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Signalons aussi que les définitions et conjectures ci-dessus peuvent
étre données dans la cadre des “motifs” de GROTHENDIECK, c¢’est-
a-dire, grosso modo, des facteurs directs de H" fournis par des
projecteurs algébriques. Ce genre de généralisation est utile si 'on
veut, par example, discuter des propriétés des produits tensoriels
de groupes de cohomologie, ou, ce qui revient au méme, des
variétés produits. (SERRE [Se70])



Introduction

A theme showing up in several places of the mathematical landscape is that of
L-functions. These complex functions go back to the days of DirrcHLET and his
study of primes in arithmetic progressions. Since then, L-functions have been
associated to number fields k (the Dedekind zeta function (i (s), with as a
famous case the Riemann zeta function, when k = Q), Galois representations,
modular forms, varieties, and more. Several of these cases have later been
unified, with as a well-known example the modularity theorem (the L-function
of an elliptic curve coincides with that of the associated modular form).

Central to all these L-functions is that they are defined by some series,
converging on some right half of the complex plane. They should (sometimes
this is known, sometimes it is a conjecture) satisfy a meromorphic continuation
and a functional equation. Interesting theory comes from the study of their
zeroes and poles, and their values at the integers (most notably those closest to
the centre of reflection of the functional equation).

The first four sections of this thesis are in some sense a “toy model” for the
later sections. Here we associate an L-function to every abelian variety over
a number field, and show that it contains information about the reduction
behaviour of the abelian variety. In the case of elliptic curves (dimension 1)
we also state part of the Birch and Swinnerton-Dyer conjecture. It relates the
order of vanishing of the L-function at its special value (analysis) and the rank
of the Mordell-Weil group (geometry).

GROTHENDIECK came up with the vision of a universal cohomology theory
for smooth projective varieties over a field, which he christened motives. All
‘nice’ cohomology theories (Weil cohomology theories) should factor through
this category of motives, which should have lots of properties in common
with the categories in which cohomology theories take values. I. e., it should
be abelian, have a tensor structure, and possibly even be equivalent to the
category of representations of some affine group scheme.

So far, there are several candidates for the category of motives, each with
its own advantages and disadvantages. The idea has shown itself to be a
guiding principle in arithmetic geometry over the last few decades. In the

rest of this thesis we use GROTHENDIECK's proposal, named Chow motives.

We associate L-functions to them, and formulate a conjecture by BEILINsON
and BLocH about the special values of these L-functions, and so called Chow
groups (akin to the Mordell-Weil group). In sections 7 and 8 we do some
explicit computations with Chow motives and algebraic cycles. Finally, in the
last section we apply the computations to the Fermat quartic, and use the
conjecture to predict the existence of cycles.

Later, mixed motives were
proposed, for the singular,
non-projective case.



1 Conductors

The Galois group G of a finite Galois extension //k of local fields contains rich
information about ramification behaviour in the form of a finite filtration of

higher ramification groups We refer to [Sey9, §v.1] for
more information about this
G=G_12Gy DG D...0G,=1. filtration.

To define this filtration, denote with (O}, p) the valuation ring of /, and its
maximal ideal. Then G; is the set of o € G such that ¢ acts trivially on O;/ pitl,
It follows that G; is a normal subgroup of G. One can show that G; = 1 for
sufficiently large i. For o # id, we write ig(c) for the smallest integer i such
that o & Gi-

Observe that the higher ramification groups indeed give information about
the ramification behaviour. After all, Gy is the inertia group, and therefore
I/k is unramified if and only if Gy is trivial. The extension is tamely ramified
precisely if Gy is trivial.

Given a finite-dimensional Galois representation V (of G) over some field
K with char(K) # p, it is a natural question to ask how the G; act on V. Let
us first introduce some terminology. The Galois representation V is said to
be unramified if Gg acts trivially on V, and tamely ramified if G acts trivially.
Observe that this generalises the classical terminology of unramified (resp.
tamely ramified) extensions. This leads naturally to the definition of the
conductor of V; a measure of the ramification behaviour of V.

If we write g; for the cardinality #G;, we may define the measure of wild
ramification by putting

S(V) = 1 Y gidim(V/ V).
805
Observe that the sum is finite, because the filtration of higher ramification

groups is finite. In a similar nature, we define the measure of tame ramification
as

e(V) = dim(V/ V).

The conductor of V is then defined to be f(V) = e(V) + (V).
If V is a complex representation, i.e., K = C, there is a scalar product on For a detailed and more general

the space of complex valued class functions of G, given by exposition, see [Seyg, Og67,
Se60].

0.9) = 35 L #@9@).

ceG

We can use this to give an alternative computation of the conductor via the



1.1

character x of V. Crucial in this approach is the Artin character:
ag: G—=>Z
H){—[G:c;o]-ic(a) if o £ id
[G: Go| - Lrriaic(t) ifo=id.
The other ingredient is the following lemma.

Lemma. For every non-negative integer i we have

gidim(V/V) = ¥ (x(id) - x(0)).

c€G;
Proof. We have a split exact sequence of G;-representations
0—-U; —C[G] —-C—0,
We apply the contravariant functor Home(_, V) to get
0 — V — Hom¢(C[G;], V) — Hom¢ (U;, V) — 0.

Taking G;j-invariants (which is left exact, therefore preserving split exact
sequences), we get the exact sequence

0 — V% — V — Homg, (U;, V) — 0.

Write u; for the character of U;. If we decompose U; = ®;U;; and V = @V
into irreducible representations, with characters u;; and )y, then we find

dim Homg, (U;, V) = ) dim Homg, (U; j, Vi) = Y _(uij, xi) = (i, x)-
Jik jk

The lemma now follows from explicitly computing

(ui,x) = ;(gz)c (id) — Y x(o ) O

ceG;

A direct computation now shows that

(Xr aG X aG( )
- L

= e 2 ¥ i) (o))

i=00eG; 80

—ZZ){M

gOl =00€G;

We conclude that the conductor f(V) equals (x, ag).

The augmentation representation
U; is defined as the kernel of
the map C[G;] — C,0 — 1.
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Abelian varieties

Let S be a scheme. An abelian scheme over S of dimension d is a proper
smooth finitely presented commutative group scheme over S whose fibres are
geometrically connected and of dimension d. An abelian variety over a field k
is an abelian scheme over k. It can be shown that an abelian variety A/k is
projective as k-variety.

Example. An elliptic curve over a field k is defined as a proper variety E /k that
is smooth of relative dimension 1, of which the geometric fibre Ej is connected
and has genus 1, together with a given point 0 € E(k). One can show that
elliptic curves over k are precisely the 1-dimensional abelian varieties over
k. Elliptic curves form an important class of objects in the study of abelian
varieties. Abelian varieties are a generalization of elliptic curves to higher
dimensions. «

Let A/S be an abelian scheme of dimension d, and n an integer. The endo-
morphism [1]: A — A, defined by A(T) - A(T), for S-schemes T, is called
the multiplication by n map. We denote the kernel of [n] by A[n]. It is important
to observe that A[n] is in general not an abelian scheme.

Assume S is the spectrum of a field k, and fix a separable closure k° of
k. Let ¢ be a prime number coprime to char k. Multiplication by ¢ defines
canonical maps A[¢"1](k%) — A[¢"](k®), for every non-negative integer 7.
We define the (-adic Tate module T;A of A/k to be lim A[¢"](k®). This is a
free Z)-module of rank 2d that comes equipped with a natural continuous
action of Gal(k®/k). There is also a canonical isomorphism of Galois represen-
tations between Hét(Aks, Q/) and the dual of T)A ®z, Q,. Moreover, there are
canonical isomorphisms of Galois representations

i
HY (Aks, Qr) = N\ He(As, Qy),

and in particular H3 (A4, Q) = A*HL (A, Q). Thus the f-adic Tate module
contains all the information of the ¢-adic cohomology.

Néron models

Let R be a Dedekind domain, k its field of fractions, A an abelian variety over
k. A Néron model of A over R is a scheme A representing the functor

{smooth R-schemes} — Set
T — Homk(Tk,A),

I e, if T is a smooth R-scheme with a morphism Tj — A, it can be extended
uniquely to a morphism T — A. One should note that, although A is proper
over k, we do not require A to be proper over R, and in general it is not.

This isomorphism

Hi (A, Qp) = (TyA ®z, Qp)Y
can be deduced frome. g.,
results and computations in
[SZ11, §2].



2.2

2.3

3.2

Theorem. Let R be a Dedekind domain, k its field of fractions, A an abelian variety
over k. Then there exists a Néron model of A over R and this Néron model is unique
up to unique isomorphism.

Proof. For the existence I will not give a proof. See [BLR9o] for a proof. The
uniqueness is the usual exercise in abstract nonsense. g

The theorem shows that it makes sense to speak of the Néron model of A.

Proposition. The Néron model of an abelian variety is a quasi-projective commuta-
tive group scheme over R.

Proof. Omitted. See [BLRgo]. O

Reduction of abelian varieties

In section 1 we defined for a finite Galois extension of local fields when a
Galois representation is unramified. In this section we will prove an important
theorem that links the ramification behaviour of Tate modules of an abelian
variety with its reduction at primes (to be defined). This is the so called
criterion of Néron—0Ogg—Shafarevich.

Notation

Let k be a field, v a discrete valuation of k, and O, the valuation ring of v. Fix
an extension 7 of v to k. Let G be the absolute Galois group Gal(k®/k), and let
D, and I denote the decomposition group and the inertia group of . (Observe
that this can be done since v corresponds to a prime of O,.) Denote the residue
field O,/m, by k(v). We assume that x(v) is perfect. Let k(v) = () be a
separable closure of it. Sometimes we will just write O, x or &, to reduce
notation. Let A/k be an abelian variety, A, the Néron model of A with respect
to v, and furthermore, let A denote A, X 0, k(v), the reduction modulo v. The
connected component (for the Zariski topology) of the identity of A is denoted
AC. Let n be a non-zero integer. We write A, for A(k®)[n] = A[n](k®).

Criterion of Néron—Ogg—Shafarevich

Definition. A has good reduction at v if there exists an abelian scheme over O,
whose generic fibre is isomorphic to A. «

Lemma. Let k"™ be the maximal unramified extension of k in k°. The ring Ojunr of
v-integers in k""" is strict henselian.

Proof. Let v' denote the restriction of ¥ to k"™. Let f € Ounr[X] be a monic
irreducible polynomial with a simple root 49 modulo v’. Then the derivative

An excellent treatment of this
criterion is given by SERRE and
TaTE [ST68]. The proof in this
paper is essentially the same,
and is longer only because it
spells out some facts in more
detail.

It is a theorem that A has good
reduction at v if and only if the
Néron model A; is proper over
Oy.

See appendix A for a definition
and some facts about henselian
rings.
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3.4

of f is non-zero modulo ¢/, so it is non-zero itself. Hence f is separable,
and therefore its roots are in k°. Since f is monic all roots lie in the integral
closure of Ounr in k%, i.e., in Og. In particular, f factors in linear factors over
Oz, and this factorisation reduces to a factorisation over %. Since f is monic,
deg f = deg f, and consequently there exists a unique root a of f that reduces
to ag.

Since D/I = Gal(k/x) it follows that for each ¢ € I we have o(a) = a
(mod v’). Because o(a) is a root of f that reduces to ay it follows that o fixes
a, and therefore a € k"™, hence a € Ojunr. Since the residue field of Ounr is
the separably closed field %, we conclude that Oyunr is strict henselian. g

Lemma. With notation as in the beginning of this section, let | /k be a unramified
field extension, v' an extension of v to 1. Write O, for the valuation ring of v'. Let n
be any integer.

The reduction map Oy — «(v') induces a map A(l)[n] — A(x(v'))[n], which
we will also call a reduction map. Moreover, if | is the maximal unramified extension
over k, and n is invertible in O, this map is bijective.

Proof. Since I/k is unramified, Spec O, is smooth over Spec O,. Further
Oy ®0, k = 1, since taking field of fractions is localizing at the zero ideal.

By the universal property of Néron models A,(O,) = A(l). Observe
that A(x(v')) = Ay(x(v')) by the universal property of fibred products.
Therefore we have A(I)[n] = Ay(Oy)[n] = Ay[n](Oy) and A(x(v'))[n] =
Ao(x(@)) 1] 2 Ao[n)(x(2))).

The reduction map O, — x(v') induces a reduction map A, [n](Oy) —
Ap[n](x(v')). The composition of this reduction map with the above isomor-
phisms gives the reduction map A(l)[n] — A(x(v"))[n].

The last statement of the lemma is an immediate consequence of Hensel’s
lemma. By lemma 3.2 the ring O, is henselian. Since n € O} it follows that
Ay[n] is étale over O, (see [KM85, thm 2.3.1] for a proof in the case of elliptic
curves, or [Ntor, thm 10] for the general case). Now corollary A.4 asserts that
the reduction map is bijective. g

Recall that we write A, = A(k®)[n], and so we will write A, = A(%)[n],
and AY = A%(x)[n]. Let AL denote the set of elements in A, that are invariant
under the action of the inertia group. Throughout the discussion, 7 is an
integer that is coprime to the residue characteristic.

Lemma. The reduction map induces an isomorphism of Al onto A,.

Proof. Let k"™ be the field fixed by the inertia group I and the residue field
of k""" is X. By lemma 3.3 there is a bijective reduction map A(k"™)[n] —

A(x)[n] = A,. Observe that AL, = A (k") [n]. It follows that A, is isomorphic
to AL. O

10
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3.6

By proposition 2.3, A is a connected smooth commutative group scheme.
Therefore it is an extension of an abelian variety B by an affine closed subgroup
scheme H due to lemma B.1. Observe that H is again smooth and commutative,
and therefore can be decomposed as S x U for some torus S and unipotent
group scheme U, by lemma B.2.

Lemma. The index of A in A is finite, and A, is an extension of a group of order
dividing [A : A%] by a free Z./nZ-module of rank dim S + 2 dim B.

Proof. By proposition 2.3 we see that A, is of finite type over Spec R. Therefore
the index of AY in A is finite. The inclusion A, — A(¥) induces a map

Ayl A — A(R)/ A% (%),
which shows that the index c of A) in A, divides [A(x) : A°(x)] = [A : A"].

Observe that taking n-torsion is left exact, and therefore we have the exact
sequence

0— H, —» AY - B,.

To show that the last map is surjective, let x € B, be given. Since A°(x) — B(¥)
is surjective, we have a preimage y in A’. As 1 is coprime to char x the group

H(x) is n-divisible. Therefore there exists an h € H, such that nh = —ny.
We conclude that y + & is an element of A) mapping to x, which proves
surjectivity.

Observe that H,, is a free Z /nZ-module of rank dim S, and B,, is free of
rank 2 dim B. It turns out that Ag is a free Z /nZ-module, so it follows that it
is free of rank dim S + 2 dim B. O

Lemma. Let R be a discrete valuation ring, with residue field x and field of fractions
k. Let X be a smooth separated R-scheme, and suppose that the generic fibre Xy is
geometrically connected, and the special fibre X, is proper and non-empty. Then X is
proper over R and X, is geometrically connected.

Proof. We first show that we may assume R to be complete. Write R for the
completion of R, and # for the residue field of R. Observe that Spec R —
Spec R is faithfully flat and quasi-compact (since affine). Observe that X; is
geometrically connected over k, and X; is proper over &. After proving the
lemma for R, [EGA4, prop 2.7.1] shows that X is proper over R. Since the
residue field & of R equals x it also follows that X, would then be geometrically
connected over k. By [EGA3, cor 5.5.2], there exist open disjoint subschemes Y
and Z of X, with X = YU Z, Y proper, and X, C Y. Since X is smooth over R,
observe that Y N X} is non-empty. (Because smooth morphisms are flat and
locally of finite presentation, hence open, cf. [EGA4, thm 2.4.6], and R is a
discrete valuation ring.) Since X} is connected, we conclude that Z N Xj is
empty, hence X =Y. In particular X is proper.

The fact that X, is geometrically connected follows from Zariski’s connect-
edness theorem (cf. [EGA3, thm 4.3.1]), since R is noetherian. 0

11

Hg is an iterated extension of
copies of G,. Extensions of
n-divisible groups are
n-divisible groups.
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3.8

A W N R

Proposition. Suppose A, is unramified at v for infinitely many n coprime to
char x(v). Then A has good reduction at v.

Proof. By assumption there exists an integer n such that

n>[A:A%;
n is coprime to char «;
An - ATI,I.

By lemma 3.4 we know that A, = Al is isomorphic to A,. Combined with
lemma 3.5 this gives

le dimA _ Cndim S+2dim B/

where c is equal to [A, : AY] and divides [A : A°]. By assumption n > [A :
A% > c. Hence ¢ = 1 and dim S + 2dim B = 2dim A. Since

dim A = dim A’ = dim B + dim S + dim U,

we have S = U = 0. Therefore A® is isomorphic to B, and hence proper over
k(v). Since the index of A” in A is finite, we conclude that A is proper over
x(9v). It remains to prove that A, is proper over O, and A is geometrically
connected over «(v).

Since A is geometrically connected over k and A is proper over x(v) we
are in a situation to apply lemma 3.6, and the result follows. g

Theorem (Néron-Ogg-Shafarevich). Let £ be a prime number different from the
residue characteristic char x(v). The following are equivalent.

. A has good reduction at v;

. Ap is unramified at v for all n coprime to char x(v);

. Ay is unramified at v for infinitely many n coprime to char x(v);
. Ty A is unramified at v.

Proof. First observe that item 4 is equivalent to A, being unramified for all
i € Z>g; this follows immediately from the definition of Galois action on T,A.
From this we deduce that item 2 implies item 4, which in turn implies item 3.
Also, item 3 implies item 1 by proposition 3.7.

We now continue with (1) = (2). Note that because A has good reduction
at v, A, is an abelian scheme over O,. Thus A is an abelian variety over x(v).
For any n coprime to char x(v), we then know that A, is a free Z/nZ-module
of rank 2dim A = 2dim A. By lemma 3.4 this also holds for Al. Hence A},
must be all of A,,. We conclude that item 1 implies item 2. O

12



4 L-functions of abelian varieties

Let k be a global field. Let ¥; (respectively ¥°) be the set of ultrametric
(respectively archimedean) places of k. For a valuation v € X; U X7, we write
k, for the completion at v.

Let v be an ultrametric place of k. We write O, K(U), and p, for the corre-
sponding valuation ring of ky, its residue field, and its residue characteristic.
Let g, denote the cardinality of «(v), and let £ be a prime number different
from p,. Finally, let A be an abelian variety over k of dimension d.

The /-adic Tate module Ty A (being dual to the f-adic cohomology) comes For a more general treatment of

with an action of the absolute Galois group Gy. Write I = I, for the inertia conductors of varieties, see
group of v in Gy. Write p: I — Aut(T;A,) for the restriction to the inertia [Se7o].
group. By a theorem of DELIGNE there is a subgroup I’ C I of finite index
so that for all ¢ € I’ the action of ¢ is unipotent, i.e., p(¢) is unipotent.
Consequently the character of p factors via I/I'. Analogously to section 1
we may then associate a conductor f(v) to the pair (A,v). We define the
conductor of A to be the cycle f = Y, f(v) - v. The sum is finite, as the criterion
of Néron-Ogg-Shafarevich (theorem 3.8) implies that f(v) = 0 if and only if
A has good reduction at v. (And A has good reduction at almost all v.)

Local factors of the L-function

First assume that v is a finite place. We can choose a lift, 7r4, of the Frobenius
endomorphism of x(v) to Gal(k®/k), which acts on V/A = T/A ®z, Q;. We
now define the polynomial

Pv,g(T) = det(1 — ,T),

which turns out to have coefficients in Z and to be independent of the choice
of ¢ and the lift 7ry. We will therefore denote it with P,(T).
In case A has good reduction at v, we define the local factor at v to be

1
Py(q5°)"

If A does not have good reduction at v, we proceed as follows. Write
Ay = A Xy k3, and recall that Ty A, is a Galois representation. Therefore V =
ViAy = TyAy ®z, Qq is also a Galois representation. Let I = I(k3,/ky) denote
the inertia group. Let 7w denote the restriction of the geometric Frobenius to
the coinvariants V;. Then we define P, /(T) = det(1 — nT) as before. Again
this polynomial has coefficients in Z, and is independent of the choice of ¢, so
that it makes sense to call it P,. Just as we did above, we define

1
Ly(s) = m

Note that this approach generalizes the case of good reduction.

Ly(s) =

13



Now assume that v is an infinite place. Define T'¢c(s) = (27r) °I'(s), where The function
I'(s) denotes the usual gamma function. For v € L we know that k, is T'(s) = Jo #letdtisa
isomorphic to either R or C. In case k, = R we define I'y(s) = FC(s)d. If, generalisation of the factorial:
on the other hand, k, = C, we define T»(s) = I'c(s)?. It appears that these I(n) = (n -1t
definitions coincide with the more general definitions in [Se7o, §3] (as can be
read in one of the examples there).

L-functions and their functional equation

To come to a definition of global L-functions, we define a few more invariants.

29—2
q-87=,

C = N(j) - D*.

) |dk/ql, abs. value of the discriminant, if k is a number field,
B if k is a function field of genus g over IF,.

Finally, after putting

L'(s)= ] Lo(s)

vEX)

we define the global L-function to be

L(A,s) = C/2L/(s) T To(s).

[ee]
vEL]

It is proven that the L-function attached to A converges on some right half

plane of the complex numbers. Conjecturally every L-function satisfies a

functional equation, which allows us to extend it meromorphically to all of C.
The functional equation is given by

L(A,s)=¢-L(A,2—5s), with e = +1.

Note that € does not depend on s. It is called the sign of the functional equation.

Example: L-functions of elliptic curves

An abelian variety of dimension 1 is also called an elliptic curve. It is possible
to give the L-function of an elliptic curve E/Q explicitly.

First consider a finite place v. Then x(v) is finite of cardinality g,. Let a,
denote g, + 1 — #E(x(v)). It has been shown that

Reduction of E at v:
1—a,T+q,T*> good

Py(T) = 1-T split multiplicative
T 1+T non-split multiplicative
1 additive.

14



4.1

4.2

Observe that L,(1) = P,(1/g,) ! = qo/#E(x(v)), no matter what the reduc-
tion type of E at v is.

A quick inspection of the previous section shows that the contribution
from the only archimedean place is I'c(s) = (271) °I'(s). So we come to the
following expression

i 1
L(E,s) = N(f)(2m) °I'( )1;[713;,(;:*5)'

By the modularity theorem we know that this L-function coincides with the
L-function of a modular form associated to E. In particular it follows that
L(E,s) has a meromorphic continuation to the entire complex plane, and that
there is a functional equation

L(E,s) =¢L(E,2—s), &=+l

Birch and Swinnerton-Dyer conjecture
We continue with the notation of section 4.

Conjecture (Birch and Swinnerton-Dyer). For an elliptic curve E/Q with L-
function L(E,s) the following two quantities are equal:

ords—1 L(E,s), the order of vanishing at s = 1;
rk E(Q), the rank of the Mordell-Weil group. «

As a consequence of the conjecture, if € (the sign of the functional equation)
is equal to —1 we deduce from the functional equation that L(E,1) = 0. Then
we can conclude that there are elements of infinite order in E(Q).

Remark. We have only stated half of the Birch and Swinnerton-Dyer con-
jecture. In its full glory, this conjecture involves an invariant differential wp,
the order of the Tate-Shafarevich group of E, a certain regulator and other
constants. We will not go into that here. For more information we refer to
[Si1o0, conj 16.5]. «

Gamma factors of Hodge structures

The local factors of the L-function of an abelian variety at finite primes are
complemented by gamma factors for the infinite primes. These gamma factors
are naturally attached to the Hodge structures on the de Rham cohomology
at the infinite primes, just as the local factors at finite primes are attached to
Galois representations on the /-adic cohomology.

A C-Hodge structure is a finite-dimensional C-vector space V, with a
decomposition V. = @47z VP4. Writing hP4 for dim VP4, we define the
gamma factor attached to V by

15

For more details on the
statement and an overview of
the results concerning this
conjecture, see [Wio6].

This terminology might be
slightly unconventional, but we
follow SERRE [Se7o].

Recall: T¢(s) = (271) T (s).



Ty(s) = [T Tc(s —min{p,q}))"#9.
P.aEZ

An R-Hodge structure is a finite-dimensional C-vector space V, with a
decomposition V = & 4ezVP4, and an automorphism ¢ of V, such that
¢? = 1 and o(VP4) = VP, for all p,q € Z. Again, we write h(p,q) for
dim VP4,

If V is an R-Hodge structure, defining its gamma factor requires a bit
more work. As before, we have a factor [T,., T'c(s — p)"(P4). The space VP¥
is fixed by ¢, and as such gives an (—1)P-eigenspace V*, and a (—1)P*1-
eigenspace VP:~. Put h(p,+) = dim VP, and h(p, —) = dim V', so that
h(p,p) = h(p,+) + h(p, —). The contribution from these subspaces is defined
to be T'r(s — p)"PHTR(s +1 — p)"P~). Together, this gives the gamma factor

Ty(s) = [JTR(s — p)"PHTR(s +1— p)P=) T Te(s — p)htra.
p p<q

Chow motives

Algebraic cycles and intersection theory

Let k be a field, and let X be a k-scheme, projective, geometrically integral,
and smooth of dimension n. A prime cycle is a closed integral subscheme of X
over k. The codimension of a prime cycle Z C X is defined as dim X — dim Z,
and denoted codim Z. Write Z7(X) for the free abelian group generated by
the prime cycles of codimension r. An element of Z°*(X) = ®,czZ2"(X) is
called an algebraic cycle.

For two prime cycles Z; and Z,, and an irreducible component W of
Z1 N Zp, we always have

codim W < codim Z; + codim Z,.

The cycles Z; and Z, are said to intersect properly if equality holds for all
irreducible components W. Two algebraic cycles 71,72 € Z*(X) intersect
properly if all prime cycles occurring in 7 intersect properly with all prime
cycles occurring in 7».

We now want to define the intersection product of two properly intersecting
cycles. The naive set-theoretic intersection does not take multiplicity into
account. A correct (but admittedly, pretty dense) definition is the following,
due to SERRE. Let Z; and Z; be two prime cycles on X, that intersect properly.
Let W be an irreducible component of Z; N Z,. Let w be the generic point of
W, and let R denote the stalk Ox . Let a; be the ideal of R corresponding to
Z1, and ay the ideal of Z,. The intersection multiplicity of Z; and Z; along W is
defined as

[ee)

Z(—l)ilengthTor,R(R/al, R/ay),
i=0
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Just like Galois representations,
R-Hodge structures are
representations of a group
scheme: the Deligne torus

S = Resc/]R(Gm).

Define: T (s) = /2T (s/2).

A prime cycle may be identified
with its generic point; and as
such, algebraic cycles are formal
sums of (not necessarily closed)
points of X.

For more information we refer
to [Se65], where SERRE (among
other things) proves that this is
a non-negative integer.



6.1

6.2

and is denoted by i(Z1, Zy; W).
To deal with the fact that cycles do not intersect properly, we need to be
able to move them around.

Definition. Let ; and 7, be two algebraic cycles on X. We say that v; is
rationally equivalent to 7y, if there exists an algebraic cycle V on Xp1, all whose
components are flat over P!, such that y; — 2 = (VN Xp) — (VN Xw), where
the intersection N is in the cycle-theoretic sense, as defined above. «

The subset of rationally trivial cycles forms a subgroup, and we write CH" (X)
for the quotient with Q-coefficients, i.e., (Z"(X)/ ~) ®z Q. We call CH' (X)
the r-th Chow group of X.

Lemma. (Chow'’s moving lemma) Let [y1] € CH'(X) and [y,] € CH®(X) be given.
Then there exists representatives in Z"(X) and Z°(X) that intersect properly.

Proof. MURRE, NAGEL, and PETERs [MNP13, §1.2] give a sketch of a proof by
RoBERrTS [RO72]. U

Together with lemma 6.2 this enables us to define a product structure on
CH*(X) = @!_,CH'(X), which on graded components is given by

CH'(X) x CH®(X) — CH'*5(X)
([v1], [72]) = [r1 N2l

By lemma 6.2 we may assume that 7y and 7, intersect properly, and we obtain
a well-defined product. This is clearly commutative, and we argue below that
it is also associative. We call CH®*(X) the Chow ring of X, and will denote the
intersection product with - instead of N.

Let f: X — Y be a morphism of smooth projective geometrically integral
schemes over k. We associate to f two maps f. and f*. Let -y be a prime cycle
on X. If dim f(y) < dim+y, we put f.(y) = 0; if dim f(7y) = dimy, then the
function field K(7) is a finite extension of K(f (7)) and we put

fe(y) = [K(7) : K(f(¥)] - f()-

By linearity, this extends to a linear map f.: Z(X) — Z(Y). It turns out
that f. respects rational equivalence, so that we also obtain a linear map
f«: CH(X) — CH(Y). We stress that this is in general not a ring map.

For the definition of f*, first observe that X x Y is smooth and projective.
Let pr; and pr, be the projections from X x Y to X and Y respectively. Let I'r
be the graph of f, viewed as cycle on X x Y. We then define the ring map

£*: CH(Y) — CH(X)
v = pry, (Tp - pry ' (7).
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We identify the fibres Xy and
X with X, so that the equality
makes sense.



We now observe that the intersection product is associative, since one can
show that it is equal to the composition [Fug8, §8.1]

CH' (X) x CH®(X) =5 CH™*(X x X) & CH'*5(X)

where A is the diagonal map X — X x X.
Indeed, the commutative diagram

(id, A)
X xp X XXk(XXkX)
e
X Il
\
(A,id)
XXkX (XXkX)XkX

implies that for «, B, v € CH*(X)
w-(Bry) =D ax AT (B xy) =27 (A" (axp) x7)=(a-p)-7.

Chow motives

Denote with V(k) the category of smooth projective geometrically integral
schemes over k. Let X and Y be two such schemes. A correspondence from Y to
X of degree r is a cycle in CHY™Y*7 (Y x; X). Correspondences are composed
via the rule

CHdimZ+T(Z X Y) X CHdimY+S(Y X X) N CHdimZ+T+S(Z X X)
(& f) PTzx « (przy(8) - pryx(f))-

The preadditive category of correspondences C(k) has as objects smooth
projective schemes over k, and as morphisms correspondences of degree 0.
There is a natural functor c: V(k)°PP — C(k), sending a morphism of schemes
to the transpose of its graph.

We proceed to the category of Chow motives in two steps. First we formally
add the kernels of all idempotent endomorphisms in C(k) to obtain a category
Megs(k) of effective motives. Since p is idempotent if and only if id —p is
idempotent, all idempotent endomorphisms in M.g(k) also have images
(in the categorical sense). We denote objects of this category as pairs (X, p),
where p: ¢(X) — ¢(X) satisfies p o p = p. Note that (X, p) is not the kernel,
but the image, of the endomorphism p. A morphism (X,p) — (Y,q) is a
correspondence f: ¢(X) — (Y) of degree 0, such that fop = f =qgo f. If
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Excellent introductions to Chow
motives are given in [Anog4,
MNP13, Sco4].



(X,p) and (Y, q) are effective motives, then (X UY, p L q) is their biproduct.
Moreover

(X, p)®@(Y,q) = (XxY,pxq)

defines a monoidal structure, with unit 1 = (Speck,I';). (Strictly speaking,
one should also give diagrams for the commutativity and associativity of this
tensor structure. However, we will not do that here.)

For the next step, we decompose the effective motive (P}, Tt,). Let x €
IP}(k) be a rational point, and denote with f: P} — Speck the structure
morphism. Then f o x is the identity on k, and x o f is an idempotent morphism,
whose transposed graph we will denote with p. It follows that 1 and (P}, p)
are isomorphic as effective motives (since p o x = x). Now p + p! is rationally
equivalent to the diagonal A = T’} . Therefore (IP, id) decomposes as (P}, p) &
(IP}, p'). The summand (IP}, p') is called the Lefschetz motive, L. We remark
that IL does not depend on the choice of x, since all rational points of IP! are
rationally equivalent.

We form the category M (k) of Chow motives by formally adjoining an
inverse IL~! for the tensor product. The objects are triples (X, p,m), where m
is an integer. A morphism (X, p,m) — (Y, g,n) is a correspondence f: X — Y
of degree n — m, such that fop = f = qo f. We write h: V(k)°PP — M (k) for
the functor sending X to (X, id,0), and morphisms to the transpose of their
graph.

The Lefschetz motive LL is isomorphic to (Speck,id, —1), which can be
seen by looking at the graphs of x and the structure morphism (as opposed to
the transposed graphs). If M is a Chow motive, it is common to write M(n)
for M @ L®". By definition of the hom-sets in M (k) we have CH!(X) =
Hom(1, h(X)(i)), and in general the i-th Chow group of a motive M is defined
as CH' (M) = Hom(1, M(i)). For any smooth projective geometrically integral
scheme X/k of dimension d, the choice of a rational point e € X (k) (or even a
cycle in CHY(X) of degree 1) induces projectors p and p' as in the case of P!,
and one shows that (X, p,0) &1, and (X, p',0) = L%, Assume X is a curve,
i.e, d = 1.In general p + p' is not rationally equivalent to the diagonal, which
gives rise to another idempotent A — p — pf, cutting out a motive k! (X). In this
way (for curves), we arrive at a decomposition 1(X) = h%(X) @ h'(X) @ h?(X),
with h%(X) = 1 and h?*(X) = L. Moreover, for i # 1, the Chow group
CH'(h!(X)) is trivial. In light of the decomposition of 1(IP}) computed above,
we have 1! (P!) = 0.

Tate twists

As noted above, if M is a motive, we write M(n) for M ® IL~". This notation
is not only used for motives, but also for ¢-adic representations and Hodge
structures. Indeed, in the (-adic setting one defines Q(—1) to be the cyclo-
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Without loss of generality,
assume x = 0. Now take the
algebraic cycle on

(P} x P) x P}, given by

y = x+c¢, for ¢ # oo, and

IP} x 00 + 0o x IP} for the fibre
atc = oo.

See [Scg4, Mugo] for more
details about this Kiinneth
decomposition. Such a
decomposition is also known for
e.g., the motive of a surface and
the motive of a Jacobian variety,
but (though evident on the side
of cohomology) remains a
conjecture in general.



6.3

tomic representation, which is isomorphic to Hét(]Péj, Qy). We write Q,(n)
for Q,(—1)®~".If V is a f-adic represention, then V(1) denotes V ® Q(n).
In the setting of Hodge structures, Q(—1) denotes the 1-dimensional
Hodge structure Q of type (1,1). Here, we have Q(—1) = H*(P{,Q), and
we write Q(n) for Q(—1)®~". Finally, if V is a Hodge structure, then V(n)

denotes V ® Q(n).

L-functions of Chow motives over number fields

Assume k is a number field. Let M = (X, p, m) be a motive over k. For each
complex embedding o: k — C we can associate Betti cohomology (with a
Hodge structure) to X x , Spec C. Further, there is the /-adic cohomology of
X. We want to generalise these cohomology groups to M, and we call them
the Hodge realisations and ¢-adic realisations of M.

Let H be one of these realisations, i.e., H(_) denotes one of H(_ X}, C, Q)
or He(_, Q). For each integer i, and for all X € V(k) there is a cycle map
cx: CH!(X) — H(X)(i). For a motive M = (X, p,m) there are induced
idempotent endomorphisms

p.i: H(X) = H (X)
o — pry, (cxxx(p) Upri(a)),

with pr; the projection of X x X to the j-th factor. We extend the cohomology
to M (k) by

H' (M) = im(p..i2m) ®Q(m).

N—
CHi+2m (X)

This is indeed an extension, since H'(k(X)) = H'(X). As a reality check, note
that H?(Speck,id, —1) = H’(1) ® Q(1). In general, for a curve X, one has
H!(h(X)) = H'(X), using the decomposition h(X) = h%(X) @ h!(X) @ h2(X).

Fix a motive M, and an integer n. We proceed with the definition of the
L-function L(M, n,s). To do so, assume the following conjecture, which is a
generalisation of [Se7o0, hypothesis H,].

Conjecture. Let v be a non-archimedean place of k, and let £ be a prime not lying
under v. There exists a finite index subgroup I' C I, of the inertia group I, C Gy, so
that I' acts on Hjj (Mys, Qg) by unipotent automorphisms. «

As in the case of abelian varieties, one associates to M a conductor §f =
Yoo f(v, HE (Mys, Qy)) - v, where the sum ranges over the finite places of k. We
now want to associate local zeta factors to M for every finite place v of k. We
have an induced action of Frobenius on the invariants of the inertia group
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In contrast to the case of abelian
varieties, it is not known (but
conjectured) that this sum is
finite.



6.4

I C Gal(l/k,), and we put
Py(T) = det(1 — T| HE(Mys, Q) ),

1
gﬂ(s) 1_Pv(q;s)/
where g is the number of elements of the residue field of v. It is conjectured
that P,(T) (and a fortiori y(s)) does not depend on the choice of prime ¢ 1 g,.

For a complex embedding ¢: k — C, such that o (k) is not contained in
R, we obtain a C-Hodge structure Hy (M, ¢, C), and a corresponding gamma
factor, in the sense of section 5. If & denotes the conjugate embedding, then
HZ(Mgc,C) gives the same gamma factor. Thus we may attach a gamma
factor I'y(s) to M, n and a complex place v.

If o: k — C is a real embedding, then we obtain an R-Hodge structure
on Hj (M, ¢, C), via the R-automorphism M, ¢ — M, ¢ induced by complex
conjugation. So to a real place v, M, and n, we also associate a gamma factor
I's(s), using the definition of section 5.

Let B, denote the dimension of the n-th Betti number, dim H]}(M), of
the motive M (which does not depend on the complex embedding ¢). Put
C = N(§) - |[dg/q|P", and define the L-function of M and n to be

L(M,n,s) = cs/? H éU(S)HFv(S).

V< v|oo

This product should converge on {s € C|R(s) > n/2+ 1}. Conjecturally it
has a meromorphic continuation to C, and satisfies a functional equation

L(M,n,s) =¢-L(M,n,n+1—5s), e C*.

Conjectures on algebraic cycles and L-functions

A central landmark in the theory on algebraic cycles and L-functions is due to
BLocH [Bl84], which he calls a recurring fantasy. It states that the dimension
of the kernel of the cycle map CH!(X) — H%(X)(i) is equal to the order of
vanishing at s = i of the L-function, L(H*~!(X),s), attached to H*~1(X).
When we try to cast this in the language of Chow motives, we first extend the
cycle map to Chow motives. The cycle maps extend to motives, in the sense that
for a motive M and an integer i, there are cycle maps ¢: CH!(M) — H? (M) (i)
for all suitable cohomology theories H. Conjecturally, the kernel of these cycle
maps is independent of the choice of H, and we denote it with CH'(M)°.

Conjecture. Let X be a projective smooth geometrically integral scheme over a num-
ber field k, and let i be an integer. Then dim CH' (h(X))? and ords—; L(h*~1(X),2i —
1,s) are finite and equal. «

The problem with this conjecture is the motive #*~1(X), of which we do not
know the existence in general (though we do when i = 1, or i = dim X).
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A suitable cohomology theory is
a Weil cohomology theory, see
e.g., [Ano4]. As before, we are
interested in étale, de Rham,
and Betti cohomology, which
are examples of Weil
cohomology theories.



6.5

It is conjectured by MURRE that such Kiinneth projectors always exist in
Corr’(X, X) = End M(k) (X). An even stronger conjecture then conjecture 6.4
is the following.

Conjecture (Motivic friend of recurring fantasy). Let k be a number field, and
let M be a Chow motive over k, and let i be an integer. Write n = 2i — 1. Then
dim CH'(M)® and ords_; L(M, n,s) are finite and equal. «

To understand the strength of this conjecture, let X be a surface over k, take
M = h?(X) and i = 2. (Note that h?(X) exists, by work of MURRE [Mugo].)
We have 1 = 3 in the above conjecture, and by construction L(h?(X),3,s) = 1.
The conjecture then says that CH?(h?(X)) is trivial. However, MURRE [Mugo]
shows that CH?(h2(X)) consists of those homologically trivial cycles that are
in the kernel of the Abel-Jacobi map. Thus, the conjecture implies that over a
number field the Abel-Jacobi map is injective (at least up to torsion, but the
general statement follows).

Observe that conjecture 4.1 is a special case of conjectures 6.4 and 6.5. We
have X = E, i = 1, and indeed CH'(E)" is precisely the Mordell-Weil group.

I am not exactly confident whether conjecture 6.5 is equivalent to the
so called Beilinson—Bloch conjecture. The formulations that I have seen are
either remarkably close to conjecture 6.4 or they involve motivic cohomology
and extensions of motives, of which I do not know anything. I have the
impression that these conjectures are not formulated for Chow motives, but
other categories of motives. The interested reader is referred to [Neo4] for a
good introduction to this theory and conjectures.

Further I want to stress that all conjectures in this section are nonsense
when one removes the assumption that k is a number field. For an example,
let us give a small preview of section 8. If X be a curve, then we will exhibit a
cycle in CH?(h?(X?)). There exist curves for which this cycle is non-trivial, by
work of GREEN and GRIFFITHS [GGo3]. Moreover, MUMFORD proved that on a
surface the kernel of the Abel-Jacobi map may even have infinite dimension.
This indicates that in conjecture 6.5 even the finiteness of dim CHi(M)O is a
very strong conjecture.

The Chow motive of the triple product of a curve

Let k be a field, and X/k a smooth, projective, geometrically integral curve.
After fixing a degree 1 cycle e € CH!(X), we have a decomposition,

h(X) = h(X) ® hY(X) @ h*(X),

of the Chow motive of X, depending on e. This provides us with a Kiinneth
decomposition of the Chow motive h(X3), of the triple self-product of X,
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The Mordell-Weil group E(k) is
Pic% sk (k), which are the
degree-0 cycles in CH!(E). The
homology class only sees the
degree, so this is the
homologically trivial part.

The results of this section do not
depend on the conjectures in
section 6; indeed the ground
field is arbitrary.



(7.1)

It is a natural question to ask how the Chow groups of X2 relate with this
decomposition. Since the Chow groups are actually hom-sets in the category
My, we get a similar decomposition of Chow groups. We would like to know
which of them are 0. I. e., we would like to fill out the table

| RO(Xx3) KhY(X%) RA(X3) B3(X3) KA(X®) K5(X3) hO(X®)
CHY
CH!
CH?
CH®

To complete this job, we first compute a similar table for the curve X. It looks
like

(X)) (X)) KX
CH'| Q
CH!'| o

0
CH'(X)" Q
In particular
CH!Y(X) = CH!(h}(X) @ 3(X)) — CH}(K*(X)) = Q

is the degree map. Using the fact that Hom(IL®, I.®/) = 0 if i # j, we can
now fill out quite a part of the table for X°.

| RO(X3) BI(X3) KA(X3) K3(X3) KY(X3) K(X3) Ko(X5)

CH| Q 0 0 0 0 0 0
CH! 0 * * ? 0 0 0
CH? 0 0 +/? + * 0 0
CcH? 0 0 ? ? ? A Q

(Here * means that there are certainly curves X for which this is non-zero.

The A indicates that it is not yet obvious from the previous what this group It turns out that /A consists of

is. A + means that we will exhibit a cycle in this group, and give situations homologically trivial cycles of

in which it is non-trivial. A ? means that conjecturally (6.5) these groups are codimension 3, modulo the

trivial when the ground field k is a number field.) kernel of the Abel-Jacobi map,
It may be very enlightening for the reader to study the table for a sur- [Mu9l

face, which may for example be found in [Scg4, §4.6]. This table is due to
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MURRE [Mugo], and he showed that CH?(1%(X?%)) is isomorphic to the quo-
tient CH?(X%)%/ ker(Alb(X3)), where Alb denotes the map to the Albanese
variety.

In the remaining sections of this thesis we will focus on the two +’s in the
table. We will exhibit algebraic cycles in CH?(h?(X%)) and CH?(h3(X?)) that
are known to be non-trivial for certain curves X. Before we do so, we exploit
the action of S;, on X". For each 0 € S, there is a morphism

X" — X"
(x1)i = (Xo(i) )i
Denote the graph of this map with I, and its transpose with I'\. The
element % Yses, 0 in the group ring Q[S,] is idempotent, and therefore

Ty = % Yses, I'h is an idempotent correspondence X" — X". We conclude
that Sym"h(X) = (X", 71,,0) is a Chow motive. We now specialise to n = 3.

Figure 1: A graphical presentation of the Chow motive h(X?). Each cube
represents one component in the Kiinneth decomposition (7.1). The vertical
level represents the weight, e.g., the cube at the bottom is hO(X3), and the
topmost cube is h°(X3). Identifying orbits under the action of S3 on the
axes, one finds the decomposition (7.2), corresponding to Sym>k(X). In this
decomposition the shaded cubes represent Sym?h!(X) @ Sym3h! (X).

This motive naturally decomposes as
Sym3h(X) = 1@k (X) ® L @ Sym?h! (X) @ h1(X)(—1) ® Sym>h!(X)
@ Sym?h (X)(-1) @ L @ k1 (X)(-2) @ L®3.  (7.2)
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We will not go into the theory of
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note that it is dual to the Picard
variety.



We can decompose Sym>/i!(X) even further into a primitive part and a non-
primitive part. We do this, by considering a correspondence X — X>. Let f be
the image of
X% = X % X°
(x,y) = (x) x (x,y,y)-
Observe that f is a degree 1 correspondence from X to X3, and thus a mor-
phism i(X)(—1) — h(X3). Similarly, define f’ to be the degree 1 correspon-
dence X3 — X that is the image of
X? = X3 % X
(y) = vy, %) < (2).
This is a morphism h(X?) — h(X)(—1). We claim that f' o f = id, so that
fof’is an idempotent correspondence from h(X?3) to itself, cutting out a

motive isomorphic to h(X)(—1). Indeed the following computation shows
that f' o f = id.

P

X x oy oy oz f
Z/ y/ y/ x/ x/ f/
x| x x x x (x) x (x)

Recall that the projector of Sym®h(X) is denoted with 773. Denote the pro-
jector of h'(X) with p;, and the projector of h*(X) @ h¥(X) ® h°(X) with g, ..
(Here a, b, ¢, and i are taken from the set {0,1,2, o}, with the understanding
that h*(X) = h(X).) Then the projector of Sym®h!(X) is given by g1 11 o 7.
Observe that g = q111 0 73 0 f 0 py is a morphism /! (X)(—1) — Sym>h!(X).
Write ¢’ for p1 o f' o 130 4111. We claim that ¢’ o ¢ is a non-zero multiple of
idhl (X)(—l)' Note that

g og=pioflomoqiofop.

We continue with the computation of g1 11 o f. Essential are the following four
computations.

o~

X Xy Yy znn z2 Z3 f
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Essentially, this is because

W (X) = hl(Jac X), and

Sym>h! (Jac X) = h3(Jac X).
Then one uses the Lefschetz
decomposition, which is known
for Jacobian varieties, by
KunNEMANN [Kii93]. Also see

[Sc94, §5] or [Kiig4].

See appendix C for an
explanation of these diagrams.

We leave it to the reader to
verify that
11,1073 = 7130 41,1,1-



X x Yy oy ‘ Z1 Z2 Z3 f
Z | X] X2 X3 | € X2 X3 q2,0,0
S~
x x oy oy ey oy () % (e,9,y)
X x m 71z z3 f
z x; e X3 X X X3 o0,
~— >
x x e e x x e (x) % (x,y,e)
Yx oy ylu ozm oz f
z X1 X2 X3 ‘ X1 e X3 qo,Z,o
~ > -
xx oy oy x e y (x) x (x,,7)

By symmetry one finds Jee0© f = Je2,6 © f and e 020 f = e,0,6 © f. It is then
immediate that

de,0,0 Of = fe,0,6 ©e,0,0° f =0

q-,Z,Z Of = q-,Z,o 9] qc,o,2 Of =0.

Further, observe that

90,000 f =q020°f =q02e°f,  Goe2°f =4q002°f =q00,e°f,
72,000 f =q2200f =q22e°f, G220 f = 2020 f = G200 f.

Notice that all these correspondences as cycles on X x X3 have an e in one of
the first two coordinates, and an ¢ in one of the last two coordinates; and the

remaining two coordinates are independent. E. g., the three on the first line
are computed below.

e x Yy Yy z1 Zp 23 40,00 © f
|
Z X3 X2 X3 X3 € X3 Jo,2,0
~_ > -
e \ x vy y x e Yy (e) x (x,e,y)
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The reader may now check that for any of these correspondences, composing
with f’ o 73 gives one of py, pa, or 0. (The latter for dimension reasons.)
Finally composing with p; will always give the 0-morphism. Another such
computation kills the contribution of g 11 and 421 1.

Since dapo 0 f = 0, we have go21 0 f = (de2,6 — Jep2,0) © f- However, as
observed above, Je2e © f = ge2,0 © f. This kills the contribution of g, 1, and
for symmetrical reasons, that of g, 12, e 0,1, and ge 1,0. We are left with g1,
q1,1,1, and 41,0.

Next, observe that

71200 f =qGe200 f, g102° f = qGe020 f.

It is immediate that 713 0 g1 = 713 0 41 0,2. Further, one computes that f’ o
304120 = %(p. + po + p2). Composing this with p; gives %pl. We conclude
that

1
gog=(pofomofop)=2-3p.

A quick glance at the computation of f’ o f on page 25 reveals that f’ o 7130 f
is a multiple of id. This proves our claim that ¢’ o g is a non-zero multiple of
p1 = idj1x)(—1)- Thus, up to a invertible scalar g o ¢’ is idempotent, and we
have a decomposition Sym®h! (X) = M @ M/, where g: h'(X)(—1) — M’ is
an isomorphism by construction (with as inverse some non-zero multiple of
8.

I have not proven that the motive M gives rise to the primitive part on the
side of cohomology, but it is suggested in [Zh1o0, §5.1].

Explicit calculations on certain symmetric cycles

Faber—Pandharipande cycle

Let X/k be a curve of genus ¢ > 2 over a field k. Let K be the canonical
divisor, which has degree 2¢ — 2, and write & for K/(2g — 2) in CH'(X).
Denote the diagonal embedding X — X x X with 6. On X x X we have a
cycle Z = & x & — 8.() in CH?(X x X), which was first considered by FABER
and PANDHARIPANDE. This cycle is algebraically trivial, and conjecturally, if
k is a number field, Z is rationally trivial. However, GREEN and GRIFFITHS
showed in [GGo3] that Z is rationally non-trivial if X is generic and g > 4.
Recently, YIN [Yi13] gave a short and elegant proof of this fact.

Using the decomposition h(X) = h%(X) @ h'(X) @ h?(X), induced by a
cycle e € CH!(X) of degree 1, we obtain a decomposition

h(X % X) = (hO(X) ® h(X)) @ (hl(X) ® h(X)) @ (hz(X) ® h(X)) .
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If we write g; for the projector of the term /'(X) ® h(X), it is easy to see that
qo(Z) = 0, because the intersection is empty (after moving e if necessary). On
the other hand, a quick computation shows that q,(Z) = ¢ xe—¢ x e = 0. By
symmetry we may thus conclude that Z can only have a non-zero component
in CH?(h'(X) ® h'(X)).

§ ¢ oz Ex¢ IAE: 5.(2)
Zx e 72 Z x e 72

C‘C‘e Exe 5\/‘5\6 Exe

Gross—Schoen cycles

GRross and ScHOEN define a modified diagonal on the triple product of a
pointed curve, and show that it is homologically trivial. Let X /k be a curve of
genus g. For every rational point e € X(k) put

Ajps = {(x,x,x) : x € X},
={(xxe):xeX}
A23—{(exx) x € X}
= {(xe,x) i x € X
Al ={(x,ee):x € X},
A5 ={(e,x,e):x € X},
A5 ={(ee,x):x € X}.
Define

Gross and ScHOEN show that this cycle is homologically trivial (see [GS95]).
They also show that there is a degree 1 correspondence from X to X given by
the cycle

{{e} xAc:ec X} C X x X5

In particular, this gives a map of Chow motives h(X)(—1) — h(X?), and
therefore a map CH! (X) — CH?(X?), which is the linear extension of x — A.

As before, let K denote the canonical divisor of X, and write ¢ = K/(2g —
2) € CH!(X). The above map CH!(X) — CH?(X?) associates a Gross-Schoen
cycle Ags € CHz(X3) to §. We stress that if we write K = ) oy nxx, with
ny € Z, then Agg = Zg%Z Yxex NxAy. Write pry,s, pryy, . .., prs for the projec-
tions onto the corresponding components. Write 6: X — X? for the diagonal

28

Observe that A, is the
diagonal, hence independent of
e. We will also write Aqp3 for the
diagonal.



embedding. We see that

Acs = A1z — (pri,(0+(X)) - pr3 (&) + cyclic permutations)
+ prip(6:4(6)) + priz(0+(8)) + pras (04 ().

ZHANG also defines a cycle on X3, very similar to the one we considered
above. Again, write K = )", cx n1xx, ny € Z. Now he defines

Az = A3 — (pr],(6+(X)) - pr3(¢) + cyclic permutations)
H(XXEX )+ (X X X&)+ (§x & x X).

We see that A; — Ags equals

((€ x & x X) —pri,(6+(&))) + cyclic permutations,
or rather

Az — Acs = prip(Z) + pri3(Z) + pryz(2)

where Z is the Faber-Pandharipande cycle introduced above. Let i1, be the
inclusion X? — X3, (x,y) — (x,y,e). Observe that 7115 0 i1y = idy2. It follows
that ij,71f,(Z) = Z. In particular the Az and Acs coincide if and only if the
Faber-Pandharipande cycle Z vanishes.
Recall the notation g, e ¢ for the projector of h?(X) ® h(X) ® h(X) as sub-
motive of 1(X)®3. The reader may compute that g4 e(Acs) = 0. (Indeed,
intuitively, when projecting Ags to a plane, all the partial diagonals cancel.)
The table on page 23 shows that Ags has no components in the CH? of
h0(X) @ h!(X) viewed as submotives of Sym>/(X).
We conclude that Ags is contained in CH?(Sym?h!(X) @ Sym3h! (X)) (the
shaded area of the cube in section 7). Since this is exactly where A; — Ags is  The reader may verify that both
located, we conclude that A, resides there as well. Az and Ags have (in general) a
In the previous section, we gave a decomposition Sym®1!(X) = M @ M/, non-zero component in
where M’ 22 h!'(X)(—1). Recall that the isomorphism h'(X)(—1) — M’ was CH? (Sym?h (X))
induced by a correspondence f, defined as the image of

X? = X x; X3
(x,y) = (x) x (x,y,y).

We claim that the projection of Ags (and therefore A;) to CH?(M’) is trivial.
We do this by computing the following intersections.

Recall that the self-intersection
of the diagonal on X x X is —K.
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RS (;:

x X &z A3,

y/ yl x/ x/ f/
~_ ~—{—

K —K ¢ ¢ —(g-2)¢
~— — ~_

AL ¢ x x|z AL,
fl yl yl x/ xl fl
¢ ¢ ¢ ¢ ¢ ¢
— RS
x & ¢z AS g x &z AS
]// ]// x/\\/x/ f/ ]// ]// x/\\/x/ f/
| |
G g G ¢
;¢ A
y/ yl f/
0 0 0

We conclude that
f'(Acs) = K+ (28 =2)§ =&~ ¢+E+E+0=0.

Thus the projector of M’ kills Ags, and therefore Az. We summarise the above
computations by saying that Ags and A are contained in CH?(Sym?h!(X) @
M).

Application to the Fermat quartic

Denote with F; the smooth projective geometrically connected curve over Q
defined by x* + y* + z* = 0. We call this curve the Fermat quartic. This curve,
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9.1

which has genus 3, is studied in some examples in [Lio6], and the results there
are of particular interest to us. Indeed observe that F; has good reduction at
all odd primes. Further [Lio6, p. 549] shows what kind of field extension is
needed over Q; to obtain a semistable model. Carrying out the computations
we find a field extension k/Q with [k : Q] = 64 such that F; has semistable
reduction over k. However, this particular field is not of very much interest to
us. The only important fact is that g € k, and therefore

k has no real places;
[k:Q] =4-[k:Q(ls)], so k has an even number of complex places.

Write X for the curve Fy X g Speck over k. Let M be the primitive part of
Sym?>h!(X), as in section 7. Throughout this section we assume conjecture 6.5.
Hence CH?(Sym?h! (X)) is trivial, and in particular the Faber-Pandharipande
cycle vanishes. Consequently we have A, € CH?(M). We recall that A, is
homologically trivial, so that it is actually contained in CH?(M)°. With the
following lemma we can compute the sign of the functional equation of
L(M,3,s).

Lemma. Let v be a place of k. The local root factor e, in the functional equation of
L(M,3,s) is given by

-1, if v is complex,
=141, if v is real,
(_1)e(e—l)(6—2)/6+3eT(e—l)(e—2)/2+3, if v is finite.

Here e is the rank of the first homology group of the reduction graph of X at v, and T
is the determinant of the action of Frobenius on the e-dimensional character group of
the toric part of the reduction of the Jacobian Jac(X) at v.

Proof. Recall that the genus of Fy is 3, and apply [Zh1o, lem 5.2.1 and 5.2.2].00

Since k has an even number of complex places, the total contribution of
local root factors of infinite places is 1. If v is a finite place and does not lie
above 2, then F; has good reduction at v, and therefore ¢, = 1. If v lies above
2, then [Lio6, p. 549] shows us the semistable model of Fy over k. It consists of
three disjoint genus-1 curves that intersect one IP'. Consequently the reduction
graph is acyclic, and therefore the T in lemma 9.1is 1, and e = 0. Hence ¢, = 1.
As a corollary, the sign of the functional equation of the L-function of M is 1.

Lemma. The canonical Gross—Schoen cycle is rationally non-trivial on Fy.

Proof. BLocH proves in [Bl84, thm 4.1] that a certain cycle (the Ceresa cycle) is
rationally non-torsion on Jac(Fy). By [Zh1o, thm 1.5.5] it follows that hence
the canonical Gross-Schoen cycle is rationally non-trivial. O

As a consequence of conjecture 6.5, we get the following theorem.
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9.3 Theorem. Conjecture 6.5 implies that the dimension of CH?(M)V is strictly larger
than 1. In particular there exists a homologically trivial algebraic cycle that is (in the
Chow group) linearly independent of the canonical Gross—Schoen cycle.

Proof. In this case conjecture 6.5 states that
dim CH?(M)? = ord,_, L(M, 3,5s).

Since the sign of the functional equation of L(M, 3,s) is 1, the order of van-
ishing is even. As the canonical Gross-Schoen cycle is non-trivial, the result
follows. 0

We conclude with a final remark about the conjectures involved in the-
orem 9.3. We assume conjecture 6.5 to prove theorem 9.3. In fact, assuming
BLocH’s recurring fantasy is enough. The motive M is not a Kiinneth com-
ponent of X3, but it is obtained from the Kiinneth component Sym®h!(X)
(which, after all, is isomorphic to h3(Jac X)), by cutting away another Kiin-
neth component: 1! (X)(—1). We can divide the L-function of Sym>h!(X) by
the L-function of h!(X)(—1), to obtain the L-function of M. Observe that
CH?(h'(X)(—1))° = CH!(h'(X))? = CH!(h' (X)), so that we get a decompo-
sition

CH?(Sym®h!(X))? = CH?*(M)? @ CH?(h}(X)(—1))°.

In this way, we get a recurring fantasy for M.
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A Some facts about henselian rings

A henselian ring is a local ring satisfying Hensel’s lemma. I.e., a local ring
(R, m, k) is henselian if for every monic polynomial f € R[x]| and every simple
root ag of f in «[x] there exists a root a € R of f such that ay = @. (That ag is a
simple root means that 7({10) # 0.) Typical examples of henselian local rings
are fields, complete local rings, and quotients of henselian rings. A henselian
ring is called a strict henselian ring if its residue field is separably closed.

A.1 Lemma. Let (R, m,«) be a local ring. The following are equivalent.

- R is henselian;

- for any f € R[x| and every factorisation f = gohg in x[x] in coprime factors (i.e.,
ged(go, ho) = 1) there exist g, h € R[x], with f = gh, such that go = g and hg = h;

- for any étale ring map R — S and prime q of S lying over m with x = x(q) there
exists a section S — Rof R = S;

- any finite R-algebra is a finite product of local rings.

Proof. See [Stacks, 04GG]. O

A geometric formulation of Hensel’s lemma is found in the following
propositions.

A.z Proposition. Let (R, m,«) be a henselian ring. If X is a smooth R-scheme then the
reduction map X(R) — X(x) is surjective.
Proof. Let a point x € X(x) be given. Let Spec A C X be a smooth affine open
neighbourhood of x. By [Stacks, oym7] there exists an étale R-algebra B such
that the following diagram commutes.

A B

N\

R———«

Since R — B is étale, there is a section B — R, cf. lemma A.1. The composition
A — B — Rinduces a map SpecR — Spec A C X that reduces to x. O

A.3 Proposition. Let (R, m,«) be a local ring. If X is a formally unramified R-scheme
then the reduction map X(R) — X(x) is injective.

Proof. Let x,y € X(R) be given. Let x,, and y, denote the image of x respec-
tively y in X(R/m"). Suppose x; = y1, and observe that therefore x, = y, for
all n, since X is formally unramified over R. Indeed, both x, and y, reduce
to x1, and there can be only one such lift, hence x, = y,. We conclude that
(xn)n = (yn)n in X(R), and therefore x = y. O
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Ay

Corollary. Let (R, m,«) be a henselian ring. If X is an étale R-scheme then the
reduction map X(R) — X(x) is bijective.

Proof. Since X is étale over R, it is both smooth and unramified (hence formally
unramified). Now use the above two propositions. O

Some facts about group schemes

Lemma. Let G be a connected smooth group scheme over a perfect field k. Then there
exists a unique, connected, smooth, affine, normal, closed subgroup scheme L of G
and an abelian variety A fitting into an exact sequence of group schemes

0—-L—-G—A—N0.
Proof. See [Cooz2, thm 1.1]. O

Let k be a field, and let k* be a separable closure of k. A group scheme T/k
is called a torus if T = T x; k® is isomorphic to Gms for some integer 7.

Let k be an algebraic closure of k. A group scheme G/k is called unipotent
if it is of finite type, and there exist E—group schemes Gy, ..., Gy, such that

Go=1,

G, = U, and

fori € {1,...n} the group scheme G,; is an extension of G;_; by a subgroup
scheme of G,.

A k-group scheme U is called unipotent if the base change to k is unipotent. If
U is connected, smooth, and affine, then Uy is an iterated extension of copies
of Gag, [SGA3-2, xviI 4.1.1].

Lemma. Let L be a geometrically reduced commutative affine group scheme over a
perfect field k. Then there exists a torus T /k and a unipotent group scheme U /k such
that L = T x; U.

Proof. See [Wayo, p. 70]. (]

Graphical presentation of the computation of inter-
sections

When writing about the composition of correspondences (or more general the
intersection of algebraic cycles) the author faces the problem of communicating

the computations to his readers in a way that is intuitive and clear. In this
thesis I have tried to do this with tabular diagrams that I will explain below.
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This method is particularly apt for computations involving tautological cycles
(e.g., partial diagonals on self-products of a variety).

The input for the computation consists of three schemes X, Y, and Z, and
two correspondences f € CH®*(X x Y) and g € CH*(Y x Z). These are place
in a diagram as follows.

fx fr z
|
X 8y 8z
|
fx-X frogr Z-gz gof

The first column corresponds to X, the middle to Y and the last column
corresponds to Z. To the right one places the names of the correspondences.
Usually the components fx, fy, gy, and gz are given with coordinates, and
the vertical lines help to indicate the three factors X, Y, and Z. If any of X,
Y, or Z is 0-dimensional, then the corresponding column, together with a
vertical line will be removed from the table. To indicate partial diagonals the
coordinates in question are linked together by a bended line, as can be seen in
the example below.

For each coordinate the intersection is computed, and written below the
horizontal line. Any partial diagonals are then accounted for, to obtain the
intersection as cycle on X x Y x Z. The composition of the correspondences f
and g is then written in the lower right corner, and this amounts to omitting
the middle column (corresponding to Y).

One drawback of these diagrams is that they do not show which coor-
dinates are free, and which are points. We hope that this is clear from the
context of the diagram.
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