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Abstract—Memory bandwidth severely limits the scalabil-
ity and performance of multicore and manycore systems.
Application performance can be very sensitive to both the
delivered memory bandwidth and latency. In multicore systems,
a memory channel is usually shared by multiple cores. Having
the ability to precisely provision, schedule, and isolate memory
bandwidth and latency on a per-core basis is particularly
important when different memory guarantees are needed on
a per-customer, per-application, or per-core basis. Infrastruc-
ture as a Service (IaaS) Cloud systems, and even general
purpose multicores optimized for application throughput or
fairness all benefit from the ability to control and schedule
memory access on a fine-grain basis. In this paper, we pro-
pose MITTS (Memory Inter-arrival Time Traffic Shaping), a
simple, distributed hardware mechanism which limits memory
traffic at the source (Core or LLC). MITTS shapes memory
traffic based on memory request inter-arrival time, enabling
fine-grain bandwidth allocation. In an IaaS system, MITTS
enables Cloud customers to express their memory distribution
needs and pay commensurately. For instance, MITTS enables
charging customers that have bursty memory traffic more than
customers with uniform memory traffic for the same aggregate
bandwidth. Beyond IaaS systems, MITTS can also be used to
optimize for throughput or fairness in a general purpose multi-
program workload. MITTS uses an online genetic algorithm
to configure hardware bins, which can adapt for program
phases and variable input sets. We have implemented MITTS
in Verilog and have taped-out the design in a 25-core 32nm
processor and find that MITTS requires less than 0.9% of
core area. We evaluate across SPECint, PARSEC, Apache, and
bhm Mail Server workloads, and find that MITTS achieves
an average 1.18x performance gain compared to the best
static bandwidth allocation, a 2.69x average performance/cost
advantage in an IaaS setting, and up to 1.17x better throughput
and 1.52x better fairness when compared to conventional
memory bandwidth provisioning techniques.

I. INTRODUCTION

Off-chip memory bandwidth is a critical resource in mul-
ticore and manycore processors. This is especially important
as the number of cores on a single chip is increasing at a
rate faster than that of off-chip memory bandwidth. This dis-
connect may ultimately lead to off-chip memory bandwidth
limiting the computational throughput provided by future
multicore and manycore processors [1], [2], [3]. Even on
current day multicore processors [4], [5], [6], performance
can be very sensitive to off-chip memory bandwidth and
latency.

As the number of cores on a chip increases, the need to

multiplex memory accesses from many different applications
or threads across memory controllers that are shared grows.
Having multiple applications share a memory controller
causes two primary challenges to emerge. First, different
applications or threads react with varied sensitivity to de-
livered memory bandwidth and latency due to differing
inherent bandwidth and latency requirements as well as
distinct memory sharing patterns. Second, the policy of
how much memory bandwidth and with what latency that
bandwidth should be delivered to a core or application
likely varies based on the use case, the amount of money
a user is willing to spend, and system-level goals. Good
examples of varied memory sensitivity and policy needs
include Infrastructure as a Service (IaaS) Cloud systems and
general purpose multiprocessor workloads where the system
wants to optimize for application throughput or fairness.

Current IaaS providers charge concurrent applications
equally on the basis of CPU-time. However, when using
processors with limited bandwidth, CPU-time alone is not a
good metric for performance. For instance, in IaaS Clouds,
different applications, different virtual machines (VMs), and
even different customers share the same on-chip intercon-
nect, memory controller(s), and off-chip memory bandwidth.
This can lead to large performance swings depending on
the competing customers and applications [7]. Likewise, one
customer can receive more access to the off-chip bandwidth
than their fair-share simply by running a program that
aggressively uses memory, effectively denying service to the
other customers. Traditional memory schedulers do not focus
on IaaS memory system provisioning needs. In a Cloud
setting, having a policy which optimizes for fair access to
memory bandwidth and latency is likely not even desirable.
Some customers may be willing to pay more for additional
off-chip memory bandwidth or lower latency while current
memory scheduling schemes primarily focus on fair access
to off-chip memory bandwidth instead of providing higher
bandwidth or lower latency proportional to payment.

We contend that multicore and manycore systems require
a more general and distributed way to precisely provision,
schedule, and isolate memory bandwidth and latency on
a per-customer, per-application, or per-core basis. In this
work, we propose MITTS (Memory Inter-arrival Time Traf-
fic Shaping), as a new way to limit and provision off-
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Figure 1: Latency vs. Bandwidth. Distribution captures both
latency and bandwidth. The inter-arrival time determines
the latency, and the frequency of each inter-arrival time
determines the bandwidth.

chip memory bandwidth. MITTS leverages the insight
that application memory accesses can be classified by
their statistical distribution of inter-arrival times. For
instance, applications that have very bursty traffic have a
different memory request inter-arrival time distribution than
applications which have a regular, periodic, access pattern
even though they may use the same bandwidth over the
lifetime of the program. The memory inter-arrival time
distribution encapsulates both memory request latency and
bandwidth. Figure 1 shows three examples of different mem-
ory access patterns. The top pattern has constant memory
traffic which has a distribution of a single pulse, while bursty
traffic (middle) has two pulses in its distribution. Real-world
memory traffic resembles the last case (bottom), where the
request inter-arrival time distribution has a complex shape.
MITTS works by having a simple hardware traffic shaper
for each core or thread that can shape memory traffic into a
prescribed distribution. The memory traffic distribution that
an application or thread is shaped into does not have to
resemble the application’s intrinsic memory traffic.

In a Cloud context, MITTS enables IaaS customers to
not only request a desired amount of memory bandwidth,
but also ask for different quantities of memory bandwidth
which occur at different inter-arrival times. MITTS enables
the Cloud customer to only pay for the quantity and distri-
bution of traffic which they require, thereby decoupling the
allocation of CPU resources from memory bandwidth. In a
real-time system, MITTS enables fine-grain memory source
throttling to provide bandwidth isolation. This prevents bad-
actor applications from hogging the memory system. In
a general purpose setting, MITTS enables per-application
memory bandwidth provisioning of inter-request interval
distribution to optimize overall application throughput or
inter-application fairness.

In order to allocate memory bandwidth at a per-
application, per-core, per-thread, or per-VM granularity, we

propose a simple distributed hardware mechanism where a
local memory bandwidth shaper is placed in a core or after
an application’s last level of cache (LLC) to limit memory
request rate. We have implemented MITTS in Verilog,
have taped the design out in a 25-core 32nm processor,
and chips have been tested in our lab. We find that MITTS
uses less than 0.9% of core area.

We study MITTS across a wide range of applications and
show that applications have on average 1.18x increase in
performance versus a non-distribution-based memory band-
width limiter and show that when used in an IaaS market-
place, can lead to an average 2.69x gain in performance-
per-cost versus a system that only allows static bandwidth
provisioning. In a multi-program setting, MITTS is flexible
enough to optimize system throughput, fairness, or real-time
requirements. Simulation results show up to 17% throughput
gain and 52% fairness improvement compared with other
memory schedulers (FR-FCFS, Fair-Queue, TCM, FST,
MemGuard, and MISE) on an 8-program workload.

Our key contributions include:
1) We propose distribution-based memory traffic shaping

that enables allocating bandwidth by memory transac-
tion inter-arrival time thereby opening a rich discussion
of how to treat different traffic (burst vs. bulk).

2) MITTS can isolate memory bandwidth and access to
the LLC on a per-core basis which can lead to more
deterministic performance.

3) MITTS enables Cloud users to choose their own mem-
ory bandwidth and distribution, rather than merely re-
lying on Cloud providers to provision based on system
level goals.

4) We present an online genetic algorithm to configure
MITTS hardware. It is adaptable to program phases
and different input sets. It can be used by less savvy
customers to optimize MITTS for an objective function.

5) MITTS enables Cloud providers to constructively con-
figure MITTS for co-running programs for better sys-
tem performance and fairness.

6) MITTS enables fine-grain pricing of memory band-
width, opening opportunities for IaaS Clouds to charge
for provisioned memory bandwidth that do not exist
with current microprocessors.

7) We implemented MITTS in Verilog and taped it out in
a 25-core 32nm processor. We determine its small area
impact, and discuss design tradeoffs.

II. BACKGROUND AND MOTIVATION
A. Challenges With Memory Systems

Previously proposed memory schedulers aim to improve
system throughput and fairness [8], [9], [10], [11], [12], [13].
Achieving memory system fairness while maintaining per-
formance is intrinsically difficult. Unlike network systems,
application performance is not proportional to resources
used, as memory performance is influenced by application



features (eg. working set size and memory intensity) and
inter-application interference.

Application-aware algorithms [8], [9], [10], [13] improve
CPU performance and fairness by prioritizing some appli-
cations over others, based on applications’ memory access
characteristics. These techniques are not robust due to the
limitations in each of their designs. TCM [10] provides
high performance, but can be highly unfair because of the
way it clusters applications. TCM sometimes places high-
memory intensity applications in the low memory-intensity
cluster, unfairly prioritizing them. Moreover, application-
aware algorithms rely on application ranking, which incurs
higher hardware complexity in terms of critical path and
chip area.

Performance of a shared memory system largely depends
on thread-to-core mappings. When multiple cores share a
resource, threads running on those cores can constructively
or destructively use the resource. Heuristics and adaptive
thread-to-core mapping techniques have been developed for
better sharing LLC and memory bandwidth [7]. However, if
the thread-to-core mapping fails, another technique such as
MITTS is required to shape memory traffic before the LLC.

B. IaaS Provisioning and Isolation

Current Infrastructure-as-a-Service (IaaS) Clouds lack the
ability to provision memory bandwidth on a per-customer
basis according to customers’ needs and payments. IaaS
systems based on Virtualization technologies such as Xen
[14], VMWare, and KVM enable flexible and dynamic
provisioning of resources. However, current Cloud provi-
sioning implemented by IaaS providers, e.g. Amazon EC2, is
limited to the level of coarse grained VMs. Elastic resource
provisioning of CPU, disks, I/O, and memory capacity [15],
[16], [17], [18], [19] have been well studied. Memory
bandwidth as a critical shared resource, however, is neither
shared proportionally to payment, nor do cloud providers
typically offer minimum guarantees on memory bandwidth.

Current Cloud systems lack the ability to flexibly pro-
vision resources while guarantee performance isolation.
Current Virtual Machine Monitors or Hypervisors provide
isolation guarantees on some of the Cloud resources through
strict CPU reservations and static partitioning of memory
and disk space. Significant research has been dedicated
towards providing isolation guarantees for resources such
as disk bandwidth [20] and network bandwidth [21]. Some
shared resources, including on-chip cache, interconnection
network, and memory bandwidth, are difficult to isolate. Sys-
tem software has little control over such resources, and they
are almost entirely managed by the hardware in a best effort
manner. Therefore, co-located VMs can suffer interference
or performance degradation due to static partitioning.

In order to gain the highest economic efficiency, resources
can be allocated to the application or user that values them
most [22], [23]. The amount of resources allocated to each

application can be determined by the amount of money
the customer is willing to pay, which is likely proportional
to how much the customer values these resources or the
utility they gain from their use. Economic efficiency can be
enhanced by allocating resources at fine granularity. A fine-
grain provisioning of memory bandwidth allows IaaS cus-
tomers to request the desired amount of memory bandwidth,
as well as ask for different quantities of memory bandwidth
that occur at different inter-arrival intervals. Current IaaS
systems allocate off-chip bandwidth based on the VM size
purchased, which is not optimized for economic efficiency.
For instance, CPU-intensive applications need large VMs
with many cores but do not necessarily require large memory
bandwidth. As an alternitive, a Cloud system could allow
users to decide exactly the amount of bandwidth and inter-
arrival time of that bandwidth to purchase, and provision
memory bandwidth based on market supply and demand.

C. Key Idea: Memory Traffic Distribution

Conventional memory scheduling fails to manage differ-
ent aspects of memory bandwidth such as average bandwidth
and burstiness in a generalized form. Prior research has
categorized applications as latency-sensitive or bandwidth-
sensitive. Latency-sensitive workloads are more CPU inten-
sive while the latter are more memory intensive workloads.
In conventional memory scheduling, latency-sensitive appli-
cations are given higher priority for system throughput [10].
We observe that applications have different sensitivity to
different aspects of memory bandwidth, primarily latency.
Memory-intensive applications with sufficient memory level
parallelism are sensitive to the average bulk bandwidth
but are not particularly sensitive to memory latency. Ap-
plications with bursty access patterns can benefit from an
extra burst of bandwidth sporadically, but do not necessarily
require a large average bulk bandwidth. We propose a
generalized framework for describing both memory latency
and bandwidth, the memory request inter-arrival time “dis-
tribution”. The distribution describes how an application’s
memory requests are serviced at different intervals, and what
percentage of requests fall into a specific inter-arrival time.

In our proposed memory distribution, the horizontal axis
represents the time difference between two subsequent mem-
ory requests, while the vertical axis determines how frequent
a request falls into a certain inter-arrival category. The inter-
arrival time along with the frequency at which memory
requests occur with that inter-arrival time determines the
bandwidth consumed. With the knowledge of an appli-
cation’s distribution, customers are able to make rational
decisions on the amount of bandwidth at a certain inter-
request latency to purchase. The distribution reveals the
fundamental parameters including memory bandwidth and
how often memory requests are clustered in time. As a moti-
vation for this work, Figure 2 shows distributions of memory
request inter-arrival time with two LLC cache sizes for three
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(e) libquantum (64KB LLC)

0 100 200
Arrival Time Interval (1MB L2)

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

Nu
mb

er 
of 

Re
qu

es
ts

(f) libquantum (1MB LLC)
Figure 2: Intrinsic Memory Request Inter-arrival Time Dis-
tribution for Three SPEC Benchmarks (64KB and 1MB
LLC): Number of Requests vs. Inter-arrival Time

SPEC2006 benchmarks. We can see that using a larger LLC
cache has two effects on the distribution: first it reduces the
number of requests, second it moves the distribution right.
The plot gives us the intuition that different applications have
different requirements on memory bandwidth and memory
bandwidth as a function of inter-request interval.

III. ARCHITECTURE

A. Distributed Management: Source Control

We propose a distributed hardware mechanism where a
local memory bandwidth shaper is placed within a core
or after a VM’s LLC to limit memory request rate for a
particular core or thread, as shown in Figure 3. Most exist-
ing memory scheduling algorithms are memory controller-
driven, and do not provide CPU initiated memory bandwidth
provisioning. In contrast, we rely on memory request inter-
arrival times at processor cores to shape memory bandwidth
into the distribution that a user is willing to pay for or into
a distribution which is determined by software policy, for
instance a online auto-tuner which is optimizing memory
utilization. We leverage insights from Source Throttling
(FST) [11], which reacts to application slowdowns by throt-
tling CPU cores. Unlike FST, MITTS not only controls the
rate based on processor core’s feedback, but also controls
the distribution of request inter-arrival times. Also, different
from FST, MITTS can shape memory request inter-arrival
time distribution reactively using an online auto-tuner as well
as proactively using an offline auto-tuner. In order to enforce
bandwidth limits, the OS or hypervisor sets up memory con-
trol registers to configure an individual core’s inter-arrival
interval distribution. The use of memory bandwidth source
control in a distributed way can scale up with multicore
and manycore systems, as it does not rely on centralized
hardware structures.
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Figure 3: Distributed Memory Bandwidth shaper
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Figure 4: Memory Inter-arrival Time Traffic Shaping.
MITTS limits memory traffic to fall into a certain distri-
bution at processor core/LLC side.

B. Inter-arrival Time Traffic Shaping

As shown in the high-level architecture in Figure 4,
different cores have different memory inter-arrival time
distributions, and these distributions add up at the global
level. Inside each distribution, the total number of requests
at different inter-arrival time intervals can vary significantly.
The larger the interval, the lower the rate of memory
requests. Requests at a higher rate consume more instan-
taneous memory bandwidth, therefore should be charged
more. In a Cloud context, customers are charged based
on the distribution of traffic they purchase. Our proposed
hardware shapes application memory bandwidth by
fitting the application’s memory request inter-arrival
time into a certain distribution. The philosophy of provi-
sioning a distribution is to better utilize fine-grain memory
bandwidth and charge for memory requests that consume
various amounts of bandwidth at various request intervals
differently.

1) Bin-based Bandwidth Shaper: We propose a simple
bin-based hardware memory bandwidth shaper that shapes
memory request rate into a pre-determined arbitrary distribu-
tion. The bandwidth shaper gathers cache miss information
and stalls the core when its memory bandwidth usage ex-
ceeds the pre-determined value. Inside the hardware memory
bandwidth shaper, we have multiple traffic bins that contain
available credits for memory requests with certain inter-
arrival time, as shown in Figure 5. Each bin contains credits.
One credit represents one memory transaction at a certain
request interval and the issuing of a memory transaction con-
sumes a credit. We allow arbitrary configuration of credits
to bins in order to allow the bandwidth shaper to shape the
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Figure 5: Hardware Memory Shaper
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Figure 6: Credit Deduction Given the Request Inter-Arrival
Time. Four bins have credits in left example.

memory traffic to any distribution. The maximum number of
credits in a bin are bounded by the total memory bandwidth
that a core can generate. The bandwidth shaper enforces
that a core’s memory traffic distribution does not exceed
the prescribed or paid-for distribution by delaying (stalling)
a memory transaction if there are no credits available in
a bin with lower or equal to the memory request’s inter-
arrival interval. The delayed memory transaction will issue
when it has been delayed enough that its inter-arrival interval
matches a farther out bin which has credits, or credits have
been replenished as described below. Figure 6 shows how a
memory request consumes a credit based on the inter-arrival
time.

Table I shows the variables used throughout this section.
Each bin is a container holding credits for memory requests
with a certain request rate (inter-arrival time). We define
the total number of bins N, where N can be determined
by how fine-grain the quantization of inter-arrival interval
should be. For simplicity, we use N=10 (ten bins) throughout
our simulations. Memory requests with inter-arrival time
t ∈ [ti − L

2 , ti +
L
2 ) fall into bini. We find that for most

benchmarks, memory request inter-arrival times are smaller
than 100−200 cycles with a small LLC cache. We decide
to use 10 bins, with interval length of L = 10 CPU cycles
in our simulations. If applications have intrinsically larger
inter-arrival times, MITTS can be modified by increasing L
to accommodate this large interval requirement.

In an IaaS context, the pricing of the replenishment-rate
of bins is not a hardware construct, but rather a market or
software constraint. The hardware mechanism that enforces
the replenishment rate is described below and is set by
software (OS or hypervisor). While we leave the pricing
of bins up to software and the market, bins should be
priced at least commensurate with the amount of bandwidth
they provide. In all likelihood, bins with a lower inter-
arrival interval will be even more costly than their bandwidth
dictates as they provide preferential treatment of traffic.

N Total number of bins
L Time interval length of each bin (10 CPU cycles in our simulation)
ti Inter-arrival time represented by bini,

Requests with inter-arrival time [ti− L
2 , ti +

L
2 ) fall into bini

bi Equivalent bandwidth bini represents
ni Number of credits in bini
Ki Number of credits will be replenished to bini
Tr Overall replenishment period
Tc Current interval counter

Table I: Parameters of Bin-based Algorithm

2) Bin Credits Replenishment: The MITTS hardware
shaper is designed to force the memory traffic from a core or
LLC into a traffic distribution. In order to achieve this, the
credits in different bins need to be replenished at a regular
period or at different rates. We define a replenishment period
Tr = ∑

N−1
i=0 Kmax× ti, where Kmax is the maximum bin size.

Ideally all credits should be used up within this period. In
the hardware, we have a register to store the replenishment
period Tr, and a small counter Tc used to store time to next
replenishment. A table K with N entries stores the number
of credits each bin should be replenished/reset to at the end
of each replenishment period. Algorithm 1 is a “reset” based
replenishment, where all bin credits are reset after Tr cycles.

Algorithm 1 Bin Credits Replenish Algorithm 1

if Tc == Tr then
for i in 0 : N−1 do

ni := Ki
end for
Tc := 0

end if

C. Global Traffic Management

MITTS is flexible enough to enable both oversubscription
(overprovisining) and undersubscription (provisioning) of
off-chip memory bandwidth depending on how many credits
the software policy globally doles out. The provisioned case
only allocates total chip-wide credits that correspond to less
than the off-chip bandwidth, therefore MITTS can restrict
the global average bandwidth. Unfortunately, restricting
global instantaneous memory bandwidth is challenging
because replenishment time may be long relative to memory
request processing time. Therefore, it is possible that all
cores may choose to spend their bursty credits at the same
time. Note that this does not exceed the aggregate average
bandwidth, but is instead a short term problem. This is also
a probabilistically unlikely event. A simple solution to this
challenge is to have a FIFO at the memory controller that is
large enough to absorb global traffic burstiness and smooth
out accesses to off-chip memory. If the size of the FIFO
is deemed too large, the FIFO can be made smaller and
memory requests can back up to the cores which will also
cause smoothing in the unlikely case that all cores use their
high-priority credits at the same time. We use a small (32-
entry) fixed-sized FIFO in our simulation results. More com-
plex schemes are possible which communicate short-term
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Figure 7: Design Tradeoffs of MITTS. Left: After L1;
Middle: After LLC; Right: Hybrid.

congestion to the MITTS units which then proportionally
scale-down resources until the congestion is resolved, but
we leave this to future work.

D. Hardware Design Tradeoff

There are multiple possible locations to place MITTS, as
shown in Figure 7. As shown in the left most diagram, we
can place MITTS after the L1 cache (or last private cache).
In this case, MITTS treats an L1 miss as a memory request.
This solution works well for single level caches or chips
with only private caches, but when used with shared caches,
this is inaccurate because shared LLC hits will be treated
as memory requests. Alternatively, we can place MITTS
after the LLC, as shown in the middle diagram, where a
LLC miss will be treated as a memory request. This is
accurate in tracking requests’ inter-arrival times, however,
it is difficult to implement in a distributed, shared LLC. In
a shared LLC, memory requests can be mapped to different
cache banks (directories), making per-core/per-thread/per-
VM based MITTS infeasible because the needed information
is distributed at the cache banks.

In order to solve this problem, we propose a hybrid
solution (right). We place MITTS after the L1 cache, but
shape traffic using hit/miss information reported back on
a per-request basis from the (possibly distributed) LLC.
This solution introduces latency between the shaper and the
information used to rate limit, but this latency is likely small
with on-chip LLC. There are two possible solutions to this
delayed information challenge which are described below.

1) Speculate LLC Hit and Rollback if Miss: The first
method tracks the request issue time that an L1 miss occurs
using a timestamp. If the LLC responds that the request is
an LLC miss, the timestamp is compared to the previous
LLC miss timestamp to determine which bin a credit should
be removed from. The rate-shaper’s credits for a given bin
may lag what they should actually contain, but only by
the number of outstanding L1 to LLC memory transactions
which are also LLC misses. This can cause MITTS to fail
to block a memory request so this approach is slightly
aggressive. In order to track the per-request timestamp, we
use a tag-indexed timestamp table to store the L1 miss
timestamp for every inflight L1 to LLC request.
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Figure 8: MITTS Hardware Implementation.
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2) Speculate LLC Miss and Rollback on Hit: The second
method is more conservative and assumes that an L1 miss is
an LLC miss (deducts credits), but then adds back in credits
on LLC hit notification. Instead of storing timestamps per
L1 miss, this design stores bin number per L1 miss in order
to credit to the appropriate bin on LLC hit. The size of this
small table is determined by the maximum number of in-
flight L1 to LLC requests. Method two is slightly simpler
than method one and may have less out-of-sync bin counters
because determining an LLC hit is likely faster than waiting
for a main memory response to determine an LLC miss in
method one. This problem can be rectified in method one if
the LLC sends an extra message once it determines miss to
overlap main memory hit/miss time with MITTS updating.

In our 25-core chip implementation, we have chosen
method two. Figure 8 shows the simple hardware. Each
time there is an L1 miss (l1missIn), a credit is deducted
from the interval selected bin. On LLC hit, one credit is
added back (l2responseIn && ! l2missIn) to the bin which
it was removed from. At replenishment time, all bins are
replenished.
E. Hardware Cost

We have implemented the entire MITTS design in
Verilog RTL in a 25-core processor that was taped out
in March 2015 in IBM’s 32nm SOI process and we have
received chips back which have been tested in our lab.
The MITTS RTL code is integrated in and released as
part of the open source OpenPition [24] project. The
area used by MITTS is 0.0035mm2, which is less than
0.9% of the core area for the 25-core OpenSPARC T1-based
processor which we have taped-out (16KB L1I/core, 8KB
L1D/core, 64KB L2/core). Figure 9 shows the layout of a
core with MITTS circled. Each MITTS module contains a



register per bin to track current credits and a register per
bin to hold the number of credits to replenish at the end
of the replenishment period. Each register corresponds to
the maximum number of credits a bin can contain which
we set to 1024 (10-bits). This is likely over-designed. A
counter is used to track the inter-arrival period since the last
memory transaction. A tag-indexed table is used to store
the bin number from which a credit is deducted after an L1
miss while it is pending. A subtractor is needed to decrement
the credit from one bin after an L1 miss, and an adder is
required to add back the credit after an LLC hit. A zero
detector signals if a bin that is needed is empty. MITTS’ area
cost is minimal when compared with complex comparison
trees and thread state tables used in most centralized memory
controllers.

F. Software Implications

MITTS is a hardware mechanism that enables better
policy making. Policy making in the software stack is not
the focus of this paper. However, we want to propose several
solutions for using MITTS in an IaaS Cloud. The primary
question is how an IaaS user determines the optimal bin
configuration for their application and use case? A basic
solution is to profile their applications with their specific
input set and objective functions (utility functions), and set
the configuration based on the profile. Profiling is good
for stable workloads with fixed input size. Alternatively,
customers can search the bin configuration space likely
using an online auto-tuner. Amazon AWS and some third-
party cloud management services provide schedule-based
and rule-based auto-scaling mechanisms. Schedule-based
auto-scaling allows users to change bin configuration at
a given time, such as “add n credits to bin m between
8AM to 6PM each day”. Rule-based mechanisms allow
users to define triggers by specifying bin reconfiguration
thresholds and actions, such as “run Genetic Algorithm to
reconfigure bins when the application’s objective function
is below a threshold value”. The auto-tuner will search
the configuration space by varying the bin configurations,
and select the best configuration provided a user-defined
objective function. In the evaluation section, we use both
offline profiling and online auto-tuning to evaluate MITTS.

IV. EVALUATION

We show MITTS has up to 1.68x performance gain com-
pared with static bandwidth allocation, up to 17% throughput
and 52% fairness gain compared with conventional memory
scheduling techniques, and up to 10x performance-per-cost
gain for economic efficiency.

A. Simulation and Workloads

We model both the CPU core and memory system using
the cycle-accurate simulator SDSim which is adapted from
the core simulator SSim [25], [26], and the DRAM simulator
DRAMSim2 [27]. We integrated DRAMSim2 with the SSim

Core 2.4GHz, 4-wide issue,
128-entry instruction window

L1 Caches 32 KB per-core, 4-way set associative,
64B block size, 8 MSHRs

L2 Caches 64B cache-line, 8-way associative,
Single-program: 64KB, multi-program: 1MB shared

Memory controller 32-entry transaction queue depth
Memory Timing: DDR3, 1333 MHz

Organization: 1 channel, 1 rank-per-channel,
8 banks-per-rank, 8 KB row-buffer

Table II: Base Simulation Configuration
Workload 1 gcc, lib, bzip, mcf
Workload 2 Apache, libquantum, bhm mail server, hmmer
Workload 3 astar, bhm mail server, libquantum, bzip
Workload 4 gcc, gobmk, libquantum, sjeng, bzip, mcf, omnetpp, h264ref
Workload 5 bhm mail server, astar, libquantum, sjeng, bzip, mcf, omnetpp, h264ref
Workload 6 Apache, astar, gobmk, sjeng, bzip, mcf, omnetpp, h264ref

Table III: Multi-program Workloads

frontend, which models out-of-order cores with out-of-order
memory systems. SSim is driven by the GEM5 Alpha ISA
full system simulator [28], and both trace-driven simulation
and execution-driven simulation can be performed with
SSim. When the simulation completes, SDSim reports the
cycles executed for a given workload along with statistics,
such as cache miss rates, and aggregate memory latency.
We model a shared LLC and memory system for the
multi-program workloads. Table II shows the details of the
simulated system unless otherwise noted.

We perform our studies on both single-program and
multiprogram workloads made of applications from SPECint
2006, PARSEC, Apache, and bhm mail server. We construct
multiprogram workloads by randomly combining bench-
marks, as shown in Table III. We run each workload for
200 million ROI cycles. For Apache, we run 3000 requests
with concurrency of 10.

B. Optimizing Bin Configuration

With the capability to configure the hardware bins for
fine-grain bandwidth provisioning, we also need an efficient
algorithm to determine the optimal bin configurations. As
there are 10 bins in total in our hardware bandwidth shaper,
the search space could be (K10

max), where Kmax is the total
number of credits allowed in a bin. Hill climbing and
gradient descent [29], [30] are well-known algorithms, but
they are likely to get stuck in a local optimal solution. We
decide to use a genetic algorithm, which is suitable for
large search space, and is capable of escaping from local
optimal solutions. Genetic algorithms work well for non-
convex search spaces like the one we are searching. For all of
the results presented, we use an online genetic algorithm and
an offline genetic algorithm to optimize bin configurations.
The online genetic algorithm acts as an auto-tuner that can
adapt to program phases and input sets.

The offline algorithm optimizes for a single choice of bin
configurations across a whole program with 20 generations
and 30 children per generation. A multi-phase offline genetic
algorithm optimizes different phases separately. In order to
reduce the amount of profiling and adapt to variable phases
and input sets, we also designed an online genetic algorithm
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Figure 10: Online Genetic Algorithm. CONFIG PHASE
consists of multiple generations composed of multiple
EPOCHs. Genetic Algorithm runs at the end of each gener-
ation in CONFIG PHASE.

that configures MITTS at program runtime.
The online genetic algorithm in Figure 10 configures

MITTS at the beginning of the program or a program phase
(CONFIG PHASE), and uses the optimal configuration for
the rest of program or phase (RUN PHASE). We leverage
an online profiling technique used in MISE [13] to measure
application slowdown. The CONFIG PHASE is composed
of n INTERVALs, where n is the number of generations.
Each INTERVAL is composed of multiple EPOCHs. The
first several EPOCHs are used to measure memory request
rate in highest priority mode for each program, and will
be later combined to calculate application slowdown when
mixed with other applications (slowdown o f an App =
(1−α)(α Request Service Rate with Highest Priority

Shared Request Service Rate ),

α = Cycles spent stalling on memory requests
Total number o f cycles ). Then the algorithm

runs every child configuration sequentially for EPOCH time,
and stores the measured objective function (throughput,
fairness, etc.) in a dedicated address. After all configura-
tions in one generation are evaluated, the software runtime
selects the best configurations and uses them to create the
genomes of the next generation (crossover and mutate). The
new configurations are stored at special memory addresses,
which are loaded by each program at the beginning of
a new generation. The optimal configuration at the end
of CONFIG PHASE is used for the rest of program or
program phase. For a phase-based online genetic algorithm,
the CONFIG PHASE occurs at the beginning of each phase
so that it can adapt to program phase change. After studying
the effects of different parameters (EPOCH, population,
etc.), we use an EPOCH size of 20000, population of 30, and
20 generations. The software runtime is only called 20 times,
with about 5000 cycles overhead each. The online algorithm
has a comparatively small measured software overhead, and
we include this overhead in our results.

C. Static Bandwidth Allocation Comparison

We evaluate MITTS’s performance gain compared with
a static memory bandwidth allocation. The static allocation
mimics a less sophisticated memory system limiter that can
limit a program’s memory requests at or below a constant

astar bzip gcc
h264ref

gobmklibqt
sjeng mcf

hmmer
omnetpp

streamcls
dedup

canneal
apachemail

GEOMEAN
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

P
ro

g
ra

m
 S

p
e
e
d
u
p

1.12

1.01

1.18

1.08 1.08

1.02

1.17

1.64

1.21

1.68

1.05

1.15

1.28

1.16

1.38

1.18

1.08

1.00

1.15

1.04
1.06

1.00

1.11

1.60

1.16

1.62

1.02

1.10

1.25

1.13

1.29

1.16

Online GA

Offline GA

Figure 11: Performance Gain Compared with Static Band-
width Provisioning

rate but cannot take into account inter-arrival times. In this
section, we show that MITTS always outperforms the static
case with the same average bandwidth (1GB/s).

For a given distribution, as shown in Figure 5, the number
of credits in each bin and the inter-arrival times together
determine the average interval between memory requests.
This can be computed as Iavg =

∑niti
∑ni

, where ni is the number
of credits in bini and ti is the inter-arrival time of memory
requests that use credits in bini. The average bandwidth is
computed by dividing the total traffic in a certain period Tr
by time Tr.

We configure MITTS with exactly the same average inter-
arrival time and bandwidth as the static allocation. We
optimize MITTS’s bin configuration so that for a fixed
average interval and fixed average bandwidth (equal to the
static case), the performance is maximized. The constraint
functions can be formulated as: Iavg =

∑niti
∑ni

= Istatic, Bavg =
∑biniti

P = ∑ni
P = Bstatic, where bi is the bandwidth of bini.

Figure 11 shows the performance gain that MITTS
achieves when compared with static memory bandwidth
provisioning. With an offline genetic algorithm, mcf and
omnetpp have 1.64x and 1.68x performance gain respec-
tively and the Geometric Mean is 1.18x better. This shows
that given a certain bandwidth limit, MITTS better allocates
memory bandwidth for performance. The online genetic
algorithm performs slightly worse than the offline GA.

D. Effect on Inter-application Interference

In this section, we show MITTS’s effectiveness in coordi-
nating memory bandwidth shared by multiple programs. We
use the two conventional metrics, throughput and fairness,
to ensure that no application is unfairly slowed down while
maintaining high performance. We use application aver-

age slowdown Savg =
∑

N−1
i=0

Tshared
Tsinglei

N and maximum application
slowdown Smax = max{ Tshared

Tsinglei
} as measures of throughput

and fairness. The lower the values of Savg and Smax the
better the throughput and fairness. In the simulation, we
use four programs for workloads 1-3 and eight programs for
workload 4-6, and let MITTS optimize the bin configurations
for throughput and fairness separately. Each benchmark can
have a different MITTS bin configuration.
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Figure 12: Four-Program Throughput and Fairness Comparison with Conventional Memory Schedulers. Average slowdown
and maximum slowdown are measures of throughput and fairness. (lower is better)
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Figure 13: Eight-Program Throughput and Fairness Comparison with Conventional Memory Schedulers. Average slowdown
and maximum slowdown are measures of throughput and fairness. (lower is better)
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Figure 14: Comparison of MISE, MITTS, and MISE+MITTS. (lower is better)

We compare MITTS versus conventional memory
scheduling techniques (FR-FCFS, Fair Queue, TCM, FST
(denoted as ”Source Thro”), MemGuard, and MISE) and
show MITTS is more effective in improving system through-
put and fairness. We run benchmarks concurrently on a 1MB
shared LLC with a shared memory system. For TCM, we
use a ClusterThresh of 2/N and a time quantum of one
million cycles, as suggested in the paper. In MISE, we use
an epoch length of 10000 cycles and an interval length of
5 million cycles as suggested in the paper. We exhaustively
searched all parameter configurations of MISE presented in
the MISE paper and present the best result here. We do
our best to reproduce these algorithms based on suggested
parameters in the original papers but have implemented them
in our simulator framework. Figure 12 and Figure 13 show
that MITTS can be configured for both throughput and
fairness for multi-program workloads sharing the memory
system. Compared with the best conventional scheduling in
each of the six workloads, MITTS improves four-program
throughput/fairness by 11%/17% (workload 1), 16%/40%

(workload 2) and 17%/52% (workload 3), and improves
eight-program throughput/fairness by 11%/30% (workload
4), 12%/24% (workload 5), and 4%/32% (workload 6). The
online genetic algorithm performs a little worse compared
with the offline genetic algorithm, because of the imperfect
online measurement of application slowdown and introduced
software overhead. However, it can adapt to phase changes
and input set changes, thus is more practical to use for Cloud
customers.

We also evaluate phase-based online/offline MITTS by
dividing an application into five phases and optimizing
MITTS configuration for each phase. In Figure 12 and in
Figure 13, we observe small throughput and fairness gain
over non-phase optimized MITTS for both four-programs
workloads and eight-program workloads. We conclude that
phased-based reconfiguration provides better opportunity to
improve system throughput and fairness. Phase-based online
algorithm reconfigures MITTS at the beginning of each
phase, enabling online adaptation for phases and input sets.

The advantages of MITTS compared with conventional
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Figure 15: Throughput and Fairness Comparison With 8MB
LLC (Workload 1 (top) and Workload 4 (bottom))

scheduling techniques include: 1. It counters destructive
effects at a shared LLC. If an application unfairly slows
down other applications by evicting others’ data or hog-
ging LLC bandwidth, it is desirable to reduce the memory
bandwidth usage for that application. MITTS is able to
limit bandwidth at the core before it reaches the LLC
which many of the other memory scheduling algorithms
are unable to do; 2. It enables a larger memory request
scheduling window compared with a centralized memory
controller. In a conventional memory system without source
throttling, a central queue can get filled with aggressive
memory requests from a memory intensive application; 3. It
allows applications to have different memory request inter-
arrival distributions, which enables some constructive inter-
application effects.

1) Larger LLC: In our evaluation, we have primarily
focused on future manycore systems which have modest
cache sizes such as Tilera, Cavium, and Xeon Phi processors.
While our primary results are for the above mentioned
cache sizes, we also evaluate MITTS using an 8MB LLC
which approximates a current day multicore processor. Fig-
ure 15 compares MITTS against prior work for a 4-program
(workload 1) and 8-program (workload 4). When using a
larger LLC, there are fewer off-chip LLC cache misses,
but MITTS still outperforms the best conventional memory
scheduling technique by 5.3%/12.7% in throughput and
fairness for workload 1 and 2.3%/6% in throughput/fairness
for Workload 4.

E. Hybrid Method: MITTS+MISE

One important question that arises is how does perfor-
mance react when using per-core MITTS with an intelli-
gent centralized memory controller. We evaluate this hybrid
model combining MITTS at each core with MISE used as
the centralized memory controller as MISE performed best
on average. We evaluated this hybrid approach across our
eight application workloads and found additional throughput
and fairness gains. Figure 14 shows the hybrid method
achieves on average additional 4% and 5% throughput
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Figure 16: Static Even Bandwidth Split versus Optimal
Heterogeneous Static Bandwidth Allocation.

and fairness gain compared with MITTS only. This ex-
periment implies MITTS complements existing centralized
controllers.

F. Bandwidth Isolation

MITTS can enable better bandwidth isolation (important
to real-time systems) and efficiency versus statically allo-
cating bandwidth between applications. To evaluate this, we
compare MITTS with a static, even bandwidth allocation
where each application gets the same amount of memory
bandwidth, and a static heterogeneous allocation where
each application gets an optimal portion of bandwidth. We
optimally configure MITTS for throughput and fairness
separately while guaranteeing that MITTS does not over-
provision bandwidth. From Figure 16, we can see for eight-
programs (workload 4), MITTS has significantly higher
throughput and fairness. Compared with static allocation
and heterogeneous static allocation, MITTS is 14%/21%
and 8%/7% better in throughput/fairness. This implies that
MITTS could be applied to real-time systems to provide
better application memory bandwidth isolation while main-
taining efficiency.

G. Performance per Cost for an IaaS System

We next apply MITTS to an IaaS Cloud setting and
show that MITTS improves economic efficiency by eval-
uating MITTS’s performance per cost (efficiency) versus
static bandwidth provisioning. In IaaS systems, customers
care about cost as well as performance, making economic
efficiency an interesting metric. In order to achieve this,
we need a notion of pricing that can compare memory
bandwidth and core cost. We assume that a processor core
costs the same as 1.6GB/s of bandwidth.

1) Bin-based Credit Pricing: Credits in different bins
represent different memory request rates. The lower latency
the credit represents, the higher instantaneous bandwidth
the credit enables, and the more expensive the credit likely
should be. For instance, one credit in bini represents a higher
instantaneous bandwidth than one credit in bin j where i is
smaller than j. A memory request with inter-arrival time t
can only be issued if there are credits available in bins whose
ti is smaller than t.
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Figure 17: Optimal Bin Configurations per application for
Performance/Cost. Credit price is proportional to the band-
width it stands for, credits of higher-request rate are penal-
ized by a linear scale factor 2− (ti/tN).

2) Optimal Bin Configurations for Performance/Cost:
Different applications have different optimal bin configura-
tions for a given objective function. Figure 17 shows the best
bin configurations found across our benchmark suite. We
optimize for performance-per-cost using the pricing scheme
in Section IV-G1. Different benchmarks have dramatically
different bin configurations. Memory intensive applications,
such as mcf, have a large number of credits in high-request-
rate bins (bin0), and a significant number of credits in all
other bins. Less memory intensive applications (sjeng, bzip,
etc.) have only a few credits in high-request-rate bins due
to the high cost and low reward. PARSEC benchmarks
have lower overall memory intensity compared with SPEC,
and their bin sizes are small compared with SPEC. Ideally,
MITTS can provision a distribution of memory bandwidth
that best satisfies an application’s need.

3) Performance/Cost Gain Compared with Static Band-
width Provisioning: MITTS improves economic efficiency
by enabling fine-grain resource allocation and pricing. We
compare performance-per-cost of MITTS versus static band-
width provisioning with only one fixed inter-arrival time
allowed (configurations with only credits in one bin). These
configurations only allow memory requests being sent at
or below a certain rate. As credit price is proportional to
the request rate it allows, there is a tradeoff in balancing
expensive bandwidth and low-cost bandwidth. As a baseline,
for each benchmark, we find the optimal fixed inter-arrival
time configuration with highest performance-per-cost. We
do this by searching all configurations with any number of
credits in only one bin while optimizing for performance-
per-cost. This static best case is the optimal static bandwidth
provisioning. We then find the optimal configurations for
MITTS, and compare it with the best static bandwidth
provisioning. Figure 18 shows that MITTS can achieve
significantly higher efficiency. The geometric mean shows a
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Figure 18: Efficiency Gain (Performance/Cost) Compared
with the Optimal Static Bandwidth Provisioning. The op-
timal static case has a fixed request rate with highest
performance/cost.

2.69x increase over static optimal bandwidth provisioning.
MITTS enables Cloud customers to value memory band-
width with different latencies differently and purchase the
right amount of resources for the job.

H. Threaded Applications

Using MITTS for multi-threaded applications presents
some interesting design options. MITTS could have per-
thread bin configurations with different configurations in
each thread, or a configuration which shares bin credits for
all threads in a single program. From an OS perspective,
context swapping MITTS state is simple as the MITTS bin
configurations are exposed in a set of configuration registers
can be swapped as part of the thread state.

We studied the effectiveness of per-thread MITTS for
threaded applications as we expected to see different band-
width requirements for different threads within a multi-
threaded program. We ran x264 and ferret, both with a
shared MITTS and per-thread MITTS. To our surprise, the
results of a shared MITTS are over 2x better than a per-
thread MITTS. A shared MITTS allows threads to share bin
credits, which is useful when some threads are idle or cannot
use up their credits within a replenishment window. A per-
thread scheme wastes credits when a thread cannot use up
its credits during some program phases. We think a phase-
based, per-thread MITTS can perform better, and we leave
this as future work.

I. Varying Bin Numbers

As a design sensitivity analysis, we have explored varying
the number of credit bins used in the MITTS memory shaper.
Using the methodology and workloads of Section IV-D
we have found that more bins outperform fewer bins, but
with diminishing returns. On average, 6-bins outperforms 4-
bins by more than 10% in throughput and fairness, 8-bins
outperforms 6-bins by 5%, and 10-bins outperforms 8-bins
by 2%. While having more bins enbles higher performance,
they are also more difficult to configure.



V. RELATED WORK
Main memory is a critical resource for all computing

systems. Techniques that minimize memory capacity and
bandwidth waste have been proposed [31], [32], [33]. Fine
granularity access/storage and data compression in data
caches [34] and memory [34], [35], [36] effectively conserve
memory bandwidth and better utilize cache capacity.

FR-FCFS [37] aims to maximize DRAM throughput by
prioritizing row-buffer hits. It unfairly favors applications
with higher row-buffer hits or higher memory intensity. A
Fair Queuing memory scheduler [38] ensures each thread
receives its allocated fraction of the memory system regard-
less of the load placed by other threads. It overcomes the
drawbacks of FR-FCFS [37] and FCFS. Adaptive bandwidth
management [39] periodically tunes the bandwidth assigned
to the sharers with OS or hypervisor support, which im-
proves average and worst case service latencies. MITTS
allocates fine-grain memory bandwidth based off memory
traffic distribution, not a constant fair share of bandwidth.

Slowdown-based memory schedulers are proposed for
memory system fairness. STFM attempts to estimate each
application’s slowdown, aiming to improve fairness by pri-
oritizing the most slowed down application [40]. MISE [13]
proposes a new way to estimate the slowdown of an
application as the ratio of its uninterfered and interfered
request service rates. These measurement-based scheduling
algorithms introduce hardware complexity (worse clock and
area). In contrast, MITTS is very simple to implement.
MITTS provisions fine-grain memory bandwidth at a per-
core basis, which is compatible with manycore systems.

Thread Cluster Memory Scheduling [10] addresses sys-
tem throughput and fairness separately by dividing threads
into two clusters and employing different memory schedul-
ing policies. Application-aware Channel Partitioning [41]
achieves the similar goal by mapping data from applications
that severely interfere with each other to different memory
channels. Categorization is not accurate and scalable, be-
cause some applications cannot fit any coarse categorization.
MITTS generalizes memory access patterns into a distribu-
tion, and provisions bandwidth accordingly.

MemGuard [42] is a memory bandwidth reservation sys-
tem, that distinguishes memory bandwidth as two parts:
guaranteed and best effort. It provides bandwidth reservation
for the guaranteed bandwidth for temporal isolation, with
reclaiming to maximally utilize the reserved bandwidth.
It does not account for system fairness as a demanding
application can potentially get the most memory bandwidth.

Source-based rate control techniques for QoS [43] use
clock modulation to reduce out-of-core resource contention.
Source throttling [11] provides higher fairness and perfor-
mance than fair partitioning by constraining the memory
injection rate. Efficiency-aware QoS DRAM schedulers [44]
provide different QoS based on different memory access re-
quirements by heterogeneous functional units. A QoS-aware

memory controller for dynamically balancing GPU and CPU
bandwidth [45] uses a novel mechanism to track progress
of GPU workloads. MITTS proactively regulates per-core
traffic based on the pre-determined traffic distribution of
each application. MITTS not only controls the rate based on
processor core’s feedback, but also controls the distribution
of request inter-arrival times. This has proved very important
to achieve better performance. MITTS is additive to QoS-
aware memory scheduling.

Reinforcement learning (RL) has been used to automat-
ically allocate resources in data centers [46], [47]. They
focus on assigning processors and memory to applications in
software, but not memory bandwidth provisioning in hard-
ware. A RL-based, self-optimizing memory controller [48]
adapts DRAM scheduling policy based on its interaction
with the system to optimize performance. The hardware cost
is relatively high requiring an extra multiplier and on-chip
storage. MITTS requires only minimal hardware cost. But,
we feel that RL could be applied to configure MITTS.

We take inspiration from network traffic shaping, such as
Leaky Bucket [49] and Token Bucket [50], where the bucket
size determines the burstiness of traffic.

VI. CONCLUSION
MITTS shapes memory traffic based on request inter-

arrival time. This enables source limiting of memory usage
and charging based on the memory request inter-arrival
distribution. MITTS has up to 1.68x performance gain com-
pared with static bandwidth allocation, up to 17% throughput
and 52% fairness gain compared with conventional memory
scheduling techniques, and up to 10x economic efficiency
for an IaaS system. We implemented MITTS in Verilog and
it has been taped-out in a 25-core microprocessor.
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