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B + StdEdge 0.849 0.077 0.808 0.059 0.872 0.105
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Training ECSSD [39] PASCAL-S [21]

DUT-O [40] HKU-IS [18] SOD [30] DUTS-TE [34]

Model #Images Dataset MaxF 1t MAE | MaxF 1+ MAE | MaxF 1+ MAE | MaxF 1+ MAE | MaxF 1+ MAE | MaxF 1t MAE |
VGG-16 backbone

DCL [19] 2,500 MB 0.896  0.080 0.805 0.115 0.733 0.094 0.893 0.063 0.831 0.131 0.786  0.081
RFCN [35] 10,000 MK 0.898  0.097 0.827 0.118 0.747 0.094 0.895 0.079 0.805 0.161 0.78  0.090
DHS [23] 9,500 MK+DTO 0.905 0.062 0.825  0.092 - - 0.892 0.052 0.823 0.128 0.815  0.065
MSR [17] 5,000 MB+H 0903 0.059 0839 0.083 0.790 0.073 0907 0.043 0.841 0.111 0.824  0.062
DSS [9] 2,500 MB 0.906  0.064 0.821 0.101 0.760 0.074 0.900 0.050 0.834 0.125 0.813  0.065
NLDF [28] 3,000 MB 0.903  0.065 0.822 0.098 0.753 0.079  0.902 0.048 0.837 0.123 0.816  0.065
UCF [43] 10,000 MK 0.908 0.080 0.820 0.127 0.735 0.131 0.888 0.073 0.798 0.164 0.771 0.116
Amulet [412] 10,000 MK 0.911 0.062 0.826 0.092 0.737 0.083 0.889 0.052 0.799 0.146 0.773 0.075
GearNet[10] 5,000 MB + H 0.923 0.055 - - 0.790 0.068 0.934 0.034 0.853 0.117 - -
PAGR [44] 10,553 DTS 0.924 0.064 0.847 0.089 0.771 0.071 0.919  0.047 - - 0.854  0.055
PiCANet [24] 10,553 DTS 0.930 0.049 0.858 0.078 0.815 0.067 0.921 0.042 0.863 0.102 0.855 0.053
PoolNet (Ours) 2,500 MB 0.918  0.057 0.828 0.098 0.783 0.065 0.908 0.044 0.846 0.124 0.819  0.062
PoolNet (Ours) 5,000 MB+H 0930 0.0563 0.838 0.093 0.806 0.063 0.936 0.032 0.861 0.118 0.855  0.053
PoolNet (Ours) 10,553 DTS 0.936  0.047 0.857 0.078 0.817 0.058 0.928 0.035 0.859 0.115 0.876  0.043
PoolNetf (Ours) 10,553 DTS 0.937 0.044 0.865 0.072 0.821 0.056 0.931 0.033 0.866 0.105 0.880 0.041
ResNet-50 backbone

SRM [36] 10,553 DTS 0.916 0.056 0.838 0.084 0.769 0.069 0.906 0.046 0.840 0.126 0.826 0.058
DGRL [37] 10,553 DTS 0.921 0.043 0.844 0.072 0.774 0.062 0.910 0.036 0.843 0.103 0.828 0.049
PiCANet [24] 10,553 DTS 0.932 0.048 0.864 0.075 0.820 0.064 0.920 0.044 0.861 0.103 0.863  0.050
PoolNet (Ours) 10,553 DTS 0.940 0.042 0.863 0.075 0.830 0.055 0.934 0.032 0.867 0.100 0.886  0.040
PoolNet! (Ours) 10,553 DTS 0.945 0.038 0.880 0.065 0.833 0.053 0.935 0.030 0.882 0.102 0.892 0.036

MB: MSRA-B [25], MK: MSRA10K [3], DTO: DUT-OMRON [40], H: HKU-IS [18], DTS: DUTS-TR. [34].
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