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FE 1A SPM Fl MPM fy5al |, SRR
AN T — A RS, FR SPNet. FATR
MM FZEM 2% [20] AERFRAT 3T M 4% . BE0E
[5, 65, 16], FATH 25 5K WS etk T I 4R Y ResNet,
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PRRH I AL 2048 /) 1024, SR S5 i
MPM. 7ef4~ MPM H, 84§ [20], Frg HAG W%
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FeATHE AT 0 35 BAR AT BCTE & B VR A T
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AL ADE20K Hifi 46 h R [65] ) strip
pooling RYSZIRNEST T LR -G Rl AT -

Settings #Params SPM mloU Pixel Acc

Base FCN 20.7TM X 37.63 77.60%
Base FON + PPM [65] +21.0 M X 41.68 80.04%

Base FCN + 1 MPM +44M X 4050 79.60%
Base FCN + 2 MPM  +88 M X 41.92 80.03%
Base FCN + 2 MPM  +11.9M v 44.03 80.65%
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JEFPA (1— —ter—jpower) ADE20K 5 Cityscapes
R E ) BLRl - > K158 0.004, Pascal Context 5%
b 0.001. FEEEEH 0.9, YIZiEIL N ADE20K
(120), Cityscapes (180), PA S Pascal Context (100).
B A R R I 0.9 #0.0001. FKATHE
R T (60, 65] [ 2 AEIA—1k .

X RS, 5 (65, 60] &ML, FATHEHLE
HRAER 0.5 f5 58 2 fEM ARG, B4R EGBE
FEEW R, % Cityscapes & 768 x 768, %+
HE AR 480 x 480, BRNIEM T, ARG
SRS R o P2 I (mIoU). 1%
A EARE IR, RO E AR S 2%
AT . LEFTA R SER T, AT 22 U5 2k
KA BB, A (65]), FATAA T A4
B (42 30 5 DU B B fe Je ik s ), R AR
WEHN 04, FATEMASE TE2BAER, AL
H LR AT ¥R S oA vk, I AN EB R E
{0.5,0.75,1.0,1.25,1.5,1.75} “F-¥4 - EHE=E, 0
(32, 65, 60] H ML .



Settings SPM mloU Pixel Acc

Base FCN X 37.63 77.60%
Base FCN + 2 MPM (SRD only) X 40.50 79.34%
Base FCN + 2 MPM (LRD only) X 41.14 79.64%

Base FCN + 2 MPM (SRD + LRD) X 41.92 80.03%
Base FCN + 2 MPM (SRD + LRD) v 44.03 80.65%

2. RS (MPM) JHRE7T. "SPM” 4 strip pool-
ing fiHt. ‘SRD’ Ml ‘LRD’ 73 BIZ/RFEREMKMIR & 1A
AHIERBER & T WTAVE Y, TR 7 145
R, IR ARR A R O R R Y . BT SR
FRASTHRI 3L
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ADE20K %i#i4E [68] o di FL Pk itk iy 2 v 3
Z—, BEME 150 NRMSM R, A 1038 NE
BB FATEEE T 7 AR . &
PARTR R 2 80 TAE—HE, BATH R FAFE (Pixel
Acc.) APFAIFHLAE (mloU) A PPAl. Ffi]id i
1 [32, 65] R ZHBIBMAL, I 60 -39 45 R kAT
VPG FEVHRESERR T, FROTRA [65] HAgfE, LA
ResNet-50 /- 3ATHY LT W45 725 Z 1A TAEA
oS, FATH AR 2 ResNet-101,

421 Y

MPM 1% st: IEANEE3.3/NT Tk, MPM @3 5%
ZEH S ZE A @, BT ARAE S iR 2
WY R HALIIE R - FEIX L, AT THREZS
/b MPM SR-F-A it 5 v i M RE R A TN ) AR
MFEIFR, AP T ET ResNet-50 1 F 24 i
MARTECH M MPM B85 5. FTLAES], MM
M MPM(EFil FCN) i, FATHE mIoU Jr K 4R
J& 37.63%. M 14~ MPM K, i5%] 40.50%, R
3.0% WEETH. HHE—E, MEHPAS MPM , 24
H 4.3% WHETE. SR, WL MPM 7 K 1)1 fE
PETHCT Ho . X AT R JE R 2 R B O & LB K
T Bk, FEBEATHRIESAS, AT MPM /1y
BEBIANRER 2.

T UEERSE i MPM AT PPM L%, 38

IAFER IR /R T PSPNet 45 RS EE R . 7]
PABRIZEH|, £ ‘Base FCN + 2 MPM’ iJi% & T,
BAT T EC LT PSPNet, HILHAT 12M 1
S8 ZIMGRATA AL MPM %111 PPM
HAHR

SARALTE MPM Wi il: 3.3/ NI E A T
MPM 435 B TR 43 B S A K
T e HL, FoAT RS T 3R A AR i B
Pro MIEGERTRIBT. B, KKt
M (41.14%) T2 b FU AR (40.5%) A 2005
%, HGA T F LIRS (41.92%). Rk 5
F P AL e MPM A g T4, FATar ik 7—
$6 MPM 7EA R i B AL ARAE I, G Figure 557
R, PAR—SEYE R RS E I MPM R4 E145 58, 0
B4R R, Tk, R h i 4 Ak vl DA A R0
PRI FR . BN, 5P EIE—F TR ik
i AR (LRD) %t 4AIE 7T DAMER S 37 K28
(L. SRTHT, 4R FR AL R X — 5,
K ANERE P Ty AN

SPM WA ctk: FAIMNZE EARL, R4 SPM 4%
i, AR DB B IR T W2 i A2
P, FEARSLIR Y, FATERE T AT, B
TEF3H . FRATPA base FCN Fil 2 4~ MPM ShRZk.
FATE AT W B S5 — D e as i —A4~
SPM; £558 mloU 184012 42.61%. Hyk, Fofi12sit
TR B SPM U ImE| i g5 fadep, & B
REMSA NIFEE] 42.30%. BTk, SIRATR SPM IR
INE_FIRFEA L B, mIoU 754> 1T PASKF] 44.03%.
B2, JIATKERE SPM 2] =+ M & 1 T E
gitgednl, JLFRA MR A KT RS,
B BUAOT, FA18 SPM 7 2144 Fr B
e Ja— NS DA B I JE — AP B T sk e
AR, HIRATOCRF base FCN R IRATH LI G
P i) SPM B, mIoU 2344 37.63% 3%
41.66%, Him T 4%, DA LEEREM, £ T W%
HinA SPM X 37 St 0 45— e 3 B o

ettt vs. Rtk Oy TIER PR
ACATS T2 R tb i e 9, 3] 215 fr



(a) Image
Kl 4. MP g8 (MPM) (A )58 2 B AL 0E L. 2
SRD” BIREFAEM 2 A~ MPM, H A& AR Homi 2R A5
e, T “2 LRD” BWERIMEH 2 4~ MPM, Ha& C K
LR AR .

(b) GT (c) 2SRD (d) 2 LRD (e) 2 MPM

Settings SPM Pos. #MPM mloU Pixel Acc.
Base FCN - 2 41.92 80.03%
Base FCN + SPM L 2 42.61 80.38%
Base FCN + SPM A 2 42.30 80.22%
Base FCN + SE [22] A + L 2 41.34 80.05%
Base FCN 4 SPM A+L 0 41.66 79.69%
Base FCN + SPM A+ L 2 44.03 80.65%

* 3. FAFMALBIR (SPM) B9IHER T, L BB i
Ja—AE B A RJSHT BT A St . ATDAE H, SPM
AT PAR KA R base FCN f1:RE, M 37.63 #2553 41.66,

Settings MS + Flip mloU (%) Pixel Acc. (%)
SPNet-50 44.03 80.65
SPNet-50 v 45.03 81.32
SPNet-101 44.52 81.37
SPNet-101 v 45.60 82.09

2 Ao ISR 31 0 2 14 T RS

PR SPM i 25ty th Ak 45V B ik 42 Ry T 23
fbo PA base FCN I 2 A~ MPM AL, 4IRA1THE
base FCN Hyshn SPM i, PEREM 41.92% %)
44.03%. fHA&, MIATRFAH AL T O 22 )57
WAL [22] 5, HEREM 41.92% B E 41.34%, HE
L3P T P R LA R . X T RE R T A A
fEE At s —dE i, SEE RS2 RER, A
T 7 A DAFE AR [65) 4 HE FRRom ok

Method Backbone mloU Pixel Acc. Score

RefineNet [32] ResNet-152 40.70 - -

PSPNet [65] ResNet-101 43.29 81.39 62.34
PSPNet [65] ResNet-269 44.94 81.69 63.32
SAC [63] ResNet-101 44.30 81.86 63.08
EncNet [60] ResNet-101  44.65 81.69 63.17
DSSPN [30] ResNet-101 43.68 81.13 62.41
UperNet [52] ResNet-101 42.66 81.01 61.84
PSANet [66] ResNet-101 43.77 81.51 62.64
CCNet [23] ResNet-101  45.22 - -

APNB [69] ResNet-101 45.24 - -

APCNet [19]  ResNet-101 45.38 - -

SPNet (Ours) ResNet-50 45.03 81.32 63.18
SPNet (Ours) ResNet-101 45.60 82.09 63.85
7 5. ADE20K [68] Biriib4E b5 H nis e dt i r st T e .
FMAEZEEAEN L LR mIoU Ml Pixel Acc. frhf 4R

WL AEX W, WAOVER T A
(1 SE IR BN R RE RS2, A4 2T I 2 TR EE AN
S A 2 RN . 4P, (EH B2
FOEE AT PATEAR KA E b s WA T R 25 1 45
Ho BEAh, G ETRE T R 45 AT BT RE SR T
(ResNet-50: 45.03% — ResNet-101: 45.60%).

WBAL: FERIGH AR TILTERTR B IR A
e TG, BAR, RETRIE base FCN
2 MPM ifjg SPM, $0] PARE 52 TH o HIS5 R
2 MPM 5 SPM [a] S AN, 50 B i) o 8w DA
Bot— 4 .

4.2.2 Yl SEHER i Ik

B Fe B 7 v 5 H BB Wt
Fa o SEgngi R T3R5 R . WPAE ], PA ResNet-50
T KA I mloU $143i5F] 45.03%,
(GFAIELT) 81.32%, BEMTAERTRZEOE.
244 ResNet-101 Jy = F 40T, Fefl 1195 T 5Lkt
y mloU T #AHEL



(a) Image (b) GT

(c) After VSP d) After HSP (e) After LRD (f) After SRD (g) After MPM (h) Results

5. ZEHEH A MP BN [R]E nT O E USRI . VSP: TR E S iik; HSP: 7K P& ik; SRD: JERMKIE S

TR (K3a); LRD: KRR G TR (K3b);

MPM: R& AR

e

(c) Base FCN (d) 1 MPM only (e) 2 MPM only

(f) SPM only (g) SPNet

Bl 6. %7 IR [ BT A T DAL A

4.3. Cityscapes

Cityscapes [11] 4& 75 — /N AT I ST 5k
£, B 19 NEA. BEE T 50 MIRTTEARF
AR SK SR BB R, A
SEE R 1024 x 2048 Y RF . ARG ATE TAER
B, FRATRREA BRI - MRS BEgEmM
MR =AY, 2 B 2975, 500 F1 1525 kA
%.

KT AFHBE, FAiTR A ResNet-101 2y 3274
%, FATHEM A L IR 2 S A W .
LG [16], FATH B RS AAR BRI 2R 25, T
REERRT B E RS 4. 4R THROR. R,

FAT R T IrG RE .
4.4. Pascal Context

Pascal Context dataset [40] & 59 ~2& 51, 10103
K A B AR AR AR, o 4998 SKRIE R T
Yk, 5015 sk Tt EEGRTRTER.
AIAFE, FATE T HER k.
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ARIGR M TR AR, Akl
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Method Publication = Backbone  Test mIoU
SAC [63] ICCV’17  ResNet-101 78.1%
DUC-HDC [50] WACV’18 ResNet-101 80.1%
DSSPN [30] CVPR’18  ResNet-101 77.8%
DepthSeg [24] CVPR’18  ResNet-101 78.2%
DFN [56] CVPR’18  ResNet-101 79.3%
DenseASPP [54] CVPR’18 DenseNet-161  80.6%
BiSeNet [55] ECCV’18  ResNet-101 78.9%
PSANet [66] ECCV’18  ResNet-101 80.1%
DANet [16] CVPR’19  ResNet-101 81.5%
SPGNet [9] ICCV’19  ResNet-101 81.1%
APNB [69] ICCV’19  ResNet-101 81.3%
CCNet [23] ICCV’19  ResNet-101 81.4%
SPNet (Ours) - ResNet-101 82.0%

# 6. Cityscapes lidE [11] ES5RIEHTTAMHE.

Method Publication Backbone mloU (%)
CRF-RNN [67] ICCV’15 VGGNet 39.3
BoxSup [12] ICCV’15 VGGNet 40.5
Piecewise [33] CVPR’16  VGGNet 43.3

DeepLab-v2 [5]  PAMI’17  ResNet-101 45.7
RefineNet [32] CVPR’17  ResNet-152 47.3

CCL [60] CVPR’18 ResNet-101  51.6
EncNet [60] CVPR’18 ResNet-101 52.6
DANet [16] CVPR’19  ResNet-101 52.6
SVCNet [14] CVPR’'19  ResNet-101 53.2
EMANet [29] ICCV’19  ResNet-101 53.1
APNB [69] ICCV’19  ResNet-101 52.8
BFP [13] ICCV’19  ResNet-101  53.6
SPNet (Ours) - ResNet-101 54.5

%% 7. Pascal Context $(¥4E [40]  5HICE BRI L.
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