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Abstract: This supplementary document provides an extended description of the LEAD dataset, the TFv6 learner, and the
experimental pipeline used in the main paper. It includes detailed definitions of the evaluation metrics for all benchmarks
studied, descriptions of the sensor configurations and expert-policy components, and the occlusion- and intent-alignment
procedures applied during data collection. Additional implementation details are provided for the extended route set, newly
introduced scenarios, perception-label updates, sensor perturbations, and controller adjustments. The document also outlines
the co-training setup for combining synthetic LEAD samples with real-world datasets such as NAVSIM and Waymo, together
with the filtering process used to assemble targeted subsets of CARLA data. The supplementary videos can be found on
https://In2697.github.io/lead and offer additional qualitative demonstrations of the model’s driving behavior in CARLA. For
improved interpretability, we present both a top-down BEV visualization and a cinematic third-person view, as the raw input

camera streams provide only limited scene coverage.

A. Benchmark Metrics

The following section discusses metrics used from every
benchmark in detail.

A.1. CARLA Leaderboard 2.0

The Leaderboard uses the official CARLA metrics: Driv-
ing Score, Route Completion, and Infraction Score. Each
metric is calculated independently for each route. After all
routes are completed, the final metrics are derived by taking
the arithmetic mean of the metrics across all routes. The
overall driving score, calculated using the global values, is
the primary metric for ranking methods.

Driving Score. The primary evaluation criterion is the Driv-
ing Score, denoted as:

DS, = RC; - IS;,

where RC; represents the percentage of the i-th route com-
pleted, and IS; is a penalty factor accounting for infractions
incurred during the route.

Route Completion. This metric quantifies the proportion of
the route completed by the agent, expressed as a percentage.
Infraction Penalty. The penalty due to infractions, IS;, is
calculated as a product of all infractions:

Ny
ISZ- — H(pj)#mfractlonsj’

j=1

where p; denotes the penalty coefficient for the j-th
type of infraction out of a total of N; infraction types.
#infractions; is the number of times this infraction oc-
curred. The calculation begins with a base score of 1.0,
which decreases with each infraction.

Infractions are categorized by severity, each associated
with a penalty coefficient that reduces the driving score.
Key infractions include:

* Collisions with pedestrians: p; = 0.50.

* Collisions with vehicles: p; = 0.60.

* Collisions with static objects: p; = 0.65.

* Running a red light: p; = 0.70.

* Ignoring a stop sign: p; = 0.80.

* Failure to yield to emergency vehicles: p; = 0.70.

* Failure to maintain minimum speed: Up to p; = 0.70.

* Off-road driving: reduces route completion score propor-
tionally.

When one of the following events occurs, the route stops
immediately:

e Route deviation (more than 30 meters off route).

* Blocked agent (more than 180 simulation seconds with-
out action).

e Communication timeout (more than 60 seconds).

* Route timeout (exceeding allowed simulation time).

Leaderboard 2.0 metric discussion. The Driving Score
is calculated in a way that it can be advantageous not to
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complete the whole route. This is the case if the infrac-
tions incurred during a segment of the route reduce the driv-
ing score more than the potential gain from continuing the
route. In this case, stopping early to avoid further penalties
leads to an overall higher driving score. This tradeoff only
occurs for long routes. [65]

For completeness, we emphasize that our evaluation
does not rely on this effect: all reported results try to fol-
low the full routes without using early stopping.

A.2. Bench2Drive

Driving Score. The Driving Score is calculated similarly
to the Leaderboard 2.0. The only difference to the original
Driving Score is that the penalty “Failure to maintain mini-
mum speed” is ignored.

Success Rate. The Success Rate measures the percentage
of completed routes without any infractions (ignoring the
minimum speed penalty).

Efficiency. This uses the ratio of the ego vehicle speed to the
speed of the surrounding actors. Since there was no penalty
in Leaderboard 1.0 for low speeds, most models used a very
low speed, which makes driving and reacting to other dy-
namic actors much easier. The higher this efficiency metric,
the faster the model drives, making the driving task harder.
Comfortness. The comfort metric considers the jerk mag-
nitude, lateral and longitudinal accelerations, yaw accelera-
tion, longitudinal jerk, and yaw rate.

Table ?? compares TFv6 against all existing baselines on
Bench2Drive at the time of writing using the numbers re-
ported in the respective publications. TFv6 outperforms all
baselines by a wide margin in terms of success rate and driv-
ing score. TFv6 even outperforms the privileged method
Think2Drive by 3 DS and 1 SR.

Method Efficiency T Comfortness 1
HiP-AD [48] 203 19
BridgeDrive [32] 238 17
R2SE [29] 245 23
SimLingo [39] 259 33
TFv6 (Ours) 210 22

Table 1. Efficiency and Comfortness on Bench2Drive.

Table | reports the Efficiency and Comfortness scores,
providing an additional view on driving speed and motion
smoothness beyond the standard Bench2Drive metrics.

In addition to aggregated metrics, Bench2Drive provides
a fine-grained analysis of driving capabilities by evaluat-
ing five key urban driving abilities: Merging, Overtaking,
Emergency Brake, Give Way, and Traffic Sign handling.
Each ability is measured over a curated subset of short
routes designed to isolate a specific driving skill under di-
verse towns and weather conditions. Table 2 summarizes

the performance across these abilities.

A.3. NAVSIM v1

NAVSIM vl evaluates planners using the Predictive Driver
Model Score (PDMS), which combines multiplicative
penalties with a weighted average of progress, safety, and
comfort metrics. All subscores lie in [0, 1] and are com-
puted after a 4-second non-reactive rollout.

* NC returns 1 if no collision occurs, 0.5 if ambiguous, 0 if
at-fault.

DAC checks whether the ego stays within the drivable
area.

TTC binary score for maintaining safe time-to-collision.
* EP normalized forward progress over the horizon.

* C smoothness of accelerations, jerk, and yaw motion.

The PDMS used in NAVSIM vl is:

PDMS — H m 5TTC+5EP+2C
54+5+2
me{NC,DAC}

A.4. NAVSIM v2

NAVSIM v2 extends the NAVSIM vl PDMS metric to the

Extended Predictive Driver Model Score (EPDMS). The

new metric broadens the set of behaviors covered by eval-

uation, adds explicit lane-keeping and extended comfort
terms, and introduces a mechanism to filter out penalties
that are also caused by the human reference driver.

Compared to NAVSIM v1, EPDMS adds two new mul-
tiplier metrics and three weighted metrics:

* DDC penalizes driving against the allowed flow of traffic;
strong violations reduce the score more than minor ones.
The weight is multiplicative in the range {0,0.5,1}.

* TLC penalizes running red lights or otherwise violating
traffic light rules. The weight is multiplicative in the
range {0, 1}.

* LK penalizes driving far from the lane centerline for ex-
tended periods; it is disabled in intersections where map
annotations are unreliable.

* HC evaluates how well the planned trajectory matches the
recent motion history of the vehicle, discouraging abrupt
changes in behavior.

* EC compares subsequent planned trajectories and their
dynamic states; large changes in acceleration, jerk, or yaw
between frames are treated as uncomfortable.

Weights are set to 2 for LK, HC, and EC. In addition, for
the multiplicative metrics, a filtering step is applied so that a
penalty is only activated when the planner itself causes the
violation; if the human reference already violates the rule,
the metric is treated as satisfied, and no penalty is applied.



Method Merg. T Overtak. T Emer. Brake T Give Way T Traf. Sign  Mean 1
TFv5 [65] 58.75 57.77 83.33 40.00 82.11 64.39
HiP-AD [48] 50.00 84.44 83.33 40.00 72.10 65.98
SimLingo [39] 54.01 57.04 88.33 53.33 82.45 67.03
R2SE [29] 53.33 61.25 90.00 50.00 84.21 67.76
BridgeDrive [32]  63.50 58.89 88.34 50.00 88.95 69.93
TFv6 (Ours) 72.50 97.77 91.66 40.00 89.47 78.28

Table 2. Multi ability scores on Bench2Drive evaluation protocol.

Pseudo closed-loop aggregation. NAVSIM v2 further re-

speed v (m/s) of the rater trajectory using

fines evaluation by approximating closed-loop behavior in

an open-loop setting:

1. First stage. Starting from an initial logged scene, the
planner is evaluated for 4 seconds using EPDMS, fol-
lowing the same non-reactive simulation procedure as in
NAVSIM v1.

2. Second stage. Several follow-up scenes corresponding to
different 4-second plans are pre-generated. Each follow-
up scene starts from a perturbed ego state (e.g., lateral
offset or different speed). The submitted planner is eval-
uated on each follow-up scene with EPDMS.

3. Aggregation. Follow-up scores are combined using a
Gaussian kernel over the distance between the planner’s
actual end state in the first stage and the start state of each
follow-up scene, giving higher weight to more consistent
continuations. The final NAVSIM v2 score is obtained
by multiplying the first-stage EPDMS by this weighted
second-stage aggregate.

A.5. Waymo E2E

The Waymo End-to-End Challenge uses the Rater Feedback
Score (RFS) as the primary ranking metric at horizons 3 s
and 5s, averaged over 11 scenario categories. As a sec-
ondary metric, the standard Average Distance Error (ADE)
is reported between the predicted trajectory and the highest-
rated rater trajectory.

For each scenario, three rater-specified trajectories are
provided, each with an associated driving quality score
s € [0,10], where 10 denotes excellent driving. Given a
model prediction, the evaluation first finds the closest rater
trajectory using the adjusted miss-distance defined by the
trust-region procedure used in the Motion Prediction and
Interaction Prediction Challenges [1].

A trust region is defined around a rater-specified tra-
jectory using lateral and longitudinal thresholds at time
T € {3,5} seconds:

That(3) = 1.0, hat(5) = 1.8,

Ting (3) = 4.0, Tng (5) = 7.2.

Speed scaling. These thresholds are scaled by the initial

0.5, v < 1.4,
~14
scale(v) = { 0.5 + 0.5%, 14<wv<l1l,
1, v >11.

The final trust-region thresholds are
Mat(T', v) = scale(v) Ma(T)  Ming(T,v) = scale(v) fing (T').

Scoring within trust regions. If the predicted trajectory
lies inside any of the trust regions of a rater-specified trajec-
tory, it receives that rater’s score.

Scoring outside trust regions. If the prediction lies out-
side all trust regions, it receives an exponentially decayed
score based on the distance A to the closest rater trajectory:

max(max( Ding , Sl ) -1, O)
rater_feedback_score = s x 0.1 Mg 7 Mat .

A floor score of 4 is assigned to all predictions outside the
trust regions.

B. Baseline Expert Overview

Our baseline expert policy consists of three sequential
stages, first two decide lateral driving controls and the last
stage is responsible for longitudinal control decision. Fur-
ther heuristics use simulator’s internal states to solve spe-
cific corner case

Dense geometric trajectory. The expert first generates a
dense reference path using an A* planner on the road graph.
The resulting trajectory is sampled at 0.1 m resolution and
provides a smooth geometric route that can also serve as a
baseline motion plan. This path, however, does not account
for static obstacles that are absent from the HD map (e.g.,
temporary roadblocks, parked vehicles).

Obstacle avoidance refinement. When static obstacles
intersect or occlude the geometric path, the expert locally
adjusts the trajectory to maintain progress. This includes
short-range maneuvers such as lane changes or lateral devi-
ations to overtake stationary obstacles while still respecting
roadway topology.



Target-speed proposal. Given the refined trajectory, the
expert proposes a target speed based on three factors: (i)
the speed limit along the current road segment, (ii) the In-
telligent Driver Model for maintaining safe distances to dy-
namic agents, and (iii) predicted bounding box intersections
to prevent imminent collisions. Two PID controllers then
track the route and the target speed to produce the final
steering and throttle/brake commands.

C. State Alignment

Leveraging new occlusion-measurement tooling, we ad-
just how the expert regulates velocity so that its behavior
matches what can realistically be inferred from the sensor
suite. All modifications operate exclusively on the third
stage of LEAD (i.e., the target-speed proposal), leaving the
geometric route and obstacle-aware trajectory augmentation
unchanged.

C.1. Visibility Alignment

We adjust the expert policy in several ways to produce

sensor-grounded demonstrations:

 Traffic-light behavior. We refine the expert’s traffic-
light handling to better match camera visibility. Pre-
viously, certain traffic-light layouts (e.g., overhead or
region-specific designs) sometimes caused the expert to
stop unrealistically close to the stop line. We explicitly
identify these cases and increase the stopping distance,
while enforcing stronger deceleration when approaching
the signal to produce smoother, more sensor-consistent
braking behavior.

* Weather-adaptive behavior. The previous expert used
a fixed target speed across all weather presets. We in-
troduce a weather-aware controller that reduces speed
under rain, fog, or low-light conditions, reflecting de-
creased visibility and traction. This produces more re-
alistic demonstrations and avoids instructing the learner
to drive too aggressively in poor weather.

* Occlusion-aware junction entry. Using the depth-
aligned camera point cloud, we estimate an occlusion
score for each camera based on the density and distance
of visible structure. When approaching a junction with
high occlusion, the expert slows down preemptively. This
behavior teaches the learner to treat uncertain junctions
as inherently hazardous, without requiring privileged map
knowledge.

e Narrow urban streets. Dense rows of parked vehicles
create environments with severely reduced visibility. The
expert detects these situations by evaluating the concen-
tration of static obstacles and lowers its target speed ac-
cordingly.

e Speed Limits Computation. We use CARLA’s native
speed-limit API and the second-highest speed among
nearby dynamic actors. The minimum of these two values

is used as the effective speed limit, preventing unrealistic
acceleration while preserving natural traffic flow.

In practice, these reductions are small and cumulative:
the maximum total decrease in target speed is only 1.75m/s.
Since the affected situations are almost exclusively low-
speed urban segments with a speed limit of 30 km/h, the
expert still drives at least 23.7km/h at its peak. The adjust-
ments, therefore, nudge the expert toward more realistic,
visibility-aware driving rather than turning it into an overly
conservative controller. Later is also penalized explicitly by
the metrics.

From a practical standpoint, these adjustments are also
consistent with real driving behavior. Even if the speed limit
is 30km/h, no human driver maintains that speed when en-
tering a visually constrained situation such as a narrow ur-
ban street, a row of parked cars, or a partially occluded junc-
tion. Slowing down in these cases is a basic safety principle:
reduced visibility naturally demands reduced speed. There-
fore, the expert behaves more like a real, visibility-limited
driver rather than an omniscient planner following nominal
speed limits under all circumstances.

On the implementation side, visibility in each camera is
summarized by a single scalar occlusion score. We first
keep only points that are within a reasonable height and dis-
tance range and belong to relevant semantic classes. From
these points, we measure their distances to the ego and take
a high quantile ¢ to estimate how far the camera can “’see.”
Let P be all valid points and P, the filtered subset. The
score is

q . "Pvis|

Socc = dmax |7)‘ )

which lies in [0, 1] and decreases when the view becomes
more occluded.

C.2. Uncertainty Alignment: Pedestrian Interac-
tions

Previous implementations relied on bounding-box forecast-
ing and collision prediction, which often resulted in late
stops, if at all, and therefore ambiguous cues for the learner.
We replace this behavior with a direct, visibility-based cri-
terion derived from the camera point cloud:

* the expert stops when a pedestrian reaches a minimum
number of visible pixels.

* a motion threshold ensures stationary pedestrians do not
trigger unnecessary braking.

This yields early, unambiguous stopping decisions
grounded entirely in observable visual evidence, which
aligns well with the learner’s perception module.



C.3. Uncertainty Alignment: Emergency Vehicle
Interactions

Emergency vehicles can approach junctions at high speed
and cause irreversible collisions when the ego reacts too
slowly. If the ego hesitates or yields too late, the resulting
collision typically ends the episode almost immediately, an
effect that becomes far more pronounced on long routes.

The previous expert avoided such failures using privileged

full-state access and often resolved the situation by slightly

slowing down until the priority vehicle passed.
To provide clearer demonstrations:

* when an emergency vehicle is detected with sufficiently
strong visual evidence (enough number of pixels/radar
points), the expert issues an immediate full stop;

e driving only resumes once the hazard is completely
cleared.

C.4. Uncertainty Alignment: Miscellaneous

In unprotected turn scenarios, precise velocity and accelera-
tion estimates of oncoming actors play a critical role in col-
lision prediction. However, these quantities are difficult to
infer reliably from visual observations alone, especially at
long distances or under partial occlusion. To reduce the ex-
pert’s reliance on such privileged motion signals, we delib-
erately make collision checking more conservative in these
situations.

Specifically, when the ego vehicle approaches or exe-
cutes an unprotected turn at a junction, we uniformly en-
large the 3D bounding boxes of potentially conflicting ac-
tors by a fixed factor of 2 along all spatial dimensions
(length, width, and height). This enlargement increases the
spatial margin used during collision checks, causing brak-
ing decisions to be triggered based on proximity and visi-
bility rather than on precise motion forecasts.

D. Intent Alignment

The navigation interface maintains a queue of sparse target
points. A target point is popped from this queue once the
ego comes within a fixed radius. This radius is the pop dis-
tance. It simply determines when the current target point is
considered “visited” and the next one becomes active.

Single target point. With only one target point as condi-
tioning, we found that the default pop distance of 7.5m is
empirically optimal. A larger radius causes premature pop-
ping and weakens directional cues, while a smaller radius
makes the target point appear too late for smooth planning.
At one-point conditioning, 7.5m gives the cleanest and most
stable supervision.

Multiple target points. When introducing additional tar-
get points (previous, current, next), the pop distance be-

comes a critical factor for whether the next point carries
meaningful information. At the default 7.5m, the current
target point is popped too early: in most frames, the next
point appears far ahead and therefore adds little to no con-
textual structure. Practically, the model behaves as if only a
single target point were provided.

Scheduling pop distance. To expose the learner to usable
local geometry from the next target point, we reduce the pop
distance to 3m during training. This delays the popping of
the current target point and increases the number of frames
in which the next point lies close enough to influence local
decision-making. With this adjustment, multi-point condi-
tioning begins to provide consistent benefits instead of col-
lapsing back to the single-point regime.

In closed-loop evaluation, we tune the pop distance sepa-
rately. A value of bm provides the best performance empir-
ically. In addition, we further normalize the target points by
constants (z,y) = (200, 50) before tokenizing them with a
shared linear layer.

E. Extending CARLA Dataset

After focusing on intent and visual alignment, we also fo-
cused on enhancing the dataset’s quality in general. Table 3
summarizes the differences between the two datasets.

Original Driving Scenarios CARLA Leaderboard 2.0.
In each Town, we collect data containing different scenar-
ios, which we detail in the following (descriptions are taken
from https://leaderboard.carla.org/scenarios/):

* Control Loss without Previous Action: The ego-vehicle
loses control due to poor road conditions and must re-
cover.

* Unprotected Left Turn at Intersection with Oncom-
ing Traffic: The ego-vehicle performs an unprotected left
turn at an intersection (can occur at both signalized and
unsignalized intersections).

» Right Turn at Intersection with Crossing Traffic: The
ego-vehicle makes a right turn at an intersection while
yielding to crossing traffic (signalized and unsignalized
intersections).

* Crossing Negotiation at Unsignalized Intersection:
The ego-vehicle navigates an unsignalized intersection by
negotiating with other vehicles, assuming the first vehicle
entering the intersection has priority.

* Crossing Traffic Running a Red Light at an Inter-
section: While traveling straight through an intersection,
the ego-vehicle encounters crossing traffic that runs a red
light.

* Crossing with Oncoming Bicycles: The ego-vehicle
must turn at an intersection while yielding to bicycles
crossing the road.



e Highway Merge from On-Ramp: The ego-vehicle
merges into moving traffic on a highway.

e Highway Cut-In from On-Ramp: A vehicle merges
into the ego-vehicle’s lane from an on-ramp, requiring the
ego-vehicle to decelerate, brake, or change lanes.

» Static Cut-In: Another vehicle cuts into the ego lane
from a queue of stationary traffic. The ego-vehicle must
react appropriately.

* Highway Exit: To exit the highway, the ego-vehicle
needs to cross a lane of moving traffic.

* Yield to Emergency Vehicle: An emergency vehicle ap-
proaches from behind; the ego must create space for it to
pass safely.

¢ Obstacle in Lane - Same Direction: An obstacle blocks
the ego lane, requiring a lane change into same-direction
traffic.

e Obstacle in Lane - Opposite Direction: An obstacle
blocks the lane, requiring the ego-vehicle to bypass it by
moving into a lane with opposite-direction traffic.

* Door Obstacle: The ego-vehicle must avoid the door of
a parked vehicle opening into its lane.

* Slow-Moving Hazard at Lane Edge: A slow-moving
hazard (e.g., bicycle) partially obstructs the lane; the ego-
vehicle must brake or carefully bypass it.

¢ Vehicle Invading Lane on Bend: On a bend, an oncom-
ing vehicle invades the ego lane; the ego must brake or
move aside.

* Longitudinal Control after Leading Vehicle’s Brake:
The leading vehicle brakes suddenly, and the ego-vehicle
must execute an emergency maneuver.

* Obstacle Avoidance without Prior Action: The ego-
vehicle encounters an unexpected obstacle and must
brake or evade.

¢ Pedestrian Emerging from Behind Parked Vehicle: A
pedestrian suddenly enters the lane from behind a parked
vehicle; the ego must brake or evade.

* Obstacle Avoidance with Prior Action — Pedestrian
or Bicycle: While turning, the ego-vehicle encounters an
obstacle such as a pedestrian, bicycle, or stopped vehicle
and must react.

* Parking Cut-In: A parked vehicle exits a parking space
into the ego’s path; the ego must slow down to allow it to
merge.

» Parking Exit: The ego-vehicle must exit a parking space
and merge into moving traffic.

Original Driving Routes CARLA Leaderboard 2.0.
For data collection, we follow the structure of the long
Leaderboard 2.0 routes introduced in [65], which cover
Town12 and Town13 with average lengths of §—12 km and
contain roughly one hundred scenarios per route. These
long routes provide the full scenario distribution of Leader-
board 2.0, but are impractical for training because they con-

tain many kilometers of redundant driving. Therefore, we
split every long route into shorter segments, each contain-
ing exactly one scenario and its surrounding context. This
preserves the original scenario diversity while making route
sampling more balanced and computationally efficient. For
each scenario type, we then sample up to 50 short routes
with replacement when constructing the training set, ensur-
ing uniform scenario coverage independently of how often
a scenario appears in the original long routes. Additional
routes are collected from Towns 01-05 and 10 to cover the
six classical Leaderboard 1.0 scenarios.

New Driving Routes Introduced by LEAD As the au-
thors of Bench2Drive pointed out [17], the official routes
lack geographical diversity that is required to develop ro-
bust driving policies. To mitigate this issue, we extend the
route set in several ways. First, we incorporate additional
routes from Town06 and Town(07 by converting previously
missing route definitions into the Leaderboard 2.0 XML for-
mat. Second, since Town15 provides no official routes, we
create a new set of more than 800 routes spanning dense
urban grids. Third, we exploit structural redundancies in
existing XML scenario descriptions to generate additional
high-quality routes with minimal manual effort.

Many scenario types in CARLA share identical XML
structures, such as accident obstacles, door opening events,
and construction-site hazards. Those differ only in their
naming and geographical placement across the map. We
leverage this observation to increase scenario diversity in
two complementary ways. (1) For underrepresented sce-
nario types, we duplicate existing XML route descriptions
and rename the scenario class, effectively creating new
routes with identical logic but different spatial distributions.
This significantly increases the frequency of rare scenarios
without requiring additional manual labeling. (2) During
data annotation, a single manually curated XML file can
be reused for multiple scenario classes that share the same
underlying structure. This reduces labeling overhead and
increases annotation throughput, while maintaining consis-
tent semantics across the dataset.

New Scenario of LEAD: Stopping at Red Lights. In
the default CARLA data, most red-light stops occur behind
queued vehicles, meaning the ego often learns to brake by
following a lead car rather than by interpreting the traffic-
light state itself. To correct this bias, we extend the red
phase for all lights and remove all vehicles that would oth-
erwise stand in front of the ego. This forces the model to
base its stopping behavior solely on the visual signal of the
red light.

New Scenario of LEAD: Defective Traffic Lights. To
simulate ambiguous or faulty signal behavior, we introduce



intersections where all directions display green simultane-
ously. The ego encounters continuous cross traffic and must
behave as if the junction were uncontrolled, relying on gap
detection rather than signal color. This encourages cautious
approach behavior, waiting for safe temporal gaps, and de-
cisive merging once a gap appears.

New Scenario of LEAD: Unprotected Left Turn with
Competing Flow. We add a more challenging variant of
unprotected left turns in which vehicles from multiple ap-
proaches attempt to merge into the same lane as the ego.
This creates competitive interactions where several agents
vie for limited temporal gaps. The ego must judge whether
a gap is safe while anticipating the actions of vehicles join-
ing from different directions. The scenario produces more
realistic negotiation behavior and reduces failure cases in
dense urban left-turn settings.

Hours Routes Samples Towns Storage

TFv5 40 5600 600k 8 500GB
Ours 73 9300 1003k 11 300GB

Table 3. Dataset overview.

F. Further Improvement of Data and Evalua-
tion Pipeline

Besides extending the dataset, we also enhance the quality
of the perception data labels, driving data trajectory, and
align the controller to fit more to the model’s driving out-
puts.

CARLA Sensor Configuration The original TFv5 setup
uses a minimal sensor suite consisting of a single front cam-
era with a wide 110° field of view and one LiDAR. In our
experiments, we extend this configuration. Depending on
the experiment, we use either a 3-camera setup, each with
60 degree field of view and horizontal overlap, or a full 6-
camera rig that provides 360° coverage. In addition, we
employ a dual-LiDAR configuration for denser point clouds
and a four-radar layout, where each radar covers 90° hori-
zontally.

Adapting Perception Labels All BEV and perspective
annotations are updated to reflect the expanded scenario
set introduced by Leaderboard 2.0. We introduce ded-
icated BEV classes for emergency vehicles, stop signs,
opened-door obstacles, construction zones, and accident
sites, ensuring consistent semantics across both original and
newly added scenarios. Emergency vehicles and stop signs

additionally receive their own perspective-semantic cate-
gories to capture their distinct behavioral relevance. Be-
cause pedestrians and bicycles occupy only a few cells at
CARLA’s default BEV resolution, we enlarge their BEV
footprints by a factor of four.

Marking Overhead Traffic Light. The introduction of
Town12 and Townl13 in CARLA features overhead traffic
lights positioned unusually high above the road, making
them difficult to detect when the ego is close to the stop
line.

To avoid inconsistent annotations and missed signals, we
mark the locations of these overhead lights explicitly and
ensure that the ego halts at an appropriate distance before
the stop line, where the signal is still fully visible. Bounding
box for those red traffic lights also gets its own class.

Depth Label Downsampling. Depth maps provided by
CARLA are high resolution and expensive to store and pro-
cess. Since depth supervision was shown to be less effective
than other modalities [4], we downsample depth labels by
a factor of four before storing them. This preserves metric
structure while reducing storage and memory footprint.

Sensor Perturbations. To simulate the compounded er-
rors that occur in closed-loop driving, baseline Trans-
Fuser++ augments the sensor rig by duplicating it and ap-
plying small rigid perturbations (up to 1 m horizontal trans-
lation and 5° yaw rotation). We extend this strategy by
allowing rotations of up to 15°, while constraining trans-
lations to remain plausible in narrow urban environments
and avoiding rotations that would contradict the ego’s in-
tended driving direction. In particular, we sample a hori-
zontal translation 7" and a yaw rotation R. The translation
is restricted by the available lateral space wpi, in the nar-
rowest lane with respect to the width weg, of ego vehicle:

T ~ Ul’lifOI'm([_Tmax7 Tmax])

Tmax = %(wmin - wego)~
The rotation range is scaled by a single factor
T
o) =) (1- 7).
max

So large translations reduce the allowable rotation and
enforce alignment with the translation direction:

R ~ Uniform(—15¢(T), 15¢(T)) .

For perception pre-training on real-world datasets, we
further introduce a third perturbed rig with up to 1.25m



translation and 35° rotation to reflect the wider range of off-
center driving and complex road geometry encountered out-
side simulation. During training, images from the original
and perturbed rigs are sampled uniformly, while all trajec-
tory labels remain defined in the global frame. This setup
exposes the model to off-center observations and explicitly
teaches it to recover when the ego drifts away from the cen-
terline.

Weather Diversity. The original dataset used a limited set
of 21 weather presets. We extend this to a pool with 25
further presets by introducing additional fog levels, sunrise
variants, and generally more adverse weather combinations.
Each route samples a preset with slight randomization of
sun altitude, fog density, cloudiness, and rain intensity.

Controller Tuning. The lateral PID controller uses a dis-
crete lookahead index ny, that specifies which future point
the controller aims toward when computing the steering
command. To improve sensitivity in sharp curves, we ap-
ply a curvature-dependent adjustment based solely on the
local route curvature x and a single sensitivity parameter ~y:

Nja <= Npa + Chp( LH’VJ 707 2)

Higher curvature increases the correction, while v con-
trols how strongly the controller reacts to it.

As for target points, we add two edge cases to the con-
troller. When two of the three target points are in 10m prox-
imity, we decrease the pop distance from 5m to 4m. And if
the future target point is more than 50m away, we replace it
with the current target point.

We tune every parameter introduced in this section on
a 2km evaluation route in Town06, containing many rapid
turning transitions, and select the value that maximizes the
driving score.

G. Pre-processing Pipeline of LiDAR and
Radar.

To provide short-term motion cues, we stack the five most
recent LiDAR frames after ego-motion compensation, re-
sulting in a temporally consistent point cloud history rather
than a single instantaneous sweep. After aggregation,
ground points are removed using a RANSAC-based plane
fitting algorithm, and the remaining points are stored as a
joint LiDAR point cloud.

Radar detections are incorporated by treating them as
additional LiDAR returns and merging them into the same
point cloud representation. To emphasize nearby dynamic
actors during rasterization, radar detections close to the ego
vehicle are duplicated five times, increasing their saliency
in the resulting LiDAR pseudo-image.

G.1. Radar Detection Training

The radar detection module predicts a fixed set of Q = 20
radar objects per frame, each represented by a 2D position
(z,y), a radial velocity v, and a validity score. Predictions
are produced from learned radar queries via cross-attention
over BEV features, ego-velocity tokens, and radar point to-
kens. Training is formulated as a set prediction problem
following a DETR-style matching scheme, where predicted
queries are matched one-to-one with ground-truth radar de-
tections using Hungarian matching. The matching cost
combines a normalized L1 regression term over (z,y,v)
and a binary classification term over the validity label:

C = Areg L1 (2,9, v) + Aais Locr(l, ). (1)

After matching, losses are computed only on matched pairs.
The regression loss is normalized by the spatial and velocity
ranges and masked by the ground-truth validity label, while
the classification loss is a binary cross-entropy loss on the
validity logits. The final radar loss is the weighted sum of
both terms, averaged over the batch. The radar detection
module is trained jointly with the rest of the network and
remains active during both the perception pretraining stage
and the final planning training stage.

H. Detailed CARLA Ablation Experiments

The results in Tables 4 and 5 track the contribution of each
component across both Bench2Drive and Longest6v2. Each
row represents an additive modification applied on top of
the previous configuration, isolating the effect of every in-
dividual change.

Method DS 1 Backbone
TFv5 83.56 + 034 RegNetY-032
Align State 84.94 + 050 RegNetY-032
Align Intent 89.29 + 054  RegNetY-032
Radar Fusion 90.01 + 042  RegNetY-032
Enhanced Dataset  94.01 + 1.48 ResNet34
Tuned Controller  94.72 +0.72 ResNet34
TFvé6 95.28 +0.36 RegNetY-032

Table 4. Ablation summary on Bench2Drive.

I. Real-World-Data Benchmarks

Waymo E2E Benchmark. The dataset consists of 4021
run segments, each 20 seconds long. Of these, 2037 seg-
ments are used for training 479 segments are used for vali-
dation. The remaining 1050 segments form the test set.
The training split contains roughly 400k samples from
diverse US urban environments, collected at 10Hz fre-
quency. Each sample provides synchronized multi-camera



Method DS 1 Backbone
TFvS 22.51 + 442  RegNetY-032
Align State 34.05 +352  RegNetY-032
Align Intent 42.13 £ 180 RegNetY-032
Radar Fusion 42.60 256  RegNetY-032
Enhanced Dataset  50.01 + 2386 ResNet34
Tuned Controller ~ 57.74 +2.99 ResNet34
TFv6 62.92 + 158 RegNetY-032

Table 5. Ablation summary on Longest6v2.

RGB images, high-precision ego motion, and expert trajec-
tories. No BEV labels are available; the benchmark pro-
vides only trajectory supervision. The evaluation focuses on
long-horizon consistency, rare-event robustness, and multi-
agent interaction quality.

For training, at each epoch, we subsample 300k samples
from the training split. For the baseline, we train the model
supervised only on the expert trajectory for 60 epochs. For
co-training with LEAD, the first 30 epochs are trained en-
tirely on CARLA samples, while the remaining 30 epochs
use a mixture of CARLA and Waymo data.

For evaluation, we select the model checkpoint of the
epoch that yields the highest RFS on the validation set.

NAVSIM Benchmarks. NAVSIM offers a pseudo-
simulation environment built from real-world perception
logs, enabling closed-loop evaluation without real-world
rollouts. Its core training source is the NavTrain dataset,
which contains 103k challenging driving samples explicitly
curated to break constant-velocity baselines. Each sample
includes multi-camera RGB, ego motion, and dense BEV
annotations such as road/lane semantics and 3D bounding
boxes for all agents.

For training, at each epoch, we subsample 100k samples
from the training split. For the baseline, we train the model
supervised only on the expert trajectory for 120 epochs. For
co-training with LEAD, the first 30 epochs are trained on a
mix of CARLA and NAVSIM samples, while the remain-
ing 90 epochs use only NAVSIM data to ensure the model’s
learned statistics are aligned with real-world data.

For evaluation, we simply take the final model.

Filtering CARLA Data. To support Sim2Real training,
we extract only the most useful CARLA samples rather
than training on the full simulator dataset. Every frame
is evaluated by a set of about 60 simple filters. Each fil-
ter corresponds to a situation that is either rare, important
for safety, or underrepresented in NavTrain or Waymo. Ex-
amples include bad weather, dense junctions, high numbers
of parked obstacles, pedestrian interaction, sharp curves,
roundabouts, etc.

Each filter is a lightweight check on simulator metadata
(bounding boxes, distance to junction, traffic-light states,
ego motion, scenario tags). When a frame satisfies a con-
dition, it is added to the corresponding bucket exclusively.
This creates many small disjoined subsets of CARLA data,
each focused on a specific type of interaction.

During training, we draw samples according to a fixed
mixture: buckets that capture difficult or safety-critical sit-
uations are upweighted, while common or uninformative
ones are heavily downsampled. Across an entire epoch, we
cap the contribution of CARLA to at most 100k frames,
ensuring that synthetic data acts as a targeted supplement
rather than overwhelming the real-world distribution. This
strategy allows CARLA to contribute exactly those inter-
actions that are expensive or infeasible to obtain from real
logs, without distorting the overall training mix.

Co-training with Synthetic Data. To ensure comparabil-
ity with the real-data-only experiments, we keep the number
of gradient steps and the batch size identical to the baseline,
avoiding increased compute as a confounding factor.

To enrich the NAVSIM and Waymo benchmarks with
synthetic data, we re-run the LEAD expert on the same
route set used for the CARLA Leaderboard, but with the
ego vehicle equipped with the camera intrinsics/extrinsics
of the respective real-world-data benchmark.

In training, we gradually shift the training distribu-
tion from synthetic CARLA samples to real-world Nav-
Train/Waymo samples. At the start of training, most sam-
ples in the batch come from CARLA, allowing the model
to learn rare and safety-critical interactions with dense la-
bels that are easy to generate in simulation but scarce in real
logs. As training progresses, the ratio is slowly annealed to-
ward real data, ensuring that the final model is aligned with
real-world sensor statistics and driving behavior.

For NAVSIM, we discard all nighttime and adverse-
weather episodes to remain consistent with the conditions
represented in NavTrain. For Waymo, we remove segments
recorded under fog, which rarely appear in the official Chal-
lenge distribution.

Method PDMS 1+ EPDMS ©
Baseline NAVSIM 85.1 +04 283 +0s
No Scheduled Co-Training 86.2 +04  30.8 + 1.0
Scheduled Co-Training 864 +03 314 +10

Table 6. Co-training NAVSIM Results.

Tables 6 compare three representative configurations:
the baseline trained only on data of the respective bench-
mark, co-training without annealing, and our scheduled co-
training strategy. Overall, scheduled co-training leads to a



minor improvement over the other settings, but it consis-
tently provides the best performance among the tested vari-
ants.

J. Training Hyperparameters

We summarize the training hyperparameters of TFv6 in Ta-
ble 7.

Common hyperparameters

Hyperparameter Value
Batch size 64
Optimizer AdamW
Initial LR 3e—4

End LR 0

Weight decay 0.01

LR Scheduler Cosine LR Decay
Grad Clipping No

Dataset-specific hyperparameters

Hyperparameter CARLA NAVSIM  Waymo
Pre-training epochs 30 60 30
Post-training epochs 30 60 30
LR Decay Restart Yes Yes No
Image Augm. Prob. 0.2 0.5 0.5
Image Resolution 384 <384 256x480  288x262

Number of Cameras 3 4 3
Back Camera Used No Yes No
Sensor Per. Prob. 0.5 0.75 0.75
Past States Input 0 0 6

Future States Pred. 2s 4s 5s
Future Pred. Freq. 4Hz 2Hz 2Hz
Future Heading Pred. No Yes No
Backbone RegNetY32 ResNet34 ResNet34

Table 7. Training hyperparameters across benchmarks.

From TFv5 to TFv6, we increase the number of de-
tectable bounding boxes from 30 to 90.

For the CARLA Leaderboard, we allow the model to de-
tect at most 20 objects with Radar. For reliable modeling of
unprotected turns in an intersection, we increase the range
of the BEV grid width from [—32m, 32m] to [—40m, 40m]
so vehicles coming from left or right can be modeled more
explicitly. LIDAR points above 4m and below —4m are dis-
carded to save storage.

For radar encoding, we use 4 4-layer transformer de-
coder with 8 heads. The matching and optimization cost
function for radar detection is a weighted sum of object
properties, regression, and object presence classification.
The regression is weighted with a factor of 5, and the clas-
sification is weighted with a factor of 1.

For training with mixed-precision training in BF16, we
make sure every normalization layer and softmax, as well
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as cross-entropy loss, are computed in 32-bit precision.

K. Further Changes from PDM-Lite to LEAD

Table 8 summarizes the small but notable adjustments from
PDM-Lite to LEAD. Time-headway parameters tune the
IDM’s temporal safety buffer before braking, shaping how
cautiously the expert approaches stop signs, red lights,
pedestrians, and bicycles. Minimum-distance parameters
set the spatial clearance that the IDM maintains around
other agents. The urban-junction speed cap regulates the
maximum speed permitted inside urban intersections, while
the overtake-speed parameter defines the target velocity
used when passing static obstacles or slower vehicles.

Parameter PDM-Lite LEAD
idm_stop_sign_time_headway 0.1 0.5
idm.red_-light_min_distance 6.0 3.0
idm_.red_light_time_headway 0.1 0.5
idm_pedestrianmin_distance 4.0 4.5
idm_pedestrian_time_headway 0.1 0.2
idmbicyclemin_distance 1.0 6.0
idm bicycle_time_headway 4.0 6.0
max_speed_-in_junction_urban 17.77 7.0
default_overtake_speed 13.88 11.11

Table 8. Key differences between PDM-Lite and LEAD.

L. LEAD Inference Time

Table 9 reports the runtime overhead introduced by LEAD
relative to PDM-Lite. For data collection mode, experts are
evaluated under identical conditions: the ego vehicle oper-
ates in full data-collection mode with three RGB cameras,
one LiDAR, and bounding-box extraction.

While PDM-Lite can run without any sensors when used
purely as a driving policy, LEAD is meaningful only in
data-collection mode.

Expert Time per Frame |
PDM-Lite without Data Collection [14] 18 ms
PDM-Lite with Data Collection 124 ms
LEAD with Data Collection (Ours) 182 ms

Table 9.
mode.

Inference time comparison in full data-collection

M. NAVSIM v1 Summary

We summarize the current NAVSIM v1 leaderboard results,
ranked by PDMS, in Table 10.

Table 11 reports NAVSIM vl results restricted to meth-
ods evaluated with a unified ResNet-34 backbone, follow-



Method | PDMS 1 | Year  Venue
RAP [6] 93.80 2025 -
iPad [8] 91.72 2025 -
DiffusionDrive [28] 88.02 2024  CVPR
LTFv6 (Ours) 86.43 2025 -
TransFuser [5] 83.88 2024  NeurIPS
LTF [5] 83.52 2024  NeurIPS
Ego Status MLP [5] 66.40 2024  NeurIPS
CV [5] 20.65 2024  NeurIPS

Table 10. NAVSIM v1 leaderboard snapshot as of 20 Nov 2026.

ing the controlled comparison protocol of Table 1 in [45].
By fixing the perception backbone, the comparison isolates
differences in planning, trajectory generation, and decision-
making components.

In addition, we indicate whether a method explicitly op-
timizes for the PDMS evaluation metric.

Method | PDMS 1 | Year PDMS Opt.
MindDrive [45] 88.9 2025 Yes
WoTE [23] 88.3 2025 Yes
DIVER [35] 88.3 2025 Yes
Hydra-MDP++ [20] 86.6 2024 Yes
Hydra-MDP [24] 86.5 2024 Yes
GoalFlow [54] 85.7 2025 Yes
DiffusionDrive [28] 88.1 2025 No
LTFv6 (Ours) 86.4 2025 No
DRAMA [58] 85.5 2024 No
TransFuser [5] 84.0 2022 No
LTF [5] 83.8 2022 No
UniAD [11] 83.4 2023 No

Table 11. NAVSIM vl results under a unified ResNet-34 back-
bone. Values are taken from Table 1 of [45].

N. NAVSIM v2 Summary

We summarize the current performance of existing methods
on NAVSIM v2 in Table 12.

Method ‘ EPDMS 1 ‘ Year  Venue
ZTRS [26] 48.12 2025 -
RAP [6] 39.61 2025 -
LTFv6 (Ours) 31.91 2025 -
LTF [5] 25.12 2024  NeurIPS
Ego Status MLP [5] 14.17 2024  NeurIPS
CV [5] 11.48 2024  NeurIPS

Table 12. NAVSIM v2 leaderboard snapshot as of 20 Nov 2026.
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Table 13 reports NAVSIM v2 results on the Navhard
split, restricted to methods evaluated with a unified ResNet-
34 backbone, following the controlled comparison protocol
of [45]. By fixing the backbone and sensor configuration,
the comparison isolates differences in planning robustness
under perturbed and safety-critical conditions.

We focus exclusively on the final EPDMS score, which
aggregates Stage I and Stage II evaluations. As for
NAVSIM vl, we additionally indicate whether a method ex-
plicitly optimizes for the EPDMS metric.

Method | EPDMS 1 | Year EPDMS Opt.
MindDrive [45] 30.5 2025 Yes
GuideFlow [31] 27.1 2025 Yes
GTRS-DP [27] 23.8 2025 Yes
LTFv6 (Ours) 31.9 2025 No
DiffusionDrive [28] 24.2 2025 No
LTF [5] 23.1 2022 No
Table 13. NAVSIM v2 (Navhard) results under a unified

ResNet-34 backbone. Values are taken from Table 3 of [45].
We report the final EPDMS score, which aggregates Stage I and
Stage II evaluations. We restrict all methods to the same ResNet34
backbone.

O. Bench2Drive Summary

Table 14 summarizes Bench2Drive results for methods that
have been published in peer-reviewed venues or publicly
available technical reports. These results represent the cur-
rent state of the literature and provide a reference point for
comparing established approaches under a common evalua-
tion protocol.

Table 15 reports Bench2Drive results for methods that
have not yet undergone peer review, including preprints,
technical reports, and leaderboard submissions without an
accompanying publication. We include these results for
completeness and transparency, but distinguish them from
peer-reviewed methods.



Method DS+ SR1 | Year Venue Method DS+ SR1 | Year Venue
TCP [53] 40.70 15.00 | 2022 NeurIPS AD-MLP [59] 18.05 0.00 |2023 -
VAD [19] 42.35 15.00 | 2023 ICCV ReAL-AD [36] |[41.17 11.36 | 2025 -
SparseDrive [47] 44.54 16.71 | 2025 ICRA FUMP [30] 45.67 16.36 | 2025 -
GenAD [64] 44.81 1590 | 2024 ECCV FocalAD [46] 4577 17.30 | 2025 -
Dual-AEB [63] 4523 10.00 | 2025 ICRA CogAD [51] 48.30 24.00 | 2025 -
UniAD [11] 4581 16.36 | 2023 CVPR E3AD [38] 50.07 20.12 | 2025 -
MomAD [42] 4791 18.11 | 2025 CVPR X-Driver [34] 51.7 18.1 |2025 -
BridgeAD [61] 50.06 22.73 {2025 CVPR DiFSD [44] 52.02 21.00 | 2024 -
SeerDrive [62] 58.32 30.17 | 2025 NeurIPS SpaRC-AD [52] |55.6 30.0 |2025 -
WOoTE [22] 61.71 31.36 | 2025 ICCV VeteranAD [60] | 64.22 33.85|2025 -
DriveDPO [40] 62.02 30.62 | 2025 NeurIPS iPad [8] 65.02 3591 | 2025 -
ThinkTwice [16] 62.44 31.23 (2022 CVPR StuckSolver [3] | 65.23 36.32 | 2025 -
DriveTransformer-L. [18] | 63.46 35.01 | 2025 ICLR GEMINUS [49] |65.39 37.73 2025 -
DriveAdapter [15] 64.22 33.08 | 2023 ICCV VDRive [9] 66.25 50.51 | 2025 -
OAIAD [57] 68.73 48.86 | 2025 Machines RAP-ResNet [6] | 66.42 37.27 | 2025 -
Raw2Drive [56] 71.36 50.24 | 2025 NeurIPS CAPS [37] 66.76 52.87 | 2025 -
VL [2] 73.29 65.44 | 2025 ICRA SNG [12] 67.17 3590|2025 -
ETA [10] 74.33 48.33|2025 ICCV DiffAD [50] 67.92 38.64 | 2025 -
DiffusionDrive-temp [28] | 77.68 52.72 | 2025 CVPR DIVER [43] 68.90 36.75|2025 -
ORION [7] 77774 54.62 | 2025 ICCV Hydra-NeXt [25] | 73.86 50.00 | 2025 -
PGS [13] 78.08 48.64 | 2025 NeurIPS DriveMoE [55] | 74.22 48.64 | 2025 -
GaussianFusion [33] 79.1 544 |2025 NeurIPS TFv5 [65] 84.21 67.27 2024 -
SimLingo [39] 85.07 67.27 | 2025 CVPR R2SE [29] 86.28 69.54 | 2025 -
HiP-AD [48] 86.77 69.09 | 2025 ICCV BridgeDrive [32] | 86.87 72.27 | 2025 -
TFv6 (Ours) 95.28 86.81 | 2025 - TFv6 (Ours) 95.28 86.81 | 2025 -
Think2Drive [21] 91.85 85.41 | 2024 ECCV Think2Drive [21] | 91.85 85.41 | 2024 ECCV
PDM-Lite [41] 97.02 92.27 | 2024 ECCV PDM-Lite [41] 97.02 92.27 | 2024 ECCV
LEAD (Ours) 96.78 96.59 | 2025 - LEAD (Ours) 96.78 96.59 | 2025 -

Table 14. Reported Bench2Drive results for peer-reviewed
methods.

Table 15. Reported Bench2Drive results for non-peer-reviewed
methods.
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P. Qualitative Results

We provide more qualitative results of the effect of intent and visual alignment in Figures 1, 2, 3, 4, 5.
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Figure 1. Top. Limited intent conditioning results in ambiguous behavior and makes TFv5 miss the exit. Bottom. TFv6 resolves these
ambiguities through improved intent conditioning, enabling reliable lane-change execution and safer interaction with surrounding traffic.
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Figure 2. Top. Driving model abuses the target point bias and produces an unsafe trajectory, leading to a collision. Bottom. TFv6 relies
less on target point bias. With the expert’s recovery demonstrations coming from visual alignment (d), the driving model also learns to
negotiate after a sub-optimal gap estimation.
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o & i $
Normal Driving with
Visible Pedestrian

Figure 3. Top. PDM-Lite brakes only when its bounding-box collision predictor triggers, providing a weak and delayed learning signal
for pedestrian interactions in TFv5. Bottom. LEAD stops immediately on sight of visible pedestrians and resumes only once the hazard is
fully cleared. Trained on these causal demonstrations, TFv6 handles the scene safely.

Figure 4. Effect of the current target point on the planning output before (left) and after (right) intent alignment. In the pre-alignment
model, the predicted trajectory follows the target point almost verbatim. After intent alignment, the learner interprets target points more
robustly and produces a consistent, lane-aligned plan. While this reduces the tendency to overreact to small variations in target-point
placement, it also removes the “recovering” behavior that occasionally helped the model correct itself on long-route evaluations.
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Figure 5. Preliminary investigation shows that with 3 target points, the planning does not always depend on the exact locations of the
target points, but also on the local structure of the points.
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