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Abstract

Modern reconstruction techniques can effectively model
complex 3D scenes from sparse 2D views. However, au-
tomatically assessing the quality of novel views and identi-
fying artifacts is challenging due to the lack of ground truth
images and the limitations of no-reference image metrics
in predicting reliable artifact maps. The absence of such
metrics hinders assessment of the quality of novel views
and limits the adoption of post-processing techniques, such
as inpainting, to enhance reconstruction quality. To tackle
this, recent work has established a new category of metrics
(cross-reference), predicting image quality solely by lever-
aging context from alternate viewpoint captures [47]. In
this work, we propose a new cross-reference metric, Puzzle
Similarity, which is designed to localize artifacts in novel
views. Our approach utilizes image patch statistics from
the training views to establish a scene-specific distribution,
later used to identify poorly reconstructed regions in the
novel views. Given the lack of good measures to evaluate
cross-reference methods in the context of 3D reconstruction,
we collected a novel human-labeled dataset of artifact and
distortion maps in unseen reconstructed views. Through
this dataset, we demonstrate that our method achieves state-
of-the-art localization of artifacts in novel views, corre-
lating with human assessment, even without aligned ref-
erences. We can leverage our new metric to enhance ap-
plications like automatic image restoration, guided acqui-
sition, or 3D reconstruction from sparse inputs. Find the
project page at https://nihermann.github.io/
puzzlesim/.

1. Introduction

Image-based rendering and 3D reconstruction from a sparse
set of 2D views has received ample attention in recent years,
both for pure geometry reconstruction and radiance-field

modeling. Classical approaches such as structure from mo-
tion (SfM) use simple triangulation and epipolar geometry
to produce sparse point clouds of diffuse color [33]. Den-
sifying these representations can be done explicitly [15].
Alternatively, one can learn continuous, implicit represen-
tations [3, 24, 28], normally modeled through multi-layer
perceptrons. A tangential problem to these efforts is the col-
lection of 2D data and the handling of corrupted, distorted,
or simply incomplete sets of images from an object or scene
we would like to model. Learning representations from very
sparse inputs has been a widely studied topic, where nor-
mally learned priors from large datasets are leveraged to
enforce 3D consistency to ensure that the resulting recon-
structions follow natural statistics [4, 5, 48, 57]. However,
quantifying the quality of novel views from reconstructions
is still problematic. These views can contain artifacts due to
the sparsity of the training dataset, and automatically identi-
fying them helps with restoration (e.g., masking for image-
based inpainters [37]) or simply to guide future data acqui-
sition to fill the gaps [17]. Recent works have followed a
Bayesian approach to quantify the uncertainty of whether
an area belongs to a reconstructed scene or not [8], which
could potentially be leveraged for simple artifact detection.
However, they require implicit models, with fundamental
changes to the scene model, and are not practical for more
general applications that require visual artifact identifica-
tion outside of scene reconstruction, and are incapable of
detecting artifacts not arising from lack of coverage.

To tackle this, we propose a novel approach for arti-
fact detection that can be leveraged on any set of images
without an encoded explicit or implicit model of the scene
or object they depict. Unlike visual difference predictors
(VDPs) [20] (which require references) and no-reference
quality metrics [25, 26] (which typically do not provide
maps, but rather produce single values of overall quality),
our approach provides visual artifact maps with no direct
references. We leverage learned perceptual patch statistics
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from small, clean datasets and compare them to the em-
bedded statistics of new images from a similar distribution
(i.e., novel reconstructed views from a 3DGS [15] represen-
tation) to obtain artifact maps without aligned references.
We test our generated maps through a human experiment
where we ask participants to manually identify artifacts and
distortions in images to generate ground-truth data of visual
artifacts. Our results show that our method agrees with hu-
man assessment, correlating better than no-reference, full-
reference, and state-of-the-art cross-reference metrics. To
summarize, our contributions are the following:
• A novel cross-reference visual artifact identification met-

ric, particularly tailored for 3D reconstruction,
• a novel dataset of human-labeled artifact and distortion

maps to fill the gap of validation benchmarks for cross-
reference metrics,

• and applications on image restoration and 3D reconstruc-
tion enhancement that showcase our approach’s utility.

2. Related Work
Our metric is specifically designed for applications in 3D
scene reconstruction and image-based rendering. Conse-
quently, this section discusses work on 3D reconstruction
first and then on image metrics.

2.1. 3D Reconstruction and Image-based Rendering
Reconstructing 3D objects or scenes from sparse sets of
2D observations is a fundamental problem in vision [20].
Particularly, in the context of novel view synthesis, the ob-
jective is to approximate the radiance field (i.e., 5D func-
tion encoding spatially varying radiance emission) of spe-
cific objects or scenes. Most methods differ either in the
model used to encode the function or the rendering pro-
cedure. Implicit approaches model the radiance field as
a continuous function, approximated by a multi-layer per-
ceptron [24, 36]. Rendering is usually done via sampling
the implicit volume using ray-marching [42], which pro-
vides spatially varying values of density and anisotropic
color emission modeled through Spherical Harmonics. Im-
provements over this formula have tackled performance
limitations, either by using more efficient sampling tech-
niques [9, 28, 30] or by distilling the implicit space into ex-
plicit density and anisotropic appearance volumes [50, 56].
On the other hand, purely explicit models do not require
any pre-training using implicit functions, and were origi-
nally Eulerian in nature [55]. Explicit models are easier
to optimize, usually faster, and more interpretable, which
can help in different tasks such as scene editing or ani-
mation. More recently, anisotropic Lagrangian approaches
have found tremendous success [15]. However, these ex-
plicit methods have introduced some limitations of their
own along the way. Methods like 3D Gaussian Splat-
ting [15] can only model areas that are directly supervised,

and degrade less gracefully than implicit counterparts when
querying viewpoints substantially outside the training set
coverage. Detecting artifacts arising from the lack of cov-
erage is difficult due to the lack of reference images. Our
method produces these masks via supervision on the train-
ing data solely, which can enable unsupervised restoration
(automatic inpainting of the artifacts based on available
context [7]) or simply automatically guide further image ac-
quisition to complete the dataset efficiently [17].

2.2. Image Metrics

Image metrics are classified by the type of prediction they
make and their input. Image Quality Metrics (IQMs) typi-
cally predict a single number, corresponding to overall im-
age quality, and are often trained on Mean Opinion Score
(MOS) datasets. Visibility Metrics (VMs) produce maps
corresponding to the perceptibility of distortions. They of-
ten rely on models of the human visual system and predict
the probability of detecting local artifacts by an observer.
Most image metrics are full-reference, necessitating a ref-
erence to assess the quality of a test image. In contrast,
no-reference metrics predict the quality or visible distor-
tions based solely on the test image. Others use additional
information, e.g., partial reference, and are referred to as
reduced-reference or cross-reference metrics.

Classical examples of full-reference IQMs include
mean-absolute error (MAE), mean-squared error (MSE),
peak signal-to-noise ratio (PSNR), SSIM [46], FSIM [59],
MS-SSIM [45], and LPIPS [62]. These methods begin by
computing local differences between test and reference im-
ages and aggregate them into a single quality score as the fi-
nal step. By omitting this step, it is possible to create a local
distortion map, which is a common output of VMs widely
adopted in rendering to localize poorly rendered areas [2].
Typically, VMs differ from IQMs in their more explicit
modeling of the human visual system [6], which enables the
prediction of perceived visibility or the strength of visual
differences between images. Improvements over the origi-
nal framework extended their applicability to high dynamic
range imagery [22], making them eccentricity and motion-
aware [21, 40], and integrating perceived color [23]. Such
metrics have been used in many perceptual optimizations,
such as foveated rendering [41] and perceptually aware tone
mappers [39].

No-reference metrics eliminate the need for a reference
and are most commonly learned from human quality assess-
ment datasets [13, 14, 53], supervised on extracted features
from natural image statistics [25–27, 51], or even synthetic
scores [52]. Modern deep learning approaches can utilize
Transformer architectures [54], and multi-scale Transform-
ers are employed to alleviate the resolution constraints [14].
Hybrid approaches use multi-modal architectures in con-
junction with text templates to query image features such
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as noisiness, sharpness, or contrast, which can be trans-
lated into MOS [44, 63]. The above no-reference metrics
rely on global image features and, therefore, are not suit-
able for obtaining distortion maps. However, similarly to
our work, some of these IQMs are capable of producing vi-
sual maps. For example, PIQE [29] measures distortions
in an image patch based on extracted local features. CN-
NIQA [13], on the other hand, was one of the first no-
reference metrics to employ convolutional neural networks
(CNN) to regress mean-opinion scores. More recently,
PaQ-2-PiQ [53] uses region proposals to select quality-
determining patches. PAL4VST [61] localizes specific ar-
tifacts that emerge from image synthesis tasks through bi-
nary segmentation. In contrast, our work leverages the la-
tent space of a model pre-trained on natural images to mea-
sure the cosine similarity in feature space of candidate im-
age patches to a limited set of image patches from a similar
distribution (i.e., images from the same scene in the context
of scene reconstruction), rendering a higher level of align-
ment with human assessment.

In some applications, even though an image metric does
not have access to a reference image, it may have access
to other information useful for making a prediction. In the
context of novel view synthesis, cross-reference metrics uti-
lize a set of unaligned reference images to assess the quality
of a single query image belonging to the same scene. This
type of metric was recently established by Wang et al. [47]
and their metric CrossScore serves as the main baseline for
our evaluation. The metric relies on a cross-attention mod-
ule [43] to correlate a test image with unaligned multiview
images to predict quality maps. The maps predict the qual-
ity of 14x14 patches of the input image and are trained to
mimic unpooled SSIM maps. However, SSIM has been re-
peatedly shown to be poorly aligned with human quality as-
sessment and perception [31, 32, 62], which fundamentally
limits the potential of CrossScore.

In comparison to previous work, our method is a cross-
reference metric for novel view synthesis tasks. It predicts
local similarities for a synthesized view given a set of un-
aligned reference views. Its effectiveness in localizing ar-
tifacts is achieved by assessing similarity in feature space.
In contrast to many IQMs, our method is not designed to
predict a single score, but rather a map corresponding to the
strength of the visible artifacts.

3. Our Method
Let us establish an analogy for our method: pretend each
reference image is a puzzle with many puzzle pieces. To
test if a new image is similar to our unaligned references,
we would simply shuffle all pieces from all puzzles from
our references and try to reassemble the test image only us-
ing those pieces. If the new image is very similar to the
references, we should have enough puzzle pieces to com-

pose the other image confidently. However, if the image
holds regions very different from what we saw in the ref-
erence images, we would lack puzzle pieces to assemble
this area, effectively leaving holes in the newly assembled
puzzle (image). An overview of our approach through this
analogy can be seen in Fig. 1.

In our work, the puzzle pieces correspond to embedded
image patches. In order to assess patch similarity, an obvi-
ous approach would involve computing the dot product be-
tween all patches; best-matching pieces would be recorded
to create a similarity map. This simplistic approach, how-
ever, would hardly align with human assessment if unpro-
cessed patches were used. Inspired by the close correlation
between human quality judgment and latent CNN feature
maps [38, 62], we employ a pre-trained CNN [11, 18, 35]
to embed all the references, computing similarity in the la-
tent feature space. Note that comparing feature map ”pix-
els” in a CNN is similar to comparing individual patches in
the input domain; this is due to the locality of the sliding
kernels when convolving. The patch size is dependent on
the receptive field (showcased in Fig. 2).

Choice of layers Choosing the right layers for embedding
is essential to maximize the quality of the predicted spa-
tial maps. While early layers feature small receptive fields
and capture fine details, deeper layers have larger receptive
fields and capture coarser features. This can be observed
in Fig. 3, where we showcase different VGG layers. It is
essentially a trade-off between prediction granularity, ac-
curacy and speed. We identified that combining multiple
layers into our metric computation incorporates the various
levels of abstraction and scales in a robust manner. We thus
compute the weighted average of the three layers; we em-
pirically found that halving the image resolution more than
three times did not significantly improve our results, as the
scale becomes too small and the pool of reference vectors
too little and specific to find good correspondences among
novel images, even for well-reconstructed areas. This ob-
servation suggested that features from the layers before the
third down-sampling were most useful for our cause.

Computing patch similarity To compute the similarity
map of a test image, we feed all references and the test im-
age through a pre-trained network F to obtain the embed-
dings. We repeat the exact computation for each network
layer; thus, we will describe the steps once for one layer ℓ.
To find the similarity sℓ(x, y) to the best matching puzzle
piece for a pixel of the embedded test image at some spatial
location (x, y), we compute the cosine similarity based on
the feature vector Fℓ(x, y) and all other feature vectors of
all N reference images of the same layer ℓ and select the
correspondence with the highest similarity:

sℓ(x, y) = max
n,x′,y′

F̂ℓ(x, y) · F̂ (n)
ℓ (x′, y′) (1)
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Figure 1. Schematic representation of our Puzzle Similarity metric.

where F̂ denotes a feature vectors scaled to unit length
F̂ℓ(x, y) =

Fℓ(x,y)
||Fℓ(x,y)||2 ∈ RCℓ and · is the dot product. Note

that we compute the cosine similarity with any feature vec-
tor of the same layer from all references, not just those at
the same spatial position. This relinquishes spatial relations
and makes the method robust to simple camera movements
that only shift the image horizontally or vertically. We it-
erate this maximum search for all pixels of the test image’s
embedding to construct the similarity mask Sℓ.

Sℓ(I) =


sℓ(1, 1) sℓ(1, 2) · · · sℓ(1,Wℓ)
sℓ(2, 1) sℓ(2, 2) · · · sℓ(2,Wℓ)

...
...

. . .
...

sℓ(Hℓ, 1) sℓ(Hℓ, 2) · · · sℓ(Hℓ,Wℓ)

 (2)

where I is the test image. We repeat this for a set of layers
and combine them into a final similarity map. To match
the spatial dimensions of each layer, we bilinearly upsample
each map to the original image size and combine them with
an affine combination:

S(I) =
∑
ℓ

wℓ Upsample
(
Sℓ(I, I1:N

ref )
)

(3)

with
∑

ℓ wℓ = 1 and reference images I1:N
ref . To utilize

optimized hardware, please note how the computation of
Sℓ can also be expressed as an outer product between the
spatially flattened embeddings:

F̂ℓ(I1:N ) ∈ RN×Hℓ×Wℓ×Cℓ

F̃ℓ(I1:N ) = flatten
(
F̂ℓ(I1:N )

)
∈ RNHℓWℓ×Cℓ

Sℓ(I) =

∈ RHℓWℓ︷ ︸︸ ︷
rowmax F̃ℓ(I1:N

ref )⊗ F̃ℓ(I)︸ ︷︷ ︸
∈ RNHℓWℓ×HℓWℓ

(4)

Layer 1
Layer 2

Layer 3

Figure 2. Receptive field of a multi-layer CNN. Note how one
pixel in the last layer is an embedding of a patch of the input space.

where the test image I is a special case with N = 1, ⊗ is the
outer product, and rowmax applies the max over the first di-
mension. While a naı̈ve implementation of this outer prod-
uct would require substantial amounts of memory for larger
N,H,W , we provide an efficient implementation through
blockwise tiling with intermediate max-reduction, which
we detail in the Supplemental.

Pre-trained Model Choice The choice of pre-trained
neural network, through which the embeddings will be
created, is a key component of our work. We primarily
considered classic models including VGG-16, VGG-19,
AlexNet, and SqueezeNet [11, 18, 35]. Some of the
critical considerations are model complexity and memory
requirements, which we summarized in the Supplemental,
as well as their specifically tested performance on our hu-
man alignment task. Beyond quality performance, reduc-
ing the memory footprint and computational complexity is
key as it may impact the possibility of downstream applica-
tions of our metric, which, given its differentiability, could
be leveraged in optimization procedures.

We empirically found that while VGG produces the most
fine-grained maps, AlexNet and SqueezeNet still man-
aged to perform similarly, while doing so at a substantially
reduced computational cost. We opted for SqueezeNet
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(a) Rendering (b) 2nd VGG layer (c) 3rd VGG layer (d) 4th VGG layer

Figure 3. Puzzle Similarity computed on a single VGG layer. Note how the second layer has a finer resolution and mostly cold colors,
while the fourth layer is much smoother and features a wider range of values. Warm colors indicate artifacts or poor reconstruction quality.

as it aligned best with our test examples, specifically using
layers ℓ ∈ {2, 3, 4} with the weights w2 = 0.67, w3 = 0.2,
and w4 = 0.13, which we found heuristically.

4. Results
We will now analyze how our method compares against
competing approaches for both no-reference and cross-
reference visual map prediction in the context of reconstruc-
tion and image-based rendering. To quantify the correlation
between all these maps and human assessment, we present
a novel dataset on human artifact identification, which we
manually collected and can be found here1 to facilitate fu-
ture research on the topic. As for our method, for each dif-
ferent scene, we compute embeddings on their respective
training dataset to compute similarity maps on test views,
as explained in Sec. 3. CrossScore leverages the same set
of training views for its map predictions.

4.1. A Novel Artifact Identification Dataset
We created a dataset of human-perceived artifacts in 3D
reconstructed views with corresponding ground truths col-
lected through a user study. To generate images exhibit-
ing typical reconstruction artifacts, we apply 3D Gaussian
Splatting [15] to twelve scenes from the Mip-NeRF360 [3],
Tanks and Temples [16], and Deep Blending [10] datasets.
We use default parameters but intentionally withhold a sig-
nificant portion of training images, which we later utilize for
additional validation. By omitting these views during train-
ing, we increase the likelihood of artifacts appearing in the
withheld views. For each dataset, we selected three render-
ings that demonstrated a mix of well-reconstructed areas,
strong artifacts, and subtle artifacts, resulting in 36 samples
across 12 datasets.
Experiment details We asked 22 participants to segment
visible artifacts in each of the 36 sample images under con-
trolled viewing conditions using the tool developed by Wol-
ski et al. [49], which the authors kindly provided. We in-
clude details on the participants’ self-reported gender and
age distributions in the Supplementary, as well as detailed

1https://huggingface.co/datasets/nihermann/annotated-
3DGS-artifacts

viewing and display conditions. During the experiment,
users had no undistorted, artifact-free references at their dis-
posal and thus had to judge individual images at face value.
They would then mark areas found to be unnatural or unap-
pealing, creating a binary mask. With the dataset, we can
evaluate the agreement between human judgment and any
metric output by simply averaging all binary masks to esti-
mate the probability of each pixel being marked as an arti-
fact. Fig. 4 shows example renderings (a) alongside metric
predictions (b)-(d) and their average human-produced mask
(e).

We evaluate our method against both no-reference and
cross-reference metrics. To assess their alignment with hu-
man perception, we correlate their maps with the human rat-
ings from our dataset, as described in Sec. 4.1. NR and CR
metrics are the only metrics that can detect artifacts with-
out a direct reference, but the way we collected our dataset
gives us access to a ground truth that is normally unavail-
able. This enables us to assess FR metrics and current VDPs
too, although they are otherwise not suitable for the objec-
tive in question. We include extensive results in the Sup-
plemental and show that, unlike any other competing met-
ric, our metric even outperforms the best FR metrics on this
benchmark, proving the general superiority of our method.

4.2. Evaluation
To correlate metric outputs to our human segmentations,
we first compute each metric map for each rendering and
then compute the Pearson correlation coefficient (PCC) and
Spearman’s rank correlation coefficient (SRCC). To ac-
count for the different domains of the compared metrics and
possibly non-linear relations, we fit a 5-parameter logistic
curve for a fair comparison as suggested by [1, 19, 34, 60]:

q(x) = a1

{
1

2
− 1

1 + exp (a2(x− a3))

}
a4x+ a5 (5)

where x is an individual pixel score and a1...5 are optimized
through gradient ascent to maximize PCC or SRCC.
Results Tab. 1 reports the average Pearson and Spearman
correlations for each scene. Our dataset includes three im-
ages per scene, with varying artifact types per scene. For
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(a) Artifact-ridden view (b) PaQ-2-PiQ map (c) CrossScore map (d) PuzzleSim map (ours) (e) Human labeling
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Figure 4. Selection of image quality maps for artifact-ridden renderings from various scenes. The last column shows ground-truth human
assessments from our collected dataset. Note that our metric provides the finest resolution, enabling better artifact segregation.

Table 1. Pearson and Spearman Correlation between NR, and CR metrics and Human Perception per Dataset. The dashed line separates
NR (above) from CR (below) metrics.
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PAL4VST [61] 0.139 0.088 0.062 0.153 0.002 0.005 0.068 0.197 0.000 0.104 0.000 0.119
PaQ-2-PiQ [53] 0.194 0.420 0.432 0.138 0.305 0.428 0.613 0.452 0.534 0.667 0.220 0.424
PIQE [29] 0.266 0.267 0.255 -0.089 0.583 0.441 0.490 0.091 0.526 0.200 0.376 0.101
CNNIQA [13] 0.027 0.037 0.064 -0.068 -0.053 0.409 0.324 0.345 0.367 0.400 -0.133 0.005
CrossScore [47] 0.338 0.331 0.493 0.390 0.476 0.748 0.663 0.603 0.585 0.565 0.300 0.630
PuzzleSim (ours) 0.594 0.565 0.618 0.461 0.609 0.675 0.768 0.636 0.505 0.642 0.717 0.593

Sp
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rm
an

PAL4VST [61] 0.083 0.080 0.027 0.111 0.004 -0.003 0.069 0.169 0.000 0.098 0.000 0.108
PaQ-2-PiQ [53] 0.214 0.495 0.435 0.009 0.261 0.176 0.616 0.329 0.476 0.696 0.152 0.329
PIQE [29] 0.209 0.409 0.291 -0.130 0.460 0.229 0.620 0.079 0.375 0.224 0.279 0.174
CNNIQA [13] -0.085 0.020 0.166 0.157 -0.130 0.255 0.375 0.380 0.316 0.395 -0.219 -0.066
CrossScore [47] 0.299 0.030 0.243 0.508 0.365 0.590 0.315 0.534 0.490 0.494 0.240 0.431
PuzzleSim (ours) 0.468 0.393 0.382 0.499 0.428 0.428 0.658 0.601 0.307 0.540 0.548 0.440

example, the garden scene has prominent black regions
due to holes in the reconstruction, making artifact detec-
tion straightforward and leading to high correlation scores
for most metrics. However, scenes like treehill, stump, and
flowers exhibit artifacts in the form of blurry or unnatu-
ral textures while preserving similar color distributions to
the ground truth. Puzzle Similarity consistently achieves
high correlation with human-perceived artifacts across all
datasets, retaining smaller variance across datasets than all
competitive methods (See Tab. 2). The higher variance in
the averaged results is mainly due to scenes having differ-
ent types of artifacts, where some are harder to identify than
others (e.g., it is easier to identify black areas than small

diffuse blobs). Keeping a small variance implies robust per-
formance across various artifact types. We include extended
quantitative and qualitative results in our Supplemental.

4.3. Comparison with No-Reference Metrics
We compare with other no-reference metrics capable of pro-
ducing spatial visibility maps [13, 47, 53, 58, 61]. CN-
NIQA [13] was applied on patches as described in their
paper. We applied padding to avoid cropping the borders
and bilinearly upsampled the final map. PIQE [29] already
produces three different kinds of maps that we averaged.
PAL4VST [61], PaQ-2-PiQ [53] produce maps and were
applied as described in their papers, but bilinearly upsam-
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pled to match the human maps’ resolution.

Puzzle Similarity demonstrates superior accuracy in ar-
tifact localization, as shown by the correlation values in
Tab. 1. PAL4VST and CNNIQA performed poorly, as ex-
pected, given their focus on detecting specific types of dis-
tortions that are not necessarily similar to reconstruction
artifacts. While PIQE and PaQ-2-PiQ performed well in
certain scenes, their overall correlation with human opinion
was generally lower in others, reflecting a less robust align-
ment with human assessment. However, while our method
relies on a small subset of images from a similar distribution
to the target image (e.g., the training dataset on novel view
synthesis of a specific scene), NR metrics do not require any
extra images and attempt to generalize to any input.

4.4. Comparison with Cross-Reference Metrics

CrossScore is, to our knowledge, the only other CR met-
ric besides ours that is also reliant on the training views.
We also bilinearly upsampled its output to match the human
maps’ resolution. We show comparisons to CrossScore in
Tab. 1 and Tab. 2, in Fig. 4 and extended results in the Sup-
plementary. We outperform CrossScore on most datasets
and show better performance both on average and in terms
of consistency (with a substantially smaller standard devi-
ation among results). While the expensive domain-specific
pretraining of CrossScore should, in theory, be superior to
our feature-space patch matching leveraging general mod-
els pre-trained on collections of natural images, their re-
liance on SSIM as its target quality assessment metric lim-
its its potential to accurately model human quality assess-
ment, due to the well-known limitations of the metric in
this regard [31, 32, 62]. Their DINOv2 encoder limits map
resolution to 14x14 blocks, reducing artifact localization fi-
delity. Furthermore, our approach is notably simpler: we
can leverage any CNN as a feature encoder, allowing seam-
less adaptation to specific domains simply by swapping out
the backbone. No retraining or distillation of any frame-
work component is required.

4.5. Comparison with Full-Reference Metrics

Although full-reference metrics, unlike our method, re-
quire a direct reference image for detecting artifacts, we
also provide an extensive comparison to them based on our
dataset, which includes reference images. On average, we
outperform all FR metrics, while CrossScore falls behind
FovVideoVDP. Thus, in the context of 3D reconstruction,
our metric performs better than all tested NR, CR, and FR
metrics. Investigating why even the most advanced VDPs,
rooted in complex models of low-level human visual pro-
cessing, quantitatively fall behind remains a fascinating av-
enue for future work.

Table 2. Aggregated correlation between Image Metrics and
Human Perception with mean and standard deviation across all
datasets. Above the dashed line, we list NR, below CR metrics.

Metric Pearson ↑ Spearman ↑
PAL4VST [61] 0.078±0.112 0.062±0.085

CNNIQA [13] 0.144±0.247 0.130±0.253

PIQE [29] 0.292±0.222 0.268±0.221

PaQ-2-PiQ [53] 0.402±0.178 0.349±0.225

CrossScore [47] 0.510±0.204 0.378±0.209

PuzzleSim (ours) 0.615±0.120 0.474±0.137

5. Application: Progressive Inpainting
Finally, we showcase an application of our metric in auto-
matic restoration of novel views from a reconstructed scene.
Whenever it is possible to establish a visual distribution
(e.g., we have a training dataset available), we can recur-
sively use our metric to automatically identify visual out-
liers in novel views and remove them through inpainting. In
the Supplementary, we present a quantitative ablation study
to show that our metric performs best in this application.

Our Framework We can take a new image I and employ
our PuzzleSim metric to obtain the similarity map S.

S = PuzzleSim(I) ∈ RHI×WI (6)

To apply neural inpainting, we first need to create a binary
mask from the similarity map S, indicating the areas to be
inpainted. This involves finding an optimal threshold τ that
clearly distinguishes outlier regions. The effectiveness of
inpainting depends on carefully setting this mask. If the
mask is too large, the inpainting may inadvertently remove
clean parts of the scene. If the mask is too small, arti-
facts might be left untouched. In order to automatically find
a balanced threshold, we use a conservative, iterative ap-
proach to refine the test image based on the assumption that
artifacts have below-average similarity scores. For an initial
threshold, we select N = 50 candidate values, uniformly
spaced between the lowest and mean similarity scores that
we use to threshold the similarity map.

τi =min(S) + i

N − 1
(mean(S)−min(S))

M
(h,w)
i =

{
1 if S(h,w) ≤ τi

0 if S(h,w) > τi

(7)

with i, h, and w representing indices where i = 0, . . . , N −
1, h = 1, . . . ,HI , and w = 1, . . . ,WI . With LaMa
(big) [37] we generate inpaintings using all N masks and
recompute PuzzleSim for each option. The quality of each
inpainted candidate is evaluated by calculating the average
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Figure 5. Example showcase of our iterative inpainting application to enhance new views that lack ground-truth correspondences.

similarity difference before and after inpainting, denoted as
δi. To discourage overly large masks, we add a regulariza-
tion term that penalizes them. Further details on the mathe-
matical definitions of δi and the regularization term are pro-
vided in the Supplementary material. We then select the
candidate that maximizes δ. After determining the initial
threshold, we iteratively refine the inpainted image by sam-
pling new thresholds close to the previous one. The size of
this interval depends on a hyperparameter α and the spread
of similarity scores. Keeping this range small ensures stable
convergence and prevents excessive, disrupting inpainting.
If the upper limit of the interval is below the minimum si-
miliarity value minh,w Ŝ(h,w), we revert to the initial sam-
pling method in Eq. (7) as an empty mask would be mean-
ingless and cause division by zero when computing δi. Fi-
nally, we terminate the process if no further improvement is
achieved (i.e., maxi δi ≤ 0), returning the final inpainting
result. This framework guarantees a monotonic improve-
ment in PuzzleSim similarity. In Fig. 5, we showcase several
novel views from the reconstructed scenes garden, kitchen,
and flowers using only a fraction of the original training
views (20-30%). We process this artifact-ridden new view
through the iterative inpainting framework presented above.
Our method successfully detects and inpaints artifacts in the
original reconstruction, producing high-quality inpainting
consistent with the distribution of the original scenes.

6. Limitations and Future Work

While our method demonstrates promising results, there are
some limitations to consider. Even with our optimized im-
plementation, finding the maximum similarity for a great
number of vectors becomes expensive as the number of ref-
erence images and image resolution rise (see Supplemen-
tal material for implementation and runtime analysis). Per-
forming approximate maximum search or fitting Gaussian

mixture models in the embedding space can improve com-
putational performance [12, 60]. Furthermore, our metric
is empirically calibrated, but choosing the weights to com-
bine layers and weighting in the channel dimension in a
data-driven manner could advance the metric further. The
resolution at which our metric can be utilized is currently
bound by the CNN backbone’s generalizability to higher
resolutions. Currently, we can not support Vision Trans-
former backbones as it takes special care to maintain a lim-
ited receptive field. Although our metric is differentiable,
it is unlikely to produce valuable gradients due to the max
operation across many vectors. Alternatively, softmax op-
erations could be explored to make the metric more suitable
for gradient-based optimization.

7. Conclusion

We proposed Puzzle Similarity, a cross-reference image
metric for detecting and localizing artifacts in novel views
of 3D scene reconstructions. By leveraging learned patch
statistics from input views, our method generates spatial ar-
tifact maps without requiring ground-truth references, ad-
dressing a key challenge in evaluating reconstructed scenes.
To enable the evaluation of cross-reference metrics, we also
provide a dataset of human-assessed quality and artifact lo-
calization for 3D scene reconstruction.

Our evaluation shows that Puzzle Similarity outperforms
all tested full-reference, cross-reference and no-reference
metrics in capturing artifacts aligned with human percep-
tion, demonstrating robustness across diverse artifact types
and texture-rich scenes. Furthermore, we apply our met-
ric to automatic image restoration, illustrating its potential
to enhance scene reconstruction quality. Puzzle Similarity
provides an effective, perceptually aligned, reference-free
solution for artifact localization, with promising applica-
tions in few-shot reconstruction and guided acquisition.
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