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Abstract

Semantic segmentation is fundamental to vision systems re-
quiring pixel-level scene understanding, yet deploying it
on resource-constrained devices demands efficient archi-
tectures. Although existing methods achieve real-time in-
ference through lightweight designs, we reveal their in-
herent limitation: misalignment between class represen-
tations and image features caused by a per-pixel classi-
fication paradigm. With experimental analysis, we find
that this paradigm results in a highly challenging assump-
tion for efficient scenarios: Image pixel features should
not vary for the same category in different images. To
address this dilemma, we propose a coupled dual-branch
offset learning paradigm that explicitly learns feature and
class offsets to dynamically refine both class representa-
tions and spatial image features. Based on the proposed
paradigm, we construct an efficient semantic segmentation
network, OffSeg. Notably, the offset learning paradigm can
be adopted to existing methods with no additional architec-
tural changes. Extensive experiments on four datasets, in-
cluding ADE20K, Cityscapes, COCO-Stuff-164K, and Pas-
cal Context, demonstrate consistent improvements with neg-
ligible parameters.

1. Introduction

Semantic segmentation, which aims to assign category la-
bels to every image pixel, plays a vital role in computer
vision applications [13, 15, 20, 25, 26, 28, 36, 48, 49, 63].
While recent advances in standard models [29, 30, 38, 39,
56, 60, 62] have achieved remarkable segmentation accu-
racy, their computational and parametric complexity ren-
ders them impractical for resource-constrained scenarios.
This has spurred significant interest in efficient semantic
segmentation models [18, 34, 37, 41, 46, 50], which pri-
oritize real-time inference and minimal parameters.
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Figure 1. Comparisons with popular efficient segmentation meth-
ods on the ADE20K [61] dataset. We can see from the figure that
our method achieves the best trade-off between performance and
computations.

Conventional segmentation frameworks typically use
high-dimensional image features, rich class representations,
and a large number of parameters, which together yield
superior performance compared to more compact architec-
tures. This phenomenon aligns with the neural scaling law,
where model capacity positively correlates with segmen-
tation accuracy until it is able to reach computational re-
source constraints. In contrast, efficiency-oriented architec-
tures [43, 46, 50, 51] face an inherent trade-off: aggressive
model compression weakens their capacity to align category
semantics with localized visual cues. This misalignment re-
sults in blurred object boundaries, missed small instances,
and inconsistent predictions, all of which are further intensi-
fied by the prevailing per-pixel classification paradigm (see
Fig. 2(a)). While existing works employ lightweight back-
bones [18, 23, 41] or spatial downsampling [22, 45, 58]
to achieve efficient performance, they largely overlook the
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Table 1. Comparison of different semantic segmentation paradigms. ‘Fea.’ and ‘Rep.’” donate feature adaptation and class representation

adaptation, respectively.

Paradigm ‘ Fea. Rep. Interaction Alignment Overhead

Per-Pixel Classification X X X Static unidirectional Matrix multiplication
Mask Classification X v Cross-attention Dynamic but asymmetric ~ Transformer decoder
Offset Learning v v Dual-decoupled offsets Elastic bidirectional Matrix multiplication

fundamental challenge of jointly refining category and fea-
ture representations under strict parametric constraints.

To uncover the fundamental issues inherent in the per-
pixel classification paradigm, we employ the ideal class rep-
resentation (feature) mining method to derive optimal class-
specific representations for individual images. Statistical
analysis (Fig. 3) reveals that the similarity between opti-
mal class representations of the same category across dif-
ferent images is remarkably low. This finding shows that
using fixed class representations for all images, as in the
per-pixel classification approach, is suboptimal since it fails
to adapt to the unique image features and class-specific de-
tails in each image.

Based on the observations of the fundamental challenge,
we propose an offset learning paradigm, a novel segmen-
tation method that can explicitly learn and rectify the de-
viation between class representations and image features
through learnable feature offsets (FOs) and class offsets
(COs). Our key insight is that, while efficient models lack
sufficient parameters to model ideal category-feature re-
lationships, they can effectively learn to predict the off-
set between initially coarse representations and their opti-
mal counterparts. Specifically, our offset learning paradigm
consists of two primary branches: the Class Offset Learn-
ing branch and the Feature Offset Learning branch. These
two branches are designed to learn COs and FOs, respec-
tively, enabling flexibility of both image features and class
representations.

As shown in Fig. 2(b), in addition to the per-pixel seg-
mentation paradigm, there exists a mask-based segmenta-
tion paradigm [4, 10, 11], which employs cross-attention
to facilitate interaction between learnable queries and im-
age features. This approach enables queries to learn image-
specific characteristics adaptively. However, it has two in-
herent limitations: (1) It only adjusts the queries while leav-
ing the image features static, and (2) the cross-attention in-
troduces significant computational overhead. As summa-
rized in Tab. 1, our method distinguishes itself from these
two paradigms through two key advantages: (1) the dual
adaptability of both image features and class representa-
tions, and (2) negligible interaction overhead.

Based on our proposed offset learning paradigm
(Fig. 2(c)), we design a straightforward segmentation net-
work named OffSeg, which consists solely of a backbone
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Figure 2. Visual comparison of different semantic segmentation
paradigms. From left to right, the figures sequentially illustrate
per-pixel classification, mask classification, and our proposed off-
set learning paradigm.

and a pixel decoder. As a plug-and-play paradigm, we
apply our framework to SegNeXt [18] (CNN-based), Seg-
Former [46] (Transformer-based), and Mask2Former [11]
(mask classification) to demonstrate its effectiveness and
flexibility. Extensive experiments across four benchmark
datasets show that the results consistently validate the ef-
ficiency and effectiveness of our method. Performance
improvements achieved across different architectures and
datasets highlight the robustness and generalizability of our
approach. In Fig. 1, we present the performance of our
model across different scales. The results demonstrate that
our OffSeg achieves a superior balance between perfor-
mance and computational efficiency.

To sum up, our main contributions can be summarized
as follows:

* We identify the core limitation of per-pixel segmentation
through statistical analysis and ideal class representation
(feature) mining, exposing the intrinsic misalignment be-
tween static image features and class representations.

* We propose a parameter-efficient offset learning
paradigm with dual branches that jointly adapt image
features and class representations with nearly negligible
computational overhead.

» Extensive experiments demonstrate superior performance
of our proposed OffSeg and effectiveness over previous
per-pixel classification (CNN, Transformer) and mask
classification paradigms.



2. Related Work

2.1. Traditional Semantic Segmentation

Semantic segmentation has witnessed significant advance-
ments through large-scale models that prioritize accuracy
over computational efficiency. Pioneering works like fully
convolutional networks (FCN) [31] established the foun-
dation by replacing fully connected layers with convolu-
tional operations, enabling dense pixel-wise predictions.
With this paradigm established, subsequent CNN-based
works [1, 17, 27, 36, 42, 52, 54, 57, 59] have enhanced
FCN from various perspectives. For example, U-Net [36]
further enhances feature localization through symmetric
encoder-decoder structures and skip connections. From the
perspective of context aggregation, DeepLab series [6—
9] employ atrous spatial pyramid pooling (ASPP) to cap-
ture multi-scale contextual information. PSPNet [59] pro-
poses pyramid pooling modules to aggregate global con-
text across different sub-regions. Benefiting from the suc-
cess of attention mechanisms [14, 40], Transformer-based
approaches [21, 35, 38, 55, 60] have achieved remark-
able results. For instance, SERE [60] redefines seman-
tic segmentation as a sequence-to-sequence prediction task,
leveraging global self-attention to model full-image con-
text. Unlike the per-pixel classification paradigm, Mask-
Former series [10, 11] introduces a mask classification
paradigm, where learnable queries interact with image fea-
tures through a transformer decoder.

2.2, Efficient Semantic Segmentation

While traditional models achieve high segmentation accu-
racy, their computational demands hinder real-time appli-
cations, driving the development of efficient semantic seg-
mentation works [4, 16, 18,37, 41, 43-46, 50, 51, 58]. From
the perspective of the backbone network, SegFormer [46]
proposes a lightweight and hierarchically structured trans-
former encoder, while SegNeXt [18] proposes a more ef-
fective convolutional attention solely through multi-scale
convolutions to construct an efficient backbone. LR-
Former [45] introduces a highly-efficient transformer with
linear attention, which is computed in a very low resolution
space. For the decoder, FeedFormer [37] employs a trans-
former that treats image features as queries to extract struc-
tural information. VWFormer [47] augments multi-scale
representations by interacting with multiple windows of dif-
ferent scales through cross-attention. CGRSeg [34] utilizes
pyramid context-guided spatial feature reconstruction to en-
hance the ability of foreground objects representation from
both horizontal and vertical dimensions.

For efficient segmentation models, since the mask clas-
sification paradigm requires a computationally heavy trans-
former decoder for feature interaction, they all adopt the
per-pixel classification segmentation paradigm. Although
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Figure 3. Heatmap visualizations of the ideal class representations
similarity. We can observe that the correlations between different
ideal class representations of the same category are very low.

per-pixel classification incurs little computational overhead,
it inherently suffers from the misalignment between image
features and class representations. The dilemma becomes
more pronounced in lightweight scenarios (Fig. 3), which
motivates us to develop a segmentation paradigm tailored
for efficient semantic segmentation.

3. Method

3.1. Revisiting Per-pixel Classification

Per-pixel classification, the cornerstone of conventional se-
mantic segmentation, independently assigns labels to each
pixel by comparing its feature vector with predefined cat-
egory prototypes. Traditional per-pixel classification maps
pixel embeddings E € R¥W*C to class scores P viaa 1x 1
convolution:

Pj=W. E';, (1

where W € REXC ig learnable parameter for K classes, ¢
is the class index. This paradigm treats each pixel indepen-
dently, ignoring contextual correlations.

While widely adopted, this paradigm suffers from two
critical issues in efficient segmentation scenarios. First, the
per-pixel classification paradigm relies on fixed class rep-
resentations to categorize pixels. Second, this approach as-
sumes that the network can learn identical features for the
same category across different images. However, our sub-
sequent analysis in §3.2 demonstrates that this assumption
is fundamentally unattainable. This misalignment between
fixed class representations and diverse image features serves
as compelling evidence for the necessity of adaptive mech-
anisms in modern segmentation frameworks.

3.2. Ideal Class Representation (Feature) Mining

To theoretically demonstrate the necessity of adaptive class
representations and image features, we derive optimal per-
image class prototypes through inverse reasoning based on
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Figure 4. Framework of the proposed OffSeg. Given an input image, we first use the encoder to extract the multi-scale features and then
use the pixel decoder to generate the image feature. The offset learning paradigm contains two branches: Class offset learning branch and
Feature offset learning branch. With the learned class offset (CO) and feature offset (FO), we guide the initial feature to aligned space. We

denote the dimension of matrix multiplication by grey.

ground-truth masks. Given an input image with ground-
truth mask M € REXHW and its deep feature E €
RIWXC "the ideal class prototypes W* € RE*C should
satisfy: M = W* - ET, where each row of W* represents
the optimal prototype for a specific class. Solving this linear
system yields:

W =M-(E") )

where ()T denotes the Moore-Penrose pseudoinverse.

By recomputing masks via Mpeq = W* - ET, we
achieve near-perfect reconstruction with around 95% mloU
on the ADE20K dataset, confirming the theoretical valid-
ity of W*. With such a mathematical derivation, we con-
duct a similarity analysis using SegFormer [46] (an efficient
network with 4.3M learnable parameters). Firstly, we ran-
domly select six categories (i.e., building, sky, floor, tree,
person, glass) and compute W* for 10 images per cate-
gory for a better view. As shown in Fig. 3, we visualize
their pairwise similarity via heatmaps. Strikingly, the ideal
class representations exhibit less similarity than our com-
mon sense. The low correlation heatmap patterns reveal that
optimal class representations vary drastically across images
for the same class. This phenomenon stems from a funda-
mental tension in efficient models: aggressive feature com-
pression amplifies intra-class feature variance, forcing W*
to diverge significantly to fit distorted features. The above
analysis reveals two critical implications:

* Fixed prototypes fail: Fixed class representations cannot
universally align with highly variable features of different

images in efficient models.

* Fixed features fail: The relationship W* o f(E) im-
plies that distorted features also hinder prototype stability,
which needs a vicious cycle requiring joint correction.

3.3. Offset Learning Paradigm

Our offset learning paradigm redefines the segmentation
paradigm as a dual-decoupled alignment process:

M= (W+AW) - (E+AE)", 3)

which departs our method from conventional per-pixel clas-
sification [7, 18, 19, 59] and mask-centric approaches [10,
11]. The core innovation lies in the class offset learning
and feature offset learning branches that collaboratively re-
fine class prototypes and spatial features through decoupled
attention mechanisms as shown in Fig. 4.

To be specific, given the image feature E ¢ RAWXC
and class embedding W € RX*C we compute a coupled
attention matrix A.:

A.=W-E', 4)

where A, € REXHW = This matrix encodes correlations
between classes and spatial positions and is used in the sub-
sequent class offset learning branch and feature offset learn-
ing branch.

Class offset learning dynamically adjusts class represen-
tations based on spatial context, alleviating the rigidity of
fixed class embeddings. First, we apply the softmax nor-
malization along spatial dimensions Softmaxg to generate



class-wise attention weights:
A s = Softmaxg(A.) € REXHW, (5)

where each row a; € A indicates the spatial importance
distribution for class k. Then, we aggregate spatial features
weighted by class attention:

Fos = Ags - E € REXC (6)

where F.js contains class-specific prototypes that encode
global spatial distributions. Finally, we generate class off-
sets via an MLP:

AW = MLP(F) € RE*C, (7
and adjust original representations as follows:
Wiy = W + AW, (8)

This branch learns image-specific offsets to align class em-
beddings with corresponding image features, narrowing
their representational gap.

Feature offset learning refines image features by injecting
class-aware semantics. The intention is to overcome the lo-
cal ambiguity in per-pixel classification. As shown in Fig. 4,
the feature offset learning branch is dual to the class offset
learning branch.

To be specific, like the class offset learning branch, we
first apply softmax along the class dimension Softmaxy
and transpose for spatial alignment:

Apos = (Softmaxg (A,))" € RIWXK 9)

where each row a; € A represents the class probability
distribution at position ¢. Then, we fuse class semantics into
spatial positions via the following equation:

Fpos = Apos - W € RIWXC (10)

where F,.s encodes position-wise semantic guidance from
all classes. Finally, we adopt an MLP to generate feature
offset:

AE = MLP(F ) € RTWXC, (11)

and use it to guide the original features:
E.qj = E+ AE. (12)

The final segmentation masks are generated through bidi-
rectional elastic alignment:

M =W,q; - Egdj» (13)

which is another form of Eqn. (3).
We have summarized the main differences between our
offset learning paradigm and other semantic segmentation

paradigms in Tab. 1. Different from per-pixel classifica-
tion (e.g., SegFormer [46], SegNeXt [18]), which relies on
static alignment between fixed features and rigid class em-
beddings, or mask classification (e.g., MaskFormer [10],
Mask2Former [11]) that dynamically refines class queries
by a heavy transformer decoder, our framework uniquely
introduces bidirectional offset learning with even negligi-
ble learnable parameters. This method enables symmetric
adaptation: class representations can be adjusted through
class-specific spatial prototypes, while image features can
be refined by position-aware semantic guidance. By decou-
pling class- and position-wise interactions into two distinct
pathways, our method achieves elastic feature-class align-
ment, where both modalities co-evolve to capture instance-
specific geometries and contextual semantics. This con-
trasts sharply with the unidirectional or hard-coded align-
ment strategies in existing paradigms.

3.4. Overall Architecture

To validate the efficiency and effectiveness of our proposed
offset learning paradigm, we design a standard seman-
tic segmentation model with the following efficient com-
ponents without structural modifications. For the back-
bone, we employ a hybrid architecture named Efficient-
FormerV?2 [24], which achieves a balance between parame-
ter efficiency and performance through a fine-grained joint
search strategy. For multi-scale feature aggregation, we se-
lect FreqFusion [5], which fuses two scale features with
frequency-aware operators. Notably, when combined with
our offset learning paradigm, the entire model introduces
nearly negligible learnable parameters (0.1-0.2M).

4. Experiments

4.1. Experimental Settings

Datesets. We evaluate our method on four widely adopted
semantic segmentation benchmarks: ADE20K [61],
Cityscapes [13], COCO-Stuff [3], and Pascal Context [33].
ADE20K [61] is a scene parsing dataset with 150 ob-
ject/stuff categories, containing 20K/2K/3K images for
training/validation/testing. It features diverse indoor and
outdoor scenes with complex occlusions. Cityscapes [13]
focuses on urban driving scenarios, providing 5,000 high-
resolution images (2048x1024) with 19 semantic classes.
COCO-Stuff [3] comprises 118K training and 5K validation
images with 171 classes (80 things + 91 stuff). Its long-
tailed distribution challenges model generalization. PAS-
CAL Context [33] dataset comprises 59 semantic categories
as foreground objects, with 4,996 training images and 5,104
validation images.

Implementation details. Our implementation is based on
the MMSegmentation [12] with PyTorch. Following previ-
ous works [10, 11, 18, 34, 46], we adopt the AdamW [32]



Table 2. Performance comparison of state-of-the-art methods on ADE20K, Cityscapes and COCO-Stuft datasets. FLOPs (G) is computed
at input resolutions of 512x512 for ADE20K and COCO-Stuff, and 2048 x 1024 for Cityscapes.

ADE20K Cityscapes COCO-Stuff
Method Params M) | b1 b (G)  mloU | FLOPs (G)  mloU | FLOPs (G) mloU
SegFormer-BO0 [46] 3.8 8.4 374 125.5 76.2 8.4 35.6
RTFormer-Slim [43] 4.8 17.5 36.7 - 76.3 - -
FeedFormer-BO [37] 4.5 7.8 39.2 107.4 77.9 - -
Seaformer-L [41] 14.0 6.5 427 - - - -
VWFormer-B0 [47] 3.7 5.1 38.9 - 77.2 5.1 36.2
CGRSeg-T [34] 9.4 4.0 43.6 - - 4.0 42.2
EDAFormer-T [53] 4.9 5.6 42.3 151.7 78.7 5.6 40.3
OffSeg-T 6.2 5.3 44.2 44.8 78.9 5.3 41.9
SegFormer-B1 [46] 13.7 15.9 42.2 243.7 78.5 15.9 40.2
SegNeXt-S [18] 13.9 15.9 443 124.6 81.3 15.9 42.2
RTFormer-Base [43] 16.8 67.4 42.1 - 79.3 26.6 353
VWFormer-B1 [47] 13.7 13.2 43.2 - 79.0 - 41.5
PEM-STDCI [4] 17.0 16.0 39.6 - - - -
OffSeg-B 13.0 10.3 459 86.5 80.5 10.3 443
SenFormer [2] 59.0 179.0 46.0 - - - -
SegFormer-B2 [46] 27.5 25.9 45.6 717.1 81.0 26.0 44.6
MaskFormer [10] 42.0 55.0 46.7 - - - -
Mask2Former [11] 47.0 74.0 47.7 - - - -
FeedFormer-B2 [37] 29.1 427 48.0 522.7 81.5 - -
PEM-STDC2 [4] 21.0 19.3 45.0 - - - -
OffSeg-L 26.4 17.1 48.5 143.4 81.6 17.1 46.0

optimizer with poly learning rate decay and 1,500 itera-
tions linear warmup for all models, without specific tun-
ing for any other settings. The batch size is set to 16
for the ADE20K/COCO-Stuff/Pascal Context datasets and
8 for the Cityscapes dataset. During training, the im-
age size is cropped to 512x512 for ADE20K and COCO-
Stuff, 480x 480 for Pascal Context, and 1024 x 1024 for the
Cityscapes dataset. We adopt the standard data augmenta-
tion and train 160k iterations on ADE20K and Cityscapes
datasets and 80k iterations on the COCO-Stuff and Pascal
Context datasets. During inference, we employ single-scale
testing for all datasets. All experiments are conducted on 8
NVIDIA RTX 3090 GPUs.

4.2. Main Results

We evaluate our method on three standard semantic seg-
mentation benchmarks: ADE20K, Cityscapes and COCO-
Stuff, as detailed in Tab. 2. For the ADE20K dataset,
the proposed OffSeg-T attains 44.2 mloU on ADE20K,
surpassing EDAFormer-T by 1.9 mloU while reducing
computations by 24%. OffSeg-B establishes a strong
accuracy-efficiency trade-off: 45.9 mloU on ADE20K
(10.3G FLOPs), outperforming SegNeXt-S (+1.6) and
PEM-STDCI1 (+6.3) with 35% lower FLOPs than SegNeXt-
S. At the large scale, OffSeg-L achieves a 48.5 mloU
score on ADE20K with 17.1G FLOPs, outperforming
Mask2Former (+0.8) with 4.3 x fewer FLOPs

On the Cityscapes dataset, our OffSeg-L achieves su-
perior results while using only a quarter of the computa-
tional cost required by FeedFormer-B2. On the COCO-
Stuff dataset, our OffSeg-B surpasses RTFormer-Base by
9.0 mloU with less than half of its computational cost.

These experimental results suggest that our dual-
decoupled offset learning paradigm can effectively address
the misalignment between class representations and image
features, particularly in class-dense and challenging scenar-
i0s, like ADE20K and COCO-Stuff.

4.3. Generalization Ability

To validate the broad applicability of our offset learning
paradigm, we integrate it into three representative models:
SegNeXt [18] (CNN-based), SegFormer [46] (Transformer-
based), and Mask2Former [11] (mask classification). For
the per-pixel classification framework models (SegNeXt
and SegFormer), we adapt our approach by simply re-
placing the final 1x1 convolutional layer with our offset
learning paradigm. For the mask classification framework
(Mask2Former), we leverage offset learning to align mask
embeddings with per-pixel embeddings while remaining
other parts unchanged.

SegNeXt with offset learning. To evaluate the robustness
of our method, we conduct experiments on four datasets. As
shown in Table 3, integrating our paradigm into SegNeXt



Table 3. Performance comparison of SegNeXt [18] and SegNeXt w/ offset learning on ADE20K, Cityscapes, Pascal Context, and COCO-
Stuff datasets. FLOPs (G) is computed at input resolutions of 2048 x 1024 for Cityscapes and 512x 512 for other datasets.

ADE20K Cityscapes Pascal Context COCO-Stuff
Method - Offset | Params (M) | &y b (G)  mIoU | FLOPs (G) mloU | FLOPs(G) mloU | FLOPs(G) mloU
SegNeXt-T 4.3 6.6 41.1 50.5 79.8 6.6 51.2 6.6 38.7
SegNeXt—T v 4.4 7.2 43.0(+1,9) 53.1 80.0(.;.0,2) 6.8 53.2(+2‘0) 7.3 40.0(+1,3)
SegNeXt-S 13.9 159 443 124.6 81.3 15.9 54.2 15.9 42.2
SegNeXt—S \/ 14.1 16.5 45.6(+1_3) 127.2 81.7(4.0,4) 16.1 55.9(+1‘7) 16.6 43.5(+1_3)
SegNeXt-B 27.6 34.9 48.5 275.7 82.6 34.9 57.0 34.9 45.8
SegNeXt-B \/ 28.2 34.8 49.4(4.0‘9) 269.6 82.8(+o,2) 34.1 58.0(4.1‘0) 35.0 45.8(4.0‘())

Table 4. Performance comparison of SegFormer [46] and Seg-
Former w/ offset learning on ADE20K and COCO-Stuff datasets.
FLOPs (G) is computed at input resolutions of 512x512 for all

datasets.

ADE20K COCO-Stuff
Method Offset| Params| gy b mIoU |FLOPs  mloU
SegFormer-B0 3.8M | 84 374 8.6 35.6
SegFormer—BO \/ 3.9M 8.8 40. 1(+2_7) 8.9 38 .3(+2.7)
SegFormer-B1 137M| 159 41.0 16.1 40.2
SegFormer—Bl Ve 13.9M 16.3 43.7(4.27) 16.4 41.9(+1,7)
SegFormer-B2 248M| 259 456 26.0 446
SegFormer-BZ / 249M 26 1 47.3(+1 7) 262 45 -2(+0.6)
SegFormer-B3 44.6M | 42.5 47.8 42.6 45.5
SegFormer-B3 ' [44.8M | 42.8 49.517)| 42.9 46303
SegFormer-B4 61.4M| 592 485 59.3 465
SegFormer-B4 ' [61.6M| 59.5 50.1116)| 59.6 47.005)
SegFormer-B5 82.0M| 752  49.1 753  46.7
SegFormer—BS \/ 82.2M | 75.5 50.6(.;.1,5) 75.5 47.2(+0.5)

yields consistent performance improvements with negligi-
ble parameter overhead. In summary, our method achieves
average improvements of 1.4, 1.2, and 0.5 mloU across
all datasets for the Tiny, Small, and Base scales, respec-
tively, while introducing only 0.1-0.2M additional param-
eters. These results demonstrate the effectiveness and ef-
ficiency of our approach in enhancing segmentation per-
formance. We also evaluate SegNeXt-T with offset learn-
ing paradigm using the ensemble strategy (multi-scale).
The model achieves mloU of 43.2 on ADE20K, 81.5 on
Cityscapes, 54.5 on Pascal Context, and 40.5 on COCO-
Stuff, further enhancing segmentation accuracy.

To further show the advantages of our method, we show
the segmentation results based on the SegNeXt-T model in
Fig. 5. The visualizations reveal that our model achieves
more precise segmentation outcomes, particularly in the
identification of background regions and small objects. This
qualitatively validates that our method can better align im-
age features with class representations.

SegNeXt-T

SegNeXt-T /w Ours

Figure 5. Visualization of the offset learning paradigm on Seg-
NeXt. Compared to the baseline SegNeXt-T, applying offset learn-
ing paradigm enables the model to segment objects more accu-
rately, especially small objects (e.g., the clock in the third image).

Furthermore, the diminishing improvement trend (from
1.4 to 0.5 mloU) as the model size increases suggests
that larger-scale models inherently possess superior feature-
representation alignment capabilities. This experimental
observation directly validates our hypothesis of a positive
correlation between model size and class alignment capabil-
ity. The results also demonstrate that our approach resolves
the identified issues with the efficiency level anticipated in
our analysis.

SegFormer with offset learning. To systematically evalu-
ate the adaptability of our offset learning paradigm across
varying model capacities, we perform comprehensive ex-
periments on six SegFormer architectures (B0O-B5) and re-
port results on ADE20K and COCO-Stuff. To ensure a
fair comparison, we employ the results provided by mm-
segmentation [12], wherein the model’s FLOPs are smaller
than those reported in the paper. From BO to BS, the average
mloU improvements on the two datasets are 2.7, 2.2, 1.2,
1.3, 1.1, and 1.0, respectively. This gradually diminishing
performance gain with increasing model scale aligns with
the conclusions drawn from experiments on the SegNeXt
model, further validating our hypothesis regarding the mis-



Table 5. Performance comparison of Mask2Former [11] and
Mask2Former w/ offset learning on ADE20K dataset.

Method Offset ‘ Params (M) mloU

Mask2Former-Tiny 474 47.7
Mask2Former-Tiny v 47.6 50.3¢2.6)

alignment between efficient model features and class repre-
sentations. It also underscores the effectiveness of our offset
learning paradigm in addressing the issue of misalignment
in the traditional per-pixel classification paradigm.

Mask2Former with offset learning. We perform exper-
iments on Mask2Former-Tiny, as even the Tiny model al-
ready has 47.4M parameters. As shown in Tab. 5, the re-
sults demonstrate that integrating our method into the mask
classification paradigm improves the performance by 2.6
mloU with only a 0.2M parameter increase. As shown in
the comparison in Tab. 1, the mask classification paradigm
only adjusts class representations, whereas our offset learn-
ing paradigm simultaneously aligns both image features and
class representations. This demonstrates the effectiveness
of our method in achieving efficient and concurrent align-
ment of image features (per-pixel embeddings) and class
representations (mask embeddings).

4.4. Ablation Study

Ablation analysis on core components. To systemati-
cally validate the efficacy of each component in our OffSeg
framework, we conduct ablation studies on the ADE20K
dataset, as detailed in Tab. 6 The baseline model (first row)
employs a simple convolutional pixel decoder without Fre-
qFusion [5] and achieves 40.7 mloU. Introducing FreqFu-
sion alone improves the mloU score by 1.3. Based on Fre-
qFusion, combining class offset learning and feature offset
learning improves mloU by 0.9 and 1.5, respectively. This
demonstrates that both branches can independently enhance
the model performance, with adaptable features yielding
a larger impact than adjustable class representations. The
simultaneous incorporation of both branches achieves the
best performance, demonstrating their synergistic effect in
jointly aligning image features and class representations.

Ablation analysis on the effect of channel number. As
shown in Tab. 7, we adopt the baseline w/ FreqFusion only
as the base model to verify the effect of channel num-
ber on the per-pixel classification paradigm. When the
channel number scales up from 64 to 1024, the results
show that increasing feature dimensions in per-pixel clas-
sification models yields diminishing returns, and when it
reaches 2048, the performance experiences a certain de-
cline. This reveals that increasing the image feature chan-
nels and class representation channels for the per-pixel clas-
sification paradigm can improve the expressive ability of the

Table 6. Ablation experiments on different components of the pro-
posed OffSeg. FF., CO., and FO. represent FreqFusion, class offset
learning, and feature offset learning, respectively.

FF. CO. FO. | Params (M) FLOPs(G) mloU
5.9 5.1 40.7
v 6.1 6.0 42.0
v v 6.2 5.3 429
v v 6.2 5.3 43.5
v v v 6.2 53 44.2

Table 7. Ablation experiments on the effect of channel number of
image features and class representations on baseline. The models
all belong to the per-pixel classification paradigm, not our offset
learning paradigm.

Channel ‘ 64 128 256 512 768 1024 2048

Params M) | 60 60 6.1 62 63 64 6.8
FLOPs (G) | 47 51 60 7.7 94 11.1 179
mloU (%) 412 417 420 428 429 435 430

model, as higher-dimensional vectors can represent higher-
dimensional spaces.

However, the simple approach of enhancing model per-
formance by increasing the number of channels incurs sig-
nificant computational overhead and has an upper limit. For
instance, at a channel of 1024, the model achieves 43.5
mloU with 11.1G FLOPs, but further increasing the chan-
nel number does not enhance performance. In contrast, our
OffSeg-T with offset learning paradigm achieves a perfor-
mance with 44.2 mIoU while requiring less than half of the
computational resources. This comparative analysis further
substantiates the efficiency and effectiveness of our pro-
posed method in achieving good segmentation accuracy.

5. Conclusions

In this paper, we analyze the limitations of the per-pixel
classification paradigm, specifically the misalignment be-
tween image features and class representations. To address
this issue, we propose the offset learning paradigm, which
introduces separate feature offset learning and class offset
learning branches to explicitly learn the necessary offsets
for aligning image features with their corresponding class
representations. Building upon this paradigm, we design
a series of efficient segmentation networks, named OffSeg,
containing three different scales. As a general segmentation
paradigm, we also integrate our offset learning paradigm
into three representative segmentation methods, including
SegFormer, SegNeXt, and Mask2Former with negligible
parameters. Extensive experiments on four widely used
datasets demonstrate the effectiveness and efficiency of our
proposed offset learning paradigm.
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