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Background: What is Data Attribution?

Given a dataset 𝐷 = {𝑧𝑖}𝑛𝑖=1 parametrized by a weight 𝑤 ∈ ℝ𝑛, the
corresponding model is trained via ERM A as:

𝜃𝑤 =A(𝑤) := argmin
𝜃∈ℝ𝑝

𝑛∑︁
𝑖=1

𝑤𝑖ℓ𝑖, ℓ𝑖 := ℓ(𝑧𝑖; 𝜃).

Default weight is 𝑤 = 1/𝑛 ∈ ℝ𝑝, and we will first train 𝜃1/𝑛.

Data attribution quantifies the counterfactual effect for dataset
perturbationwhen𝑤 becomes𝑤′. The key is to estimate 𝜃𝑤′−𝜃𝑤.

Motivation: Gradient-Based Data Attribution

Most popular data attribution methods are gradient-based:

Intuition. Taylor-expand 𝜃𝑤 around the default weight 1/𝑛 [2]:
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Problem: Computing 𝐻−1
𝜃
∇𝜃ℓ𝑖 is expensive, due to the size...

• Each 𝑔𝑖 := ∇𝜃ℓ𝑖 is ℝ𝑝, and need inverting 𝐻
𝜃1/𝑛

∈ ℝ𝑝×𝑝.

Existing Approaches: Compression!

1. Replace 𝐻
𝜃
with Fisher Information Matrix 1

𝑛

∑𝑛
𝑖=1 𝑔𝑖𝑔𝑖

⊤ ∈ ℝ𝑝×𝑝.
2. Compress 𝑔𝑖 from ℝ𝑝 to 𝑔̂𝑖 ∈ ℝ𝑘 with 𝑘 ≪ 𝑝!
⇒ FIM also reduces from ℝ𝑝×𝑝 down to ℝ𝑘×𝑘!

However, the overhead of compression is large:

• Dense matrix 𝑃 ∈ ℝ𝑘×𝑝: 𝑃𝑔𝑖 = 𝑔̂𝑖, 𝑂(𝑝𝑘) per projection.
• SOTA (FJLT): 𝑂(𝑝) per projection.
• SOTA (LoGra): 𝑂(

√︁
𝑝𝑘) per projection for linear layers.

Contributions

We design two sub-linear gradient compression algorithms:

1. GraSS: 𝑂(𝑘′) per projection with 𝑘 < 𝑘′ ≪ 𝑝.
2. FactGraSS: 𝑂(𝑘′) but without materializing 𝑔𝑖 for linear layers!

GraSS: Gradient Sparsification and Sparse Projection

GraSS compresses 𝑔 ∈ ℝ𝑝 to 𝑔̂ ∈ ℝ𝑘 in 𝑂(𝑘′) where 𝑘 < 𝑘′ ≪ 𝑝:

Mask𝑘′. Sparsification:
• Select few parameters from 𝑔

⇒ Sub-linear complexity!
+

SJLT𝑘. Sparse projection:
• Sparsify projection matrix 𝑃

⇒ Linear complexity! 𝑝

𝑘′
×1
×−1
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Mask𝑘′
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GraSS is already fast. But it requires materializing 𝑔.

Q: Is this even a concern? A:Sadly, yes... Consider linear layers:

𝑔𝑖 =
𝜕ℓ𝑖

𝜕𝑊
=

𝜕ℓ𝑖

𝜕𝑧out
𝑖

𝜕𝑧out
𝑖

𝜕𝑊
= 𝑧in𝑖 ⊗ 𝜕ℓ𝑖

𝜕𝑧out
𝑖

Previous SOTA gradient compression, LoGra [1], exploits this.

GraSS can also exploit this structure cleverly!

(1) Factorized Mask ⇒ (2) Reconstruct ⇒ (3) SJLT!
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• Bottlenecks: SJLT’s input size, 𝑘′ := 𝑘in
′ × 𝑘out

′

We summarize these two algorithms as follows:

Theorem. There is a sub-linear compression algorithm with
complexity 𝑂(𝑘′) where 𝑘 < 𝑘′ ≪ 𝑃. Moreover, this extends to
linear layers, where full gradients are never materialized.

Experimental Results

We first compare various baseline projectors on general inputs:

GraSS beats all the previous known baselines!
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GraSS is fast, but not accurate. However, when on gradients:

New Pareto frontier on data attribution performance!
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We scale the experiment to billion-scale model and datasets:

GraSS is quantitatively accurate on billion-scale!
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