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As a novel and challenging task, referring segmentation combines computer vision and natural language
processing to localise and segment objects based on textual descriptions. While Referring Image Segmentation
(RIS) has been extensively studied in natural images, little attention has been given to aerial imagery,
particularly from Unmanned Aerial Vehicles (UAVs). The unique challenges of UAV imagery, including
complex spatial scales, occlusions, and varying object orientations, render existing RIS approaches ineffective.
Keywords: A key limitation has been the lack of UAV-specific datasets, as manually annotating pixel-level masks and
UAV-RIS generating textual descriptions is labour-intensive and time-consuming. To address this gap, we design an
MLLM automatic labelling pipeline that leverages pre-existing UAV segmentation datasets and the Multimodal Large
Referring image segmentation Language Models (MLLM) for generating textual descriptions. Furthermore, we propose Aerial Referring
Deep learning Transformer (AeroReformer), a novel framework for UAV Referring Image Segmentation (UAV-RIS), featuring
UAV a Vision-Language Cross-Attention Module (VLCAM) for effective cross-modal understanding and a Rotation-
Aware Multi-Scale Fusion (RAMSF) decoder to enhance segmentation accuracy in aerial scenes. Extensive
experiments on two newly developed datasets demonstrate the superiority of AeroReformer over existing
methods, establishing a new benchmark for UAV-RIS. The datasets and code are publicly available at https:

//github.com/lironui/AeroReformer.

1. Introduction

Referring Image Segmentation (RIS) aims to segment target objects
in an image based on natural language expressions that describe their
attributes or context (Li et al., 2018; Ding et al., 2022). Unlike tradi-
tional image segmentation methods that rely on predefined semantic
labels and operate within a constrained set of categories (Simonyan
and Zisserman, 2014; Ronneberger et al., 2015; Wang et al., 2022),
referring image segmentation enables open-domain segmentation by
utilising free-form textual descriptions as guidance (Hu et al., 2016;
Liu et al., 2017; Lai et al., 2024). This capability significantly expands
its applicability, allowing for more flexible and context-aware interpre-
tation of imagery. In terms of the aerial scenario, UAV Referring Image
Segmentation (UAV-RIS) has broad applications in domains such as
text-guided environmental monitoring (Sharma and Arya, 2022), land
cover classification (Mienna et al., 2022), precision agriculture (Tahir
et al, 2023), urban planning (Shao et al., 2021) and risk assess-
ment (Trepekli et al., 2022), where identifying and segmenting specific
objects or regions based on natural language descriptions is crucial. By
leveraging the multimodal integration of vision and language, UAV-RIS
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can enhance the precision and adaptability of spatial analysis, making
it easier to extract detailed, context-specific information from complex
aerial imagery (see Fig. 1).

Recently, benefiting from the open-source datasets including Ref-
SegRS (Yuan et al., 2024), RRSIS-D (Liu et al., 2024) and RISBench
(Dong et al., 2024), the Referring Remote Sensing Image Segmentation
(RRSIS) has attracted more and more attention (Lei et al., 2024; Shi and
Zhang, 2025; Zhang et al., 2025; Chen et al., 2025; Li et al., 2025). De-
spite these promising advances, UAV-RIS poses additional complexities
due to the lower altitudes and agile motion of UAV platforms, leading to
more pronounced occlusions, rapidly shifting viewpoints, and varying
scene contexts (Lyu et al., 2020; Li and Zhao, 2024; Zhang et al.,
2023). Moreover, building a large-scale, high-quality UAV dataset for
referring segmentation remains labour-intensive, underscoring the need
for automated or semi-automated approaches to annotation. Therefore,
it remains under-investigated in aerial imagery, particularly for data
captured by UAVs.

This paper addresses the challenges of UAV-RIS by introducing
UAV-specific datasets and a novel framework, expanding the scope
of referring image segmentation to UAV imagery and establishing
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Fig. 1. The shifting viewpoints and varying scene contexts are very common
for UAV-captured images.

a foundation for future research. Specifically, we develop an auto-
matic labelling pipeline that leverages open-source and pre-existing
UAV segmentation datasets along with a Multimodal Large Language
Model (MLLM). In our data generation process, segmentation masks
are obtained from existing dataset annotations, and a cropped image
paired with a well-designed prompt is fed into the MLLM to generate
textual descriptions of the target object. This approach streamlines the
annotation and description generation process, reducing the time and
effort required for manual labelling.

Meanwhile, UAV imagery presents unique challenges compared
to natural images, including significant scale variations, diverse ob-
ject orientations, and complex background clutter (Lyu et al., 2020;
Li and Zhao, 2024; Zhang et al.,, 2023). To effectively bridge the
gap between visual and linguistic modalities, we propose a UAV-
specific RIS model, ie. AeroReformer, featuring a Vision-Language
Cross-Attention Module (VLCAM) for robust cross-modal understand-
ing and a Rotation-Aware Multi-Scale Fusion (RAMSF) decoder to
address spatial variations in UAV imagery. VLCAM dynamically aligns
visual features with linguistic queries, ensuring that textual descrip-
tions are accurately mapped to corresponding image regions, even
under complex conditions such as occlusions and scale variations.
Meanwhile, RAMSF enhances the segmentation process by incorporat-
ing rotation-aware convolutions and multi-scale feature aggregation,
preserving orientation consistency while maintaining high-resolution
spatial details. The integration of these two modules enables our model
to outperform existing methods, achieving state-of-the-art results on
UAVid-RIS and VDD-RIS, two datasets generated by our proposed
pipeline. The main contribution of this paper can be summarised as:

(1) An automatic dataset generation framework is designed, en-
abling the transformation of labelled segmentation datasets into
their LLM-aided counterparts.
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(2) Two UAV-RIS datasets, UAVid-RIS and VDD-RIS, are constructed
from open-source datasets, providing a benchmark for UAV-RIS
research and evaluation.

(3) A novel UAV-RIS network, AeroReformer, is designed, incorpo-
rating a Vision-Language Cross-Attention Module (VLCAM) and
a Rotation-Aware Multi-Scale Fusion (RAMSF) decoder, achiev-
ing state-of-the-art performance on UAVid-RIS and VDD-RIS.

The remainder of this paper is organised as follows: Section 2 re-
views related work. Section 3 presents the UAV referring segmentation
dataset generation pipeline. Section 4 introduces the proposed AeroRe-
former model, explaining its architecture. Section 5 describes the ex-
perimental setup, dataset details, and evaluation metrics and presents
a performance analysis. Finally, Section 6 concludes the research and
discusses potential directions for future research.

2. Related work
2.1. Referring image segmentation for natural images

RIS is a fundamental task in vision-language understanding, where
the goal is to segment objects in an image based on a given natural
language expression (Li et al., 2018; Yu et al., 2016, 2018). This task
demands a fine-grained alignment between textual descriptions and
visual features to correctly localise and delineate the referenced objects.
Compared to conventional segmentation tasks that rely on predefined
categories, RIS enables a more flexible and user-specific segmentation
process.

In the early stages, initial RIS models relied primarily on Convolu-
tional Neural Networks (CNNSs) to extract visual features and Recurrent
Neural Networks (RNNs) to process textual descriptions (Li et al., 2018;
Hu et al., 2016; Nagaraja et al., 2016). These models performed feature
fusion by concatenating visual and linguistic representations before
feeding them into a segmentation head. Specifically, Hu et al. (2016)
first introduced RIS to address the limitations of traditional semantic
segmentation when handling complex textual descriptions. Later, Li
et al. (2018) and Nagaraja et al. (2016) explored bidirectional inter-
actions between visual and textual features, improving the multimodal
understanding of objects through structured representations. Further
advancements introduced dynamic multimodal networks, such as the
work by Margffoy-Tuay et al. (2018), which incorporated recursive
reasoning mechanisms to enhance the integration of linguistic and
visual information.

As RIS models evolved, researchers recognised the importance of
cross-modal feature alignment, leading to the introduction of attention-
based strategies (Shi et al., 2018; Ye et al.,, 2019; Hu et al., 2020).
For example, Shi et al. (2018) introduced a keyword-aware segmenta-
tion model, refining object-region relationships based on key linguistic
cues. These approaches significantly improved object localisation and
contextual interpretation in RIS tasks. Ye et al. (2019) proposed a cross-
modal self-attention module to capture long-range dependencies be-
tween textual and visual elements, improving multimodal fusion. Sim-
ilarly, Hu et al. (2020) developed a bidirectional cross-modal attention
mechanism, enabling deeper interaction between the modalities.

The recent emergence of Transformer-based architectures has sig-
nificantly advanced RIS, offering global modelling capabilities and su-
perior multimodal integration. Unlike CNN-based methods, which rely
on local receptive fields, Transformers enable long-range dependencies
and self-attention mechanisms, making them particularly effective for
RIS (Ding et al., 2022; Yang et al., 2022; Liu et al., 2023). Several
notable works have leveraged this architecture. VLT designed a query-
based Transformer framework, enriching textual comprehension by
dynamically generating language query embeddings (Ding et al., 2022).
LAVT proposed language-aware attention mechanisms to enhance early
fusion between the two modalities, enabling more precise segmenta-
tion (Yang et al., 2022). GRES further refined multimodal alignment by
explicitly modelling dependencies between different textual tokens and
visual regions, leading to more robust segmentation performance (Liu
et al., 2023).
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2.2. Referring remote sensing image segmentation

Referring Remote Sensing Image Segmentation (RRSIS) is a spe-
cialised task that aims to extract pixel-wise segmentation masks from
remote sensing imagery based on natural language expressions (Yuan
et al., 2024; Liu et al., 2024). While it has significant applications in
environmental monitoring, land cover classification, disaster response,
and urban planning (Sun et al., 2022; Li et al., 2024), progress in this
field hinges critically on suitable datasets that capture the complexity
of remote sensing imagery. One of the earliest datasets was RefSegRS,
introduced in Yuan et al. (2024), which enabled initial efforts to adapt
RIS methods from natural images to the remote sensing domain. To
enhance the diversity and improve the generalisability of trained mod-
els, Liu et al. (2024) proposed RRSIS-D, a substantially larger dataset
for benchmarking mainstream RIS models in remote sensing image
segmentation. More recently, RISBench (Dong et al., 2024) has also
been introduced to further advance the development and evaluation
of RRSIS methods.

Building on these datasets, recent RRSIS research has explored
strategies to address scale variations, complex backgrounds, and orien-
tation diversity. LGCE (Yuan et al., 2024) pioneered a language-guided
cross-scale enhancement module to fuse shallow and deep features
for improved segmentation accuracy, whereas (Liu et al., 2024) pro-
posed the Rotated Multi-Scale Interaction Network (RMSIN), which
integrates intra-scale and cross-scale interactions alongside rotated con-
volutions to better handle directional variations. Beyond scale-aware
models, Pan et al. (2024) analysed the implicit optimisation mech-
anisms in existing models and proposed an explicit affinity align-
ment approach, incorporating a new loss function to improve textual-
visual feature interaction. More recent studies have introduced refined
image-text alignment strategies to improve RRSIS performance. Specif-
ically, FIANet (Lei et al., 2024) introduced a fine-grained alignment
module with object-positional enhancement, integrating a text-aware
self-attention mechanism to refine segmentation accuracy. Similarly,
CroBIM (Dong et al., 2024) leveraged a context-aware prompt mod-
ulation module, which optimises post-fusion feature interactions and
employs a mutual-interaction decoder to refine segmentation masks.
Recently, SBANet (Li et al., 2025) introduced a bidirectional align-
ment mechanism and a scale-wise attention module to enhance mutual
guidance between vision and language features, effectively refining
segmentation masks in referring remote sensing image segmentation.
BTDNet (Zhang et al., 2025) employs a bidirectional spatial correlation
module and a target-background twin-stream decoder to improve mul-
timodal alignment and fine-grained object differentiation, achieving
improved segmentation performance.

2.3. Visual grounding for aerial images

Another active vision-and-language research in the remote sensing
community is visual grounding for aerial images, focusing on localising
target objects within aerial scenes using natural language queries (Sun
et al.,, 2022; Zhao et al.,, 2021; Zhan et al., 2023). In contrast to
RRSIS, which demands detailed pixel-level masks, visual grounding
is primarily concerned with identifying object-level regions, typically
represented as bounding boxes (Sun et al., 2022). This task leverages
the unique characteristics of aerial imagery, where targets often exhibit
complex spatial relationships and may not be visually prominent due
to scale variations and cluttered backgrounds.

Early frameworks, such as GeoVG (Sun et al.,, 2022), pioneered
this approach by integrating a language encoder that captures geospa-
tial relationships with an image encoder that adaptively attends to
aerial scenes. By fusing these modalities, GeoVG established a one-
stage process that effectively translates natural language cues into
object localisation. Building on this foundation, subsequent models
have introduced advanced fusion strategies. For instance, modules
like the Transformer-based Multi-Granularity Visual Language Fusion
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(MGVLF) (Zhan et al., 2023) exploit both multi-scale visual features
and multi-granularity textual embeddings, resulting in more discrimi-
native representations that address the challenges posed by large-scale
variations and busy backgrounds. Vision-Semantic Multimodal Rep-
resentation (VSMR) enhanced multi-level feature integration, refining
how visual and textual features are jointly processed to improve locali-
sation robustness (Ding et al., 2024). Further improvements have been
achieved through progressive attention mechanisms. The Language-
guided Progressive Visual Attention (LPVA) framework, for example,
dynamically adjusts visual features at various scales and levels, en-
suring that the visual backbone concentrates on expression-relevant
information (Li et al., 2024). This is complemented by multi-level
feature enhancement decoders, which aggregate contextual information
to boost feature distinctiveness and suppress irrelevant regions.

3. UAV referring segmentation dataset generation

Although several RRSIS datasets have been introduced, they pre-
dominantly focus on vertically captured (nadir-view) satellites and
aerial imagery, limiting their applicability to UAV-based scenarios.
Unlike satellite imagery, UAVs operate at lower altitudes with dynamic
viewing angles, resulting in significant variations in object appearance
due to oblique perspectives, occlusions, and scale distortions. These
factors make existing RRSIS datasets insufficient for UAV-RIS tasks,
where diverse viewpoints and fine-grained scene details are crucial for
accurate segmentation. To address this gap, we introduce a UAV-RIS
dataset generation pipeline, ensuring more realistic and comprehensive
benchmarking for UAV-based vision-language tasks.

3.1. Dataset construction and analysis

To advance UAV-RIS, we present a fully automated pipeline that
leverages pre-existing UAV segmentation datasets. Unlike traditional
approaches requiring manual annotations, our pipeline efficiently gen-
erates language-vision pairs by integrating segmentation masks with
large language models. The data generation process, as shown in Fig.
2, is structured as follows:

+ Step 1: Segmentation-based Cropping.

Given a pre-labelled UAV segmentation dataset, images and their
corresponding masks are first partitioned into 1024 x 1024 patches.
To ensure meaningful segmentation patches, we apply a filtering
mechanism based on class presence and distribution. For each
patch, the class distribution is computed by analysing the pixel
proportions of predefined categories such as buildings, trees,
roads, and vehicles. Patches containing only a single dominant
class (occupying more than 70% of the patch) or those with
minimal class representation (below predefined thresholds) are
discarded. This step enhances dataset diversity and ensures the
presence of multiple meaningful classes in each selected patch.
Step 2: Vision-Language Description Generation.

Once cropped patches are obtained, the segmented regions are
processed using Qwen2.5-VL-7B (Bai et al., 2025), a vision-
language model capable of generating concise and context-aware
descriptions for detected objects. The model takes an image patch
as input, along with a predefined prompt specifying the target
object class. Each prompt ensures the inclusion of the relevant ob-
ject category while avoiding semantically conflicting terms. The
object categories vary depending on the pre-labelled segmenta-
tion dataset used. Each dataset’s predefined classes are utilised to
generate corresponding descriptions, ensuring alignment with its
original annotations. Tailored instructions are provided for each
category to produce accurate and concise textual descriptions.
To maintain consistency, the model operates under a controlled
generation setting where responses are constrained to a maximum
of 10 words. Additionally, the prompt explicitly instructs the
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You are a senior expert specializing in UAV image analysis.
Your task is to provide clear and precise descriptions of detected targets

in a single description.

Keep each description within 10 words.

User
® Describe vegetation, include keyword: 'vegetation' and avoid forbidden
words: 'water', 'waters', 'roof', 'roofs', 'wall', 'walls', 'road', 'roads',

'vehicle', 'vehicles’.

I atiing

language-vision pairs

v
@ ——— Vegetation includes trees and shrubs along the canal banks,

Qwen2.5-VL

Fig. 2. The automatic UAV referring segmentation dataset generation pipeline.
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Fig. 3. Word cloud for top 100 words within the expressions of (a) UAVid-RIS
and (b) VDD-RIS.

model to avoid irrelevant or misleading terms, ensuring that
the generated descriptions remain semantically aligned with the
visual content. The processed text-image pairs form the basis of
the final dataset, enabling high-quality referring segmentation in
UAV imagery.

Step 3: Automatic Description Refinement.

To maintain dataset consistency and clarity, we implement a
text-cleaning process that removes ambiguous or uninformative
phrases, such as “no visible”. This automatic post-processing step
ensures that all descriptions remain meaningful and directly cor-
respond to the visual content of the segmented region. Finally, the
annotations are formatted to align with the RefCOCO (Lin et al.,
2014) dataset structure, enhancing compatibility with existing re-
ferring segmentation models and facilitating seamless integration
into vision-language benchmarks.

Our proposed pipeline has been applied to two widely used UAV
segmentation datasets, UAVid (Lyu et al., 2020) and VDD (Cai et al.,
2023), to generate their corresponding referring segmentation versions,
namely UAVid-RIS and VDD-RIS. By leveraging the pre-existing seg-
mentation annotations, our approach automatically extracts meaningful
patches and generates language descriptions for target object classes
within each selected patch. This transformation enables the datasets to
be directly used for vision-language tasks, expanding their applicability.

To gain insights into the linguistic and semantic characteristics
of the generated dataset, we present a word cloud of the 100 most
frequent words in Fig. 3, offering an overview of the variety of object
descriptions. Additionally, Fig. 4 shows the image category distribution,
providing a general understanding of the dataset composition and the
occurrence of different object categories in UAVid-RIS and VDD-RIS.

3.2. Advantages and disadvantages of the designed pipeline

The designed pipeline offers several advantages that make it highly
effective for UAV-RIS tasks, including:

Fully Automated Process.

The dataset generation pipeline is entirely automatic, eliminat-
ing the need for manual annotations. This significantly reduces
human effort and makes it highly scalable for large-scale datasets.
Leverages Pre-existing Datasets.

Instead of requiring new annotations, the method takes advantage
of already labelled segmentation datasets, making it efficient and
cost-effective.

Multi-Label Representation.

A single image can have multiple referring expressions since
it may contain multiple object categories, providing a richer
semantic understanding and enabling a more comprehensive in-
terpretation of the scene.

Scalable for Large Datasets.

The fully automatic pipeline allows for the generation of large-
scale datasets without significant computational overhead, mak-
ing it ideal for deep learning applications that require vast
amounts of training data.

Diverse Language Descriptions.

Since the dataset’s descriptions are generated by a large language
model, it provides various expressions for the same object cate-
gory. This enhances the dataset’s linguistic diversity, making it
more robust for vision-language models.

At the same time, there are also certain limitations that should be
considered, including:
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» Lack of Fine-Grained Object Features.

The descriptions generated by the language model focus on object
categories rather than detailed attributes such as colour, texture,
shape, or exact dimensions. This may limit the dataset’s applica-
bility for fine-grained vision tasks. Additionally, although seman-
tically conflicting words are explicitly excluded in the prompt, the
model may still occasionally include them in the generated text,
leading to potential inconsistencies in the descriptions.

Limited Spatial and Positional Context.

While the dataset retains spatial and positional information, it is
provided at the class level rather than for individual objects. Since
the annotations correspond to entire object categories rather than
distinct instances, precise localisation of single objects is not
explicitly available.

Data Quality Depends on the Pre-Existing Dataset.

The overall quality of the generated dataset is inherently depen-
dent on the accuracy and granularity of the segmentation dataset.
If the segmentation labels are noisy, incomplete, or overly coarse,
it may negatively impact the quality of the generated language
descriptions and corresponding annotations.

Despite these limitations, the generated dataset provides a scalable
and efficient solution for vision-language learning in UAV imagery,

making it a valuable resource for automatic referring segmentation.
As the first publicly available dataset for UAV-RIS, it establishes a
foundational benchmark for future research in this field. All data
generation code will be openly released to facilitate research and drive
advancements in the remote sensing community.

4. Methodology
4.1. Problem formulation

This study aims to tackle the challenge of referring image segmen-
tation in UAV imagery, where the objective is to generate an accurate
segmentation mask for a target category based on a given natural
language description. Formally, let I € R#*WXC denote an aerial
image, where H, W, and C correspond to the image height, width, and
number of channels, respectively. A textual query T = {t.1,,....t5}
serves as the semantic reference, where N represents the number of
words or tokens in the description.

The goal is to predict a binary segmentation mask O € {0, 1}
where each pixel p € I is classified as either belonging to the category
described by T or not. Given a dataset 2 = {(I;,T;,G;)} ,Ii ", where
G,; € {0, 1}*W represents the corresponding ground truth mask and
Num is the total number of samples, the objective is to develop a

HxwW
)
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Fig. 6. Pipeline of the Vision-Language Cross-Attention Module (VLCAM).

function f that maps the image-text pair (I,T) to O by effectively
learning cross-modal associations between linguistic descriptions and
visual features.

4.2. Overview of the architecture

The overall architecture of our proposed AeroReformer is depicted
in Fig. 5. Our AeroReformer builds upon LAVT (Yang et al., 2022),
maintaining its encoders e.g., Swin Transformer (Liu et al., 2021) and
BERT (Devlin et al., 2019) for extracting multi-modal inputs while
improving vision-language fusion and mask prediction. Meanwhile, we
propose a vision-language cross-attention fusion module, enhancing
the interaction between visual and linguistic features. Additionally, we
introduce a rotation-aware multi-scale fusion decoder, allowing better
adaptation to aerial imagery with varying orientations.

4.2.1. Vision-language cross-attention fusion module

To effectively integrate linguistic and visual information, we in-
troduce a vision-language cross-attention fusion module that enhances
cross-modal feature interaction, as shown in Fig. 6. This module re-
places the Pixel-Word Attention Module (PWAM) with a more struc-
tured mechanism that utilises multi-head cross-attention to improve
feature alignment between textual and visual representations.

Given an input aerial image I € R*WXC and a natural language
expression T = {t,,1,,...,t5}, our model extracts corresponding visual
and linguistic features using hierarchical encoders. Let F,, € RF'W'*Cy
denote the visual features extracted from the image, where H'W’
represents the spatial dimension of the feature map and C) is the
number of visual feature channels. Similarly, let F; € RVXCL represent
the linguistic features extracted from the text, where N is the number
of tokens, and C; is the language feature dimension.

To facilitate cross-modal interactions between vision and language,
we first project the features into a common embedding space using
convolutional layers:

QV =49 <%8<(Fv)> 5
K, =% K(Fp). @
V=€ (Fp).

represents the 1D convolution operation, .# denotes instance normal-
isation. Cy represents the key-query dimension, while C;, denotes the
value dimension. The query features Q, are extracted from vision
features F;, using a 1D convolution followed by instance normalisation.
The key K; and value V; are computed from the language features

F; using separate 1D convolutional layers. The positional encoding is
enabled for query features:

Oy =0y + Py, (2

where P, is a learnable positional encoding that provides spatial
awareness to the vision features.

Next, we compute multi-head attention scores using scaled dot-
product attention, while each head can be defined as:

KT
Attn = softmax (QV—L> , 3
VCxk

where the dot product of queries and keys is scaled by 1/Cy to stabilise
gradients and prevent extreme values. The attended visual-language
features are then computed as:

Fyp =7 (€ p(Attm - V})). @

Thereafter, a Feed-Forward Network (FFN) is applied, consisting of
two convolutional layers with ReLU activation:

Frppy = 3(%10(9(%((5)10(FVL)))) + FVL)' 5)

A residual connection is added between the input and output of the
FFN to stabilise training and facilitate feature propagation. Specifically,
the output of the FFN is element-wise added to the input before
being passed through a subsequent layer normalisation operation .Z.
This mechanism follows the standard transformer design pattern and
helps preserve important information while allowing the network to
learn complex transformations. The cross-modal representation Frpy €
RH'W'*Cy is then fused with the vision features via element-wise
interaction:

Frusea = Fppn © Z(Fy), (6)

where O represents element-wise multiplication, generating enriched
visual features that incorporate linguistic information. Projection &
including convolution, GeLU activation and dropout is applied to vi-
sion features to stabilise distributions. Finally, the fused representation
undergoes a final projection :

Fout = ‘@(FFused)' (7)

4.2.2. Rotation-aware multi-scale fusion decoder

To take full advantage of extracted features, the rotation-aware
multi-scale fusion decoder is designed with multi-scale feature aggre-
gation operations. Specifically, given a set of encoder feature maps at
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different scales:
H W
Xl e RBXC]XTXT’

H W
BXCyX = X—
X, e RP7278 7%,

(8

H W
BXCyx X

X3 eR 3716776,

H W

X, € RBxC4x§xﬁ'

where X; represents the feature maps at different resolutions, and
C; denotes the corresponding number of channels. To maintain scale
consistency, lateral transformations are applied using 1 x 1 convolutions
first:

L, = Z(6,p(X;), i€{l,2,3,4} ()]

where %, is 2D convolutions.
Thereafter, upsampled decoder feature maps Y; are concatenated
with the corresponding lateral feature maps obtained from the encoder:

F, = Concat(L,,Y;), i€ {1,2,3} 10)

This concatenated feature maps are then refined using either a
channel attention module (i = 2, 3) or a spatial attention module (i = 1),
which leverages L2 normalisation and adaptive weighting instead of
traditional softmax-based dot-product attention, reducing both time
and memory costs based on our previous work (Li et al., 2021a,b). The
refined feature representation is given by:

V,+QO0 KOV
F(’:A=X+yc-reshape 2 Vs ( ) , a1
HxW+00Y,K, +¢
V.+ 00 KOV
FS’A:X+yS~reshape XV +00( ) R (12)
HXxW+00Y K, +¢

where X is the input feature map, and Q, K, and V are the query, key,
and value matrices, respectively, obtained from learned projections of
X. The terms ), V, and ) V, represent aggregations of the value
features across spatial and channel dimensions, respectively. ¢ is a small
constant added for numerical stability. The scaling factors y, and y,
are learnable parameters for the channel and spatial attention mecha-
nisms. Here, ® denotes element-wise multiplication with broadcasting
as necessary. The operations involving Q, K, and V follow batch-
wise summations over intermediate dimensions, consistent with tensor
contraction patterns implemented using PyTorch’s einsum function.
The “reshape” operation restores the feature tensor to its original
spatial dimensions (H,W). Please refer to the code for the detailed
implementation.

This formulation integrates both self-attention mechanisms, effec-
tively capturing feature correlations across different dimensions while
maintaining computational efficiency through L2-normalised weight-
ing. Specifically, the channel attention module is applied to the first two
fused feature maps, as they contain multiple channels representing hier-
archical multi-scale information. This mechanism models dependencies
between different channels, allowing the network to dynamically recal-
ibrate inter-channel relationships and enhance contextual coherence.
Meanwhile, for the final fused feature map, which is at the highest
resolution and contains detailed spatial semantics, the spatial attention
mechanism is employed. This ensures that long-range pixel dependen-
cies are effectively captured, refining feature distributions across spatial
dimensions.

To further improve feature representation across different orien-
tations, which frequently occur in UAV imagery, we incorporate the
Adaptive Rotated Convolution (ARC) module (Pu et al., 2023) into the
fused features. Unlike standard convolution, where a fixed kernel is
applied to all inputs, ARC adapts its filters to align with the directional
variations present in imagery. Specifically, given an input feature map
X, the routing function .# predicts a set of rotation angles # and
corresponding weights A:

0,1 =7(X). 13)
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Each of the n convolution kernels W; is then rotated according to its
corresponding predicted angle:

W! = Rotate(W,0,), i=1.2..,n. (14)

The rotated kernels are then used to convolve with the input feature
map, and their outputs are combined in a weighted manner:

Y = Z LW % X). (15)

~

This approach improves the model’s ability to capture features from
objects with varying orientations while maintaining computational
efficiency.

5. Results and discussions
5.1. Experimental setting

5.1.1. Datasets

To evaluate the proposed method, we conducted extensive exper-
iments on two newly developed UAV-RIS datasets, UAVid-RIS and
VDD-RIS. Both datasets contain high-resolution images, all cropped to
a size of 1024 x 1024 pixels. For both UAVid and VDD, we follow their
official data splits when generating the RIS versions. All image patches
are generated based directly on these splits to ensure consistency with
the original datasets and fair benchmarking.

» UAVid-RIS. This dataset consists of 7035 images, divided into
3215 for training, 1163 for validation, and 2657 for testing.
UAVid (Lyu et al., 2020) is designed for UAV-based scene under-
standing in complex urban environments, capturing both static
and dynamic objects. The dataset features oblique-view aerial im-
agery with a camera angle of approximately 45 degrees, offering
richer contextual information than nadir-view images. The data
is collected from UAVs flying at an altitude of around 50 m,
with high-resolution frames extracted from 4K video recordings.
The dataset includes diverse street scenes with objects such as
vehicles, pedestrians, buildings, roads, vegetation, billboards, and
traffic infrastructure. To ensure meaningful patch selection dur-
ing RIS generation, class-specific minimum area thresholds were
applied: Building (15%), Tree (20%), Road (5%), Low Vegetation
(10%), Moving Car (0.4%), Static Car (0.5%), and Human (0.1%).
VDD-RIS. This dataset contains 1941 images, split into 1269 for
training, 399 for validation, and 273 for testing. VDD (Cai et al.,
2023) is collected across 23 locations in Nanjing, China, cover-
ing diverse environments, including urban, rural, industrial, and
natural landscapes. The dataset incorporates variations in camera
angles, with images captured at 30, 60, and 90 degrees (nadir
view), allowing for more comprehensive scene representation.
The drone altitude ranges from 50 to 120 m, ensuring a balance
between scene complexity and fine-grained details. The dataset
also introduces temporal and seasonal diversity, with images
taken at different times of the day and in different seasons. For
patch filtering, class-specific minimum area thresholds were set
as follows: Wall (8%), Road (10%), Vegetation (50%), Vehicle
(0.5%), Roof (20%), and Water (5%).

5.1.2. Implementation details

We implemented our method in PyTorch (Paszke et al., 2019),
utilising the pre-trained base BERT (Devlin et al., 2019) for language
processing and the Swin Transformer (Liu et al., 2021) initialised with
ImageNet-22K (Deng et al., 2009) weights for visual encoding.

All images were resized to 480 x 480 pixels, and no data augmenta-
tion (e.g., rotation, flipping) was applied. Training was conducted with
a batch size of 8 for 40 epochs on UAVid-RIS and 10 epochs on VDD-
RIS using the AdamW optimiser (Loshchilov and Hutter, 2017) with a
weight decay of 0.01 and an initial learning rate of 0.0005. Following
the baseline LAVT (Yang et al., 2022), cross-entropy loss was used for
optimisation. All experiments were performed on an NVIDIA RTX 5000
Ada GPU.
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Table 1

International Journal of Applied Earth Observation and Geoinformation 143 (2025) 104817

Performance comparison of different methods on UAVid-RIS. The table includes Precision at different IoU thresholds (Pr@0.5 to Pr@0.9), mean Intersection over
Union (mlIoU), overall Intersection over Union (oloU), and the visual and textual encoders used in each method.

Method Visual encoder Textual encoder Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 mloU oloU

RIS-DMMI ResNet-101 BERT 79.75 70.19 54.08 36.13 9.26 67.10 76.76
LAVT Swin-B BERT 84.45 75.75 59.60 38.71 10.91 69.32 78.76
LGCE Swin-B BERT 83.97 74.60 59.69 39.37 11.33 69.52 79.06
RMSIN Swin-B BERT 85.71 77.91 64.06 46.52 17.76 72.05 81.10
ASDA CLIP-ViT-B CLIP 78.55 69.51 56.38 37.67 10.05 67.17 76.59
MAFN Swin-B BERT 85.10 77.76 63.68 44.26 16.33 71.64 80.67
AeroReformer Swin-B BERT 86.34 79.07 65.60 47.12 18.52 72.79 81.53

Table 2

Performance comparison of different methods on VDD-RIS. The table includes Precision at different IoU thresholds (Pr@0.5

Union (mIoU), and overall Intersection over Union (oloU), and the visual and textual encoders used in each method.

to Pr@0.9), mean Intersection over

Method Visual encoder Textual encoder Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 mloU oloU

RIS-DMMI ResNet-101 BERT 87.08 77.86 62.73 46.13 23.25 72.66 78.06
LAVT Swin-B BERT 90.04 86.72 76.01 56.09 34.32 77.80 82.51
LGCE Swin-B BERT 89.67 84.13 73.80 53.51 32.47 76.78 82.09
RMSIN Swin-B BERT 91.14 85.98 76.38 57.20 35.06 78.22 83.58
ASDA CLIP-ViT-B CLIP 90.77 85.98 76.01 57.56 35.79 78.13 81.99
MAFN Swin-B BERT 91.51 87.82 79.70 60.89 35.06 79.21 83.97
AeroReformer Swin-B BERT 92.99 89.30 81.55 63.47 38.75 80.72 85.38

MAFN RMSIN

AecroReformer GT

() Description: Vehicles parked near building.

RMSIN

(b) Description: Several people riding on the road.

AcroReformer

Fig. 7. Visual comparison of referring segmentation results on UAVid-RIS
dataset.

5.1.3. Model evaluation

For a fair comparison with previous methods (Yuan et al., 2024;
Liu et al., 2024; Yang et al., 2022), we adopted the same evaluation
metrics, including mean Intersection over Union (mloU), overall Inter-
section over Union (oloU), and Precision at the 0.5, 0.6, 0.7, 0.8 and
0.9 IoU thresholds (Pr@X).

The mIoU measures the average IoU between predicted and ground-
truth masks across all test samples, giving equal weight to both large
and small objects. In contrast, oloU favours large objects by computing
the ratio of the total intersection area to the total union area across
all test samples. Additionally, Pr@X evaluates model performance at

RMSIN AcroReformer

(a) Description: Vehicles parked in organized rows.

% Bos
AcroReformer

(b) Description: Vehicles parked along narrow street.

Fig. 8. Visual comparison of referring segmentation results on VDD-RIS
dataset.

different IoU thresholds, reflecting the proportion of successfully pre-
dicted samples at each level. Higher values for these metrics indicate

better segmentation performance.

In addition to these metrics, we also report the class-wise IoU and
class-wise mIoU to provide a more detailed analysis of segmentation
performance across different object categories. Unlike object-based
mloU, which is calculated per test sample, class-wise mIoU is computed
per class rather than per object, ensuring that the evaluation cap-
tures category-level segmentation accuracy instead of object-instance
accuracy.
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Table 3

Class-wise Intersection over Union (IoU) and mean IoU (mloU) for different methods on UAVid-RIS.
Method Building Road Tree Low vegetation Moving car Static car Human mloU
RIS-DMMI 84.48 77.91 79.67 64.08 67.04 50.18 24.11 63.92
LAVT 86.87 78.68 80.91 67.95 68.98 53.53 23.75 65.81
LGCE 87.58 79.36 80.67 67.97 67.78 58.07 24.01 66.49
RMSIN 89.02 84.33 82.01 69.23 72.31 54.79 24.72 68.06
ASDA 84.16 80.29 79.81 63.77 59.47 39.22 20.86 61.08
MAFN 88.66 83.52 81.67 68.54 71.28 59.29 26.78 68.53
AeroReformer 89.12 84.82 82.35 69.45 72.14 60.58 26.68 69.31

Table 4 5.2.2. Qualitative results

Class-wise Intersection over Union (IoU) and mean IoU (mloU) for different
methods on VDD-RIS.

Method Wall Road  Vegetation Vehicles Roof Water mloU
RIS-DMMI 65.95 77.21 89.43 66.38 76.77 80.63 76.06
LAVT 72.62 8294 90.04 69.07 81.01 91.30 81.16
LGCE 70.63 80.75 89.97 69.42 82.09 90.03 80.48
RMSIN 73.16 82.64 89.39 70.11 84.88 90.54 81.79
ASDA 72.05 83.72 84.16 60.15 84.84 92.81 79.62
MAFN 74.68 82.53 89.70 70.25 84.88 90.94 82.16
AeroReformer 76.82 8257 91.78 70.74 86.21 91.25 83.23

5.2. UAV referring image segmentation performance

In this section, we evaluate the performance of seven different
referring image segmentation methods, including RIS-DMMI (Hu et al.,
2023), LAVT (Yang et al., 2022), LGCE (Yuan et al., 2024), RMSIN (Liu
et al., 2024), ASDA (Yue et al., 2024), MAFN (Shi and Zhang, 2025) and
the proposed AeroReformer.

5.2.1. Quantitative results

Overall Performance: As shown in Tables 1 and 2, the proposed
AeroReformer consistently achieves the highest scores across all eval-
uation metrics, demonstrating its superior segmentation capability. In
UAVid-RIS, AeroReformer achieves an mloU of 72.79 and an oloU of
81.53, surpassing the second-best method, RMSIN, by 0.74 in mIoU and
0.43 in oloU. Similarly, on VDD-RIS, AeroReformer achieves an mloU
of 80.72 and an oloU of 85.38, outperforming MAFN by 1.51 in mIoU
and 1.41 in oloU. These improvements highlight AeroReformer’s effec-
tiveness in capturing fine-grained segmentation details across different
datasets.

Precision at Different IoU Thresholds: In terms of precision at varying
IoU thresholds, Tables 1 and 2 illustrate that AeroReformer consistently
outperforms the second-best method across all threshold levels. On
UAVid-RIS, AeroReformer achieves the highest Pr@0.5 score of 86.34,
surpassing RMSIN by 0.63, and maintains its lead at Pr@0.9 with
18.52, exceeding RMSIN by 0.76. On VDD-RIS, AeroReformer achieves
a Pr@0.5 of 92.99, improving upon MAFN by 1.48, and maintains
the best performance at Pr@0.9 with 38.75, surpassing ASDA by 2.96.
These improvements confirm AeroReformer’s robustness and reliability
in maintaining segmentation accuracy under different IoU thresholds.

Class-wise IoU Analysis: A deeper analysis of class-wise IoU scores in
Tables 3 and 4 further supports AeroReformer’s superior performance.
On UAVid-RIS, AeroReformer achieves the highest IoU scores in five
out of seven categories. Compared to the second-best method, MAFN,
AeroReformer improves static car segmentation by 1.29. MAFN slightly
outperforms AeroReformer in the human category, but AeroReformer
still maintains the highest overall mIoU. On VDD-RIS, AeroReformer
achieves the highest IoU scores in four out of six categories. It surpasses
second best by 2.14 in wall segmentation and 0.49 in vehicle segmen-
tation. LAVT outperforms AeroReformer in the water category, while
ASDA performs best in the road category. Despite this, AeroReformer
achieves the highest overall mIoU of 83.23, improving by 1.07.

To further evaluate the segmentation performance of different RIS
methods, we present qualitative comparisons on UAVid-RIS and VDD-
RIS in Figs. 7 and 8. Each example consists of segmentation results
from seven different methods: RIS-DMMI, LAVT, LGCE, RMSIN, ASDA,
MAFN and the proposed AeroReformer, along with the ground truth
(GT). The visualised results highlight AeroReformer’s ability to produce
more precise and contextually accurate segmentations.

Results on UAVid-RIS: Fig. 7 illustrates segmentation results for two
different referring expressions: “Vehicles parked near building” and “Sev-
eral people riding on the road”. In the first example, RIS-DMMI, LGCE,
and ASDA incorrectly classify certain materials in the top-left storage
yard as vehicles, resulting in inaccurate segmentation. In contrast,
AeroReformer produces consistent segmentation results that closely
align with the ground truth. In the second example, which involves
detecting people riding on the road, RIS-DMMI and LAVT fail to iden-
tify all relevant targets, while RMSIN and ASDA mistakenly classify
road patches as people. AeroReformer accurately segments the riding
individuals without misclassifying unrelated elements. These results
highlight AeroReformer’s effectiveness in distinguishing small objects
within UAV imagery.

Results on VDD-RIS: Fig. 8 presents segmentation results for two
different referring expressions: “Vehicles parked in organised rows” and
“Vehicles parked along a narrow street”. In the first example, all meth-
ods perform well in detecting parked vehicles. Notably, in the top
right corner, a black car is partially covered under the trees; even
though the ground truth does not label it, AeroReformer successfully
detects it, demonstrating its superior ability to capture occluded ob-
jects. In the second example, which depicts vehicles parked along a
narrow street, RIS-DMMI, LGCE, ASDA, and RMSIN fail to distinguish a
parked car from surrounding trees, particularly when a car is partially
covered by foliage. AeroReformer accurately differentiate the vehi-
cles, minimising misclassification. This demonstrates AeroReformer’s
strong performance in complex urban environments with occlusions
and varying object scales.

Summary: The qualitative comparisons across UAVid-RIS and VDD-
RIS confirm that AeroReformer produces more precise and contex-
tually accurate segmentations than existing methods. It consistently
outperforms the second-best method by correctly distinguishing be-
tween similar objects and capturing finer details. These results validate
AeroReformer’s effectiveness in complex aerial scenes with dynamic
and static objects.

5.2.3. Generalisation experiments

To further evaluate the generalisability of the proposed AeroRe-
former, we conduct two additional experiments focusing on language
robustness and domain transfer:

Cross-LLM Evaluation: To assess the model’s robustness to language
variation, we evaluate all models on descriptions generated by a dif-
ferent MLLM, Llama-3.2-11B-Vision (Grattafiori et al., 2024) using
the identical prompt. The model is still trained on UAVid-RIS using
descriptions generated by Qwen2.5-VL-7B (Bai et al., 2025). This setup
simulates practical deployment scenarios where referring expressions
may vary depending on the language model used. As shown in Table
5, AeroReformer maintains strong performance under this shift in lan-
guage domain, achieving the highest scores across all metrics, including
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Table 5
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Performance comparison of different methods on UAVid-RIS using description generated by Llama. The table includes Precision at different IoU thresholds (Pr@0.5
to Pr@0.9), mean Intersection over Union (mlIoU), overall Intersection over Union (oloU), and the visual and textual encoders used in each method.

Method Visual encoder Textual encoder Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 mloU oloU
RIS-DMMI ResNet-101 BERT 73.81 63.98 50.17 33.04 8.05 62.24 74.09
LAVT Swin-B BERT 73.32 62.29 45.62 27.29 5.68 60.05 69.90
LGCE Swin-B BERT 70.76 60.71 45.43 26.95 6.10 58.98 71.87
RMSIN Swin-B BERT 75.20 68.87 57.43 41.29 15.13 63.19 78.40
ASDA CLIP-ViT-B CLIP 51.41 46.26 38.01 26.38 7.68 44.16 42.91
MAFN Swin-B BERT 77.72 69.89 56.57 39.48 13.32 65.56 77.33
AeroReformer Swin-B BERT 82.80 75.76 62.93 45.35 16.79 69.77 80.07
Table 6

b) Description: A black car drives near the

) Description: Two cars park on the parking
curve. lot.

.

) Description: A two-lane road with a
double yellow line along the edges.

th a

d) Description: A building

a Description: A group of lus recs,
faceted. tiled roof and brick walls. both broadleaf and needle-like.

Fig. 9. Model generation ability test on UAV images captured at the University
of Warwick.

a mloU of 69.77 and Pr@0.5 of 82.80. Despite the noticeable perfor-
mance drop across all models compared to their original test setting,
AeroReformer demonstrates the best generalisation, outperforming the
next-best method (MAFN) by +4.21 in mloU and +5.08 in Pr@0.5.
This suggests that the proposed AeroReformer is more resilient to shifts
in linguistic style and semantics, even without explicit re-training.
ASDA, which uses CLIP-based encoders, performs poorly under this
variation, likely due to limited language-text alignment adaptation in
aerial contexts. Overall, these results affirm AeroReformer’s robustness
in handling diverse linguistic inputs, a desirable trait for real-world
UAV-RIS applications.

Cross-Location Testing: We test the generalisation ability of AeroRe-
former on UAV images captured on the University of Warwick campus.
These images differ significantly from UAVid-RIS in terms of geo-
graphic location, flight altitude, and camera angle. This experiment
demonstrates the model’s adaptability to diverse environmental and
acquisition conditions without retraining or fine-tuning. Specifically,
the model accurately segments parked vehicles under occlusions (Fig.
9a,c), moving cars on curved roads (Fig. 9b), and detailed structures
such as multi-faceted buildings (Fig. 9d). It also successfully highlights
fine-grained objects like two-lane roads (Fig. 9e) and distinguishes
vegetation types even under diverse lighting and texture conditions
(Fig. 9f). These qualitative results confirm AeroReformer’s strong gen-
eralisation capacity to novel geographic settings and unseen flight
parameters.

The results from both experiments highlight the flexibility of the
proposed approach and its potential for real-world deployment in
varied settings.

5.3. Ablation study

To analyse the contribution of each proposed module in AeroRe-
former, we conduct an ablation study on the VDD-RIS dataset. Table
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Ablation study results on the VDD-RIS dataset. The table evaluates the impact
of RAMSF and VLCAM, showing Precision at IoU thresholds Pr@0.5, Pr@0.7,
and Pr@0.9, and mean Intersection over Union (mIoU). A checkmark (v)
indicates the inclusion of a module.

RAMSF VLCAM Pr@o0.5 Pr@0.7 Pr@0.9 mloU
- - 89.30 73.06 28.04 76.09
- 4 90.04 78.60 36.53 78.27
v - 91.14 77.86 36.16 78.83
v v 92.99 81.55 38.75 80.72

6 presents the results when replacing the Rotation-Aware Multi-Scale
Fusion (RAMSF) decoder and the Vision-Language Cross Attention
Module (VLCAM). The evaluation is performed using Pr@0.5, Pr@0.7,
Pr@0.9 and mloU.

Baseline: For the baseline configuration (i.e., without RAMSF and
VLCAM), we retain the overall model structure while replacing the
VLCAM module with a sentence feature vector globally pooled from
all words. As for the RAMSF, in the absence of a decoder, we replace it
with the module from LAVT (Yang et al., 2022). As expected, the per-
formance drops notably across all metrics, achieving 89.30 in Pr@0.5,
73.06 in Pr@0.7, 28.04 in Pr@0.9, and 76.09 in mlIoU. These results
demonstrate the limited capacity of the backbone alone in handling
fine-grained and cross-modal reasoning tasks.

VLCAM: With VLCAM included, improvements of +0.74 in Pr@0.5,
+5.54 in Pr@0.7, +8.49 in Pr@0.9, and +2.18 in mloU are achieved
compared to the baseline. This indicates that VLCAM significantly
enhances vision-language interaction, particularly under stricter IoU
thresholds.

RAMSF: When RAMSF is included, gains of +1.84 in Pr@0.5, +4.80
in Pr@0.7, +8.12 in Pr@0.9, and +2.74 in mloU are observed. These
improvements confirm the effectiveness of RAMSF in multi-scale spatial
feature fusion and detail preservation.

AeroReformer: The full model, with both RAMSF and VLCAM in-
cluded, achieves the best overall performance: 92.99 in Pr@0.5, 81.55
in Pr@0.7, 38.75 in Pr@0.9, and 80.72 in mloU. This represents
improvements of +3.69 (Pr@0.5), +8.49 (Pr@0.7), +10.71 (Pr@0.9),
and +4.63 (mloU) over the baseline. These results clearly demonstrate
the complementary benefits of RAMSF and VLCAM.

6. Conclusions

In this work, we proposed a fully automated dataset construc-
tion pipeline that transforms pre-existing UAV segmentation datasets
into referring segmentation benchmarks. The designed pipeline lever-
ages segmentation masks and large language models to generate di-
verse and contextually accurate referring expressions. This method
was applied to UAVid and VDD, producing UAVid-RIS and VDD-RIS,
two novel datasets that expand the applicability of vision-language
segmentation in UAV imagery. In addition, we introduced AeroRe-
former, a novel framework for referring image segmentation that inte-
grates the Rotation-Aware Multi-Scale Fusion (RAMSF) decoder and the
Vision-Language Cross-Attention Module (VLCAM) to enhance spatial
feature fusion and cross-modal alignment. AeroReformer consistently
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outperforms comparative methods on UAVid-RIS and VDD-RIS, demon-
strating superior segmentation accuracy in challenging UAV environ-
ments with occlusions, scale variations, and fine-grained object details.
The ablation study further validates the necessity of RAMSF and VL-
CAM, showing that their combination significantly boosts segmentation
performance.

While AeroReformer achieves significant improvements, it still re-
lies on a separate vision encoder for segmentation. Future work should
explore the integration of segmentation capabilities directly into large
language models (LLMs), eliminating the need for external vision mod-
ules.
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