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Abstract

Recently, object proposal generation has shown value for various vision tasks, such as object detection, semantic instance segmen-
tation, multi-label image classification, and weakly supervised learning, by hypothesizing object locations. We are motivated by the
fact that many traditional proposal methods generate dense proposals to cover as many objects as possible but that 1) they usually
fail to rank these proposals properly and ii) the number of proposals is very large. For example, the well-known object proposal
generation methods, Edge Boxes and Selective Search, can achieve high detection recall with thousands of proposals per image.
But the large number of generated proposals makes subsequent analyses difficult due to the large number of false alarms and heavy
computation load. To significantly reduce the number of proposals, we design a computationally lightweight neural network to
refine the initial object proposals. The refinement consists of two parallel processes, re-ranking and box regression. The proposed
network can share convolutional features with other high-level tasks by joint training, so the proposal refinement can be very fast.
We show a joint training example of object detection in this paper. Extensive experiments demonstrate that our method can achieve
state-of-the-art performance with a few proposals compared with some well-known proposal generation methods.
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1. Introduction

Generating a small number of object proposals while cover-
ing as many objects in an image as possible is crucial for the
efficiency and accuracy of subsequent high-level applications,
such as object detection [1} 2], instance semantic segmentation
[3 4], multi-label classification [5], video summarisation [6],
and deep multiple instance learning [7], by reducing the search
space and the false alarms. In the past decade, many bottom-up
object proposal methods have been developed to generate dense
proposals to cover as many objects as possible, such as Selec-
tive Search [8], Edge Boxes [9] and MCG [10]. Since it is dif-
ficult to represent high-level semantic information using tradi-
tional hand-crafted features, these bottom-up methods usually 1)
fail to rank the generated proposals properly and ii) have to use
large number of proposals to ensure detection recall. Although
these existing bottom-up algorithms can achieve high detection
recall with thousands of proposals per image, the large num-
ber of generated proposals makes subsequent analyses difficult
due to the large number of false alarms and heavy computation
load [5} 7, [11} [12]]. Recently, some deep learning based pro-
posal methods have attracted a lot of attention in this field, in-
cluding RPN [13]], DeepMask [14], and SharpMask [15]. With
the powerful representation capability of convolutional neural
networks (CNNs), these methods can provide high detection
recall with fewer candidate boxes than traditional bottom-up
algorithms. However, RPN [13] generates proposals by sam-
pling anchors from downsampled convolutional feature maps
(1/16 scale), and DeepMask [14] and SharpMask [[15]] discover
objects by scanning image patches. Hence the sub-optimal pro-
posal sampling strategies make them difficult to fully leverage
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Figure 1: Overview of object proposal refinement. The left image shows the
original proposals, and the right image shows the results after refinement. We
first re-rank the proposals by computing new objectness scores, after which a
box regression procedure is applied to each proposal box for accurate location.

the powerful capability of CNNs. As a result, the number of
true objects (e.g. usually less than 10) in an image is still much
smaller than the number of proposals generated by these deep-
based methods (e.g. usually a few hundred).

Can we significantly reduce the number of proposals while
maintaining the high recall? This is crucial for a much
wider range of applications, e.g. mining knowledge from huge
amounts of unlabeled/weakly-labeled data [5. [7], for which the
large number of false positives will pose significant challenges
not only for computational efficiency but also for system sta-
bility. Some research towards reducing the number of propos-
als for specific vision tasks has been proposed. For example,
Wei et al. [5] adopted normalized cut [16] to cluster bound-
ing boxes generated by BING algorithm [17] and picked out
the top 1 hypothesis with the highest objectness score in each
cluster. They applied the selected proposals to multi-label im-
age classification and achieved the state-of-the-art performance.
Qi et al. [11] introduced an aggregation score at each pixel by
calculating the sum of all objectness scores whose correspond-
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ing proposal boxes cover this pixel. The resulting aggregation
score maps are used to estimate object locations. Li et al. [12]
adopted a mask-out strategy to collect proposals with higher
quality for each object category. A proposal is collected for one
class if the mask-out image by this proposal box has a signifi-
cant drop in classification score of this class.

In this paper, we focus on mining the number of proposals
while obtaining high detection recall. We observe that some
traditional proposal generation methods can achieve high detec-
tion recall when the number of candidate boxes is sufficiently
large, because traditional methods usually design clever strate-
gies to search all possible positions for objects, unlike the sim-
ple proposal sampling strategies in deep learning [13} [14] [15].
Of course, the large number of candidates causes many false
positives in the subsequent applications and thus affects the fi-
nal performances. However, if we can select the good ones from
the large set of candidates, it will benefit a series of vision tasks.
Several algorithms have been proposed to refine object propos-
als, including DeepBox [18]] and MTSE [19]. DeepBox builds
a neural network to recompute the objectness scores of the ini-
tial boxes and then re-rank them. MTSE tries to refine each box
using superpixels by making each box tightly cover some in-
ner superpixels. However, the proposal quality of DeepBox is
worse than RPN [13]], and thus the number of proposals can not
be reduced. Moreover, the performance of MTSE depends on
the quality of superpixels, and the image segmentation within
MTSE causes a significant increase in computational load.

To combine the superiority of traditional proposal methods
and the powerful representation capability of CNNs [13] [14]
151120, 121]], we propose a novel method to re-rank and align ex-
isting proposal boxes in a single inference of a neural network.
An overview of our approach is shown in Figure|[l| Our refine-
ment of candidate boxes includes two steps: re-ranking and box
regression. The re-ranking step tries to re-rank the proposals ac-
cording to the tightness of their coverage with complete objects.
The box regression step attempts to fine tune the shapes and lo-
cations of boxes in order to make them cover real objects more
tightly. To achieve this goal, our refinement network is designed
to learn new objectness scores and perform box regression si-
multaneously. The proposed network is also computationally
lightweight, so it can be applied to applications with little extra
time consumption. The training process of refinement can be
performed in an end-to-end manner. For the sake of brevity, we
call our proposed method RefinedBox in the remainder of this
paper. Since RefinedBox is lightweight and easily optimized, it
has the potential to share convolutional features with high-level
applications by joint training. To show a joint training example,
we unify RefinedBox and the well-known detection framework
of Fast R-CNN [2] by connecting our refinement layers after
the last convolutional layer of the base network such as VGG16
[22], and then introduce an alternating fine-tuning strategy. As a
result, our refinement network can share the base convolutional
layers with the subsequent object detection network, making
the refinement procedure very efficient.

Using the proposal boxes produced by various traditional
methods as input, we evaluate the proposed method on the
PASCAL VOC2007 [23]] and MS COCO [24]] datasets. For

object proposal generation on the VOC2007 dataset, our
method achieves the detection recall of 80.4% and 67.9% for
intersection-over-union (IoU) 0.5 and 0.7, respectively, using
only 10 refined boxes per image. Using only 10 boxes for ob-
ject detection, our method achieves a mean average precision
(mAP) of 65.4% compared with the mAP of 54.1% for RPN
[13]. The experiments demonstrate that the proposed Refined-
Box method can generate high-quality object proposals when
the number of proposals is limited.

2. Related Work

Since this paper targets object proposal refinement, we first
briefly describe recent developments in object proposal gener-
ation. We then go on to discuss the refinement techniques of
bounding boxes. We broadly divide the related research into
four parts: segmentation-based proposal generation methods,
edge-based methods, CNN-based methods, and proposal post-
processing methods.

Segmentation-based object proposal generation methods
use the image segmentation as input and try to find the proper
combinations of these image segments to cover all complete
objects. These methods usually combine some low-level fea-
tures (such as saliency, color, SIFT [25], efc.) to score the
bounding boxes and then select boxes with high scores. Selec-
tive Search [8], one of the most popular object proposal meth-
ods, uses the strength of exhaustive search and segmentation
to obtain high-quality proposals by a hierarchical merging of
superpixels. MCG [10] introduces a high-performance image
segmentation algorithm that makes effective use of multiscale
information. The produced multiscale hierarchies of regions
are combined into object proposals by exploring the combina-
torial space. Manen et al. [26] built a connectivity graph of an
image’s superpixels, and generated spanning trees with large
expected sum of edge weights using a randomized version of
Prim’s algorithm. The bounding boxes of these spanning trees
are final object proposals. Rantalankila et al. [27]] performed
local search on superpixels to form a segmentation hierarchy.
Then global search is applied to obtain graph cut segmentations
of the intermediate hierarchy. Many other proposal generation
methods [128L 29, [30] also fall into this category.

Edge-based proposal methods exploit the observation that
complete objects in natural images usually have well-defined
closed boundaries [31]]. In recent years, several efficient algo-
rithms have been proposed using the edge feature. Zhang et
al. [32]] designed a cascaded ranking SVM (CSVM) method to
obtain proposals using gradient features. Cheng et al. [[17] pro-
posed a very efficient algorithm, BING, which runs at 300fps
by quantizing CSVM [32] into some binary operations. Lu et
al. [33] proposed a new closed contour measure based on the
closed path integral. Edge Boxes [9] computes the objectness
scores according to the number of contours that are wholly con-
tained in each bounding box.

CNN-based proposal methods generate object proposals from
CNNs directly, such as RPN [[13]], DeepMask [[14], and Sharp-



Mask [[15]], inspired by the fact that CNNs have powerful capa-
bility in learning feature representations [20, 21]. RPN [13]
simultaneously predicts object bounds and objectness scores
at each position of full-image convolutional features. Deep-
Mask [[14] is trained jointly with two objectives: given an im-
age patch, the system first outputs a class-agnostic segmenta-
tion mask and then outputs the likelihood of the patch being
centered on a full object. SharpMask [[15] propose to augment
feedforward nets for object segmentation with a novel top-down
refinement approach. The resulting bottom-up/top-down archi-
tecture is capable of efficiently generating high-fidelity object
masks. However, the number of proposals generated by these
CNN-based methods is still too many (e.g. usually a few hun-
dred) for natural images.

Proposal post-processing aims to refine the object proposals in
order to accurately locate objects in an image. Kuo et al. [18]]
proposed a small neural network called DeepBox to recompute
the objectness scores of the existing boxes and then re-rank
these boxes according to the new objectness scores. Chen et
al. [19] tried to align the proposal boxes with the superpixels.
Zhang et al. [34]] further discussed the optimization of object
proposal generation. They first used edges and then superpixels
to optimize the proposal boxes. Their segmentation based op-
timization accelerates the superpixel generation in MTSE [19],
thus the resulting system can be run at a very fast speed. He et
al. [35] proposed oriented object proposals that have different
orientations, not only the vertical boxes used in regular meth-
ods. In this paper, we build a refinement network to refine
existing bounding boxes. The refined boxes produced by our
method achieve the state-of-the-art performance both for object
proposal generation evaluation and object detection evaluation.

3. RefinedBox

3.1. Network Architecture

Our method takes the object proposals produced by other
proposal generation methods as input and then tries to refine
them. The refinement is twofold: re-ranking and box regres-
sion. To re-rank the existing boxes, we recompute the object-
ness score for each box using the semantic information in the
deep neural network. To obtain the box regression, the network
is designed to learn the regressions of the center coordinates,
width, and height for each box.

VGG16 [22] is a widely used base network architecture in
deep learning research. It is composed of 13 convolutional lay-
ers and 3 fully connected layers. Inspired by previous literature
2, [13]], we build our network based on VGG16 to showcase
our refinement method. Our network architecture is shown in
Figure[2] Our network takes a natural image and corresponding
initial boxes as input. The initial boxes are produced by other
object proposal generation methods. In this paper, we use some
well-known proposal generation methods as examples, includ-
ing Edge Boxes [9]], MCG [10], Selective Search [8]], and RPN
[13]. The input image first undergoes a forward pass through
some convolutional layers, e.g. the 13 convolutional layers in

VGG16. In order to reduce the time consumption of box refine-
ment, we design a computationally lightweight neural network.
Thus, we first connect a convolutional layer with kernel size
3 x 3 after the 13-th convolutional layer to reduce the num-
ber of channels from 512 to 128. Then, a ROI Pooling layer
is followed to down-sample each initial box region into a fixed
feature map size, i.e. 7 X 7. ROI Pooling divides an input fea-
ture map into grids with the same width and height and perform
max pooling in each grid. Next, a fully connected layer with
only 512 output neurons is connected. A ReLU layer is fol-
lowed after the added convolutional layer and fully connected
layer, respectively. At last, two branches of ranking and box
regression are used to recompute the objectness score and ob-
tain the location offsets of each initial box. The ranking branch
is a fully connected layer with two output neurons representing
the probabilities of being an object or not. The box regres-
sion branch predicts the box regression values which will be
described below.

In the training of RefinedBox, each initial box is assigned a
binary class label of being an object or not. The loss function
can be written as

Loyj(p,u) = —[1=1jlog p1 + 1yuz1)log pol, (1)

where p is computed by a softmax over the two outputs of a
fully connected layer and u is the label of this box (1 or 0).
The box regression layer is a fully connected layer which is
designed to learn the coordinate offsets. We perform the pa-
rameterizations of four coordinates as following:

ty = = Yin)/ hin»
th =log(h/hin),

vy =" = Yin) /i,
vi =log(h” [ hin),

fy =(x— Xin) [ Win,
ty ZIOg(W/Wl‘n),
Ve =(X" = Xin)/Win,

Vy =IOg(W* [Win),

@)

where x, y, w, and h represent the coordinates of the box cen-
ter, width, and height, respectively. Variables x, x;,, and x* are
for the predicted box, input box, and ground truth box, respec-
tively; similar definitions hold for y, w, and h. Hence variables
v is the regression target and ¢ is the predicted tuple. The box
regression loss is defined as

smoothy, (f; — v;),
ie{x,y,w,h}
0.5x2 if |x] < 1
|x| — 0.5 otherwise,

Lreg =

(3)
smoothy, (x) = {

where smooth;, (x) is a well-known regression loss function [2].
Thus the joint loss function can be written as

L(P, u,t,v) = Lobj(p’ u)+A- 1{u:l]Lreg(l‘, V), “@

in which the parameter A is a balance parameter, and we set it
as 1 in this paper.

3.2. Joint Training with Object Detection

So far we have described how to train the proposal refinement
network. Since the proposed network is very lightweight, it has
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Figure 2: Overview of our network architecture. We display object detection as an example of joint training. The proposed network takes a nature image and
corresponding initial boxes produced by other object proposal generation methods such as Edge Boxes as input. The branch of RefinedBox is designed to refine the
initial boxes, then the refined boxes are inputted into the branch of Fast R-CNN for classification. Note that the refinement of boxes and consequent object detection

can share the convolutional features.

Algorithm 1 Alternating training process of RefinedBox.
Input: the proposed network with the backbone net (Wygg),
RefinedBox module (Wgp), and detection module (Wp,;); the
initial proposals B;,; the backbone model (W%eG) pre-trained
on ImageNet
Output: the unified network of Wysg, Wgg, and Wp,,

Step 1: Wyge — Wy Wes — random()
Step 2: Wygg, Wrp < finetune(Wygg, Wrp; Bin)
Step 3: B « rerank(Bi,,; WVGGa WRB)

Step 4: Wyge — Wi Woer < random()

Step 5: Wygg, Wper < finetune(Wygg, Wper; B')

Step 6: Wgp «— random()

Step 7: Wgp < finetune(WRB; Wveae, Bin)

Step 8: B « rerank(Bi,I; WVGG, WRB)

Step 9: Wp,; « random()

Step 10: Wp,, < finetune(Wp,; Wygeg, B')

the potential to share convolutional features with high-level ap-
plications. Here, we use object detection as an example to show
the joint training process of RefinedBox and consequent appli-
cations. In order to test the ability of RefineBox to generate a
few proposals with high quality, we only use the top 10 propos-
als per image of RefinedBox to perform object detection.

As shown in Figure 2] we connect the well-known detection
framework, Fast R-CNN [2]], after the convolutional layers as a
parallel branch to RefinedBox. The refined proposals produced
by the RefinedBox branch are inputted into Fast R-CNN. In or-
der to make the RefinedBox and Fast R-CNN share the same
convolutional features, we apply an alternating fine-tuning pro-
cess. The algorithm is presented in Algorithm [T] Object detec-
tion depends on the re-ranked proposals generated by the pre-
ceding step for training. Before step 6, object proposal and
detection networks are trained separately. Then, the backbone
network is fixed, and only the unique layers for RefinedBox and
detection are fine-tuned. After the alternating training, both net-

works form a unified network.

For other high-level applications, the joint training is in the
similar way. In other words, Algorithm [T]is also applicable to
other tasks by replacing Wp,, with the module for other tasks.
The key of Algorithm[I]is to make the high-level task and Re-
finedBox share the same backbone network using an alternate
training between the higher-level task and RefinedBox mod-
ules, so that an input image only needs to pass through the
backbone network once.

The number of floating-point operations (FLOPs) is often
used to measure the computational cost of a network, where
a floating-point operation means a multiply-add operation. For
each proposal box, there are 120.0 million FLOPs for the fully
connected layers of the Fast R-CNN branch, while only 3.2 mil-
lion FLOPs for the fully connected layers of the RefinedBox
branch. Therefore, the RefinedBox branch only incurs a little
extra computational load.

3.3. Implementation Details

For the training of RefinedBox, each stochastic gradient de-
scent (SGD) mini-batch is constructed from an image in which
256 boxes are selected as training samples. In each batch, half
of the sampling boxes are positive samples and the other half
are negative. The intersection-over-union (IoU) means the ra-
tio of the intersection area of two boxes over the union area.
The positive sampling boxes have IoU overlaps of at least 0.7
with ground truth boxes, while the negative samples are boxes
whose max IoU overlaps with ground truth are in the interval
[0.1, 0.5). The initial learning rate is set to le-3 and will be
divided by 10 after 12 epochs. We run SGD for 16 epochs in
total.

For the training of the detection module, each mini-batch has
256 object proposals that are from the same image. As in Fast
R-CNN [2], 25% of these proposals have IoU overlap with a
ground truth of at least 0.5, and they are viewed as positive
samples. The remaining negative samples have max IoU over-
lap with ground truth in the interval [0.1, 0.5). The top 1000
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Figure 3: Evaluation of different refinement algorithms. These two subfigures show object detection recall vs. the number of proposals (#WIN) at IoU threshold 0.5
(left) and 0.7 (right), respectively. The method of EdgeBoxes-default is Edge Boxes [9] with default parameters, and EdgeBoxes-NMS-0.9 changes the parameter

of non-maximum suppression (NMS) to 0.9.

proposals generated by RefinedBox are used in training. The
learning rate is le-3 for the first 12 epochs, and then the learn-
ing rate is divided by 10 for another 4 epochs. For test, only
the top 10 proposals (per image) of RefinedBox are used. In
contrast, the traditional proposal methods, such as Edge Boxes
and Selective Search, usually need thousands of proposals. We
implement the proposed method based on the publicly available
codeﬂ The training and testing are conducted on a GTX TITAN
X GPU.

4. Experiments

4.1. Experimental Setup

Datasets: We evaluate the proposed method on two widely
used object detection datasets, including PASCAL VOC2007
[23] and MS COCO [24]. PASCAL VOC2007 dataset [23]
is composed of 2501 training, 2510 validation, and 4952 test
images with corresponding annotations across 20 object cate-
gories. We train the models on the VOC2007 trainval set and
test on the VOC2007 test set. MS COCO dataset [24] con-
sists of 82783 training images and 40504 validation images.
We adopt its training set for training and its validation set for
proposal evaluation.

Competitors: To demonstrate the effectiveness of the pro-
posed proposal refinement method, we compare our method
with the existing mainstream proposal methods, including non-
deep methods, including BING [17], CSVM [32], Edge Boxes
[9], Endres [29], GoP [36]], LPO [30], MCG [10], Objectness
[31], Rahtu [28]], RandomPrim [26], Rantalankila [27]], and Se-
lective Search [8]], and recent deep learning based methods, in-
cluding RPN [13], DeepBox [18]], DeepMaskZoom [14], and
SharpMaskZoom [15]. DeepMaskZoom and SharpMaskZoom
are the best version of DeepMask [14] and SharpMask [15], re-
spectively. We first compare with these methods for proposal

Uhttps://github.com/rbgirshick/py-faster-rcnn

Table 1: Evaluation results (%) in terms of DR on the PASCAL VOC2007 test
set. RefinedBox!, ReﬁnedBon, RefinedBox> and RefinedBox* mean Refined-
Box with Edge Boxes, MCG, Selective Search, and RPN respectively.

DR (IoU=0.5) DR (Io0U=0.7) Time

WIN 10 | 30 | 50 | 100 [ 10 | 30 | 50 | 100 | (s)
BING 37.5(51.0|60.4|70.1]16.9 |20.2|22.5|24.4 |0.003
CSVM 40.8 | 56.1 642|743 (162|209 (23.1]255]| 0.33
EdgeBoxes 459160.0 | 66.7|75.4|31.043.8 |51.1|60.8| 0.25
Endres 54.8 |68.9|75.6|83.3(35.1|47.152.2|59.0]|19.94
GOP 13.7129.5]40.7160.0 | 0.7 | 15.6 [22.3]35.6| 0.29
LPO 3821594 664|753 |17.5|34.8|41.3|488| 0.46
MCG 51.7169.3|75.8|82.1(30.2|454|51.7|60.1]|17.46
Objectness 38.2150.2|56.4|654|17.4]22.6|25.0|29.3]| 091
Rahtu 34.3146.9 533|623 |21.9|32.1|38.1|45.8]| 0.67

RandomPrim 34.4150.7(59.2|70.7|16.4 |28.1|34.4|44.5]| 0.12
Rantalankila 06 |31]65([149]|02 |12 |26 | 74| 357
SelectiveSearch | 37.1 |54.3|61.8|71.8(19.9|32.7|39.6|49.4| 1.60
RPN 60.1 | 73.8 | 80.7 | 89.0 [ 32.9 | 47.6 | 54.5 | 64.4| 0.10
DeepBox 58.1|71.877.2|84.5[40.7|554 (627|709 0.45
DeepMaskZoom | 61.8 | 78.5 | 84.7 | 91.0 | 44.2 | 58.1 | 63.8 | 71.1 | 1.20
SharpMaskZoom | 62.6 | 79.5 | 85.4 [ 91.9 | 47.0 | 60.9 | 66.5 | 74.0 | 0.57
RefinedBox! 80.488.3/90.692.7|67.9 |76.4|79.2 | 82.4 | 0.31
RefinedBox> | 80.5 | 87.6 | 88.8 | 89.6 | 68.2 | 75.2|76.4|77.1|17.52
RefinedBox> 79.2 | 86.4|88.2|89.7|68.6|76.1 |78.0|79.6| 1.66
RefinedBox* | 79.5 [ 88.6 | 90.8 |92.4 | 65.3|75.2|77.6|79.5| 0.16

evaluation. Then, for the PASCAL VOC2007 dataset [23]], we
feed the proposals produced by these methods into a region-
based object detection framework, Fast R-CNN [2]], to evaluate
the quality of proposals in object detection. Our experiments
demonstrate that our method can generate high-quality propos-
als for object detection with good efficiency.

Metrics: To evaluate the proposals, we adopt the metrics of ob-
ject detection recall (DR), mean average best overlap (MABO),
and average recall (AR). Detection recall considers a ground
truth object to be found when the IoU overlap of this ground
truth object and a proposal is larger than a threshold. To cal-
culate the average best overlap (ABO) for a specific class, we
calculate the best IoU overlap between each ground truth an-
notation (belonging to this class) and proposals generated for
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Figure 4: Evaluation results on the PASCAL VOC2007 test set. (a) shows object detection recall vs. IoU overlap threshold using 10 proposals per image. (b) and
(c) display object detection recall vs. the number of proposals (#WIN) at IoU threshold 0.5 and 0.7, respectively. (d) shows MABO vs. the number of candidates

using at most 100 proposals per image.

the corresponding image, and average over all ground truth ob-
jects in this class. MABO is defined as the mean ABO over all
classes [8]]. AR is introduced by Hosang et al. [37] to calculate
the average recall when IoU thresholds are [0.5:0.05:0.95] for a
fixed number of proposals.

4.2. Object Proposal Evaluation On the VOC2007 Dataset

Here, we first compare the proposed RefinedBox with other
proposal refinement approaches, including DeepBox [18] and
MTSE [19]. The comparison between different proposal refine-
ment approaches is shown in Figure[3] We choose Edge Boxes
[9] to produce the initial proposals which are inputted into these
refinement algorithms, but we change the default parameter of
non-maximum suppression from 0.75 to 0.9 in order to obtain

more boxes. We find that our method achieves much higher ob-
ject detection recall than other competitors at both IoU thresh-
olds 0.5 and 0.7. The gap between our RefinedBox and other
competitors is very large. Using only one proposal per image,
RefinedBox achieves a detection recall of 43.2% and 34.2% at
ToU 0.5 and IoU 0.7, respectively, while the recall of the orig-
inal Edge Boxes are 29.1% and 15.2%, respectively. In addi-
tion, RefinedBox can share the convolutional layer with subse-
quent object detection, and the additional layers of RefinedBox
are computationally lightweight, so RefinedBox is an efficient
detection framework. In fact, the total time consumption of
RefinedBox and subsequent object detection is similar to the
Faster R-CNN [[I3] at about 0.13 second per image. DeepBox
builds a separate network to re-rank boxes, while MTSE seg-
ments an image first and then uses superpixels to refine boxes;



Table 2: Evaluation results (%) in terms of AR, MABO, and mAP (object de-
tection performance using 10 proposals per image) on the PASCAL VOC2007
test set. RefinedBox!, RefinedBox?, RefinedBox> and RefinedBox* mean Re-
finedBox with Edge Boxes, MCG, Selective Search and RPN, respectively.

AR MABO

WIN 10 | 30 | 50 | 100 | 10 | 30 | 50 | 100 mAP

BING 16.5|21.324.6|27.9|37.9|45.7|50.5|55.7| 34.4
CSVM 17.0122.7 (25.5|29.1 | 40.3 [49.2 | 53.1 |57.9| 35.7
EdgeBoxes 263|363 |41.3|48.0|453|557|60.4|66.2]| 39.1
Endres 31.1]40.5(44.8|50.6|51.2]60.9]65.1|70.2]| 42.8
GOP 6.8 | 14.6)120.731.9]19.8|352|44.0|564 | 13.3
LPO 17.2|131.136.7|43.2|41.1 |54.6|59.7|65.7| 34.5
MCG 27.6140.5]459(529|50.162.1|66.5|71.6|41.2
Objectness 16.822.0|24.6|28.8|39.4|46.5|49.9 |54.8| 349
Rahtu 18.5]26.5|30.8 |36.8|37.2|46.5|51.3|57.3| 324

RandomPrim | 16.1 | 25.8 | 31.3 | 39.6|37.9|49.6 | 55.3 | 62.6 | 31.9
Rantalankila | 0.2 | 1.2 | 27 | 7.0 | 4.1 | 8.5 | 129|223 24
SelectiveSearch | 18.6|29.8 | 35.5 [43.6 | 40.0 | 52.0 | 57.4 | 64.3 | 34.1

RPN 28.4|38.1|42.7 | 48.9 | 50.8 | 60.6 | 65.0 | 70.1 | 54.1

DeepBox | 33.9 445|492 (549(529|62.8|66.9|71.8| 50.9
DeepMaskZoom | 37.1 | 48.5(53.2|59.1 | 55.6 | 67.6 | 71.6 | 76.0 | 52.7
SharpMaskZoom | 39.7 | 51.5 | 56.1 | 62.0 | 57.0 | 69.2| 73.1 | 77.3 | 53.5
RefinedBox! | 53.0 | 58.7 | 60.6 | 62.4 | 68.4 | 74.1 | 75.8 | 77.4 | 65.4
RefinedBox? | 53.7 | 58.4|59.3 | 59.8 | 68.9 | 73.8 | 74.7| 75.3 | 65.2
RefinedBox® | 53.5|58.7|60.0 | 61.1 | 67.9 | 732 |74.6 | 75.8 | 65.5
RefinedBox* | 49.8 | 56.1 | 57.7 | 59.0 | 66.6 | 72.9 | 74.3 | 75.4| 65.0

however, the image segmentation step is a time-consuming op-
eration. Thus, RefinedBox is more suitable to be used in many
applications.

Now, we compare with state-of-the-art object proposal gen-
eration methods. Extensive comparisons are shown in Fig-
ure ] RefinedBox also uses Edge Boxes as input, and we ap-
ply the default parameters for the evaluation of Edge Boxes.
Our method achieves the state-of-the-art performance across all
cases. For object detection recall vs. the number of proposals at
IoU 0.7, the performance improvements between RefinedBox
and other competitors are also very large. The higher detec-
tion recall and fewer proposals will benefit the subsequent high-
level applications a lot. RPN has recently become popular for
object detection, but our proposed RefinedBox is much more
accurate than it. The object detection recall of RefinedBox
with only 10 proposals per image is similar to RPN using 100
proposals per image. The improvement from RPN to Refined-
Box demonstrates the effectiveness of our method. With only a
small number of proposals, RefinedBox can achieve much bet-
ter performance than other competitors, including recent state-
of-the-art deep learning based DeepMask [14] and SharpMask
[15]. Using only 30 proposals, RefinedBox can achieve detec-
tion recall of 88.3 and 76.4 for IoU overlap 0.5 and 0.7, respec-
tively. This will meet the requirements of many applications for
a small amount of but high-quality object proposals.

To quantify these plots, we list the corresponding numbers
in Table[I] RefinedBox achieves much better performance than
various initial input methods. With Edge Boxes and an IoU
threshold of 0.5, the detection recall of RefinedBox is 17.8%,
8.8%, 5.2%, and 0.8% higher than the second best method
(SharpMaskZoom [[15]) when using 10, 30, 50, and 100 pro-
posals per image, respectively. At an IoU threshold of 0.7,
the detection recall of RefinedBox with EdgeBoxes is 20.9%,

Table 3: Evaluation results (%) in terms of DR on the MS COCO validation set.
RefinedBox!, RefinedBox2, RefinedBox> and RefinedBox* mean RefinedBox
with Edge Boxes, MCG, Selective Search, and RPN respectively.

DR (IoU=0.5) DR (Io0U=0.7)

WIN 10 30 50 | 100 | 10 30 50 | 100

BING 11.8 | 173 | 224 | 288 | 2.1 | 2.8 | 3.5 | 42
EdgeBoxes 17.7 1 262 | 30.7 | 37.7 | 11.4 | 18.1 | 21.8 | 27.5
GOP 113 1227|300 |41.1 | 7.3 | 13.8 | 18.1 | 25.1
LPO 15.1 | 26.6 | 322 [ 42.1 | 7.0 | 144 | 184 | 24.7
MCG 245 | 36.7 | 42.5 | 50.6 | 14.7 | 23.5 | 28.1 | 34.6
Objectness 1391209 (250|316 | 58 | 83 | 9.7 | 118
Rahtu 122 1 19.7 | 24.1 | 30.1 | 7.4 | 12.6 | 159 | 20.6

RandomPrim 129 1224|282 (372 ] 62 | 11.7 | 153|214
SelectiveSearch | 12.2 | 20.1 | 24.6 | 31.6 | 45 | 8.7 | 11.5 | 16.0
RPN 30.6 | 46.2 | 55.1 | 65.0 | 19.8 | 31.6 | 38.4 | 46.6
DeepBox 219 | 32.3 | 384 | 475 | 14.8 | 23.0 | 27.8 | 34.7
DeepMaskZoom | 37.4 | 52.6 | 59.1 | 66.4 | 28.4 | 40.3 | 45.6 | 52.2
SharpMaskZoom | 37.6 | 52.9 | 59.4 | 66.6 | 29.3 | 41.5 | 46.7 | 53.2
RefinedBox! 447 | 57.1 | 61.8 | 67.3 | 37.9 | 48.0 | 51.8 | 56.2
RefinedBox> 454 | 569 | 61.2 | 659 | 38.3 | 47.3 | 50.5 | 53.6
RefinedBox? 444 | 56.5 | 61.3 | 66.8 | 38.5 | 48.9 | 53.1 | 57.6
RefinedBox* 44.6 | 57.3 | 62.4 | 68.1 | 38.3 | 48.6 | 52.6 | 56.7

15.5%, 12.7%, and 8.4% higher than SharpMaskZoom when
10, 30, 50, and 100 proposals are used per image respectively.
Since our goal is to significantly reduce the number of propos-
als, the evaluation results suggest that we have achieved it. We
also notice that RPN [13]] is much better than traditional non-
deep approaches. This is the key reason why Faster R-CNN can
achieve better detection performance than Fast R-CNN. Since
RefinedBox aims at selecting and refining the good proposals
from all proposals generated by previous method, the most in-
fluential factor is the upper bound of the input proposals, i.e. the
largest detection recall of previous methods with enough pro-
posals, not the performance with a limited number of propos-
als. On the VOC2007 dataset, Edge Boxes can achieve high de-
tection recall with enough proposals, which is the reason why
RefinedBox with Edge Boxes performs best. The runtime of
RefinedBox for each image is about 0.06 second, which is very
fast when compared with these traditional proposal generation
methods. We report the AR and MABO of various competitors
in Table 2| As expected, RefinedBox achieves the best perfor-
mance again.

4.3. Object Detection On the VOC2007 dataset

Since object detection is an important application of object
proposals, we test the quality of different proposal algorithms
according to their performance in object detection. We feed the
proposals produced by the aforementioned methods into a well-
known region-based object detection framework, Fast R-CNN
[2]. We optimize RefinedBox using the joint training algorithm
described above. We follow the settings in [34]]. The top 1000
proposals per image are used to retrain the Fast R-CNN net-
work. All of these methods are trained on the VOC2007 train-
val set and tested on the fest set. Note that only the top 10 pro-
posals per image are used to evaluate the ability of generating a
small amount of proposals for different methods.

The results are summarized in Table[2} In terms of mAP, Re-
finedBox is 26.3%, 24.0%, 31.4% and 10.9% higher than the
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Figure 5: Qualitative comparison for object detection using only top 10 proposals. Here, RefinedBox uses Edge Boxes [9] as the input. All images are from

VOC2007 test set.

original proposal methods, i.e. Edge Boxes, MCG, Selective
Search and RPN, respectively. Compared with other proposal
generation methods, RefinedBox can also achieve much higher
detection performance. These evaluation results demonstrate
that RefinedBox can generate a small amount of proposals with
significantly high quality. It is intersting to observe that RPN
performs slightly better than DeepBox [18], DeepMask
[14] and SharpMask [15] for object detection, while RPN per-
forms worse for object proposal evaluation. Maybe this is be-
cause RPN is carefully designed for object detection in Faster
R-CNN framework [I3]]. We provide qualitative comparison
between RefinedBox and baselines for object detection in Fig-
ure 5} We can see that RefinedBox significantly improves the
detection performance of baseline methods.

4.4. Object Proposal Evaluation On the COCO Dataset

In this part, we evaluate the proposed method and competi-
tors on the COCO dataset. The visualization of DR and MABO
is displayed in Figure[6] In each figure, there is a large gap be-
tween RefinedBox and other approaches, which demonstrates
the effectiveness of RefinedBox in generating a small amount
of proposals. The numeric comparison of DR is summarized in
Table Bl The AR and MABO of various methods are shown in
Table ] RefinedBox performs significantly better than various
competitors in terms of all metrics. SharpMask achieves
the second place and is slightly better than DeepMask [14].
Note that SharpMask and DeepMask uses mask annotations for
training, while RefinedBox only uses box annotations for train-
ing. This further demonstrates the importance of a proper box
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Figure 6: Evaluation results on the MS COCO validation set. RefinedBox uses RPN as inputs. (a) shows object detection recall vs. IoU overlap threshold using
10 proposals per image. (b) and (c) display object detection recall vs. the number of proposals (#WIN) at IoU threshold 0.5 and 0.7, respectively. (d) shows MABO

vs. the number of candidates using at most 100 proposals per image.

refinement to generate high-quality object proposals.

5. Conclusion

In this paper, we present a proposal refinement method using
re-ranking and box regression. It is very efficient because the
added layers are designed to be computationally lightweight.
Extensive experiments demonstrate that RefinedBox can signif-
icantly reduce the number of proposals generated by previous
algorithms. Since the refinement network can be easily opti-
mized, we find we can perform joint training of it with conse-
quent applications. The evaluation on object detection demon-
strates the effectiveness of RefinedBox.

Limitations. Since the efficiency of the RefinedBox module

is proportional to the number of initial proposals, RefinedBox
may be less efficient for complex images that may have too
many initial proposals. Since RefinedBox performs on the
small feature maps caused by the the downsampling in the
backbone network, the images with many small objects will af-
fect its performance, as object detection methods [, [13], 38].

Future work. A small amount of high-quality object proposals
meet the requirements of many high-level applications, includ-
ing multi-label image classification, [5]], pedestrian detection
[39]], deep multiple instance learning [[7]], efc. With fewer but
more accurate proposals, these tasks are expected to achieve
better performance. In the future, we plan to apply our re-
finement method to other high-level applications, e.g. mining
knowledge from huge amounts of unlabeled data.



Table 4: Evaluation results (%) in terms of AR and MABO on the MS COCO
validation set. RefinedBox!, ReﬁnedBoxz, RefinedBox® and RefinedBox*
mean RefinedBox with Edge Boxes, MCG, Selective Search and RPN, respec-

tively.

AR MABO
WIN 10 30 50 | 100 | 10 30 50 | 100
BING 35| 50 | 64 | 80 | 163 |21.7]255]31.0
EdgeBoxes 99 | 151 | 179|223 | 21.0| 282|320 | 37.6
GOP 6.6 | 125|164 226|152 | 274|339 |423
LPO 6.9 | 134|169 | 22.6 | 20.8 | 30.4 | 35.3 | 43.1
MCG 13.6 | 21.3 | 25.3 | 30.9 | 27.5 | 37.9 | 42.9 | 495
Objectness 58 | 85 | 10.1 | 127 | 185|245 |27.6 | 32.2
Rahtu 6.5 | 10.7 | 133 | 17.0 | 16.3 | 23.1 | 26.8 | 31.9
RandomPrim 6.1 | 11.1 | 144 ] 19.7 | 183 | 272 | 32.1 | 394
SelectiveSearch | 5.0 | 8.9 | 114 | 154 | 17.5 | 24.5 | 28.2 | 33.6
RPN 16.1 | 25.0 | 30.2 | 36.1 | 29.3 | 41.2 | 47.7 | 55.0
DeepBox 125 | 189 | 22.5 | 27.8 | 23.9 | 33.2 | 38.2 | 454
DeepMaskZoom | 23.6 | 33.5 | 38.0 | 43.4 | 35.6 | 48.6 | 53.9 | 59.6
SharpMaskZoom | 24.6 | 34.8 | 39.3 | 44.7 | 36.2 | 49.3 | 54.6 | 60.3
RefinedBox! 30.3 | 37.9 | 40.7 | 439 | 41.0 | 51.0 | 54.8 | 59.1
RefinedBox> 31.3 | 384 | 409 | 434 | 42.1 | 51.8 | 55.3 | 59.2
RefinedBox> 309 | 38.8 | 41.8 | 45.2 | 41.0 | 51.1 | 55.1 | 59.6
RefinedBox* 304 | 38.2 | 41.1 | 443 | 409 | 51.3 | 554 | 59.9
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