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Abstract—Incorporating heterogeneous representations from different architectures has facilitated various vision tasks, e.g., some hy-
brid networks combine transformers and convolutions. However, complementarity between such heterogeneous architectures has not
been well exploited in self-supervised learning. Thus, we propose Heterogeneous Self-Supervised Learning (HSSL), which enforces a
base model to learn from an auxiliary head whose architecture is heterogeneous from the base model. In this process, HSSL endows
the base model with new characteristics in a representation learning way without structural changes. To comprehensively understand
the HSSL, we conduct experiments on various heterogeneous pairs containing a base model and an auxiliary head. We discover
that the representation quality of the base model moves up as their architecture discrepancy grows. This observation motivates us to
propose a search strategy that quickly determines the most suitable auxiliary head for a specific base model to learn and several simple
but effective methods to enlarge the model discrepancy. The HSSL is compatible with various self-supervised methods, achieving
superior performances on various downstream tasks, including image classification, semantic segmentation, instance segmentation,
and object detection. The code and dataset are available at https://github.com/NK-JittorCV/Self-Supervised/

Index Terms—self-supervised learning, heterogeneous architecture, representation learning

1 INTRODUCTION

ELF-SUPERVISED learning has succeeded in learning rich
S representations without requiring expensive annotations. This
success is attributed to different pretext tasks, especially instance
discrimination [1], [2], [3], [4] and masked image modeling [5],
[6], [7]. Adapting these methods to various network architectures,
e.g., convolution neural network [8], [9], vision transformer [2],
[8], [10], [11] and Swin transformer [12], has brought superior
performances on a variety of downstream tasks, including image
classification [13], semantic segmentation [14], [15] and object
detection [16].

Different neural network architectures learn representations
with distinct characteristics that reveal the intrinsic properties of
an architecture, e.g., the global and local modeling abilities.
Prior works [17], [18], [19], [20] have demonstrated that the
characteristics of different architectures can be complementary.
Section 1 of the supplementary material also provides a pilot
experiment to demonstrate the superiority of combining different
architectures over a single architecture. Existing methods [12],
[21], [22], [23] mainly focus on architecture design to leverage
such complementarity. However, we utilize the complementarity
in a representation learning way while not modifying the model
architecture.

Inspired by the above analysis, we propose Heterogeneous
Self-Supervised Learning (HSSL), which enhances a model with
the characteristics of any other architectures. Specifically, during
pre-training, the model comprises a base model and an auxiliary
head whose architecture is heterogeneous to the base model.
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Fig. 1. lllustration of the heterogeneous self-supervised learn-
ing (HSSL). (a) General self-supervised learning methods make a base
model supervise itself. (b) The HSSL supervises the base model under
the guidance of an auxiliary head whose architecture is heterogeneous
to the base model, making the base model learn new characteristics.

Such heterogeneity makes the auxiliary head provide missing
characteristics from the base model. To endow the base model
with its missing characteristics, we encourage the representations
of the base model to mimic the representations of the auxiliary
head, as shown in Fig. 1. Once pre-training is complete, the base
model integrates new characteristics and we remove the auxiliary
head.

For a comprehensive analysis, we examine various heteroge-
neous pairs of the base model and the auxiliary head and discover
that the improvement in the base model is positively related to
the discrepancy between the base model and the auxiliary head.
A more significant discrepancy implies that the auxiliary head
can provide more characteristics missing from the base model,
thus magnifying the gains of the base model. This observation
allows a specific base model to choose the most suitable auxiliary
head. We propose a quick search strategy that simultaneously
examines all candidate auxiliary heads to perform heterogeneous
representation learning with the same base model. Thus, we can


https://github.com/NK-JittorCV/Self-Supervised/

quickly determine the most suitable auxiliary head. Moreover,
we further modify the chosen auxiliary head to enlarge its
discrepancy with the base model to boost the performance.

Our proposed HSSL can be implemented in different self-
supervised learning schemes, e.g., contrastive learning [24], self-
clustering [2], and masked image modeling [5], thus orthogonal
to multiple self-supervised training methods [2], [5], [10], [24].
On various downstream tasks, including image classification [13],
semantic segmentation [14], semi-supervised semantic segmenta-
tion [25], [26], instance segmentation [16], and object detection
[14], [16], HSSL consistently brings significant improvements for
various network architectures without structure change.

Our major contributions are summarized as follows:

e We propose heterogeneous self-supervised learning, en-
abling a base model to learn the characteristics of different
architectures.

o Through extensive experiments, we discovered that the
discrepancy between the base model and the auxiliary
head is positively related to the improvements in the base
model and propose a quick search strategy to find the
most suitable auxiliary head for a specific base model.

e The proposed representation learning manner is compati-
ble with existing self-supervised methods and consistently
boosts performances across various downstream tasks.

2 RELATED WORK
2.1 Self-Supervised Learning

Self-supervised learning enables learning rich representations in
the unsupervised setting, reducing the cost of collecting anno-
tations. Early methods design different pretext tasks that can
generate free supervision, such as coloration [27], [28], jigsaw
puzzles [29], rotation prediction [30], autoencoder [31], [32], im-
age inpainting [33] and counting [34]. The recent success of self-
supervised learning can be attributed to instance discrimination
[35], [36], [37], [38], [39] and masked image modeling [5], [40],
[41], [42], [43] methods. New paradigms, such as correlational
image modeling [44] and corrupted image modeling [45], have
been proposed, further enriching the field.

Instance discrimination. Instance discrimination generates mul-
tiple views of an image through random image augmentations
and aligns their representations [46], [47], [48], [49], [50]. This
framework has been extended with various loss formulations,
including contrastive learning [15], [51], [52], [53], [54], feature
alignment [55], [56], [57], clustering assignment [58], [59],
[60], [61], [62], redundancy reduction [63], [64], sorting [65],
and relational modeling [8], [66]. These methods have been
applied at both image-level [52], [67], [68], [69] and dense-
level [70], [71], [72], [73], and demonstrate broad adaptability
across architectures, including convolutional neural networks [9],
vision transformers [2], and Swin Transformers [12]. However,
existing approaches often overlook the potential complementarity
between different architectures. In this work, we propose HSSL,
a framework designed to harness complementary characteris-
tics across different architectures using a heterogeneous self-
supervised learning scheme. Moreover, our method is orthogonal
to existing self-supervised techniques.

Masked image modeling. The masked image modeling (MIM)
based methods [74], [75], [76], [77] reconstruct masked image
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patches based on the unmasked ones, emphasizing spatial con-
text learning. Researchers have explored diverse reconstruction
targets to capture representations with varying properties. For
example, pixel-based reconstruction [5], [41], [78], [79], [80],
[81] often yields strong yet non-linear representations. To endow
representations with strong semantic information, more types of
targets, e.g., hand-designed HOG [82], [83], [84], frequency [80],
[85], masked positions [86], features from online network [66],
[87], [88], [89], [90], discretized tokens [40], [91], [92], or the
combination of multiple targets [91], [93], [94]. Recent research
[66] also reconstructs representations from an off-the-shelf pre-
trained model and achieves excellent performance, especially
when using large-scale datasets [95]. When using the online
network [90], [96], some works [6], [10], [97], [98], [99], [100]
further combine the advantages of masked image modeling and
instance discrimination to boost the performance. Meanwhile,
apart from targets, some works [74], [77], [79], [101] also
investigate different masking strategies to facilitate high-level
representations.

Similar to instance discrimination, masked image modeling
[10], [102], [103], [104], [105], [106], [107], [108] has also
been applied to diverse architectures like vision transformer
[109], ConvNext-V2 [102], and Swin [12]. These developments
underscore the potential of leveraging architectural diversity to
improve MIM-based representation learning.

2.2 Heterogeneity on Neural Network

The heterogeneous neural network, which combines multiple
types of architectures [20], [23], [114], can generate complemen-
tary characteristics and facilitate various vision tasks, including
semantic segmentation [17], [115], [116], object detection [117],
[118], image classification [18], [119], [120], and image quality
assessment [121]. These methods mainly design new architec-
tures to leverage complementarity. For example, Wu et al. [120]
combines convolution and attention in an architecture to achieve
better classification accuracy. In comparison, we enforce a net-
work constructed by a specific architecture to learn characteristics
from any other architectures via representation learning without
any structural changes. Thus, the proposed method is flexible in
fusing characteristics from any architectures.

Some works [19], [122] have tried to utilize the comple-
mentarity to improve self-supervised learning. Specifically, these
methods make the ViT and ResNet guide each other. However,
beyond this pair, they lack a comprehensive analysis and under-
standing of the complementarity between different architectures.
In comparison, we investigate a wide range of architectures, not
only ViT and ResNet, and provide a comprehensive analysis
of why and how the complementarity benefits self-supervised
learning. We discover that a more significant model discrepancy
leads to more significant improvements, enabling us to design
more suitable auxiliary heads to guide a specific model.

3 METHOD

In Section 3.1, we recall the existing self-supervised methods.
Then, in Section 3.2, we describe the proposed heterogeneous
self-supervised learning and demonstrate its compatibility with
existing methods. In Section 3.3, we demonstrate that the im-
provements come from the complementarity of heterogeneous
architectures. Section 3.4 analyzes what makes a good auxiliary
head and discovers that a greater model discrepancy brings
more benefits. Inspired by this discovery, we propose a quick
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Fig. 2. Our HSSL framework. The architectures of the base model and the auxiliary head are heterogeneous. The representations extracted by
the auxiliary head supervise the two networks simultaneously. The base model and the auxiliary head can be arbitrary architectures, such as ViT
[109], Swin [12], ConvNext [110], ResNet [111], ResMLP [112], and PoolFormer [113].

search strategy to choose the most suitable auxiliary head for
a specific base model in Section 3.5 and several simple but
effective methods that enlarge the model discrepancy to bring
more improvements in Section 3.6.

3.1 Preliminaries

The HSSL can be implemented in different forms, e.g., instance
discrimination and masked image modeling. In this paper, we
mainly use the instance discrimination framework as the illustra-
tive example. We first briefly recall the common framework of
instance discrimination. Given an image x, different views of x,
i.e., x1 and xo, are generated by different data augmentations.
Their representations, i.e., 21 and zo, are extracted by teacher
and student networks, respectively. Then, instance discrimination
maximizes the similarity between z; and 2. Specifically, the loss
function has different forms [2], [10], [123], and we abstract the
loss as L(zq, 23).

3.2 Heterogeneous Supervision

Denoting the backbone used by existing methods [2], [10] as the
base model, HSSL utilizes an auxiliary head, whose architecture
differs from the base model, to endow the base model with
its missing characteristics. The overall pipeline is visualized in
Fig. 2. For simplification, we refer to the base model/auxiliary
head at the teacher and student branches as fi/hy and fo/ho,
respectively. Given x;1 and xs, the base models extract represen-
tations 20 = f,(2,) and 2§ = f,(x,). Then, the auxiliary head
takes these representations as input and output 2z = h(2}) and
28 = hy(25). Since heterogeneous architectures extract 211/z%
and 2%/25, the 27/2% contains a part of the characteristics that are
missing from the zi’/zg. The base model can learn those missing
characteristics with the loss function £(z%, 25), which pulls 2%
and 23 together.

Meanwhile, to guarantee that the auxiliary head can learn
meaningful characteristics, we also pull representations extracted
by auxiliary heads in teacher and student together, i.e., using the
loss function £(z}, 2). The base model and the auxiliary head
are pre-trained simultaneously, and the total loss function £ can
be defined as follows:

L= L(21,25) + L(21, 23). (1)

During pre-training, the auxiliary head is serially connected at the
end of the base model, enabling the former to learn meaningful

characteristics with only a few layers. Thus, the increased training
time and memory costs are negligible. After pre-training, we
remove the auxiliary head and only reserve the base model.

Incorporating HSSL into different SSL. methods. The pro-
posed HSSL is compatible with different self-supervised learn-
ing (SSL) methods, including MoCo [24], DINO [2], iBOT [10],
and MAE [5], as shown in Tab. 6. When combined with different
methods, the loss function defined in Equ. (1) takes on distinct
forms. For clustering based methods [2], [10], the representations
are transformed into probability distributions over K dimensions
through some projection heads and a softmax function, and the
loss function is defined as follows:

K K
L=—3 (1)ilog((23)i) = D _(=1)ilog((3)i), ()
i=1 i=1
where the projection heads and the softmax function are hidden
for simplification. Additionally, other forms of loss functions
can also be combined with HSSL, e.g., InfoNCE [124] in
contrastive learning [2] and reconstruction loss in masked image
modeling [5]. For more details, please refer to Section 6 of the
supplementary material.

Analysis for various architectures. To validate the effectiveness
of the proposed HSSL, we evaluate the impact of different
auxiliary heads on the base model. In this analysis, we aim to
explore the effect of diverse architectures on the HSSL. Thus,
we choose ResNet [111], PoolFormer [113], ResMLP [112],
ConvNext [110], ViT [109], and Swin [12] as the auxiliary heads
due to their diverse architectures. For example, ResNet [111] is a
classic convolutional network based on local convolutions, and
ConvNext [110] further adopts large kernel convolutions. ViT
[109] is a transformer network based on global self-attention,
and Swin [12] integrates local attention in the transformer archi-
tecture. Moreover, PoolFormer [113] and ResMLP [112] adopt
different modeling mechanisms beyond convolutional and trans-
former architectures, i.e., pooling and spatial MLP. As shown
in Tab. 1, using the auxiliary head can consistently enhance the
base model across all pairs]. Furthermore, we observe that an
auxiliary head that is heterogeneous to the base model brings
more gains than a homogeneous one. For example, when using

1. For all experiments in Section 3 and Section 5, we adopt the ImageNet-
S3o0 dataset [25], which contains 300 categories from ImageNet-1K [13], to
save computational costs.



TABLE 1
Effects of various auxiliary heads on different base models.

TABLE 3
Auxiliary head solves samples that the base model (ViT) cannot solve.
The sloU and N, represent the degree of overlap between HSSL and
the original version on the correct samples and the number of newly

_ Base Model added correct samples from HSSL. Their details are provided in
ViT ResNet Section 3.3.
Top-1 Top-5 Top-1 Top-5
Baseline 67.5 84.4 63.2 84.3 Auxiliary Head Top-1 N, sloU
T VIT [109] 68.0 84.7 64.0 843 ,
T Swin [12] 69.4 85.9 63.9 84.4 ViT [109] 68.0 792 59.5
»  PoolFormer [113] 70.1 86.3 63.9 84.5 Swin [12] 69.4 854 60.7
= ResNet [111] 717 86.9 63.5 84.3 PoolFormer [113] 70.1 904 60.8
= ResMLP [112] 72.6 87.8 64.4 84.9 ResNet [111] 717 1061 67.8
< ConvNext [110] 727 87.6 63.7 84.4 ResMLP [112] 72.6 1270 729
ConvNext [110] 727 1278 70.2
TABLE 2

Weak auxiliary heads also enhance strong base models. Experiments
without a declared auxiliary head mean the baselines of
corresponding base models.

Base model Auxiliary head Top-1
ViT [109] - 67.5
ViT [109] ResNet [111] 71.7
ViT [109] ResMLP [112] 72.6
ResMLP [112] - 58.0
ResMLP [112] ViT [109] 59.6
Swin [12] - 72.8
Swin [12] PoolFormer [113] 73.7
Swin [12] ResMLP [112] 73.4

ViT as the base model, the auxiliary head of the ViT only
improves by 0.5% in Top-1 accuracy. In comparison, the auxiliary
head of the ConvNext brings a 4.2% improvement in Top-1
accuracy. These results and observations prove the necessity
of the proposed HSSL method. We also investigate whether
relatively weaker auxiliary heads can enhance stronger base
models. Tab. 2 shows positive results. For example, the weaker
PoolFormer [113] improves the Top-1 accuracy of the Swin
[12] base model by 0.9%. This indicates that our HSSL method is
robust to different model architectures and can brings consistent
improvements under different settings.

3.3 Heterogeneity Brings Gains

While the HSSL takes effect across different pairs of the base
model and the auxiliary head, we further explore how the aux-
iliary head enhances the base model. Specifically, we observe
that the auxiliary head can solve a part of samples that the base
model cannot. To illustrate this, we first define sets By, Bs, and
H, which contain the samples that can be correctly solved by
the base model pre-trained by baseline (DINO [2]), the base
model pre-trained by HSSL, and the auxiliary head pre-trained
by HSSL, respectively. Meanwhile, U means the set that contains
all samples of a dataset. Then H N (U — By ) contains the samples
that the auxiliary head can solve but are beyond the capacity of the
base model pre-trained by baseline. The number of these samples
is defined as follows:

N, = [HN(U - By)|. )

Taking ViT as the base model, we show that the auxiliary head
can solve some samples that are beyond the ability of the base
model in Tab. 3. More importantly, an auxiliary head, which can
solve more samples unsolved by the base model, brings more
significant improvements to the base model.

We further investigate whether the base model can address
those samples in H N (U — By ) under the guide of the auxiliary
head. After pre-training by HSSL, both the base model and the
auxiliary head can address some samples that are beyond the
capacity of the baseline. These samples can be represented as
By N (U — By) and H N (U — By) for the base model and
the auxiliary head, respectively. We notice that there exists a
substantial overlap between these two subsets. The degree of
overlap can be quantified as follows:

|BoN(U—-B)NHN (U — By)|
|B2 N (U — By)| '
Tab. 3 shows the sIoU obtained by different auxiliary heads when
using ViT as the base model. For example, there is a 70% overlap
when using ConvNext [110] as the auxiliary head. The high

overlap demonstrates that the improvements in the base model
can mainly be attributed to complementarity and heterogeneity.

sloU = (€]

3.4 Analysis of Model Discrepancy

Different auxiliary heads produce different effects for a specific
base model, as shown in Tab. 1. For ViT, a transformer-based base
model, using ConvNext as the auxiliary head is more suitable than
the others. When ResNet is the base model, utilizing ResMLP and
ViT as auxiliary heads can complement global modeling ability
and bring more significant improvements. The above observation
motivates us to delve deep into what makes a good auxiliary head.
By investigating different architectures, we discover that a more
significant discrepancy between the base model and the auxiliary
head brings more gains to the base model. This phenomenon
inspires us to propose a search strategy to quickly determine
the most suitable auxiliary head for a specific base model in
Section 3.5 and several simple but effective methods to magnify
the discrepancy in Section 3.6.

Model discrepancy. During heterogeneous self-supervised learn-
ing, the auxiliary head learns a part of characteristics that are
missing from the base model itself. That is to say, there exists
a representation discrepancy between the base model and the
auxiliary head, i.e., the discrepancy between 2 and zf'. Taking
the self-clustering based methods [2], [10] as an example, the
2% defined in Section 3.1 means probability distributions over
K dimensions. Then, we use the Kullback-Leibler divergence to
measure the discrepancy as follows:

N\T Z{L
D= —(z) 1og<;)7 )
1

where 2 and 2 are extracted from the teacher network after
pre-training.
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Fig. 3. In (a)-(c), we visualize the relationship between the improvements in the base model (ViT-S/16) and three factors, including (a) the
representation discrepancy between the base model and the auxiliary head, (b) the number of parameters of a 1-layer auxiliary head, (c) The
capacity of the architecture that is used to build the auxiliary head. For the capacity of each architecture, we use the supervised classification
accuracy on ImageNet-1K, reported in the official paper of each architecture, as a reference to its capacity. In (d), we show a consistent trend
between the discrepancies obtained by searching and examining each auxiliary head individually. In all figures, the size of the dot is positively
related to the improvement brought by the corresponding auxiliary head.
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Fig. 4. Training dynamics of the discrepancy or similarity between the base model and the auxiliary head during pre-training. Left: The discrepancy
D (defined in Equ. (5)) between the base model and the auxiliary head when using ConvNext [110] or ResMLP [112] as the auxiliary head and
using ViT [109] as the base model. Middle: The feature-level CKA similarity between the base model and the auxiliary head. Right: The feature-

level Procrustes similarity between the base model and the auxiliary head.

More significant discrepancy leads to greater improvements.
Taking ViT-S/16 as an example of the base model, in Fig. 3 (a),
we show its improvement when it learns from each auxiliary head
and its discrepancy with each auxiliary head. It can be observed
that there is a positive relationship between improvements and
discrepancies. A more significant discrepancy means the auxiliary
head learns more characteristics that are missing from the base
model, thus prompting the base model to complement more
characteristics.

To further confirm whether the improvement comes from the
heterogeneity, we analyze other factors, including the number
of parameters of the auxiliary head and the capacity of the
architecture used to build the auxiliary head, where we use the
supervised classification accuracy on ImageNet-1K [13], which is
reported by the official paper of each architecture, as a reference
to the architecture capacity. As shown in Fig. 3 (c) and (d), both
factors have no positive correlation with the improvement. For
example, ViT [109] has a larger capacity than ResNet [111], but
ResNet is more suitable than ViT when serving as the auxiliary
head. These results demonstrate that a greater improvement is not
from a stronger auxiliary head but the heterogeneity.

The dynamic of model discrepancy. Based on the discrepancy
analysis, we investigate how auxiliary heads influence the base
model during pre-training. Fig. 4 provides detailed insights into
the interaction between the base model and auxiliary heads,
showing the discrepancy D (as defined in Equ. (5)), CKA
similarity, and Procrustes similarity between the base model and
the auxiliary head, respectively. From Fig. 4, we observe that the

discrepancy initially increases and then decreases during training.
Notably, heterogeneous supervision significantly amplifies the
discrepancy and reduces the similarity, as evident in the middle
and right panels. This observation suggests that heterogeneous
supervision encourages the base model to learn from the auxiliary
head. Moreover, the left panel demonstrates that using ConvNext
as the auxiliary head induces a larger discrepancy than ResMLP
when ViT is employed as the base model. This aligns with
previous analysis, which indicates that a larger discrepancy can
lead to greater performance improvements. Naturally, the model
discrepancy provides us with the possibility to select the optimal
auxiliary head for a specific base model.

3.5 Searching for Suitable Auxiliary Heads

A suitable auxiliary head provides more characteristics missing
from a specific base model, thus complementing the base model
better and producing higher improvements. However, in the
unsupervised setting, there is no annotated data to evaluate each
auxiliary head. Inspired by the positive relationship between the
discrepancies and improvements, we use the model discrepancy
to determine the most suitable auxiliary head for a specific base
model via a label-free approach. However, due to the vast number
of candidate auxiliary heads, testing candidates one by one is
time-consuming. Thus, we propose an efficient search strategy to
find the auxiliary head with the largest discrepancy to the base
model through one quick training.

Quick Search Strategy. Unlike the standard HSSL architec-
ture, which employs a single auxiliary head, we arrange all the
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second terms of Equ. (6). Projection heads are omitted from for clarity.

TABLE 4
Cooperation of multiple auxiliary heads when using ViT as the base
model. ‘D’ represents the discrepancy degree between the auxiliary
head and the base model.

Auxiliary Head D Top-1 Top-5
ResMLP 7.3e-2 72.6 87.8
ConvNext 8.7e-2 72.7 87.6
ConvNext+ResMLP 11.0e-2 73.7 88.2

candidate auxiliary heads in parallel during training, as shown in
Fig. 5. This allows each auxiliary head to independently perform
heterogeneous self-supervised learning without interference. Sup-
pose there are N candidate auxiliary heads, each corresponding
to a distinct architecture. For the inputs x; and zo, we first
send them to the base models in teacher and student branches
to generate representations 20 = fi(z1) and 25 = fo(x2),
respectively. Then, in the teacher branch, the N auxiliary heads
further process z{ and produce heterogeneous representations
{2 | i € [0, N — 1]}. Similarly, the student branch generates
{zh% |3 € [0, N — 1]}. For the i-th auxiliary head, we define the
loss function like Equ. (1) as follows:

LM = £ 25) 4+ L£(21, 259, (6)

The overall loss function across all auxiliary heads is given by:
1 Nl
£o==—>y rh 7
~ ; @)

In practice, the features in Equ. (6) are passed through indepen-
dent projection heads before calculating the loss, as commonly
adopted in prior work [2], [5]. During searching, we apply an
independent projection head for each auxiliary head. To minimize
mutual interference, the representations le’ /2 of the base model
are passed into separate projection heads when paired with
different auxiliary heads. For clarity, these projection heads are
omitted in Equ. (6) and Equ. (7).

TABLE 5
Analysis of the shortcut connection in the auxiliary head. Here, we
adopt ViT as the base model and ConvNeXt as the auxiliary head.

The first shortcut D Top-1 Top-5
Preservation 5.6e-2 71.0 86.8
Removal 8.7e-2 72.7 87.6
74 0.10
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8*72 Qa
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Fig. 6. Influence of network depth in the auxiliary head. We take the
ViT as the base model and ConvNext as the auxiliary head.

After training with Equ. (7), we calculate the discrepancy
between the base model and each auxiliary head. For the ¢-th
head, the discrepancy D; is computed as:

b\T 21"
D = —(21)" log(—)- ®)
21
Finally, the auxiliary head with the largest discrepancy is selected:
arg max D;, (©)]
K2

where the i-th auxiliary head is identified as the most comple-
mentary auxiliary head to the base model. Therefore, the optimal
auxiliary head for the base model can be rapidly identified.

Searching time. Compared to examining each auxiliary head
through multiple training, the proposed search strategy requires
only one training. Because we use a very shallow auxiliary head,
the base model accounts for most of the computational budget
during training. As a result, when there are six auxiliary heads,
training with all of them simultaneously, i.e., the proposed search
strategy, requires only 1.4X training time than training with one.
Thus, the search strategy requires only about 114;61 ~ 23% of
the time required by examining all auxiliary heads one by one.
Meanwhile, we empirically discover that using only 10% of the
training data is enough for searching, further reducing the search
time significantly.

Searching results. Taking ViT as the base model, we analyze the
relative relationship of its discrepancies with different auxiliary
heads. As shown in Fig. 3 (b), the relative relationship obtained
during searching aligns with that obtained by testing each aux-
iliary head individually, verifying the effectiveness of the search
strategy.

3.6 Enlarging the Model Discrepancy

Section 3.4 demonstrates that a larger model discrepancy can
bring more improvement gains. Inspired by this observation, we
propose three simple but effective technologies to magnify such
discrepancy and further boost the performance.

Cooperation of multiple auxiliary heads. The base model
only learns limited characteristics from a specific auxiliary head.
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Fig. 7. Three strategies to enlarge the model discrepancy. For each strategy, the left shows the baseline and the right shows the specific strategy.

Inspired by the principles of ensemble learning, where combining
multiple models can bring performance improvements, we try
to combine multiple auxiliary heads built by distinct architec-
tures to complement more characteristics that are missing from
the base model. Specifically, supposing there are n auxiliary
heads composed of different architectures, we represent them
as {hi]i € [1,n]} and {R%]i € [1,n]} in teacher and student,
respectively. With the representations zi’ /2 produced by the base
model, each auxiliary head iﬁ1 /2 Processes them and generates

repres.entations hi /2 (zll’ /2). As shown in Fig. 7 (a), these repre-
sentations are combined as follows:

217y = concat({hf (2] 5)li € [1,1]}), (10)

where concat means the concatenation along the channel dimen-
sion. Then, we substitute these representations into Equ. (1) and
get the new loss functions as follows:

L= L(2¢,28) + L£(zhe, 2he). (11)

Compared to a single auxiliary head, multiple ones can provide
more characteristics required by the base model. As shown in
Tab. 4, when using two auxiliary heads simultaneously, i.e.,
ConvNext [110] and ResMLP [112], we achieve greater improve-
ments than just using ConvNext or ResMLP. This demonstrates
that our HSSL method can achieve further improvements through
cooperation of multiple auxiliary heads.

Deepening the auxiliary head. Several works [125], [126] have
observed that representations learned across different layers of
a model exhibit discrepancies, with larger gaps between layers
resulting in greater disparities. Meanwhile, a deeper network can
learn more powerful representations [111]. Thus, we are inspired
to deepen the auxiliary head to make it learn more characteristics
different from the base model. This is implemented by simply
stacking more blocks on the auxiliary head, as shown in Fig. 7 (b).
The results in Fig. 6 verify that deepening the auxiliary head from
one to three layers enlarges the discrepancy and brings greater
improvements.

Removing the first shortcut connection. In most architectures,
the shortcut connection is utilized by default to ensure conver-
gence. However, in our HSSL, we observe that the shortcut in the
first layer of the auxiliary head reduces the discrepancy between

the base model and the auxiliary head. To illustrate this argument,
we take a two-layer auxiliary head as an example, where the two
layers are represented as F; and F5, respectively. We use z to
represent the output of the base model. When remaining the first
shortcut, the auxiliary head outputs z+ F} (2)+ Fo(z+F1(z)). In
comparison, the auxiliary head outputs Fy(z) + F5(F1(2)) when
we remove the first shortcut. We can observe that the former
directly adds z, i.e., the output of the base model, to the output
of the auxiliary head, thus reducing the model discrepancy. This
phenomenon is further illustrated in the supplementary material.
Thus, we remove the first shortcut connection, as shown in Fig. 7
(c). This approach enlarges the discrepancy and leads to more
significant improvements, as shown in Tab. 5.

4 EXPERIMENTS
4.1 Experimental Settings

We integrate HSSL with a wide range of self-supervised methods,
including MoCov3 [24], DINO [2], AttMask [74], iBOT [10],
MAE [5] and MFF [81]. For each method, we follow its official
implementation. During pre-training, we adopt ViT-S/16 or ViT-
B/16 architecture as the base model, and the auxiliary head
uses the ConvNext architecture unless otherwise specified. In the
auxiliary head, we default the depth to 3 and remove the shortcut
connection at the first layer. More details about pre-training and
fine-tuning are shown in the supplementary material.

4.2 Experimental Results

Image classification on ImageNet-1K. We first fully fine-tune
the base models on ImageNet-1K and compare the classification
performance, as shown in Tab. 6. Using ViT-B/16, HSSL im-
proves by 0.5% in Top-1 accuracy over iBOT [10] when pre-
training for 400 epochs. With 600 epochs, HSSL can achieve
84.1% Top-1 accuracy, even outperforming iBOT of 1600 epochs.
We also combine HSSL with masked image modeling (MIM)
based methods, and the implementation details are shown in the
supplementary material. In Tab. 6, HSSL enhances MAE by 0.4%

2. For a fair comparison, we report effective epochs [10] that account for
actual images used during pre-training. For iBOT and DINO that use 10 local
crops, the number of effective epochs is four times the number of actual
epochs.



TABLE 6
Cooperating the proposed HSSL with various architectures and
frameworks. We report Top-1 on the validation set of ImageNet-1K
[13], using the evaluation protocols of fully fine-tuning, linear probing,
and k-NN, respectively. T means that we use the multi-crop strategy [2]
with 2 global crops of 224 x 224 and 10 local crops of 96 x 96.

Architecture Epoch? Fine-tuning Linear k-NN

mﬁg ELHSSL VIT-S/16 400 gg:g i -
MoColdlmssL  VFVIO 200 T g o
DINO DhsmssL  VEMIS 200 T G ol
iBoT [opmssL VPSS 200 T g0 03
DG jless,  VITSIS a0 T T 00
ot loss,  ViTSIe a0 03 T 22
Nk Dl anssr, ViTSne a0 T Jen B
o loss,  ViEBie a0 B9 T8 T
othonss, VRIS a0 S B T
MRF[siemss.  VTBAS 300 g T
DNODhmssL  SMRT 200 T g g
Bigg %LHSSL PVT-Small - 200 i g;:g 241,2

on Top-1 accuracy after pre-training ViT-S/16 for 400 epochs.
Compared to MFF [81], we advance the performance by 0.3%
Top-1 accuracy after pre-training ViT-B/16 for 300 epochs.

We also evaluate the effectiveness of HSSL using k-NN and
linear probing on the ImageNet-1K dataset. As shown in Tab. 6,
HSSL consistently improves various methods, including instance
discrimination based (e.g., DINO [2] and MoCo [24]), and hybrid
methods that combine instance discrimination with MIM (e.g.,
iBOT [10] and AttMask [74]). For example, when pre-training
ViT-B/16 by 400 epochs, HSSL advances iBOT by 1.6% in linear
probing accuracy. Meanwhile, HSSL can achieve comparative
performances over iBOT with even fewer epochs (600 vs. 1600
epochs). These results show that HSSL enhances the ability of
classification and is orthogonal to existing representation learning
methods. Moreover, Tab. 6 highlights that HSSL can enhance
different transformer architectures, extending beyond the plain
vision transformer [109]. For example, HSSL improves the Swin-
T [12] and PVT-Small [133] by 2.0% and 1.9% in linear probing
accuracy, respectively, after pre-training for 200 epochs.

Finally, we directly compare our HSSL with prior methods,
as shown in Tab. 7. Compared to instance discrimination based
methods, our method pre-trained for 600 epochs achieves 84.1%
and 79.6% Top-1 accuracy on fully fine-tuning and linear probing,
respectively, outperforming methods such as iBOT [10] that
requires 1600 epochs to achieve 79.5% linear probing accu-
racy. Even with a shorter pre-training schedule of 400 epochs,
HSSL still surpasses iBOT by 0.5% and 1.6% on fully fine-
tuning and linear probing, respectively. Although some MIM-

TABLE 7
Comparison with previous methods using ViT-B/16 [109]. T means the
usage of a pre-trained perceptual codebook for the tokenization.

Epochs? Fine-tuning Linear

MoCo [24] 600 83.2 76.7
DINO [2] 1600 83.6 78.2
SimMIM [41] 800 83.8 56.7
MAE [5] 1600 83.6 68.0
iBOT [10] 400 83.3 77.8
MaskFeat [83] 1600 84.0 -

BootMAE [94] 800 84.2 66.1
SdAE [90] 300 84.1 64.9
BEIT [40] 800 83.2 56.7
SiameseIM [88] 400 83.7 76.8
MOKD [122] 400 - 78.0
LocalMIM [84] 1600 84.0 -

MFF [81] 800 83.6 -

CIM [45] 300 83.3 -

ConMIM [87] 800 83.7 39.3
ccMIM [101] 300 83.6 66.9
ccMIM [101] 800 84.2 68.9
PeCo [92]F 300 84.1 -

SERE [8] 400 83.7 77.9
iBOT [10]+HSSL 400 83.8 79.4
iBOT [10]+HSSL 600 84.1 79.6
MFF [81]+HSSL 300 83.6 -

TABLE 8

Comparison on semantic segmentation. We fine-tune UperNet [127]
with the ViT-B/16 [109] as the backbone on the ADE20K [128] dataset,
following existing works [5], [10].

Architecture Epochs? mloU
MoCo [24] 600 47.2
DINO [2] 1600 46.8
MAE [5] 1600 48.1
BootMAE [94] 800 49.1
SdAE [90] 300 48.6
BEIT [40]% 800 45.6
SiameseIM [88] . 400 49.6
MixedAE [129] VIT-B/16 800 48.7
LocalMIM [84] 1600 49.5
MFF [81] 800 48.6
ConMIM [87] 300 46.0
ccMIM [101] 800 47.7
PeCo [92]F 300 485
SERE [8] 800 50.0
iBOT [10] 400 479
iBOT [10] ViT-B/16 1600 50.0
iBOT [10]+HSSL 400 50.3
iBOT [10] 400 45.2
iBOT [10] ViT-S/16 3200 454
iBOT [10]+HSSL 400 46.1

based methods, e.g., ccMIM [101] and BootMAE [94] deliver
competitive performance in fine-tuning, they lag in linear probing
accuracy and may exhibit limited effectiveness on downstream
tasks, as shown in Tab. 8. In contrast, HSSL achieves superior
performance across both linear probing, fine-tuning, and down-
stream tasks.

Transfer learning on image classification. Besides ImageNet-
1K, we also transfer the pre-trained base models to other classifi-
cation datasets, including CIFAR [131] and iNaturalist [132]. As
shown in Tab. 11, HSSL brings consistent improvements across
different datasets, demonstrating superior transferability.



TABLE 9
Comparison on object detection and instance segmentation with
ViT-B/16. We fine-tune the models on the COCO [16] dataset and
report AP™ as segmentation mask AP and APP as bounding box AP,
respectively.

Architecture Epochs? AP™ APP
DINO [2] 1600 434 501
MAE [5] ViT-B/16 1600 443 513
SERE [8] 400 438 507
MEFF [81] ‘ 300 432 500
MFF [81]+HSSL VIT-B/16 300 437 505
iBOT [10] A 400 432 501
iBOT [10]+HSSL VIT-B/16 400 440 510
iBOT [10] . 1600 442 512
{BOT [10]+HSSL VIT-B/16 600 443 514

TABLE 10

Cross-domain transferring learning on RAW object detection. The
models are fine-tuned on AODRaw [130], which collects RAW images
for object detection. Apart from the Average Precision (AP) [16], we
also report AP75 and AP5g at the loU threshold of 0.75 and 0.50. AP,
AP.,, and AP, mean the AP for small, medium, and large objects.

Architecture  Epochs®> AP APsy  AP75

DINO [2] . 200 289 457 302

pINO [2j+hssL. SWITI2L 500 295 465 308
TABLE 11

Transfer learning on more image classification benchmarks, including
CIFAR [131] and iNaturalist [132].

Architecture Epochs2 Cifar;go INaty;g INatjg

iBOT [10] 400 92.1 740 784
iBOT [10] ViT-B/16 1600 922 74.6  79.6
iBOT [10]+HSSL 400 922 752 797

Transfer learning on semantic segmentation. We use UperNet
[127] as the segmentation model for evaluating semantic seg-
mentation performance. Following prior works [10], we fine-tune
the models on the ADE20K [128] dataset. As shown in Tab. 8,
HSSL achieves 50.3% mloU after pre-training ViT-B/16 for 400
epochs. Notably, HSSL outperforms iBOT [10], which requires
1600 epochs of pre-training to achieve similar results. Using
ViT-S/16 pre-trained for 400 epochs, HSSL also advances iBOT
[10] by 0.9% mlIoU. These results highlight the effectiveness of
HSSL on dense prediction.

Transfer learning on instance segmentation. Following [10],
we use Cascade Mask R-CNN [134] to implement instance
segmentation and object detection. As shown in Tab. 9, HSSL ad-
vances iBOT [10] by 0.8% AP™ and 0.9% APP with just 400
epochs of pre-training. Compared to MFF [81], HSSL delivers a
0.5% improvement in both AP™ and APP. Notably, HSSL also
reduces training costs, achieving superior performance by low-
ering the required pre-training epochs from 1600 (as in iBOT
[10]) to just 600. Furthermore, Tab. 10 shows that our method
significantly improves object detection accuracy in the RAW
domain [130], demonstrating strong cross-domain generalization.

Cross-domain transferring. We also evaluate the pre-trained
models on the AODRaw [130] dataset, designed for object detec-
tion in the RAW domain. The RAW domain presents a significant
domain gap compared to the SRGB domain on which we pre-

TABLE 12
Semi-supervised classification on ImageNet-1K [13]. We utilize linear
and k-NN classifiers with 1%/10% labels and report the Top-1

accuracy.

Architecture  Epochs? 1%  10%

iggi HgLHSSL VITB/16 188 22:? Zgjg
TABLE 13

Semi-supervised semantic segmentation on ImageNet-S [25]. We
report the mloU on the val and test sets. The PT means pre-trained
weights initiate the model, and FT means fully fine-tuned weights
initiate the model, respectively.

Architecture Epochs? ImageNet-Sp ImageNet-Sr

val test val test
iBOT [10] 400 483 478 626 63.0
iBOT [10] ViT-B/16 1600 50.5  50.1 - -
iBOT [10]+HSSL 400 515 511 63.5 63.1

train models. The results show that our HSSL achieves a 0.6%
improvement in AP when pre-training Swin-T for 200 epochs,
highlighting its strong cross-domain generalization capability.

Semi-supervised learning. Collecting annotations requires huge
costs. Semi-supervised learning can reduce the demand for expen-
sive annotations. Thus, we also evaluate the ability of HSSL in
semi-supervised classification and semantic segmentation. We
follow the paradigm in [10] for semi-supervised classification to
fine-tune the pre-trained base models with a part of labels. As
shown in Tab. 12, HSSL improves by 1.3% and 0.5% in Top-
1 accuracy over iBOT [10] when using 1% and 10% training
labels, respectively. For semi-supervised semantic segmentation,
we fine-tune the base models on the ImageNet-S [25] dataset,
in which 919 categories and 9190 labeled images are included.
Tab. 13 reports the mIoU on the val and test sets. We can observe
that HSSL significantly improves iBOT [10] by 4.7% and 4.2%
mloU on the val and test sets.

Unsupervised semantic segmentation. We evaluate the pre-
trained base models with unsupervised semantic segmentation.
For training, we follow the pipeline proposed in [25] and consider
three datasets [25], i.e., ImageNet-S5p, ImageNet-S3p9, and
ImageNet-S datasets. As shown in Tab. 14, HSSL outperforms
iBOT by 1.8% mloU on the ImageNet-S dataset. The results in
semi-supervised and unsupervised learning show that HSSL ben-
efits the perception and recognition in the absence of labels.

Time and memory usage. Tab. 15 shows the time and memory
usage required by iBOT [10] and our HSSL. Compared to
the baseline, the HSSL only increases negligible computation
costs because the serial connection between the base model and
the auxiliary head enables the auxiliary head to extract helpful
representations with just a few layers.

5 ABLATION AND ANALYSIS

We perform ablation studies by pre-training models for 100 actual
epochs on the ImageNet-S30p to save computation costs. By
default, we set the depth of the auxiliary head to 1. We evaluate
the performance by reporting knn classification accuracy (Cls.) on
the ImageNet and segmentation mloU (Seg.) on the ImageNet-S.



TABLE 14
Unsupervised semantic segmentation on ImageNet-S [25].
919/300/50 mean the ImageNet-S/ImageNet-S30o/ImageNet-Sio
datasets, respectively. We follow the pipeline and setting proposed in
[25] and report mloU on the val and test sets. Here, we do not adopt
the multi-crop strategy for the representation learning.

Datasets  Architecture Epochs®  val  test
iggﬁigLHSSL 0 vitsde 40 GG
BOT [lo}mssL, 0 VSIS 200 Geg G0y
BoT[l0jmssL 19 VSIS 20030 g

TABLE 15

Time and memory usage during pre-training on an 8-GPU machine,
with a batch size of 256 and 10 multi-crops of 96 x96.

Architecture  Epochs?  Time (h) Memory (G)
iBOT [10] . 82.7 18.3
{BOT [10]+HSSL VI 1-B/16 400 94.5 214
TABLE 16

Ablation for the supervision manner on the base model. B and A mean

the base model and the auxiliary head, respectively. A—B means that

the auxiliary head supervises the base model. B—B means the base
model supervises itself.

Seg. Cls.

mloU Top-1 Top-5
A—A 16.1 26.5 48.0
A—A +B—B 31.4 68.0 86.4
A—A +A—B 36.9 72.7 87.6

TABLE 17

Ablation for the structure of the auxiliary head.

Seg. Cls.
mloU Top-1 Top-5
MLP 35.8 70.0 86.3
Token Mixer 36.3 70.1 86.4
MLP + Token Mixer 36.9 72.7 87.6
TABLE 18

Ablation for the shared projection and not shared projection.

Shared proj. Seg. Cls.
mloU Top-1 Top-5
v 35.8 72.3 87.5
X 36.9 72.7 87.6

Effect of the supervision manner. After connecting the auxiliary
head, we investigate whether to use the base model itself or
the auxiliary head to guide the base model, where the former
is homogeneous and the latter is heterogeneous. As shown in
Tab. 16, the heterogeneous manner outperforms the homogeneous
manner, achieving 5.5% higher mloU and 4.7% higher Top-
1 accuracy. These results verify that heterogeneous supervision
is essential, allowing the base model to learn complementary
characteristics from the auxiliary head.

Structure of the auxiliary head. We use a unified framework
for different auxiliary heads, which includes a token mixer and

10

TABLE 19
Ablation for parallel and serial connections of the auxiliary head. We
use a depth of 3 for serial connection. We show the multiples relative
to the baseline for the time and memory costs.

Seg. Cls. Computation cost
mloU Top-1 Top-5 time memory
baseline 29.3 67.5 84.4 x1.00 x1.00
parallel 34.6 72.8 87.2 x2.53 x2.25
serial 37.1 73.9 88.4 x1.09 x1.12
TABLE 20

Utilizing heterogeneous self-supervision on different granularity when
using ViT, taking iBOT [10] as an example.

Image-level Patch-level Seg. Cls.
mloU Top-1 Top-5
X X 423 75.1 393
v X 46.2 75.8 89.4
v v 46.7 76.0 395
TABLE 21

Comparison with the strategy of deep-to-shallow (DTS) [25].

Seg. Cls.
mloU Top-1 Top-5
baseline 29.3 67.5 84.4
+DTS 30.5 68.6 85.4
+HSSL 36.9 72.7 87.6

an MLP block. Here, we take ConvNext as an example and
evaluate the effect of the token mixer and MLP block. The results
presented in Tab. 17 show that the token mixer plays a more
crucial role, leading to improvements of 0.6% mloU and 2.6%
Top-1 accuracy compared to the MLP block.

Whether to share the projections. Before calculating the
losses, self-supervised learning methods usually process the
teacher/student representations through some projection heads.
Tab. 18 investigates whether to share the projections between
the base model and the auxiliary head. The results indicate that
not sharing the projections provides an advantage of 1.1% mloU
and 0.4% Top-1 accuracy. Due to the different architectures, the
representations between the base model and the auxiliary head
have discrepancies, and not sharing the projections allows greater
flexibility in processing the discrepancy.

Parallel or serial connection for the auxiliary head. We can
connect the auxiliary head and the base model in serial or parallel.
For the parallel connection, we use the entire ConvNext-Tiny
as the auxiliary head that directly takes the images as input. In
contrast, the serial connection allows the auxiliary head to extract
rich information with just a few layers. As shown in Tab. 19, the
parallel arrangement requires about 2.32 X training time com-
pared to the serial connection. Moreover, using serial connection
achieves better performances than parallel arrangement, achieving
better computational efficiency.

Cls token and patch token. Some methods [8], [10], [74] calcu-
late losses on different granularity simultaneously. Taking iBOT
[10], which considers losses on both image-level and patch-level,



as an example, Tab. 20 shows the effects when using HSSL on
different granularity. Note that when only using HSSL on the
image-level, the pixel-level self-supervision is only used between
the base models of teacher and student. It can be seen that the base
model can learn the majority of the helpful information from the
auxiliary via only image-level supervision. Meanwhile, learning
with pixel-level supervision also brings further improvement.
These results show that we can save computational costs by only
applying HSSL on the image-level.

Comparison with deep-to-shallow. The deep-to-shallow en-
hances the representations of a shallow layer with supervision
from a deeper layer within a homogeneous architecture. As shown
in Tab. 21, this strategy only leads to a slight improvement in the
ViT, likely because the deep and shallow layers in ViT are highly
similar [135], making the supervision lack diversity. In contrast,
the heterogeneous self-supervised learning prompts the ViT to
learn diverse knowledge, achieving significant improvements of
6.4% mloU and 4.1% Top-1 accuracy over the DTS.

6 CONCLUSION

In this paper, we propose heterogeneous self-supervised learn-
ing (HSSL). Specifically, we enforce a base model to learn from
an auxiliary head whose architecture is heterogeneous to the
base model, endowing the base model with some characteristics
that are missing from itself. Furthermore, we discover that the
discrepancy between the base model and the auxiliary head is
positively correlated to the improvements brought by HSSL. This
positive correlation motivates us to propose an efficient search
strategy that finds the most suitable auxiliary head for a specific
model and several simple but effective designs to enlarge the
model discrepancy. We show that HSSL is orthogonal to different
self-supervised learning methods and boosts the performance on
various downstream tasks, including image classification, seman-
tic segmentation, object detection, and instance segmentation.

Limitations and further works. HSSL has been successfully
integrated with various self-supervised learning methods to en-
hance performance. However, certain methods, such as those in
[66], which utilize representations extracted from a frozen pre-
trained model as learning targets, are less straightforward to
adapt. Future work could focus on developing more general or
specialized approaches to effectively incorporate heterogeneous
representation learning with a broader range of methods. Addi-
tionally, HSSL measures model discrepancy using the Kullback-
Leibler divergence between the probability distributions output by
different models. While this metric is well-suited for clustering-
based self-supervised learning, alternative metrics, such as CKA
similarity [136], could be explored to evaluate discrepancy for
other self-supervised learning methods that output representa-
tions. Regarding the searching strategy, future research can also
aim to design more accurate and efficient search strategies that
accommodate a wider range of models, including those with
complex structures, further broadening the applicability and scal-
ability.
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