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D ¥ z fEiS A HEEE EUR 0 = D(2). (EYIZRFIHE
SRR, VAEZSH D 28 A0S 2 3R 4 [ g . i T
h Al w tb H AW BN, RIAEAIS 7 P 2808 12 7 1]
HEAT Y HOS AR LUTEAR 25 25 1B A B v A

Pz EHERRIE. BUERNIN AR A L1
kT % IR fEd, BATE SR B &R
[N 2 TSI e s o IR, 384 (321, BATREAT



.- ]
0 1

l i
Encoder Interpolater Decoder ¥
Block xN; ---- RN Block xN, I

Pos. embed

Rel. bias

{O1X + X

Pos. embed.

+ Block x 1

Masked
tokens
Unmasked
tokens t

K 4. MDTH G AES BRFE i B Transformer. 3R A1 138 18 5
M 35 RS0 A 6 B A2 ARl 22 ) i & R A B RN
XIDIT [32]HE47 T80, N T s, FRATEmE T 5010
E D

AYEFE RN 2 K A—RIIKANA p x p kR,
HARGEANTERE R —ANERE uw € RN, b q 21858
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ST E MRS 2) ST N ANMRic A

EWE TN,
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BN GINB A, EFE AN B R AT
775 TENGIE R, MiEESRCEMEH T

AR A RALE RN, X0 LUK 4 /AL B
5%@ ARG %S, FEHEFRIE AR AP, T O SR A
F3F (IR0, fihs s i Qe A7 B N 2 3L
BN, DAHESERA BAE R .

Hk, WFig. 4Fw, fEIFE HER T [501M7E
RO K, Gnho % A AR B A A R Sk R
W T R B W FS [27]:

QK"

Vi

Heb Q. K MV Rl BiE I A, &
FME, d RERYEE, B, € RN AR AL &
Mo, LY @ A7 E S H AL E 2 R AR A 2
ik, B, NG REPEER. /i E
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Ny A A 5 S Al L (0 AT 2 S bR iR I AT
FHEE 3.2 F A U IR M e FEwAL &, [F
BRI — AN AT 22 ) B B AR A RIS B — MR ¢ €
RN, 2Rk, FRAMEH— AN EEA RIS P AT ¢
DA ZAFAE RN ko b A pOAR e 28 R T 1 b
0o S, SRATAE FH HE i SR AR Pl T & A g
N k=M-q+(1—M) k. Bz, 3T
FIbRIC,  FRATIHE e (A A Pl . % T AR R 1
Frid, FAIVISRER ¢ IR ARIC. 1X AT PASEHL
LR RGE: 1) 3§53l ZRAnHE 2 p B 2 TR 1) — 350k
2) Y A A B v ) e e e R

TR BOE AR, MR 28 4% — AL
BIRNRIEBAQ, IR G0 2 > B )
TR 28 0 ] 22 2 AL B IR A IS IR N A o IX B OR A
A 4R &AL BRRT A bic, 78 I 2R 0 S5 HE 2 A= A
IF A FH AH [R) ] 22 S AL B RN, AT 3R 1S 58 4 1) 14
G R PERE .

34 gt

TEN SR RE R, BAT IR B4 56 %8 (1) B 2 [l RN
u FIHERE A B 2s (A RN @ 5 N BN Bk b, Fh
TSR, A AL FH F4 i 1 B 2 e ik N 2 {2 5 T
REHE X g, R T RO, e
i P B 2 TR g N 7 R B 25 1, BT
HAR# A 7485y TS, BRAE [31,32] H—FF. i
TIXFRAEXS RO FE A L AL, 3T FH HE R AT B 2 (Al RN
JIT R AN AR /N o XA AT LA Fig. | HERH, &
8 T MDT 78 & ISR/ i 507 TH A7) 98 B 22 Ji i
SoTA DiT S T K%y 3 = 21 i

Method Cost(Iterx BS) FID| sFID| ISt Prec.TRec.t
DCTrans. [30] - 36.51 - - 036 0.67
VQVAE-2 [34] - 31.11 - - 036 057
VQGAN [12] 15.78 78.3 -
BigGAN-deep [4] - 6.95 7.36 1714 0.87 0.28
StyleGAN [40] - 2.30 4.02 265.12 0.78 0.53
Impr. DDPM [31] - 1226 - - 070 0.62
MaskGIT [7] 1387k x256 6.18 182.1 0.80 0.51
CDM [20] - 488 - 15871

ADM [10] 1980k x256 10.94 6.02 100.98 0.69 0.63
LDM-8 [35] 4800k x64 15.51 79.03 0.65 0.63
LDM-4 178k x 1200 10.56 103.49 0.71 0.62
DIT-XL/2[32]  7000kx256 9.62 6.85 121.50 0.67 0.67
MDT 2500k x256 7.41 4.95 121.22 0.72 0.64
MDT 3500kx256 6.46 4.92 131.70 0.72 0.63
MDT 6500k x256 6.23 5.23 143.02 0.71 0.65
ADM-G [10] 1980k x256 4.59 5.25 186.70 0.82 0.52
ADM-G, U 1980k x256 3.94 6.14 215.84 0.83 0.53
LDM-8-G [35] 4800kx64 7.76 209.52 0.84 0.35
LDM-4-G 178k x 1200 3.60 247.67 0.87 0.48
U-ViT-G [1] 300kx 1024 3.40

DiT-XL/2-G [32] 7000kx256 2.27 4.60 278.24 0.83 0.57

MDT-G 2500k %256 2.15 4.52 249.27 0.82 0.58
MDT-G 3500kx256 2.02 4.46 263.77 0.82 0.60
MDT-G 6500k %256 1.79 4.57 283.01 0.81 0.61
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Wit TG T MDT f/NEL, JEHERIEE KRR AL, &
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PN 3232 x4 FIBE S AR N o

WG, WEH [32] W5, Frf MR B # 2 1E
ImageNet [8] £ 4E FiFATIIZRM, (£ T AdamW
28] k5%, 2E3IHR N 3e-4, HEK/INHN 256, AfEH]
W E R (weight decay), FUE D HEFE N 256 %256,
BATEE T #5103, Ny = 2. 387§ DIT gl
Gk, AT B E % 1000, HH]
LRy 22, JEEM104 B 2 x 1072, HAh®E
15 DiT frR¥F— 2.

VR ieAR.  FRATE A F I DPA5 48 br ok VP Al T8,
£1FE Fre’chet Inception Distance (FID) [18] sFID [30]-
Inception Score (IS) [37]. HE#IZFIH B [26], H
H1, FID #4FE N E 28R, BONE RS & 2 1k
FERILE, SsFID 7E23 Mg n) FdkaT 7 odk. 1 b
78, IS FHERRH TR R E A, 1A B3R A T
EEEME. N THAT AP, FRATENE [32] K77
2%, {#F ADM [10] # i TensorFlow ¥ &4, If
& A H 250 /> DDPM KA 22 B 1) FID-50K. Bk
AEUHH, ARG FID 08I ANEHE T8
I FMER 211,

4.2. tEELEE R

MEEXTEL . Tab. 2 XFATH MDT & SoTA DiT 7EA4
FERER R ~F R iE4T T B, RWIE, MDT Eia R
RURIAE b R BE DL 2D 1 )11 45 A S 30 8 73 14 FID 4y
. MDT IS HHER AL DIT ABL, B IEW
£ Sec. 3.1 HAHIMFEE, MDT H A4 AT DA
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Mask Ratio FID] sFID] ISt  Precision? Recallt

0.1 51.60 10.23  26.65 0.44 0.60
0.2 5144 10.09 26.75 0.44 0.58
0.3 50.26 10.08 27.61 0.45 0.60
04 50.88 1021 27.44 0.45 0.60
0.5 51.57 992 27.14 0.44 0.60
0.6 53.20 1036 26.55 0.44 0.61
0.7 52.90 10.03 26.51 0.44 0.61
0.8 53.73 10.15 2555 0.43 0.61

% 3. REHEM LR, AR i#IT 60 5 iERII
ZEMDT-S/2 .

Decoder pos. FID] sFID] ISt  PrecisionT Recallf

Last0 51.05 997 2731 0.44 0.60
Lastl 50.96 990 27.63 0.45 0.60
Last2 50.26 10.08 27.61 0.45 0.60
Last4 51.67 10.12 2691 0.45 0.60
Last6 52.64 10.36 26.46 0.44 0.60
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Asymmetric stru. FID-50k. Side-interpolater FID-50k|. Masked shortcut FID-50k.
X 51.56 X 51.60 X 50.91
v 50.26 v 50.26 v 50.26

(a) AR FRIE RS A HITEM

(b) DGR &% IR o

(c) TR TEAR SR T .

Latent type FID-50k|. Sup. parts FID-50k], Number FID-50k|
Full+Masked 50.26 I 50.26 50.26
Full 52.30 A : 2 51.77
Masked 76.63 Masked 58.35 3 51.96
(d) FE AT T 7 0 T A FH 8 B R e 2k (e) B HIbRiCEL T (ORUEC LIRS e
TRo
IS Pos. embed. FID-50k|. Learnable pos. FID-50k|. Relative pos. bias FID-50k|.
X 51.58 X 50.80 X 53.56
v 50.26 v 50.26 v 50.26
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X IR FE 45 3] TNSFC (NO.62225604) FlH e
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A. EBVRTS

WLRECE RATEME DIT 321 MR E, &
BT MDT s (RIN, + Ny« bridZuE bl
IWIE% . MDT B8 EC B W1k Tab. 6F17~. 5 DIiT
—FE, MDT A AR, 5550 S/B/XL
ET

MES ST A RSB R ¥ MDT M 45241
A8 7ER Tab. 671 %1 . 5 DIT JEZ64H L,
MDT 51 X BIERAME BT 200 A ] 208 AN

Size Layers Dim. Head Num. Param. (M) FLOSs (G)

Network configurations of MDT models.

S 12 384 6 33.1 6.07
B 12 768 12 130.8 23.02
XL 28 1152 16 675.8 118.69

Network configurations of DiT baselines.

S 12 384 6 329 6.06
B 12 768 12 130.3 23.01
XL 28 1152 16 674.8 118.64

F* 6. MDT BA KL E 40 F . IX L6 ie B BAE DIT W41
WE. LayerstfEgmid sy AL 23 250, JEH X TR A
M, RIS ERECRE No #BE A 2. FLOSs F& 7 a2 i A K
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ARG RE L. BR T AR TP R4 R AEH EMA
VAE g d4h, FRATERINE A MSE VAE fi#id4s .

2MSE Hll EMA Ji A ] VAE K7 a] )\ https://huggingface.co/
stabilityai/sd-vae-ft-mse fl https://huggingface.co/
stabilityai/sd-vae-ft-ema F#.

Method Decoder FID] sFIDJ N Prec.t Rec.t

MDT MSE 6.65 5.07
MDT EMA 646 492

12947  0.72  0.63
131.70  0.72  0.63

MDT-G  MSE 2.14 445
MDT-G EMA 202 446

259.21  0.82  0.59
263.77 0.82  0.60
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