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John Lins — john@johnlins.com

Abstract — Numerical data is the foundation of quantitative trading. However, qualitative textual data often
contains highly impactful, nuanced signals that are not yet priced into the market. Nonlinear dynamics embedded
in qualitative textual sources such as interviews, hearings, news announcements, and social media posts often take
humans significant time to digest. By the time a human trader finds a correlation, it may already be reflected
in the price. While large language models (LLMs) might intuitively be applied to sentiment prediction, they are
notoriously poor at numerical forecasting and too slow for real-time inference. To overcome these limitations, we
introduce Large Stock Models (LSMs), a novel paradigm tangentially akin to transformer architectures in LLMs.
LSMs represent stocks with high-dimensional embeddings, learned from decades of historical press releases paired
with corresponding daily stock price percentage changes. We present Nparam Bull V1, a 360M+ parameter LSM
designed for fast inference, which predicts short-horizon stock price fluctuations of many companies in parallel
from raw textual market data. Nparam Bull V1 surpasses equal-weighting strategies, marking a breakthrough in
short-horizon quantitative trading.

1 NDA Notice

Developing a stable model was a lengthy, year-long endeavor requiring extensive trial and error. Certain stability-
related insights and methodologies will be publicly shared in this technical report; however, the majority of substantive
procedures will remain redacted. For access to additional specifics, please contact the author.

2 Introduction

We introduce Nparam Bull V1, a pioneering Large Stock Model (LSM) with over 360 million parameters, designed
specifically for predicting stock price fluctuations from raw textual market data [5, 1]. Each prediction is generated
by processing textual input and outputting an expected percentage shift in stock prices, enabling rapid inference
suitable for short-horizon trading environments. For this initial version, Nparam Bull V1 was trained to predict
price fluctuations for 90 top stocks (primarily chosen from the NASDAQ 100) and 10 major ETFs. This selected
universe may have survivorship bias; however, when performing the backtest, both weight schemes use the identical
universe, so survivorship bias partially cancels in the model-vs-equal-weighted comparison. A key consideration in
deploying Nparam Bull V1 is the efficient market hypothesis, which posits that all publicly available information is
already reflected in current prices. Consequently, one cannot generate profitable trades with the model by feeding
it data that has already been priced into the market, such as historical or widely disseminated news during active
trading hours. Instead, profitability hinges on inputting data that is not priced in yet [3]. Nparam Bull V1 was
trained exclusively on data from periods prior to 2023, encompassing decades worth of paired text-price examples
from earlier years. Validation was then performed only on 2023 and 2024, years entirely unseen during training.
This backtest demonstrated the model’s ability to generalize, achieving higher returns when using model-weighting
compared to the equal-weighted baseline of the same stocks. Beyond its core predictive capabilities, Nparam Bull
V1 opens avenues for advanced applications in quantitative finance. For instance, a quant firm or hedge fund could
integrate the model into a pipeline by feeding multiple textual inputs—such as a batch of concurrent news articles,
regulatory filings, or social media sentiment aggregates—into the system simultaneously. By averaging the resulting
predictions across these inputs, users can derive a composite signal that mitigates noise from individual sources. This
averaged output could then inform daily portfolio weightings, where each stock or ETF’s allocation is adjusted based
on the predicted price fluctuation magnitude and direction. For example, assets with positive predicted shifts might
receive overweight positions, while those with negative forecasts are underweighted or shorted. Such strategies could
extend to ensemble methods, combining Nparam Bull V1 with other models for hybrid forecasting. Future iterations
will scale coverage to thousands of assets, further enhancing its utility for institutional trading.



3 Methods

3.1 Model Architecture

3.2 Dataset
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Figure 1: The ACBR term initially increased as the gradient balanced a dual-objective optimization, but eventually
decreased once the other objective (MSE) stabilized.

4 Training

4.1 Anti-Collapse Batch Regularization (ACBR)

Due to the high variation in stock data, the model may lose motivation to learn the correlations when it is easier to
simply ignore the input signal and converge to an average—an effective way to exploit the loss objective. To address
this issue, we promote diversity among the output vectors within each training batch by incentivizing distance
between all pairs in the batch. Initially, we experimented with negative Euclidean distance, but the model exploited
this by shrinking output magnitudes. We then settled on cosine similarity, which proved highly effective and more
robust.

4.1.1 ACBR Term

ACBR(P) =
1(
b
2

) ∑
1≤i<j≤b

ReLU

(
pi · pj

∥pi∥2∥pj∥2

)
where P ∈ Rb×s is the output matrix with b rows p1, . . . ,pb, one for each vector in the batch (b = 32) and s columns,
one for each ticker (s = 100). In essence, this formula is the average of all positive cosine similarity between every
pair of vectors in the batch.

4.1.2 ACBR Optimization

L = LMSE + γACBR(P) + λ∥w∥22, γ = 0.5, λ = 10−3
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4.2 Loss
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Figure 2: The training loss dropped sharply early in the first epoch and
later oscillated slightly.
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Figure 3: The test loss decreased steadily for five epochs.
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4.3 Stock Embeddings
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Figure 4: Visualization of stock embeddings before training.
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Figure 5: Visualization of stock embeddings after training.

The initial embeddings were sufficiently linearly separable that their primary role was simply to identify which ticker
the model should predict. Although each vector encodes only a small amount of additional information after training,
that signal is present—indicating there is potential to further enrich these embeddings to capture significantly more
data as the model scales.



5 Training Specifications

NDA Protected



Nparam.com 7

6 Backtests

6.1 Portfolio Weighting

wi =


%̂∆i∑

j:%̂∆j>0
%̂∆j

if %̂∆i > 0

0 otherwise

where wi is the portfolio weight for asset i, and %̂∆i is its predicted percent change. These weights are assigned at
the start of the trading window when the stocks are bought, and they are then all sold at the end of the trading
window for a given day.

6.2 Hindsight Backtest

Year: 2023
Dataset: FNSPID [2]
Bias: Lookahead (model makes trades at market open based on news published throughout that day)
Hold time: Held for 24 hours and reweighted at market open
Average number of input data points per day: 2614

Figure 6: A hindsight backtest illustrates how well a model can perform given all the information, including future
information. This hindsight backtest illustrates a +198% increase for the model-weighted portfolio compared to just
+35% for the equal-weighted portfolio. Here, the model is given news from throughout the entire day to make trade
decisions at market open. While these conditions are impossible in the real world, this backtest serves as an upper
bound on achievable performance if all relevant information were available at decision time.

6.3 Feasible Backtest

Year: 2024
Dataset: Polygon [4]
Hold time: Held during pre-market hours only, all other price movements are not captured
Average number of input data points per day: 20
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News Data Source Pre-Market Market Hours After Hours

Only period where assets are held
Portfolio fully in cash at all other times

12:00 AM 4:00 AM 9:30 AM 4:00 PM 8:00 PM 12:00 AM

All times in ET

Figure 7: A convincing backtest is one with absolutely zero lookahead at all.

Metric Equal-Weighted Strategy Model-Weighted Strategy
Total Return 15.49% 17.94%
Daily Return Mean 0.0583% 0.0676%
Daily Return Std 0.4274% 0.6057%
Sharpe Ratio 2.16 1.77
Max Drawdown -4.13% -5.29%

Table 1: The model-weighted strategy achieved a 2.13% improvement (15.8% relative improvement) in total return
compared to the equal-weighted strategy. This is a significant performance improvement with a slight trade-off in
max drawdown, because the model-weighted portfolio is less diverse.

6.3.1 Bias

The hindsight backtest intentionally suffers from lookahead bias, which the feasible backtest does not.
One could also argue that both backtests suffer from moderate selection bias, more specifically survivorship bias.
This is because the universe of stocks used for training Nparam Bull V1 was not randomly selected; most of the
stocks are taken from the current (2025) NASDAQ 100, which may have changed since 2023/2024. Also, some stocks
were manually replaced by other companies to inject diverse coverage of different asset types.
The baseline equal-weighted portfolio is constructed using the same universe and therefore shares these sources of
bias. As a result, common components of survivorship and selection bias partially cancel in relative comparisons,
making the difference between the model portfolio and the equal-weighted portfolio a more reliable measure of
performance than absolute returns.
It is also important to acknowledge that these backtests do not account for slippage; slippage was not accounted for
here because the 100 assets being traded are highly liquid.
These backtests also do not account for exchange fees; however, for both backtests, re-weighting only occurs once
per day.
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6.3.2 Mean Shifting

Naturally, the model will learn to overpredict stocks that have historically done well and underpredict stocks that have
historically done poorly. We know that past price performance does not reliably predict future price performance.
Removing this bias from the prediction is easy: we simply subtract the prior belief for a given stock across all data
points. This prior is the average change for each stock in the training dataset.

%̂∆i ← %̂∆i −%∆i for each asset i.

This process may lead to more accurate results, but the way these backtests are set up may lead to less diverse
portfolios when provided limited data.
Shifting increased the performance of the hindsight backtest from +198% to +218% but decreased the performance
of the feasible backtest from +17.94% to +17.14% and increased the max drawdown from -5.29% to -7.55%. This
occurred because the feasible backtest had much less data available to it.

7 Conclusion

Nparam Bull V1 represents a pioneering advancement in the application of large-scale models to short-horizon quanti-
tative trading, bridging the gap between qualitative textual data and precise numerical forecasting. Our Large Stock
Model (LSM) achieves superior performance in predicting short-horizon price fluctuations, outperforming baselines
such as equal-weighted strategies. The introduction of Anti-Collapse Batch Regularization further enhances training
stability, enabling the model to capture nuanced market dynamics without succumbing to collapse or overfitting.
It is widely believed that price reactions are not instantaneous, but rather propagate through a series of corrections
over time [6]. While most alpha may be short-lived for trivial reactions, there are many less-obvious reactions that
come from the nonlinear relationships between textual market data and the market; these take longer to be realized.
Nparam Bull V1 may have the ability to find these connections during inference. This work underscores the potential
of LSMs to automate and accelerate decision-making in financial markets. The process of scaling this model further
is underway, and future versions will learn to establish even more nuanced nonlinear relationships between textual
data and daily market returns.



8 Future Work
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