Table of Contents
Guides

Installation and Configuration
Spring Boot Integration
Spring petclinic

Pebble Spring Example

Basic Usage

Customize Defaults

Escaping

Extending Pebble

High Performance Techniques

Tags

autoescape
block

cache
embed
extends
filter
flush
for
from

if
import
include
macro
parallel
set
verbatim

Filters

abbreviate
abs
base64decode
base64encode
capitalize
date

default
escape

first

join

last

length

lower
numberformat
raw

replace
reverse

rsort

https://github.com/PebbleTemplates/spring-petclinic
https://github.com/PebbleTemplates/pebble-example-spring

sha?256
dlice

sort

split

title

trim
upper
urlencode

Functions

block
il8n
max
min
par ent
range

Tests

empty
even
map
null
odd
iterable

Operators

comparisons (==, ! =, <, >, <=, >=, equal s)
contains (cont ai ns)

is

logic (and, or, not, ())

@ (+! T / ' % *)

others(], ?:)

| nstallation and Configuration

|nstallation & Configuration

| nstallation

Pebble is hosted in the Maven Central Repository. Simply add the following dependency into your pom
xm file:

<dependency>
<gr oupl d>i 0. pebbl et enpl at es</ gr oupl d>
<artifactld>pebble</artifactld>
<versi on>4. 1. 0</ ver si on>

</ dependency>

Also, snapshots of the master branch are deployed automatically with each successful commit. Instead of
Maven Central, use the Sonatype snapshots repository at:

<url >https://oss. sonatype. org/ content/repositories/snapshots</url>

Y ou can add the repository in your pom.xml

<repositories>
<r eposi tory>
<i d>sonat ype- public</id>
<nane>Sonat ype Publi c</ nane>
<url >https://oss. sonatype. org/ content/groups/public</url>
<snapshot s>
<enabl ed>t r ue</ enabl ed>
</ snapshot s>
</ repository>
</repositories>

Set Up
If you are integrating Pebble with Spring MV C, read this guide.

Y ou will want to begin by creating a Pebbl eEngi ne which isresponsible for coordinating the retrieval
and compilation of your templates:

Pebbl eEngi ne engi ne = new Pebbl eEngi ne. Bui I der (). bui I d();
And now, with your new Pebbl eEngi ne instance you can start compiling templates:
Pebbl eTenpl at e conpi |l edTenpl ate = engi ne. get Tenpl at e("t enpl at eNane") ;

Finally, ssimply provide your compiled template with aw i t er object and a Map of variables to get your
output!

Witer witer = new StringWiter();

Map<String, Qoject> context = new HashMap<>();
context. put ("nane", "Mtchell");

conpi | edTenpl ate. eval uate(witer, context);

String output = witer.toString();

Template L oader

The Pebbl eEngi neBui | der will also accept aLoader implementation as an argument. A loader is
responsible for finding your templates.

Pebble ships with the following loader implementations:

Del egat i ngLoader : Delegates responsibility to a collection of children loaders.

Cl asspat hLoader : Uses a classloader to search the current classpath.

Fi | eLoader : Finds templates using afilesystem path. Must provide a mandatory absolute base path.
Ser vl et Loader : Uses a servlet context to find the template. Thisis the recommended loader for
use within an application server but is not enabled by default.

Ser vl et 5Loader : Same as Ser vl et Loader , but for Jakarta Servlet 5.0 or newer.

Menor yLoader : Loader that supports inheritance and doesn't require afilesystem. Thisis useful for
applications

St ri ngLoader : Considers the name of the template to be the contents of the template. Should not
be used in a production environment. It is primarily for testing and debugging. Many tags may not
work when using this loader, such as "extends", "imports’, etc. that retrieve templates from a
database for example.

If you do not provide a custom Loader, Pebble will use an instance of the ¢ asspat hLoader by default.

Pebble Engine Settings

All the settings are set during the construction of the Pebbl eEngi ne object.

Setting Description Default
cacheActive Flag to activate/desactivate template caching true

Default implementation is
An implementation of a ConcurrentMap cachethat ~ Concur r ent MapTenpl at eCache

t enpl at eCache the Pebble engine will use to cache compiled and another implementation

t agCache

def aul t Local e

templates. based on Caffeineis available (
Caf f ei neTenpl at eCache)

Default implementation is
Concur r ent MapTagCache and
another implementation based
on Caffeineisavailable (
Caf f ei neTagCache)

An implementation of a ConcurrentMap cache that
the Pebble engine will use for cache tag.

The default locale which will be passed to each
compiled template. The templates then use this
locale for functions such asi18n, etc. A template can
also be given a unique locale during evaluation.

An Execut or Ser vi ce that allows the usage of some

Local e. get Defaul t ()

execut or Ser vi ce advanced multithreading features, such asthe nul |
paral | el tag.

| oader An implementation of the Loader interfacewhichis Animplementation of the
used to find templates. Cl asspat hLoader

If set to true, Pebble will throw an exception if you
try to access a variable or attribute that does not exist

strictVari abl es fal se

(or an attribute of anull variable). If set to false, your
template will treat non-existing variables/attributes
as null without ever skipping a beat.

met hodAccessVal i dat or | Pebble provides two implementations. NoOpM ethodA ccessV aidator which
do nothing and BlacklistM ethodA ccessV alidator which checks that the method being called is not
blacklisted. | Bl ackl i st Met hodAccessVal i dat or |iteral Deci mal Tr eat edAsl nt eger | option for
treating literal decimalsasi nt . Otherwiseitisl ong. |fal se |1iteral Nunber sAsBi gDeci mal s | option
for toggling to enable/disable literal numbers treated as BigDecimals | f al se | gr eedyMat chMet hod |
option for toggling to enable/disable greedy matching mode for finding java method. Reduce the limit of
the parameter type, try to find other method which has compatible parameter types. | f al se |

maxRender edSi ze | option for limiting the size of the rendered output |- 1 (di sabl ed) |

Spring Boot I ntegration
Pebble Spring Boot Starter

Spring Boot starter for autoconfiguring Pebble.

Basic Usage
Add the starter dependency to your pom.xml:

spring-boot v4

<dependency>
<gr oupl d>i 0. pebbl et enpl at es</ gr oupl d>
<artifactl d>pebbl e-spring-boot-starter</artifactld>
<versi on>4. 1. 0</versi on>

</ dependency>

Or build.gradle:

conpil e "io. pebbl et enpl at es: pebbl e- spring-boot-starter:4.1.0"

spring-boot v3

<dependency>
<gr oupl d>i 0. pebbl et enpl at es</ gr oupl d>
<artifactld>pebbl e-|1 egacy-spring-boot-starter</artifactld>
<versi on>4. 1. 0</ ver si on>

</ dependency>

Or build.gradle:

conpil e "io. pebbl et enpl at es: pebbl e-| egacy-spring-boot-starter:4.1.0"
Thisis enough for autoconfiguration to kick in. Thisincludes:

aLoader that will pick template filesending in . peb from/t enpl at es/ dir on the classpath
a PebbleEngine with default settings, configured with the previous loader

a Spring extension which offers some functionality described below

aViewResolver that will output t ext / ht M in UTF- 8

PLEASE NOTE: the starter depends on spri ng- boot - st art er - webnvc OF spri ng- boot -starter -
webnvcf | ux but ismarked as optional, you'll need to add the dependency yourself or configure Spring
MV C appropriately.

Boot externalized configuration

A number of properties can be defined in Spring Boot externalized configuration, eg. appl i cati on.
proper ti es, starting with the prefix pebbl e. See the corresponding PebbleProperties.javafor your starter
version. Notable properties are:

® pebbl e. prefix: definesthe prefix that will be prepended to the mvc view name. Defaults to
[tenpl at es/
® pebbl e. suf fi x: defines the suffix that will be appended to the mvc view name. Defaultsto . peb

https://github.com/PebbleTemplates/pebble/blob/master/pebble-spring/pebble-spring-boot-starter/src/main/java/io/pebbletemplates/boot/autoconfigure/PebbleProperties.java

® pebbl e. char set : defines the text encoding that will be used to configure the ViewResolver.
Defaultsto UTF- 8

® pebbl e. def aul t Local e: defines the default locale that will be used to configure the PebbleEngine.
Defaultsto nul |

® pebbl e.strictVariabl es: enable or disable the strict variable checking in the PebbleEngine.
Defaultstof al se

® pebbl e. gr eedyMat chMet hod: enable or disable the greedy matching mode for finding java method
in the PebbleEngine. Defaultstof al se

® pebbl e. servl et. cache: enables or disables PebbleEngine caches. Defaultsto t r ue

® pebbl e. servl et. cont ent Type: defines the content type that will be used to configure the
ViewResolver. Defaultsto t ext / ht m

® pebbl e. servl et. exposeRequest At t ri but es: defines whether all request attributes should be
added to the model prior to merging with the template for the ViewResolver. Defaultsto f al se

® pebbl e. servl et. exposeSessi onAt tri but es: defines whether all session attributes should be
added to the model prior to merging with the template for the ViewResolver. Defaultsto f al se

® pebbl e. reacti ve. nedi aTypes: Configure the supported mediatypes for Pebble views when used
in areactive Spring WebFlux application. This property allows you to specify alist of MediaType
objects that the Pebble view resolver should consider when rendering templates. Defaults to nul |

Examples

There s the spring petclinic example which has been migrated to pebble

Thereis also afully working example project located on github which can be used as areference. Itisa
very simple and bare-bones project designed to only portray the basics. To build the project, smply run
mvn instal | and then deploy the resulting war file to a an application container.

Customizing Pebble

Pebble extensions
Extensions defined as beans will be picked up and added to the PebbleEngine automatically:

@Bean
publ i ¢ Extension nyPebbl eExt ensionl() {
return new MyPebbl eExt ensi onl();

}

@Bean
publ i ¢ Ext ensi on myPebbl eExt ensi on2() {

return new MyPebbl eExt ensi on2();
}

CAVEAT: Spring will not gather all the beansif they're scattered across multiple @Configuration
classes. If you use this mechanism, bundle all Extension @Beansin a single @Configuration class.

Customizing the L oader

The autoconfigurer looks for a bean named pebbl eLoader in the context. Y ou can define a custom loader
with that name and it will be used to configure the default PebbleEngine:

@Bean
publ i c Loader<?> pebbl eLoader () {

return new MyCust onLoader();
}

https://github.com/PebbleTemplates/spring-petclinic
https://github.com/PebbleTemplates/pebble-example-spring

PLEASE NOTE: thisloader's prefix and suffix will be both overwritten when the ViewResolver is
configured. Y ou should use the externalized configuration for changing these properties.

Customizing the PebbleEngine
Likewise, you can build a custom engine and make it the default by using the bean name pebbl eEngi ne:

@Bean
publ i ¢ Pebbl eEngi ne pebbl eEngi ne() {
return new Pebbl eEngi ne. Bui |l der (). buil d();

}
Customizing the M ethodAccessValidator

Y ou can provide your own MethodAccessValidator or switch to NoOpM ethodA ccessV alidator by
providing a MethodA ccessV alidator Bean

@Bean
public MethodAccessVal i dat or net hodAccessValidator() {
return new NoOpMet hodAccessVal i dator () ;

}

Customizing the ViewResolver

And the same goes for the ViewResolver

@Bean
publ i c Pebbl eVi ewResol ver pebbl eVi ewResol ver () {
return new Pebbl eVi ewResol ver () ;

}
For reactive app

@Bean
publ i c Pebbl eReacti veVi ewResol ver pebbl eReacti veVi ewResol ver () {
return new Pebbl eReacti veVi ewResol ver (...)

}

PLEASE NOTE: you need to change the Loader's prefix and suffix to match the custom ViewResolver's
values.

Features

Accessto Spring beans

Spring beans are available to the templ ate.

{{ beans. beanNane }}
Accessto http request

HttpServletRequest object is available to the template.

{{ request.contextPath }}
Accessto http response

HttpServletResponse is available to the templ ate.

{{ response. content Type }}
Accessto http session

HttpSession is available to the templ ate.

{{ session. maxlnactivelnterval }}

Spring extension
This extension has many functions for spring validation and the use of message bundle.

Href function

Function to automatically add the context path to agiven url

Exanpl e
M essage function

It achieves the same thing as the i18n function, but instead, it uses the configured spring messageSource,
typically the ResourceBundleM essageSource.

Label = {{ nessage('label.test') }}
Label with parans = {{ nessage('l abel.test.parans', 'paramsl', 'params2') }}

Spring validations and error messages

6 validations methods and error messages are exposed using spring BindingResult. It needs as a
parameter the form name and for a particular field, the field name.

To check if there's any error:

{{ hasErrors('formNane’ }}
{{ hasd obal Errors(' fornNane' }}

{{ hasFieldErrors('formNanme', 'fieldName' }}

To output any error:

{%for err in getAllErrors(' fornNane') %

<p>{{ err }}</p>
{% endfor %

{%for err in getdobal Errors(' fornNane') %

<p>{{ err }}</p>
{% endf or %

{%for err in getFieldErrors(' formNane', 'fieldNane') %

<p>{{ err }}</p>
{% endf or %

Using Pebblefor other tasks

The main role of this starter isto configure Pebble for generating MV C View results (the typical HTML).
Y ou may define more PebbleEngine/L oader beans for other usage patterns (like generating email bodies).
Bear in mind that you should not reuse the default L oader for other Engine instances.

Basic Usage

Basic Usage

| ntroduction

Pebble templates can be used to generate any sort of textual output. It istypically used to generate HTML
but it can also be used to create CSS, XML, JS, etc. A template itself will contain whatever language you
are attempting to output alongside Pebble-specific features and syntax. Here is a simple example that will
generate atrivial HTML page:

<htm >
<head>
<title>{{ websiteTitle }}</title>
</ head>
<body>
{{ content }}
</ body>
</htm >

When you evaluate the template you will provide it with a"context" which isjust a map of variables.
This context should include the two variables above, websi t eTi t | e and cont ent .

Set Up

Y ou will want to begin by creating a PebbleEngine object which is responsible for compiling your
templates:

Pebbl eEngi ne engi ne = new Pebbl eEngi ne. Bui | der (). buil d();

And now, with your new PebbleEngine instance you can start compiling templates:

Pebbl eTenpl ate conpi |l edTenpl ate = engi ne. get Tenpl ate("tenpl ates/ hone. htm ") ;

Finally, simply provide your compiled template with ajava.io.Writer object and aMap of variables (the
context) to get your output!

Witer witer = new StringWiter();

Map<String, Object> context = new HashMap<>();
context.put ("websiteTitle", "My First Wbsite");
context.put("content”, "My Interesting Content");

conpi | edTenpl ate. eval uate(witer, context);

String output = writer.toString();

Syntax Reference

There are two primary delimiters used within a Pebbletemplate: {{ ... }} and{% ... % . Thefirst set
of delimiters will output the result of an expression. Expressions can be very simple (ex. a variable name)
or much more complex. The second set of delimitersis used to change the control flow of the template; it
can contain an if-statement, define a parent template, define a new block, etc.

Variables

Y ou can print variables directly to the output; for example, if the context contains a variable called f oo
which is a String with the value "bar" you can do the following which will output "bar".

{{ foo }}

Y ou can use the dot (.) notation to access attributes of variables. If the attribute contains any atypical
characters, you can use the subscript notation ([]) instead.

{{ foo.bar }}
{{ foo["bar"] }}

Behind the scenes f oo. bar will attempt the following techniques to to access the bar attribute of the f oo
variable:

If f oo isaMap, f oo. get ("bar")
f 0o. get Bar ()

foo.isBar()

f 0o. hasBar ()

f 00. bar ()

f 0o. bar

Additionally, if f oo isaList, thenfoo[0] can be used instead of f oo. get (0) .

If the value of variable (or attribute) isnull it will output an empty string.

Type Safety

Pebble templates are dynamically typed and any possible type safety issues won't occur until the actual
runtime evaluation of your templates. Pebble does however allow you to choose how to handle type
safety issueswith theuse of it'sstri ct Vari abl es setting. By default, strict Vari abl es issettof al se
which means that the following:

{{ foo.bar }}

will print an empty string even if the object f oo does not actually have an attribute called bar . If
strictVari abl es IS set to true, the above expression would throw an exception.

When st ri ct Vari abl es is set to false your expressions are also null safe. The following expression will
print an empty string even if foo and/or bar are null:

{{ foo.bar.baz }}

The default filter might come in handy for the above situations.

Filters

Output can be further modified with the use of filters. Filters are separated from the variable using a pipe
symbol (]) and may have optional arguments in parentheses. Multiple filters can be chained and the
output of one filter is applied to the next.

{{ "If life gives you lenons, eat |enons." | upper | abbreviate(13) }}

The above example will output the following:

IF LIFE Q...

Functions

Whereas filters are intended to modify existing content/variables, functions are intended to generate new
content. Similar to other programming languages, functions are invoked viatheir name followed by
parentheses (()).

{{ max(user.score, highscore) }}

Control Structure

Pebble provides several tagsto control the flow of your template, two of the main ones being the for
loop, and if statements.

{%for article in articles %
<h3>{{ article.title }}</h3>
<p>{{ article.content }}</p>

{%else %
<p> There are no articles. </p>

{% endfor %

{%if category == "news" %
{{ news }}

{% el seif category == "sports" %
{{ sports }}

{%else %

<p>Pl ease sel ect a category</p>
{%endif %

Including other Templates

The include tag is used to include the rendered output of one template into another.

<di v cl ass="si debar">
{%include "advertisenment.htm " %
</div>

Template Inheritance

Template inheritance is the most powerful feature of Pebble. It allows templates to override sections of
their parent template. In your parent template you define "blocks" which are the sections that are allowed
to be overriden.

First let uslook at an example of a parent template:

<htm >
<head>
<title>{%block title %M Website{% endbl ock %4 </title>
</ head>
<body>
<div id="content">
{% bl ock content % {% endbl ock %
</ di v>
<div id="footer">
{% bl ock footer %
Copyright 2013
{ % endbl ock %
</div>
</ body>

</htm >

In the above example, we have used the block tag to define several sections that child templates are
allowed to override.

A child template might look like this:

{% extends "parent.htm" %
{%block title % Hone {% endbl ock %

{% bl ock content %

<hl> Hone </ hl>

<p> Wl corme to ny hone page. </ p>
{% endbl ock %

The first line uses the extends tag to declare the parent template. The extends tag should be thefirst tag in
the template and there can only be one.

Evaluating the child template will produce the following output:

<htm >
<head>
<title>Hone</title>
</ head>
<body>
<div id="content">
<h1l> Hone </ hl>
<p> Wl corme to ny hone page. </ p>
</div>
<div id="footer">
Copyright 2013
</ div>
</ body>
</htnm >

Y ou may have noticed that in the above example, because the child template doesn't override the f oot er
block, the value from the parent is used instead.

Dynamic inheritance is possible by using an expression with the ext ends tag:

{% extends ajax ? 'ajax.html' : '"base.htm' %

M acros

Macros are lightweight and reusabl e template fragments. A macro is defined via the macro tag:

{% macro input(type, nane) %
<input type="{{ type }}" nanme="{{ nanme }}" />
{% endmacro %

And the macro will be invoked just like a function:

{{ input("text", "nane", "Mtchell") }}

Child templates will have access to macros defined in a parent template. To use macros located in a
completely different template, you can use the import) tag. A macro does not have access to the main
context; the only variables it can access areit's local arguments.

Named Arguments

Using named arguments allows you to be more explicit with the values you are passing to afilter,
function, test or macro. They aso allow you to avoid specifying arguments for which you don't want to
change the default value.

{{ stringDate | date(existingFormat="yyyy-MvwMmd", format="yyyy/ MM d") }}

Positional arguments can be used in conjunction with named arguments but all positional arguments must
come before any named arguments:

{{ stringDate | date("yyyy/ MMM d", existingFormat="yyyy-MUWM d") }}

Macros are a great use case for named arguments because they also allow you to define default values for
unused arguments:

{% macro input(type="text", nane, value) %
<input type="{{ type }}" nanme="{{ nanme }}" value="{{ value }}" />
{% endmacro %

{{ input(name="country") }}

{# will output: <input type="text" nane="country" value="" [> #}

Escaping

XSS vulnerabilites are the most common types of security vulnerabilitiesin web applicationsand in
order to avoid them you must escape potentially unsafe data before presenting it to the end user. Pebble
provides autoescaping of al such data which is enabled by default. Autoescaping can be turned off, in
which case Pebble provides an escape filter for more fine-grained manual escaping.

The following is an example of how autoescaping will escape your context variables:

{% set danger = "
" %
{{ danger }}

{# will output: & t;br> #}
If autoescaping is disabled you can still use the escape filter to aid with manual escaping:

{% set danger = "
" 9%
{{ danger | escape }}

{# will output: & t;br> #}

By default, the autoescaping mechanism and the escape filter assume that it is escaping within an HTML
context. Y ou may want to use an alternate escaping strategy depending on the context:

{% set danger = "alert(...)" %
<script>var usernane="{{ danger | escape(strategy="js") }}"</script>

See the escaping guide for more information on how autoescaping works, how to disable it, and the
various escaping strategies that are available.

Whitespace

The first newline after a pebble tag is automatically ignored; all other whitespace isignored by Pebble
and will be included in the rendered output.

https://en.wikipedia.org/wiki/Cross-site_scripting

Pebbl e provides a whitespace control modifier to trim leading or trailing whitespace adjacent to any
pebble tag.

<p> {{- "no whitespace" -}} </ p>
{# output: "<p>no whitespace</p>" #}

It is also possible to only use the modifier on one side of the tag:

<p> {{- "no | eading whitespace" }} </ p>
{# output: "<p>no whitespace </ p>" #}
Comments

Y ou can comment out any part of the template using the * delimiters. These comments will not appear in
the rendered output.

{# THS 1S A COWENT #}
{%for article in articles %
<h3>{{ article.title }}</h3>
<p>{{ article.content }}</p>
{% endf or %

EXpressions
Expressions in a Pebble template are very similar to expressions found in Java.

Literals

The simplest form of expressions are literals. Literals are representations for Java types such as strings
and numbers.

® "Hello Wrld": Everything between two double or single quotesisastring. You can use a
backslash to escape quotation marks within the string.

® "Hello #{who}": String interpolation is also possible using #{} inside quotes. In this example, if
the value of the variable who is"wor | d", then the expression will be evaluated to " Hel | o wor | d".

® 100 + 101 * 2.5:Integers, longs and floating point numbers are similar to their Java counterparts.

® true/fal se: Boolean values equivalent to their Java counterparts.

® nul | : Represents no specific value, similar to it's Java counterpart. none isan aliasfor null.

Collections
Both lists and maps can be created directly within the template.

® ["apple", "banana", "pear"]:A list of strings
® ("apple":"red", "banana":"yellow', "pear":"green"}:A map of strings

The collections can contain expressions.

Math

Pebble allows you to calculate values using some basic mathematical operators. The following operators
are supported:

* +: Addition
® _: Subtraction
® /:Division

® o5 Modulus
e +: Multiplication

Logic

Y ou can combine multiple expressions with the following operators:
and: Returns true if both operands are true

or : Returnstrueif either operand istrue

not : Negates an expression
(...): Groups expressions together

Comparisons

The following comparison operators are supported in any expression: ==, ! =, <, >, >=, and <=.
{%if user.age >= 18 %

{%endif %

Tests

Thei s operator performs tests. Tests can be used to test an expression for certain qualities. The right
operand is the name of the test:

{%if 3 is odd %

{%endif %

Tests can be negated by using the is not operator:

{%if name is not null %

{%endif %

Conditional (Ternary) Operator

The conditional operator is similar to its Java counterpart:
{{ foo ? "yes" : "no" }}

Operator Precedence

In order from highest to lowest precedence:

I
%w/l,*
-, +
::|!:’>1 <1>:!<:
is,is not

and

or

Limiting the size of the rendered output

In case you' re running Pebble with templates provided by someone else, there’s an attack similar to zip.
bombs or XML bombs that might cause your process to run out of memory. To protect against it, you can
limit the size of the output when evaluating a template:

Pebbl eEngi ne pebbl e = new Pebbl eEngi ne. Bui | der ()
/1 Qutput should not exceed 10 MB
. maxRender edSi ze(10 * 1024 * 1024)
Lbuild();

Thiswill throw a Pebbl eExcept i on when atemplate evaluation tries to write more characters than the
[imit you set.

IDE'splugin

If you want to add IDE's syntax highlighting, you can install this plugin for IntelliJ. Thank you to Bastien
Jansen for his contribution.

https://en.wikipedia.org/wiki/Zip_bomb
https://en.wikipedia.org/wiki/Zip_bomb
https://en.wikipedia.org/wiki/Billion_laughs_attack
https://plugins.jetbrains.com/idea/plugin/9407-pebble

Customize Defaults

Pebble comes with arich set of built-in tags and filters that will help you render your templates into
websites and other documents with ease. However, imagine a more specific use-case where the templates
are not entirely under your control.

In these cases it might be advised to consider stripping-down Pebbles built-in functionality that may
otherwise introduce security-concers regarding the integrity and stability of your application.

Opt-Out using ExtensionCustomizer

The Ext ensi onCust oni zer base class can be used to gain access to the default functionality beforeitis
loaded into Pebbles template engine. Overwrite methods to get hold on provided default-functionality
and modify whatever should be available for the template engine.

The following example removes the For TokenPar ser , i.e. the ability to parse{% for %{{ ... }}{%
endf or 9% constructs:

cl ass Exanpl eOpt Qut s ext ends Ext ensi onCustom zer {

publ i c Exanpl eOpt Qut s(Ext ensi on ext) {
super (ext);

}

@verride
publ i c List<TokenParser> get TokenParsers() {
Li st <TokenPar ser > t okenParsers = Optional . of Nul | abl e(super. get TokenParsers())
.map(ArraylLi st::new).orEl seGet (ArrayLi st:: new);

t okenPar sers. renovel f (x -> x instanceof ForTokenParser);
return tokenParsers

}
}

The Ext ensi onCust oni zer will be used to wrap any Pebble-extension which is provided by default. It
can be registered in your setup code to create Pebbl eEngi ne:

Pebbl eEngi ne engi ne = new Pebbl eEngi ne. Bui | der (). regi st er Ext ensi onCust oni zer (Exanpl eOpt Q
Default implementation of ExtensionCustomizer

TheDi sal | owExt ensi onCust omi zer Bui | der class can be used to disallow some default functionality,
make pebble more controllable.

For example of use, see below:

Pebbl eEngi ne engi ne = new Pebbl eEngi ne. Bui | der ()

. regi st er Ext ensi onCust oni zer (new Di sal | owExt ensi onCust omi zer Bui | der ()
. di sal | onedTokenPar ser Tags(si ngl et onLi st("flush"))
. di sal | owedFunct i onKeys(si ngl et onLi st (" max"))
.di sal | owedFi | t er Keys(si ngl et onLi st ("upper"))
. di sal | owedTest Keys(singletonList("null"))
. di sal | owedBi nar yOper at or Synbol s(si ngl etonLi st (">"))
. di sal | owedUnar yQper at or Synbol s(si ngl etonList("-"))
Lbuild())

Lbuil d();

Escaping
Escaping

Overview

XSS vulnerabilites are the most common types of security vulnerabilitiesin web applicationsand in
order to avoid them you must escape potentially unsafe data before presenting it to the end user. Pebble
provides autoescaping of al such data which is enabled by default. Autoescaping can be turned off, in
which case Pebble provides an escape filter for more fine-grained manual escaping.

Autoescaping

Autoescaping, which is enabled by default, will automatically escape the outcome of expressions
contained within print delimiters, i.e. {{ and}}:

{% set danger = "
" %
{{ danger }}

{# will output: & t;br> #}

The raw filter can be used to prevent the autoescaper from escaping a particular expression. It is
important that the raw filter is the last operation performed in the expression.

{% set danger = "
" 9%
{{ danger | raw }}

{# will output:
 #}

If the raw filter is not the last operation performed within the expression, the expression will be deemed
as possibly unsafe by the autoescaper and will be escaped. For example:

{% set danger = "
" %
{{ danger | raw | uppercase }}

{# will output: & t;BR> #}
Exceptions
There are afew exceptions where expressions are not automatically escaped:
* |f the expression only contains a string literal, it is assumed to be safe. For example:

{{ "
"}}

{# will output:
 #}

® Thelast operation contained within that expression is afilter or function that explicitly returns safe
output. Such afilter or function would return an instance of Saf eSt ri ng instead of aregular String.
The built-in filters that return safe markup include: dat e, escape, and r aw. These filters must be
the last operation performed within the expression in order for their output to be ignored by the
autoescaper. For example:

{% set danger = "
" 9%
{{ danger | uppercase | raw }}

https://en.wikipedia.org/wiki/Cross-site_scripting

{# will output:
 #}
Autoescape Tag

The autoescape tag can be used to temporarily disable/re-enable the autoescaper as well as change the
escaping strategy for a portion of the template.

{{ danger }} {# will be escaped by default #}
{% aut oescape fal se %
{{ danger }} {# will not be escaped #}
{% endaut oescape %
{{ danger }} {# will use the "html" escaping strategy #}
{% aut oescape "js" %
{{ danger }} {# will use the "js" escaping strategy #}
{% endaut oescape %

Disabling Autoescaper

Pebbl eEngi ne engi ne = new Pebbl eEngi ne. Bui | der () . aut oEscapi ng(fal se). buil d();

Manual Escaping

If autoescaping is disabled you can still use the escape filter to aid with manual escaping:

{% set danger = "
" %
{{ danger | escape }}

{# will output: & t;br> #}
Strategies

When escaping datait is crucia that you utilize the correct escaping strategy depending on the context of
the data. By default, the autoescaper and the escape filter assume that you are escaping HTML data. |
highly recommend reading the OWA SP Cheat Sheet to understand the significance of escaping context.

Pebble provides the following escaping strategies:

html

IS

Css
url_param

Y ou can use the autoescape tag to temporarily change the strategy used by the autoescaper otherwise you
can change the globally used default strategy:

Pebbl eEngi ne engi ne = new Pebbl eEngi ne. Bui | der () . def aul t Escapi ngStrat egy("js").build();
The escape filter will also accept a strategy as an argument:
var usernanme ="{{ user.nane | escape(strategy="js") }}";

Custom Strategy

Y ou can add a custom escaping strategy by implementing Escapi ngSt r at egy and adding it to the
Escaper Ext ensi on:

Pebbl eEngi ne engi ne = new Pebbl eEngi ne. Bui | der (). addEscapi ngStr at egy("custont', new Cust or

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Extending Pebble
Extending Pebble

Overview

Pebble was designed to be flexible and accomodate the requirements of any project. Y ou can add your
own tags, functions, operators, filters, tests, and global variables. The magjority of these are quite trivial to
implement.

Begin by creating a class that implements Ext ensi on. For your own convenience, | recommend
extending Abst r act Ext ensi on if you can. After implementing the required methods, register your
extension with the Pebbl eEngi ne before compiling any templates:

Pebbl eEngi ne engi ne = new Pebbl eEngi ne. Bui | der () . ext ensi on(new Cust onExt ensi on()) . bui l d()

Filters

To create custom filters, implement the get Fi | t er s() method of your extension which will return a map
of filter names and their corresponding implementations. A filter implementation must implement the

Fil ter interface. TheFi | t er interface requirestwo methods to be implemented, get Ar gunent Nanes()
and appl y() . The get Ar gumrent Narres () method returns alist of Strings that define both the order and
names of expected arguments. If this method returns null or an empty list, the filter supports dynamic
arguments. This means the user can pass any number of arguments—either named (e.g., myFilter
(param="value")) or positional (e.g., myFilter("value"))—and they will be available in the arguments

map.

The appl y method is the actual filter implementation. Here's the parameters definition.

Parameter o

name Description

Input the data to be filtered

args the map of arguments the user may have provided

f An instance of Pebbl eTenpl at e which can be used to retrieve the template name for
example

context An instance of Eval uat i onCont ext Which can be used to retrieve the locale for
example

lineNumber Useful when throwing exception to provide line number

Because Pebble is dynamically typed, you will have to downcast the arguments to the expected type.
Hereis an example of how the upper filter might be implemented:

public class UpperFilter inplenents Filter {

@verride

public List<String> get Argunent Nanes() {
return null;

}

@verride

public Cbject apply(Qoject input, Map<String, Object> args, PebbleTenplate self,
i f(input == null){

return null;

}

if (input instanceof String) {

return ((String) input).toUpperCase(context.getLocale());
} else {

return input.toString().toUpperCase(context.getlLocale());
}

}

Tests

Adding custom testsis very similar to custom filters. Implement the get Test s() method within your
extension which will return amap of test names and their corresponding implementations. A test
implementation will implement the Test interface. The Test interface is exactly liketheFi I t er interface
except the apply method returns a boolean instead of an arbitrary object of any type.

Hereis an example of how the even test might be implemented:

public class EvenTest inplenents Test {

@verride

public List<String> get Argunment Nanes() ({
return null;

}

@verride

public bool ean appl y(Obj ect input, Map<String, Object> args, Pebbl eTenplate self,
if (input == null) {
t hrow new Pebbl eException(null, "Can not pass null value to \"eve
}

if (input instanceof Integer) {

return ((Integer) input) %2 == 0;
} else {

return ((Long) input) %2 ==
}

}

Functions

Adding functionsis also very similar to custom filters. First and foremost, it's important to understand the
different intentions behind a function and afilter because it can often be ambiguous which one should be
implemented. A filter isintended to modify existing content where a function is moreso intended to
produce new content.

To add functions, implement the get Funct i ons() method within your extension which will return amap
of function names and their corresponding implementations. A function implementation will implement
the Funct i on interface. The Functi on interfaceisvery similar totheFi | t er and Test interfaces.

Hereis an example of how afictional fi bonacci Stri ng function might be implemented:

public class Fibonnaci StringFunction inplenents Function {

@verride

public List<String> getArgunent Nanes() {
Li st<String> names = new ArrayList<>();
nanes. add("1 ength");
return names;

}

@verride
public Object execute(Mp<String, Object> args, PebbleTenplate self, Eval uati onC
Integer length = (Integer)args.get("length");
I nt eger prevl 0;
I nt eger prev2

1
StringBuilder result = new StringBuil der();
resul t.append("01");

for(int i =2; i <length; i++){
I nteger next = prevl + prev2;
resul t. append(next);
prevl prevz;
prev2 next ;

}

return result.toString();

}

Positional and Named Arguments

For filters, tests, and functionsit is required that you implement the get Ar gunent Nanes method even if it
returns null. Returning alist of strings will alow the end user to call your filter/test/function using named
arguments. If this method returns null or an empty list, the function supports dynamic arguments. This
means the user can pass any number of arguments—either named (e.g., myFunction(param="value")) or
positional (e.g., myFunction("value"))—and they will be available in the arguments map.

Using the above fictional fibonacci function as an example, a user can invoke it in two different ways:

{{ fibonacci (10) }}
{{ fibonacci(length=10) }}

If the end user excludes the names and only uses positional arguments, the argument values will still end
up be mapped to the proper names when it's time to invoke the function's execute method. Y our function
implementation doesn't have to worry whether the user used positional or named arguments. It is
important though that if the filter/function/test expects more than one argument, then the devel oper must
communicate to the user the expected order of arguments in the chance that the user wantsto invoke it
without using names.

Some functions such as the built in ni n and max functions accept an unlimited amount of arguments. For
this to happen, your function must not accept any named arguments (i.e. your get Ar gumrent Names method
will return null or empty) and your “execute ™ method will ssimply iterate over the values of the user
provided argument map while ignoring the keys of that map (Pebble will use arbitrary keysif there are no
names to map to).

Global Variables

Adding global variables, which are variables that are accessbile to all templates, isvery trivial. In your
custom extension, implement the get G obal Vari abl es() method which returns avap<st ri ng, Qbj ect >.
The contents of this map will be merged into the context you provide to each template at the time of
rendering.

Operators

Operators are more complex to implement than filters or tests. To add custom operators, implement the
get Bi nar yQper at or s() Or the get Unar yQper at or s() method in your extension, or both. These methods
return alist of Bi nar yQper at or Or Unar yQper at or objects, respectively.

Binary operators require the following information:

® Precedence: an integer relative to other operators which defines the order of operations.

® Symbol: a String representing the actual operator. Thisistypically asingle character but doesn't
have to be.

® Expression Class: A class that extends Bi nar yExpr essi on. This class will perform the actual
operator implementation.

® Associativity: Either left or right depending on how the operator is used.

A unary operator is much the same except it's expression class must extend Unar yExpr essi on and there
IS NO associativity.

The precedence values for existing core operators are as followed:

or: 10

and: 15
is:20

is not:20
==:30

1=:30

>: 30

<: 30

>=: 30

<=:30

+:40

-:40

not : 50 (Unary)
*: 60

/:60

% 60

| : 100

+: 500 (Unary)
- 500 (Unary)

The following is an example of how the addition operator (+) might have been implemented:

public class AdditionQperator inplenments BinaryOperator {

public int getPrecedence(){

return 30;

}

public String getSynbol (){
return "+";

}

publ i ¢ Bi naryExpressi on<?> createlnstance() {
return new AddExpression();
}

publ i c Bi naryQperatorType get Type() {
return BinaryOperator Type. NORVAL;
}

public Associativity getAssociativity(){

return Associativity. LEFT,;

}

Alongside each operator class you will also need to implement a corresponding Bi nar yExpr essi on class
which actually implements the operator. The above example references afictional Addi ti onExpr essi on
class which might look like the following:

public class AdditionExpression extends Bi naryExpressi on<Cbj ect> {

@verride

public Object eval uate(Pebbl eTenmpl atel npl sel f, Eval uati onContext context){
Integer left = (Integer)getlLeftExpression().evaluate(self, context);
Integer right = (Integer)getRi ght Expression().evaluate(self, context);

return left + right;

}

In the above example you will notice that children of BinaryExpression have access to two other
expressions, | ef t Expr essi on, and ri ght Expr essi on; these are the operands of your operator. Please
note that in the above example both operands are casted to Integers but in reality you can't always make
that assumption; the true addition expression is much more complex to handle different types of operands
(Integers, Longs, Doubles, etc).

Tags

Creating new tags is one of the most powerful abilities of Pebble. Y our extension should start by
implementing the get TokenPar ser s() method. A TokenPar ser isresponsible for converting all
necessary tokens to appropriate Render abl eNodes. A token isasignificant and irreducible group of
characters found in atemplate (such as an operator, whitespace, variable name, delimiter, etc) and a
Render abl eNode iS a Pebble class that is responsible for generating output.

Let uslook at an example of a TokenPar ser :

public class Set TokenParser inplenments TokenParser {

public String getTag()({
return "set";
}

@verride

publ i c Render abl eNode parse(Token token, Parser parser) {
TokenStream stream = parser. get Strean();
int lineNunmber = token. getLineNurber();

/1 skip the "set" token
stream next () ;

/1 use the built in expression parser to parse the variable nane
String name = parser. get Expressi onParser (). parseNewari abl eNane() ;

stream expect (Token. Type. PUNCTUATI ON, "=");

/1 use the built in expression parser to parse the variable val ue
Expressi on<?> val ue = parser. get Expressi onPar ser (). par seExpression();

/1 expect to see "%"
st ream expect (Token. Type. EXECUTE_END) ;

/1 NodeSet is conposed of a name and a val ue

return new Set Node(lineNurmber, nane, val ue);

}

The get Tag() method must return the name of the tag. Pebble's main parser will use this nameto
determine when to delegate responsibility to your custom TokenPar ser . This example is parsing the set
tag.

The parse method is invoked whenever the primary parser encounters a set token. This method should
return one Render abl eNode instance which when rendered during the template evaluation, will write
output to the provided Writer object. If the Render abl eNode contains children nodes, it should invoke the
render method of those nodes as well.

The best way to learn all the details of parsing isto ook at some of the tools used, as well as some
examples. Hereisalist of classes| suggest reading:

TokenPar ser
Par ser

Set TokenPar ser
For TokenPar ser
| f Node

Set Node

Attributeresolver (v3 only)

To create a new attribute resolver, implement the get At t ri but eResol ver () method of your extension
which will return alist of attribute resolversto run. A attribute resolver implementation must implement
the Attri but eResol ver interface. The At t ri but eResol ver interface requires one method to be
implemented, r esol ve() .

The custom attribute resolver will be executed before al default pebble attribute resolvers. It replaces the
Dynani cAt t ri but eProvi der interface

public class Defaul tAttri buteResolver inplenments AttributeResol ver {

@verride

public Resol vedAttribute resol ve(Object instance,
hj ect attri buteNaneVal ue,
hj ect[] argunent Val ues,
bool ean isStrictVari abl es,
String fil enane,
int IineNunmber) {

if (instance instanceof CustonObject) {
return "custonVal ue";

}

return null;

}

High Perfor mance Techniques

High Performance

Concurrency

First and foremost, a Pebbl eTenpl at e object, once compiled, is completely thread safe. Aslong as the
data backing the template is also thread safe, you can render that single template instance using multiple
threads at once.

The actual rendering of atemplate will typically occur in a sequential manner, from top to bottom. If,
however, you provide an Execut or Ser vi ce to the Pebbl eEngi ne and make use of the parallel tag, you
can have multiple threads render different sections of your template at one time. Thisis especially useful
if one section of your template is costly and will otherwise block the rendering of the rest of the template.

Streaming

The use of the flush tag can be used to stream the rendered output as it's being rendered. This can
significantly improve latency.

Performance Pitfalls

® |tistypically okay for ablock to usethef 1 ush tag unless the contents of that block is being
rendered using the block function. Typically the flush tag will flush to the w i t er that you
provided but the block function internally usesit'sown st ri ngwWi t er and therefore flushing will
do no good.

autoescape

aut oescape

The aut oescape tag can be used to temporarily disable/re-enable the autoescaper as well as change the
escaping strategy for a portion of the template.

{{ danger }} {# will be escaped by default #}
{% aut oescape fal se %

{{ danger }} {# will not be escaped #}
{% endaut oescape %

{{ danger }} {# will use the "htnml" escaping strategy #}
{% aut oescape "js" %

{{ danger }} {# will use the "js" escaping strategy #}
{% endaut oescape %

Please read the escaping guide for more information about escaping.

block
bl ock

The bl ock tag performs two functions. If used in a parent template, it will designate a section as being
allowed to be overriden by a child template. If used in a child template, it will override the content
originally declared in the parent template. See the extends tag for a more detailed explanation on how to
implement template inheritance.

The contents of ablock will only be used if a child template does not override it. It is often useful to
define empty blocks as placeholders for content to be provided by a child template.

The bl ock tag isimmediately followed by the name of the block. This name will be the same name the
child template uses to overrideit. The endbl ock tag can optionally contain the block's name for
readability.

In the following example we create a block with the name 'header:

{% bl ock header %
<h1l> Introduction </ hl>
{% endbl ock header %

A child template should not have any content outside of blocks. A child template is only used to override
blocks of a parent template.

cache

cache

Cache the rendering portion of a page. Cache name can be an expression or a static string. It uses the
cache name and the locale as a key in the cache.

In the following example we create a cache with the name 'menu'’:

{% cache 'menu’ %
{%for itemin itens %
{{ itemtext }}
{% endf or %
{% endcache %

Cache implementation can be overriden with the PebbleEngine Builder.

return new Pebbl eEngi ne. Bui |l der ()
.l oader (this.tenpl at eLoader ())
.tagCache(CacheBui | der. newBui | der (). maxi munti ze(200) . bui I d())
Lbuild();

embed
enbed

The enbed tag alows you to insert the rendered output of another template directly into the current
template, while overriding some of its blocks. It effectively combines the behavior of include with that of
extends for creating reusable, yet flexible, template fragments, or for composing micro-layouts.

For example, imagine building atemplate car d. peb as a reusable component in your layout. All cards
should have the same markup, but the content can change drastically throughout your site. car d. peb
might then look like:

/'l card. peb

<div class="card">
{% bl ock cardContent %
{% endbl ock 9%

</ div>

Now, you can include that template elsewhere in your layout, and override the car dCont ent block to
"inject" rich content into that template at the call-side. For example, you may want to display agrid of
your store's most popular products as cards, with the last card linking to the full catalog. Embedding
car d. peb and overriding the car dCont ent block ensures that the markup for both types of cards are
always the same, even though what's displayed on each card is quite different.

/1 layout.peb

{% for product in popul arProducts %
{% enbed ' card. peb’ %
{% bl ock cardContent %
<h1>{{ product.nanme }}</hl>
<p>{{ product.description }}</p>
{ % endbl ock %
{% endenbed %
{% endf or %

{% enbed ' card. peb' %
{% bl ock cardContent 9%
See all 100+ products
{% endbl ock %
{% endenbed %

Embeds can be used multiple times in the same template, and may also be used in atemplate that itself
extends another. Each template will then maintain its own block hierarchy. In other words, block
overridden within the body of the enbed tag will not accidentally override those defined in the main
template, and likewise blocks defined in the main template or its parent templates will not get mixed with
those in the embedded template or its parent templates.

/1 main. peb
{% ext ends ' base. peb' %

{% bl ock mai nCont ent %
{{ parent() }} {# renders mai nContent bl ock from base. peb #}
{{ block('footer') }} {# renders footer block from base. peb, the gl obal page footer 1

{% enbed ' card. peb’ %
{% bl ock mai nContent %
{{ parent() }} {# renders nainContent block from card. peb #}
{{ block('footer') }} {# renders footer block from card. peb, the card footer
{% endbl ock %

{% endenbed %
{% endbl ock %

Scope
Embedded templates will have access to the same variables that the current template does.

Top Cont ent

{% enbed "advertisenment" %{% endenbed %
Bot t om Cont ent

{% enbed "footer" %{% endenbed %

Y ou can add additional variables to the context of the embedded template by passing a map after thewi t h
keyword. The embedded template will have access to the same variables that the current template does
plus the additional ones defined in the map passed after the wi t h keyword:

{% enbed "advertisement” with {"foo":"bar"} %
{%Dblock title %
Ad with title
{% endbl ock %
{% bl ock content %
Ad with title
{% endbl ock %
{% endenbed %

Dynamic embed

The enbed tag will accept an expression to determine the template to embed at runtime. For example:

{% enbed admin ? 'adm nFooter' : 'defaultFooter' %
{% endenbed %

extends

ext ends

The ext ends tag is used to declare a parent template. It should be the very first tag used in a child
template and a child template can only extend up to one parent template.

The best way to understand template inheritance is to study an example. Let uslook at a parent template
called "base":

<htm >
<head>
<title>{%block title % {% endblock %</title>
</ head>
<body>
<div id="content">
{% bl ock content %
Default content goes here
{% endbl ock %
</ di v>
<div id="footer">
{% bl ock footer %
Default footer content
{ % endbl ock %
</div>
</ body>
</htm >

And now let's look at a child template called "home" which extends "base":

{% ext ends "base" %
{%block title %4 Hone {% endbl ock %
{% bl ock content %

Home page content.
{ % endbl ock %

And finally let'slook at the resulting output after evaluating "home":

<htm >
<head>
<title> Hone </title>
</ head>
<body>
<div id="content">
Hone page content will override the default content.
</ di v>
<div id="footer">
Default footer content
</ di v>
</ body>
</htnm >

To summarize, parent templates define blocks and child templates will override the contents of those
blocks. If achild template does not override the content of a particular block, the content provided by the
parent template will be used.

Thereisno limit to how long of an inheritance chain that you can create; i.e. a child template can itself
have a child template. A lot of potential comes from this fact because you can create a hierarchy of
templates to minimize how much content you have to write on the lower levels.

Dynamic Inheritance

The ext ends tag will accept an expression to determine the parent template at runtime. For example:

{% extends ajax ? 'ajax' : 'base' %

filter

filter

Theftilter tag alowsyou to apply afilter to alarge chunk of template.

{%filter upper %
hel | o
{%endfilter 9%}

{# output: 'HELLO #}

Multiple filters can be chained together.

{%filter upper | escape %
hel | o

{%endfilter %}

{# output: 'HELLQ& t;bré>"' #}

flush
fl ush

Thef 1 ush tag alows you to flush all currently rendered output to the provided Wi t er.

{{ header Text }}
{%flush %
{{ content }}

for

f or

Thef or tagisused to iterate through primitive arrays or anything that implementsthe j ava. | ang.
| t er abl e interface, as well as maps.

{%for user in users %
{{ user.nanme }} lives in {{ user.city }}.
{% endf or %

While inside of the loop, Pebble provides a couple of specia variables to help you out:

loop.index - a zero-based index that increments with every iteration.
loop.length - the size of the object we are iterating over.

loop.first - Trueif first iteration

loop.last - Trueif last iteration

loop.revindex - The number of iterations from the end of the loop

{% for user in users %
{{ loop.index }} - {{ user.id }}
{% endf or %

Thef or tag aso provides a convenient way to check if the iterable object is empty with the included el se
tag.

{%for user in users %

{{ loop.index }} - {{ user.id }}
{%else %

There are no users to display.
{% endf or %

Iterating over maps can be done like so:

{%for entry in map %

{{ entry.key }} - {{ entry.value }}
{% endf or %

from

from

The from tag imports macro names into the current namespace. The tag is documented in detail in the
documentation for the import tag.

If
| f

Thei f tag allows you to designate a chunk of content as conditional depending on the result of an
expression

{%if users is enpty %
There are no users.

{%elseif users|length == 1 %
There is only one user.
{%else %

There are nmmny users.
{%endif %

The expression used inthei f statement often makes use of the is operator.
Supported conditions

| f tag currently supports the following expression

Value Boolean expression
boolean boolean value
Empty string false

Non empty string true

numeric zero false

numeric different than zero true

Import

| nport

Thei nport tag allows you to use macros defined in another template.
Assuming that a macro named i nput existsin atemplate called f orm uti | you canimport it like so:

{%inmport "formutil" %

{{ input("text", "nanme", "Mtchell") }}

The easiest and most flexible is importing the whole module into avariable. That way you can access the
attributes:

{%inmport 'forms.htm' as forns %

<dl >

<dt >User name</ dt >

<dd>{{ forms.input('usernane') }}</dd>

<dt >Passwor d</ dt >

<dd>{{ forns.input('password' , null, 'password') }}</dd>
</dl >
<p>{{ forms.textarea('conment') }}</p>

Alternatively you can import names from the template into the current namespace:

{%from ' forns.htm"' inmport input as input_field, textarea %

<dl >

<dt >User nane</ dt >

<dd>{{ input_field('usernane') }}</dd>

<dt >Passwor d</ dt >

<dd>{{ input_field(' password', '', 'password') }}</dd>
</dl >
<p>{{ textarea('comment') }}</p>

Dynamic Import

Thei nport tag will accept an expression to determine the template to import at runtime. For example:
{%inport nodern ? "ajax_formutil' : 'sinple formutil' %

{{ input("text", "name", "Mtchel ") }}

Include

| ncl ude

Thei ncl ude tag alows you to insert the rendered output of another template directly into the current
template. The included template will have access to the same variables that the current template does.

Top Cont ent

{% include "advertisenent" %
Bot t om Cont ent

{%include "footer" %

Y ou can add additional variables to the context of the included template by passing a map after the wi t h

keyword. The included template will have access to the same variables that the current template does
plus the additional ones defined in the map passed after the wi t h keyword:

{%include "advertisenment" with {"foo":"bar"} %
Dynamic Include

Thei ncl ude tag will accept an expression to determine the template to include at runtime. For example:

{%include adnmin ? 'admi nFooter' : 'defaultFooter' %

macro

macr o

The macr o tag alows you to create a chunk of reusable and dynamic content. The macro can be called
multiple timesin the current template or even from another template with the help of the import tag.

It doesn't matter where in the current template you define a macro, i.e. whether it's before or after you
call it. Here is an example of how to define a macro:

{% macro input(type="text", name, value) %
<input type="{{ type }}" nanme="{{ nane }}" value="{{ value }}" />
{% endmacro %

And now the macro can be called numerous times throughout the template, like so:

{{ input(name="country") }}
{# will output: <input type="text" nane="country" value="" /> #}

If the macro resides in another template, use the import tag first.

{%inport "formutil" %
{{ input("text", "country", "Canada") }}

A macro does not have access to the same variables that the rest of the template has access to. A macro
can only work with the variables provided as arguments.

Accessto the global context

Y ou can pass the whole context as an argument by using the specia _cont ext variableif you need to
access variables outside of the macro scope:

{% set foo = "bar' %

{{ test(_context) }}

{% macro test(_context) %
{{ _context.foo }}

{% endmacro %

{# will output: bar #}

parallel

paral | el

Theparal | el tag allows you to designate a chunk of content to be rendered using a new thread. Thistag
isonly available if you provide an Execut or Ser vi ce to the main Pebbl eEngi ne.

{{ upperContent }}
{% parallel %

{{ calcul ation.slowCal cul ation }}
{% endparal el %

{{ I owerContent }}

In the above example, the slow calculation will not block the | ower Cont ent from being evaluated
concurrently.

See the high performance guide for more tips on how to improve performance.

Set

set

Theset tag allows you to define a variable in the current context, whether it currently exists or not.

{% set header = "Test Page" %

{{ header }}

verbatim

verbati m

Thever bat i mtag allows you to write a block of Pebble syntax that won't be parsed.

{% verbatim %
{% for user in users %
{{ user.nane }}
{% endf or %
{% endverbati m %

Inline Verbatim Text

For inline verbatim text, a string literal can be used. For example, if you need to include {{ in the output
of atemplate, you canuse{{ "{{" }} instring literal in the Pebble template

Thiswould be useful if you are using Pebble to generate Angular HTML component templ ate files:
<td>{{ "{{" }}school.name{{ "}}" }}</td>
would produce the following template output:

<t d>{{school . nane}} </ td>

abbreviate

abbr evi at e

The abbr evi at e filter will abbreviate a string using an ellipsis. It takes one argument which is the max
width of the desired output including the length of the elipsis.

{{ "this is a long sentence.” | abbreviate(7) }}

The above example will output the following:

this...

Arguments

® |ength

abs

abs

The abs filter is used to obtain the absol ute value.

{{ -7 | abs }}

{# output: 7 #}

base64decode

base64decode

The base64decode filter takes the given input, Base64-decodes it, if possible, and returns the byte array
converted to UTF-8 String. Applying the filter on an incorrect base64-encoded string will throw an
exception.

{{ "dGvzdA==" | base64decode }}
The above example will output the following:

t est

base64encode

baseb4encode

The base64encode filter takes the given input, convertsit to an UTF-8 String (. t oSt ri ng()) and Base64-
encodes it.

{{ "test" | base64encode }}
The above example will output the following:

dGvzdA==

capitalize

capitalize

Thecapi tal i ze filter will capitalize the first letter of the string.

{{ "article title" | capitalize }}

The above example will output the following:

Article title

See also: title

date

dat e

The dat e filter formats a date in avariety of formats. It can handle old-school j ava. uti | . Date, Java8
java. ti me constructs like O f set Dat eTi me and timestamps in milliseconds from the epoch. The filter
will construct aj ava. t ext . Si npl eDat eFor mat Of j ava. ti ne. f or mat . Dat eTi meFor mat t er using the
provided pattern and then use this newly created format to format the provided date object. If you don't
provide a pattern, either Dat eTi meFor mat t er . | SO DATE_TI ME Of yyyy- M dd' T' HH: nm ssZ will be used.

{{ user.birthday | date("yyyy-Mvidd") }}

An aternative way to use thisfilter isto useit on a string but then provide two arguments: the first isthe
desired pattern for the output, and the second is the existing format used to parse the input string into a
java.util . Date object.

{{ "July 24, 2001" | date("yyyy-Mvxtdd", existingFormat="MVWWM dd, yyyy") }}
The above example will output the following:

2001-07-24

Time zones

If the provided date has time zone info (e.g. O f set Dat eTi me) then it will be used. If the provided date
has no time zone info, by default the system time zone will be used. If you need to use a specific time
zone then you can passin at i nezone parameter any string that's understood by zonel d / Zonel nf o:

{# the tineZone paraneter will be ignored #}
{{ someOfsetDateTinme | date("yyyy-Midd T HH nm ssX', tineZone="UTC') }}
{# the provided tinme zone will override the systemdefault #}

{{ sonelnstant | date("yyyy-Mvtdd T HH. mm ssX", tinmeZone="Pacific/Funafuti") }}

Arguments

* format
® existingFormat
®* timeZone

default

def aul t

The def aul t filter will render adefault value if and only if the object being filtered is empty. A variable
isempty if it isnull, an empty string, an empty collection, or an empty map.

{{ user.phoneNunber | default("No phone nunber") }}

In the following example, if f oo, bar, or baz are null the output will become an empty string whichisa
perfect use case for the default filter:

{{ foo.bar.baz | default("No baz") }}

Note that the default filter will suppressany At t ri but eNot FoundExcept i on exceptions that will usually
bethrownwhen stri ct Vari abl es iSSet tot r ue.

Arguments

® default

escape

escape

The escape filter will turn specia charactersinto safe character referencesin order to avoid XSS
vulnerabilities. Thisfilter will typically only need to be used if you've turned off autoescaping.

{{ "<div>" | escape }}
{# output: & t;div> #}

Please read the escaping guide for more information about escaping.

Arguments

® dtrategy

first

first

Thetirst filter will return thefirst item of acollection, or the first letter of a string.
{{ users | first }}

{# will output the first itemin the collection naned 'users' #}

{ "Mtch | first }}
wll output 'M #}

A

join
join

Thej oi n filter will concatenate all items of a collection into a string. An optional argument can be given
to be used as the separator between items.

{#
Li st<String> nanmes = new ArrayLi st<>();
nanes. add(" Al ex");
nanes. add("Joe");
nanes. add(" Bob") ;
#}
{{ nanes | join(",") }}
{# will output: Al ex,Joe, Bob #}

Arguments

® separator

last

Thel ast filter will return the last item of acollection, or the last letter of a string.
{{ users | last }}

{# will output the last itemin the collection named 'users' #}

{{ "Mtch'" | last }}

{# will output 'h' #}

length
| engt h

Thel engt h filter returns the number of items of collection, map or the length of a string:

{%if users|length > 10 %

{%endif %

lower

| ower

Thel ower filter makes an entire string lower case.

{{ "TH'S IS A LOUD SENTENCE" | |ower }}

The above example will output the following:

this is a |l oud sentence

number for mat

nunber f or nat

The nunber f or mat filter is used to format a decimal number. Behind the scenesit usesj ava. t ext .
Deci mal For mat .

{{ 3.141592653 | nunberformat ("#. ##") }}

The above example will output the following:

3. 14

Arguments

* format

raw

raw

Therawfilter prevents the output of an expression from being escaped by the autoescaper. The r aw filter
must be the very last operation performed within the expression otherwise the autoescaper will deem the
expression as potentially unsafe and escape it regardless.

{% set danger = "<div>" %
{{ danger | upper | raw }}
{# ouptut: <Dl V> #}

If ther awfilter is not the last operation performed then the expression will be escaped:

{% set danger = "<div>" %
{{ danger | raw | upper }}
{# output: & t;D V> #}

Please read the escaping guide for more information about escaping.

replace

repl ace

The 'replace’ filter formats a given string by replacing the placeholders (placeholders are free-form):
{{ "1 like %his%and %hat%" | replace({ % his%: foo, '%hat%: "bar"}) }}
Arguments

® placeholdersto replace

reverse

rever se

The 'reverse filter reversesalist:

{%for user in users | reverse %4 {{ user }} {%endfor %

rsort

rsort

Thersort filter will sort alist in reversed order. The items of the list must implement Conpar abl e.

{%for user in users | rsort %
{{ user.nane }}
{% endf or %

sha256
sha256

The sha256 filter returns the SHA-256 hash of the given UTF-8 String.
{{ "test" | sha256 }}

The above example will output the following:

9f 86d081884c7d659a2f eaaOc55ad015a3bf 4f 1b2b0b822cd15d6¢c15b0f 00a08

dice

slice

Thesl i ce filter returns a portion of alist, array, or string.

{{ ['apple', 'peach', 'pear', 'banana'] | slice(1,3) }}
{# results in: [peach, pear] #}

{{ "Mtchell' | slice(1,3) }}
{# results in: "it"' #}

Arguments

® from ndex: O-based and inclusive
® ol ndex: 0-based and exclusive

Sort

sort

Thesort filter will sort alist. Theitems of the list must implement Corpar abl e.

{%for user in users | sort %
{{ user.nane }}
{% endf or %

split
split

Thespl it filter splitsastring by the given delimiter and returns alist of strings.

{% set foo = "one,two,three” | split(',') %
{# foo contains ["one', '"two', 'three'] #}

Y ou can aso pass alimit argument:

® Iflinit ispositive, then the pattern will be applied at most n - 1 times, the array's length will be
no greater than n, and the array's last entry will contain all input beyond the last matched delimiter;

® IfIimt isnegative, then the pattern will be applied as many times as possible and the array can
have any length;

® Iflinit iszero, then the pattern will be applied as many times as possible, the array can have any
length, and trailing empty strings will be discarded;

{%set foo = "one,two,three,four,five" | split(',", 3) %
{# foo contains ['one', "two', 'three, four,five'] #}
Arguments

® delimiter: The delimiter
® [imit: The limit argument

title
title

Thetitl e filter will capitalize the first letter of each word.

{{ "article title" | title }}

The above example will output the following:

Article Title

See also: capitalize

trim

trrm
Thetri mfilter is used to trim whitespace off the beginning and end of a string.

{{" This text has too nmuch whitespace. "] trim}}

The above example will output the following:

This text has too nuch whitespace.

upper
upper

The upper filter makes an entire string upper case.
{{ "this is a quiet sentence." | upper }}
The above example will output the following:

THIS IS A QU ET SENTENCE.

urlencode

url encode

Theur| encod transates a string into appl i cat i on/ x- wwf or m ur | encoded format using the "UTF-8"
encoding scheme.

{{ "The string U@oo-bar" | urlencode }}
The above example will output the following:

The+st ri ng+%C3%BCY%10f oo- bar

block
bl ock

Thebl ock function is used to render the contents of a block more than once. It is not to be confused with
the block tag which is used to declare blocks.

The following example will render the contents of the "post” block twice; once where it was declared and
again using the bl ock function:

{% bl ock "post" % content {% endbl ock %

{{ block("post") }}

The above example will output the following:

cont ent

cont ent

Performance Warning

The bl ock function will impair the use of the flush tag used within the block being rendered. It is
typically okay for ablock to usethe f I ush tag which will flush the already-rendered content to the user-
provided Wi t er but the block function will internally useit'sown stri ngwi t er and therefore flushing
inside the block will no longer do any good (nor will it do harm).

118n
| 18n

Thei 18n function is used to retrieve messages from alocale-specific Resour ceBundl e. Every
Pebbl eTenpl at e iS assigned a default locale from the Pebbl eEngi ne. At the point of evaluation, this
locale can be changed with an argument to the eval uat e(. . .) method of the individual template.

Thei 18n function wraps around Resour ceBundl e. get Bundl e(nane, | ocal e). get Obj ect (key) . The
first argument to thei 18n function is the name of the bundle and the second argument is the key within
the bundle.

{{ i18n("nmessages”, "greeting") }}

The above example assumes you have nessages. pr operti es on your classpath and that that file
contains a key by the name of gr eet i ng. If thelocale of that template was es_Us for example, it would
look for amessage_es_US. properti es fileinstead.

Going alittle further, you can use variables within your message and pass alist of paramsto this function
which will replace your variables using MessageFor mat :

{# greeting.sonmeone=Hel |l o, {0} #}
{{ i18n("nessages", "greeting", "Jacob") }}

{# output: Hello, Jacob #}

Arguments

®* bhundle

) key
® params

max

max

The max function will return the largest of it's numerical arguments.

{{ max(user.age, 80) }}

min
m n
The ni n function will return the smallest of it's numerical arguments.

{{ mn(user.age, 80) }}

parent

par ent

The par ent function is used inside of a block to render the content that the parent template would have
rendered inside of the block had the current template not overriden it. It is similar to Java's super

keyword.
Let's assume you have atemplate, "parent.peb” that looks something like this:

{% bl ock "content” %
parent contents
{% endbl ock %

And then you have another template, "child.peb” that extends " parent.peb”:

{% ext ends "parent.peb" %

{% bl ock "content" %
child contents

{{ parent() }}
{% endbl ock %

The output will ook something like the following:

parent contents
child contents

range

range

Ther ange function will return alist containing an arithmetic progression of numbers:

{%for i in range(0, 3) %
{11},
{% endf or %

{# outputs 0, 1, 2, 3, #}
When step is given (as the third parameter), it specifies the increment (or decrement):

{%for i in range(0, 6, 2) %
{{ i }},
{% endf or %

{# outputs 0, 2, 4, 6, #}
Pebble built-in .. operator isjust a shortcut for the range function with a step of 1+
{%for i in0..3 %

({11}
{% endf or %

{# outputs 0, 1, 2, 3, #}

empty
enpty

The enpt y test checksif avariable is empty. A variableis empty if it isnull, an empty string, an empty
collection, or an empty map.

{%if user.email is empty %

{%endif %

even

even

The even test checksif aninteger is even.

{%if 2 is even %

{%endif %

map

map

The map test checksif avariable is an instance of a map.
{%if {"apple":"red", "banana":"yellow'} is map %

{%endif %

null

nul |

Thenul | test checksif avariableisnull.

{%if user.email is null %

{%endif %

odd
odd

The odd test checksif an integer is odd.
{%if 3 is odd %

{%endif %

Iterable

| terabl e

Thei terabl e test checksif avariable implementsj ava. | ang. I terabl e.

{%if users is iterable %
{% for user in users %

{%endfo-rlé)/(}
{%endif %

comparisons

Comparisons

Pebbl e provides the following comparison operators. ==, ! =, <, >, <=, >=. All of them except for == are
equivalent to their Java counterparts. The == operator usesj ava. uti | . Obj ect s. equal s(a, b) behind
the scenes to perform null safe value comparisons.

equal s isan aiasfor ==

{%if user.name equals "Mtchell" %

{%endif %

contains

cont al ns

The cont ai ns operator can be used to determine if a collection, map, or array contains a particular item.
{%if ["apple", "pear", "banana"] contains "apple" %

{%endif %

When using maps, the contains operator checks for an existing key.

{%if {"apple":"red", "banana":"yellow'} contains "banana" %

{%endif %

The operator can be used to look for multiple items at once:

{%if ["apple", "pear", "banana", "peach"] contains ["apple", "peach"] %

{%endif %

IS
| S
Thei s operator will apply atest to avariable which will return a boolean.

{%if 2 is even %
{%endif %

The result can be negated using the not operator.

logic

Logic

The and operator and the or operator are available to join boolean expressions.
{%if 2 is even and 3 is odd %

{%endif %

Thenot operator is available to negate a boolean expression.

{%if 3 is not even %

{%endif %

Parenthesis can be used to group expressions to ensure a desired precedence.

{%if (3 is not even) and (2 is odd or 3 is even) %

{%endif %

math

Math

All the regular math operators are available for use. Order of operations applies.

{({2+2/7 (10 %3) * (8- 1) }}

The result can be negated using the not operator.

others

Other Operators

The| operator isused to apply afilter to avariable.
{{ user.name | capitalize }}
Pebble supports the use of the conditional operator (often named the ternary operator).

{{ foo == null ? bar : baz }}

