JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Vision Permutator: A Permutable MLP-Like
Architecture for Visual Recognition

Qibin Hou Zihang Jiang Li Yuan Ming-Ming Cheng Shuicheng Yan Jiashi Feng

Abstract—In this paper, we present Vision Permutator, a conceptually simple and data efficient MLP-like architecture for visual recogni-
tion. By realizing the importance of the positional information carried by 2D feature representations, unlike recent MLP-like models that
encode the spatial information along the flattened spatial dimensions, Vision Permutator separately encodes the feature representations
along the height and width dimensions with linear projections. This allows Vision Permutator to capture long-range dependencies and
meanwhile avoid the attention building process in transformers. The outputs are then aggregated in a mutually complementing manner
to form expressive representations. We show that our Vision Permutators are formidable competitors to convolutional neural networks
(CNNSs) and vision transformers. Without the dependence on spatial convolutions or attention mechanisms, Vision Permutator achieves
81.5% top-1 accuracy on ImageNet without extra large-scale training data (e.g., ImageNet-22k) using only 25M learnable parameters,
which is much better than most CNNs and vision transformers under the same model size constraint. When scaling up to 88M, it attains
83.2% top-1 accuracy, greatly improving the performance of recent state-of-the-art MLP-like networks for visual recognition. We hope
this work could encourage research on rethinking the way of encoding spatial information and facilitate the development of MLP-like

models. PyTorch/MindSpore/Jittor code is available at https:/github.com/Andrew-Qibin/VisionPermutator.

Index Terms—Vision permutator, permutator, image classification, multi-layer perceptron, deep neural network

1 INTRODUCTION

ECENT studies [1], [2] have shown that pure multi-

layer perceptron based networks perform well in Im-
ageNet classification [3]. Compared to convolutional neural
networks (CNNs) and vision transformers that employ spa-
tial convolutions or self-attention layers to encode spatial
information, MLP-like networks (a.k.a., MLPs) make use of
pure fully-connected layers (or called 1 x 1 convolutions)
and hence are more efficient in both training and inference
[1]. However, the good performance of MLPs in image
classification largely benefits from training on large-scale
datasets (e.g., ImageNet-22K and JFT-300M). Without the
support of sufficiently large amount of training data, their
performance still lags largely behind CNNs [4], [5], [6] and
vision transformers [7], [8], [9].

In this work, we are interested in exploiting the potential
of MLPs with using merely the ImageNet-1k data for train-
ing and target data-efficient MLPs. To this end, we propose
the Vision Permutator architecture. Specially, Vision Permuta-
tor innovates the existing MLP architectures by presenting a
new layer structure that can more effectively encode spatial
information based on the basic matrix multiplication rou-
tine. Unlike current MLP-like models, such as Mixer [1] and
ResMLP [2], that encode spatial information by flattening
the spatial dimensions first and then conducting linear pro-
jection along the spatial dimension (i.e., operating on tokens

e Q. Hou and M.M. Cheng are with School of Computer Sci-
ence, Nankai University, Tianjin, China. (andrewhoux@gmail.com,
cmm@nankai.edu.cn)

e 7. Jiang is with Department of Electrical and Computer Engineering,
National University of Singapore, Singapore. (jzh0103@gmail.com)

e L. Yuan is with School of Electronic and Computer Engineering, Peking
University, China. (ylustcnus@gmail.com)

o S. Yan and]. Feng are with Sea Al Lab, Singapore. ({yansc,
fengjs}@sea.com)

with shape “tokensxchannels”), leading to the loss of po-
sitional information carried by 2D feature representations,
Vision Permutator maintains the original spatial dimensions
of the input tokens and separately encodes spatial infor-
mation along the height and width dimensions to preserve
positional information. This makes our Vision Permutator
quite different from the existing MLP-like models.

To be specific, our Vision Permutator begins with a
similar tokenization operation to vision transformers, which
uniformly splits the input image into small patches and
then maps them to token embeddings with linear projec-
tions, as depicted in Figure 1. The resulting token em-
beddings with shape “heightxwidthxchannels” are then
fed into a sequence of Permutator blocks, each of which
consists of a Permute-MLP for spatial information encoding
and a Channel-MLP for channel information mixing. The
Permute-MLP layer, as depicted in Figure 2, consists of
three independent branches, each of which encodes features
along a specific dimension, i.e., the height, width or channel
dimension. Compared to existing MLP-like models that mix
the two spatial dimensions into one, our Vision Permutator
separately processes the token representations along these
dimensions, resulting in more discriminative token repre-
sentations, which we will demonstrate essential for visual
recognition in our experiment section.

Experiments show that our Vision Permutator can
largely improve the classification performance of existing
MLP-like models. Taking the small-sized Vision Permutator
with 25M parameters as an example, it attains 81.5% top-1
accuracy on ImageNet without any extra training data. The
result is better than most of the classic CNN-based models,
such as ResNet-50d (79.5%), SE-ResNeXt-50 (79.9%), and the
strong ResNeSt-50 (81.1%). Scaling up the model to 55M and
88M, we can further improve the results and achieve 82.7%

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Fig. 1: Basic architecture of the proposed Vision Permutator.
The evenly divided image patches are tokenized with linear
projection first and then fed into a sequence of Permutators
for feature encoding. A global average pooling layer fol-
lowed by a fully-connected layer is finally used to predict
the class.

and 83.2% top-1 accuracy on ImageNet, respectively.

2 RELATED WORK

Modern deep neural networks for image classification have
three prominent families: convolutional neural networks
(CNN:s), vision transformers (ViTs), and multi-layer percep-
tron based models (MLPs). In the following, we will briefly
describe the development trend of each type of networks
and state the differences of the proposed Vision Permutator
from previous work.

CNNs, as the de-facto standard networks in computer
vision for years, have been deeply studied. Early CNN mod-
els, such as AlexNet [10] and VGGNet [11], mostly adopt
structures with a stack of spatial convolutions (with kernel
size > 3) and pooling operations. Later, ResNets and their
variants [12], [13], [14] introduce skip connection and build-
ing blocks with bottleneck structure into CNNs, enabling
training very deep networks possible. Inceptions [15], [16]
renovate the design of traditional building block structure
and utilize multiple parallel paths of sets of specialized
filters. Attention mechanisms [17], [18], [19], [20], [21], [22],
[23] break through the limitations of convolutions in captur-
ing local features. Our work can also be regarded as a special
CNN. Different from previous CNNs that globally aggregate
the locally captured features with spatial convolutions, our
Vision Permutator is composed of pure 1 x 1 convolutions
but can encode global information.

Our work is also related to vision transformers [24].
Unlike CNNss that exploit local convolutions to encode spa-
tial information, vision transformers takes advantage of the
self-attention mechanism to capture global information and
have been the prevailing research direction in image classi-
fication recently. Since then, a great number of transformer-
based classification models appear, aiming at advancing the
original vision transformer by either introducing locality [9],
[25], [26], [27], [28], [29], or scaling the depth [8], [30], or
tailoring powerful optimization strategies [7]. In addition,

2

there are also some works aiming at improving the self-
attention mechanism. For example, Ho et al. and Wang
et al. [23], [31] leverages axial attention to process rep-
resentations by factorizing multidimensional self-attention
into multiple 1D self-attentions. Such an approach reduces
the computational cost but it still relies on self-attention.
Different from the aforementioned methods, our Vision
Permutator eliminates the dependence on self-attention and
hence is more efficient.

Very recently, there are also some work [1], [2], [32], [33]
targeting at developing pure MLP-like models for ImageNet
classification. To encode rich spatial information with MLPs,
these methods flatten the spatial dimensions and treat the
three-dimensional (height, width, and channel) token repre-
sentations as a two-dimensional input table. Differently, our
Vision Permutator operates on three-dimensional feature
representations and encodes spatial information separately
along the height and width dimensions. We will show the
advantages of the proposed Vision Permutator over existing
MLP-like models in our experiment section.

3 VISION PERMUTATOR

The basic architecture of the proposed Vision Permutator
can be found in Figure 1. Our network takes an image of size
224 x 224 as input and uniformly splits it into a sequence
of image patches (14 x 14 or 7 x 7). All the patches are then
mapped into linear embeddings (or called tokens) using a
shared linear layer as [1]. We next feed all the tokens into a
sequence of Permutators to encode both spatial and channel
information. The resulting tokens are finally averaged along
the spatial dimensions, followed by a fully-connected layer
for class prediction. In the following, we will detail the
proposed Permutator block and the network settings.

3.1 Permutator

A diagrammatic illustration of the proposed Permutator
block can be found at the top-left corner of Figure 1. As
can be seen, regardless of the LayerNorms and the skip
connections, our Permutator consists of two components:
Permute-MLP and Channel-MLP, which are responsible
for encoding spatial information and channel information,
respectively. The Channel-MLP module shares a similar
structure to the feed forward layer in Transformers [34]
that comprises two fully-connected layers with a GELU
activation in the middle. For spatial information encoding,
unlike the recent Mixer [1] that conducts linear projection
along the spatial dimension with respect to all the tokens,
we propose to separately process the tokens along the height
and width dimensions. Mathematically, given an input C-
dim tokens X € RT*WXC the formulation of Permutator
can be written as follows:

Y = Permute-MLP(LN(X)) + X,)

Z =MLP(LN(Y))+Y, 2
where, LN refers to LayerNorm. The output Z will serve as
the input to the next Permutator block until the last one.

Permute-MLP: The visual illustration of the proposed
Permute-MLP can be found in Figure 2. Unlike vision
transformers [7], [24], [35] and Mixer [1] that receive an

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3
Skip Connections
—
H-C Permute [~ — } H-C Permute
s 7~ Linear Projection |~ 3
: =
Linear Projection
W-C Permute - — W-C Permute
» —Linear Pluj\,vtnuu > Sum A 4 o
——>< e > >
Input Tokens L Identity fo — Identity J Output Tokens
» rmearr lUJUUI.lUll >

Fig. 2: Basic structure of the proposed Permute-MLP layer. The proposed Permute-MLP layer contains three branches that
are responsible for encoding features along the height, width, and channel dimensions, respectively. The outputs from the
three branches are then combined using element-wise addition, followed by a fully-connected layer for feature fusion.

Algorithm 1: Code for Permute-MLP (PyTorch-like)

H: height, W: width, C: channel, S: number of segments

x: input tensor of shape (H, W, C)

def init () :
proj_h = nn.Linear(C, C) # height dimension
proj_w = nn.Linear(C, C) # width dimension
proj_c = nn.Linear(C, C) # channel information
proj = nn.Linear(C, C) # fusion

HHAF AR EEF AR A F AR AHS forward #H#HHHEHFHEREEFHEREEHHERES
def permute_mlp(x):

N=¢C//S

x_h = x.reshape(H, W, N, S)

x_h = x_h.permute(2, 1, 0, 3).reshape(N, W, Hx*S)
x_h = self.proj_h(x_h).reshape (N, W, H, S)

x_h = x_h.permute(2, 1, 0, 3).reshape(H, W, C)
X_w = x.reshape(H, W, N, S)

x_w = x_w.permute (0, 2, 1, 3).reshape(H, N, WxS)
x_w = self.proj_w(x_w).reshape(H, N, W, S)

x_w = x_w.permute(0, 2, 1, 3).reshape(H, W, C)
x_c = self.proj_c(x)

X = x_h + x_w + x_C

x = self.proj(x)

return x

input of two dimensions (“tokens xchannels,” i.e., HW x C),
Permute-MLP accepts 3-dimensional token representations.
As shown in Figure 2, our Permute-MLP consists of three
branches, each of which is in charge of encoding information
along either the height, or width, or channel dimension.
The channel information encoding is simple as we only
need a fully-connected layer with weights Wo € RE*¢
to perform a linear projection with respect to the input X,
yielding X¢. In the following, we will describe how to
encode spatial information by introducing a segment-wise
permutation operation between dimensions.

Suppose the hidden dimension C' is 384 and the input
image is with resolution 224 x 224. To encode the spa-
tial information along the height dimension (), we first
conduct a height-channel permutation operation. Given the
input X € REXWXC we first split it into S segments along
the channel dimension, yielding [Xz, , X, - - , Xp,], sat-

isfying C' = N! xS. In case where the patch size is set to
14 x 14, the value of N is identical to 224/14 = 16 and

Xy, € REXWXN (; ¢ [1 ... S}). We then perform a
height-channel permutation operation® with respect to each
segment Xy, yielding [X}; , X[,---,X};_], which are

then concatenated along the channel dimension as the out-
put of the permutation operation. Next, a fully-connected
layer with weight Wy ¢ RY*C is connected to mix the
height information. To recover the original dimensional
information to X, we only need to perform the height-
channel permutation operation once again, outputting Xg.
Similarly, in the second branch, we conduct the same op-
erations as above to permute the width dimension and the
channel dimension for X and yield Xy . Finally, we feed
the summation of all the token representations from the
three branches into a new fully-connected layer to attain the
output of the Permute-MLP layer, which can be formulated
as follows:

X =FC(Xy + Xw + X¢), 3)

where FC(-) denotes a fully-connected layer with weight
Wp € RE*Y. A PyTorch-like pseudo code can be found in
Alg. 1.

Weighted Permute-MLP: In Eqn. 3, we simply fuse the
outputs from all three branches with element-wise addition.
Here, we further improve the above Permute-MLP by re-
calibrating the importance of different branches and present
Weighted Permute-MLP. This can be easily implemented by
exploiting the split attention [6]. What is different is that
the split attention is applied to X g, Xy, and X¢ instead
of a group of tensors generated by a grouped convolution.
In the following, we use the weighted Permute-MLP in
Permutator by default.

Relation to ConvNets and Transformers: Similar to Mixer-
MLP, our Vision Permutator is mostly composed of MLPs.
However, from the angle of implementation, we do use con-
volutions for patch embedding, which can also be viewed

1. Here, N is identical to H.
2. Transpose the first (Height) dimension and the third (Channel)
dimension: (H, W, C) — (C,W, H).

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

4

TABLE 1: Configurations of different Vision Permutator models. We present three different models (Small, Medium, and
Large) according to the different model sizes. Notation “Small/16” means the model with patch size 16 x 16 in the starting

patch embedding module.
Specification ViP-Small/16 ~ ViP-Small/14 ViP-Small/7 ViP-Medium/7 ViP-Large/7
Patch size 16 x 16 14 x 14 TxT TxT TxT
Hidden size - - 192 256 256
Number of Tokens 14 x 14 16 x 16 32 x 32 32 x 32 32 x 32
Number of Permutators - - 4 7 9
Downsampling Rate - - 2x2 2x2 2x2
Hidden size 336 384 384 512 512
Number of Tokens 14 x 14 16 x 16 16 x 16 16 x 16 16 x 16
Number of Permutators 18 18 14 17 27
Number of layers 18 18 18 24 36
MLP Expansion Ratio 3 3 3 3 3
Stochastic Depth Rate 0.1 0.1 0.1 0.2 0.3
Parameters (M) 23M 30M 25M 55M 88M

as a type of downsampling operation. Our work can be
regarded as a hybrid between ConvNet and MLP, but the
majority of the operator used are fully-connected layers.
Transformers also only consist of MLPs but they rely on
self-attention to build pairwise relationships between pairs
of tokens. Our Permutator does not model the similarities
between pairs of tokens explicitly and hence is quite differ-
ent from transformers.

3.2 Various Configurations of Vision Permutator

We summarize various configurations of the proposed Vi-
sion Permutator in Table 1. We present three different ver-
sions of Vision Permutator (ViP), denoted as ‘ViP-Small’,
‘ViP-Medium’, and ‘ViP-Large’ respectively, according to
their model size. Notation ‘ViP-Small/14’" denotes the small-
sized model with patch size 14 x 14 in the starting patch
embedding module. In ‘ViP-Small/16” and ‘ViP-Small/14’,
there is only one patch embedding module, which is then
followed by a sequence of Permutators. The total number
of Permutators for them are 18.

Our ‘ViP-Small/7, ‘ViP-Medium/7,” and ‘ViP-Large/7’
have two stages. The first stage starts with a patch embed-
ding module. A few Permutators are added targeting at
encoding fine-level token representations which we found
beneficial to the model performance. For the second stage,
we use a downsampling operation at the beginning to map
the token representations to a lower level. For all the models,
we set the MLP expansion ratio to 3 following T2T-ViT [29].
We found using an expansion ratio of 4 yields nearly no
improvement but brings in more computations.

4 EXPERIMENTS

We report of the results of our proposed Vision Permutator
on the widely-used ImageNet-1k [3] dataset. The code is
implemented based on PyTorch [36] and the timm [37]
toolbox. Note that in training, we do not use any extra
training data.

4.1

We adopt the AdamW optimizer [38] with a linear learning

rate scaling strategy Ir = 107 x b‘”fgiiiize and 5 x 1072

Experiment Setup

weight decay rate to optimize all the models as suggested
by previous work [7], [35]. The batch size is set to 2048 which
we found works better than 1024 in our Vision Permutator.
Stochastic Depth [39] is used. Detailed drop rates can be
found in Table 1. We train our models on the ImageNet
dataset for 300 epochs. For data augmentation methods, we
use Random Erasing [40], RandAug [41], MixUp [42], and
CutMix [43]. Note that we do not use positional encoding in
our Vision Permutator as we found it hurts the performance.
Training small-sized Vision Permutator models requires a
machine node with 8 NVIDIA V100 GPUs (32G memory).
Two nodes are needed for medium-sized and large-sized
Vision Permutator models.

4.2 Main Results on ImageNet

In this subsection, we compare our proposed Vision Per-
mutator with previous CNN-based, Transformer-based, and
MLP-like models on ImageNet [3], ImageNet Real [44], and
ImageNet-V2 [45]. We first compare our proposed Vision
Permutator with recent MLP-like models in Table 2. The
‘Train size” and “Test size’ refer to the training resolution and
test resolution, respectively. As can be seen, our ViP-Small/7
model with only 25M parameters achieves top-1 accuracy
of 81.5%. This result is already better than most of the
existing MLP-like models and comparable to the best one
gMLP-B [32] which has 73M parameters, far more than ours.
Scaling up the model to 55M allows our ViP-Medium/7 to
attain 82.7% accuracy, which is better than all other MLP-
like models as shown in Table 2. Further increasing the
model size to 88M leads to a better result 83.2%. Similar
improvement can also be observed on ImageNet Real and
ImageNet-V2, reflecting that our method can better prohibit
overfitting compared to other models.

We argue that the main factor leading to the improve-
ment for our Vision Permutator is the way of encoding
spatial information as described in Sec. 3. Different from
concurrent popular MLP-like models listed in Table 2, we
separately encode the token representations along the height
and width dimensions. In addition, our Vision Permutator
encodes not only coarse-level token representations (with
16 x 16 tokens) but also features at fine-level (with 32 x 32

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

5

TABLE 2: Top-1 accuracy comparison with the recent MLP-like models on ImageNet [3], ImageNet Real [44], and ImageNet-
V2 [45]. All models are trained without external data. With the same computation and parameter constraint, our model
consistently outperforms other methods but has similar throughput. Following [2], the throughput is measured on a single
machine with V100 GPU (32GB) with batch size set to 32. T Implementation with our training recipe, which we found

works better than the one reported in the paper.

Networks | Parameters FLOPs Throughput | Train size Test size | ImageNet ImageNet Real ImageNetV2
EAMLP-14 [33] 30M - 711 img/s 224 224 78.9 - -
gMLP-S [32] 20M 4.5B - 224 224 79.6 - -
ResMLP-524 [2] 30M 6.0B 715img/s 224 224 79.4 85.3 67.9
ViP-Small/14 (ours) 30M 6.9B 789 img/s 224 224 80.5 86.1 69.6
ViP-Small/7 (ours) 25M 6.9B 719 img/s 224 224 81.5 86.9 70.9
EAMLP-19 [33] 55M - 464 img/s 224 224 79.4 - -
Mixer-B/16 [1] 59M 11.6B - 224 224 78.5 - -
ViP-Medium/7 (ours) 55M 16.3B 418 img/s 224 224 82.7 87.4 72.2
gMLP-B [32] 73M 15.8B - 224 224 81.6 - -
ResMLP-B24 [2] 116M 23.0B 231img/s 224 224 81.0 86.1 69.0
ViP-Large/7 (ours) 88M 243B 298img/s 224 224 83.2 87.6 72.7

TABLE 3: Top-1 accuracy comparison with classic CNNs and Vision Transformers on ImageNet [3], ImageNet Real [44],
and ImageNet-V2 [45]. All models are trained without external data. With the same computation and parameter constraint,
our models are competitive to some powerful CNN-based and transformer-based counterparts.

Network \ Parameters FLOPs \ Train size Test size \ ImageNet ImageNet Real ImageNetV2
NFENet-F6 + SAM [5] 438M 377B 448 576 86.5 89.2 75.8
CaiT-M48 [8] 356M 330B 224 448 86.5 90.2 76.9
VOLO-D5 [46] 296M 304B 224 448 87.0 90.6 77.8
ResNet-50d [12], [47] 25.6M 4.3B 224 224 79.5 - -
SE-ResNeXt-50 [13], [17] 27.6M 4.3B 224 224 79.9 85.3 68.7
RegNet-4GF [48] 21M 4.0B 224 224 80.0 - -
ResNeSt-50 [6] 27.5M 5.4B 224 224 81.1 - -
DeiT-S [35] 22M 4.6B 224 224 79.8 85.7 68.5
T2T-ViT-14 [29] 22M 5.2B 224 224 81.5 86.8 69.9
Swin-T [9] 29M 4.5B 224 224 81.3 86.7 69.5
ViP-Small/7 25M 6.9B 224 224 81.5 86.9 70.9
ResNet-101d [12], [47] 44.6M 7.9B 224 224 80.4 85.8 69.0
SE-ResNeXt-101 [13], [17] 49.0M 8.0B 224 224 80.9 86.0 70.0
ResNeSt-101 [6] 48.3M 10.2B 256 256 82.9 87.3 72.6
DeepViT [30] 55M 12.5B 224 224 83.1 - -
ViP-Medium/7 55M 16.3B 224 224 82.7 87.4 72.2
RegNet-16GF [48] 83.6M 15.9B 224 224 82.9 88.1 72.4
DeiT-B [35] 86M 17.5B 224 224 81.8 86.7 71.5
T2T-ViT-24 [29] 64M 13.8B 224 224 82.3 - -
TNT-B [28] 66M 14.1B 224 224 82.8 - -
ViP-Large/7 88M 24.3B 224 224 83.2 87.6 72.7

tokens), which has been demonstrated important in vision
transformers [46]. We will detail this in next subsection.

In Table 3, we show the comparison with classic CNN-
based and transformer-based models. Compared with clas-
sic CNNs, like ResNets [12], SE-ResNeXt [13], [17], and
RegNet [48], our Vision Permutator with similar model size
constraint receives better results. Taking the ViP-Small/7
model as an example, the top-1 accuracy on ImageNet is
81.5%, which is even better than ResNeSt-50 (81.5% uv.s.
81.1%). Compared to some transformer-based models, such
as DeiT [35], T2T-ViT [29], and Swin Transformers [9],
our results are also better. This phenomenon indicates that
MLP-like models are strong competitors to CNN-based and
Transformer-based models. We also found that our Vision
Permutator However, there is still a large gap between
our Vision Permutator and recent state-of-the-art CNN-
and transformer-based models, such as NFNet [5], CaiT [8]

and VOLO [46]. We believe there is still a large room for
improving MLP-like models, just like what happened in the
research field of vision transformers.

4.3 Method Analysis

In this subsection, we conduct a series of ablation exper-
iments on fine-level information encoding, model scaling,
data augmentation, and the proposed Permutator. We take
the ViP-Small /14 model as baseline.

Importance of Fine-level Token Representation Encoding:
We first show that encoding finer-level token representa-
tions is important for MLP-like models. We demonstrate
this argument in two ways: I) Adjusting the patch size in
the initial patch embedding layer and keep the backbone
unchanged; II) Halving the patch size for each patch side
and introducing a few Permutators to encode fine-level to-

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE 4: Role of fine-level token representation encoding. ‘Initial Patch Size” denotes the patch size in the starting patch
embedding module and ‘Fine Tokens’ refers to models encoding fine-level token representations. Larger patch size means
that the number of tokens fed into Permutators would be lower as specified in Table 1. We can see that the model efficiency
in speed does not change too much when changing the initial patch size. We report throughput values based on two batch
size settings: 32 and 128.

Models Patch Size Fine Tokens Params FLOPs Peak Memory Throughput (32) Throughput (128) Top-1 Acc. (%)
ViP-Small/16 16 x 16 No 23M 4.0B 240 803 img/s 1110 img/s 79.8
ViP-Small/14 14 x 14 No 30M 69B 300 789 img/s 944img/s 80.6
ViP-Small/7 T Yes 25M 6.9B 342 719 img/s 800 img/s 81.5

TABLE 5: Role of the model scale. We scale the models by increasing the model size (including number of layers, hidden
dimension). ‘Hidden Dim.” refers to the hidden dimension in the second stage, which is halved in the first stage. Clearly,

increasing the model size can consistently improve the model performance.

Models Layers Hidden Dim. Params FLOPs Peak Memory Throughput (32) Throughput (128) Top-1 Acc. (%)
ViP-Small/7 18 384 25M 6.9B 342 719 img/s 800 img/s 81.5
ViP-Medium/7 24 512 55M 16.3B 596 418 img/s 452 img/s 82.7
ViP-Large /7 36 512 88M 24.3B 815 298 img/s 322 img/s 83.2

ken representations. Table 4 summaries the performance for
ViP-Small/16, ViP-Small/14, and ViP-Small/7. Compared
to ViP-Small/16, ViP-Small /14 has smaller initial patch size
and more input tokens to the Permutators. According to the
results, ViP-Small/14 yields better performance than ViP-
Small/16 (80.5% v.s. 79.8%). Despite more tokens and more
parameters used in ViP-Small/14, the efficiency (through-
put) does not change much. This indicates that we can
appropriately use smaller initial patch size to improve the
model performance.

We further reduce the initial patch size from 14 x 14
to 7 x 7. Compared to ViP-Small/14, ViP-Small/7 adopts
4 Permutators to encode fine-level token representations
(with 32 x 32 tokens). As shown in Table 4, such a slight
modification can largely boost the performance and reduce
the number of learnable parameters. The top-1 accuracy
is improved from 80.5% to 81.5%. This demonstrates that
encoding fine-level token representations does help in im-
proving our model performance but a disadvantage is that
the efficiency goes down a little.

Role of the Model Scale: Scaling up models for deep
neural networks is always an effective way to improve
model performance. Here, we show the influence of model
scaling on the proposed Vision Permutator by increasing
the number of layers and hidden dimension. Table 5 lists
the results for three different versions of the proposed
Vision Permutator: ViP-Small/7, ViP-Medium/7, and ViP-
Large/7. We can see that increasing the number of layers
and hidden dimension yields better results for our Vision
Permutator. The ViP-Medium/7 can raise the performance
of ViP-Small/7 to 82.7% with a performance gain of more
than 1%. Further increasing the model size results in better
performance 83.2%.

Effect of Data Augmentations: Data augmentation has
been demonstrated an effective and efficient way to lift
the model performance in deep learning [7], [35], [47].
Four commonly-used data augmentation methods should
be Random Augmentation [41], Random Erasing [40],
MixUp [42], and CutMix [43]. Here, we show how each
method influences the model performance. The results have

been shown in Table 6. Without any data augmentation, we
achieve 75.3% top-1 accuracy for our ViP-Small/14 model.
Using Random Augmentation improves the performance
to 77.7% (+2.4%). Adding Random Erasing lifts the result
to 78.0% (+2.7%). Adding MixUp yields 80.2% top-1 accu-
racy (+4.9%) and the result is further improved to 80.6%
(+5.3%) by using CutMix. These experiments indicate that
data augmentation is extremely important in training Vision
Permutator as happened in training CNNs [47] and vision
transformers [7], [35].

TABLE 6: Ablation on data augmentation methods. We
ablate four widely used data augmentation methods in both
CNN- and transformer-based models, including Random
Augmentation [41], Random Erasing [40], MixUp [42], and
CutMix [43]. We can see that all 4 methods contribute to the
model performance.

Data augmentation methods Layers Params Top-1 Acc. (%)

Baseline (ViP-Small/14) 18 30M 75.3

+ Random Aug. [41] 18 30M 77.7 (+2.4)
+ Random Erasing [40] 18 30M 78.0 (+2.7)
+ MixUp [42] 18 30M 80.2 (+4.9)
+ CutMix [43] 18 30M 80.6 (+5.3)

From Mixer to Vision Permutator: The original Mixer [1]
encodes spatial information by flattening all the tokens.
To show the advantage of separately encoding the spatial
information, we replace the top 2 branches in Fig. 2 with the
token-mixing MLP in Mixer-MLP. Results have been listed
in Table 7. The new model gives a performance of 78.9%
as shown in the third row of Table 7, slightly better than
Mixer-B/16 with our training recipe but worse than our
ViP-Small/14 (78.9% v.s. 80.2%). These experiments indicate
that separately encoding the height and width information
is more useful for visual recognition.

Ablation on Permutator: Here, we demonstrate the im-
portance of encoding spatial information along the height
and width dimensions separately and show how weighted
Permutator helps. In Table 7, we summarize the results
under different Permutator settings. Detailed description

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

7

TABLE 7: Ablation on Vision Permutator. “ViP-Small/14 w/o Height” means a ViP-Small/14 model with the height
information encoding part replaced by channel encoding (the bottom branch in Figure 2). A similar meaning holds for
‘ViP-Small/14 w/o Width.” ‘ViP-Small /14 w/ Permute-MLP”’ refers to model with the vanilla Permute-MLP. ‘ViP-Small/14
w/ Cascaded Permute-MLP’ means encoding spatial information along the two spatial dimensions in a cascaded way.

Model Specification Layers Hid. Dim. Params FLOPs Peak Mem. Throughput Top-1 Acc.
Mixer-B/16 (original) 12 768 59M 11.6B 521 - 76.4 (-4.2)
Mixer-B/16 (w/ our training recipe) 12 768 59M 11.6B 521 - 78.5 (-2.1)
ViP-Small/14 (sep. enc. — token-mixing MLP) 18 384 29M 8.3B 296 763 img/s 78.9 (-1.7)
ViP-Small/14 w/o Height Information 18 384 29M 6.9B 288 844 img/s 72.8 (-7.8)
ViP-Small/14 w/o Width Information 18 384 29M 6.9B 288 843 img/s 72.7 (-7.9)
ViP-Small/14 w/ Cascaded Permute-MLP 18 384 29M 6.9B 279 847 img/s 79.8 (-0.8)
ViP-Small/14 w/ Permute-MLP 18 384 29M 6.9B 288 847 img/s 80.2 (-0.4)
ViP-Small/14 w/ Weighted Permute-MLP 18 384 30M 6.9B 300 789 img/s 80.6

TABLE 8: Results of finetuning the pretrained ViP-57 to
downstream datasets: CIFAR10, CIFAR100, and iNaturalist
2021 [49]. We finetune all the models for 60 epochs as in [29].

Models Params (M) CIFAR10 CIFAR100 iNaturalist
ViT/S-16 48.6 97.1 87.1 72.5
T2T-ViT-14 21.5 97.5 88.4 73.0
ViP-Small/7 25.0 98.0 88.4 73.8

on each setting can be found in the caption. We can see
that discarding either height information encoding or width
information encoding leads to worse performance (80.2%
v.s. 72.8% or 72.7%). This demonstrates that encoding both
height and width information is important. In addition, we
can also observe that replacing the vanilla Permute-MLP
with the weighted Permute-MLP can further improve the
performance from 80.2% to 80.6%.

As shown in Figure 2, we encode the token representa-
tions along the height and width dimensions (the top two
branches), separately. An alternative way to embed spatial
information is to merge the top two branches into one, i.e,,
sequentially processing the representations along the two
spatial dimensions as done in axial attention [23]. However,
we empirically found that such a sequential way to encode
spatial information is less efficient than our approach. Ex-
periments show that encoding spatial information along the
horizontal and vertical dimensions sequentially decreases
the performance. As listed in Table 7, this operation reduces
the classification performance from 80.2% to 79.8% (-0.4%).

Transfer Learning: To test the transfer learning ability, we
attempt to run experiments on CIFAR10, CIFAR100, and
iNaturalist 2021 [49] using ViP-Small/7. We use the same
settings as in T2T-ViT. Table 8 lists the results. We can see
that the proposed ViP-Small/7 has achieved equal or even
better results to the recently popular T2T-ViT on CIFAR10,
CIFAR100, and iNaturalist 2021. This indicates that the pro-
posed Vision Permutator performs well in transfer learning
to small classification datasets.

Positional Encoding: The Mixer work has shown that there
is no need to use position embeddings in MLP-like models.
Here, we investigate whether it benefits our Vision Permuta-
tor. We attempt to use position embeddings before the first
Permutator and make them learnable and also attempt to
add relative position embeddings [50]. Experiments show

that both approaches decrease the performance by around
0.3% accuracy. This is because the proposed method has
already embedded positional information while separately
processing the spatial features. As a result, position embed-
dings are not needed in our Vision Permutator.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel MLP-like network archi-
tecture for visual recognition, termed Vision Permutator. We
show that separately encoding the two spatial information
can largely improve the model performance compared to
MLP-like models that deem the two spatial dimensions as
one. Our experiments also give full support of this.

Despite the large improvement over concurrent popu-
lar MLP-like models, a clear downside of the proposed
Permutator is the scaling problem in spatial dimensions,
which also exists in other MLP-like models. As the shapes
of the parameters in fully-connected layers are fixed, it is
impossible to process input images with arbitrary shapes.
This makes MLP-like models difficult to be used in down-
stream tasks with various-sized input images.

Our future work will be continuously put on the devel-
opment of MLP-like models considering the high efficacy in
parallelization. Specifically, we will continue to conquer the
limitations of MLP-like models in processing input images
with arbitrary shapes and their applications in down-stream
tasks, such as object detection and semantic segmentation.

ACKNOWLEDGEMENTS

Ming-Ming Cheng was supported by National Key Re-
search and Development Program of China (Grant No.
2018AAA0100400) and CAAI-Huawei Open Fund.

REFERENCES

[1] L Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai,
T. Unterthiner, J. Yung, D. Keysers,]J. Uszkoreit, M. Lucic ef al.,
“Mlp-mixer: An all-mlp architecture for vision,” arXiv preprint
arXiv:2105.01601, 2021.

[2] H. Touvron, P. Bojanowski, M. Caron, M. Cord, A. El-Nouby,
E. Grave, A. Joulin, G. Synnaeve,]. Verbeek, and H. Jégou,
“Resmlp: Feedforward networks for image classification with
data-efficient training,” arXiv preprint arXiv:2105.03404, 2021.

[3] J. Deng, W. Dong, R. Socher, L.-]. Li, K. Li, and L. Fei-Fei, “Im-
agenet: A large-scale hierarchical image database,” in 2009 IEEE
conference on computer vision and pattern recognition, 2009.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

(4]

(5]

6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” arXiv preprint arXiv:1905.11946,
2019.

A. Brock, S. De, S. L. Smith, and K. Simonyan, “High-performance
large-scale image recognition without normalization,” arXiv
preprint arXiv:2102.06171, 2021.

H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He,
J. Mueller, R. Manmatha et al., “Resnest: Split-attention networks,”
arXiv preprint arXiv:2004.08955, 2020.

Z. Jiang, Q. Hou, L. Yuan, D. Zhou, X. Jin, A. Wang, and
J. Feng, “Token labeling: Training a 85.4% top-1 accuracy vision
transformer with 56m parameters on imagenet,” arXiv preprint
arXiv:2104.10858, 2021.

H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and
H. Jégou, “Going deeper with image transformers,” arXiv preprint
arXiv:2103.17239, 2021.

Z.Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin transformer: Hierarchical vision transformer using shifted
windows,” arXiv preprint arXiv:2103.14030, 2021.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in neural
information processing systems, vol. 25, pp. 1097-1105, 2012.

K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

K. He, X. Zhang, S. Ren, and]. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770-778.

S. Xie, R. Girshick, P. Dolldr, Z. Tu, and K. He, “Aggregated
residual transformations for deep neural networks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017,
pp- 1492-1500.

S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 1-9.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 2818-2826.

J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132-7141.

H. Hu, Z. Zhang, Z. Xie, and S. Lin, “Local relation networks
for image recognition,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 3464-3473.

X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural
networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 7794-7803.

L. Bello, B. Zoph, A. Vaswani, J. Shlens, and Q. V. Le, “Attention
augmented convolutional networks,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 3286-3295.
J.-J. Liu, Q. Hou, M.-M. Cheng, C. Wang, and]. Feng, “Improving
convolutional networks with self-calibrated convolutions,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 10 096-10105.

Y. Chen, Y. Kalantidis, J. Li, S. Yan, and J. Feng, “A" 2-nets: Double
attention networks,” in Advances in neural information processing
systems, 2018, pp. 352-361.

H. Wang, Y. Zhu, B. Green, H. Adam, A. Yuille, and L.-C. Chen,
“Axial-deeplab: Stand-alone axial-attention for panoptic segmen-
tation,” in European Conference on Computer Vision. Springer, 2020,
pp. 108-126.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly
et al., “An image is worth 16x16 words: Transformers for image
recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

D. Zhou, Y. Shi, B. Kang, W. Yu, Z. Jiang, Y. Li, X. Jin, Q. Hou, and
J. Feng, “Refiner: Refining self-attention for vision transformers,”
arXiv preprint arXiv:2106.03714, 2021.

A. Vaswani, P. Ramachandran, A. Srinivas, N. Parmar, B. Hecht-
man, and J. Shlens, “Scaling local self-attention for parameter
efficient visual backbones,” arXiv preprint arXiv:2103.12731, 2021.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

8

H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang,
“Cvt: Introducing convolutions to vision transformers,” arXiv
preprint arXiv:2103.15808, 2021.

K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, “Transformer
in transformer,” arXiv preprint arXiv:2103.00112, 2021.

L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, E. E. Tay, J. Feng, and
S. Yan, “Tokens-to-token vit: Training vision transformers from
scratch on imagenet,” arXiv preprint arXiv:2101.11986, 2021.

D. Zhou, B. Kang, X. Jin, L. Yang, X. Lian, Q. Hou, and J. Feng,
“Deepvit: Towards deeper vision transformer,” arXiv preprint
arXiv:2103.11886, 2021.

J. Ho, N. Kalchbrenner, D. Weissenborn, and T. Salimans, “Ax-
ial attention in multidimensional transformers,” arXiv preprint
arXiv:1912.12180, 2019.

H. Liu, Z. Dai, D. R. So, and Q. V. Le, “Pay attention to mlps,”
arXiv preprint arXiv:2105.08050, 2021.

M.-H. Guo, Z-N. Liu, T-J. Mu, and S.-M. Hu, “Beyond self-
attention: External attention using two linear layers for visual
tasks,” arXiv preprint arXiv:2105.02358, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, pp. 5998—
6008, 2017.

H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distilla-
tion through attention,” arXiv preprint arXiv:2012.12877, 2020.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch:
An imperative style, high-performance deep learning library,” in
Advances in neural information processing systems, 2019, pp. 8026—
8037.

R. Wightman, “Pytorch image models,” https://github.com/
rwightman/pytorch-image-models, 2019.

I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” arXiv preprint arXiv:1711.05101, 2017.

G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in European conference on computer
vision. Springer, 2016, pp. 646—661.

Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random
erasing data augmentation,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 13001-13 008.

E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment:
Practical automated data augmentation with a reduced search
space,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2020, pp. 702-703.

H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” arXiv preprint
arXiv:1710.09412, 2017.

S. Yun, D. Han, S. J. Oh, S. Chun,]J. Choe, and Y. Yoo, “Cutmix:
Regularization strategy to train strong classifiers with localizable
features,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 6023-6032.

L. Beyer, O. J. Hénaff, A. Kolesnikov, X. Zhai, and A. v. d. Oord,
“Are we done with imagenet?” arXiv preprint arXiv:2006.07159,
2020.

B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do imagenet
classifiers generalize to imagenet?” in International Conference on
Machine Learning. PMLR, 2019, pp. 5389-5400.

L. Yuan, Q. Hou, Z. Jiang, J. Feng, and S. Yan, “Volo: Vision
outlooker for visual recognition,” 2021.

T. He, Z. Zhang, H. Zhang, Z. Zhang,]J. Xie, and M. Li, “Bag
of tricks for image classification with convolutional neural net-
works,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 558-567.

I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollar,
“Designing network design spaces,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
10428-10436.

G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard,
H. Adam, P. Perona, and S. Belongie, “The inaturalist species
classification and detection dataset,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 8769—
8778.

A. Srinivas, T.-Y. Lin, N. Parmar,]J. Shlens, P. Abbeel, and
A. Vaswani, “Bottleneck transformers for visual recognition,”
arXiv preprint arXiv:2101.11605, 2021.

