
GraSS : Scalable Data Attribution with Gradient Sparsification and Sparse Projection
Pingbang Hu1 Joseph Melkonian2 Weijing Tang3 Han Zhao1 Jiaqi W. Ma1

1University of Illinois Urbana-Champaign 2Womp Labs 3Carnegie Mellon University

Background: What is Data Attribution?

Given a dataset 𝐷 = {𝑧𝑖}𝑛𝑖=1 parametrized by a weight 𝑤 ∈ ℝ𝑛, the
corresponding model is trained via ERM A as:

𝜃𝑤 =A(𝑤) := argmin
𝜃∈ℝ𝑝

𝑛∑︁
𝑖=1

𝑤𝑖ℓ𝑖, ℓ𝑖 := ℓ(𝑧𝑖; 𝜃).

Default weight is 𝑤 = 1/𝑛 ∈ ℝ𝑝, and we will first train 𝜃1/𝑛.

Data attribution quantifies the counterfactual effect for dataset
perturbationwhen𝑤 becomes𝑤′. The key is to estimate 𝜃𝑤′−𝜃𝑤.

Motivation: Gradient-Based Data Attribution

Most popular data attribution methods are gradient-based:

Intuition. Taylor-expand 𝜃𝑤 around the default weight 1/𝑛 [2]:

𝑤′

1

𝑛

A 𝜃(0)
𝜃𝑤′

𝜃𝑤′

𝜃1/𝑛

𝜃𝑤′ − 𝜃1/𝑛𝜖
𝑖 ≈ 𝜖 × −𝐻−1

𝜃1/𝑛
∇𝜃ℓ𝑖

Problem: Computing 𝐻−1
𝜃
∇𝜃ℓ𝑖 is expensive, due to the size...

• Each 𝑔𝑖 := ∇𝜃ℓ𝑖 is ℝ𝑝, and need inverting 𝐻
𝜃1/𝑛

∈ ℝ𝑝×𝑝.

Existing Approaches: Compression!

1. Replace 𝐻
𝜃
with Fisher Information Matrix 1

𝑛

∑𝑛
𝑖=1 𝑔𝑖𝑔𝑖

⊤ ∈ ℝ𝑝×𝑝.
2. Compress 𝑔𝑖 from ℝ𝑝 to 𝑔̂𝑖 ∈ ℝ𝑘 with 𝑘 ≪ 𝑝!
⇒ FIM also reduces from ℝ𝑝×𝑝 down to ℝ𝑘×𝑘!

However, the overhead of compression is large:

• Dense matrix 𝑃 ∈ ℝ𝑘×𝑝: 𝑃𝑔𝑖 = 𝑔̂𝑖, 𝑂(𝑝𝑘) per projection.
• SOTA (FJLT): 𝑂(𝑝) per projection.
• SOTA (LoGra): 𝑂(

√︁
𝑝𝑘) per projection for linear layers.

Contributions

We design two sub-linear gradient compression algorithms:

1. GraSS: 𝑂(𝑘′) per projection with 𝑘 < 𝑘′ ≪ 𝑝.
2. FactGraSS: 𝑂(𝑘′) but without materializing 𝑔𝑖 for linear layers!

GraSS: Gradient Sparsification and Sparse Projection

GraSS compresses 𝑔 ∈ ℝ𝑝 to 𝑔̂ ∈ ℝ𝑘 in 𝑂(𝑘′) where 𝑘 < 𝑘′ ≪ 𝑝:

Mask𝑘′. Sparsification:
• Select few parameters from 𝑔

⇒ Sub-linear complexity!
+

SJLT𝑘. Sparse projection:
• Sparsify projection matrix 𝑃

⇒ Linear complexity! 𝑝

𝑘′
×1
×−1

𝑔

𝑘

𝑔̂

Mask𝑘′

SJLT𝑘

𝑔′

GraSS is already fast. But it requires materializing 𝑔.

Q: Is this even a concern? A:Sadly, yes... Consider linear layers:

𝑔𝑖 =
𝜕ℓ𝑖

𝜕𝑊
=

𝜕ℓ𝑖

𝜕𝑧out
𝑖

𝜕𝑧out
𝑖

𝜕𝑊
= 𝑧in𝑖 ⊗ 𝜕ℓ𝑖

𝜕𝑧out
𝑖

Previous SOTA gradient compression, LoGra [1], exploits this.

GraSS can also exploit this structure cleverly!

(1) Factorized Mask ⇒ (2) Reconstruct ⇒ (3) SJLT!

SJLT𝑘

𝑔̂𝑖

⊗
𝑘in

′

𝑘out
′

𝑘in×𝑘out

𝑔′
𝑖

𝑊 =

Forward Pass
𝑑 in

𝑧in
𝑖

𝑧out
𝑖

Backward Pass

D𝑧out
𝑖

𝑊

=D𝑧in
𝑖

𝑑out

Mask𝑘in′

Mask𝑘out′

• Bottlenecks: SJLT’s input size, 𝑘′ := 𝑘in
′ × 𝑘out

′

We summarize these two algorithms as follows:

Theorem. There is a sub-linear compression algorithm with
complexity 𝑂(𝑘′) where 𝑘 < 𝑘′ ≪ 𝑃. Moreover, this extends to
linear layers, where full gradients are never materialized.

Experimental Results

We first compare various baseline projectors on general inputs:

GraSS beats all the previous known baselines!

103 104

k

10 4

10 3

10 2

Co
m

pr
es

sio
n 

Ti
m

e 
(s

ec
)

103 104

k

10 2

10 1

100

Re
la

tiv
e 

Er
ro

r

GraSS Mask SJLT FJLT Dense Matrix

GraSS is fast, but not accurate. However, when on gradients:

New Pareto frontier on data attribution performance!

10 1 100 101

0.41

0.42

0.43

0.44

0.45

LD
S

GraSS

FJLT

Mask

SJLT
ResNet9 with CIFAR2

GraSS
FJLT
Mask
SJLT
Frontier

100 101 102

Compression Time (sec)

0.28

0.30

0.32

0.34

0.36

GraSS

FJLT

Mask

SJLT

MusicTransformer with MAESTRO

GraSS
FJLT
Mask
SJLT
Frontier

101 102
0.14

0.15

0.16

0.17

0.18

0.19

GraSS
LoGra

Mask

SJLT
GPT2-small with WikiText

GraSS
LoGra
Mask
SJLT
Frontier

We scale the experiment to billion-scale model and datasets:

GraSS is quantitatively accurate on billion-scale!

[1] Choe et al. What is Your Data Worth to GPT? LLM-Scale Data Valuation with Influence
Functions. 2025.

[2] Koh and Liang. Understanding black-box predictions via influence functions. PMLR.
2017.


