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Abstract

The foundation model has recently attracted significant attention due to its exceptional generalisability and outstanding adaptability.
However, when it comes to data-driven wind farm wake modelling, due to the high cost of data generation and the complexity of
flow characteristics, dimension reduction technology is still the mainstream pre-processing procedure to alleviate the significant
challenge inherent in the task itself. Existing methods are still far from achieving a foundation model with high adaptability and
excellent scalability. To fill the research, we propose the FlowFormer framework to serve as a foundation model. Specifically,
we design a Transformer-based framework, FlowFormer, for flow field prediction by directly taking the LES-simulated data with-
out introducing any dimensionality reduction operations. Moreover, a semi-supervised training strategy is designed to address
the problem of over-fitting caused by dimension complexity. The overall mean absolute error of the developed FlowFormer is
6.660% compared to the freestream wind speed for multi-step iterative prediction. The results for a utility-scale farm consisting
of 81 turbines demonstrate the high adaptability and excellent scalability of the proposed FlowFormer. Significantly, a qualitative
experiment demonstrates that FlowFormer can handle changing-yaw conditions using only fixed-yaw training data, highlighting its
excellent flexibility. The demo is available at https://github.com/warwick-icse/FlowFormer.
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1. Introduction

Wind energy has shown significant potential and has seen
rapid growth in recent years [1, 2], owing to its sustainable
advantages over traditional fossil fuels. Typically, wind farms
are an effective solution for optimising wind energy conversion
and minimising overall costs. However, the wind turbine will
severely suffer from the wake interactions, which are charac-
terised by decreased wind velocity and increased turbulence in-
tensity [3, 4, 5]. Specifically, such impact from upstream wind
turbines to downstream turbines can lead to a 10-20% reduc-
tion in energy production [6] and a 5-15% increase in fatigue
load [7] in large wind farms. Therefore, comprehensively un-
derstanding and accurately predicting wind turbine wakes is
crucial for optimising turbine layouts and enabling intelligent
control, ensuring efficient wind farm deployment and improv-
ing large-scale energy conversion efficiency [8, 9]. As a re-
sult, significant efforts have been devoted to wind farm wake
modelling, ranging from low-fidelity analytical wake models to
high-fidelity numerical wake models.

Analytical wake models are the most widely used methods
for predicting wind turbine wake flows due to their low com-
putational cost. Examples include the Jensen model [10, 11],
Frandsen model [12], the 3D wake model [13], the 3DEG
model [14], and the FOWFSim [15]. From the initial top-hat as-
sumption to the Gaussian distribution of wake velocity deficits,
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analytical models have demonstrated good performance and
have been applied to various real-world wind farms. However,
these models often result in significant discrepancies between
different wind farms due to their heavy reliance on empirical pa-
rameters [16, 17, 18], which typically need calibration through
wind tunnel experiments or numerical simulations. Addition-
ally, analytical models perform poorly when estimating near-
wake velocity and turbulence characteristics, which are inher-
ently more complex than those in the far-wake region [19, 20].
Thus, two distinct limitations of analytical models emerge, i.e.
suboptimal near-wake prediction performance and limited gen-
eralisation across different wind farms. Besides, due to their
static nature, these low-fidelity models are limited to optimis-
ing static quantities like mean power generation and are insuffi-
cient for addressing unsteady quantities such as power fluctua-
tions and structural loads, particularly in control design scenar-
ios [21, 22].

Numerical simulation methods, such as Large Eddy Simula-
tion (LES) and Reynolds-averaged Navier-Stokes (RANS), are
often used to evaluate wind turbine wake interactions and cap-
ture more accurate wake characteristics. The rotor in numer-
ical simulations is typically modelled using the actuator disk
method (ADM) [23, 24, 25] or the actuator line method (ALM)
[26, 27, 28], which focuses on the development and features of
the wake flow behind the turbine. For example, the LES/ALM
coupled model can more accurately capture near-field instanta-
neous wakes and axisymmetric features by simulating tip and
root vortices [29]. However, despite the ability of numerical
simulations to capture accurate wake flow characteristics, the
numerical models demand significant computational resources.
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For instance, to generate a 1000s Large Eddy Simulation (LES)
of a 3 km × 3 km wind farm with 6 turbines, it would take
about 60 h of distributed computation with 512 processors on
High-Performance Computing (HPC) clusters [26]. To reduce
the computational burden, control-oriented wake modelling has
been gaining attention recently, with models like WFSim [30],
the FAST.Farm [31], the curled wake model [32], and the
FLORIDyn model [33].

In summary, low-fidelity analytical models for wind farm
wake prediction are computationally efficient but lack detailed
flow representation, whereas high-fidelity models are too com-
putationally demanding for practical engineering applications.
To bridge this gap, Machine Learning (ML), particularly Deep
Learning (DL), holds great potential to achieve both accuracy
and efficiency in wake predictions. By training on datasets es-
tablished using numerical simulation results or observed flow
data, ML/DL-based wake prediction models can capture key
wake flow characteristics that are beyond the reach of analytical
wake models while maintaining computational speed compara-
ble to those models. For example, a surrogate model based on
Delayed Proper Orthogonal Decomposition (d-POD) and Long
Short-Term Memory (LSTM) network is proposed by [34] for
predicting wind turbine wakes. A Reduced Order Modeling-
based Wake Flow Estimation (ROM-WFE) framework is de-
signed in [35], which establishes a nonlinear mapping between
sensor measurements and low-dimensional Proper Orthogonal
Decomposition (POD) coefficients. By integrating the physical
and mathematical models into a deep neural network, a novel
reconstruction method is developed in [36], enabling ultra-
short-term wake flow prediction with sparse measured data. A
Graph Neural Network (GNN) based framework is proposed in
[37], which can directly operate on unstructured meshes and
rapidly predict wake flow fields. An anti-noise wind field re-
construction method from Light Detection and Ranging (Li-
DAR) measurement is established in [38] using a Residual-
Connected Physics-Informed Neural Network (RC-PINN). The
Transformer-based model is also introduced by [39], which in-
corporates the transformer module into the conditional Gen-
erative Adversarial Network (cGAN). At the same time, the
multi-fidelity concept is also introduced which includes the
low-fidelity flow field as the input to reduce the dependence
on large-scale high-fidelity data [40, 41, 42, 43, 39, 44].

Although a series of efforts have been poured into static wake
modelling, research on developing machine learning models for
predicting dynamic wind farm wake flows remains limited, with
dimension reduction being a common technique to simplify
modelling complexity. In [45], the POD-LSTM method is used
to predict dynamic wake interactions in wind farms. Specifi-
cally, the original flow data from Simulator fOr Wind Farm Ap-
plications (SOWFA) [46] are down-sampled and reduced using
POD, whereafter the reduced data along with inflow velocity
and control parameters from previous time steps are used as in-
put and reduced data in future time step as the reference for the
LSTM model. In subsequent research [22], the POD dimension
reduction step is omitted, and a novel Bilateral Convolutional
Neural Network (BiCNN) is proposed to process the down-
sampled flow field directly. In [47], a Physics-Guided Neural

Network (PGNN) is developed for dynamic wake prediction,
where the simulated flow field data are also down-scaled using
linear interpolation during data preparation. Similarly, in [48],
an autoencoder is used to map a high-dimensional nonlinear
system to a low-dimensional linear system, based on data gen-
erated by the medium-fidelity WFSim model. For wind turbine
wake flow field prediction, a reduction block is also used to re-
duce the original model input and produce the necessary modal
coefficients in [49]. In [50], a Dynamic Wake Flow Estima-
tion (DWFE) method combining Gaussian Process Regression
(GPR), POD, and LSTM is proposed to predict wind turbine
wake evolution from sparse measurement data. While the di-
mension reduction methods used in these models help address
the curse of dimensionality and simplify modelling complexity,
the loss of subtle flow details during the down-scaling proce-
dure is inevitable.

To avoid the accuracy loss caused by the dimension reduc-
tion, this paper aims to develop an ML-based dynamic wind
farm wake model based on full-flow-field data. Specifically,
we propose a Transformer-based model, i.e. FlowFormer, to
directly process the raw flow field instead of including any
down-scaling operations, neither during data preparation nor
the model training procedures. As the down-scaling technique
indeed reduces the modelling complexity in exponential orders,
the direct operation on the raw flow field will significantly in-
crease the difficulty of the modelling procedure, especially for
iterating long-term predictions. To resolve this issue, we de-
velop a Semi-Supervised Training (SST) strategy to alleviate
the over-fitting issue and enhance the iterate prediction perfor-
mance. After training, an extensive set of experiments eval-
uates the developed model’s performance. The comparison
with high-fidelity data demonstrates that it can achieve accurate
wake predictions in real-time. Particularly, the Mean Absolute
Error (MAE) between the predicted results and high-fidelity
data is 0.599 m/s, which is 6.660% of the freestream wind speed
based on 100-step iterate prediction. More importantly, the pro-
posed FlowFormer can remain stable even after 200 iterative
predictions for a large-scale wind farm. Additionally, a quan-
titative experiment is conducted to illustrate the usability and
stability of the proposed FlowFormer for handling large-scale
wind farms directly. The experiments show that FlowFormer
not only provides accurate results under changing-yaw condi-
tions with only fixed-yaw training data, but also remains stable
and robust after more than 200 iterative prediction steps. The
novelty and contributions of this paper can be summarised as
follows:

(1) A novel Transformer-based dynamic wind farm wake
model is developed based on high-fidelity simulation data.
Different from the existing ML-based dynamic wake mod-
els which all include the dimension reduction procedure
during data preparation or model training procedures, this
paper develops a deep learning method which directly
processes the raw simulated flow fields, thereby avoiding
any dimension reduction errors and retaining the detailed
flow field features. The comparison between the proposed
model and existing ML-based dynamic wake models is
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Nomenclature

Abbreviations

ADM Actuator Disk Method

ALM Actuator Line Method

BiCNN Bilateral Convolutional Neural Network

BP Background Path

cGAN conditional Generative Adversarial Network

CFD Computational Fluid Dynamics

CNN Convolutional Neural Network

d-POD delayed Proper Orthogonal Decomposition

DWFE Dynamic Wake Flow Estimation

DL Deep Learning

FP Foreground Path

GNN Graph Neural Network

GPR Gaussian Process Regression

HPC High-Performance Computing

LiDAR Light Detection and Ranging

LES Large Eddy Simulation

LSTM Long-Short Term Memory

MLP Multilayer Perceptron

ML Machine Learning

MHKA Multi-Head Kernel Attention

MAE Mean Absolute Error

MSE Mean Squared Error

NREL National Renewable Energy Laboratory

PGNN Physics-Guided Neural Network

POD Proper Orthogonal Decomposition

RANS Reynolds-Averaged Navier-Stokes

RC-PINN Residual-Connected Physics-Informed Neural
Network

ROM-WFE Reduced Order Modelling-based Wake Flow
Estimation

RNN Recurrent Neural Network

SCRTP Scientific Computing Research Technology Plat-
form

SOWFA Simulator fOr Wind Farm Applications

SST Semi-Supervised Training

S ymbols

di The distributed control parameter at the ith time step

dM The distributed control parameter of the Mth turbine

D The dimension of each distributed parameter

D The matrix of designed input variables

h The number of heads

M The number of wind turbines

n The number of prediction steps

N The number of patches

Nt The number of time steps in LES simulations

Nx The number of points for each subdomain in the x
dimension

Ny The number of points for each subdomain in the y
dimension

P The window size

S The number of simulations in the LES database

u0
i The inflow velocity at the ith time step

ũx,y
i The true value of a flow snapshot on the position

(x, y) at the ith time step

ûx,y
i The approximate value of a flow snapshot on the po-

sition (x, y) at the ith time step

U The matrix of all the flow fields

Û The flow field predicted by FlowFormer

x The input the the ML-based wake model

α The weight of the auxiliary loss function

ϵ The prediction error

θ The parameters of the FlowFormer

summarised in Table 1.

(2) The proposed FlowFormer method introduces the state-
of-the-art Transformer into the dynamic wind farm wake
model, which is the first foundation model for wake mod-
elling. Compared with the existing methods, FlowFormer
not only demonstrates high adaptability in different yaw
conditions but also shows excellent scalability in utility-
scale wind farm wake simulation. Particularly, the exper-
iment of the proposed FlowFormer on a 9 × 9 wind farm

shows that our model can still hold stability and robustness
for even a 200s iterative simulation.

(3) The performance of the developed FlowFormer is eval-
uated through comprehensive simulation tests, which in-
clude the predictions of single turbine wakes, multiple tur-
bine wakes, yawed wakes, as well as wake interactions
within a large wind farm. The results demonstrate that the
proposed model can accurately predict the unsteady wind
farm wakes in real-time. Specifically, the prediction error
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Table 1: The comparison of the FlowFormer with other machine learning-based dynamic wake models.

Model Model Type Training Data Dimension Reduction
Data Preparation Model Training

POD-LSTM [45] RNN High-fidelity ✓ ✓
BiCNN [22] CNN High-fidelity ✓ ×

[47] PGNN High-fidelity ✓ ×
[48] CNN Mid-fidelity × ✓

ART-LSTANet [49] CNN + RNN High-fidelity × ✓
DWFE [50] GPR + LSTM High-fidelity × ✓
FlowFormer Transformer High-fidelity × ×

on the test set is only 0.599 m/s, which is just 6.660% of
the freestream wind magnitude.

(4) A quantitative experiment demonstrates the usability and
stability of FlowFormer for large-scale wind farms. The
model was tested under changing-yaw conditions despite
being trained solely on fixed-yaw data and maintained sta-
bility for more than 2000s.

The remaining part of this paper is organized as follows: the
proposed FlowFormer framework and the high-fidelity data are
described in Section 2. Thereafter, the experimental results of
the model are given in Section 3. The conclusions are drawn in
Section 4.

2. Methodology

2.1. Problem formalization

An example wind farm is depicted in Fig. 1, consist-
ing of M wind turbines with corresponding distributed con-
trol parameters (yaw angles in our simulations), denoted as
[d1, d2, . . . , dM], situated within a rectangular flow domain. For
a wind farm containing M turbines, the set of input variables
is represented as D , with the shape [M,Nt,D], where Nt repre-
sents the total number of time steps and D is the dimension of
each distributed control parameter. Correspondingly, the shape
of the output U is [M,Nt,Nx × Ny], where Nx and Ny denote
the total number of grid points in the x- and y-directions, re-
spectively, for each subdomain.

Additionally, when S simulations are conducted, the fi-
nal shape of the input matrix and the output matrix becomes
[M × S ,Nt,D] and [M × S ,Nt,Nx × Ny], respectively. The
high-fidelity output variables, U , are calculated using Compu-
tational Fluid Dynamics (CFD) methods, while the prediction
made by the proposed FlowFormer is denoted as Û . The input
variables for the FlowFormer include the history of flow fields
[ũ1, ũ2, . . . , ũT ], the inflow velocity [u0

1, u0
2, . . . , u0

T ], and the
distributed control parameters [d1, d2, . . . , dT ]. Thus, given an
ML-based turbine wake model f (x; θ), the goal is to minimise
the discrepancy between the predicted flow field Û and the
high-fidelity flow field U by optimising the model parameters
θ:

θ∗ = arg min
θ

E(θ),

E(θ) =
1

(Nt − T ) × S

Nt∑
i=T+1

S∑
j=1

L(ũi, j, f (xi, j; θ)), (1)

xi, j = ([ũi−T, j, ũi−T+1, j, ..., ũi−1, j], [u0
i−T, j, u0

i−T+1, j, ..., u0
i−1, j],

[di−T, j, di−T+1, j, ..., di−1, j]),

where E(θ) represents the expected average error of the pre-
dicted flow field, and the loss function L(·) quantifies the dis-
parity between the high-fidelity flow fields and the predicted
results.

2.2. FlowFormer
The FlowFormer framework is designed based on the inher-

ent properties of wind flow and wake interactions, which tend
to be stable across adjacent time steps but are affected by ex-
ternal factors such as inflow velocity and distributed control pa-
rameters [22]. These external factors drive changes in the flow
field, making it critical to account for both the historical data
(representing past flow patterns) and external inputs (inflow ve-
locity and control actions such as the yaw angles) in the pre-
diction model. Therefore, our approach divides the input into
two key components: the CNN-based background path and the
Transformer-based foreground path, allowing for a more struc-
tured and efficient model architecture. The structure of the pro-
posed FlowFormer is illustrated in Fig. 2.

2.2.1. Background path
The background path takes the multiple historical flow fields

as the input and aims to capture the basic status for the future
time step. Thus, the input and the output of the background
path are highly related and similar. Therefore, we design a rel-
atively simple CNN-based structure for the background path,
consisting of multiple convolutional layers while the details of
each layer can be seen in Table 2. Those layers construct an
encoder-decoder structure, which can efficiently captures high-
level features in the encoder and reconstructs detailed spatial
information in the decoder, enabling precise pixel-level predic-
tions.

2.2.2. Foreground path
For the foreground path, the inputs are the inflow velocity

and distributed control parameters, while the output represents
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Fig. 1. A typical example of a distributed fluid system. Figure adapted from Ref. [45].

Table 2: The details of convolutional layers in the background path.

Layer Type Channels (In→ Out) Kernel Size Stride Padding
1 Conv2d 10→ 16 3×3 1 1
2 Conv2d 16→ 32 3×3 2 1
3 ConvTranspose2d 32→ 16 2×2 2 0
4 Conv2d 16→ 16 3×3 1 1
5 Conv2d 16→ 16 3×3 1 1
6 Conv2d 16→ 1 1×1 1 0

the flow field’s change tendency. Because the input is low-
level and low-dimensional, whereas the output is high-level and
high-dimensional, this path functions as a generation task. Con-
sequently, we use a more complex structure incorporating ad-
vanced Transformer modules.

Specifically, a Multi-layer Perceptron (MLP) layer expands
the the concatenated input variables to a single-channel (H/2)×
(W/2) feature map, which is then lifted to 16 channels by a
1 × 1 convolution. Three BaseBlocks (each = Residual Block
+ Transformer Block) follow. Finally, refinement layers (trans-
pose and 1×1 convolutions) upsample and project the features
before they are combined with the background path to generate
the final flow prediction. The Reflection Paddings are applied
for the five convolutional layer with size of (3, 1, 1, 1, 0) to keep
the resolution unchanged.

Residual Block: First, the input is processed by two convo-
lutional layers with kernel sizes (7× 7) and (3× 3), followed by
activation using the Mish function [51]. Next, three additional
convolutional layers with kernel sizes (3×3), (3×3), and (1×1)
are stacked, and the output is combined with the feature maps
generated from the first step through a skip connection. The
resulting features are then passed to the Transformer Block.

Transformer Block: We first apply a depthwise 3 × 3 con-
volution as positional embedding to incorporate local ordering.
The features are then rearranged and padded to multiples of the
window size P (P is set as 14). For an input x ∈ RH×W×C ,
this yields K = HW

P2 windows, each a sequence of length
T = P2 with channel dimension C. Within each window, we
use multi-head kernel attention (8 heads and 16 channels) with
L2-normalized queries/keys and a softplus feature map, which
reduces the per-window attention complexity from O(T 2) (dot-
product) to O(T ). The outputs from all heads are concatenated

and projected, and residual connections wrap both the attention
and the MLP, i.e., x ← x + Attn(x) and x ← x +MLP(x). Thr
non-local interactions are modelled within each P × P window.
Finally, the windows are reversed back to the H ×W layout.

2.2.3. Loss function
The proposed FlowFormer employs two loss functions: one

for the final output (Loss1) and another for the foreground path
(Loss2), both of which are defined as Mean Squared Error
(MSE) functions. Loss1 is expressed as:

Loss1(ũT+1, ûT+1) =
1

Nx × Ny

Nx∑
x=1

Ny∑
y=1

(ũx,y
T+1 − ûx,y

T+1)2 (2)

where ũi, j
T+1 and ûi, j

T+1 represent the values of the flow field at po-
sition (i, j) and time step T +1, obtained by LES simulation and
FlowFormer, respectively. By minimising Loss1, the entire net-
work is trained to learn the relationship between the input and
output, enabling accurate predictions. In contrast, the reference
for Loss2 is the difference between the flow fields at time steps
T and T + 1, which is expressed as:

Loss2(ũT+1, ûT+1) =

1
Nx × Ny

Nx∑
x=1

Ny∑
y=1

[(ũx,y
T+1 − ũx,y

T ) − (ûFP)x,y
T+1]2.

(3)

Specifically, minimising Loss2 encourages the foreground path
to capture the variations between the flow fields at time steps T
and T + 1, i.e., the foreground features.
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Fig. 2. Overall architecture of FlowFormer. The model integrates two complementary paths: (i) a CNN-based background path, which captures the basic flow field
evolution from historical snapshots, and (ii) a Transformer-based foreground path, which predicts wake variations driven by inflow velocity and distributed control
parameters (yaw angles). The outputs of both paths are combined to produce the final flow field prediction.

Fig. 3. The structure of BaseBlock, which is constructed by a Residual Block
and a Transformer Block. The Reflection Paddings are applied for the five
convolutional layer with size of (3, 1, 1, 1, 0) to keep the resolution unchanged.

In summary, the final output is optimised by Loss1 to closely
approximate the LES data, while the output of the foreground
path is constrained by Loss2 to learn the variation tendencies of
the wake. Since the final output is the summation of the back-
ground and foreground paths, the background path is naturally
driven to provide the background information. The overall loss
can thus be expressed as:

Loss(ũT+1, ûT+1) =Loss1(ũT+1, ûT+1) + αLoss2(ũT+1, ûT+1)

=
1

Nx × Ny

Nx∑
x=1

Ny∑
y=1

{(ũx,y
T+1 − ûx,y

T+1)2

+ α[(ũx,y
T+1 − ũx,y

T ) − (ûFP)x,y
T+1]2},

(4)

where ûFP represents the output of the foreground path, and α
controls the weight of Loss2. Since optimising Loss1 is the pri-
mary objective of the model, with Loss2 playing a supporting
role, the value of α is set to 0.5.

2.3. Semi-supervised training

Fig. 4. Illustration of the semi-supervised training strategy in FlowFormer. The
model first uses a sequence of ground-truth flow fields (T−9 . . . T+0) to predict
the next step (T + 1). The predicted flow field is then fed back, together with
the most recent history, as input for the next iteration, producing (T + 2). This
process is repeated for subsequent steps (here shown up to iteration 2), allowing
the model to learn from its own predictions and improve stability in long-term
iterative forecasting.
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Table 3: The prediction errors on the test set based on the multi-step iterative prediction, while the Error shown in the last column is the percentage of the average
error against the freestream wind speed.

Cases Turbine 1 (m/s) Turbine 2 (m/s) Turbine 3 (m/s) Average (m/s) Error (%)
8 m/s 0.487 0.490 0.511 0.496 6.200
9 m/s 0.622 0.600 0.614 0.612 6.800
10 m/s 0.705 0.679 0.687 0.690 6.903

The dataset consists of 180 flow scenarios, each containing
unsteady flow fields at 710 discrete time steps. For training,
the first 64% of time steps from each scenario are used as the
training set, the 64% to 85% time steps as the validation set,
and the final 15% as the test set. The lookback time step for the
flow history is set to 10. The proposed FlowFormer is trained
on the training set with a batch size of 8 and a learning rate
of 0.0003 using a single NVIDIA RTX5000 Ada with 32GB
memory, and its performance is evaluated on the validation set
after each epoch.

During training, both early-stopping and dynamic learning
rate adjustment strategies are employed to mitigate over-fitting.
Specifically, for early stopping, the training process is halted if
the validation loss does not improve for 50 consecutive epochs.
Additionally, the dynamic learning rate adjustment strategy re-
duces the learning rate by half if the validation loss does not
decrease for 10 epochs. After training, the performance of the
FlowFormer is evaluated on the test set using the mean absolute
error:

ϵ =
1

(N test
t − T ) × S

N test
t∑

i=T+1

S∑
j=1

|U
(1,1):(Nx,Ny)

i, j − Û
(1,1):(Nx,Ny)

i, j |, (5)

where U
(1,1):(Nx,Ny)

i, j represents a high-fidelity snapshot of the
flow field in one subdomain at time step i for the scenario in-
dexed by j, and N test

t denotes the number of time steps in the
test set.

To enhance the adaptability and scalability of the proposed
FlowFormer for iterative multi-step prediction, we design a
semi-supervised training strategy. In this approach, the flow
field predicted by the FlowFormer at future time step T + 1
is concatenated with the flow fields from time steps T − 3 to
T and then fed back into the FlowFormer to predict the flow
field at T + 2. Simultaneously, the ground truth flow field at
T + 2 from the SOWFA simulation continues to serve as a ref-
erence to guide the network. An illustration of the first three
iterations of this semi-supervised training strategy is provided
in Fig. 4. Similarly, during the validation stage, the model’s
accuracy is assessed using iterative prediction performance in-
stead of single-step prediction.

This strategy allows the network to become increasingly fa-
miliar with the characteristics of its own generated flow fields,
thus improving its generalisability and robustness in multi-step
iterative predictions, particularly when the original initialisa-
tion flow fields are no longer available during later prediction
stages. In this work, we set the number of iterations to 10 for
the semi-supervised training strategy, meaning that the predic-
tion generated by the FlowFormer is reused as input up to 10

times. This ensures that the network can operate independently
without relying on initialisation flow fields.

2.4. Multi-step Predictions for the Entire Wind Farm

After training, the flow field at time step T + 1, denoted as
ûT+1, can be predicted using the proposed FlowFormer model
based on the historical flow fields [ũ1, ũ2, . . . , ũT ], the inflow
velocities [u0

1, u0
2, . . . , u0

T ], and the distributed control param-
eters [d1, d2, . . . , dT ]. By specifying the inflow velocity and dis-
tributed control parameters at time step T +1, namely u0

T+1 and
dT+1, the flow field at time step T +2 can be predicted using the
historical data along with the previously predicted ûT+1. In this
manner, multi-step predictions can be iteratively achieved for
single turbine wakes.

For the entire wind farm, the FlowFormer can be applied se-
quentially to the flow field in each subdomain from upstream to
downstream. Combining the predictions from all subdomains,
the overall prediction for the wind farm can be obtained. Multi-
step prediction for the entire farm can then be iteratively per-
formed in a manner similar to the single turbine case.

It is worth noting that FlowFormer can also be trained for
the whole wind farm if the layout is already fixed, which is
illustrated in Section 3.4.

2.5. High-fidelity data

To generate the dataset for training and testing, we use the
Large Eddy Simulation (LES) solver developed by the National
Renewable Energy Laboratory (NREL) for wind farm simula-
tions, SOWFA [46], where turbine rotors are modelled as actu-
ator lines. Simulations of three turbines [52], arranged in a row,
are conducted to investigate the flow field under both freestream
and upstream wake conditions. The 2D mean velocity fields at
the turbine hub height around each turbine are extracted from
the simulation results as the dataset. Three inflow conditions
are considered, with freestream wind speeds of 8 m/s, 9 m/s,
and 10 m/s. For each simulation case, 20 runs are performed,
with yaw angles ranging from [−30◦, 30◦]. For each case, 1110-
second simulations are carried out, with the first 400 seconds
discarded to allow wake establishment, leaving 710 snapshots
of the flow field per case, resulting in a dataset of flow fields U
with dimensions [180, 710, 126 × 210]. In total, about 61.2GB
of original data is generated to train the FlowFormer.

The generation process was performed on a local cluster us-
ing 256 CPU cores, requiring approximately 7×105 CPU hours
to generate the entire dataset, with each simulation taking about
46 hours. For detailed information on the simulation procedure,
refer to [45].
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Fig. 5. An example case of the single-turbine wake prediction with the turbine operating in freestream condition at time steps (a) T , (b) T + 30, and (c) T + 100,
where the left column is generated by SOWFA while the right column is predicted by FlowFormer. The turbine rotor is located at (0, 0) m of the 2D plane.

3. Results and discussions

To comprehensively assess the performance of the pro-
posed FlowFormer, we begin by evaluating the prediction er-
rors for multi-step predictions of both single-turbine wakes
and multiple-turbine wakes. Next, a case study is conducted
to showcase the FlowFormer’s ability to capture yaw effects.
Thereafter, a case study involving a simulation of a 9 × 9 wind
farm is performed to demonstrate the scalability of the Flow-
Former for utility-scale wind farms. Finally, the usability of the
proposed FlowFormer for training directly on the entire wind
farm is illustrated.

3.1. Model validations

After training, the mean absolute error between the model’s
predictions and the SOWFA data on the test set is 0.004 m/s,
using the ground truth flow fields as initialisation input, i.e.
single-step prediction. This error represents just 0.048% of the
freestream wind speed, highlighting that the proposed Flow-
Former can accurately capture fine details of the future flow
field when accurate previous conditions are provided. To fur-
ther evaluate the FlowFormer’s performance with limited ini-
tialisation data, we conducted experiments using iterative pre-
diction methods.

3.1.1. Single-turbine Wake Predictions

Based on the test set, the results of single-turbine wake pre-
dictions are presented here, where the proposed FlowFormer
predicts flow fields iteratively over multiple time steps. Specifi-
cally, for the FlowFormer, the initial flow fields from time steps
T − 10 to T − 1 are identical to those generated by SOWFA.
The same inflow conditions and yaw angles as in SOWFA are
provided from time step T to T + n to predict the flow fields for
the same period. In other words, only the first five ground truth
flow fields are available to the network, and all subsequent flow
fields are generated solely by the model.

Unlike single-step prediction, errors accumulate when wake
flow fields are iteratively predicted over multiple steps, which
in turn affects the accuracy of future time steps. Therefore, the
prediction errors for iterative multi-step predictions provide a
strong indication of the stability and long-term performance of
a dynamic wind farm wake model, demonstrating its capacity
for extended wake predictions. To assess the effectiveness of
FlowFormer in multi-step predictions, 100 time steps are pre-
dicted iteratively for each turbine in each wind speed case, with
prediction errors averaged over the time dimension. As shown
in Table 3, despite the error accumulation, the overall predic-
tion errors remain low, with an average error of 6.660% on the
test set compared with freestream wind speeds.
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Fig. 6. An example case of the single-turbine wake prediction with the turbine operating in the front turbine’s wake at time steps (a) T , (b) T + 30, and (c) T + 100,
where the left column is generated by SOWFA while the right column is predicted by FlowFormer. The turbine rotor is located at (0, 0) m of the 2D plane.

Next, we examine the qualitative performance of the ML-
based wake model. Two representative cases are chosen: a tur-
bine operating in freestream conditions and a turbine operat-
ing in the wake of an upstream turbine. Comparisons between
SOWFA and FlowFormer at time steps T , T + 30, and T + 100
are illustrated in Fig. 5 and Fig. 6, with corresponding video
demonstrations available in Video 1 and Video 2.

As shown in Fig. 5, the wake undergoes significant changes
during the first 30 time steps, and the FlowFormer successfully
captures the unsteady characteristics of the wake, maintaining
accuracy throughout. Although errors accumulate over time
due to the iterative nature of the predictions, the overall wake
structure is well reconstructed even at time step T + 100. Sim-
ilar results are observed when the turbine operates in the wake
of an upstream turbine. In this more complex and volatile wake
scenario, FlowFormer continues to accurately predict the spa-
tial pattern and shape of the wakes even after 100 time steps, as
shown in Fig. 6.

Next, the wake profiles at various streamwise locations, rang-
ing from one rotor diameter in front of the turbine (X = −1D)
to four rotor diameters behind the turbine (X = 4D), are anal-
ysed to further assess prediction performance. As shown in the
left column of Fig. 7, at X = 0D, the freestream inflow is sig-
nificantly disrupted by the turbine rotor. The wake evolves in

the streamwise direction from X = 1D to X = 4D, eventually
reaching a Gaussian-like profile at X = 4D. In the case where
the turbine operates in the wake of another turbine (right col-
umn of Fig. 7), the inflow at X = −1D exhibits a near Gaussian
shape induced by the upstream turbines, and the wake devel-
opment from X = 1D to X = 4D shows similar trends as the
freestream case.

From these results, it is evident that the FlowFormer predic-
tions closely align with high-fidelity simulation results. While
some finer details are lost due to error accumulation over time,
the primary wake structures are accurately captured even at time
step T + 100. In summary, the FlowFormer effectively cap-
tures the key features of unsteady turbine wakes, which is espe-
cially impressive given the inherently chaotic nature of turbu-
lent wakes and the limited training data. Importantly, the wake
predictions are achieved in real-time, requiring only 0.257 sec-
onds of computational time per time step using a single Intel
Core i7-10700 CPU.

3.1.2. Multi-turbine wake predictions
In this subsection, we conduct experiments on multiple-

turbine wake predictions to demonstrate the ability of Flow-
Former to capture wake interactions. Specifically, we consider
a scenario with two turbines positioned in a row, with a down-
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Fig. 7. The velocity profiles of the single-turbine wake prediction with the turbine operating in freestream condition and the front turbine’s wake condition at time
steps (a) T , (b) T + 30, and (c) T + 100, where the red dashed line is generated by SOWFA while the blue dashed line is predicted by FlowFormer.

Fig. 8. An example case of the multi-turbine wake prediction with two turbines in a row at time steps (a) T , (b) T + 30, and (c) T + 100, where the left column is
generated by SOWFA while the right column is predicted by FlowFormer. The front and the rear turbine rotors are located at (0, 0) m and (632, 0) m of the 2D
plane, respectively.
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Fig. 9. The velocity profiles for a two-turbine case at time steps (a) T , (b) T+30,
and (c) T + 100, where the red dashed line is generated by SOWFA while the
blue dashed line is predicted by FlowFormer.

stream spacing of five rotor diameters. FlowFormer is applied
to iteratively predict the flow field over multiple time steps. For
the front turbine, the initial inflow conditions of FlowFormer
from time steps T − 10 to T − 1 are set identical to those in
SOWFA, while the yaw angles for both turbines from time step
T to T + n are also set to match those in SOWFA. This setup
allows us to evaluate FlowFormer’s ability to predict the wake
interactions between the two turbines as the flow field evolves
over time.

An example case is shown in Fig. 8 and Video 3 to illustrate
FlowFormer’s ability to capture wake interactions, where the
results generated by SOWFA and FlowFormer at time steps T ,
T + 30, and T + 100 are presented. As shown, FlowFormer’s
predictions align well with SOWFA simulation results, particu-
larly during the first 30 time steps. Even after 100 time steps,
the main flow features are still accurately retained. It’s impor-
tant to note that models without high adaptability tend to fail
after just a few iterations due to error accumulation, especially
in multi-turbine wake predictions, as the input values quickly
deviate from the reference. The results here demonstrate Flow-
Former’s robust generalisation ability, successfully predicting
wake interactions over iterative time steps.

To further validate the performance of the proposed Flow-
Former, velocity profiles at various streamwise locations from
X = −1D to X = 9D are shown in Fig. 9. The turbines are po-
sitioned at X = 0D and X = 5D, where the wake deficits begin
to form. Behind each turbine, key wake characteristics, such as
wake deflection, recovery, and expansion, are accurately pre-

dicted by FlowFormer. Most importantly, the influence of the
upstream turbine on the downstream turbine is well captured,
highlighting the model’s potential for large-scale wind farm
predictions.

Besides, as shown in Table 4, we compare the performance
of BiCNN, GNN, and the proposed FlowFormer under differ-
ent inflow wind speeds with the semi-supervised training strat-
egy. FlowFormer consistently achieves the lowest error rates
across all cases, clearly outperforming the baseline models.
This demonstrates FlowFormer’s ability to effectively suppress
error accumulation during iterative predictions, which is criti-
cal for maintaining accuracy over long time horizons. In addi-
tion, the average velocity predictions produced by FlowFormer
are closer to the reference simulation values, further confirm-
ing its capability to capture essential wake dynamics. Over-
all, these comparative experiments highlight FlowFormer’s ro-
bustness and strong generalization ability in multi-turbine wake
flow prediction tasks.

3.2. Model predictions

In this section, we present two extra case studies to evalu-
ate the performance of the proposed FlowFormer model. The
first case examines the yaw effects on turbine wakes by simulat-
ing a single turbine under opposite yaw angles, evaluating the
model’s ability to capture the flow dynamics and wake mean-
dering induced by yaw misalignment. The second case involves
a larger-scale simulation of a 81-turbine wind farm to assess the
model’s capability in predicting wake interactions in a utility-
scale wind farm setup.

3.2.1. The Yaw Effects on Turbine Wakes
To demonstrate FlowFormer’s ability to capture yaw effects,

a case with a single turbine operating under opposite yaw angles
is examined. Specifically, under identical initial conditions, two
independent turbines are assigned different yaw angles (−30◦

and 30◦). Snapshots of the flow fields at time steps T + 100,
T +150, and T +200 are shown in Fig. 10, with a corresponding
video available as Video 4. As observed, for both yaw angles,
the key features of the unsteady turbine wakes are accurately
captured by the model throughout the simulation. This includes
the streamwise convection of flow structures in the deflected
direction due to yaw, as well as the crosswind meandering of the
wakes. These results demonstrate the strong performance of the
proposed FlowFormer. Additionally, the model’s generalisation
ability is validated in this case, as the constant yaw pattern was
not included during training.

3.2.2. A 81-Turbine Test Case
To demonstrate the capability of FlowFormer in large-scale

wind farm wake predictions, we simulate two test cases each
featuring a 9 × 9 wind turbine configuration. In both cases, the
freestream wind speed is 8 m/s on average. In the first greedy
case, all turbine yaw angles are held at 0◦. In the second case,
yaw angles vary every 10 seconds, changing randomly within
the range [−3◦, 3◦]. Predicted snapshots at time steps T + 30,
T + 100, and T + 200 are displayed in Fig. 11 and Fig. 12,
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Fig. 10. The snapshots of the flow field around a single turbine predicted by the FlowFormer at time steps (a) T + 100, (b) T + 150, and (c) T + 200, where the yaw
angle is −30◦ for the left column and 30◦ for the right column. The turbine rotor is located at (0, 0) m of the 2D plane.

Table 4: Model performance comparison at different flow speeds

Model 8 m/s 9 m/s 10 m/s
Avg (m/s) Error (%) Avg (m/s) Error (%) Avg (m/s) Error (%)

BiCNN 0.723 9.043 0.907 10.077 0.964 9.641
GNN 0.625 7.814 0.735 8.170 0.818 8.176
FlowFormer 0.496 6.200 0.621 6.900 0.690 6.903

with corresponding videos available as Video 5 and Video 6.
As shown, the FlowFormer effectively captures the wake in-
teractions between turbines. The predicted unsteady flow field
features, such as wake meandering and the streamwise convec-
tion of flow structures, closely resemble those produced by LES
models for wind farms. This experiment highlights the model’s
ability to generalise to larger wind farms.

In terms of computational efficiency, the FlowFormer simu-
lation for 200 time steps took 4159 seconds, or 20.8 seconds per
time step, on a single Intel Core i7-10700 CPU. By comparison,
LES models would require tens of thousands of CPU hours on
an HPC cluster to simulate this scenario. This case therefore
underscores the practical value of the developed model for con-
trol design in utility-scale wind farms.

3.3. Ablation Study
In this subsection, we conduct an ablation study to demon-

strate the effectiveness of the proposed semi-supervised training
strategy. Specifically, we compare the prediction performance
of FlowFormer when trained with different semi-supervised it-
erations, i.e. 5, 10, and 15 time steps, as well as without the
semi-supervised strategy. While the accuracy difference be-
tween these settings is minimal for single-step predictions, they
become much more pronounced in multi-step predictions.

As shown in Table 5, without any semi-supervised training
strategy, multi-step prediction errors can reach at 11.309% av-
eragely. The performance slightly improves with 5 iterations
of SST. When the iteration reaches 10, the performance is sig-
nificantly enhanced. Further increases in the number of itera-
tions lead to even better accuracy. Since GPU memory require-
ments increase with the number of iterations and the perfor-
mance improvement between 10 and 15 iterations is relatively
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Fig. 11. The snapshots of the flow field around a 9 × 9 wind turbine array pre-
dicted by the FlowFormer at time steps (a) T +30, (b) T +100, and (c) T +200,
where the yaw angles of turbines are all set as 0◦. The 81 turbines are lo-
cated at the grid points of [0, 632, 1264, 1896, 2528, 3160, 3792, 4424, 5056] ×
[0, 379.2, 758.4, 1137.6, 1516.8, 1896.0, 2275.2, 2654.4, 3033.6] m of the 2D
plane.

non-significant, we select the model trained with 10 SST itera-
tions for final evaluation. With more powerful GPUs and larger
memory capacity, the performance of FlowFormer could be fur-
ther enhanced by increasing the number of SST iterations.

3.4. Generalisability with Large-Scale Wind Farm Data
To demonstrate the strong generalisation capability of the

proposed FlowFormer, we conduct experiments on a large-
scale, long-duration dataset generated using an in-house GPU-
accelerated simulation tool developed by our research group.

Fig. 12. The snapshots of the flow field around a 9 × 9 wind turbine array
predicted by the FlowFormer at time steps (a) T + 30, (b) T + 100, and (c)
T + 200, where the yaw angles change every 10 s. The 81 turbines are lo-
cated at the grid points of [0, 632, 1264, 1896, 2528, 3160, 3792, 4424, 5056] ×
[0, 379.2, 758.4, 1137.6, 1516.8, 1896.0, 2275.2, 2654.4, 3033.6] m of the 2D
plane.

Specifically, we simulate a 24-turbine layout under 15 different
scenarios: three inflow wind speeds (8 m/s, 9 m/s, and 10 m/s)
combined with five distinct simulations each. Each scenario
runs for 3000 seconds, and the training set is sampled every 10
seconds from the raw data. During simulation, yaw angles are
randomly chosen from the interval [−30◦, 30◦] for each turbine
and remain fixed throughout the whole procedure. Although
the model is only trained on these fixed-yaw scenarios, we later
test it under changing yaw conditions, where yaw angles switch
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Table 5: The prediction errors on the test set without SST and with different iteration steps using SST.
Settings Iterations Case Turbine 1 (m/s) Turbine 2 (m/s) Turbine 3 (m/s) Average (m/s) Error (%)

No SST -
8 m/s 0.880 0.907 0.927 0.905 11.308
9 m/s 1.020 0.993 1.029 1.014 11.267

10 m/s 1.137 1.121 1.146 1.135 11.347

SST

5
8 m/s 0.727 0.763 0.781 0.757 9.463
9 m/s 0.949 0.915 0.957 0.940 10.448

10 m/s 1.066 1.043 1.035 1.048 10.480

10
8 m/s 0.487 0.490 0.511 0.496 6.200
9 m/s 0.622 0.600 0.614 0.612 6.800

10 m/s 0.705 0.679 0.687 0.690 6.903

15
8 m/s 0.475 0.479 0.498 0.484 6.050
9 m/s 0.601 0.585 0.598 0.595 6.607

10 m/s 0.682 0.667 0.672 0.674 6.737

every 20 seconds.
A typical training data segment is shown in Video 7, with

each flow field having dimensions of [570, 840]. As illustrated
in Video 8, FlowFormer not only handles time-varying yaw an-
gles, despite never encountering such conditions during train-
ing, but also remains stable after more than 200 iterative pre-
diction steps (i.e., over 2000 seconds). This case study demon-
strates that given sufficient data, a Transformer-based founda-
tional model can handle scenarios not explicitly included in the
training set. In future work, we plan to generate more wind
farm flow field data under varying settings to further enhance
FlowFormer’s robustness and adaptability.

3.5. Discussion

Unlike the abundance of text and images readily available
for training in other fields, obtaining CFD-based flow fields
requires substantial computational resources, particularly for
large-scale farms with numerous turbines. Consequently, de-
veloping a single, versatile foundational model that accommo-
dates diverse farm layouts, turbine types, terrains and 3D flow
structures remains challenging due to limited training data.

Generalisability across farm layouts. Two practical strate-
gies can address layout variability: (i) typical turbine arrays
with uniform spacing, where representative turbines are simu-
lated and data are partitioned at the turbine level for training;
and (ii) site-specific simulations, where the actual farm layout
is fully simulated and then used for model training. The first
approach is computationally efficient but less flexible for irreg-
ular real-world layouts, while the second provides higher ac-
curacy for a given site but limited transferability to different
configurations. In practice, selecting between the two depends
on balancing computational cost, desired model generality, and
site-specific complexity.

Terrain generalisability. While FlowFormer has been vali-
dated under flat-terrain scenarios, many practical sites also fea-
ture complex terrain, where topographic effects strongly influ-
ence flow characteristics. In such cases, wake evolution can
be significantly altered by terrain-induced shear and turbulence.
To extend FlowFormer’s applicability, terrain information (e.g.,
elevation maps, roughness distributions) could be incorporated

as additional input channels to the model. Moreover, by lever-
aging multi-fidelity training (e.g., combining high-fidelity LES
data for flat terrain with mid-fidelity RANS data for complex
terrain), the foundation model can be adapted without requiring
prohibitive amounts of LES data. This direction will be pursued
in our future work.

3D extension and operational deployment. This study fo-
cused on 2D hub-height fields, but FlowFormer can be natu-
rally extended to three dimensions with two feasible pathways.
(i) Multi-plane (quasi-3D) training: several horizontal planes
at different heights are stacked as input channels, allowing the
model to capture vertical shear, veer, and entrainment at modest
computational cost; (ii) Full 3D volumetric training: the entire
flow field is voxelised and processed using 3D convolution and
efficient attention mechanisms (e.g., axial or kernel attention)
to maintain scalability. In both cases, all three velocity compo-
nents (u, v,w) can be predicted, with an additional divergence
penalty to enforce approximate incompressibility. This ensures
that vertical wake deflection, turbulence structures, and cross-
height coherence are captured more realistically during opera-
tion. Future work will focus on implementing and validating
these extensions using multi-plane and volumetric LES data.

Physics consistency. The current FlowFormer is trained en-
tirely on LES data and does not explicitly incorporate the conti-
nuity or momentum equations. Physical consistency is there-
fore inherited from the high-fidelity data used during train-
ing. Future extensions could introduce physics-guided con-
straints into the loss function, such as introducing divergence-
free regularisation to encourage mass conservation, or residual-
based penalties derived from simplified Navier–Stokes equa-
tions. Such hybrid strategies would combine the generalisabil-
ity of foundation models with stronger physics guarantees, par-
ticularly under long-horizon predictions or unseen conditions.

Higher-order flow statistics. While FlowFormer captures
the dominant second-order characteristics of turbulence, such
as overall energy distribution, purely data-driven models are in-
herently challenged in resolving the finest high-frequency struc-
tures. This limitation arises from the spatial smoothing effects
of convolutional and downsampling operations, which can at-
tenuate small-scale fluctuations. Future improvements could
involve multi-scale architectures or physics-informed regular-
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isations specifically designed to preserve higher-order flow fea-
tures, thereby enhancing the model’s fidelity across the full tur-
bulent spectrum.

4. Conclusions

In this work, we introduced FlowFormer as a potential foun-
dation model for wind farm wake flow field modeling. By lever-
aging a Transformer-based architecture and a semi-supervised
training strategy, FlowFormer is trained directly on high-fidelity
simulation data—totaling about 61.2 GB from SOWFA, with-
out any dimensionality reduction steps. The model’s perfor-
mance was validated under a variety of inflow conditions and
yaw settings, consistently achieving an overall error of only
6.660% relative to freestream wind speed in 100-second multi-
step iterative predictions. A detailed analysis showed that
FlowFormer accurately captures both near-wake and far-wake
regions, with velocity profiles closely matching those from
high-fidelity LES simulations. Furthermore, the model effec-
tively recreates key wake structures such as yaw-induced de-
flection, streamwise recovery, and wake meandering, demon-
strating strong adaptability to different turbine operations. Ex-
periments on large-scale wind farms, including a 9 × 9 array
and a 24-turbine layout, further showcased FlowFormer’s scal-
ability and robustness, even under changing yaw angles and ex-
tended prediction horizons. These results illustrate the potential
of FlowFormer as a versatile, high-accuracy tool for wind farm
wake modelling and provide a solid basis for future enhance-
ments.

In the future, multi-fidelity techniques will be incorporated
to reduce the reliance on time-consuming LES data. Moreover,
the design concept and training strategy proposed in this paper
are generic for other machine learning architectures and will be
valuable for the communities to carry out further research into
foundation models for wake modelling.
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