

Coinductive control of inductive data types

Paige Randall North
jww Maximilien Péroux & Lukas Mulder

based on:

Coinductive control of inductive data types, North & Péroux
Measuring data types, Mulder, North & Péroux
and work in progress

Overview and background
oooo

Endofunctors
oooooooo

Work in progress: generalization
ooooo

Outline

Overview and background

Endofunctors

Work in progress: generalization

Overview and background

●○○○

Endofunctors

○○○○○○○○○○

Work in progress: generalization

○○○○○

Outline

Overview and background

Endofunctors

Work in progress: generalization

Overview

Theorem (Mulder-N.-Péroux)

The category of algebras of an *accessible, lax symmetric monoidal* endofunctor on a *locally presentable, symmetric monoidal closed* category is enriched over the category of coalgebras of the same endofunctor. For any such category \mathcal{C} , we get a functor

$$\text{Endo}_{\text{alsm}}(\mathcal{C}) \rightarrow \text{EnrCat}.$$

Overview

Theorem (Mulder-N.-Péroux)

The category of algebras of an *accessible, lax symmetric monoidal* endofunctor on a *locally presentable, symmetric monoidal closed* category is enriched over the category of coalgebras of the same endofunctor. For any such category \mathcal{C} , we get a functor

$$\text{Endo}_{\text{alsm}}(\mathcal{C}) \rightarrow \text{EnrCat}.$$

Examples

There are many examples, including polynomial endofunctors with extra structure.

Overview

Theorem (Mulder-N.-Péroux)

The category of algebras of an *accessible, lax symmetric monoidal* endofunctor on a *locally presentable, symmetric monoidal closed* category is enriched over the category of coalgebras of the same endofunctor. For any such category \mathcal{C} , we get a functor

$$\text{Endo}_{\text{alsm}}(\mathcal{C}) \rightarrow \text{EnrCat}.$$

Examples

There are many examples, including polynomial endofunctors with extra structure.

Gain

More “initial algebras” (e.g. generalized W-types)

Previous work on coalgebraic enrichment

Universal measuring coalgebra (Sweedler, Wraith 1968)

For k -algebras A and B , there is a k -coalgebra $\underline{\text{Alg}}(A, B)$

- ▶ which underlies an enrichment of k -algebras in k -coalgebras
- ▶ whose *set-like elements* are in bijection with $\text{Alg}(A, B)$.

Analogues

- ▶ Anel-Joyal 2013 (dg-algebras)
- ▶ Hyland-Lopez Franco-Vasilakopoulou 2017 (monoids)
- ▶ Vasilakopoulou 2019 (\mathcal{V} -categories)
- ▶ Péroux 2022 (∞ -algebras of an ∞ -operad)
- ▶ McDermott-Rivas-Uustalu 2022 (monads)
- ▶ North-Péroux 2023 (algebras of endofunctors)
- ▶ ...

Motivation: inductive types

- ▶ In functional programming, most types are defined *inductively*.
- ▶ Categorically: initial alg of polynomial endofunctor (W-type)

Example: \mathbb{N}

- ▶ \mathbb{N} is the initial algebra of the endofunctor $X \mapsto X + 1$ (on Set)
- ▶ The terminal coalgebra is \mathbb{N}^∞
- ▶ This functor satisfies the hypotheses of our theorem.

Example: lists in a set A

- ▶ The set of lists in A is the initial algebra of $X \mapsto 1 + A \times X$.
- ▶ The terminal coalgebra is the set of *streams* in A .
- ▶ With a commutative monoid structure on A , this functor satisfies the hypotheses of our theorem.

Overview and background
oooo

Endofunctors
●ooooooooo

Work in progress: generalization
ooooo

Outline

Overview and background

Endofunctors

Work in progress: generalization

Measuring in general

Fix a *locally presentable, symmetric monoidal closed* category \mathcal{C} and an *accessible, lax symmetric monoidal* endofunctor F .

Definition: measure

For algebras (A, α) , (B, β) a *measure* $(A, \alpha) \rightarrow (B, \beta)$ is a coalgebra (C, χ) together with a morphism $\phi : C \rightarrow \underline{\mathcal{C}}(A, B)$ satisfying:

$$\begin{array}{ccccc} & & FC & \xrightarrow{F(\phi)} & F(\underline{\mathcal{C}}(A, B)) \longrightarrow \underline{\mathcal{C}}(FA, FB) \\ C & \begin{array}{c} \xrightarrow{\chi} \\ \xrightarrow{\phi} \end{array} & & & \downarrow \beta \\ & & \underline{\mathcal{C}}(A, B) & \xrightarrow{\alpha} & \underline{\mathcal{C}}(FA, FB) \end{array}$$

The *universal measure* $\underline{\text{Alg}}(A, B)$ is the terminal one.

Measuring in general

Fix a *locally presentable, symmetric monoidal closed* category \mathcal{C} and an *accessible, lax symmetric monoidal* endofunctor F .

Definition: measure

For algebras (A, α) , (B, β) a *measure* $(A, \alpha) \rightarrow (B, \beta)$ is a coalgebra (C, χ) together with a morphism $\phi : C \rightarrow \underline{\mathcal{C}}(A, B)$ satisfying:

$$\begin{array}{ccccc}
 & \chi & & & \\
 C & \nearrow & FC & \xrightarrow{F(\phi)} & F(\underline{\mathcal{C}}(A, B)) \longrightarrow \underline{\mathcal{C}}(FA, FB) \\
 & \phi & & & \downarrow \beta \\
 & & \underline{\mathcal{C}}(A, B) & \xrightarrow{\alpha} & \underline{\mathcal{C}}(FA, B)
 \end{array}$$

The *universal measure* $\underline{\text{Alg}}(A, B)$ is the terminal one.

Theorem (N.-Péroux)

The universal measure $\underline{\text{Alg}}(A, B)$ always exists, and these are the hom-coalgebras of an enrichment of Alg_F in CoAlg_F .

Measuring for the natural numbers

Measuring

For algebras A, B , a *measure* $A \rightarrow B$ is a coalgebra C together with a function $C \rightarrow A \rightarrow B$ such that

- ▶ $f_c(0_A) = 0_B$ for all $c \in C$;
- ▶ $f_c(a + 1) = 0_B$ for all $\llbracket c \rrbracket = 0$ and for all $a \in A$;
- ▶ $f_c(a + 1) = f_{c-1}(a) + 1$ for $\llbracket c \rrbracket \geq 1$ and for all $a \in A$.

The *universal measure* $\underline{\text{Alg}}(A, B)$ is the terminal measure $A \rightarrow B$.

Measuring for the natural numbers

Measuring

For algebras A, B , a *measure* $A \rightarrow B$ is a coalgebra C together with a function $C \rightarrow A \rightarrow B$ such that

- ▶ $f_c(0_A) = 0_B$ for all $c \in C$;
- ▶ $f_c(a + 1) = 0_B$ for all $\llbracket c \rrbracket = 0$ and for all $a \in A$;
- ▶ $f_c(a + 1) = f_{c-1}(a) + 1$ for $\llbracket c \rrbracket \geq 1$ and for all $a \in A$.

The *universal measure* $\underline{\text{Alg}}(A, B)$ is the terminal measure $A \rightarrow B$.

What is this?

Set-like elements in general

Definition: set-like elements

The *set-like elements* are

$$\mathbb{I} \rightarrow \underline{\text{Alg}}(A, B) \quad \text{in } \text{CoAlg}(F)$$

i.e., elements of $\text{Alg}(A, B)$.

Set-like elements in general

Definition: set-like elements

The *set-like elements* are

$$\mathbb{I} \rightarrow \underline{\text{Alg}}(A, B) \quad \text{in } \text{CoAlg}(F)$$

i.e., elements of $\text{Alg}(A, B)$.

Set-like elements for the natural numbers

Set-like elements

The *set-like elements* are

$$\mathbb{I} \rightarrow \underline{\text{Alg}}(A, B)$$

Set-like elements for the natural numbers

Set-like elements

The *set-like elements* are

$$\mathbb{I} \rightarrow \underline{\text{Alg}}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that $* - 1 = *$

Set-like elements for the natural numbers

Set-like elements

The *set-like elements* are

$$\mathbb{I} \rightarrow \underline{\text{Alg}}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that $* - 1 = *$

so $\mathbb{I} \rightarrow \underline{\text{Alg}}(A, B)$ is an element $* \in \underline{\text{Alg}}(A, B)$ s.t. $* - 1 = *$

Set-like elements for the natural numbers

Set-like elements

The *set-like elements* are

$$\mathbb{I} \rightarrow \underline{\text{Alg}}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that $* - 1 = *$

so $\mathbb{I} \rightarrow \underline{\text{Alg}}(A, B)$ is an element $* \in \underline{\text{Alg}}(A, B)$ s.t. $* - 1 = *$

so f_* is a total algebra homomorphism

Definition: measuring

...

- ▶ $f_c(0_A) = 0_B$ for all $c \in C$;

...

- ▶ $f_c(a + 1) = f_{c-1}(a) + 1$ for $\llbracket c \rrbracket \geq 1$ and for all $a \in A$.

Set-like elements for the natural numbers

Set-like elements

The *set-like elements* are

$$\mathbb{I} \rightarrow \underline{\text{Alg}}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that $* - 1 = *$

so $\mathbb{I} \rightarrow \underline{\text{Alg}}(A, B)$ is an element $* \in \underline{\text{Alg}}(A, B)$ s.t. $* - 1 = *$

so f_* is a total algebra homomorphism

Definition: measuring

...

- ▶ $f_*(0_A) = 0_B$;
- ...
- ▶ $f_*(a + 1) = f_*(a) + 1$ for all $a \in A$.

Set-like elements for the natural numbers

Set-like elements

The *set-like elements* are

$$\mathbb{I} \rightarrow \underline{\text{Alg}}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that $* - 1 = *$

so $\mathbb{I} \rightarrow \underline{\text{Alg}}(A, B)$ is an element $* \in \underline{\text{Alg}}(A, B)$ s.t. $* - 1 = *$

so f_* is a total algebra homomorphism

that is, an element of $\text{Alg}(A, B)$.

Definition: measuring

...

- ▶ $f_*(0_A) = 0_B$;
- ...
- ▶ $f_*(a + 1) = f_*(a) + 1$ for all $a \in A$.

Set-like elements for the natural numbers

Set-like elements

The *set-like elements* are

$$\mathbb{I} \rightarrow \underline{\text{Alg}}(A, B)$$

where \mathbb{I} has underlying set $\{*\}$ such that $* - 1 = *$

so $\mathbb{I} \rightarrow \underline{\text{Alg}}(A, B)$ is an element $* \in \underline{\text{Alg}}(A, B)$ s.t. $* - 1 = *$

so f_* is a total algebra homomorphism

that is, an element of $\text{Alg}(A, B)$.

Example

$$\text{Alg}(\mathbb{N}, A) \cong *$$

$$\underline{\text{Alg}}(\mathbb{N}, A) \cong \mathbb{N}^\infty$$

What are the non-set-like elements?

Example

$$\underline{\text{Alg}}(\mathbb{N}, A) \cong \mathbb{N}^\infty$$

What are the non-set-like elements?

Example

$$\underline{\text{Alg}}(\mathbb{N}, A) \cong \mathbb{N}^\infty$$

So denote the elements of $\underline{\text{Alg}}(\mathbb{N}, A)$ by

- ▶ f_0
- ▶ f_1
- ...
- ▶ f_∞

Definition: measuring

...

- ▶ $f_0(0) = 0_B$
- ▶ $f_0(a + 1) = 0_B$ for all $a \in A$

What are the non-set-like elements?

Example

$$\underline{\text{Alg}}(\mathbb{N}, A) \cong \mathbb{N}^\infty$$

So denote the elements of $\underline{\text{Alg}}(\mathbb{N}, A)$ by

- ▶ $f_0(n) = 0_A$
- ▶ f_1
- ...
- ▶ f_∞

Definition: measuring

...

- ▶ $f_0(0) = 0_B$
- ▶ $f_0(a + 1) = 0_B$ for all $a \in A$

What are the non-set-like elements?

Example

$$\underline{\text{Alg}}(\mathbb{N}, A) \cong \mathbb{N}^\infty$$

So denote the elements of $\underline{\text{Alg}}(\mathbb{N}, A)$ by

- ▶ $f_0(n) = 0_A$
- ▶ f_1
- ...
- ▶ f_∞

Definition: measuring

...

- ▶ $f_1(0_A) = 0_B$
- ▶ $f_1(a + 1) = f_0(a) + 1$ for all $a \in A$

What are the non-set-like elements?

Example

$$\underline{\text{Alg}}(\mathbb{N}, A) \cong \mathbb{N}^\infty$$

So denote the elements of $\underline{\text{Alg}}(\mathbb{N}, A)$ by

- ▶ $f_0(n) = 0_A$
- ▶ $f_1(0) = 0_A; f_1(sn) = 1_A$
- ...
- ▶ f_∞

Definition: measuring

...

- ▶ $f_1(0_A) = 0_B$
- ▶ $f_1(a + 1) = f_0(a) + 1$ for all $a \in A$

What are the non-set-like elements?

Example

$$\underline{\text{Alg}}(\mathbb{N}, A) \cong \mathbb{N}^\infty$$

So denote the elements of $\underline{\text{Alg}}(\mathbb{N}, A)$ by

- ▶ $f_0(n) = 0_A$
- ▶ $f_1(0) = 0_A; f_1(sn) = 1_A$
- ...
- ▶ f_∞

Definition: measuring

...

- ▶ $f_\infty(0) = 0_B$
- ▶ $f_\infty(a + 1) = f_\infty(a) + 1$

What are the non-set-like elements?

Example

$$\underline{\text{Alg}}(\mathbb{N}, A) \cong \mathbb{N}^\infty$$

So denote the elements of $\underline{\text{Alg}}(\mathbb{N}, A)$ by

- ▶ $f_0(n) = 0_A$
- ▶ $f_1(0) = 0_A; f_1(sn) = 1_A$
- ...
- ▶ $f_\infty(n) = n_A$

Definition: measuring

...

- ▶ $f_\infty(0) = 0_B$
- ▶ $f_\infty(a + 1) = f_\infty(a) + 1$

What are the non-set-like elements?

Example

$$\underline{\text{Alg}}(\mathbb{N}, A) \cong \mathbb{N}^\infty$$

So denote the elements of $\underline{\text{Alg}}(\mathbb{N}, A)$ by

- ▶ $f_0(n) = 0_A$
- ▶ $f_1(0) = 0_A; f_1(sn) = 1_A$
- ...
- ▶ $f_\infty(n) = n_A$

Definition

So we call elements of the underlying of $\underline{\text{Alg}}(A, B)$ *n-partial algebra homomorphisms*.

What are the non-set-like elements?

- ▶ Let \mathbb{n} denote the quotient of \mathbb{N} by $m = n$ for all $m \geq n$.
- ▶ Let \mathbb{n}° denote the subobject of \mathbb{N}^∞ consisting of $\{0, \dots, n\}$.

Example

$$\text{Alg}(\mathbb{n}, A) \cong \begin{cases} * & \text{if } n_A = m_A \text{ for all } m \geq n; \\ \emptyset & \text{otherwise.} \end{cases}$$

What are the non-set-like elements?

- Let \mathbb{n} denote the quotient of \mathbb{N} by $m = n$ for all $m \geq n$.
- Let \mathbb{n}° denote the subobject of \mathbb{N}^∞ consisting of $\{0, \dots, n\}$.

Example

$$\text{Alg}(\mathbb{n}, A) \cong \begin{cases} * & \text{if } n_A = m_A \text{ for all } m \geq n; \\ \emptyset & \text{otherwise.} \end{cases}$$

$$\underline{\text{Alg}}(\mathbb{n}, A) \cong \begin{cases} \mathbb{N}^\infty & \text{if } n_A = m_A \text{ for all } m \geq n; \\ \mathbb{n}^\circ & \text{otherwise.} \end{cases}$$

- So there is at least always an n -partial homomorphism out of n (which is unique).

What can we do with this? Generalize W-types, i.e., initial algebras.

Definition: C -initial objects

For a coalgebra C , a C -initial algebra is an algebra A such that for all other algebras B there is a unique

$$C \rightarrow \underline{\text{Alg}}(A, B).$$

Examples

For the natural-numbers endofunctor:

- ▶ \mathbb{N} is the \mathbb{N}^∞ -initial algebra (i.e., initial wrt total algebra homs)
- ▶ \mathbb{N} is the \mathbb{N}° -initial algebra (i.e., initial wrt partial algebra homs)

Examples

On a locally presentable symmetric monoidal category \mathcal{C} :

- (id) The identity endofunctor
- (A) The constant endofunctor at fixed commutative monoid A
- (GF) The composition of two instances
- ($F \otimes G$) The tensor of two instances (\mathcal{C} closed)
- ($F + G$) The coproduct of an instance F and an ' F -module' G
- (id^A) The exponential id^A at object A (\mathcal{C} cartesian closed)
- (W-type) The polynomial endofunctor associated to a morphism $f : X \rightarrow Y$, given a commutative monoid structure on Y and an oplax symmetric monoidal structure on the preimage functor $f^{-1} : \mathcal{C} \rightarrow \text{Set}$ ($\mathcal{C} := \text{Set}$)
- (d.e.s.) A discrete equational system of Leinster (monoidal structure on \mathcal{C} is cocartesian, \mathcal{C} has binary products that preserve filtered colimits)

Overview and background
oooo

Endofunctors
oooooooo

Work in progress: generalization
●oooo

Outline

Overview and background

Endofunctors

Work in progress: generalization

Proof sketch of main theorem¹

Convolution algebra

We get a functor

$$[-, -] : \text{CoAlg}^{\text{op}} \times \text{Alg} \rightarrow \text{Alg}$$
$$(C, \chi), (A, \alpha) \mapsto (\underline{\mathcal{C}}(C, A), ?)$$

where ? is the composite

$$F\underline{\mathcal{C}}(C, A) \rightarrow \underline{\mathcal{C}}(FC, FA) \xrightarrow{\alpha^* \chi_*} \underline{\mathcal{C}}(C, A).$$

Then we use the adjoint functor theorem to get an enriched hom

$$\underline{\text{Alg}}(-, -) : \text{Alg}^{\text{op}} \times \text{Alg} \rightarrow \text{CoAlg}.$$

¹ \mathcal{C} a locally presentable, symmetric monoidal closed category; F an accessible, lax symmetric monoidal endofunctor

Generalizations/analogues: more convolution algebras³

Let F be lax symmetric monoidal, G colax symmetric monoidal and colax closed.

- ▶ For $F, G : \mathcal{C} \rightarrow \mathcal{D}$: (F, G) -dialgebras² are enriched in (G, F) -dialgebras.

From

$$F\underline{\mathcal{C}}(C, A) \rightarrow \underline{\mathcal{C}}(FC, FA) \xrightarrow{\alpha^* \chi_*} \underline{\mathcal{C}}(GC, GA) \rightarrow G\underline{\mathcal{C}}(C, A).$$

²objects are pairs $(X \in \mathcal{C}, \delta : FX \rightarrow GX)$

³all categories locally presentable, symmetric monoidal closed; all functors accessible

Generalizations/analogue: more convolution algebras³

Let F be lax symmetric monoidal, G colax symmetric monoidal and colax closed.

- ▶ For $F, G : \mathcal{C} \rightarrow \mathcal{D}$: (F, G) -dialgebras² are enriched in (G, F) -dialgebras.
- ▶ For $F : \mathcal{C} \rightarrow \mathcal{E}$, $G : \mathcal{D} \rightarrow \mathcal{E}$: $F \downarrow G$ is enriched in $G \downarrow F$.

From

$$F\underline{\mathcal{C}}(C, A) \rightarrow \underline{\mathcal{C}}(FC, FA) \xrightarrow{\alpha^* \chi_*} \underline{\mathcal{C}}(GC', GA') \rightarrow G\underline{\mathcal{C}}(C', A').$$

²objects are pairs $(X \in \mathcal{C}, \delta : FX \rightarrow GX)$

³all categories locally presentable, symmetric monoidal closed; all functors accessible

Generalizations/analogue: more convolution algebras³

Let F be lax symmetric monoidal, G colax symmetric monoidal and colax closed.

- ▶ For $F, G : \mathcal{C} \rightarrow \mathcal{D}$: (F, G) -dialgebras² are enriched in (G, F) -dialgebras.
- ▶ For $F : \mathcal{C} \rightarrow \mathcal{E}$, $G : \mathcal{D} \rightarrow \mathcal{E}$: $F \downarrow G$ is enriched in $G \downarrow F$.
- ▶ ...

From

$$F\underline{\mathcal{C}}(C, A) \rightarrow \underline{\mathcal{C}}(FC, FA) \xrightarrow{\alpha^* \chi_*} \underline{\mathcal{C}}(GC', GA') \rightarrow G\underline{\mathcal{C}}(C', A').$$

²objects are pairs $(X \in \mathcal{C}, \delta : FX \rightarrow GX)$

³all categories locally presentable, symmetric monoidal closed; all functors accessible

Summary

We have

- ▶ that algebras are enriched in coalgebras (under certain hypotheses)
- ▶ an interpretation as notion of partial algebra homomorphism (especially in the case \mathbb{N})
- ▶ many examples
- ▶ a more refined notion of initial algebra
- ▶ a generalization ...

Overview and background
○○○○

Endofunctors
○○○○○○○○○○

Work in progress: generalization
○○○○●

Thank you!