SeaNeXt: THTIH M T UM MIN B BRER Syl *

RIS L RlREE 2, B 2, XIECT ), RERAN 2, SR
RO P EITRE C dURAR TR IR A ]

AR E T SegNeXt, —AA FiEL 450y L AR E R, BT ET AN EHDZNAZ L7 @Y
M E, ZULE T transformer 8948R HE S S FAIRE T F A5, EALT, RMNEAALEFREIEHZ —FF1L
transformer ¥ &84 g 2% AU FH 2R R AL LT X2 805 R BT T3 FAR a9 0 F A2 TR A oY
AR, RAVERINT T2 SR M AR 5 e U KRS . AU ARANTIZT T —A#F Y BEFREZEANL, €
120 Bt oy A3 . ERA MM e thay B oUTF, £4189 SegNeXt 2 FH R 5 T AT LB ik R
FrE A Eag s, @3 ADE20K. Cityscapes. COCO-Stuff. Pascal VOC, Pascal Context F= iSAID. 15 4%F
EEHE, SegNeXt #it 7 EfficientNet-L2 w/ NAS-FPN, &£ Pascal VOC 2012 a4 X #4743 LR A T €
a91/10 a9 5 BHEF) T 90.6 % a9 mloU. L sbitayziktark, SegNeXt £ ADE20K £44% % EvA4AR] & &
Vet HEF I ERT 4 2.0% 89 mloU #H. RAAF f£https://github.com /uyzhang/JSeg (Jittor) #=
https://github.com/Visual- Attention-Network /SegNeXt(Pytorch).,

L 515

VERTH NI b I A R S — 1 U B B AR R ME A B — i 5, et 24
SR TR R N F AT CNN gAY, 11 FCN [54] #l DeepLab £#7%1 [5, 7, 9], i & T transformer
(7735, B SETR[96] Fil SegFormer [81], 15 L4 HIBLHLAE [ 48 BAE) Jr I 22 7 T B R AR

A FH AL AR T SO B AR, ARG TR LA R E N, R 1R,
F R, FRATAN— AR o BB Y % B A DURNEHE: (1) 3K T MSIE hmigds. 504
HI3ET CNN AU, BT transformer FREAYY) M RERE R 2K B TR B T M. (i) ZREFER

*Z 30 NeurIPS 2022 1#5¢ [24] HF%AR .

F L FRATASRI A1 SCA 517 v AR B4 R4 A MR BE AR . XL, n FEAY2 pixel B token [ . Strong encoder
FORIEE T ML, 4N ViT [17] and VAN [25].

Properties DeepLabV3+ ‘ HRNet ‘ SETR ‘ SegFormer | SegNeXt
Strong encoder X X v v v
Multi-scale interaction v v X X v
Spatial attention X X v v v
Computational complexity ‘ O(n) ‘ O(n) ‘ O(n?) ‘ O(n?) ‘ O(n)
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] 1. £ Cityscapes (7£) f1 ADE20K (£ ) $oiE 55 _LAGPERE-THE Il 2k . 118 FLOPs i, Cityscapes B)%i AR )4 2,048 x 1,024,
ADE20K } 512 x 512, BB I/NERSEEE. FRWBEBZERETZHSE. RONTTUAET], IATHY SegNeXt SLHL T
A3 B BB AT Ze k2 ) R B FE R o TR 2R B 2 1) A B T4

TH. S5EBSEMES KPR YEARN, o EE— RTINS, PRI E A — & g
AR (i) ZSVER T 25 RNE R ) ARV A E o % SCIX e A ) DAk A 7 A0 e HE 7 R it 743 1
(iv) MR AR o SR TEAL R BN IR 7 37 55 1 2 20 e BRI e L G B

FIRE Bk, fEASC, WATEREE THEPEE MR, R TR A 0w HTHE X
I EI IR S - TR A 0 . 52 B AT transformer FIREUR[E], FRATHI T V5 BRI 85 b B BRI
fEAfbAs, BIE T transformer- AR At an- RIS AR ZEM o HAACRTE, XFT3A1gmiSas h s e, FR0T8
BT RS ERRERIT, R 2 REGIEHE, i — M E A ITE element-wise M 23[R [25].
AT A BRI A — AT B %) N7 A A3 T 0 ) s LU R HE S R URD 23 [R5 B gm b v ) B FRIE R I A 8. X T
RS, FATAR R BT BUER 2 Z RN FHIE, F6 1 Hamburger [21] SRik—2B42 4 B UE R fEX
FESL T, AT EFT LASAS R ER 3 4 /) 2 RIEHR 5, SCBLUAS [ AEE4E i vk, MR E
REERE.

ATHM L%, Frk SegNeXt, BT fFMSERY, TZAGHEFEHN, KPhas— N ET0Mr Ham-
burger Bk [21] (Ham) T4 RfE BEFEH. XEHRRAT SegNeXt L PATI™ E MK transformer {4 #1 7
AR WE 1R, SegNeXt BIRAL T HIEAE T transformer 1)k, FeAl2FKATH SegNeXt-S 7&
Wb3 Cityscapes F8E 1 1= o BRIk g sent, HHTRE Yo TR A (124.6G vs. 717.1G) Fl 12
HZE (13.9M vs. 27.6M) 5#Eid T SegFormer-B2 (81.3% vs. 81.0%)

FATHTTRR AT DAMIEHE A AR LA

o BATHE T — A5 AT BB SAZ I A WRHE , FHFEEH T — 38 nd 6l X 45 2844, B8~ SegNeXt,
Bl 2 RS REM 25 R .

o FRATFRAHIELA R BRI RN BB AR it g 3SR T PALE vision transformer SRS 4T, Fral 2 EAL B
RYNFTES, T FRERTTE AR S Z,

o FRATH I G IR Se b i o B A4 A BB E B M RBER = T — K8, f43% ADE20K. Cityscapes,
COCO-Stuff, Pascal VOC, Pascal Context F1 iSAID $#zE4E.



2. MG LR
2.1. 15 o3

TS EL R EA M ENEES5 . H FCON [54] $2iIH DK, BFMZME (CNN) (1, 65, 87, 95,
19, 88, 72, 20, 45] C&HUG TE RIS, FHBCNTE X — AT . 5, £T transformer {77
¥4 (97, 81, 89, 66, 64, 44, 11, 10] Eorth BRI Iy, FHHd THT CNN 1.

TERBEE IR, A SIBCBY A ZEAE W] DUR B A ER S dmhd s FIRS s . XS T gnfidas, BFFEA DUl s
K RATH 2™ 2% (U0 ResNet [28]. ResNeXt [82] £l DenseNet [33]), A& FIFIZEM . 2R, 15 X5
FR—P LTSS, B SRGS AT I ] B 2 e B A PR - E IS [29].
M, I T —EeE R gD ey, B35 Res2Net [20], HRNet [72], SETR [97], SegFormer [81], HRFormer [89],
MPVIT [39], DPT [64] 5. X Tgidaskil, BAE SMEMGIAEEN, LBBIEHMECR. HXAFT
Fbr, AR, WL RIEREZE 95, 8, 79], Wz RIEE L [65, 81, 9], § K&
¥ [6, 5, 63], MERAZEFE [96, 2, 16, 42, 91], PASAH#HEEI 4R R UEE [19, 35, 90, 46, 23, 27, 92].

AT, FRATTESS TARLE i SO BN M BT A AR A R R s, TR T — DT ONN sy, 44
4 SegNeXt. HIATHIE A KM TR [63], BEXF b x k BRGMRN—XF Ex 1 H 1 x bk HH BRX
Ui TAERIRGPRGAETE L H R E 2, (A2 T 2 TR By 2k, WA 5 B ) I RS
AR X L8 2 RZAFIE AR B X AT 70 1

2.2. Z RJEM %%

Bt 2 ROZM SR AN RN Tz —. X fia, 2 ROZH B ar [72, 20, 68] HIf#AD
i (95, 87, 7] Wis). GoogleNet [68] 2 5IATHI I ILEAN KN Z RIEWRIZ —, B/ Z 7 LA L
2 RERFAESE G 55— IS AT IEMT 1 T A2 HRNet [72]. FEGIZ B, HRNet tERE T @0 HERY
FPE, S PERIFIER G R, S ROZRF ARSI

SLMERTITIEAIR, SegNeXt [k \1Editas H ik RUEFHESL, 5| AT —MAREIER LS, I
R T ARG XA TR REAZ AR L _E3d 2 FIT5 A R B TERE

2.3 JER LA

LR —F BN R, KR MM E P T ERAY . —BokUl, BEE X aH T
PASIAPIZE [26], CARIE A E S M BN )« A FEZRBE R EEAFEEM . flan, =SEyEE ) F %
KL EBR AR, (17, 14, 58, 52, 22]. ANFIFE, O HEE TR 0 H F2 6 M 2 B B 2R ee
BN S . BB EMYIAR, XAEPARTI) TAE P E AR R E M (31, 4, 73], HARRITHRATHY vision
transformer [17, 52, 83, 75, 74, 51, 81, 34, 50, 89], ftu{l T3 & ZW& T 38 T8 4 B P [ 1 o

M I (VAN) [25] 25 SegNeXt fefH XM LAE, BWmsH A KZER S (LKA) Bk
NGB EFAS YRR 1. BAR VAN FEEUR 3 2R p S TR AR, (EETEM it i 2% T
Z ROEFHERAHER . XX T 2R #4552 2 X EE .

3. itk

FERX—T7, AT AT Y SegNeXt 4. BAE, FATRM T 4 iEas- ML as 2,
XSG PARTH R Z B TAE—HE, 51T,



Convolutional Attention

FFN F_: > 1x1 Channel Mi

ng

O , , xl][d2%x1]
Attention | =) | : , d1x11 | [ d 1x21 |

T
Multi-scale Feature
|

(a) A stage of MSCAN (b) MSCA
Bl 2. UL MSCA Fil MSCAN ], iXHL, d, k1 x ke TREMI k1 x ke BFIBIPIIREEER (d). BATHATEFHRE
2 RERHIE, SRR M BNV R AR B A MSCA [5iIA .

3.1. BRGSaE

TG R T E&TIEEH , X5 Z AR RZECTAE [81, 6, 19] —&. X TRV a0, 3
IR 75 VIT [17, 81] RAUUMEEH, (EARRRZ, FAIBA B A BTG, el T a2
REEBBHERE (MSCA) i, WK 2(a) fin, MSCA & =405 —MNMREGBORRERREL, 29
SRR Z RIE LT UEE, A 1 x 1L BRORBUUAFEEZ WA 1 x 1 BRI 5
FERMVEEE I, DA MSCA fyMA . s b, RATH MSCA [ AE AL

Att = Convy 1 () Scale;(DW-Conv(F))), (1)

=0
Out = Att ® F. (2)

o F 3 ASHIE. Att A1 Out 4510 EAM . © BETENEHREER . DW-Cony 275
VEEEBRL, Scales, i € {0,1,2,3}, 35 B 2 (b) IO i A%, Scaley B HHTER:. K8 [63], EA
332 AT WA AR B BRI (TR B BRI ERME depth-wise fOBRL. XL, f44 Bk
AN BIREREE S 7. 11 21, FRATHERE depth-wise ZCRBRE AT T . — 7T, HPRE B
G, W TGN T x T FREAER, ROTAFE X 7 x LA 1 x 7 &RL. 5w, 154
B RREE LERIIER, ARIEAE . P, SORBRUTDAE N M SRR TS, A B TR A A
fiF [63, 30].

PR R, WA T BB RRILAS, @4k MSCAN. XfF MSCAN, Ff1RH
ARG, TV L x W W Wy I W s 4 . XL, H R
W BRI BB R TERE . 45 B N T RRERI R S, W TR . TORBES
H—ABAEKN 2 RN 3 x 3 HGERL, ARG R MIALIIA (L2 [36]. IR, 76 MSCAN ffg /4
Faetes, Fel B IR LTI R R IT— Ak, PR AL — L6 4 SI ARG 2 5

FATRA T PUAR SR AR S SBEE , 43 %160 45 5 MSCAN-T . MSCAN-S, MSCAN-B fil MSCAN-L,
HUSZHORE (A5 BRI 4 By SegNeXt-T, SegNeXt-S, SegNeXt-B, SegNeXt-L, 41 I &4 B B RRAEH 2.



2 2. I SegNeXt FUA R RSTIWEAHIRE . TEX R, ‘ex) BRI A, C° F1 ‘L’ 4 5I2@E M block
M%E ‘Decoder dimension’ /RIS MLP R~}. ‘Parameters’ 25 ADE20K £(¥84E [99] i1EM . BT ARIMIEL
PEEPRLEEEAR, SEEEETARRE .. BPRE PR EEARR, SEE R T BERA A8k .

stage | output size | e.r. SegNeXt-T SegNeXt-S SegNeXt-B SegNeXt-L
1 [ ExWxC| 8| C=32,L=3|C=64L=2|C=64L=3| C=64,L=3
2 | Ix®WxC| 8| C=64L=3|C=128,L=2|C=128,L=3|C=128,L=5
3 | Ex¥xC|4|C=160,L=5|C=320,L =4 |C=320,L=12|C =320,L =27
4 | HExygxCl 4 | C=26L=2|C=512L=2| C=512L=3| C=512,L=3
Decoder dimension 256 256 512 1,024
Parameters (M) 4.3 13.9 27.6 48.9
@ L 19 |% o 1L 4 |12 = LML L o =
g8 8] 8] T © | o) |2 | < ol [ |99 [ O 7
%9%9%9%—’%—’%*% %9%—)%—)%—>§—>% %—)%—)%9%_,5_)8__,%
=l o] [oof [~ = SELSEEERES =] oo [ &
(a) (b) (c)
¥ 3. Three different decoder designs.
3.2. RS

R

ey EMEAL 81, 97, 6] 1, Hiias K227k ImageNet Zdlide EFYIZRN . R THPE &2 WRAGTE L, EH
T B MRS, BN TR 2 5 o TR TAE D, FATFSE T =Fhfa] LR RS A5 454 , Qg 3FR . 26
— 1, £ SegFormer [81] R, & FhalifEiy T MLP 45 . 56 " fg EoRAAE T CNN [Wial, 75
IXFPEEH v, S A eie 14t B L AR S AR a5 K i AL, 4 ASPP [6]. PSP [95] #il DANet [19]. d5cf5—#
R FATH) SegNeXt HR AT ZEH o FATTRE G =B B RHESE Gk, FF 601 — Mg a9 Hamburger [21]
it — N A R T AL S5 AR SRR, AT — R R ES AT AR =
RE SRR

{EASYEREM 2, 5 SegFormer N[A|Y&, SegFormer WD 755 —Pr Be 228 DU By BEr R4k, 13K
TR RS 2 RS G =N B AFE . X2 N FRATHY SegNeXt 2 T BN . 28 —PrBFRHEE & 7oK
ZHMRERIEE, PR A, XS —Pr B R TUTERMIT I . fEscmiBsyr, TR
FATIHBF SegNeXt Hfwirfdeitny T transformer [1) SegFormer [81] fil HRFormer [89] A5 5 4,



% 3. 1f TmageNet ByilF4E 5 sedbm riibiTibe. R 4 FEREEURAE ISAID bS5 EIeitrrik . BAR

‘Acc’ & Top-1 HEMRZ. R —REE (SS) M. FATHY SegNeXt-T T ZHUF T Kbk
M EE
Method ‘ Params. (M) ‘ Acc. (%) HITERE.
Meth: Back ToU
MiT-B0 [81] 3.7 70.5 ethod | Backbone | mioU (%)
VAN-Tiny [25] 4.1 75.4 DenseASPP [84] ResNet50 57.3
MSCAN-T 4.2 75.9 PSPNet [95] ResNet50 60.3
i 0 62.1
MiT-B1 [81] 14.0 78.7 SRergan;;CFiN 137] gesgetio 02
t .
VAN-Small [25] 13.9 81.1 He ;e '3;2[ 8] HR‘;SI i?v | eis
tW- .
MSCAN-S 14.0 81.2 RNet [72] N
GSCNN [69] ResNet50 63.4
MiT-B2 [81] 25.4 81.6 SFNet [43] ResNet50 64.3
Swin-T [52] 28.3 81.3 RANet [60] ResNet50 62.1
ConvNeXt-T [53] 28.6 82.1 PointRend [38] ResNet50 62.8
VAN-Base [25] 26.6 82.8 FarSeg [98] ResNet50 63.7
MSCAN-B 26.8 83.0 UperNet [80] Swin-T 64.6
MIT-B3 [28] 159 31 PointFlow [41] ResNet50 66.9
Swin-S [52] 49.6 83.0 SegNeXt-T MSCAN-T 68.3
ConvNeXt-S [52] 50.1 83.1 SegNeXt-S MSCAN-S 68.8
VAN-Large [25] 44.8 83.9 SegNeXt-B MSCAN-B 69.9
MSCAN-L 45.2 83.9 SegNeXt-L MSCAN-L 70.3
4. 528

MRt el LATEATIOSCEIE [P T 31074, 5 ImageNet-1K [15), ADE20K [99]. Cityscapes [13].
Pascal VOC [18]. Pascal Context [59]. COCO Stuff [3], PA Jz iSAID [77], ImageNet [15] J& &z 35 24 1 15 53 4L
Pask, B 1000 251, 5RZEFITEREL, TATH BRI MSCAN Fiidds . ADE20K [99]
e HAPREPER B, A 150 ME N, B 20,210/2,000/3,352 5K IR I . 560 UEAn i
4. Cityscapes [13] LRI ATR, ©5 5,000 Ko #RER, A 19 M5 HoA 2,975/500/1,525
KK, 2RIAT %, RIEAMNEL. Pascal VOC [18] # K 20 MHIEREM—INHRE. 5, EF 10,
582/1, 449/1, 456 A&, Al T IlgR . BubAIli{. Pascal Context [59] 3% 59 AHIFZRM— I HE.
A UIGERBRUEE B 5 4,996 F1 5,104 K% . COCO-Stuff [3] /& —HA P4
gk, EAE 172 AN SCIALEIE 164k 5KIEHR . B 15 DRTFERA—AH 572 iSAID [77] 2 — KM
B s B FIRE , EEE 15 AR M— A stde. Jollgh. Bubmin e o ml & 1,411/458/937
KK

SESANYS:  IRATELEA Jittor [32] F1 [62] BEATEE . HATHLIEET timm (Apache-2.0) [78] Al mm-
segmentation (Apache-2.0) [12] &, 43 BIH T-r2F5r#] . AT - FIAL I Jai4e#07E ImageNet-1K
Bl (16] LT TSR, FROT43 BIR A Top-1 MERFAIT 2 ERT I (mIoU) 1E R4 201411
T FEIR . TAERBERRE—F 8 4~ RTX 3090 GPU fy77 & L IZR .

X1F ImageNet FiilllZh, FRATAESRIGIR S EMIIZEE S DeiT [71] MF . XFF08558, RITRAT
— B UL RIS R s, AR T RIS . BEPLAREL (M 0.5 B 2) FIBENLBT#. Cityscapes HHa4EN)
R PBCE N 8, HAMFTAEBIR LRI R R/ 16. AdamW [55] B ADRIIZRIRATRBAL. FATH40 45
243 RPEE N 0.00006, R 224 ] REEW M . T AT ADE20K., Cityscapes il iSAID $dsE#t 17T 16
FRERINL:, % COCO-Stuff. Pascal VOC F Pascal Context $iE&Ed4T T 8 ik, MR Fet
AT R E (SS) MZREE (MS) BB T AT R . L A0 il DAFEFRATAY#M 5E



% 5. RIS OR R L EI L. SegNeXt-B w/ Ham 235 MSCAN-B it ¢ I Ham f#Ef%¢, FLOPs 2] 512x512
B A RSHT R

Architecture ‘ Params. (M)  GFLOPs ‘ mloU (SS)  mloU (MS)
SegNeXt-B w/ CC [35] 27.8 35.7 47.3 48.6
SegNeXt-B w/ EMA [46] 27.4 32.3 48.0 49.1
SegNeXt-B w/ NL [76] 27.6 40.9 48.6 50.0
SegNeXt-B w/ Ham [21] 27.6 34.9 48.5 49.9

R 4R E]

4.1. 4 15244F ImageNet [y B)

ImageNet FllZke IR HIBAL A — A5 ISR [95, 7, 81, 89, 6]. 7EXHL, FATHHAIH MSCAN 5
BALRATI LA AT CNN FIET transformer (43 BRI PEREVEA T LS . A1 3P, FATTH) MSCAN HY
15T Wi Je b AT CNN (177 % ConvNeXt [53] HAFRYLER, I HBEE T HATHE T transformer
J¥E, 0 Swin Transformer [52] Fil MiT, SegFormer [81] A Zmfid#s.

# 6. kT MSCA BITHVHREATFE. Top-1 KR ImageNet $#lidk By Top-1 HERGME, , mIoU #/R ADE20K %4k By
mloU, Br: 4337,
7 x 7 Br ‘ 11 x 11 Br ‘ 21 x 21 Br ‘ 1 x 1 Conv ‘ Attention ‘ Top-1 ‘ mloU

4 X X 4 4 74.7 39.6
X v X v 4 75.2 39.7
X X 4 v 4 75.3 40.0
4 v 4 X 4 74.8 39.1
4 v 4 4 X 75.5 40.5
4 v 4 v v 75.9 41.1

4.2. JH LS

X MSCA Beitdbfriigil: K A17E ImageNet Fil ADE20K Hdla4E Bt T MSCA B TAIHEIITT . K x K 03¢
5 1 x K FEEEHM K x 1 HEEER. 1 x 1 conv F8H)ZMBER A1##1F. Attention J£45 element-wise
TR, XML RIS H GV RE . iR BRTER 6. RATATAKRIL, BAFREON AR PEREMUL T 5t
[

RS ZR I AR bR SCIH R IR ERAERE AR B 2 RUSERHIE A0 42 R 7 555 T A BB/ E I X L, kA1)
WFIE T AR R 4 Jo s SO IR 2 A 52 . IR AR 2 B CARTRY AR (76, 19] BruR, B3R i a4 xt
CNN [PERE L TIE S5 [95, 6] HhF, HUtHA TR S B B AR g i 4R . BARORUE, 1A
JRT A FORFIRB R TR IR a R, GRRA O(n?) EREMARRES (NL) HEJ) [76]
CCNet [35], HA O(n) 7 EMANet [46] il HamNet [21] . W13 5P/, Ham e 2 MERITEREZ 6] 55
T AR, L, FATEMS 64 Hamburger [21].



7. KREIRIEESEM MRS, SegNeXt-T (a) Z£F51E K 3 (a) WM TA#ILEE. FLOPs 2/ 512x512 Ak AR SHTEAY,
SegNeXt-T (c) w/ stage 1 FHRERTE 1 W% H MaiE AL

Architecture Params. (M) ~ GFLOPs | mloU (SS)  mloU (MS)
SegNeXt-T (a) 44 10.0 40.3 411
SegNeXt-T (b) 4.2 4.9 30.9 40.6
SegNeXt-T (c) 4.3 6.6 41.1 42.2
SegNeXt-T (c) w/ stage 1 4.3 12.1 40.7 42.2

\J)

L

SegFormer-B2 SegNeXt-B SegFormer-B2 SegNeXt-B
P 4. SegNeXt-B #l SegFormer-B2 1. Cityscapes ${ilite FAEMEILE . L AL R AT ATEFRATRIR SEA B PR E

WREEENG: SR SOR, A BIBCRE SRR . AR T SRR RIS, I
BOSHREAER SR . MIBIOZESII T4 7. FNTRTIARE), SegNeXt(c) JUth T HAAFIPERE, T FLIHFEAL
AR

Al MSCA My ¥ME: X B, FRATHEATSCHRUEN] MSCA X T HInE Rk, 1N, RATIREE
VAN [25] , F— KBRS RURABEIRANTN MSCA L3, gk 3pR, FATATDAMELS], Bk
PGS as7E ImageNet 7p 2 PIGTERERZL, {H SegNeXt w/MSCA j=EREFRLIE w/o MSCA ZU1G
Z . KR Z REERHIE R SR A0 i e i 1 S0 1 2 R T B

4.3. 5H it iE R

TEA/NA R, BATRFERATNTIE SRSt T CNN (97575, 40 HRNet [72]. ResNeSt [93] #I Effi-
cientNet [70], PAMET transformer B /Y5, W Swin Transformer [52]. SegFormer [81]. HRFormer [89].
MaskFormer [11] A1 Mask2Former [10] #4704 .

PEfE-TFMRLE:  ADE20K Al Cityscapes 215 U # WA 2 0. i 1Fos, FROT4H TR
[l J7¥ATE Cityscape Fll ADE20K 34 EryvERE- A4 . AR, SHAR M EMIL, T H
TEMERERITT B 2 [ L T fefERS#r & . W1 SegFormer [81], HRFormer [89], #1 MaskFormer [11].

5 ek transformer Fb%s:  FHA1HE ADE20K. Cityscapes. COCO-Stuff #l Pascal Context FZ#E_ ¥ Seg-
NeXt S et transformer #EALHAT T HAL . W1 3R 87, SegNeXt-L it T Mask2Former, 7F ADE20K
HmtE L, SegNeXt-L FESHHTHAMAF LI R T, A 3.3 mIoU (51.0 v. 47.7) AL #&d T PA Swin-T



% 8. #£ ADE20K. Cityscapes fll COCO-Stuff 3l b5 Jeilb i ik b4k . ADE20K F1 COCO-Stuff ) FLOPs % (G) &
Hi 512x512 [ AR SHTERY), Cityscapes 23 2,048%1,024 314519, T 3357 ImageNet-22K [ T ZLpykiz,

Model Params ADE20K Cityscapes COCO-Stuff
ode

(M) GFLOPs mloU (SS/MS) | GFLOPs mloU (SS/MS) | GFLOPs mloU (SS/MS)
Segformer-B0 [81] 3.8 8.4 374 38.0 125.5 76.2 78.1 8.4 35.6 -
SegNeXt-T 4.3 6.6 41.1 42.2 50.5 79.8 81.4 6.6 38.7 39.1
Segformer-B1 [81] 13.7 15.9 42.2 43.1 243.7 78.5 80.0 15.9 40.2 -
HRFormer-S [89] 13.5 109.5 44.0 45.1 835.7 80.0 81.0 109.5 37.9 38.9
SegNeXt-S 13.9 15.9 44.3 45.8 124.6 81.3 82.7 15.9 42.2 42.8
Segformer-B2 [81] 27.5 62.4 46.5 47.5 717.1 81.0 82.2 62.4 44.6 -
MaskFormer [11] 42 55 46.7 48.8 - - - - - -
SegNeXt-B 27.6 34.9 48.5 49.9 275.7 82.6 83.8 34.9 45.8 46.3
SETR-MLAT[97] 310.6 - 48.6 50.1 - 79.3 82.2 - - -
DPT-Hybrid [64] | 124.0 | 3079 - 49.0 - - - - - -
Segformer-B3 [81] 47.3 79.0 494 50.0 962.9 81.7 83.3 79.0 45.5 -
Mask2Former [10] 47 74 47.7 49.6 - - - - - -
HRFormer-B [89] 56.2 280.0 48.7 50.0 2223.8 81.9 82.6 280.0 424 43.3
MaskFormer [11] 63 79 49.8 51.0 - - - - - -
SegNeXt-L 48.9 70.0 51.0 52.1 577.5 83.2 83.9 70.0 46.5 47.2

NETH Mask2Former, Jt4h, 5 SegFormer-B2 #{ k., SegNeXt-B 7£ ADE20K %#lig 2 T 56% it
AR T 2.0 mloU pyekift (48.5 v.s. 46.5) o FEjliE, HT SegFormer [81] iy HIL KT E IR H:
By, MRATR T EE B, X AR 7 EAEAH Cityscapes KRR B HER G I L PR .
f1, SegNeXt-B H. SegFormer-B2 #4117 1.6 mIoU (81.0 v. 82.6), {Hfi T E =D T 40%. fEE 4,
FATERER T SegFormer HEVEE . FATATAES], THEE T MSCA, IRATH 7 VALEALBRY) (AR 2015 15
PR .

il ek CNNs be#s: 1 264, £ 9, and % 1178, I’ 17 Pascal VOC 2012, Pascal Context £ iSAID
B FFFRAT) SegNeXt HigstiE) CNN 411 ResNeSt-269 [93]. EfficientNet-L2 [100] Fil HRNetW48 [72]
PEATILEL . SegNeXt-L [EREIL TAATHY HRNet (OCR) (72, 88] #AL (60.3 v.56.3) , B IS HH
WHRELRE D, BASEUESR ORI . 1Ah, SegNeXt-L ¥£ Pascal VOC 2012 Ml HH TS L%
H 2T EfficientNet-L2 (NAS-FPN) , JEE MY 3 ACHKA T G 3T THIZE. (EATENE,
EfficientNet-L2 (NAS-FPN) 7 485M &4k, T SegNeXt-L A7 48.7M iS4

w7 ERSeHERESL, AT AR AT SRS . RIE A AR AR R A AR
Aimis, SegNeXt-T FEALHL 768x 1,536 RF KT, ] B4 3090 RTX GPU L8l T4F> 25 i (FPS).
2R 10R, FAI AN Cityscapes MRER ) ST FIE 3 T8 S /e b 4521 «



% 9. ¢ Pascal VOC ¥ifidh [ Stk i, = dor % 10 SRIEEmSEmJiiEE Cityscapes MHSK4E EAYLL
COCO [49] Fiyll%:. T #m JFT-300M [67] HiylZ. * Ff B, FAHEA RTX-3090 GPU #l AMD EPYC 7543 32

AN 3 ALTKTChR A BB T ISR Ak Bigs CPU MAFAT Ik FEA AR 5L
Method ‘ Backbone ‘ mloU T, SegNeXt-T W PAIKEI4GAD 25 (FPS), XFFErsLmfy
DANet [19] ResNet101 82.6 IR
OCRNet [88] HRNetV2-W4s | 84.5 Method | Iputsice | mloU
HamNet [21] ResNet101 85.9 ESPNet [56] 512x 1,024 60.3
EncNet” [92] ResNet101 85.9 ESPNetv?2 [57] 512x 1,024 66.2
EMANet™ [46] ResNet101 87.7 ICNet [94] 1,024 x 2,048 69.5
DeepLabV3+~ [9] Xception-71 87.8 DFANet [40] 1,024 x 1,024 71.3
DeepLabV3+" [9] | Xception-JFT | 89.0 BiSeNet [86] 768 x 1,536 74.6
NAS-FPN® [100] EfficientNet-L2 | 90.5 BiSeNetv2 [85] 512 x 1,024 75.3
SegNeXt.T MSCAN.T 897 DF2-Seg [47] 1,024 x 2,048 74.8
SegNeXt-S MSCAN.S 85.3 SwiftNet [61] 1,024 x 2,048 75.5
SegNeXt.B MSCAN-B 875 SFNet [43] 1,024 x 2,048 77.8
SegNeXt-L" MSCAN-L 90.6 SegNeXt-T | 768 x 1,536 | 780

% 11. 7F Pascal Context H#fE_FAYEHE . FLOPs f%0EZ A 512x512 (U AR HTER . * #75% ImageNet-22K Fiil 4. 1
2~ ADE20K Tiilll 4.

Method ‘ Backbone ‘ Params.(M) ‘ GFLOPs ‘ mloU (SS/MS)
PSPNet [95] ResNet101 - - - 47.8
DANet [19] ResNet101 69.1 277.7 - 52.6
EMANet [46] ResNet101 61.1 246.1 - 53.1
HamNet [21] ResNet101 69.1 277.9 - 55.2
HRNet(OCR) [72] | HRNetW4s 74.5 - - 56.2
DeepLabV3+ [9] ResNeSt-269 - - - 58.9
SETR-PUP™ [97] ViT-Large 317.8 - 54.4 55.3
SETR-MLA* [97] ViT-Large 309.5 - 54.9 55.8
HRFormer-B [89] HRFormer-B 56.2 280.0 57.6 58.5
DPT-Hybrid' [64] | ViT-Hybrid 124.0 - - 60.5
SegNeXt-T MSCAN-T 4.2 6.6 51.2 53.3
SegNeXt-S MSCAN-S 13.9 15.9 54.2 56.1
SegNeXt-B MSCAN-B 27.6 34.9 57.0 59.0
SegNeXt-L MSCAN-L 48.8 70.0 58.7 60.3
SegNeXt-Lf MSCAN-L 48.8 70.0 59.2 60.9

5. WG THE

AR, FRATAT T DART R FIAL, HFRBIE AT A W R, BT R B, AT S
T—AE BRI MSCA Fl—4> CNN KM% SegNeXt, SCIRLEREN, SegNeXt FEAHY KAGFE
FE Bt T H i e E T transformer {1775 .

i, 3T transformer AUFBEIFES R EIHEA TS 15 B S0 M, ASCEIR, 460 @ 41380
i, JF CNN A ¥E SR AT DAL RS T transformer [ iR S 4T . Tl 1A 2 A CRERS SR IIF oS A B ok
— 5% CNNs 19977 .
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