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Abstract—We present a semi-automatic image editing framework dedicated to individual structured object replacement from groups. The
major technical difficulty is element separation with irregular spatial distribution, hampering previous texture and image synthesis methods
from easily producing visually compelling results. Our method uses the object-level operations and finds grouped elements based on
appearance similarity and curvilinear features. This framework enables a number of image editing applications, including natural image

mixing, structure preserving appearance transfer, and texture mixing.

Index Terms—natural image, structure analysis, texture, image processing

1 INTRODUCTION

Image analysis and editing provide an important approach
to producing new content in computer graphics. We propose
here a dedicated system for users to replace structured
objects selected from groups while preserving element
integrity and providing visual compatibility. It proffers
an unconventional way to create new image content with
structured objects, even when they are irregularly arranged.
The objects are allowed to be dissimilar in appearance and
structure, as shown in Fig. 1.

Image and texture synthesis from multiple exemplars have
been explored in previous work. Pixel-level texture ap-
proaches make use of similar statistical properties to gener-
ate new results [4], [9], [44]. Patch-based texture synthesis
[15] is another set of powerful tools to selectively combine
patches from different sources [24]. Recently, Risser et
al. [35] employed multi-scale neighborhood information to
extend texture synthesis to structured image hybrids. They
are useful for creating new image or texture results based
on examples.

These methods are general; but in the context of object
replacement within groups, they may not be able to produce
visually plausible effects without extensive user interaction.
Grouped elements can be rapidly and integrally perceived
by the human visual system (HVS) [22], which indicates
only considering pixel- or patch-level operations may not
be enough to understand the individual structured element
properties. Our system is composed of object-level editing
algorithms and does not assume any particular texture form
or near-regular patterns. Our major objective is to deal with
natural images containing piled or stacked objects, which
are common in real scenes, from the individual perspective.
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Fig. 1. A mixture created by our approach. Cookies are
replaced by plums while maintaining a visually plausible
structure.

The naturalness of element replacement depends on the
compatibility of input and the result structures. It is mea-
sured in our system by the element-separability scores,
combining curvilinear features and multi-scale appearance
similarity. Objects are extracted based on these metrics,
with initial center detection followed by a Dilate-Trim
algorithm to form complete shapes. Our method also finds
suitable candidates for element replacement to ensure the
result quality. Our main contribution lies in an object-level
manipulation method without regularity assumption and on
a new scheme to measure object structure compatibility.

2 RELATED WORK

Image composition is a well studied problem in computer
graphics. Early work of Porter and Duff [34] used an alpha
matte to composite transparent objects. Recent advance in
alpha matting [41] made it possible to generate natural and
visually plausible image composite with global or local
operation. For our problem, directly apply alpha matting to
replace one object by another can generate visual artifacts
when illumination conditions vary. Poisson blending [33]



(a) Input image

(b) Appearance similarity

(c) Element-separability

(d) Detected elements (e) Replacement result

Fig. 2. Framework: (a)the user selects one point, and our system generates an appearance similarity map (b), informative
for finding objects in groups. After curvilinear feature refinement, we obtain the separability map (c). In (d), yellow dots
represent elements detected by our method, with their core regions marked in blue. A replacement result is shown in (e).

and its variations reduce color mismatching by computation
in the gradient domain. Farbman et al. [17] achieved sim-
ilar composition results efficiently. Research efforts have
also been made to select candidates for composition from
image database [26] or internet images [10]. Such methods
minimize composition artifacts while keeping the original
object shape complete. In our problem, it is essential to
seek proper image content to replace items in groups
via compatible structures. We also do not simply copy
the whole region to the target image for blending. There
are procedures to refine boundaries to improve the visual
quality of the results when in common situations that the
found source and target objects are diverse in structure.

Our work is also related to example-based texture synthesis.
Efros and Leung [16] proposed a non-parametric pixel-wise
method to synthesize new texture from a user provided
example, trying to preserve as much local structures as
possible. The efficiency and capability were improved by
tree-structured vector quantization [43], global optimization
[23], and multi-scale synthesis [18], [27]. Patch based
approaches [15], [24] form another important line for
texture synthesis with the main idea being to find an
optimal seam between adjacent patches. Mask images [32],
[46] and feature maps [37], [45] can be used to guide
texture synthesis. These methods provide a powerful tool
for creating visually similar content from a few examples
[42], but none of them can be applied directly to natural
images for separating grouped elements, and then replacing
objects in a visually plausible way. The main challenge
is that the underlying structured element regions may be
changed in this process, as demonstrated in Fig. 1.

Synthesis and analysis may also be done at the texel
level. Dischler et al. [14] manually segmented texture
into particles. Automatic methods [1], [40] extracted texels
based on sub-tree matching in low-level segmentation. They
can extract texels that are significantly occluded. It is
however time-consuming and can fail when segmentation is
unreliable for grouped elements. Ijiri et al. [21] showed how
to manipulate elements which are distributed near-regularly.

Combining features or visually meaningful content from
different samples, i.e. image/texture mixing, allows users to
produce results with large variation. In prior work such as
image hybrids [35], Risser et al. synthesized image hybrids
from exemplars. Other methods [4], [9], [44] generated new

texture from multiple examples. The mixed area produced
by these methods tends to have similar statistics or visual
characteristics to the source. In RepFinder [12], although
element replacement can be conceptually achieved, stric-
t shape similarity has to be enforced and there is no
consideration of object consistency. In contrast, our work
places elements from different groups, where the visual
characteristics are allowed to be greatly different. Recently,
Ma et al. [31] mixed objects by modeling the combination
of individual elements and their distributions. However, this
method cannot solve our problem and requires users to
manually produce the source elements.

3 GROUPED ELEMENTS ANALYSIS

Replacing content within groups of objects is challenging,
since our human vision system (HVS) is sensitive to scene
integrity, shape compatibility, illumination consistency, etc.
Our method first finds separable objects in the target im-
age based on element-separability analysis, which captures
the global distribution of grouped elements. An element-
separability map is then generated, indicating where to
find individual elements. We use a Dilate-Trim method to
extract element boundaries.

3.1 Multi-scale Appearance Similarity

The first stage of our method is to detect inherent ap-
pearance similarity in the given target group, which helps
analyze element distribution. The necessity of doing this
has been observed in other texel analysis work [2], [8],
[19], [29].

Our system requires the user to choose a point pg to specify
a key appearance feature of the objects to be extracted,
as shown in Fig. 2(a). We use multi-scale descriptors [35]
to measure how this point (together with its neighbors at
different scales) matches other parts of the given image,
which eventually lets us know the possible distribution
of elements in the group. We build a Gaussian pyramid.
The finest level is the original image. Each coarser level
is smoothed and down-sampled by a factor of 2. The
descriptor vector of pixel p at each level has 75D after
stacking all pixels in a 5 x 5 square neighborhood window
in a vector considering 3 colors. The vector at each level



(c) Curve saliency [7]
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Fig. 3. Comparison of curvilinear feature detection method-
s. The local curve magnitude method [11] and the message-
passing based curve saliency map [7] are shown in (b) and
(c). Our result is shown in (d).

is projected to only 6D by principal component analysis
(PCA). If the total number of levels is L, concatenating all
6D vectors in the pyramid yields a 6L-D final descriptor.
Our experiments show that L = 4 is generally a good
choice. Using a larger L can capture a wider range of visual
features with higher computational costs.

We measure the Euclidean distances between the descriptor
vector for py and those for other pixels, which yield an
appearance similarity map S, with the same size as image
I. For each pixel p, its value is denoted as S, (p,po). An
example is shown in Fig. 2(b). Dark pixels are with high
similarity with py with respect to multiscale neighbors.

3.2 Robust Curvilinear Features

Curvilinear features [45], such as edges and ridges, which
primarily describe object boundaries in natural images,
provide strong evidence for finding similar objects. As
shown in Fig. 3(b), curve magnitudes in natural images
are influenced by object occlusion, illumination variation,
local appearance change, etc. The curve detection method
[11], [39] depends on local curve magnitudes and may find
it difficult to maintain boundary continuity.

Perception study shows that long coherent curves are per-
ceptually salient to HVS [6]. Bhat et al. [7] employed a
message passing scheme to find such curves. Albeit ef-
fective, it occasionally breaks object boundaries, hindering
object extraction and transplantation.

We propose a simple method to define curve saliency ac-
cording to curve length and average local curve magnitude.
Our approach starts by finding curvilinear structures [11],
[39], which link confident curve points using orientation

matching. This procedure yields local curve magnitude m,,
for each pixel p (shown in Fig. 3(b)), the length [~ of each
curve C, and corresponding curve points. Based on these,
we define saliency for each curve C' as

5.(C) = N(ﬁ S my) - N(lo), 0

peC

where ﬁzpec my is the average gradient magnitude
along C, as |C] is the number of pixels in C. N (%) is
a Gaussian normalization function [3], keeping 99% of
the values in range [0, 1] after conversion. S.(C') has two
terms, so that a long curve with large saliency is favored.
Combining S.(C) for all curves C, we form a curve
saliency map S.. Each pixel p has a value denoted S.(p).

As shown in Fig. 3(d), our curve saliency map S.(I)
contains more informative structures than those of Bhat et
al. [7], and exhibits coherent curvilinear features. In addi-
tion, our saliency definition is suitable for user interaction
because it only takes a few milliseconds of computation for
a typical natural image, while in [7], tens of seconds are
needed.

3.3 Separation of Structured Objects

The position of each element in the target group is a
potential place to put a new item. Both the appearance
similarity and curvilinear features are important cues for
the HVS. We estimate an element separability map (ES-
map for short) to identify element centers, defined as

S(p) = Sc<p) - wsa(pva) 2

where S.(p) and S, (p,po) are the curve saliency and ap-
pearance similarity values for p respectively. The weight w
is set to 1 in experiments. A smaller w makes the curvilinear
features more readily separate neighboring elements, under
the risk of partitioning one element into two.

The simple ES map is vital for understanding the global
distribution of all elements. Regions with high-similarity of
appearance will present local peaks in the map, while still
being outlined by the curvilinear features. With this map,
elements close to each other can be quickly separated, as
shown in Fig. 2(c).

We perform clustering-based segmentation in the ES map,
by thresholding the map and taking each connected region
as an individual segmented component. The default thresh-
old is set to 0.5. If the threshold is too small, neighboring
elements with unclear boundaries could be recognized as
one. In the segment map M, each region is basically
an element’s core body. The region centroids can thus
be found, highlighted in yellow in Fig. 2(d). The region
boundaries are however coarsely determined, and will be
refined in the next step.



(b) Result of snake

(c) Our result
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Fig. 5. Comparison of the active contour method and our
Dilate-Trim. (a) Separable elements with their core regions.
(b) Mask from active contour. The external energy is calcu-
lated by Equation (3)(c) Our automatically produced result.

3.3.1 Comparison with other methods

2.1D-texels: The element extraction result of 2.1D-texels
[1] is shown in Fig. 4(a) for comparison. This method
applies matching in the segmentation tree to achieve unsu-
pervised element extraction. As the elements may not have
similar subtrees, missing objects and false detection can be
more seriously resulted for this challenging example.

Region of Dominance: Region of Dominance (RoD)
was employed in [28] to extract texels in near-regular
textures based on normalized cross correlation (NCC). RoD
is defined as the largest circle centered at the candidate
peak of NCC. Due to search for dominant peaks, if two
elements are very close, separation cannot be achieved,
as shown in Fig. 4(b). Further, RoD does not provide the
boundary information, which is nonetheless critical for our
object transplantation in groups.

RepFinder: RepFinder was proposed in [12] to detect ap-
proximately repeated elements in natural scenes. A Bound-
ary Band Map(BBM) was employed to extract objects.
However, because RepFinder relies on the shape similarity
to extract objects, it fails when the grouped elements have
different shapes, as shown in Fig. 4(c).

Note that our method does not assume that the elements
are regular in distribution and in appearance. The element-
separability analysis is applicable to examples that are
challenging for near-regular texture methods, and provides
a reliable object separation scheme in general. More results
are shown in later sections.

3.3.2 Element Extraction by Dilate-Trim

Given the computed element centers, i.e., yellow dots in
Fig. 4, we now refine each element’s boundary L by
requiring it to have large gradient magnitude and small
irregularity. The active contour model provides one way
to solve this problem. The summed external energy term
of every contour point is:
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o

where € is a small value to avoid division by zero and
D(p) is the distance from pixel p to the corresponding

ds= Y

= p,po)

Papo

Algorithm 1 Extract an elementary region R by Dilate-
Trim.
Initialize R as one region in M, in Section 3.3;
Initialize R’ = 0;
while R — R’ > 0, where ¢ is a stopping value do
R’ < R; R <+ Dilate(R);
for every pixel p € R do
remove p from R, when S.(p) < t(p);
end for
R <+ largest connected region of R;
end while

center point. However, as Fig. 5 shows, because the active
contour method trades off between the contour smoothness
and external energy distribution, it can not cover all the
details.

We thus use a Dilate-Trim method, sketched in Algorithm 1,
to solve the problem progressively. Specifically, it iterative-
ly dilates regions and then trims them until the added pixels
are less than an adaptive threshold t(p) = S(p)/D(p). t(p)
makes dilation be stopped for pixels with high separation
confidence or distant enough from the center. The border
gradually expands from the element center, and can evolve
differently for various objects, suitable for forming irregular
shapes. As Fig. 5 shows, in comparison with the active
contours, our method can adaptively and more accurately
update object boundaries, fitting our pursuit.

Another popular choice for multi-label segmentation in
element groups is by global optimization, such as graph
cuts and watershed, taking the element centers as seeds.
This scheme cannot handle pixels that do not belong to
any of the elements. One example is shown in Fig. 6(a).
Our method, on the contrary, considers individual elements
starting from their centers, and thus can produce better
shapes as shown in Fig. 6(b). Pixels are allowed to be not
in any of the elements .

3.3.3 Choosing Suitable Elements

We perform Dilate-Trim for each element in the target
image, exemplified in Fig. 2(a), containing a group of
objects. Based on the results, our system allows the user
to choose the element region to replace. Our method then
finds a candidate region from the secondary image with
similar curvilinear feature and compatible with the target
gradient change.

The similarity between the two images is measured by
cross-correlation. We expand the target object boundary by
a few pixels, creating a boundary band map [12]. Then
we calculate cross correlation values between the target
element and all regions in the secondary image on the
bands. The two regions that yield the largest value are
regarded as most compatible. If there are multiple objects
to be processed, we repeat this selection process.
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(a) 2.1D texels (b) RoD

(c) RepFinder (d) Our result

Fig. 4. Comparison of 2.1D texels [1], Region of Dominance (RoD) after NCC [19], RepFinder [12] and our method. Yellow

dots are the detected element centers.

(a) Global optimization (b) Dilate-Trim

Fig. 6. Global segmentation versus dilate-trim. (a) Result
of multi-label segmentation. (b) Our result of dilate-trim on
each element starting from its center.

4 ELEMENT REPLACEMENT

To replace an element R4 in image A by RP obtained
from the secondary image B, object shape needs to be
maintained with natural visual appearance change. This
goal cannot always be achieved successfully when using
gradient-domain image blending. We instead propose a
patch searching strategy to retain visually compatible bor-
ders. The luminance is then transferred to produce final
results.

Poisson blending and tone mapping are useful tools in
image composition. The need to keep object appearance
in our problem, however, is beyond their capability. Firstly,
these methods can drastically change the object color when
the source and target images are quite different. Secondly,
they cannot create natural boundaries for each replaced
object, as shown in Fig. 1.

region boundary
replace replace
c
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search - .

J g

Fig. 7. Element replacement. (a) Region extracted by
Dilate-Trim. (b) Initially replacing R4 by RZ. (c) Our fi-
nal R with boundary refinement on (b). (d) Boundary
refinement by patch-based nearest neighbor search and
replacement, which is visually less pleasing than (c).
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Fig. 8. Three different areas in an object (left). In the
boundary band to be refined, the mask only contain pixels
inside the object (right).

4.1 Boundary Replacement

With the candidate region R” found in the secondary image
B, as described in Section 3.3, we initially replace R* by



R, as shown in Fig. 7(b). R®, by definition, contains
the most similar curvilinear feature as R“ near boundary.
Note that directly copying R still causes visual artifacts.
One intuitive way to improve it is by employing the nearest
neighbor search, like PatchMatch [5], to refine the boundary
of RB. However, as shown in Fig. 7(d), this method does
not perform well enough when A and B do not have similar
structures.

We alternatively look for large intensity variation near
boundaries of R? and R4. The updated region, denoted
as R4, is produced as

pEQURYNIVY -Vl >T

/ RE
RA — arg ming D(p,q)
P RE otherwise

D
“)
where Q(RA") is the 5-pixel width boundary band of R4,
as shown in Fig. 8. ¢ can be any pixel in R”, and HVf —
V;‘H measures difference in gradient. 7" is a threshold, set
to 0.25 by default; our algorithm is insensitive to this value.
D(p, q) is the distance between p and g, defined as

D(p,q) = INE =N +o|VE -V, &)

where Nf and NI‘;‘ are masked local windows centered at
q and p respectively. We use o = 1 in all our experiments
to equally weight the two factors. Pixels p and g have to
be close in both appearance and gradient to yield a small
D(p, q) along the region’s boundary Q(R4").

To design Nf and N[‘f‘, square windows [36], [44] used in
traditional texture synthesis are not appropriate when irreg-
ular boundaries exist. In our method, we only include pixels
that are in region R* for reliable appearance matching, as
illustrated in Fig. 8.

So the overall object replacement can be summarized as a
two-step process, which first copies pixels from RZ to RA.
Then part of the boundary (shown in orange on the left of
Fig. 8(a)) is adjusted according to Equation (4) to improve
appearance compatibility. Fig. 7(c) shows a result.

In Equation (4), to obtain ¢ w.r.t. min, D(p, ¢), we avoid
time-consuming brute-force search in B and only keep
candidate patches in R that have small mean-color differ-
ences to NI‘)“. We maintain the top 20% candidate patches
for detailed comparison in Equation (4).

(a) Before luminance transfer

(b) Luminance transfer result

Fig. 10. Results before and after luminance transfer.

4.2 Luminance transfer

Finally, we approximate luminance from the original image,
and transfer it to the result. Existing luminance transfer
methods [25] mainly consider features and image structure.
Since we already have the appearance similarity value
Sa(p, po) for every pixel indicating the difference between
p and the user selected pixel pg, we define a luminance
score function L(p) for every pixel p:

L(p) = Sa(p:po) - (Inp — Inp ), 6)

where NI;“ denotes the masked neighborhood of p in image
A, and T, NA is the average intensity of pixels in Nf;"
L(p) can be either positive or negative, and is useful to
change the pixel brightness depending on its sign. The final
luminance transfer is performed for each pixel p using

P'(p) = P(p) + AL(p), (7

where P(p) and P’(p) denote the pixel values before and
after luminance transfer respectively, and A\ controls the
level of modification. Large A yields strong highlight or
shadow. We use A\ = 0.75 in all our experiments. Results
before and after luminance transfer are shown in Fig. 10.

5 APPLICATIONS AND RESULTS

In our algorithm implementation, the regions to operate
on in the input images are segmented by grab-cut [38]
if necessary (unsupervised segmentation [13] may also be
used to further simplify this step). Then the target objects
are separated as described in Section 3. The specified
objects are replaced one by one using the method given in
Section 4. On a PC with a CPU at 2.5GHz and 4GB RAM,
the computation time is around 0.2 seconds for element
analysis on a 640 x 480 image, and is about 20 milliseconds
to replace each element.



Fig. 11. Structure preserving texture transfer: (left) target
image and novel source texture; (right) texture transfer
result.

5.1 Natural image examples

In real scenes, it is ubiquitous to see grouped elements
with similar appearance. Our method is able to produce
high quality element replacement results, as shown in Fig.
9. Unlike image composition techniques, our approach
focuses on mixing visual features into the target area, while
keeping the original structures, rather than overwriting
them. Our image mixture approach is a complement to
current image editing techniques.

5.2 Structure preserving appearance transfer

Our method can also be applied to structure preserving
appearance transfer in textured images. We only separate
elements in the target image group using the boundary band
map [12] to search for most compatible structures in the
secondary texture image for replacement. Thereupon, the
secondary image is not limited to grouped elements. One
example is shown in Fig. 11, where we use a lichen texture
to replace bricks, accomplishing the appearance transfer
effect. The major difference between our approach and
texture transfer [15], [20], [30] is that we can preserve the
appearance and local structure of the original objects that
remain in the admixture result. In Fig. 11, lichen appears
to be growing on bricks.

5.3 Texture mixing

To blend texture, prior methods require input samples to
have similar appearance or weak structural features [4], [9],
[44]. Our approach is an alternative to this end. We first mix
the two exemplars to create a new texture sample using the
steps described in the paper. Each texton in the two textures
is regarded as an atomic element. Then we perform the
texture synthesis approach of Lefebvre and Hoppe [27] to
generate a bigger image. One example is shown in Fig.
12, our method spatially blends two different kinds of
texels in an element-wise manner, rather than providing a
statistically uniform result similar to both inputs.

5.4 Limitations

There are a few difficulties that might influence the final
result quality. Firstly, since we do not estimate any depth or

Fig. 12. Texture mixing result. The user inputs two different
images, based on which we produce a mixing result. A
larger texture can be synthesized from the result.

layer information, our system cannot separate group objects
well when this set of information is needed. We show an
example in the left of Fig. 13, in which leaves overlay,
destroying the latent integrity.

Secondly, we require objects in the secondary image to
have curvilinear compatible content to replace the original
elementary region. As shown in the right of Fig. 13, when
we replace the rectangular blocks by hexagonal stones, even
considering the most compatible regions cannot preserve
the visual integrity. The incomplete rocks inserted into the
wall do not retain their correct geometric features. Finally,
challenging objects like transparent or translucent glasses,
cannot be properly handled in our system. Involving mat-
ting and image recognition will be our future work.

6 CONCLUSION

In this paper, we have proposed a dedicated system to
substitute structured elements within groups by others even
though they are dissimilar in appearance. Different levels
of mixture are allowed in our system, preserving local
structures. Our method requires a very small amount of user

Fig. 13. Failure cases: (left) grouped objects with compli-
cated 3D structure and layers; (right) object groups with
incompatible structure.



Fig. 14. Further results. Each group has 3 images showing (from left to right) the source image, the secondary image,
and our result respectively.

interaction. The analysis and other operations to separate
objects are automatic. The drawback is that we do not
consider layers and depth, which may be problem in some
cases. But overall our method is powerful enough to handle
many examples that are challenging for other approaches.
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