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Background: What is Data Attribution? GRASS: Gradient Sparsification and Sparse Projection Experimental Results
Given a dataset D = {z;}!_, parametrized by a weight w € R", the GRASS compresses ¢ € RP to § € R*in O(k’) where k < k’ < p: We first compare various baseline projectors on general inputs:
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Motivation: Gradient-Based Data Attribution P y P —4— GraSS A~ Mask -®- SJIT —¥— FIT Dense Matrix
Most popular data attribution methods are gradient-based: GRASS is already fast. But it requires materializing g. GRASS is fast, but not accurate. However, when on gradients:
Intuition. Taylor-expand 6,, around the default weight 1/n [2]: Q:Isthis evenaconcern? A: Sadly, yes... Consider linear layers: New Pareto frontier on data attribution performance!
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Problem: Computing H:1V,?¢; is expensive, due to the size... : W e e T e T e g
oblem: Computing b oti Is expensive, due to the size (1) Factorized Mask = (2) Reconstruct = (3) SJLT! Compression Time (sec)
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1/ Forward Pass Backward Pass We scale the experiment to billion-scale model and datasets:
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We summarize these two algorithms as follows:
Contributions
. ] ‘ . . Theorem. There Is a sub-linear compression algorlthm with [1] Choe et al. What is Your Data Worth to GPT? LLM-Scale Data Valuation with Influence
We design two sub-linear gradient compression algorithms: complexity O(k’) where k < k’ < P. Moreover, this extends to Functions. 2025.
: . . 2]  Koh and Liang. Understanding black-b dicti ia infl functions. PMLR.
1. GraSS: O(K’) per projection with k < kK’ < p. linear layers, where full gradients are never materialized. = oo e PRI ey PIEEERIS M TR e

2. FAcTGRASS: O(k’) but without materializing ¢; for linear layers!



