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Abstract

尽管扩散概率模型（DPMs）在图像合成方面取

得了成功，但我们观察到它通常缺乏上下文推理能

力，无法学习图像中物体部分之间的关系，从而导

致学习过程缓慢。为了解决这个问题，我们提出了

一种掩蔽扩散Transformer（MDT），引入了一个掩蔽

隐空间建模方案，明确增强了DPMs在图像中物体语

义部分之间上下文关系学习的能力。在训练过程中，

MDT在隐空间上操作，以掩蔽某些标记。然后，设

计了一个非对称的掩蔽扩散Transformer，从未掩蔽

的标记中预测被掩蔽的标记，同时保持扩散生成过

程。我们的MDT能够从不完整的上下文输入中重建

图像的完整信息，从而使其能够学习图像标记之间

的关联关系。实验结果表明，MDT在图像合成方面

取得了优越的性能，例如在ImageNet数据集上获得

了新的SoTA（State-of-the-Art）FID分数，并且比之

前的SoTA DiT具有约3倍的更快学习速度。源代码已

在以下链接发布：https://github.com/sail-

sg/MDT。

1.介绍

扩散概率模型（DPMs） [10, 35]已经成为近期

图像级生成模型方面的先驱，在很多情况下超越了

之前的最先进生成对抗网络（GANs [4,16,34,51]。此

外，DPMs还在许多其他应用中展现了成功，包括文

本到图像生成 [35]和语音生成 [22]。DPMs采用反向
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图 1. 上半部分：展示了MDT/DiT [32]随训练步骤的可

视化示例。下半部分：对比了DiT和MDT在使用8个A100

GPU进行训练的过程中的学习进展。MDT的学习速度大约

是DiT的3倍，同时获得了更优越的FID分数。

的随机微分方程（SDE）来逐步将高斯噪声通过多

个时间步骤逐渐映射成样本，每个步骤对应于一次

网络评估。在实际操作中，由于SDE需要数千个时

间步骤才能收敛，生成一个样本是非常耗时的。为

了解决这个问题，各种生成样本策略 [19,29,38]已经

被提出，以加速推理速度。然而，改善DPMs的训练

速度尚未得到充分探索，但却备受期望。DPMs的训

练也不可避免地需要大量的时间步骤来确保SDE的

收敛，使其在计算上非常昂贵，尤其是在当前使用

大规模模型 [10, 32]和数据 [8, 13, 41]来提高生成性

https://github.com/sail-sg/MDT
https://github.com/sail-sg/MDT


能的时代。

在这项工作中，我们首先观察到DPMs通常难以

学习图像中物体部分之间的关联关系，导致训练过

程缓慢。具体而言，在图 Fig. 1 所示的例子中，使

用DiT [32]作为骨干网络的经典DPM，DDPM [19]，

在训练的第5万个步骤中已经学会了狗的整体形状，

然后在第20万个步骤中逐渐学会了其中的一个眼睛

和嘴巴，但仍然错过了另一个眼睛。而且，甚至在

训练的前30万个步骤中，两只耳朵的相对位置也不

是非常准确。这个学习过程表明，DPMs独立地学习

每个语义部分，未能学习到语义部分之间的关联关

系。该现象的原因在于，DPMs通过最小化每像素预

测损失来最大化真实数据的对数概率，而忽视了图

像中物体部分之间的关联关系，从而导致了它们的

学习进展缓慢。

受到上述观察的启发，我们提出了一种有效

的掩蔽扩散Transformer（MDT），以提高DPMs的

训练效率。 MDT提出了一种专门设计用于基

于Transformer的DPMs的掩蔽隐空间建模方案，以

明确增强上下文学习能力，并改善图像中语义部分

之间的关联关系学习。具体来说，类似于 [32, 35]，

MDT在隐空间中执行扩散过程，以节省计算成本。

MDT掩蔽了某些图像标记，并设计了一个非对称

的扩散Transformer结构，以扩散生成的方式从未

掩蔽的标记中预测被掩蔽的标记。为此，这个非

对称结构包含一个编码器、一个侧插值器和一个

解码器。编码器和解码器是通过修改DiT [32]中

的Transformer块，在其中插入全局和局部的标记位

置信息得到的，从而有助于预测被遮蔽的标记。编

码器在训练期间仅处理未掩蔽的标记，而在推理期

间处理所有标记，因为推理时没有掩膜。因此，为

了确保解码器始终在训练预测或推理生成时处理所

有标记，由一个小型网络实现的侧插值器在训练期

间利用编码器的输出预测被掩蔽的标记，在推理中，

侧插值器则被移除。

通过这种掩蔽隐空间建模方案，我们的MDT能

够从上下文不完整的输入中重建图像的完整信息，

学习图像中语义部分之间的关联关系。如图 Fig. 1

所示，MDT通常在几乎同一的训练步骤中生成了狗

图 2. MDT-XL/2生成的图像的可视化结果。

的两只眼睛（和两只耳朵），表明它通过利用掩蔽

隐空间建模方案正确学习了图像的关联语义。相比

之下，DiT [32]难以轻松合成具有正确语义关系的

狗。这个比较显示了MDT相比于DiT优越的关系建

模和更快的学习能力。实验结果表明，MDT在图像

合成任务上取得了优越的性能，并在ImageNet数据

集上的类条件图像合成任务中创造了新的SoTA，如

图 Fig. 2和表 Tab. 1所示。MDT在训练过程中的学

习进展也比SoTA的DPMs（即DIT）快了约3倍，如

图 Fig. 1和表 Tab. 2所示。我们希望我们的工作能够

激发更多关于如何通过统一的表示学习来加速扩散

训练过程的研究。

主要贡献总结如下：

• 通过引入一种高效的掩蔽隐空间建模机制，我

们提出了一种掩蔽扩散Transformer方法，它首

次显著增强了DPMs的上下文学习能力。

• 实验结果表明，我们的方法更好地合成了图像，

同时比SOTA使用了更少的训练时间。

2.相关工作

2.1.扩散概率模型

扩散概率模型（DPM） [10, 19]，也被称为基
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图 3.掩蔽扩散Transformer（MDT）的总体框架。实线/虚线

表示每个时间步的训练/推理过程。掩蔽和侧插值器仅在训练

期间使用，并在推理期间移除。

于分数的模型 [45, 46]，是一种有竞争力的图像合

成方法。 DPMs首先使用不断演化的随机微分方程

（SDE）逐步将高斯噪声添加到真实数据中，将复

杂的数据分布转化为高斯分布。然后，它采用反向

的SDE，经过多个步骤，逐步将高斯噪声映射成为

样本。在每个生成样本时间步骤中，一个也被称为

分数函数 [47]的网络被用于沿着对数概率的梯度生

成样本。扩散模型的迭代性质可能导致高训练和推

断成本。为了降低推理成本，高效的采样策略 [19,

21,29,38,43]、隐空间扩散 [35,48]以及多分辨率级联

生成 [20]已经被提出。此外，一些训练方案 [2,11]被

引入来改进扩散模型的训练，例如近似最大似然训

练 [25, 31, 44]，训练损失加权 [23, 24]。与这些优化

扩散训练过程的方法不同，我们发现扩散模型在上

下文建模能力方面存在不足。为了解决这个问题，

我们提出了掩蔽隐空间建模方案作为一种补充方法，

以增强扩散模型的上下文表示能力，这与现有的扩

散训练方案是互不相关的。

2.2.扩散模型的网络结构

通过空间自注意力 [39, 49]和组归一化 [52]进

行增强的类似UNet的网络结构 [36]，被首先用于

扩散模型 [19]。在 [10]中提出了一些设计改进，例

如增加更多的注意力头、BigGAN [4]残差块和自适

应组归一化，以进一步增强UNet的生成能力。最

近，由于Transformer网络的广泛适用性，一些研

究尝试将视觉Transformer（ViT）结构用于扩散模

型 [1, 32, 53]。 GenViT [53]证明了ViT可以进行图像

生成，但性能较UNet略逊一筹。U-ViT [1]通过添加

长跳连接和卷积层改进了ViT，在性能上与UNet相

媲美。DiT [32]验证了ViT在大模型尺寸和特征分

辨率上的扩展能力。我们的MDT与这些扩散网络

互不相关，因为它专注于上下文表示学习。此外，

MDT中的位置感知设计揭示了掩蔽隐空间建模方案

从更强的扩散网络中获益。我们将进一步探索如何

在MDT中释放这些网络的潜力。

2.3.掩蔽建模

掩蔽建模在识别学习 [9, 14, 17] 和生成建模

[7, 33] 领域都被证明是有效的。在自然语言处理

（NLP）领域，掩蔽建模首先被引入用于表示预训

练 [9, 33] 和语言生成 [5]。随后，它也被证明在视

觉识别 [3] 和生成 [7, 15, 54] 任务中是可行的。在

视觉识别中，利用掩蔽建模的预训练方案可以实

现良好的表示质量 [55]、可扩展性 [17] 和更快的

收敛速度 [14]。在生成建模中，继NLP中的双向生

成建模之后，MaskGIT [7] 和 MUSE [6] 使用了掩

蔽生成Transformer来预测随机遮蔽的图像标记以进

行图像生成。类似地，VQ-Diffusion [15] 提出了一

种遮蔽替换扩散策略来生成图像。相比之下，我们

的MDT旨在通过掩蔽隐空间建模来增强去噪扩散变

换器 [32]的上下文表示。通过在推理过程中保持扩

散过程，它保留了去噪扩散模型的细节细化能力。

为了确保MDT中的掩蔽隐空间建模专注于表示学习

而不是重建，我们在掩蔽建模训练中提出了一个不

对称的结构。额外的好处是，与掩蔽生成模型相比，

它使训练成本更低，因为它在训练中跳过了掩蔽的

区域，而不是用掩蔽标记替掩蔽的输入区域。

3.掩蔽扩散Transformer

对扩散概率模型的重新审视 对于扩散概率模

型 [10, 42]，例如DDPM [19]和DDIM [43]，训练包括

前向加噪过程和反向去噪过程。在前向加噪过程中，

通过离散的SDE方程 q(xt, x0) =
√
ᾱtx0 + ϵ

√
1− ᾱt，

将高斯噪声ϵ ∼ N (0, I)逐步添加到真实样本x0，其

中ᾱt表示噪声大小。如果时间步长t很大，xt将成



为高斯噪声。类似地，反向去噪过程是一个逐步

将高斯噪声映射成为样本的离散SDE。在每个时

间步长，给定xt，通过网络可以预测下一个反向步

骤 pθ(xt− 1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))。

该 网 络 通 过 优 化pθ(x0)的 变 分 下 界 Lvlb 进

行训练 [42]， 其中 Lvlb = − log pθ(x0|x1) +∑
t DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))。

根据 [31, 32],网络被通过优化对数概率pθ(x0)的

变分下界Lvlb而被训练 [42]。在推理过程中，它可以

采样一个高斯噪声，然后逐步地反向映射到一个样

本 x0。

与 [31, 32]相同，我们训练需要类别标签 c作为

条件的扩散模型，即 pθ(xt−1|xt, c)。在我们的实验

中，默认使用类条件的图像生成。

3.1.概述

如Fig. 1所示，用DiT做骨干网络的DPM由于

在图像中的语义关联学习缓慢，导致训练收敛

较慢。为了缓解这个问题，我们提出了掩蔽扩

散Transformer（MDT），引入了一种掩蔽隐空间建

模方案，以明确增强上下文学习能力，提高在图像

中建立不同语义之间关联的能力。为此，如Fig. 3所

示，MDT包括：1）隐空间掩蔽操作，用于在隐空

间中对输入图像进行掩蔽。2）一个非对称掩蔽扩

散Transformer结构，执行与DPMs相同的基础扩散过

程，但输入为掩蔽后的图像。为了减少计算成本，

MDT遵循LatentDiffusion [35]，在隐空间而不是原始

像素空间中进行生成学习。

在训练阶段，MDT首先使用预训练的VAE编

码器 [35]将图像编码为隐空间中的表示。然后，

MDT向图像隐空间表示中加入高斯噪声。MDT中

的隐空间掩蔽操作随后将产生的带有噪声的隐

空间表示划分为一系列标记，并对某些标记进行

掩蔽。剩余的未掩蔽标记被馈送到非对称掩蔽扩

散Transformer中，它包含编码器、侧插值器和解码

器，用于从未掩蔽的标记中预测掩蔽的标记。在

推理过程中，MDT使用额外的位置嵌入替换侧插

值器。MDT将高斯噪声的隐空间表示作为输入，

生成去噪的隐空间表示，然后将其传递给预训练

的VAE解码器 [35]进行图像生成。

上述的训练阶段中的掩蔽隐空间建模方案迫使

扩散模型从其上下文不完整的输入中重构图像的完

整信息。从而，模型被鼓励学习图像隐空间标记之

间的关系，特别是图像中语义之间的关联关系。例

如，如Fig. 3所示，模型应首先正确理解狗图像中

的小图像部分（标记）之间的关联关系。然后，它

应该通过使用其他未被掩蔽的标记作为上下文信

息，来生成掩蔽的“眼睛”标记。此外，Fig. 1显示，

MDT通常会以几乎相似的速度学习生成图像的相关

语义，比如几乎在同一训练步骤中生成狗的两只眼

睛（两只耳朵）。而DiT [32]（带有Transformer骨干

网络的DDPM）开始只学习生成一只眼睛（一只耳

朵），然后在大约10万次训练步骤后学习生成另一

只眼睛（耳朵）。这证明了MDT在图像语义的相关

关系学习方面优于DiT的学习能力。

在接下来的部分中，我们将介绍MDT的两个关

键组成部分：1）隐空间掩蔽操作，和2）非对称掩

蔽扩散Transformer结构。

3.2.隐空间掩蔽

在掩蔽扩散Transformer（MDT）中，类似于隐

空间扩散模型（LDM） [35]，我们将生成学习从原

始像素空间转移到隐空间中，以减少计算成本。接

下来，我们将简要回顾一下LDM，然后介绍我们在

隐空间输入上的隐空间掩蔽操作。

隐空间扩散模型（LDM）。 LDM使用一个预训练

的VAE编码器 E来将图像 v ∈ R3×H×W 编码为隐空

间表示 z = E(v) ∈ Rc×h×w。它在前向过程中逐渐

向 z 添加噪声，然后在反向过程中对其进行去噪以

预测 z。最后，LDM使用一个预训练的VAE解码器

D将 z 解码为高分辨率图像 v = D(z)。在训练和推

理过程中，VAE编码器和解码器都保持固定。由于

h和 w 比 H 和W 较小，因此在低分辨率潜在空间

中进行扩散过程比在像素空间中更高效。

隐空间掩蔽操作。现在我们介绍在隐空间输入上的

掩蔽方案。在训练过程中，我们首先向图像的隐空

间表示 z添加高斯噪声。然后，遵循 [32]，我们将带



Rel. bias

L
in

ea
r

×× ++ +

F
F

N

L
in

ea
r

Q

K

V

Block × 1

Mask 

token

Unmasked 

tokens

Masked 

tokens

Pos. embed.

+

+

+

Encoder

Block ×N1

Condition, Step

Pos. embed.Pos. embed.

+

Side-

Interpolater

+
Decoder

Block ×N2

图 4. MDT中的非对称掩蔽扩散Transformer。我们通过添加

侧插值器、局部相对位置偏移和可学习的全局位置嵌入，

对DiT [32]进行了修改。为了简单起见，我们省略了条件化

方案。

有噪声的嵌入 z 划分为一系列大小为 p × p的标记，

并将它们连接成一个矩阵 u ∈ Rd×N，其中 d是通道

数，N 是标记数量。接下来，我们随机掩蔽一定比

例 ρ的标记，并将剩余的标记连接成 û ∈ Rd×N̂，其

中 N̂ = ρN。因此，我们可以建立一个二进制掩码

M ∈ RN，其中 1（0）表示掩蔽（未掩蔽）的标记。

最后，我们将标记 û输入到我们的扩散模型进行处

理。我们只使用标记 û，有两点原因。

1）模型应专注于学习语义，而不是预测掩蔽的

标记。如 Sec. 4.3中所示，与像 [3,6,7]那样用可学习

的掩蔽标记替换被掩蔽的标记并处理所有标记相比，

它实现了更好的性能；2）与处理所有 N 个标记相

比，它节省了训练成本。

3.3.非对称掩蔽扩散Transformer

我们引入了非对称掩蔽扩散Transformer，用于

掩蔽隐空间建模和扩散过程的联合训练。如Fig. 4所

示，它由三个组件组成：编码器、侧插值器和解码

器，下面将详细描述每个组件。

位置感知编码器和解码器。在MDT中，从未被掩蔽

的标记中预测掩蔽的隐空间标记需要所有标记的位

置关系。为了增强模型中的位置信息，我们提出了

一个位置感知编码器和解码器，有助于学习掩蔽的

隐空间标记。具体而言，编码器和解码器通过添加

两种类型的标记位置信息来修改标准的DiT块，并

且各自包含了 N1和 N2个定制的块。

首先，如Fig. 4所示，编码器将常规的可学习的

全局位置嵌入添加到加噪声的隐空间嵌入输入中。

类似地，在训练和推理阶段，解码器也将可学习位

置嵌入引入到其输入中，但在两个阶段中采用不同

的方法。在训练过程中，侧插值器已经使用了下面

介绍的可学习全局位置嵌入，这可以将全局位置信

息传递给解码器。在推理过程中，由于侧插值器被

丢弃（见下文），解码器显式地将位置嵌入添加到其

输入中，以增强位置信息。

其次，如Fig. 4所示，在计算自注意力 [50]的注

意分数时，编码器和解码器在每个块的每个头部中

添加了局部相对位置偏移 [27]：

Attention(Q,K, V ) = Softmax
(
QK⊤
√
dk

+Br

)
V,

其中 Q、K 和 V 分别表示自注意模块中的查询、键

和值，dk 是键的维度， Br ∈ RN×N 是相对位置偏

移，通过第 i 个位置与其他位置之间的相对位置差

异选择。 Br 在训练过程中被更新。局部相对位置

偏移有助于捕捉标记之间的相对关系，从而促进掩

蔽隐空间建模。

编码器接受我们的隐空间掩蔽操作提供的未被

掩蔽的噪声隐空间嵌入，并在训练/推理期间将其输

出馈送到侧插值器/解码器中。对于解码器，其输入

为侧插值器的输出（训练时）或编码器输出和可学

习位置嵌入的组合（推理时）。由于在训练过程中，

编码器和解码器分别处理未被掩蔽的标记和全部的

标记，我们将我们的模型称为“非对称”模型。

侧插值器。如Fig. 3所示，在训练期间，为了提高效



率和性能，编码器仅处理未被掩蔽的标记 û。然而，

在推理阶段，由于没有掩膜，编码器处理所有标记

u。这意味着在训练和推理过程中，至少在标记数量

上，编码器的输出（即解码器的输入）存在很大差

异。为了确保解码器始终能够在训练预测或推理生

成时处理所有标记，侧插值器由一个小型网络实现，

在训练期间从编码器输出中预测掩蔽的标记，并在

推理过程中被移除。

在训练阶段，编码器处理未掩蔽的标记，以获

取它的输出标记嵌入 q̂ ∈ Rd×N̂。然后，如Fig. 3所

示，侧插值器首先使用共享的可学习掩蔽标记填充

由第 3.2节中定义的掩膜M 所指示的掩蔽位置，同

时添加一个可学习的位置嵌入来得到一个嵌入 q ∈
Rd×N。接下来，我们使用一个基本编码器块处理 q

以预测经插值的嵌入 k̂。 k̂ 中的标记表示预测的标

记。最后，我们使用掩蔽的捷径连接将预测 k̂ 和 q

结合为 k = M · q + (1 − M) · k̂。总之，对于掩蔽
的标记，我们使用侧插值器的预测。对于未掩蔽的

标记，我们仍然使用 q 中的相应标记。这可以实现

以下效果： 1）增强训练和推理阶段之间的一致性；

2）消除解码器中的掩蔽重建过程。

由于在推理阶段没有掩膜，侧插值器被一个位

置嵌入操作替代，该操作将在训练期间学习到的侧

插值器的可学习位置嵌入添加到输入中。这确保解

码器始终处理所有标记，并在训练预测或推理生成

时使用相同的可学习位置嵌入，从而获得更好的图

像生成性能。

3.4.训练过程

在训练过程中，我们同时将完整的隐空间嵌入

u 和掩蔽的隐空间嵌入 û 都输入到扩散模型中。我

们观察到，仅使用掩蔽的隐空间嵌入会使模型过于

关注掩蔽区域的重建，而忽视了扩散训练。完整/掩

蔽的隐空间输入是独立发送到网络的，它们的训练

目标都优化了变分下界，就像在 [31, 32]中一样。由

于这种非对称的掩蔽结构，使用掩蔽的隐空间嵌入

所需的额外成本很小。这也可以从 Fig. 1中证明，它

显示了 MDT 在总的训练小时数方面仍然比之前的

SoTA DiT实现了大约 3倍快的学习进度。

Method Cost(Iter×BS) FID↓ sFID↓ IS↑ Prec.↑Rec.↑

DCTrans. [30] - 36.51 - - 0.36 0.67

VQVAE-2 [34] - 31.11 - - 0.36 0.57

VQGAN [12] - 15.78 78.3 - - -

BigGAN-deep [4] - 6.95 7.36 171.4 0.87 0.28

StyleGAN [40] - 2.30 4.02 265.12 0.78 0.53

Impr. DDPM [31] - 12.26 - - 0.70 0.62

MaskGIT [7] 1387k×256 6.18 - 182.1 0.80 0.51

CDM [20] - 4.88 - 158.71 - -

ADM [10] 1980k×256 10.94 6.02 100.98 0.69 0.63

LDM-8 [35] 4800k×64 15.51 - 79.03 0.65 0.63

LDM-4 178k×1200 10.56 - 103.49 0.71 0.62

DiT-XL/2 [32] 7000k×256 9.62 6.85 121.50 0.67 0.67

MDT 2500k×256 7.41 4.95 121.22 0.72 0.64

MDT 3500k×256 6.46 4.92 131.70 0.72 0.63

MDT 6500k×256 6.23 5.23 143.02 0.71 0.65

ADM-G [10] 1980k×256 4.59 5.25 186.70 0.82 0.52

ADM-G, U 1980k×256 3.94 6.14 215.84 0.83 0.53

LDM-8-G [35] 4800k×64 7.76 - 209.52 0.84 0.35

LDM-4-G 178k×1200 3.60 - 247.67 0.87 0.48

U-ViT-G [1] 300k×1024 3.40 - - - -

DiT-XL/2-G [32] 7000k×256 2.27 4.60 278.24 0.83 0.57

MDT-G 2500k×256 2.15 4.52 249.27 0.82 0.58

MDT-G 3500k×256 2.02 4.46 263.77 0.82 0.60

MDT-G 6500k×256 1.79 4.57 283.01 0.81 0.61

表 1.在使用 ImageNet 256x256数据集进行的类条件图像生成

任务中，与现有方法进行的比较结果。-G表示使用无分类器

指导的结果。MDT-XL/2模型的结果被给出用于比较。比较

的结果是从他们的论文中获取的。

4.实验

4.1.实现细节

我们给出MDT的实现细节，包括模型结构、训

练细节、和评估指标。

模型架构。我们遵循 DiT [32]的设置，来确定MDT

的扩散Transformer的总块数（即 N1 +N2）、标记数

和通道数。 DiT 表明，在使用更小的区域尺寸时，

生成性能更强，因此我们默认使用区域尺寸 p=2，

记为 MDT-/2。此外，我们还遵循 DiT的参数设置，

设计了适用于MDT的小型、基准和超大型模型，分



别记为 MDT-S/B/XL。与 LatentDiffusion [35]和 DiT

相同，MDT 默认采用 Stable Diffusion 提供的固定

VAE1 来对图像/隐空间标记进行编码/解码。 VAE编

码器的下采样比率为 1/8，特征通道维度为 4，也就

是说，一个尺寸为 256×256×3的图像会被编码为尺

寸为 32×32×4的隐空间嵌入。

训练细节。 沿用 [32] 的方法，所有的模型都是在

ImageNet [8]数据集上进行训练的，使用了 AdamW

[28]优化器，学习率为 3e-4，批大小为 256，不使用

权重衰减（weight decay），图像分辨率为 256×256。

我们设置了掩蔽比例0.3，N2 = 2。遵循 DiT中的训

练设置，我们将训练的最大步数设定为 1000，使用

线性方差调度，范围从10−4 到 2 × 10−2。其他设置

也与 DiT保持一致。

评估指标。 我们使用常用的评估指标来评估模型，

包括 Fre’chet Inception Distance (FID) [18]、sFID [30]、

Inception Score (IS) [37]、准确率和召回率 [26]。其

中，FID 被作为主要指标，因为它能够衡量多样性

和保真度，sFID在空间级别上进行了改进。作为补

充，IS和准确率用于衡量保真度，而召回率用于衡

量多样性。为了进行公平比较，我们遵循 [32]的方

法，使用 ADM [10]中的 TensorFlow评估套件，并

报告使用 250个 DDPM采样步骤的 FID-50K。除非

另有说明，我们报告的 FID分数均不包括无分类器

引导的结果 [21]。

4.2.比较结果

性能对比。 Tab. 2对我们的MDT与 SoTA DiT在不

同模型尺寸下进行了比较。很明显，MDT在所有模

型规模上都能以更少的训练成本实现更高的 FID分

数。MDT的参数和推理成本与 DiT相似，因为正如

在 Sec. 3.1中介绍的那样，MDT中额外的模块可以

忽略。对于小模型，训练 300k步的MDT-S/2在 FID

上远远优于训练 400k步的DiT-S/2（57.01对 68.40）。

更重要的是，训练 2000k步的MDT-S/2在类似的计

算预算下，实现了与使用更大模型 DiT-B/2 相当的

1该模型可在 https://huggingface.co/stabilityai/sd-

vae-ft-mse下载。

Method Image Res. Training Steps (k) FID-50K↓

DiT-S/2 256×256 400 68.40

MDT-S/2 256×256 300 57.01

MDT-S/2 256×256 400 53.46

MDT-S/2 256×256 2000 44.14

MDT-S/2 256×256 3500 41.37

DiT-B/2 256×256 400 43.47

MDT-B/2 256×256 400 34.33

MDT-B/2 256×256 3500 20.45

DiT-XL/2 256×256 400 19.47

DiT-XL/2 256×256 2352 10.67

DiT-XL/2 256×256 7000 9.62

MDT-XL/2 256×256 400 16.42

MDT-XL/2 256×256 1300 9.60
MDT-XL/2 256×256 3500 6.65

表 2.在 ImageNet 256×256数据集上，对 DiT [32]和MDT在

不同模型大小和训练步骤下的比较。DiT 的结果来自于 DiT

的报告结果。

性能。对于最大的模型，训练 1300k步的MDT-XL/2

在 FID 上优于训练 7000k 步的 DiT-XL/2（9.60 对

9.62），并且实现了大约 5倍的更快训练进展。

我们还在Tab. 1中将MDT的类条件图像生成性

能与现有方法进行了比较。为了与 DiT进行公平比

较，我们在这个表格中也使用了VAE解码器的 EMA

权重。在类条件设置下，MDT在一半的训练迭代次

数内就远远优于 DiT，例如在 FID上为 6.83对 9.62。

根据之前的研究 [1, 10, 32, 35]，我们利用了改进的无

分类器引导 [21]，并带有幂次余弦权重缩放，以在

类条件样本生成中平衡精度和召回率。MDT在类条

件图像生成方面的性能优于之前的 SoTA DiT以及其

他方法，其 FID分数为 1.81，在类条件图像生成方

面创造了新的 SoTA。与 DiT类似，我们从未观察到

模型在继续训练时的 FID分数饱和。

收敛速度。 Fig. 1 在不同的训练步骤和训练时间下

比较了 DiT/S-2 基准模型和 MDT/S-2 的性能，在

8×A100 GPU上进行了测试。由于具有更强的上下

文学习能力，MDT实现了更好的性能，同时生成学

习的速度更快。在训练步骤和训练时间方面，MDT

https://huggingface.co/stabilityai/sd-vae-ft-mse
https://huggingface.co/stabilityai/sd-vae-ft-mse


Mask Ratio FID↓ sFID↓ IS↑ Precision↑ Recall↑

0.1 51.60 10.23 26.65 0.44 0.60

0.2 51.44 10.09 26.75 0.44 0.58

0.3 50.26 10.08 27.61 0.45 0.60

0.4 50.88 10.21 27.44 0.45 0.60

0.5 51.57 9.92 27.14 0.44 0.60

0.6 53.20 10.36 26.55 0.44 0.61

0.7 52.90 10.03 26.51 0.44 0.61

0.8 53.73 10.15 25.55 0.43 0.61

表 3. 不同掩蔽比率的影响。模型是进行 60 万次迭代训

练MDT-S/2。

Decoder pos. FID↓ sFID↓ IS↑ Precision↑ Recall↑

Last0 51.05 9.97 27.31 0.44 0.60

Last1 50.96 9.90 27.63 0.45 0.60

Last2 50.26 10.08 27.61 0.45 0.60
Last4 51.67 10.12 26.91 0.45 0.60

Last6 52.64 10.36 26.46 0.44 0.60

表 4.侧插值器位置的影响。MDT-S/2模型包含 12个块，经

过 600k次迭代训练。

的学习速度大约是 DiT的 3倍。例如，经过约 33小

时的训练（40万步），MDT-S/2达到了比经过约 100

小时训练（150 万步）的DiT-S/2更优越的性能，这

表明上下文学习对于扩散模型更快速的生成学习至

关重要。

4.3.消融实验

在这一部分，我们进行了消融实验以验证MDT

的设计。我们报告了MDT-S/2模型的结果，并使用

FID-50k作为评价指标，除非另有说明。

掩蔽比例。掩蔽比例决定了训练过程中可以处理的

输入区域数量。我们在Tab. 3中比较了使用不同掩蔽

比例的结果。对于MDT-S/2模型来说，最佳的掩蔽

比例是 30%，这与用于识别模型的掩蔽比例有很大

不同，例如MAE [17]中的掩蔽比例是 75%。我们认

为图像生成需要从更多的区域中学习更多细节，以

实现高质量的合成，而识别模型仅需要从最基本的

区域中推断语义。

侧插值器位置。为了满足扩散模型的高质量图像生

成要求，侧插值器放置在网络的中间，而不是像在

识别模型 [3, 17]中放置在网络的末尾。Tab. 4展示了

将侧插值器放置在有12个块的MDT-S模型的不同位

置的比较。结果表明，将侧插值器放置在最后两个

块之前可以获得最佳的FID得分，而将其像识别模

型那样放置在网络末端会降低性能。将侧插值器放

置在网络的早期阶段也会损害性能，这表明掩蔽隐

空间建模对于扩散模型的大多数阶段都是有益的。

非对称与对称掩蔽结构对比。不同于利用掩蔽机

制生成图像的掩蔽生成工作，例如 MaskGIT [7]、

MUSE [6] 等，MDT专注于通过掩蔽隐空间建模来

提高扩散模型的上下文学习能力。因此，我们采用

非对称结构，仅在扩散模型编码器中处理未掩蔽的

标记。我们比较了 MDT 中的非对称结构和处理带

有用可学习的掩蔽标记代替被掩蔽的标记的完整输

入的对称结构 [7]。如Tab. 5a所示，MDT 中的非对

称结构的 FID为 50.26，优于对称结构的 FID 51.56。

非对称结构进一步降低了训练成本，并允许扩散模

型专注于学习上下文信息，而不是重建掩蔽标记。

侧插值器的影响。MDT中的侧插值器预测被掩蔽的

标记，使得扩散模型能够学习更多的语义信息，并

在训练和推理期间保持解码器输入的一致性。我们

在Tab. 5b中比较了使用/不使用侧插值器的性能，发

现使用side-interpolater可以获得1.34的FID提升，证

明了它的有效性。

在侧插值器中使用掩蔽的捷径连接。 掩蔽的捷径

连接确保了侧插值器从未被掩蔽的标记中只预测

被掩蔽的标记。 Tab. 5c显示，使用掩蔽的捷径连

接将FID从50.91提高到50.26，这表明限制侧插值器

只预测被掩蔽的标记有助于扩散模型实现更强的性

能。

完整和掩蔽的隐空间标记。在 MDT 中，完整的和

掩蔽的隐空间嵌入都在训练过程中被馈送到扩散

模型中。与之相比，如Tab. 5d所示，我们提供了仅

使用完整或掩蔽的隐空间嵌入进行训练的结果，其

中计算成本是对齐的，以进行公平比较。使用完整

和掩蔽的隐空间嵌入共同用于训练明显优于另两个



Asymmetric stru. FID-50k↓

× 51.56

✓ 50.26

(a)非对称掩蔽结构的影响。

Side-interpolater FID-50k↓

× 51.60

✓ 50.26

(b)侧插值器的影响。

Masked shortcut FID-50k↓

× 50.91

✓ 50.26

(c)掩蔽的捷径连接的影响。

Latent type FID-50k↓

Full+Masked 50.26
Full 52.30

Masked 76.63

(d)在成本对齐的情况下使用完整/掩蔽的隐表

示。

Sup. parts FID-50k↓

All 50.26

Masked 58.35

(e)受监督的标记部分。

Number FID-50k↓

1 50.26
2 51.77

3 51.96

(f)侧插值器中的块数量。

IS Pos. embed. FID-50k↓

× 51.58

✓ 50.26

(g)侧插值器中位置嵌入的影响。

Learnable pos. FID-50k↓

× 50.80

✓ 50.26

(h)可学习的位置嵌入的影响。

Relative pos. bias FID-50k↓

× 53.56

✓ 50.26

(i)相对位置偏移的影响。

表 5. MDT-S/2上的消融实验。模型经过600k次迭代的训练。

竞争方案。而仅使用掩蔽的隐空间嵌入导致收敛较

慢，我们将其归因于训练和推理的不一致性，因为

在 MDT 中，推理是一个扩散过程，而不是掩蔽重

建过程。

在所有标记上的损失。默认情况下，我们在掩蔽和

未掩蔽的隐空间嵌入上计算损失。相比之下，用于

识别模型的掩蔽建模通常在掩蔽的标记上计算损

失 [3,17]。Tab. 5e显示，计算所有标记的损失要比计

算掩蔽的标记的损失好得多。我们认为这是因为生

成模型需要更强的区域一致性，因为细节对于高质

量的图像合成至关重要，而识别模型不需要。

侧插值器中的块数。我们在Tab. 5f中比较了侧插值

器中不同块数量的性能。默认设置下的1个块获得了

最佳性能，随着块数的增加，FID值变差。这个结果

与我们的动机一致，即侧插值器不应该学习太多关

于除了插值掩蔽表示之外的信息。

位置感知增强。为了进一步释放掩蔽隐空间建模

的潜力，我们通过更强的位置感知能力，即可学

习的位置嵌入和基本块中的相对位置偏移，增强

了DiT基准模型。Tab. 5g显示，侧插值器中的位置

嵌入将FID从51.58降低到50.26，表明位置嵌入对

于侧插值器至关重要。此外，启用位置嵌入的训

练也在Tab. 5h中表现出在FID方面的收益。在Tab.

5i中，基本块中的相对位置偏移将FID从53.56降低

到50.26，显示出相对位置建模能力对于扩散模型获

得上下文表示能力和生成高质量图像至关重要。因

此，扩散模型结构中的位置感知能力需要与掩蔽隐

空间建模相伴而行，并对提高性能发挥关键作用。

5.结论

本研究提出了一种掩蔽扩散Transformer，以

增强上下文表示，并改善DPMs中图像语义之间

的关系学习。我们将高效的掩蔽隐空间建模方案

引入DPMs，并相应地设计了一个非对称的掩蔽

扩散Transformer结构。实验证明，我们的掩蔽扩

散Transformer在图像合成方面表现出更高的性能，

并且在训练过程中极大地提升了了学习进度，从而

在ImageNet数据集上实现了图像合成的新SoTA。我

们希望我们对生成建模中上下文学习的初步探索能

够促进更多关于统一表示学习的研究，无论是用于

识别模型还是生成模型。
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A.模型细节

网络配置我们遵循 DiT [32]中描述的网络配置，设

置了MDT中的总块数（即N1+N2）、标记数量以及

通道数。MDT模型的配置如表 Tab. 6所示。与 DiT

一样，MDT 拥有不同规模的模型，分别用 S/B/XL

表示。

网络参数与开销不同模型规模下的 MDT网络参数

和训练开销在表 Tab. 6中列出。与 DiT 基线相比，

MDT引入的额外推断参数和成本可忽略不计。

Size Layers Dim. Head Num. Param. (M) FLOSs (G)

Network configurations of MDT models.

S 12 384 6 33.1 6.07

B 12 768 12 130.8 23.02

XL 28 1152 16 675.8 118.69

Network configurations of DiT baselines.

S 12 384 6 32.9 6.06

B 12 768 12 130.3 23.01

XL 28 1152 16 674.8 118.64

表 6. MDT模型的网络配置如下。这些配置遵循 DiT网络的

设定。Layers包括编码器和解码器的层数，并且对于所有模

型，解码器数量 N2 都设置为 2。FLOSs是在隐空间嵌入大

小为 32x32以及 p=2的情况下测量的。Param和 FLOSs是使

用推理模型测量的。

B. VAE解码器的比较结果

为确保与 DiT [32] 的公平比较，我们使用了

MSE和 EMA两个版本的预训练 VAE解码器2 用于

图像采样。如 Tab. 7所示，EMA版本相比 MSE版

本略微性能更好。除了原稿表1中的结果使用 EMA

VAE解码器外，我们默认使用MSE VAE解码器。
2MSE和 EMA版本的 VAE模型可从 https://huggingface.co/

stabilityai/sd-vae-ft-mse 和 https://huggingface.co/

stabilityai/sd-vae-ft-ema下载。

Method Decoder FID↓ sFID↓ IS↑ Prec.↑ Rec.↑

MDT MSE 6.65 5.07 129.47 0.72 0.63

MDT EMA 6.46 4.92 131.70 0.72 0.63

MDT-G MSE 2.14 4.45 259.21 0.82 0.59

MDT-G EMA 2.02 4.46 263.77 0.82 0.60

表 7. EMA 版本和 MSE 版本的VAE 解码器之间的比较。-G

表示使用无分类器引导的结果。

C.使用MDT图像修复

我们通过在第一步使用侧插值器填充掩蔽的标

记，然后对掩蔽的标记进行去噪扩散过程来验证

MDT 的图像修复能力。如图 Fig. 5 所示，我们在

图像上使用不同的掩蔽比例，并使用 MDT 修复被

掩蔽的部分。尽管 MDT模型是使用 30%的掩蔽比

例进行训练的，但它可以轻松处理更大的掩蔽比例，

如 70%的掩蔽比例。我们将这种能力归因于我们提

出的掩蔽隐空间建模与扩散模型的结合。

D.改进的无分类器引导

无分类器引导采样 [21]可以在样本质量和多样

性之间进行权衡。它通过结合类条件和无条件估计

来实现这一点：

ϵ̂θ(xt, c) = ϵθ(xt) + w · (ϵθ(xt, c)− ϵθ(xt)),

其中，ϵθ(xt, c) 是类条件估计，ϵθ(xt) 是无条件估

计，w 是引导权重。通常情况下，较大的 w 会降低

多样性以提高样本质量。MUSE [6]在采样时使用线

性增长的权重规划来替代固定的引导权重，这使得

模型在早期步骤中生成更多多样化的样本，而在后

期步骤中生成更高保真度的样本。受此启发，我们

提出了一个在采样过程中使用的幂余弦引导权重规

划：

wt =
1− cosπ

(
t

tmax

)s

2
w,

其中，t 表示采样过程中的时间步，tmax 表示最大

采样步数，w 表示最大引导权重，s 是控制引导权

重增加速度的因子。如图 Fig. 6 所示，幂余弦规划

在早期步骤中使用低引导权重，而在后期步骤中快

https://huggingface.co/stabilityai/sd-vae-ft-mse
https://huggingface.co/stabilityai/sd-vae-ft-mse
https://huggingface.co/stabilityai/sd-vae-ft-ema
https://huggingface.co/stabilityai/sd-vae-ft-ema
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图 5.不同掩蔽比例下使用MDT-XL/2的图像修复结果

速增加引导权重。通过增加 s，在早期步骤中引导

权重缓慢增加，在后期步骤中快速增加。配备幂余

弦引导权重规划的改进无分类器引导采样使模型在

早期步骤中具有高多样性，在后期步骤中具有高质

量。在本研究中，s 设置为 4，并相应地将 w 设置

为 3.8，以确保模型在后期步骤中生成具有高保真度

的图像。

E. Visualization

我们在 Fig. 7中提供了更多的MDT-XL/2生成图

像示例。在 Fig. 8中，我们展示了 MDT-S/2 随着训

练过程的更多可视化示例。
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