visual and textual features are jointly processed to improve locali-
sation robustness (Ding et al., 2024). Further improvements have been 
achieved through progressive attention mechanisms. The Language-
guided Progressive Visual Attention (LPVA) framework, for example, 
dynamically adjusts visual features at various scales and levels, en-
suring that the visual backbone concentrates on expression-relevant 
information (Li et al., 2024). This is complemented by multi-level 
feature enhancement decoders, which aggregate contextual information 
to boost feature distinctiveness and suppress irrelevant regions.

3. UAV referring segmentation dataset generation

Although several RRSIS datasets have been introduced, they pre-
dominantly focus on vertically captured (nadir-view) satellites and 
aerial imagery, limiting their applicability to UAV-based scenarios. 
Unlike satellite imagery, UAVs operate at lower altitudes with dynamic 
viewing angles, resulting in significant variations in object appearance 
due to oblique perspectives, occlusions, and scale distortions. These 
factors make existing RRSIS datasets insufficient for UAV-RIS tasks, 
where diverse viewpoints and fine-grained scene details are crucial for 
accurate segmentation. To address this gap, we introduce a UAV-RIS 
dataset generation pipeline, ensuring more realistic and comprehensive 
benchmarking for UAV-based vision-language tasks.

3.1. Dataset construction and analysis

To advance UAV-RIS, we present a fully automated pipeline that 
leverages pre-existing UAV segmentation datasets. Unlike traditional 
approaches requiring manual annotations, our pipeline efficiently gen-
erates language-vision pairs by integrating segmentation masks with 
large language models. The data generation process, as shown in Fig. 
2, is structured as follows:

• Step 1: Segmentation-based Cropping.
Given a pre-labelled UAV segmentation dataset, images and their 
corresponding masks are first partitioned into 1024×1024 patches. 
To ensure meaningful segmentation patches, we apply a filtering 
mechanism based on class presence and distribution. For each 
patch, the class distribution is computed by analysing the pixel 
proportions of predefined categories such as buildings, trees, 
roads, and vehicles. Patches containing only a single dominant 
class (occupying more than 70% of the patch) or those with 
minimal class representation (below predefined thresholds) are 
discarded. This step enhances dataset diversity and ensures the 
presence of multiple meaningful classes in each selected patch.

• Step 2: Vision-Language Description Generation.
Once cropped patches are obtained, the segmented regions are 
processed using Qwen2.5-VL-7B (Bai et al., 2025), a vision-
language model capable of generating concise and context-aware 
descriptions for detected objects. The model takes an image patch 
as input, along with a predefined prompt specifying the target 
object class. Each prompt ensures the inclusion of the relevant ob-
ject category while avoiding semantically conflicting terms. The 
object categories vary depending on the pre-labelled segmenta-
tion dataset used. Each dataset’s predefined classes are utilised to 
generate corresponding descriptions, ensuring alignment with its 
original annotations. Tailored instructions are provided for each 
category to produce accurate and concise textual descriptions. 
To maintain consistency, the model operates under a controlled 
generation setting where responses are constrained to a maximum 
of 10 words. Additionally, the prompt explicitly instructs the 
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Fig. 2. The automatic UAV referring segmentation dataset generation pipeline.
Fig. 3. Word cloud for top 100 words within the expressions of (a) UAVid-RIS 
and (b) VDD-RIS.

model to avoid irrelevant or misleading terms, ensuring that 
the generated descriptions remain semantically aligned with the 
visual content. The processed text-image pairs form the basis of 
the final dataset, enabling high-quality referring segmentation in 
UAV imagery.

• Step 3: Automatic Description Refinement.
To maintain dataset consistency and clarity, we implement a 
text-cleaning process that removes ambiguous or uninformative 
phrases, such as ‘‘no visible’’. This automatic post-processing step 
ensures that all descriptions remain meaningful and directly cor-
respond to the visual content of the segmented region. Finally, the 
annotations are formatted to align with the RefCOCO (Lin et al., 
2014) dataset structure, enhancing compatibility with existing re-
ferring segmentation models and facilitating seamless integration 
into vision-language benchmarks.
4 
Our proposed pipeline has been applied to two widely used UAV 
segmentation datasets, UAVid (Lyu et al., 2020) and VDD (Cai et al., 
2023), to generate their corresponding referring segmentation versions, 
namely UAVid-RIS and VDD-RIS. By leveraging the pre-existing seg-
mentation annotations, our approach automatically extracts meaningful 
patches and generates language descriptions for target object classes 
within each selected patch. This transformation enables the datasets to 
be directly used for vision-language tasks, expanding their applicability.

To gain insights into the linguistic and semantic characteristics 
of the generated dataset, we present a word cloud of the 100 most 
frequent words in Fig.  3, offering an overview of the variety of object 
descriptions. Additionally, Fig.  4 shows the image category distribution, 
providing a general understanding of the dataset composition and the 
occurrence of different object categories in UAVid-RIS and VDD-RIS.

3.2. Advantages and disadvantages of the designed pipeline

The designed pipeline offers several advantages that make it highly 
effective for UAV-RIS tasks, including:

• Fully Automated Process.
The dataset generation pipeline is entirely automatic, eliminat-
ing the need for manual annotations. This significantly reduces 
human effort and makes it highly scalable for large-scale datasets.

• Leverages Pre-existing Datasets.
Instead of requiring new annotations, the method takes advantage 
of already labelled segmentation datasets, making it efficient and 
cost-effective.

• Multi-Label Representation.
A single image can have multiple referring expressions since 
it may contain multiple object categories, providing a richer 
semantic understanding and enabling a more comprehensive in-
terpretation of the scene.

• Scalable for Large Datasets.
The fully automatic pipeline allows for the generation of large-
scale datasets without significant computational overhead, mak-
ing it ideal for deep learning applications that require vast
amounts of training data.

• Diverse Language Descriptions.
Since the dataset’s descriptions are generated by a large language 
model, it provides various expressions for the same object cate-
gory. This enhances the dataset’s linguistic diversity, making it 
more robust for vision-language models.

At the same time, there are also certain limitations that should be 
considered, including:
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Fig. 4. Distribution of image categories of (a) UAVid-RIS and (b) VDD-RIS.
Fig. 5. Overview of the proposed AeroReformer.
• Lack of Fine-Grained Object Features.
The descriptions generated by the language model focus on object 
categories rather than detailed attributes such as colour, texture, 
shape, or exact dimensions. This may limit the dataset’s applica-
bility for fine-grained vision tasks. Additionally, although seman-
tically conflicting words are explicitly excluded in the prompt, the 
model may still occasionally include them in the generated text, 
leading to potential inconsistencies in the descriptions.

• Limited Spatial and Positional Context.
While the dataset retains spatial and positional information, it is 
provided at the class level rather than for individual objects. Since 
the annotations correspond to entire object categories rather than 
distinct instances, precise localisation of single objects is not 
explicitly available.

• Data Quality Depends on the Pre-Existing Dataset.
The overall quality of the generated dataset is inherently depen-
dent on the accuracy and granularity of the segmentation dataset. 
If the segmentation labels are noisy, incomplete, or overly coarse, 
it may negatively impact the quality of the generated language 
descriptions and corresponding annotations.

Despite these limitations, the generated dataset provides a scalable 
and efficient solution for vision-language learning in UAV imagery, 
5 
making it a valuable resource for automatic referring segmentation. 
As the first publicly available dataset for UAV-RIS, it establishes a 
foundational benchmark for future research in this field. All data 
generation code will be openly released to facilitate research and drive 
advancements in the remote sensing community.

4. Methodology

4.1. Problem formulation

This study aims to tackle the challenge of referring image segmen-
tation in UAV imagery, where the objective is to generate an accurate 
segmentation mask for a target category based on a given natural 
language description. Formally, let 𝐼 ∈ R𝐻×𝑊 ×𝐶 denote an aerial 
image, where 𝐻 , 𝑊 , and 𝐶 correspond to the image height, width, and 
number of channels, respectively. A textual query 𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑁}
serves as the semantic reference, where 𝑁 represents the number of 
words or tokens in the description.

The goal is to predict a binary segmentation mask 𝑂 ∈ {0, 1}𝐻×𝑊 , 
where each pixel 𝑝 ∈ 𝐼 is classified as either belonging to the category 
described by 𝑇  or not. Given a dataset 𝛺 = {(𝐼𝑖, 𝑇𝑖, 𝐺𝑖)}𝑁𝑢𝑚

𝑖=1 , where 
𝐺𝑖 ∈ {0, 1}𝐻×𝑊  represents the corresponding ground truth mask and 
𝑁𝑢𝑚 is the total number of samples, the objective is to develop a 
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Fig. 6. Pipeline of the Vision-Language Cross-Attention Module (VLCAM).
function 𝑓 that maps the image-text pair (𝐼, 𝑇 ) to 𝑂 by effectively 
learning cross-modal associations between linguistic descriptions and 
visual features.

4.2. Overview of the architecture

The overall architecture of our proposed AeroReformer is depicted 
in Fig.  5. Our AeroReformer builds upon LAVT (Yang et al., 2022), 
maintaining its encoders e.g., Swin Transformer (Liu et al., 2021) and 
BERT (Devlin et al., 2019) for extracting multi-modal inputs while 
improving vision-language fusion and mask prediction. Meanwhile, we 
propose a vision-language cross-attention fusion module, enhancing 
the interaction between visual and linguistic features. Additionally, we 
introduce a rotation-aware multi-scale fusion decoder, allowing better 
adaptation to aerial imagery with varying orientations.

4.2.1. Vision-language cross-attention fusion module
To effectively integrate linguistic and visual information, we in-

troduce a vision-language cross-attention fusion module that enhances 
cross-modal feature interaction, as shown in Fig.  6. This module re-
places the Pixel-Word Attention Module (PWAM) with a more struc-
tured mechanism that utilises multi-head cross-attention to improve 
feature alignment between textual and visual representations.

Given an input aerial image 𝐼 ∈ R𝐻×𝑊 ×𝐶 and a natural language 
expression 𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑁}, our model extracts corresponding visual 
and linguistic features using hierarchical encoders. Let 𝐹𝑉 ∈ R𝐻 ′𝑊 ′×𝐶𝑉

denote the visual features extracted from the image, where 𝐻 ′𝑊 ′

represents the spatial dimension of the feature map and 𝐶𝑉  is the 
number of visual feature channels. Similarly, let 𝐹𝐿 ∈ R𝑁×𝐶𝐿  represent 
the linguistic features extracted from the text, where 𝑁 is the number 
of tokens, and 𝐶𝐿 is the language feature dimension.

To facilitate cross-modal interactions between vision and language, 
we first project the features into a common embedding space using 
convolutional layers: 

𝑄𝑉 = I
(

C
𝐶𝐾
1𝐷 (𝐹𝑉 )

)

,

𝐾𝐿 = C
𝐶𝐾
1𝐷 (𝐹𝐿),

𝑉𝐿 = C
𝐶𝑉
1𝐷 (𝐹𝐿).

(1)

represents the 1D convolution operation, I  denotes instance normal-
isation. 𝐶𝐾 represents the key-query dimension, while 𝐶𝑉  denotes the 
value dimension. The query features 𝑄𝑉  are extracted from vision 
features 𝐹𝑉  using a 1D convolution followed by instance normalisation. 
The key 𝐾  and value 𝑉  are computed from the language features 
𝐿 𝐿

6 
𝐹𝐿 using separate 1D convolutional layers. The positional encoding is 
enabled for query features: 

𝑄𝑉 = 𝑄𝑉 + 𝑃𝑉 , (2)

where 𝑃𝑉  is a learnable positional encoding that provides spatial 
awareness to the vision features.

Next, we compute multi-head attention scores using scaled dot-
product attention, while each head can be defined as: 

Attn = softmax
(

𝑄𝑉 𝐾𝑇
𝐿

√

𝐶𝐾

)

, (3)

where the dot product of queries and keys is scaled by √𝐶𝐾 to stabilise 
gradients and prevent extreme values. The attended visual-language 
features are then computed as: 

𝐹𝑉 𝐿 = I
(

C1𝐷(Attn ⋅ 𝑉𝐿)
)

. (4)

Thereafter, a Feed-Forward Network (FFN) is applied, consisting of 
two convolutional layers with ReLU activation: 

𝐹𝐹𝐹𝑁 = L
(

C1𝐷
(

D(R(C1𝐷(𝐹𝑉 𝐿)))
)

+ 𝐹𝑉 𝐿

)

. (5)

A residual connection is added between the input and output of the 
FFN to stabilise training and facilitate feature propagation. Specifically, 
the output of the FFN is element-wise added to the input before 
being passed through a subsequent layer normalisation operation L . 
This mechanism follows the standard transformer design pattern and 
helps preserve important information while allowing the network to 
learn complex transformations. The cross-modal representation 𝐹𝐹𝐹𝑁 ∈
R𝐻 ′𝑊 ′×𝐶𝑉  is then fused with the vision features via element-wise 
interaction: 

𝐹𝐹𝑢𝑠𝑒𝑑 = 𝐹𝐹𝐹𝑁 ⊙ P(𝐹𝑉 ), (6)

where ⊙ represents element-wise multiplication, generating enriched 
visual features that incorporate linguistic information. Projection P
including convolution, GeLU activation and dropout is applied to vi-
sion features to stabilise distributions. Finally, the fused representation 
undergoes a final projection : 

𝐹𝑜𝑢𝑡 = P(𝐹𝐹𝑢𝑠𝑒𝑑 ). (7)

4.2.2. Rotation-aware multi-scale fusion decoder
To take full advantage of extracted features, the rotation-aware 

multi-scale fusion decoder is designed with multi-scale feature aggre-
gation operations. Specifically, given a set of encoder feature maps at 
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different scales: 
𝑋1 ∈ R𝐵×𝐶1×

𝐻
4 ×𝑊

4 ,

𝑋2 ∈ R𝐵×𝐶2×
𝐻
8 ×𝑊

8 ,

𝑋3 ∈ R𝐵×𝐶3×
𝐻
16 ×

𝑊
16 ,

𝑋4 ∈ R𝐵×𝐶4×
𝐻
32 ×

𝑊
32 .

(8)

where 𝑋𝑖 represents the feature maps at different resolutions, and 
𝐶𝑖 denotes the corresponding number of channels. To maintain scale 
consistency, lateral transformations are applied using 1 × 1 convolutions 
first: 
𝐿𝑖 = R(C2𝐷(𝑋𝑖)), 𝑖 ∈ {1, 2, 3, 4} (9)

where C2𝐷 is 2D convolutions.
Thereafter, upsampled decoder feature maps 𝑌𝑖 are concatenated 

with the corresponding lateral feature maps obtained from the encoder: 

𝐹𝑖 = Concat(𝐿𝑖, 𝑌𝑖), 𝑖 ∈ {1, 2, 3} (10)

This concatenated feature maps are then refined using either a 
channel attention module (𝑖 = 2, 3) or a spatial attention module (𝑖 = 1), 
which leverages L2 normalisation and adaptive weighting instead of 
traditional softmax-based dot-product attention, reducing both time 
and memory costs based on our previous work (Li et al., 2021a,b). The 
refined feature representation is given by: 

𝐹 ′
CA = 𝑋 + 𝛾𝑐 ⋅ reshape

(
∑

𝑛 𝑉𝑛 +𝑄⊙ (𝐾 ⊙ 𝑉 )
𝐻 ×𝑊 +𝑄⊙

∑

𝑛 𝐾𝑛 + 𝜀

)

, (11)

𝐹 ′
SA = 𝑋 + 𝛾𝑠 ⋅ reshape

(
∑

𝑐 𝑉𝑐 +𝑄⊙ (𝐾 ⊙ 𝑉 )
𝐻 ×𝑊 +𝑄⊙

∑

𝑐 𝐾𝑐 + 𝜀

)

, (12)

where 𝑋 is the input feature map, and 𝑄, 𝐾, and 𝑉  are the query, key, 
and value matrices, respectively, obtained from learned projections of 
𝑋. The terms ∑𝑛 𝑉𝑛 and 

∑

𝑐 𝑉𝑐 represent aggregations of the value 
features across spatial and channel dimensions, respectively. 𝜀 is a small 
constant added for numerical stability. The scaling factors 𝛾𝑐 and 𝛾𝑠
are learnable parameters for the channel and spatial attention mecha-
nisms. Here, ⊙ denotes element-wise multiplication with broadcasting 
as necessary. The operations involving 𝑄, 𝐾, and 𝑉  follow batch-
wise summations over intermediate dimensions, consistent with tensor 
contraction patterns implemented using PyTorch’s einsum function. 
The ‘‘reshape’’ operation restores the feature tensor to its original 
spatial dimensions (𝐻,𝑊 ). Please refer to the code for the detailed 
implementation.

This formulation integrates both self-attention mechanisms, effec-
tively capturing feature correlations across different dimensions while 
maintaining computational efficiency through L2-normalised weight-
ing. Specifically, the channel attention module is applied to the first two 
fused feature maps, as they contain multiple channels representing hier-
archical multi-scale information. This mechanism models dependencies 
between different channels, allowing the network to dynamically recal-
ibrate inter-channel relationships and enhance contextual coherence. 
Meanwhile, for the final fused feature map, which is at the highest 
resolution and contains detailed spatial semantics, the spatial attention 
mechanism is employed. This ensures that long-range pixel dependen-
cies are effectively captured, refining feature distributions across spatial 
dimensions.

To further improve feature representation across different orien-
tations, which frequently occur in UAV imagery, we incorporate the 
Adaptive Rotated Convolution (ARC) module (Pu et al., 2023) into the 
fused features. Unlike standard convolution, where a fixed kernel is 
applied to all inputs, ARC adapts its filters to align with the directional 
variations present in imagery. Specifically, given an input feature map 
𝑋, the routing function F  predicts a set of rotation angles 𝜃 and 
corresponding weights 𝜆: 
𝜃, 𝜆 = F (𝑋). (13)
7 
Each of the 𝑛 convolution kernels 𝑊𝑖 is then rotated according to its 
corresponding predicted angle: 
𝑊 ′

𝑖 = Rotate(𝑊𝑖, 𝜃𝑖), 𝑖 = 1, 2,… , 𝑛. (14)

The rotated kernels are then used to convolve with the input feature 
map, and their outputs are combined in a weighted manner: 

𝑌 =
𝑛
∑

𝑖=1
𝜆𝑖(𝑊 ′

𝑖 ∗ 𝑋). (15)

This approach improves the model’s ability to capture features from 
objects with varying orientations while maintaining computational 
efficiency.

5. Results and discussions

5.1. Experimental setting

5.1.1. Datasets
To evaluate the proposed method, we conducted extensive exper-

iments on two newly developed UAV-RIS datasets, UAVid-RIS and 
VDD-RIS. Both datasets contain high-resolution images, all cropped to 
a size of 1024 × 1024 pixels. For both UAVid and VDD, we follow their 
official data splits when generating the RIS versions. All image patches 
are generated based directly on these splits to ensure consistency with 
the original datasets and fair benchmarking.

• UAVid-RIS. This dataset consists of 7035 images, divided into 
3215 for training, 1163 for validation, and 2657 for testing. 
UAVid (Lyu et al., 2020) is designed for UAV-based scene under-
standing in complex urban environments, capturing both static 
and dynamic objects. The dataset features oblique-view aerial im-
agery with a camera angle of approximately 45 degrees, offering 
richer contextual information than nadir-view images. The data 
is collected from UAVs flying at an altitude of around 50 m, 
with high-resolution frames extracted from 4K video recordings. 
The dataset includes diverse street scenes with objects such as 
vehicles, pedestrians, buildings, roads, vegetation, billboards, and 
traffic infrastructure. To ensure meaningful patch selection dur-
ing RIS generation, class-specific minimum area thresholds were 
applied: Building (15%), Tree (20%), Road (5%), Low Vegetation 
(10%), Moving Car (0.4%), Static Car (0.5%), and Human (0.1%).

• VDD-RIS. This dataset contains 1941 images, split into 1269 for 
training, 399 for validation, and 273 for testing. VDD (Cai et al., 
2023) is collected across 23 locations in Nanjing, China, cover-
ing diverse environments, including urban, rural, industrial, and 
natural landscapes. The dataset incorporates variations in camera 
angles, with images captured at 30, 60, and 90 degrees (nadir 
view), allowing for more comprehensive scene representation. 
The drone altitude ranges from 50 to 120 m, ensuring a balance 
between scene complexity and fine-grained details. The dataset 
also introduces temporal and seasonal diversity, with images 
taken at different times of the day and in different seasons. For 
patch filtering, class-specific minimum area thresholds were set 
as follows: Wall (8%), Road (10%), Vegetation (50%), Vehicle 
(0.5%), Roof (20%), and Water (5%).

5.1.2. Implementation details
We implemented our method in PyTorch (Paszke et al., 2019), 

utilising the pre-trained base BERT (Devlin et al., 2019) for language 
processing and the Swin Transformer (Liu et al., 2021) initialised with 
ImageNet-22K (Deng et al., 2009) weights for visual encoding.

All images were resized to 480 × 480 pixels, and no data augmenta-
tion (e.g., rotation, flipping) was applied. Training was conducted with 
a batch size of 8 for 40 epochs on UAVid-RIS and 10 epochs on VDD-
RIS using the AdamW optimiser (Loshchilov and Hutter, 2017) with a 
weight decay of 0.01 and an initial learning rate of 0.0005. Following 
the baseline LAVT (Yang et al., 2022), cross-entropy loss was used for 
optimisation. All experiments were performed on an NVIDIA RTX 5000 
Ada GPU.
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Table 1
Performance comparison of different methods on UAVid-RIS. The table includes Precision at different IoU thresholds (Pr@0.5 to Pr@0.9), mean Intersection over 
Union (mIoU), overall Intersection over Union (oIoU), and the visual and textual encoders used in each method.
 Method Visual encoder Textual encoder Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 mIoU oIoU  
 RIS-DMMI ResNet-101 BERT 79.75 70.19 54.08 36.13 9.26 67.10 76.76 
 LAVT Swin-B BERT 84.45 75.75 59.60 38.71 10.91 69.32 78.76 
 LGCE Swin-B BERT 83.97 74.60 59.69 39.37 11.33 69.52 79.06 
 RMSIN Swin-B BERT 85.71 77.91 64.06 46.52 17.76 72.05 81.10 
 ASDA CLIP-ViT-B CLIP 78.55 69.51 56.38 37.67 10.05 67.17 76.59 
 MAFN Swin-B BERT 85.10 77.76 63.68 44.26 16.33 71.64 80.67 
 AeroReformer Swin-B BERT 86.34 79.07 65.60 47.12 18.52 72.79 81.53 
Table 2
Performance comparison of different methods on VDD-RIS. The table includes Precision at different IoU thresholds (Pr@0.5 to Pr@0.9), mean Intersection over 
Union (mIoU), and overall Intersection over Union (oIoU), and the visual and textual encoders used in each method.
 Method Visual encoder Textual encoder Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 mIoU oIoU  
 RIS-DMMI ResNet-101 BERT 87.08 77.86 62.73 46.13 23.25 72.66 78.06 
 LAVT Swin-B BERT 90.04 86.72 76.01 56.09 34.32 77.80 82.51 
 LGCE Swin-B BERT 89.67 84.13 73.80 53.51 32.47 76.78 82.09 
 RMSIN Swin-B BERT 91.14 85.98 76.38 57.20 35.06 78.22 83.58 
 ASDA CLIP-ViT-B CLIP 90.77 85.98 76.01 57.56 35.79 78.13 81.99 
 MAFN Swin-B BERT 91.51 87.82 79.70 60.89 35.06 79.21 83.97 
 AeroReformer Swin-B BERT 92.99 89.30 81.55 63.47 38.75 80.72 85.38 
Fig. 7. Visual comparison of referring segmentation results on UAVid-RIS 
dataset.

5.1.3. Model evaluation
For a fair comparison with previous methods (Yuan et al., 2024; 

Liu et al., 2024; Yang et al., 2022), we adopted the same evaluation 
metrics, including mean Intersection over Union (mIoU), overall Inter-
section over Union (oIoU), and Precision at the 0.5, 0.6, 0.7, 0.8 and 
0.9 IoU thresholds (Pr@X).

The mIoU measures the average IoU between predicted and ground-
truth masks across all test samples, giving equal weight to both large 
and small objects. In contrast, oIoU favours large objects by computing 
the ratio of the total intersection area to the total union area across 
all test samples. Additionally, Pr@X evaluates model performance at 
8 
Fig. 8. Visual comparison of referring segmentation results on VDD-RIS 
dataset.

different IoU thresholds, reflecting the proportion of successfully pre-
dicted samples at each level. Higher values for these metrics indicate 
better segmentation performance.

In addition to these metrics, we also report the class-wise IoU and 
class-wise mIoU to provide a more detailed analysis of segmentation 
performance across different object categories. Unlike object-based 
mIoU, which is calculated per test sample, class-wise mIoU is computed 
per class rather than per object, ensuring that the evaluation cap-
tures category-level segmentation accuracy instead of object-instance 
accuracy.
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Table 3
Class-wise Intersection over Union (IoU) and mean IoU (mIoU) for different methods on UAVid-RIS.
 Method Building Road Tree Low vegetation Moving car Static car Human mIoU  
 RIS-DMMI 84.48 77.91 79.67 64.08 67.04 50.18 24.11 63.92 
 LAVT 86.87 78.68 80.91 67.95 68.98 53.53 23.75 65.81 
 LGCE 87.58 79.36 80.67 67.97 67.78 58.07 24.01 66.49 
 RMSIN 89.02 84.33 82.01 69.23 72.31 54.79 24.72 68.06 
 ASDA 84.16 80.29 79.81 63.77 59.47 39.22 20.86 61.08 
 MAFN 88.66 83.52 81.67 68.54 71.28 59.29 26.78 68.53 
 AeroReformer 89.12 84.82 82.35 69.45 72.14 60.58 26.68 69.31 
Table 4
Class-wise Intersection over Union (IoU) and mean IoU (mIoU) for different 
methods on VDD-RIS.
 Method Wall Road Vegetation Vehicles Roof Water mIoU  
 RIS-DMMI 65.95 77.21 89.43 66.38 76.77 80.63 76.06 
 LAVT 72.62 82.94 90.04 69.07 81.01 91.30 81.16 
 LGCE 70.63 80.75 89.97 69.42 82.09 90.03 80.48 
 RMSIN 73.16 82.64 89.39 70.11 84.88 90.54 81.79 
 ASDA 72.05 83.72 84.16 60.15 84.84 92.81 79.62 
 MAFN 74.68 82.53 89.70 70.25 84.88 90.94 82.16 
 AeroReformer 76.82 82.57 91.78 70.74 86.21 91.25 83.23 

5.2. UAV referring image segmentation performance

In this section, we evaluate the performance of seven different 
referring image segmentation methods, including RIS-DMMI (Hu et al., 
2023), LAVT (Yang et al., 2022), LGCE (Yuan et al., 2024), RMSIN (Liu 
et al., 2024), ASDA (Yue et al., 2024), MAFN (Shi and Zhang, 2025) and 
the proposed AeroReformer.

5.2.1. Quantitative results
Overall Performance: As shown in Tables  1 and 2, the proposed 

AeroReformer consistently achieves the highest scores across all eval-
uation metrics, demonstrating its superior segmentation capability. In 
UAVid-RIS, AeroReformer achieves an mIoU of 72.79 and an oIoU of 
81.53, surpassing the second-best method, RMSIN, by 0.74 in mIoU and 
0.43 in oIoU. Similarly, on VDD-RIS, AeroReformer achieves an mIoU 
of 80.72 and an oIoU of 85.38, outperforming MAFN by 1.51 in mIoU 
and 1.41 in oIoU. These improvements highlight AeroReformer’s effec-
tiveness in capturing fine-grained segmentation details across different 
datasets.

Precision at Different IoU Thresholds: In terms of precision at varying 
IoU thresholds, Tables  1 and 2 illustrate that AeroReformer consistently 
outperforms the second-best method across all threshold levels. On 
UAVid-RIS, AeroReformer achieves the highest Pr@0.5 score of 86.34, 
surpassing RMSIN by 0.63, and maintains its lead at Pr@0.9 with 
18.52, exceeding RMSIN by 0.76. On VDD-RIS, AeroReformer achieves 
a Pr@0.5 of 92.99, improving upon MAFN by 1.48, and maintains 
the best performance at Pr@0.9 with 38.75, surpassing ASDA by 2.96. 
These improvements confirm AeroReformer’s robustness and reliability 
in maintaining segmentation accuracy under different IoU thresholds.

Class-wise IoU Analysis: A deeper analysis of class-wise IoU scores in 
Tables  3 and 4 further supports AeroReformer’s superior performance. 
On UAVid-RIS, AeroReformer achieves the highest IoU scores in five 
out of seven categories. Compared to the second-best method, MAFN, 
AeroReformer improves static car segmentation by 1.29. MAFN slightly 
outperforms AeroReformer in the human category, but AeroReformer 
still maintains the highest overall mIoU. On VDD-RIS, AeroReformer 
achieves the highest IoU scores in four out of six categories. It surpasses 
second best by 2.14 in wall segmentation and 0.49 in vehicle segmen-
tation. LAVT outperforms AeroReformer in the water category, while 
ASDA performs best in the road category. Despite this, AeroReformer 
achieves the highest overall mIoU of 83.23, improving by 1.07.
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5.2.2. Qualitative results
To further evaluate the segmentation performance of different RIS 

methods, we present qualitative comparisons on UAVid-RIS and VDD-
RIS in Figs.  7 and 8. Each example consists of segmentation results 
from seven different methods: RIS-DMMI, LAVT, LGCE, RMSIN, ASDA, 
MAFN and the proposed AeroReformer, along with the ground truth 
(GT). The visualised results highlight AeroReformer’s ability to produce 
more precise and contextually accurate segmentations.

Results on UAVid-RIS: Fig.  7 illustrates segmentation results for two 
different referring expressions: ‘‘Vehicles parked near building’’ and ‘‘Sev-
eral people riding on the road’’. In the first example, RIS-DMMI, LGCE, 
and ASDA incorrectly classify certain materials in the top-left storage 
yard as vehicles, resulting in inaccurate segmentation. In contrast, 
AeroReformer produces consistent segmentation results that closely 
align with the ground truth. In the second example, which involves 
detecting people riding on the road, RIS-DMMI and LAVT fail to iden-
tify all relevant targets, while RMSIN and ASDA mistakenly classify 
road patches as people. AeroReformer accurately segments the riding 
individuals without misclassifying unrelated elements. These results 
highlight AeroReformer’s effectiveness in distinguishing small objects 
within UAV imagery.

Results on VDD-RIS: Fig.  8 presents segmentation results for two 
different referring expressions: ‘‘Vehicles parked in organised rows’’ and
‘‘Vehicles parked along a narrow street’’. In the first example, all meth-
ods perform well in detecting parked vehicles. Notably, in the top 
right corner, a black car is partially covered under the trees; even 
though the ground truth does not label it, AeroReformer successfully 
detects it, demonstrating its superior ability to capture occluded ob-
jects. In the second example, which depicts vehicles parked along a 
narrow street, RIS-DMMI, LGCE, ASDA, and RMSIN fail to distinguish a 
parked car from surrounding trees, particularly when a car is partially 
covered by foliage. AeroReformer accurately differentiate the vehi-
cles, minimising misclassification. This demonstrates AeroReformer’s 
strong performance in complex urban environments with occlusions 
and varying object scales.

Summary : The qualitative comparisons across UAVid-RIS and VDD-
RIS confirm that AeroReformer produces more precise and contex-
tually accurate segmentations than existing methods. It consistently 
outperforms the second-best method by correctly distinguishing be-
tween similar objects and capturing finer details. These results validate 
AeroReformer’s effectiveness in complex aerial scenes with dynamic 
and static objects.

5.2.3. Generalisation experiments
To further evaluate the generalisability of the proposed AeroRe-

former, we conduct two additional experiments focusing on language 
robustness and domain transfer:

Cross-LLM Evaluation: To assess the model’s robustness to language 
variation, we evaluate all models on descriptions generated by a dif-
ferent MLLM, Llama-3.2-11B-Vision (Grattafiori et al., 2024) using 
the identical prompt. The model is still trained on UAVid-RIS using 
descriptions generated by Qwen2.5-VL-7B (Bai et al., 2025). This setup 
simulates practical deployment scenarios where referring expressions 
may vary depending on the language model used. As shown in Table 
5, AeroReformer maintains strong performance under this shift in lan-
guage domain, achieving the highest scores across all metrics, including 
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Table 5
Performance comparison of different methods on UAVid-RIS using description generated by Llama. The table includes Precision at different IoU thresholds (Pr@0.5 
to Pr@0.9), mean Intersection over Union (mIoU), overall Intersection over Union (oIoU), and the visual and textual encoders used in each method.
 Method Visual encoder Textual encoder Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 mIoU oIoU  
 RIS-DMMI ResNet-101 BERT 73.81 63.98 50.17 33.04 8.05 62.24 74.09 
 LAVT Swin-B BERT 73.32 62.29 45.62 27.29 5.68 60.05 69.90 
 LGCE Swin-B BERT 70.76 60.71 45.43 26.95 6.10 58.98 71.87 
 RMSIN Swin-B BERT 75.20 68.87 57.43 41.29 15.13 63.19 78.40 
 ASDA CLIP-ViT-B CLIP 51.41 46.26 38.01 26.38 7.68 44.16 42.91 
 MAFN Swin-B BERT 77.72 69.89 56.57 39.48 13.32 65.56 77.33 
 AeroReformer Swin-B BERT 82.80 75.76 62.93 45.35 16.79 69.77 80.07 
Fig. 9. Model generation ability test on UAV images captured at the University 
of Warwick.

a mIoU of 69.77 and Pr@0.5 of 82.80. Despite the noticeable perfor-
mance drop across all models compared to their original test setting, 
AeroReformer demonstrates the best generalisation, outperforming the 
next-best method (MAFN) by +4.21 in mIoU and +5.08 in Pr@0.5. 
This suggests that the proposed AeroReformer is more resilient to shifts 
in linguistic style and semantics, even without explicit re-training. 
ASDA, which uses CLIP-based encoders, performs poorly under this 
variation, likely due to limited language-text alignment adaptation in 
aerial contexts. Overall, these results affirm AeroReformer’s robustness 
in handling diverse linguistic inputs, a desirable trait for real-world 
UAV-RIS applications.

Cross-Location Testing : We test the generalisation ability of AeroRe-
former on UAV images captured on the University of Warwick campus. 
These images differ significantly from UAVid-RIS in terms of geo-
graphic location, flight altitude, and camera angle. This experiment 
demonstrates the model’s adaptability to diverse environmental and 
acquisition conditions without retraining or fine-tuning. Specifically, 
the model accurately segments parked vehicles under occlusions (Fig. 
9a,c), moving cars on curved roads (Fig.  9b), and detailed structures 
such as multi-faceted buildings (Fig.  9d). It also successfully highlights 
fine-grained objects like two-lane roads (Fig.  9e) and distinguishes 
vegetation types even under diverse lighting and texture conditions 
(Fig.  9f). These qualitative results confirm AeroReformer’s strong gen-
eralisation capacity to novel geographic settings and unseen flight 
parameters.

The results from both experiments highlight the flexibility of the 
proposed approach and its potential for real-world deployment in 
varied settings.

5.3. Ablation study

To analyse the contribution of each proposed module in AeroRe-
former, we conduct an ablation study on the VDD-RIS dataset. Table 
10 
Table 6
Ablation study results on the VDD-RIS dataset. The table evaluates the impact 
of RAMSF and VLCAM, showing Precision at IoU thresholds Pr@0.5, Pr@0.7, 
and Pr@0.9, and mean Intersection over Union (mIoU). A checkmark (✓) 
indicates the inclusion of a module.
 RAMSF VLCAM Pr@0.5 Pr@0.7 Pr@0.9 mIoU 
 – – 89.30 73.06 28.04 76.09 
 – ✓ 90.04 78.60 36.53 78.27 
 ✓ – 91.14 77.86 36.16 78.83 
 ✓ ✓ 92.99 81.55 38.75 80.72 

6 presents the results when replacing the Rotation-Aware Multi-Scale 
Fusion (RAMSF) decoder and the Vision-Language Cross Attention 
Module (VLCAM). The evaluation is performed using Pr@0.5, Pr@0.7, 
Pr@0.9 and mIoU.

Baseline: For the baseline configuration (i.e., without RAMSF and 
VLCAM), we retain the overall model structure while replacing the 
VLCAM module with a sentence feature vector globally pooled from 
all words. As for the RAMSF, in the absence of a decoder, we replace it 
with the module from LAVT (Yang et al., 2022). As expected, the per-
formance drops notably across all metrics, achieving 89.30 in Pr@0.5, 
73.06 in Pr@0.7, 28.04 in Pr@0.9, and 76.09 in mIoU. These results 
demonstrate the limited capacity of the backbone alone in handling 
fine-grained and cross-modal reasoning tasks.

VLCAM : With VLCAM included, improvements of +0.74 in Pr@0.5, 
+5.54 in Pr@0.7, +8.49 in Pr@0.9, and +2.18 in mIoU are achieved 
compared to the baseline. This indicates that VLCAM significantly 
enhances vision-language interaction, particularly under stricter IoU 
thresholds.

RAMSF : When RAMSF is included, gains of +1.84 in Pr@0.5, +4.80 
in Pr@0.7, +8.12 in Pr@0.9, and +2.74 in mIoU are observed. These 
improvements confirm the effectiveness of RAMSF in multi-scale spatial 
feature fusion and detail preservation.

AeroReformer : The full model, with both RAMSF and VLCAM in-
cluded, achieves the best overall performance: 92.99 in Pr@0.5, 81.55 
in Pr@0.7, 38.75 in Pr@0.9, and 80.72 in mIoU. This represents 
improvements of +3.69 (Pr@0.5), +8.49 (Pr@0.7), +10.71 (Pr@0.9), 
and +4.63 (mIoU) over the baseline. These results clearly demonstrate 
the complementary benefits of RAMSF and VLCAM.

6. Conclusions

In this work, we proposed a fully automated dataset construc-
tion pipeline that transforms pre-existing UAV segmentation datasets 
into referring segmentation benchmarks. The designed pipeline lever-
ages segmentation masks and large language models to generate di-
verse and contextually accurate referring expressions. This method 
was applied to UAVid and VDD, producing UAVid-RIS and VDD-RIS, 
two novel datasets that expand the applicability of vision-language 
segmentation in UAV imagery. In addition, we introduced AeroRe-
former, a novel framework for referring image segmentation that inte-
grates the Rotation-Aware Multi-Scale Fusion (RAMSF) decoder and the 
Vision-Language Cross-Attention Module (VLCAM) to enhance spatial 
feature fusion and cross-modal alignment. AeroReformer consistently 
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outperforms comparative methods on UAVid-RIS and VDD-RIS, demon-
strating superior segmentation accuracy in challenging UAV environ-
ments with occlusions, scale variations, and fine-grained object details. 
The ablation study further validates the necessity of RAMSF and VL-
CAM, showing that their combination significantly boosts segmentation 
performance.

While AeroReformer achieves significant improvements, it still re-
lies on a separate vision encoder for segmentation. Future work should 
explore the integration of segmentation capabilities directly into large 
language models (LLMs), eliminating the need for external vision mod-
ules.
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