fpdf2 manual

A minimalist PDF creation library for Python

v2.8.6

Table of contents

Table of contents

1. fpdf2

1.1
1.2
1.3
1.4

1.5

Main features
Tutorials
Installation
Community

Misc

2. Tutorial

2.1

2.2

Hello World with fpdf2

Tutorial

3. Page Layout

3.1
3.2
3.3
3.4

3.5

Page format and orientation
Margins

Templates

Text Flow Regions

Tables

4. Text Content

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

Adding Text

Line breaks

Page breaks

Text styling

Fonts and Unicode

Text Shaping

Emojis, Symbols & Dingbats
HTML

5. Graphics Content

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Images

Shapes
Transformations
Transparency

Patterns and Gradients
Barcodes

Drawing

Scalable Vector Graphics (SVG)

Charts & graphs

-2/193 -

INOEN

© W 0 o o U

10
17
17
19
20
28
35
50
50
53
54
56
62
69
73
75
78
78
84
96
100
102
105
110
115
120

6. PDF Features

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9

Links

Metadata

Annotations

Presentations

Document Outline & Table of Contents
Page Labels

Encryption

Signing

File attachments

6.10 PDF/A with fpdf2

7. Mixing other libs

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

7.9

Combine with pypdf

Combine with Markdown

Combine with livereload

borb

Combine with pdfrw

Matplotlib, Pandas, Plotly, Pygal
Usage in web APIs

Rendering spreadsheets as PDF tables

Templating with Jinja

7.10 Combine with Rough.js

8. Development

8.1
8.2

8.3

Development

Logging

fpdf2 internals

9. History

9.1

9.2

How fpdf2 came to be

Compatibility between PyFPDF & fpdf2

- 3/193 -

Table of contents

128
128
131
132
135
136
139
143
145
147
148
152
152
154
160
162
164
166
167
173
176
177
181
181
188
190
192
192

192

1. fpdf2

1. fpdf2

fpdf2 is a library for simple & fast PDF document generation in Python. It is a fork and the successor of pyFpDF (cf. history).

Latest Released Version: pypi v2.8.5

from fpdf import FPDF

pdf = FPDF()

pdf.add_page()
pdf.set_font('Helvetica', size=12)
pdf.cell(text="Hello world!")
pdf.output("hello_world.pdf")

Go try it now online in a Jupyter notebook: CO_Open in Colab or OPEINI R NIERE,

1.1 Main features

* Easy to use, with a user-friendly API, and easy to extend
e Python 3.10+ support

e Unicode (UTF-8) TrueType font subset embedding (Central European, Cyrillic, Greek, Baltic, Thai, Chinese, Japanese, Korean,
Hindi and almost any other language in the world)

e Internal / external links

-4/193 -

https://pypi.python.org/pypi/fpdf2
https://pypi.python.org/pypi/fpdf2
https://colab.research.google.com/github/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
https://colab.research.google.com/github/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
https://nbviewer.org/github/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
https://nbviewer.org/github/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
https://py-pdf.github.io/fpdf2/fpdf/

1.2 Tutorials

* Embedding images, including transparency and alpha channel, using Pillow (Python Imaging Library)
* Arbitrary path drawing and basic SVG import

¢ Embedding barcodes, charts & graphs, emojis, symbols & dingbats

e Tables, and also cell / multi-cell / plaintext writing, with automatic page breaks, line break and text justification
* Choice of measurement unit, page format & margins. Optional page header and footer

* Basic conversion from HTML to PDF

* A templating system to render PDFs in batchs

* Images & links alternative descriptions, for accessibility

 Table of contents & document outline

¢ Document encryption & document signing

e Annotations, including text highlights, and file attachments

* Presentation mode with control over page display duration & transitions

* Optional basic Markdown-like styling: **bold**, _ italics__

« It has very few dependencies: Pillow, defusedxml, & fonttools

e Can render mathematical equations & charts

* Many example scripts available throughout this documentation, including usage examples with Django, Flask, FastAPI,
streamlit, AWS lambdas... : Usage in web APIs

* more than 1300 unit tests with gpdf -based PDF diffing, and PDF samples validation using 3 different checkers:

Datalogics

d P PDF Checker

o

1.2 Tutorials

N
J

\,

* English
* Deutsch

e Ttalian

-5/193 -

https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/
https://pypi.org/project/defusedxml/
https://pypi.org/project/fonttools/
https://www.djangoproject.com/
https://flask.palletsprojects.com
https://fastapi.tiangolo.com/
https://streamlit.io/
https://github.com/qpdf/qpdf
https://github.com/qpdf/qpdf
https://www.datalogics.com/repair-pdf-files
https://www.datalogics.com/repair-pdf-files
https://verapdf.org
https://verapdf.org

1.3 Installation

* espaiol

e francais

* M

* portugués
* Pycckuu

* EAANUIKG
* N2y

* 01

* M
I

e

* Dutch

*» Polski

e Tlrkge

* Indonesian
* Slovens$cina

¢ VKpaiHCbKa

1.3 Installation

From PyPI:
pip install fpdf2

To get the latest, unreleased, development version straight from the development branch of this repository:
pip install git+https://github.com/py-pdf/fpdf2.git@master

Development: check the dedicated documentation page.

1.3.1 Displaying deprecation warnings
Deprecationwarning s are not displayed by Python by default.

Hence, every time you use a newer version of fpdf2, we strongly encourage you to execute your scripts with the -wd option (cf.
documentation) in order to get warned about deprecated features used in your code.

This can also be enabled programmatically with warnings.simplefilter('default', Deprecationwarning) .

1.4 Community

1.4.1 Support

For community support, please feel free to file an issue or open a discussion.

- 6/193 -

https://pypi.python.org/pypi/fpdf2
https://docs.python.org/3/using/cmdline.html#cmdoption-W
https://github.com/py-pdf/fpdf2/issues
https://github.com/py-pdf/fpdf2/discussions

1.4.2 They use fpdf2

1.4.2 They use fpdf2
Online classes & open source projects:

* Harvard University uses fpdf2 in their CS50 introductory class

e Undying Dusk : a video game in PDF format, with a gameplay based on exploration and logic puzzles, in the tradition of
dungeon crawlers

* OpenDroneMap : a command line toolkit for processing aerial drone imagery

* OpenSfM : a Structure from Motion library, serving as a processing pipeline for reconstructing camera poses and 3D scenes
from multiple images

e RPA Framework : libraries and tools for Robotic Process Automation (RPA), designed to be used with both Robot Framework :
rpa-pdf package

* Concordia : a platform developed by the US Library of Congress for crowdsourcing transcription and tagging of text in
digitized images

* FreeCAD-Beginner-Assistant : FreeCAD plugin providing feedback on best practices for beginning FreeCAD users

* wudududu/extract-video-ppt : create a one-page-per-frame PDF from a video or PPT file. fpdf2 also has a demo script to
convert a GIF into a one-page-per-frame PDF: gif2pdf.py

* Planet-Matriarchy-RPG-CharGen : a PyQt based desktop application (= .exe under Windows) that provides a RPG character
sheet generator

1.4.3 Usage statistics

* PyPI download stats - Downloads per release on Pepy
* pip trends: fpdf2 VS other PDF rendering libs

» packages using fpdf2 can be listed using:

* Wheelodex

e deps.dev

* packages.ecosyste.ms

-7/193 -

https://cs50.harvard.edu/python/2022/psets/8/shirtificate/
https://lucas-c.itch.io/undying-dusk
https://github.com/OpenDroneMap/ODM
https://github.com/mapillary/OpenSfM
https://github.com/robocorp/rpaframework
https://robotframework.org
https://pypi.org/project/rpa-pdf/
https://github.com/LibraryOfCongress/concordia
https://github.com/alekssadowski95/FreeCAD-Beginner-Assistant
https://github.com/wudududu/extract-video-ppt
https://github.com/py-pdf/fpdf2/blob/master/tutorial/gif2pdf.py
https://github.com/ShawnDriscoll/Planet-Matriarchy-RPG-CharGen
https://pypistats.org/packages/fpdf2
https://pepy.tech/project/fpdf2
https://piptrends.com/compare/fpdf2-vs-fpdf-vs-pypdf-vs-borb-vs-reportlab
https://www.wheelodex.org/projects/fpdf2/rdepends/
https://deps.dev/pypi/fpdf2/2.8.1/dependents
https://packages.ecosyste.ms/registries/pypi.org/packages/fpdf2/dependent_packages

1.4.4 Related

History

1400

1200

1000

800

GitHub Stars

600

400

200

2018 2020 2022 2024 2026
te X} star-history.com

1.4.4 Related
* Looking for alternative libraries? Check out pypdf, borb, pikepdf, WeasyPrint, pydyf and PyMuPDF: features comparison,
examples, Jupyter notebooks. We have some documentations about combining fpdf2 with borb & pypdf .
* Create PDFs with Python : a series of tutorial videos by bvalgard
* GitHub gist providing borders around any fpdf2 area, by @hyperstown

« digidigital/Extensions-and-Scripts-for-pyFPDF-fpdf2 : scripts ported from PHP to add transparency to elements of the page or
part of an image, allow to write circular text, draw pie charts and bar diagrams, embed JavaScript, draw rectangles with
rounded corners, draw a star shape, restrict the rendering of some elements to screen or printout, paint linear / radial / multi-
color gradients gradients, add stamps & watermarks, write sheared text...

1.5 Misc

* Release notes for every versions of fpdf2 : CHANGELOG.md
e This library could only exist thanks to the dedication of many volunteers around the world: list & map of contributors

* You can download an offline PDF version of this manual: fpdf2-manual.pdf

(C October 22, 2025

- 8/193 -

https://star-history.com/#py-pdf/fpdf2
https://star-history.com/#py-pdf/fpdf2
https://github.com/py-pdf/pypdf
https://github.com/jorisschellekens/borb
https://github.com/pikepdf/pikepdf
https://github.com/Kozea/WeasyPrint
https://pypi.org/project/pydyf/
https://pymupdf.readthedocs.io/en/latest/index.html
https://pymupdf.readthedocs.io/en/latest/about.html
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples#examples
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/jupyter-notebooks
https://www.youtube.com/playlist?list=PLjNQtX45f0dR9K2sMJ5ad9wVjqslNBIC0
https://gist.github.com/hyperstown/88a44b28313549a43255f590f4915b1a
https://github.com/hyperstown
https://github.com/digidigital/Extensions-and-Scripts-for-pyFPDF-fpdf2
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/README.md#contributors-
https://py-pdf.github.io/fpdf2/fpdf2-manual.pdf

2. Tutorial

2. Tutorial

O Open in Colab

Open In nbviewer

2.1 Hello World with fpdf2

This Jupyter notebook demontrates some basic usage of the Python fpdf2 library

Installation of fpdf2 with PIP:
'pip install fpdf2

Enable deprecation warnings:
import warnings
warnings.simplefilter('default', DeprecationWarning)

Generate a PDF:

from fpdf import FPDF

pdf = FPDF()

pdf.add_page()
pdf.set_font('helvetica', size=48)
pdf.cell(text="hello world")
pdf_bytes = pdf.output()

Display the PDF in the notebook by embedding it as HTML content:

WIDTH, HEIGHT = 800, 400

from base64 import b64encode

from IPython.display import display, HTML

base64_pdf = b64encode(pdf_bytes).decode("utf-8")

display(HTML(f'<embed height="{HEIGHT}" src="data:application/pdf;base64, {base64_pdf}" type="application/pdf" width="{WIDTH}"/>'))

Display a download button:
display(HTML(f'Click to download PDF'))

Click to download PDF

To continue learning about fpdf2, check our tutorial: - English - Deutsch - espafiol - [IT[]] - portugués - Pycckuii - Italian -
francais - EAAnvikda - nnay - Dutch - Polski - Tlirkge - Indonesian

(February 19, 2026

-9/193 -

https://colab.research.google.com/github/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
https://colab.research.google.com/github/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
https://nbviewer.org/github/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
https://nbviewer.org/github/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
https://jupyter.org/
https://github.com/py-pdf/fpdf2
data:application/pdf;base64,JVBERi0xLjMKMyAwIG9iago8PC9UeXBlIC9QYWdlCi9QYXJlbnQgMSAwIFIKL1Jlc291cmNlcyAyIDAgUgovQ29udGVudHMgNCAwIFI+PgplbmRvYmoKNCAwIG9iago8PC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzM+PgpzdHJlYW0KeJwzUvDiMtAzNVco53IKUdB3M1QwsdAzMFAISVNwDQEJGRvqGVoomJub6hmaKISkKGhkpObk5CuU5xflpGgqhGSBlAEAC64QcgplbmRzdHJlYW0KZW5kb2JqCjEgMCBvYmoKPDwvVHlwZSAvUGFnZXMKL0tpZHMgWzMgMCBSXQovQ291bnQgMQovTWVkaWFCb3ggWzAgMCA1OTUuMjggODQxLjg5XQo+PgplbmRvYmoKNSAwIG9iago8PC9UeXBlIC9Gb250Ci9CYXNlRm9udCAvSGVsdmV0aWNhCi9TdWJ0eXBlIC9UeXBlMQovRW5jb2RpbmcgL1dpbkFuc2lFbmNvZGluZwo+PgplbmRvYmoKMiAwIG9iago8PAovUHJvY1NldCBbL1BERiAvVGV4dCAvSW1hZ2VCIC9JbWFnZUMgL0ltYWdlSV0KL0ZvbnQgPDwKL0YxIDUgMCBSCj4+Ci9YT2JqZWN0IDw8Cj4+Cj4+CmVuZG9iago2IDAgb2JqCjw8Ci9DcmVhdGlvbkRhdGUgKEQ6MjAyMjA5MTUwNjU0NDJaMDYnNTQnKQo+PgplbmRvYmoKNyAwIG9iago8PAovVHlwZSAvQ2F0YWxvZwovUGFnZXMgMSAwIFIKL09wZW5BY3Rpb24gWzMgMCBSIC9GaXRIIG51bGxdCi9QYWdlTGF5b3V0IC9PbmVDb2x1bW4KPj4KZW5kb2JqCnhyZWYKMCA4CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDIyOSAwMDAwMCBuIAowMDAwMDAwNDExIDAwMDAwIG4gCjAwMDAwMDAwMDkgMDAwMDAgbiAKMDAwMDAwMDA4NyAwMDAwMCBuIAowMDAwMDAwMzE1IDAwMDAwIG4gCjAwMDAwMDA1MTUgMDAwMDAgbiAKMDAwMDAwMDU3NiAwMDAwMCBuIAp0cmFpbGVyCjw8Ci9TaXplIDgKL1Jvb3QgNyAwIFIKL0luZm8gNiAwIFIKL0lEIFs8NEU0Nzc0MTZCRTlCODJGQjQ4QTcxMzRCMkVDODAxNTk+PDRFNDc3NDE2QkU5QjgyRkI0OEE3MTM0QjJFQzgwMTU5Pl0KPj4Kc3RhcnR4cmVmCjY3OQolJUVPRgo=
https://py-pdf.github.io/fpdf2/Tutorial.html
https://py-pdf.github.io/fpdf2/Tutorial-de.html
https://py-pdf.github.io/fpdf2/Tutorial-es.html
https://py-pdf.github.io/fpdf2/Tutorial-%E0%A4%B9%E0%A4%BF%E0%A4%82%E0%A4%A6%E0%A5%80.html
https://py-pdf.github.io/fpdf2/Tutorial-pt.html
https://py-pdf.github.io/fpdf2/Tutorial-ru.html
https://py-pdf.github.io/fpdf2/Tutorial-it.html
https://py-pdf.github.io/fpdf2/Tutorial-fr.html
https://py-pdf.github.io/fpdf2/Tutorial-gr.html
https://py-pdf.github.io/fpdf2/Tutorial-he.html
https://py-pdf.github.io/fpdf2/Tutorial-nl.html
https://py-pdf.github.io/fpdf2/Tutorial-pl.html
https://py-pdf.github.io/fpdf2/Tutorial-tr.html
https://py-pdf.github.io/fpdf2/Tutorial-id.html

2.2 Tutorial

2.2 Tutorial

Methods full documentation: fpdf.FPbF API doc

2.2.1 Tuto 1 - Minimal Example
Let's start with the classic example:

from fpdf import FPDF

pdf = FPDF()

pdf.add_page()

pdf.set_font("helvetica", style="B", size=16)
pdf.cell(40, 10, "Hello World!")
pdf.output("tutol.pdf")

Resulting PDF

After including the library file, we create an FpPbF object. The FPDF constructor is used here with the default values: pages are in
A4 portrait and the measure unit is millimeter. It could have been specified explicitly with:

pdf = FPDF(orientation="P", unit="mm", format="A4")

It is possible to set the PDF in landscape mode (L) or to use other page formats (such as Letter and Legal) and measure units

(pt, cm, in).

There is no page for the moment, so we have to add one with add page. The origin is at the upper-left corner and the current
position is by default placed at 1 cm from the borders; the margins can be changed with set margins.

Before we can print text, it is mandatory to select a font with set font, otherwise the document would be invalid. We choose
Helvetica bold 16:

pdf.set_font('Helvetica', style='B', size=16)

We could have specified italics with 1, underlined with u or a regular font with an empty string (or any combination). Note that
the font size is given in points, not millimeters (or another user unit); it is the only exception. The other built-in fonts are Times,
Courier , Symbol and zapfDingbats .

We can now print a cell with cell. A cell is a rectangular area, possibly framed, which contains some text. It is rendered at the
current position. We specify its dimensions, its text (centered or aligned), if borders should be drawn, and where the current
position moves after it (to the right, below or to the beginning of the next line). To add a frame, we would do this:

pdf.cell(40, 10, 'Hello World!', 1)
To add a new cell next to it with centered text and go to the next line, we would do:
pdf.cell(60, 10, 'Powered by FPDF.', new_x="LMARGIN", new_y="NEXT", align='C')
Remark: the line break can also be done with In. This method allows to specify in addition the height of the break.
Finally, the document is closed and saved under the provided file path using output. Without any parameter provided, output()
returns the PDF bytearray buffer.
2.2.2 Tuto 2 - Header, footer, page break and image
Here is a two page example with header, footer and logo:
from fpdf import FPDF

class PDF(FPDF):
def header(self):
Rendering logo:
self.image("../docs/fpdf2-logo.png", 10, 8, 33)

-10/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF
https://github.com/py-pdf/fpdf2/raw/master/tutorial/tuto1.pdf
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_page
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_margins
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.ln
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.output

2.2.3 Tuto 3 - Line breaks and colors

Setting font: helvetica bold 15
self.set_font("helvetica", style="B", size=15)
Moving cursor to the right

self.cell(80)

Printing title:

self.cell(30, 10, "Title", border=1, align="C")
Performing a line break:

self.ln(20)

def footer(self):
Position cursor at 1.5 cm from bottom:
self.set_y(-15)
Setting font: helvetica italic 8
self.set_font("helvetica", style="I", size=8)
Printing page number
self.cell(0, 10, f"Page {self.page_no()}/{{nb}}", align="C")

Instantiation of inherited class
pdf = PDF()
pdf.add_page()
pdf.set_font("Times", size=12)
for i in range(1, 41):
pdf.cell(®, 10, f"Printing line number {i}", new_x="LMARGIN", new_y="NEXT")
pdf.output("new-tuto2.pdf")

Resulting PDF

This example makes use of the header and footer methods to process page headers and footers. They are called automatically.
They already exist in the FPDF class but do nothing, therefore we have to extend the class and override them.

The logo is printed with the image method by specifying its upper-left corner and its width. The height is calculated
automatically to respect the image proportions.

To print the page number, a null value is passed as the cell width. It means that the cell should extend up to the right margin of
the page; it is handy to center text. The current page number is returned by the page no method; as for the total number of
pages, it is obtained by means of the special value {nb} which will be substituted on document closure (this special value can be
changed by alias nb pages()). Note the use of the set y method which allows to set position at an absolute location in the page,
starting from the top or the bottom.

Another interesting feature is used here: the automatic page breaking. As soon as a cell would cross a limit in the page (at 2
centimeters from the bottom by default), a break is performed and the font restored. Although the header and footer select their
own font (helvetica), the body continues with Times. This mechanism of automatic restoration also applies to colors and line
width. The limit which triggers page breaks can be set with set auto page break.

2.2.3 Tuto 3 - Line breaks and colors
Let's continue with an example which prints justified paragraphs. It also illustrates the use of colors.

from fpdf import FPDF

class PDF(FPDF):
def header(self):
Setting font: helvetica bold 15
self.set_font("helvetica", style="B", size=15)
Calculating width of title and setting cursor position:
width = self.get_string width(self.title) + 6
self.set_x((210 - width) / 2)
Setting colors for frame, background and text:
self.set_draw_color(0, 80, 180)
self.set_fill _color (230, 230, 0)
self.set_text_color (220, 50, 50)
Setting thickness of the frame (1 mm)
self.set_line_width(1)
Printing title:
self.cell(
width,
9,
self.title,
border=1,
new_x="LMARGIN",
new_y="NEXT",
align="c",
fill=True,
)
Performing a line break:
self.1n(10)

def footer(self):
Setting position at 1.5 cm from bottom:

-11/193 -

https://github.com/py-pdf/fpdf2/raw/master/tutorial/tuto2.pdf
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.header
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.footer
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.page_no
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.alias_nb_pages
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_y
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_auto_page_break

2.2.4 Tuto 4 - Multi Columns

self.set_y(-15)

Setting font: helvetica italic 8
self.set_font("helvetica", style="I", size=8)

Setting text color to gray:
self.set_text_color(128)

Printing page number

self.cell(o, 10, f"Page {self.page_no()}", align="cC")

def chapter_title(self, num, label):

Setting font: helvetica 12
self.set_font("helvetica", size=12)
Setting background color
self.set_fill_color (200, 220, 255)
Printing chapter name:
self.cell(

0

6

f"Chapter {num} : {label}",

new_x="LMARGIN",

new_y="NEXT",

align="L",

fill=True,
)
Performing a line break:
self.ln(4)

def chapter_body(self, filepath):
Reading text file:
with open(filepath, "rb") as fh:

txt = fh.read().decode("latin-1")

Setting font: Times 12
self.set_font("Times", size=12)
Printing justified text:
self.multi_cell(0, 5, txt)
Performing a line break:
self.ln()
Final mention in italics:
self.set_font(style="1I")
self.cell(0, 5, "(end of excerpt)")

def print_chapter(self, num, title, filepath):
self.add_page()
self.chapter_title(num, title)
self.chapter_body(filepath)

pdf = PDF()
pdf.set_title("20000 Leagues Under the Seas")
pdf.set_author("Jules Verne")

pdf.print_chapter(1, "A RUNAWAY REEF", "20k_c1.txt")
pdf.print_chapter(2, "THE PROS AND CONS", "20k_cl.txt")
pdf.output("tuto3.pdf")

Resulting PDF
Jules Verne text

The get string width method allows determining the length of a string in the current font, which is used here to calculate the
position and the width of the frame surrounding the title. Then colors are set (via set_draw_color, set fill color and

set text color) and the thickness of the line is set to 1 mm (against 0.2 by default) with set line width. Finally, we output the cell
(the last parameter to true indicates that the background must be filled).

The method used to print the paragraphs is multi cell. Text is justified by default. Each time a line reaches the right extremity of
the cell or a carriage return character (\n) is met, a line break is issued and a new cell automatically created under the current
one. An automatic break is performed at the location of the nearest space or soft-hyphen (\ueead) character before the right
limit. A soft-hyphen will be replaced by a normal hyphen when triggering a line break, and ignored otherwise.

Two document properties are defined: the title (set title) and the author (set author). Properties can be viewed by two means.
First is to open the document directly with Acrobat Reader, go to the File menu and choose the Document Properties option. The
second, also available from the plug-in, is to right-click and select Document Properties.

2.2.4 Tuto 4 - Multi Columns
This example is a variant of the previous one, showing how to lay the text across multiple columns.
from fpdf import FPDF

class PDF(FPDF):
def header(self):
self.set_font("helvetica", style="B", size=15)

-12/193 -

https://github.com/py-pdf/fpdf2/raw/master/tutorial/tuto3.pdf
https://github.com/py-pdf/fpdf2/raw/master/tutorial/20k_c1.txt
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.get_string_width
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_draw_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fill_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_text_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_line_width
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_title
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_author

width = self.get_string_width(self.title) + 6
self.set_x((210 - width) / 2)
self.set_draw_color (0, 80, 180)
self.set_fill_color (230, 230, 0)
self.set_text_color (220, 50, 50)
self.set_line_width(1)
self.cell(

width,

9,

self.title,

border=1,

new_x="LMARGIN",

new_y="NEXT",

align="c",

fill=True,
)
self.1n(10)

def footer(self):
self.set_y(-15)
self.set_font("helvetica", style="I", size=8)
self.set_text_color(128)
self.cell(o, 10, f"Page {self.page_no()}", align="cC")

def chapter_title(self, num, label):
self.set_font("helvetica", size=12)
self.set_fill_color (200, 220, 255)
self.cell(
0,
6,
f"Chapter {num} : {label}",
new_x="LMARGIN",
new_y="NEXT",
border="L",
fill=True,
)
self.1n(4)

def chapter_body(self, fname):
Reading text file:
with open(fname, "rb") as fh:
txt = fh.read().decode("latin-1")
with self.text_columns(
ncols=3, gutter=5, text_align="J", line_height=1.19
) as cols:
Setting font: Times 12
self.set_font("Times", size=12)
cols.write(txt)
cols.ln()
Final mention in italics:
self.set_font(style="I")
cols.write("(end of excerpt)")

def print_chapter(self, num, title, fname):
self.add_page()
self.chapter_title(num, title)
self.chapter_body(fname)

pdf = PDF()
pdf.set_title("20000 Leagues Under the Seas")
pdf.set_author("Jules Verne")

pdf.print_chapter(1, "A RUNAWAY REEF", "20k_c1l.txt")
pdf.print_chapter(2, "THE PROS AND CONS", "20k_cl.txt")
pdf.output("tuto4.pdf")

Resulting PDF

Jules Verne text

2.2.5 Tuto 5 - Creating Tables

The key difference from the previous tutorial is the use of the text_columns method. It collects all the text, possibly in
increments, and distributes it across the requested number of columns, automatically inserting page breaks as necessary. Note
that while the TextcColumns instance is active as a context manager, text styles and other font properties can be changed. Those

changes will be contained to the context. Once it is closed the previous settings will be reinstated.

2.2.5 Tuto 5 - Creating Tables

This tutorial will explain how to create two different tables, to demonstrate what can be achieved with some simple adjustments.

import csv

from fpdf import FPDF

from fpdf.fonts import FontFace

from fpdf.enums import TableCellFillMode

with open("countries.txt", encoding="utf8") as csv_file:
data = list(csv.reader(csv_file, delimiter=","))

-13/193 -

https://github.com/py-pdf/fpdf2/raw/master/tutorial/tuto4.pdf
https://github.com/py-pdf/fpdf2/raw/master/tutorial/20k_c1.txt
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.text_column
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.text_column

pdf

pdf.

= FPDF()
set_font("helvetica", size=14)

Basic table:

pdf.

add_page()

with pdf.table() as table:

for data_row in data:
row = table.row()
for datum in data_row:
row.cell(datum)

Styled table:

pdf.
pdf.
pdf.

headings_style = FontFace(emphasis="BOLD", color=255, fill_color=(255,

add_page()
set_draw_color (255, 0, 0)
set_line_width(0.3)

with pdf.table(

borders_layout="NO_HORIZONTAL_LINES",
cell_fill_color=(224, 235, 255),
cell_fill_mode=TableCellFillMode.ROWS,
col_widths=(42, 39, 35, 42),
headings_style=headings_style,

line_height=6,

text_align=("LEFT", "CENTER", "RIGHT", "RIGHT"),
width=160,

) as table:

pdf.

for data_row in data:
row = table.row()
for datum in data_row:
row.cell(datum)

output("tuto5.pdf")

Resulting PDF - Countries CSV data

100, 0))

2.2.6 Tuto 6 - Creating links and mixing text styles

The first example is achieved in the most basic way possible, feeding data to Fpbr.table() . The result is rudimentary but very

quick to obtain.

The second table brings some improvements: colors, limited table width, reduced line height, centered titles, columns with
custom widths, figures right aligned... Moreover, horizontal lines have been removed. This was done by picking a borders_layout
among the available values: TableBordersLayout .

2.2.6

Tuto 6 - Creating links and mixing text styles

This tutorial will explain several ways to insert links inside a pdf document, as well as adding links to external sources.

It will also show several ways we can use different text styles, (bold, italic, underline) within the same text.

from fpdf import FPDF

pdf

= FPDF()

First page:

pdf.
pdf.
pdf.
pdf.

add_page()

set_font("helvetica", size=20)

write(5, "To find out what's new in self tutorial, click ")
set_font(style="u")

link = pdf.add_link(page=2)

pdf.
pdf.

write(5, "here", link)
set_font()

Second page:

pdf.
pdf.

)

pdf.
pdf.
pdf.

add_page()
image(

"../docs/fpdf2-logo.png", 10, 10, 50, 0, "", "https://py-pdf.github.io/fpdf2/"

set_left_margin(60)

set_font_size(18)

write_html(

"""You can print text mixing different styles using HTML tags: bold,

<u>underlined</u>, or <i><u>all at once</u></i>!

You can also insert links on text, such as https://py-pdf.github.io/fpdf2/
or on an image: the logo is clickable!"""

)
pdf.

output("tuto6.pdf")

Resulting PDF - fpdf2-logo

<i>italic</i>,

-14/193 -

https://github.com/py-pdf/fpdf2/raw/master/tutorial/tuto5.pdf
https://github.com/py-pdf/fpdf2/raw/master/tutorial/countries.txt
https://py-pdf.github.io/fpdf2/Tables.html
https://py-pdf.github.io/fpdf2/Tables.html
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.TableBordersLayout
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.TableBordersLayout
https://github.com/py-pdf/fpdf2/raw/master/tutorial/tuto6.pdf
https://py-pdf.github.io/fpdf2/fpdf2-logo.png

2.2.7 Tuto 7 - Creating PDF/A Documents

The new method shown here to print text is write() . It is very similar to multi cell() , the key differences being:

» The end of line is at the right margin and the next line begins at the left margin.

» The current position moves to the end of the text.

The method therefore allows us to write a chunk of text, alter the font style, and continue from the exact place we left off. On the
other hand, its main drawback is that we cannot justify the text like we do with the multi cell() method.

In the first page of the example, we used write() for this purpose. The beginning of the sentence is written in regular style text,
then using the set font() method, we switched to underline and finished the sentence.

To add an internal link pointing to the second page, we used the add link() method, which creates a clickable area which we
named "link" that directs to another page within the document.

To create the external link using an image, we used image() . The method has the option to pass a link as one of its arguments.
The link can be both internal or external.

As an alternative, another option to change the font style and add links is to use the write_html() method. It is an html parser,
which allows adding text, changing font style and adding links using html.

2.2.7 Tuto 7 - Creating PDF/A Documents

New in §> 2.8.3

PDF/A Standards

PDF/A-1 uses PDF-Version 1.4. All resources (pictures, graphics, fonts) must be embedded in the document. The color
management must be precise and platform independently specified with ICC-Profiles and the document metadata must be given
with XMP-Metadata.

PDF/A-2 uses PDF-Version 1.7. It allows compression with JPEG2000, transparent elements, open type fonts and digital
signatures.

The only extension for PDF/A-3 is the possibility to embed any possible file.

Conformance Classes

Level A (accessible) encompasses all the requirements of the standard, including mapping the content structure and the correct
reading order of the document content. Text content must be extractable, and the structure must reflect the natural reading
sequence.

Level B (Basic) guarantees a clear visual reproducibility of the content. Level B is generally easier to generate than Level A, but
it does not ensure 100 percent text extraction or searchability. The hassle-free reuse of the content is not necessarily given.

To achieve this, here a little example:

from pathlib import Path

from fpdf import FPDF
from fpdf import FPDF_VERSION

DIR = Path(__file_).parent
FONT_DIR = DIR / ".." / "test" / "fonts"

pdf = FPDF(enforce_compliance="PDF/A-3B")

pdf.set_lang("en-uUs")

pdf.set_title("Tutorial7")

pdf.set_author(["John Dow", "Jane Dow"])

pdf.set_subject("Example for PDF/A")

pdf.set_keywords(["example", "tutorial", "fpdf", "pdf/a"])
pdf.set_producer(f"py-pdf/fpdf2 {FPDF_VERSION}")

pdf.add_font(fname=FONT_DIR / "DejaVuSans.ttf")

pdf.add_font("DejavuSans", style="B", fname=FONT_DIR / "DejavuSans-Bold.ttf")
pdf.add_font("DejavVuSans", style="I", fname=FONT_DIR / "DejaVuSans-Oblique.ttf")
pdf.add_page()

pdf.set_font("DejavuSans", style="B", size=20)

pdf.write(text="Header")

pdf.1n(20)

pdf.set_font(size=12)

-15/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_link
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

2.2.7 Tuto 7 - Creating PDF/A Documents

pdf.write(text="Example text")

pdf.1n(20)

pdf.set_font(style="1I")
pdf.write(text="Example text in italics")

pdf.output("tuto7.pdf")

Resulting PDF: tuto7.pdf
Tools like VeraPDF can check conformance of PDF documents produced:

verapdf --format text -v tutorial/tuto7.pdf

Produces:

PASS fpdf2/tutorial/tuto7.pdf 3b

(© September 25,2025

-16/193 -

https://github.com/py-pdf/fpdf2/raw/master/tutorial/tuto7.pdf
https://verapdf.org/

3. Page Layout

3. Page Layout

3.1 Page format and orientation

By default, a FPbF document has a A4 format with portrait orientation.
Other formats & orientation can be specified to FpPDF constructor:

pdf = fpdf.FPDF(orientation="1landscape", format="A5")

Currently supported formats are a3, a4, a5, letter, legal or a tuple (width, height) . Additional standard formats are welcome
and can be suggested through pull requests.

3.1.1 Per-page format, orientation and background

.set_page_background() lets you set a background for all pages following this call until the background is removed. The value
must be of type str, io.BytesIO, PIL.Image.Image, drawing.DeviceRGB, tuple OT None

The following code snippet illustrates how to configure different page formats for specific pages as well as setting different
backgrounds and then removing it:

from fpdf import FPDF

pdf = FPDF()
pdf.set_font("Helvetica")
pdf.set_page_background((252,212,255))
for i in range(9):
if i == 6:
pdf.set_page_background('image_path.png')
pdf.add_page(format=(210 * (1 - i1/10), 297 * (1 - i/10)))
pdf.cell(text=str(i))
pdf.set_page_background(None)
pdf.add_page(same=True)
pdf.cell(text="9")
pdf.output("varying_format.pdf")

Similarly, an orientation parameter can be provided to the add_page method.

3.1.2 Page layout & zoom level

set_display_mode() allows to set the zoom level: pages can be displayed entirely on screen, occupy the full width of the window,
use the real size, be scaled by a specific zooming factor or use the viewer default (configured in its Preferences menu).

The page layout can also be specified: single page at a time, continuous display, two columns or viewer default.

from fpdf import FPDF

pdf = FPDF()
pdf.set_display_mode(zoom="default", layout="TWO_COLUMN_LEFT")
pdf.set_font("helvetica", size=30)

pdf.add_page()

pdf.cell(text="page 1")

pdf.add_page()

pdf.cell(text="page 2")

pdf.output("two-column.pdf")

3.1.3 Viewer preferences

Those settings are detailed in the official PDF format specification, but may not be honored by PDF viewers. If a setting seems
ignored, this is probably not a bug with fpdf2, but a choice or a missing feature from your PDF renderer software.

from fpdf import FPDF, ViewerPreferences

pdf = FPDF()

pdf.viewer_preferences = ViewerPreferences(
hide_toolbar=True,
hide_menubar=True,

-17/193 -

https://en.wikipedia.org/wiki/ISO_216#A_series
https://en.wikipedia.org/wiki/ISO_216#A_series
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_page_background
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_page_background
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_page
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_page
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.FPDF.set_display_mode
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.FPDF.set_display_mode

3.1.4 Full screen

hide_window_u_i=True,

fit_window=True,

center_window=True,
display_doc_title=True,
non_full_screen_page_mode="USE_OUTLINES",

=S

pd
pd
pd
pd
pd
pd

.set_font("helvetica", size=30)
.add_page()

.cell(text="page 1")
.add_page()

.cell(text="page 2")
.output("viewer-prefs.pdf")

- —h —h —h —h

3.1.4 Full screen
from fpdf import FPDF
pdf = FPDF()

pdf.page_mode = "FULL_SCREEN"
pdf.output("full-screen.pdf")

@ February 17,2025

-18/193 -

3.2 Margins

3.2 Margins

By default a FPDF document has a 2cm margin at the bottom, and 1cm margin on the other sides.

Those margins control the initial current X & Y position to render elements on a page, and also define the height limit that
triggers automatic page breaks when they are enabled.

Margins can be completely removed:

pdf.set_margin(0)

Several methods can be used to set margins:

set margin

set _left margin

set right margin

set top margin

set margins

set_auto page break

€ February 17,2025

-19/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.FPDF.set_margin
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.FPDF.set_left_margin
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.FPDF.set_right_margin
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.FPDF.set_top_margin
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.FPDF.set_margins
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.FPDF.set_auto_page_break

3.3 Templates

3.3 Templates

Templates are a fpdf2 feature that define predefined documents (like invoices, tax forms, etc.), or parts of such documents,
where each element (text, lines, barcodes, etc.) has a fixed position (x1, y1, x2, y2), style (font, size, etc.) and a default text.

These elements can act as placeholders, so the program can change the default text "filling in" the document.

Besides being defined in code, the elements can also be defined in a CSV file, a JSON file, or in a database, so the user can easily
adapt the form to his printing needs.

A template is used like a dict, setting its items' values.

There are two approaches to using templates:

3.3.1 Using Template

The traditional approach is to use the Template class. This class accepts one template definition, and can apply it to each page of
a document. The usage pattern here is:

tmpl = Template(elements=elements)
first page and content
tmpl.add_page()

tmpl[item_key 01] = "Text 01"
tmpl[item_key_02] = "Text 02"

second page and content
tmpl.add_page()
tmpl[item_key_01] = "Text 11"
tmpl[item_key _02] = "Text 12"

possibly more pages

finalize document and write to file
tmpl.render(outfile="example.pdf")

The Template class will create and manage its own FPDF instance, so you don't need to worry about how it all works together. It
also allows to set the page format, title of the document, measuring unit, and other metadata for the PDF file.

Check the dedicated page for the full method signatures: Template .
You can also check the unit tests in test template.py for more usage examples of Template .
Setting text values for specific template items is done by treating the class as a dict, with the name of the item as the key:

Template["company_name"] = "Sample Company"

3.3.2 Using FlexTemplate

When more flexibility is desired, then the FlexTemplate class comes into play. In this case, you first need to create your own FpDF
instance. You can then pass this to the constructor of one or several FlexTemplate instances, and have each of them load a
template definition. For any page of the document, you can set text values on a template, and then render it on that page. After
rendering, the template will be reset to its default values.

from fpdf import FlexTemplate, FPDF

pdf = FPDF()

pdf.add_page()

One template for the first page

fp_tmpl = FlexTemplate(pdf, elements=fp_elements)
fp_tmpl["item_key 01"] = "Text 01"
fp_tmpl["item_key 02"] = "Text 02"

fp_tmpl.render() # add template items to first page

add some more non-template content to the first page
pdf.polyline(point_list, fill=False, polygon=False)

-20/193 -

https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://github.com/py-pdf/fpdf2/blob/master/test/template/test_template.py
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.FlexTemplate
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.FlexTemplate
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF

3.3.2 Using FlexTemplate

second page

pdf.add_page()

header for the second page

h_tmpl = FlexTemplate(pdf, elements=h_elements)
h_tmpl["item_key_HA"] = "Text 2A"
h_tmpl["item_key_HB"] = "Text 2B"

h_tmpl.render() # add header items to second page

footer for the second page

f_tmpl = FlexTemplate(pdf, elements=f_elements)
f_tmpl["item_key_FC"] = "Text 2C"
f_tmpl["item_key_FD"] = "Text 2D"

f_tmpl.render() # add footer items to second page

other content on the second page
pdf.set_dash_pattern(dash=1, gap=1)
pdf.line(x1, y1, x2, y2):
pdf.set_dash_pattern()

third page

pdf.add_page()

header for the third page, just reuse the same template instance after render()
h_tmpl["item_key_HA"] = "Text 3A"

h_tmpl["item_key_HB"] = "Text 3B"

h_tmpl.render() # add header items to third page

footer for the third page
f_tmpl["item_key_FC"] = "Text 3C"
f_tmpl["item_key_FD"] = "Text 3D"

f_tmpl.render() # add footer items to third page

other content on the third page
pdf.rect(x, y, w, h, style=None)

possibly more pages
pdf.add_page()

finally write everything to a file
pdf.output("example.pdf")

Evidently, this can end up quite a bit more involved, but there are hardly any limits on how you can combine templated and non-
templated content on each page. Just think of the different templates as of building blocks, like configurable rubber stamps,
which you can apply in any combination on any page you like.

Of course, you can just as well use a set of full-page templates, possibly differentiating between cover page, table of contents,
normal content pages, and an index page, or something along those lines.

And here's how you can use a template several times on one page (and by extension, several times on several pages). When
rendering with an offsetx and/or offsety argument, the contents of the template will end up in a different place on the page. A
rotate argument will change its orientation, rotated around the origin of the template. The pivot of the rotation is the offset
location. And finally, a scale argument allows you to insert the template larger or smaller than it was defined.

from fpdf import FlexTemplate, FPDF

pdf = FPDF()
pdf.add_page()
templ = FlexTemplate(pdf, [

{"name":"box", "type":"B", "x1":0, "y1":0, "x2":50, "y2":50,},
{"name":"d1", "type":"L", "x1":0, "yi1":0, "x2":50, "y2":50,},
{"name":"d2", "type":"L", "x1":0, "y1":50, "x2":50, "y2":0,},
{"name":"label", "type":"T", "x1":0, "y1":52, "x2":50, "y2":57, "text":'"Label",},

1

templ["label"] = "Offset: 50 / 50 mm"

templ.render (offsetx=50, offsety=50)

templ["label"] = "Offset: 50 / 120 mm"

templ.render(offsetx=50, offsety=120)

templ["label"] = "Offset: 120 / 50 mm, Scale: 0.5"

templ.render (offsetx=120, offsety=50, scale=0.5)

templ["label"] = "Offset: 120 / 120 mm, Rotate: 30°, Scale=0.5"
templ.render(offsetx=120, offsety=120, rotate=30.0, scale=0.5)
pdf.output("example.pdf")

Check the dedicated page for the full method signatures: FlexTemplate .
You can also check the unit tests in test flextemplate.py for more usage examples of FlexTemplate .

The dict syntax for setting text values is the same as above:

-21/193 -

https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.FlexTemplate
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.FlexTemplate
https://github.com/py-pdf/fpdf2/blob/master/test/template/test_flextemplate.py

3.3.2 Using FlexTemplate

FlexTemplate['"company_name"] = "Sample Company"

-22/193 -

3.3.3 Details - Template definition

3.3.3 Details - Template definition

A template definition consists of a number of elements, which have the following properties (columns in a CSV, items in a dict,
name/value pairs in a JSON object, fields in a database). Dimensions (except font size, which always uses points) are given in
user defined units (default: mm). Those are the units that can be specified when creating a Template or a FPDF instance.

-23/193 -

https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF

name : placeholder identification (unique text string)

mandatory

type :

T: Text - places one or several lines of text on the page

L: Line - draws a line from x1/y1 to x2/y2

I: Image - positions and scales an image into the bounding box

B: Box - draws a rectangle around the bounding box

E : Ellipse - draws an ellipse inside the bounding box

BC : Barcode - inserts an Interleaved 2 of 5 type barcode

c39: Code 39 - inserts a Code 39 type barcode

w: "Write" - uses the rpbF.write() method to add text to the page

mandatory

x1, y1, x2, y2: top-left, bottom-right coordinates, defining a bounding box in most cases
for multiline text, this is the bounding box of just the first line, not the complete box
for the barcodes types, the height of the barcode is y2 - y1, x2 is ignored.
mandatory (x2 optional for the barcode types)

font : the name of a font type for the text types

optional

default: helvetica

size : the size property of the element (float value)

for text, the font size (in points!)

for line, box, and ellipse, the line width

for the barcode types, the width of one bar

optional

default: 10 for text, 2 for Bc, 1.5 for c39

dash_pattern(dash, gap, phase) : a dict of the line dash pattern for the element
optional

for line, box, ellipse follows the parameters of set dash pattern()

Only supported in dict/JSON

There are three allowed keys: dash, gap, and phase . At least dash must be present.
default: dash=0 (solid lines)

bold, italic, underline : text style properties

in dict/JSON, enabled with True/true or equivalent value

in CSV, only int values, 0 as false, non-0 as true

optional

default: false

foreground, background : text and fill colors (int value, commonly given in hex as 0xRRGGBB)
in JSON, a decimal value or a HTML style #RrRGGBB string (6 digits) can be given.
optional

default: foreground oxeeeeee = black; background None/empty = transparent

-24/193 -

3.3.3 Details - Template definition

http://127.0.0.1:8000/fpdf2/Barcodes.html#interleaved-2-of-5
http://127.0.0.1:8000/fpdf2/Barcodes.html#code-39
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_dash_pattern

3.3.4 How to create a template

* align: text alignment, L:left, r: right, c: center

optional

default: 'L

text : default string, can be replaced at runtime

displayed text for T and w

data to encode for barcode types

optional (if missing for text/write, the element is ignored)

default: empty

priority : Z-order (int value)

optional

default: 0

multiline : configure text wrapping

in dicts/JSON, None/null for single line, True/true for multicells (multiple lines), False/false trims to exactly fit the space
defined

in CSV, 0 for single line, >0 for multiple lines, <0 for exact fit

optional

default: single line

rotation : rotate the element in degrees around the top left corner x1/y1 (float)

optional

default: 0.0 - no rotation

wrapmode : optionally set wrapmode to 'cHAR' to support multiline line wrapping on characters instead of words

optional
e default: 'worD'

Fields that are not relevant to a specific element type will be ignored there, but if not left empty, they must still adhere to the
specified data type (in dicts, string fields may be None).

3.3.4 How to create a template

A template can be created in several ways:

* By defining everything directly as a Python dictionary - example 1
* By reading the template definition from a JSON document with .parse_json() - example 2

* By reading the template definition from a CSV document with .parse_csv() - example 3

Example - Python dict

from fpdf import Template

#this will define the ELEMENTS that will compose the template.
elements = [
{ 'name': 'company_logo',6 'type': 'I', 'x1': 20.0, 'y1': 17.0, 'x2': 78.0, 'y2': 30.0, 'font': None, 'size': 0.0, 'bold': ©, 'italic': O, 'underline': 0,

'align': 'C', 'text': 'logo', 'priority': 2, 'multiline': False},

{ 'name': 'company_name', 'type': 'T', 'x1': 17.0, 'y1': 32.5, 'x2': 115.0, 'y2': 37.5, 'font': 'helvetica', 'size': 12.0, 'bold': 1, 'italic': 0,
'underline': 0, 'align': 'C', 'text': '', 'priority': 2, 'multiline': False},

{ 'name': 'multiline_text', 'type': 'T', 'x1': 20, 'yl': 100, 'x2': 40, 'y2': 105, 'font': 'helvetica', 'size': 12, 'bold': ©, 'italic': 0, 'underline':
0, 'background': 0x88ff00, 'align': 'C', 'text': 'Lorem ipsum dolor sit amet, consectetur adipisici elit', 'priority': 2, 'multiline': True, 'wrapmode':
'"WORD'},

{ 'name': 'box', 'type': 'B', 'x1': 15.0, 'yl': 15.0, 'x2': 185.0, 'y2': 260.0, 'font': 'helvetica', 'size': 0.0, 'bold': O, 'italic': ©, 'underline': 0,
'align': 'C', 'text': None, 'priority': 0, 'multiline': False},

{ 'name': 'box_x', 'type': 'B', 'x1': 95.0, 'y1': 15.0, 'x2': 105.0, 'y2': 25.0, 'font': 'helvetica', 'size': 0.0, 'bold': 1, 'italic': 0, 'underline':
0, 'align': 'C', 'text': None, 'priority': 2, 'multiline': False},

{ 'name': 'linel', 'type': 'L', 'x1': 100.0, 'yl': 25.0, 'x2': 100.0, 'y2': 57.0, 'font': 'helvetica', 'size': O, 'bold': O, 'italic': O, 'underline': 0,
'align': 'C', 'text': None, 'priority': 3, 'multiline': False},

{ 'name': 'barcode', 'type': 'BC', 'x1': 20.0, 'yl': 246.5, 'x2': 140.0, 'y2': 254.0, 'font': 'Interleaved 20f5 NT',6 'size': 0.75, 'bold': 0, 'italic':
0, 'underline': 0, 'align': 'C', 'text': '200000000001000159053338016581200810081', 'priority': 3, 'multiline': False},
]

-25/193 -

#here we instantiate the template

f = Template(format="A4", elements=elements
title="Sample Invoice")

f.add_page()

#we FILL some of the fields of the template with the information we want
#note we access the elements treating the template instance as a "dict"

f["company_name"] = "Sample Company"
f["company_logo"] = "docs/fpdf2-logo.png"

#and now we render the page
f.render("./template.pdf")

Example - Elements defined in JSON file

New in Q 2.8.0

3.3.4 How to create a template

The JSON file must consist of an array of objects. Each object with its name/value pairs define a template element:

"name": "employee_name",
"type": "T"

: ’
"x1": 20,
"y1": 75,
"x2": 118,
"y2": 90,
"font": "helvetica",
"size": 12,
"bold": true,
"underline": true,
Weexth:

Then you import and use that template as follows:

def test_template():

f = Template(format="A4", title="Template Demo")

f.parse_json("myjsonfile.json")
f.add_page()

f["employee_name"] = "Joe Doe"
return f.render("./template.pdf")

Example - Elements defined in CSV file

You can define template elements in a CSV file template_definition.csv. It can look like this:

1ine®;L;20.0;12.0;190.0;12.0;times;0.5;0;0;0;0;16777215;C;;0;0;0.0
linel;L;20.0;36.0;190.0;36.0;times;0.5;0;0;0;0;16777215;C;;0;0;0.0
name@;T;21.0;14.0;104.0;25.0;times;16.0;0;0;0;0;16777215;L;name;2;0;0.0

tit1le0;T;21.0;26.0;104.0;30.0;times;10.0;0;0;0;0;16777215;L;title;2;0;0.0
multiline;T;21.0;50.0;28.0;54.0;times;10.5;0;0;0;0;0xffffoo;L;multi line;0;1;0.0

numeric_text;T;21.0;80.0;100.0;84.0;tines;10.5;0;0;0;0;;R;007;0;0;0.0

empty_fields;T;21.0;100.0;100.0;104.0

rotated;T;21.0;80.0;100.0;84.0;times;10.5;0;0;0;0;;R;ROTATED;0;0;30.0

Remember that each line represents an element and each field represents one of the properties of the element in the following

order:

('name', 'type', 'x1','y1', 'x2"','y2"', 'font', 'size', 'bold', 'italic', 'underline', 'foreground', 'background', 'align', 'text', 'priority’,
'multiline', 'rotate', 'wrapmode') As noted above, most fields may be left empty, so a line is valid with only 6 items. The
empty_fields line of the example demonstrates all that can be left away. In addition, for the barcode types, x2 may be empty.

Then you can use the file like this:

def test_template():
f = Template(format="A4",
title="Sample Invoice")

f.parse_csv("template_definition.csv", delimiter=";")

f.add_page()
f["name®"] = "Joe Doe"
return f.render("./template.pdf")

-26/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

3.3.4 How to create a template

(S October 14, 2025

-27/193 -

3.4 Text Flow Regions

3.4 Text Flow Regions

New in §> 2.7.6

3.4.1 Text Flow Regions

Text regions are a hierarchy of classes that enable to flow text within a given outline. In the simplest case, it is just the running
text column of a page. But it can also be a sequence of outlines, such as several parallel columns or the cells of a table. Other
outlines may be combined by addition or subtraction to create more complex shapes.

There are two general categories of regions. One defines boundaries for running text that will just continue in the same manner
one the next page. Those include columns and tables. The second category are distinct shapes. Examples would be a circle, a
rectangle, a polygon of individual shape or even an image. They may be used individually, in combination, or to modify the outline
of a multipage column. Shape regions will typically not cause a page break when they are full. In the future, a possibility to chain
them may be implemented, so that a new shape will continue with the text that didn't fit into the previous one.

The currently implemented text regions are:
* Text Columns

Other types like Table cells, shaped regions and combinations are still in the design phase, see Quo vadis, .write()?.

General Operation

Using the different region types and combination always follows the same pattern. The main difference to the normal
FPDF.write() method is that all added text will first be buffered, and only gets rendered on the page when the context of the
region is closed. This is necessary so that text can be aligned within the given boundaries even if its font, style, or size are
arbitrarily varied along the way.

* Create the region instance with an rFpbF method, , for example text columns().

* Use the .write() method of this text region in order to feed text into its buffer.
» Best practice is to use the region instance as a context manager for filling.
» Text will be rendered automatically after closing the context.

* When used as a context manager, you can change all text styling parameters within that context, and they will be used by the
added text, but won't leak to the surroundings

» Alternatively, eg. for filling a single column of text with the already existing settings, just use the region instance as is. In that
case, you'll have to explicitly use the render() method after adding the text.

* Within a region, paragraphs can be inserted. The primary purpose of a paragraph is to apply a different horizontal alignment
than the surrounding text. It is also possible to apply margins to the top and bottom of each paragraph.

-28/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/discussions/339
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.text_columns

3.4.1 Text Flow Regions

Page Area

Page Margins

Columns

Paragraphs

The graphic shows the relationship of page, text areas and paragraphs (with varying alignment) for the example of a two-column
layout.

TEXT START POSITION
When rendering, the vertical start position of the text will be at the lowest one out of:

 the current y position

* the top of the region (if it has a defined top)

* the top margin of the page.

The horizontal start position will be either at the current x position, if that lies within the boundaries of the region/column, or at

the left edge of the region. In both horizontal and vertical positioning, regions with multiple columns may follow additional rules
and restrictions.

INTERACTION BETWEEN REGIONS

Several region instances can exist at the same time. But only one of them can act as context manager at any given time. It is not
currently possible to activate them recursively. But it is possible to use them intermittingly. This will probably most often make
sense between a columnar region and a table or a graphic. You may have some running text ending at a given height, then insert
a table/graphic, and finally continue the running text at the new height below the table within the existing column(s).

-29/193 -

3.4.1 Text Flow Regions

COMMON PARAMETERS
All types of text regions have the following constructor parameters in common:
e text (str, optional) - text content to add to the region. This is a convenience parameter for cases when all text is available in
one piece, and no partition into paragraphs (possibly with different parameters) is required. (Default: None)
e text_align (Align/str, optional) - the horizontal alignment of the text in the region. (Default: Align.L)

e line_height (float, optional) - This is a factor by which the line spacing will be different from the font height. It works similar to
the attribute of the same name in HTML/CSS. (default: 1.0)

e print_sh (bool, optional) - Treat a soft-hyphen (\uOOad) as a printable character, instead of a line breaking opportunity.
(Default: False)

* skip_leading_spaces (default: False) - This flag is primarily used by write_html(), but may also have other uses. It removes all
space characters at the beginning of each line.

e wrapmode (default worD) -

e image (str or PIL.Image.Image or io.BytesIO, optional) - An image to add to the region. This is a convenience parameter for
cases when no further text or images need to be added to the paragraph. If both text and image arguments are present, the
text will be inserted first. (Default: None)

e image_fill width (bool, optional) - Indicates whether to increase the size of the image to fill the width of the column. Larger

images will always be reduced to column width. (Default: False)

All of those values can be overridden for each individual paragraph.

COMMON METHODS
e .paragraph() [see characteristic parameters below] - establish a new paragraph in the text. The text added to this paragraph
will start on a new line.
° .write(text: str, link: = None) - write text to the region. This is only permitted when no explicit paragraph is currently active.

* .image() [see characteristic parameters below] - insert a vector or raster image in the region, flowing with the text like a
paragraph.

e .ln(h: float = None) - Start a new line moving either by the current font height or by the parameter h. Only permitted when
no explicit paragraph is currently active.

e .render() - if the region is not used as a context manager with with, this method must be called to actually process the added
text.
Paragraphs

The primary purpose of paragraphs is to enable variations in horizontal text alignment, while the horizontal extents of the text
are managed by the text region. To set the alignment, you can use the align argument when creating the paragraph. Valid
values are defined in the Align enum.

- 30/193 -

https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.Align
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.Align

3.4.1 Text Flow Regions

For more typographical control, you can use the following arguments. Most of those override the settings of the current region
when set, and default to the value set there.

e text_align (Align, optional) - The horizontal alignment of the paragraph.
e line_height (float, optional) - factor by which the line spacing will be different from the font height. (default: by region)

e top_margin (float, optional) - how much spacing is added above the paragraph. No spacing will be added at the top of the
paragraph if the current y position is at (or above) the top margin of the page. (Default: 0.0 mm)

* bottom_margin (float, optional) - Those two values determine how much spacing is added below the paragraph. No spacing will
be added at the bottom if it would result in overstepping the bottom margin of the page. (Default: 0.0 mm)

e indent (float, optional): determines the indentation of the paragraph. (Default: 0.0 mm)

* bullet_r_margin (float, optional) - determines the relative displacement of the bullet along the x-axis. The distance is between
the rightmost point of the bullet to the leftmost point of the paragraph's text. (Default: 2.0 mm)

e bullet_string (str, optional): determines the fragments and text lines of the bullet. (Default: "")
* skip_leading_spaces (float, optional) - removes all space characters at the beginning of each line.

e wrapmode (WrapMode, optional)

Other than text regions, paragraphs should always be used as context managers and never be reused. Violating those rules may
result in the entered text turning up on the page out of sequence.

POSSIBLE FUTURE EXTENSIONS
Those features are currently not supported, but Pull Requests are welcome to implement them:

* per-paragraph indentation

e first-line indentation

Images

New in Q) 2.7.7

Most arguments for inserting images into text regions are the same as for the FpDF.image() method, and have the same or
equivalent meaning.

Since the image will be placed automatically, the x and y parameters are not available. The positioning can be controlled with
align, where the default is LEFT, with the alternatives RIGHT and CENTER.

If neither width nor height are specified, the image will be inserted with the size resulting from the PDF default resolution of 72
dpi. If the fill_width parameter is set to True, it increases the size to fill the full column width if necessary. If the image is wider
than the column width, it will always be reduced in size proportionally.

The top_margin and bottom_margin parameters have the same effect as with text paragraphs.

(C February 20, 2025

-31/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

3.4.2 Text Columns

New in Q 2.7.6

Text Columns

3.4.2 Text Columns

The FPDF.text _columns() method allows to create columnar layouts, with one or several columns. Columns will always be of equal
width.

Text columns support all the standard text region methods, and some extra ones:

A

.paragraph()
write()
.In()

.new_column()

form feed character (\uoooc) in the text will have the same effect as an explicit call to .new_column(),

Note that when used within balanced columns, switching to a new column manually will result in incorrect balancing.

SINGLE-COLUMN EXAMPLE

In this example an inserted paragraph is used in order to format its content with justified alignment, while the rest of the text
uses the default left alignment.

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=12)
with pdf.text_columns() as cols:
cols.write(text=LOREM_IPSUM[:400])
with cols.paragraph(
text_align="J3",
top_margin=pdf.font_size,
bottom_margin=pdf.font_size
) as paragraph:
paragraph.write(text=LOREM_IPSUM[:400])
cols.write(text=LOREM_IPSUM[:400])
pdf.output("text_columns.pdf")

Lorem ipsum Lt aostad tuee reprehenderis anum nosund dolore s:d ut Exceprevs dolors ue
el e corseclela tenpor ea lempon nasinzl doloee sinl exeaclls 2 vl nllanca
e dolone wellil e sl valigilale conmank: 3 ceqtl i Toxceplear
officla st 2a dolow id e ellvm meididunt quis ex id aliqua vilameo reprehenderis
cupacalal i quis gl ex el veri

Lorem ipsum Ut nostud gure ceprcheadentt anim nostud delore sed ur =xecprenr dolore ut
sl ine cone (VIR BETH le-qun nesinxl dolore sinl exactlion aliquip velil wlbanca
css dolore mollic ¢a sed veluprare commedo smet cusmod meididunt Exceprour Exocprow
ollicis esl es dolare s2d 33 m allum mendidiae quis ex 3d sl allarmes reprehenideni
cupacalal i quis gl ex el veri

Toamenn ipsan T2 nosinud inee reprebigndenit anmn nodnet dalore sed ol Txceplen doloe al
SUAL LUSS COLEOCTON tempor ¢ temper nestrnd dolore sint exercstation aliquip velit vliamco
csw delore mellic ca sod voluptate conunode amer civzazed ineididunt Exccprawr Exesprenr

e el i clolore sexlid ¢ nemcidichm s ex idalicpe whnneo reprebieniiail
cupidntm Ln quis pariarur ox ¢t veol

New in Q 2.8.3

Indentation can be set on the first line of paragraphs by passing a first_line_indent value to .paragraph() .

MULTI-COLUMN EXAMPLE

Here we have a layout with three columns. Note that font type and text size can be varied within a text region, while still

maintaining the justified (in this case) horizontal alignment.

from fpdf import FPDF

-32/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.text_columns
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.text_columns
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.paragraph
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.paragraph
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.write
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.write
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.ln
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.ln
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.new_column
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.new_column
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.paragraph
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.paragraph

pdf = FPDF()
pdf.add_page()

pdf.set_font("Helvetica", size=16)

with pdf.text_columns(text_align="J",
cols.write(text=LOREM_IPSUM[:600])

pdf.set_font("Times", size=18)

cols.write(text=LOREM_IPSUM[:500])

pdf.set_font("Courier", size=20)

cols.write(text=LOREM_IPSUM[:500])

pdf.output("multi_columns.pdf")

ncols=3, gutter=5) as cols:

2 swed
wokptas commodo
amet eiusmod

ipsum t
nostrud irure
reprehenderit
anim nostrud
dolore sed ut

Excepteur
dolore ut
sunt irure
consectetur
tempor eu
tempor
nostrud
dolore sint
exercitation

aliquip wvelit
ullanco esse
dolore mollit
ea asad
voluptate
commodo amet
eiusncd
incididunt
Excepteur
Excepteur
officia est
ea dolore sed
id in cillum

incididunt
quis ex id
aliqua
ullamnco
reprehenderit

cupidatat in
quis pariatur
ex et veniam

consectetur
et minim
minim nulla

ea in quis Ut
in

consectetur
cillum
aliquip
pariatur qui
quis =i

BALANCED COLUMNS

3.4.2 Text Columns

Normally the columns will be filled left to right, and if the text ends before the page is full, the rightmost column will be shorter
than the others. If you prefer that all columns on a page end on the same height, you can use the balance=True argument. In that

case a simple algorithm will be applied that attempts to approximately balance their bottoms.

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()

pdf.set_font("Times", size=12)

cols = pdf.text_columns(text_align="J", ncols=3, gutter=5, balance=True)
fill columns with balanced text

with cols:

pdf.set_font("Times", size=14)

cols.write(text=LOREM_IPSUM[:300])

add an image below

img_info = pdf.image(".../fpdf2/docs/regular_polygon.png"

with cols:

x=pdf.1_margin, w=pdf.epw)
continue multi-column text

cols.write(text=LOREM_IPSUM[300:600])
pdf.output("balanced_columns.pdf")

- 33/193 -

3.4.2 Text Columns

Gl e g W i s e e e e & 3 e
ahpe U et aweeate ol iy fgie @ e & Sk
G . p——— - -— - S
s @ s peiated | it

Note that column balancing only works reliably when the font size (specifically the line height) doesn't change, and if there are
no images included. If parts of the text use a larger or smaller font than the rest, then the balancing will usually be out of whack.
Contributions for a more refined balancing algorithm are welcome.

POSSIBLE FUTURE EXTENSIONS
Those features are currently not supported, but Pull Requests are welcome to implement them:

* Columns with differing widths (no balancing possible in this case).

© April 14,2025

- 34/193 -

3.5 Tables

New in Q 2.7.0

Tables can be built using the table() method. Here is a simple example:

from fpdf import FPDF

TABLE_DATA = (

"First name", "Last name", "Age", "City")
"Jules", "Smith", "34", "San Juan"),
"Mary", "Ramos", "45", "Orlando"),

"Carlson", "Banks", "19", "Los Angeles"),
"Lucas", "Cimon", "31", "Angers"),

)

pdf = FPDF()

pdf.add_page()

pdf.set_font("Times",

with pdf.table() as
for data_row in
row = table

size=16)
table:
TABLE_DATA:

.row()

for datum in data_row:
row.cell(datum)
pdf.output('table.pdf')

Result:

3.5 Tables

First name Last name Age

City

Jules Smith 34

San Juan

Mary Ramos 45

Orlando

Carlson Banks 19

Los Angeles

Lucas Cimon 31

Angers

3.5.1 Features

support cells with content wrapping over several lines

allow to style table headings (top row), or disable them

control over borders: color, width & where they are drawn

handle splitting a table over page breaks, with headings repeated

control over cell background color

control over cell borders

control table width & position

control over text alignment in cells, globally or per row

allow to embed images in cells

merge cells across columns and rows

- 35/193 -

control over column & row sizes (automatically computed by default)

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

3.5.2 Setting table & column widths

3.5.2 Setting table & column widths
The col_widths optional parameter can be provided to configure this.
If a single number is provided as col_widths, it is interpreted as a fixed column width in document units.

If an array of numbers is provided as col_widths, the values are considered to be fractions of the full effective page width,
meaning that col widths=(1, 1, 2) is strictly equivalent to col widths=(25, 25, 50) .

with pdf.table(width=150, col_widths=(30, 30, 10, 30)) as table:

Result:

First name Last name Age |City
Jules Smith 34 |San Juan
Mary Ramos 45 |Orlando

Carlson Banks 19 |Los Angeles

Lucas Cimon 31 Angers

align can be passed to table() to set the table horizontal position relative to the page, when it's not using the full page width.

It's centered by default.

3.5.3 Setting text alignment
This can be set globally, or on a per-column basis:
Qiéh pdf.table(text_align="CENTER") as table:

pdf.1ln()
with pdf.table(text_align=("CENTER", "CENTER", "RIGHT", "LEFT")) as table:

Result:

- 36/193 -

3.5.4 Setting cell padding

First name

Last name

Age

City

Jules

Smith

San Juan

Mary

Ramos

45

Orlando

Carlson Banks 19 Los Angeles
Lucas Cimon 31 Angers
First name Last name Age|City
Jules Smith 34{San Juan
Mary Ramos 45|Orlando
Carlson Banks 19|Los Angeles
Lucas Cimon 31|Angers

3.5.4 Setting cell padding

New in §> 2.7.6

Cell padding (the space between the cells content and the edge of the cell) can be set globally or on a per-cell basis.

Following the CCS standard the padding can be specified using 1,2 3 or 4 values.

* When one value is specified, it applies the same padding to all four sides.

* When two values are specified, the first padding applies to the top and bottom, the second to the left and right.

* When three values are specified, the first padding applies to the top, the second to the right and left, the third to the bottom.

* When four values are specified, the paddings apply to the top, right, bottom, and left in that order (clockwise)

red = (255, 0, 0)
style = FontFace(color=black, fill_color=red)
with pdf.table(line_height=pdf.font_size, padding=2) as table:
for irow in range(5):
row = table.row()
for icol in range(5):
datum = "Circus"
if irow == 3 and icol % 2 == 0:
row.cell("custom padding", style=style, padding=(2 * icol, 8, 8, 8))
else:
row.cell(datum)

(also an example of coloring individual cells)

-37/193 -

https://github.com/PyFPDF/fpdf2/blob/master/CHANGELOG.md
https://github.com/PyFPDF/fpdf2/blob/master/CHANGELOG.md
https://github.com/PyFPDF/fpdf2/blob/master/CHANGELOG.md

3.5.5 Setting vertical alignment of text in cells

Circus Circus Circus Circus Circus

Circus Circus Circus Circus Circus

Circus Circus Circus Circus Circus
Circus Circus

Circus Circus Circus Circus Circus

Note: the c_margin parameter (default 1.0) also controls the horizontal margins in a cell. If a non-zero padding for left and right
is supplied then ¢ margin is ignored.
3.5.5 Setting vertical alignment of text in cells

New in)y 2.7.6

Can be set globally, per row or per cell, by passing a string or a VAlign enum value as v_align:

with pdf.table(v_align=VAlign.M) as table:

row.cell(f"custom v-align", v_align="TOP")

3.5.6 Setting row height

First, line height can be provided to set the height of every individual line of text:

with pdf.table(line_height=2.5 * pdf.font_size) as table:

New in Q} 2.8.3

Second, a global min_row_height can be set, or configured per row as min_height :

with pdf.table(min_row_height=30) as table:
row = table.row()
row.cell("A")
row.cell("B")
row = table.row(min_height=50)
row.cell("c")
row.cell("D")

=]

3.5.7 Disable table headings

By default, fpdf2 considers that the first row of tables contains its headings. This can however be disabled:

with pdf.table(first_row_as_headings=False) as table:

New in Q> 2.7.9

The repetition of table headings on every page can also be disabled:

with pdf.table(repeat_headings=0) as table:

- 38/193 -

https://github.com/PyFPDF/fpdf2/blob/master/CHANGELOG.md
https://github.com/PyFPDF/fpdf2/blob/master/CHANGELOG.md
https://github.com/PyFPDF/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.VAlign
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

3.5.8 Style table headings

"ON_TOP_OF_EVERY_PAGE" is an equivalent valid value for repeat_headings , cf. documentation on TableHeadingsDisplay .

3.5.8 Style table headings

from fpdf.fonts import FontFace

blue = (0, ©, 255)

grey = (128, 128, 128)

headings_style = FontFace(emphasis="ITALICS", color=blue, fill_color=grey)
with pdf.table(headings_style=headings_style) as table:

Result:

Jules Smith 34 San Juan

Mary Ramos 45 Orlando

Carlson Banks 19 Los Angeles

Lucas Cimon 31 Angers

It's possible to override the style of individual cells in the heading. The overriding style will take precedence for any specified
values, while retaining the default style for unspecified values:

headings_style = FontFace(emphasis="ITALICS", color=blue, fill_color=grey)
override_style = FontFace(emphasis="BOLD")
with pdf.table(headings_style=headings_style) as table:

headings = table.row()

headings.cell("First name", style=override_style)

headings.cell("Last name", style=override_style)

headings.cell("Age")

headings.cell("City")

Result:

Jules Smith 34 San Juan

Mary Ramos 45 Orlando

Carlson Banks 19 Los Angeles

Lucas Cimon 31 Angers

-39/193 -

https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.TableHeadingsDisplay
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.TableHeadingsDisplay

3.5.9 Set cells background

greyscale = 200

with pdf.table(cell_fill_color=greyscale, cell_fill_mode="ROWS") as table:

Result:

3.5.9 Set cells background

First name Last name Age City
Jules Smith 34 San Juan
Mary Ramos 45 Orlando
Carlson Banks 19 Los Angeles
Lucas Cimon 31 Angers
e e, ot) 3t

Result:
First name Last name Age City
Jules Smith 34 San Juan
Mary Ramos 45 Orlando
Carlson Banks 19 Los Angeles
Lucas Cimon 31 Angers

The cell color is set following those settings, ordered by priority:

1. The cell style, provided to Row.cell()

2. The row style, provided to Table.row()

3. The table setting headings_style.fill _color, if the cell is part of some headings row

4. The table setting cell_fill_color, if cell_fill_mode indicates to fill a cell

5. The document .fill_color set before rendering the table

New in Q 2.7.9

Finally, it is possible to define your own cell-filling logic:

-40/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

3.5.10 Set borders layout

class EvenOddCellFillMode():
@staticmethod
def should_fill_cell(i, j):
return i1 % 2 and j % 2

with pdf.table(cell_fill_color=1lightblue, cell_fill_mode=EvenOddCellFillMode()) as table:

3.5.10 Set borders layout

with pdf.table(borders_layout="INTERNAL") as table:

Result:

First name Last name Age City

Jules Smith 34 San Juan

Mary Ramos 45 Orlando

Carlson Banks 19 Los Angeles

Lucas Cimon 31 Angers

with pdf.table(borders_layout="MINIMAL") as table:

Result:

First name Last name Age City

Jules Smith 34 San Juan
Mary Ramos 45 Orlando
Carlson Banks 19 Los Angeles

Lucas Cimon 31 Angers

pdf.set_draw_color(50) # very dark grey
pdf.set_line_width(.5)
with pdf.table(borders_layout="SINGLE_TOP_LINE") as table:

Result:

-41/193 -

First name

Last name

City

3.5.11 Set cell borders

Jules
Mary
Carlson

Lucas

Smith
Ramos
Banks

Cimon

San Juan
Orlando

Los Angeles
Angers

It is also possible to create a custom border layout, controlling thickness, color, and dash pattern:

from fpdf.table import TableBordersLayout, TableBorderStyle, TableCellStyle

gray = (150, 150, 150)
red = (255, 0, 0)

custom_layout = TableBordersLayout(

cell_style_getter=lambda row_num, col_num,

num_heading_rows, num_rows, num_cols: TableCellStyle(

left=(
True if col_num == @
else TableBorderStyle(color=(150, 150, 150), dash=2) if col_num == 2
else False

Vo bottom=True if row_num == num_rows - 1 else False

right=True if col_num == num_cols - 1 else False

top=(
True if row_num == 0@
else TableBorderStyle(thickness=1) if row_num == num_heading_rows

else TableBorderStyle(color=red, dash=2)

)

)

with pdf.table(borders_layout=custom_layout) as table:

Result:

First name Last name :Age City

Jules Smith 134 San Juan

May Ramos 45 Odando

cadson Barks 19 L Los Angeles

Luas Gmon 8 Anges
All the possible layout values are described there: TableBordersLayout .

3.5.11 Set cell borders
New in Q 2.8.2

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=16)
with pdf.table() as table:
for data_row in TABLE_DATA:
row = table.row()
for datum in data_row:

-42/193 -

https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.TableBordersLayout
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.TableBordersLayout
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

row.cell(datum, border="LEFT")

pdf.output('table.pdf')

Result:

First name
Jules

Mary
Carlson

Lucas

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=16)
with pdf.table() as table:
for data_row in TABLE_DATA:
row = table.row()
for datum in data_row:

row.cell(datum, border="TOP")

pdf.output('table.pdf')

Result:

Last name
Smith
Ramos
Banks

Cimon

34
45
19
31

3.5.11 Set cell borders

City

San Juan
Orlando

Los Angeles

Angers

First name

Last name

City

Jules

Smith

34

San Juan

Mary

Ramos

45

Orlando

Carlson

Banks

19

Los Angeles

Lucas

from fpdf import FPDF
from fpdf.enums import CellBordersLayout

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=16)
with pdf.table() as table:
for data_row in TABLE_DATA:
row = table.row()
for datum in data_row:

Cimon

31

row.cell(datum, border=CellBordersLayout.TOP | CellBordersLayout.LEFT)

pdf.output('table.pdf')

Result:

-43/193 -

Angers

3.5.12 Insert images

First name

Last name

City

Jules

Smith

34

San Juan

Mary

Ramos

45

Orlando

Carlson

Banks

19

Los Angeles

Lucas

Cimon

31

All the possible borders values are described there: cellBordersLayout .

3.5.12 Insert images

TABLE_DATA = (

("First name", "Last name", "Image", "City"),
("Jules", "Smith", "shirt.png", "San Juan"),
("Mary", "Ramos", "joker.png", "Orlando")
("Carlson", "Banks", "socialist.png", "Los Angeles"),
("Lucas", "Cimon", "circle.bmp", "Angers"),

)

pdf = FPDF()

pdf.add_page()
pdf.set_font("Times", size=16)
with pdf.table() as table:

for i, data_row in enumerate(TABLE_DATA):

row = table.row()

for j, datum in enumerate(data_row):

if j == 2 and i > 0O:
row.cell(img=datum)
elsEs
row.cell(datum)
pdf.output('table_with_images.pdf')

Result:

Angers

First name

Last name

Image

City

Jules

Smith

San Juan

Mary

Ramos

Orlando

Carlson

Banks

Los Angeles

Lucas

Cimon

Angers

By default, images height & width are constrained by the row height (based on text content) and the column width. To render
bigger images, you can set the line _height to increase the row height, or pass img fill width=True to .cell():

row.cell(img=datum, img_fill_width=True)

Result:

-44/193 -

https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.CellBordersLayout
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.CellBordersLayout

3.5.13 Adding links to cells

First name Last name Image City
Jules Smith San Juan
Mary Ramos Orlando
<
) -
Carlson Banks “‘“\‘”’h Los Angeles
\C2ld >
Lucas Cimon Angers
3.5.13 Adding links to cells
row.cell(..., link="https://py-pdf.github.io/fpdf2/")

row.cell(..., link=pdf.add_link(page=1))

3.5.14 Syntactic sugar

To simplify table() usage, shorter, alternative usage forms are allowed.

This sample code:

with pdf.table() as table:

for data_row in TABLE_DATA:

row = table.row()

-45/193 -

3.5.15 Gutter

for datum in data_row:
row.cell(datum)

Can be shortened to the following code, by passing lists of strings as the cells optional argument of .row() :

with pdf.table() as table:
for data_row in TABLE_DATA:
table.row(data_row)

And even shortened further to a single line, by passing lists of lists of strings as the rows optional argument of .table() :

with pdf.table(TABLE_DATA):
pass

3.5.15 Gutter
Spacing can be introduced between rows and/or columns:

with pdf.table(TABLE_DATA, gutter_height=3, gutter_width=3):

Result:
First name Last name Age City
Jules Smith 34 San Juan

Mary Ramos 45 Orlando

Carlson Banks 19 Los Angeles

Lucas Cimon 31 Angers

3.5.16 Column span and row span

Cells spanning multiple columns or rows can be defined by passing a colspan or rowspan argument to .cell() . Only the cells
with data in them need to be defined. This means that the number of cells on each row can be different.

with pdf.table(col_widths=(1, 2, 1, 1)) as table:
row = table.row()
row.cell("e")
row.cell("1")
row.cell("2")
row.cell("3")

row = table.row()
row.cell("A1")
row.cell("A2", colspan=2)
row.cell("A4")

row = table.row()
row.cell("B1", colspan=2)

row.cell("B3")
row.cell("B4")

result:

-46/193 -

3.5.16 Column span and row span

Al

A2

A4

Bl

B3

B4

with pdf.table(text_align="CENTER") as table:

row = table.row()

row.cell("A1", colspan=2
row.cell("C1", colspan=2)

row = table.row()

row.cell("C2", colspan=2

row = table.row()

all columns of this row are spanned by previous rows

row = table.row()

row.cell("A4", colspan=4)

row = table.row()

row.cell("A5", colspan=2)

row.cell("cs5")
row.cell("D5")

row = table.row()
row.cell("A6")

row.cell("B6", colspan=2
row.cell("D6", rowspan=2)

row = table.row()
row.cell("A7")

result:

rowspan=3)

rowspan=2)

rowspan=2)

A1

C1

c2

A5

C5

D5

A6

A7

B6

D6

Alternatively, the spans can be defined using the placeholder elements Tablespan.coL and TableSpan.Row. These elements merge

the current cell with the previous column or row respectively.

For example, the previous example table can be defined as follows:

-47/193 -

TABLE_DATA = [
["A", g,
["A1", TableSpan.
[TableSpan.ROW, TableSpan.

[TableSpan.ROW, TableSpan.
["A4", TableSpan.
["A5", TableSpan.
["A6", "B6",

["A7", TableSpan.

]

with pdf.table(TABLE_DATA, text_align="CENTER"):

coL,
ROW,
ROW,
coL,
coL,

ROW,

e, "pry,
e, TableSpan.COL],
"ca2", TableSpan.COL],

TableSpan.ROW, TableSpan.ROW],
TableSpan.COL, TableSpan.COL],
nesn "D5"]
TableSpan.coL, "D6"],
TableSpan.ROW, TableSpan.ROW],

3.5.17 Table with multiple heading rows

pass
result:
A B C D
Al
Cc2
A4
A5 C5 D5
A6
B6 D6
A7

3.5.17 Table with multiple heading rows

The number of heading rows is defined by passing the num_heading_rows argument to Table() . The default value is 1. To
guarantee backwards compatibility with the first_row_as_headings argument, the following applies: - If num_heading_rows==1: The
value of first_row_as_headings defines whether the first row is treated as heading or standard row. - Otherwise, the value of

num_heading_rows decides the number of heading rows.

with pdf.table(TABLE_DATA, num_heading_rows=2):

pass
Result:
First name Last name Age City
Jules Smith 34 San Juan
Mary Ramos 45 Orlando
Carlson Banks 19 Los Angeles
Lucas Cimon 31 Angers

-48/193 -

3.5.18 Table from pandas DataFrame or spreadsheet files

3.5.18 Table from pandas DataFrame or spreadsheet files
We have dedicated pages about those topics:

¢ Maths documentation page

* Rendering spreadsheets as PDF tables

3.5.19 Using write_html

Tables can also be defined in HTML using FpPDF.write_html. With the same data as above, and column widths defined as percent
of the effective width:

from fpdf import FPDF

pdf = FPDF()
pdf.set_font_size(16)
pdf.add_page()
pdf.write_html(
f"""<table border="1"><thead><tr>
<th width="25%">{TABLE_DATA[0][0]}</th>
<th width="25%">{TABLE_DATA[0][1]}</th>
<th width="15%">{TABLE_DATA[0][2]}</th>
<th width="35%">{TABLE_DATA[Q][3]}</th>
</tr></thead><tbody><tr>
<td>{'</td><td>'.join(TABLE_DATA[1])}</td>
</tr><tr>
<td>{'</td><td>'.join(TABLE_DATA[2])}</td>
</tr><tr>
<td>{'</td><td>'.join(TABLE_DATA[3])}</td>
</tr><tr>
<td>{'</td><td>'.join(TABLE_DATA[4])}</td>
</tr></tbody></table>""",
table_line_separators=True,
)
pdf.output('table_html.pdf")

Note that write_html has some limitations, notably regarding multi-lines cells.

3.5.20 "Parsabilty" of the tables generated

The PDF file format is not designed to embed structured tables. Hence, it can be tricky to extract tables data from PDF
documents.

In our tests suite, we ensure that several PDF-tables parsing Python libraries can successfully extract tables in documents
generated with fpdf2 . Namely, we test camelot-py & tabula-py: test/table/test table extraction.py.

Based on those tests, if you want to ease table extraction from the documents you produce, we recommend the following
guidelines:

« avoid splitting tables on several pages

e avoid the INTERNAL / MINIMAL / SINGLE_TOP_LINE borders layouts

@ July 1,2025

-49/193 -

https://camelot-py.readthedocs.io
https://tabula-py.readthedocs.io
https://github.com/py-pdf/fpdf2/blob/master/test/table/test_table_extraction.py

4. Text Content

4. Text Content

4.1 Adding Text

There are several ways in fpdf to add text to a PDF document, each of which comes with its own special features and its own set
of advantages and disadvantages. You will need to pick the right one for your specific task.

4.1.1 Simple Text Methods

Method Lines Markdown & Supports text Details
HTML support shaping
.text() one none no Inserts a single-line text string

with a precise location on the
base line of the font.

.cell() one Markdown yes Inserts a single-line text string
within the boundaries of a given
box, optionally with background
and border.

.multi_cell() several Markdown yes Inserts a multi-line text string
within the boundaries of a given
box, optionally with background,
border and padding.

.write() several none yes Inserts a multi-line text string
within the boundaries of the page
margins, starting at the current x/
y location (typically the end of the
last inserted text).

.write_html() several HTML yes auto

4.1.2 Flowable Text Regions

Text regions allow to insert flowing text into a predefined region on the page. It is possible to change the formatting and even the
font within paragraphs, which will still be aligned as one text block. The currently implemented type of text regions is
text columns(), which defines one or several columns that can be filled sequentially or height-balanced.

4.1.3 Typography and Language Specific Concepts
Supported Features

With supporting Unicode fonts, fpdf2 should handle the following text shaping features correctly. More details can be found in
TextShaping.

* Automatic ligatures / glyph substitution - Some writing systems (eg. most Indic scripts such as Devaganari, Tamil, Kannada)
frequently combine a number of written characters into a single glyph. In latin script, "ff", "fi", "ft", "st" and others are often
combined. In programming fonts "<=", "+4" "I=" etc. may be combined into more compact representations.

 Special diacritics that use separate code points (eg. in Diné Bizaad, Hebrew) will be placed in the correct location relative to
their base character.

* Kerning, where the spacing between characters varies depending on their combination (eg. moving the succeeding lowercase
character closer to an uppercase "T".

 Left-to-right and right-to-left text formatting (the latter most prominently in Arabic and Hebrew).

- 50/193 -

4.1.4 Text Formatting

Limitations
There are a few advanced typesetting features that fpdf2 doesn't currently support:

* Contextual forms - In some writing systems (eg. Arabic, Mongolian, etc.), characters may take a different shape, depending on
whether they appear at the beginning, in the middle, or at the end of a word, or isolated. Fpdf will always use the same
standard shape in those cases.

» Vertical writing - Some writing systems are meant to be written vertically. Doing so is not directly supported. In cases where
this just means to stack characters on top of each other (eg. Chinese, Japanese, etc.), client software can implement this by
placing each character individually at the correct location. In cases where the characters are connected with each other (eg.
Mongolian), this may be more difficult, if possible at all.

Character or Word Based Line Wrapping

By default, multi_cell() and write() will wrap lines based on words, using space characters and soft hyphens as separators.
Non-breaking spaces (\U00a0) do not trigger a word wrap, but are otherwise treated exactly as a normal space character. For
languages like Chinese and Japanese, that don't usually separate their words, character based wrapping is more appropriate. In
such a case, the argument wrapmode="CHAR" can be used (the default is "WORD"), and each line will get broken right before the
character that doesn't fit anymore.

4.1.4 Text Formatting

For all text insertion methods, the relevant font related properties (eg. font/style and foreground/background color) must be set
before invoking them. This includes using:

e .set_font()
* .set_text_color()
e .set_draw_color() - for cell borders

e .set_fill color() - for the background

All three set_*_colors() methods accept either a single greyscale value, 3 values as RGB components, a single #abc or #abcdef
hexadecimal color string, or an instance of fpdf.drawing.DeviceCMYK, fpdf.drawing.DeviceRGB Or fpdf.drawing.DeviceGray . You can
even use named web colors by using html.color_as_decimal() .

More text styling options can be found on the page Text styling, including Markdown syntax and HTML markup.

4.1.5 Change in current position

.cell() and .multi_cell() let you specify where the current position (.x/ .y) should go after the call. This is handled by the
parameters new_x and new_y . Their values must one of the following enums values or an equivalent string:

* XPos

* YPos

4.1.6 text()

Prints a single-line character string. In contrast to the other text methods, the position is given explicitly, and not taken from
.x/ .y . The origin is on the left of the first character, on the baseline. This method allows placing a string with typographical
precision on the page, but it is usually easier to use the .cell(), .multi_cell() or .write() methods.

Signature and parameters for .text()

4.1.7 .cell()

Prints a cell (rectangular area) with optional borders, background color and character string. The upper-left corner of the cell
corresponds to the current position. The text can be aligned or centered. After the call, the current position moves to the

-51/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_text_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_text_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_draw_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_draw_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fill_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fill_color
https://py-pdf.github.io/fpdf2/fpdf/drawing.html#fpdf.drawing.DeviceCMYK
https://py-pdf.github.io/fpdf2/fpdf/drawing.html#fpdf.drawing.DeviceCMYK
https://py-pdf.github.io/fpdf2/fpdf/drawing.html#fpdf.drawing.DeviceRGB
https://py-pdf.github.io/fpdf2/fpdf/drawing.html#fpdf.drawing.DeviceRGB
https://py-pdf.github.io/fpdf2/fpdf/drawing.html#fpdf.drawing.DeviceGray
https://py-pdf.github.io/fpdf2/fpdf/drawing.html#fpdf.drawing.DeviceGray
https://en.wikipedia.org/wiki/Web_colors#HTML_color_names
https://py-pdf.github.io/fpdf2/fpdf/html.html#fpdf.html.color_as_decimal
https://py-pdf.github.io/fpdf2/fpdf/html.html#fpdf.html.color_as_decimal
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.XPos
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.XPos
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.YPos
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.YPos
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.text

4.1.8 .multi cell()

selected new_x/new_y position. It is possible to put a link on the text. If markdown=True, then minimal markdown styling is enabled,
to render parts of the text in bold, italics, strikethrough and/or underlined.

If automatic page breaking is enabled and the cell goes beyond the limit, a page break is performed before outputting.

Signature and parameters for.cell()

4.1.8 .multi_cell()

Allows printing text with word or character based line breaks. Those can be automatic (breaking at the most recent space or soft-
hyphen character) as soon as the text reaches the right border of the cell, or explicit (via the \\n character). As many cells as
necessary are stacked, one below the other. Text can be aligned, centered or justified. The cell block can be framed and the
background painted. Padding between text and the cell edge can be specified in the same way as for tables.

Using new_x="RIGHT", new_y="TOP", maximum height=pdf.font_size can be useful to build tables with multiline text in cells.

In normal operation, returns a boolean indicating if page break was triggered. The return value can be altered by specifying the

output parameter.

Signature and parameters for.multi cell()

4.1.9 .write()

Prints multi-line text between the page margins, starting from the current position. When the right margin is reached, a line
break occurs at the most recent space or soft-hyphen character (in word wrap mode) or at the current position (in character
break mode), and text continues from the left margin. A manual break happens any time the \n character is met. Upon method
exit, the current position is left near the end of the text, ready for the next call to continue without a gap, potentially with a
different font or size set. Returns a boolean indicating if page break was triggered.

The primary purpose of this method is to print continuously wrapping text, where different parts may be rendered in different
fonts or font sizes. This contrasts eg. with .multi_cell(), where a change in font family or size can only become effective on a

new line.

Signature and parameters for.write()

4.1.10 .write_html()

This method is very similar to .write(), but accepts basic HTML formatted text as input. See html.py for more details and the
supported HTML tags.

Note that when using data from actual web pages, the result may not look exactly as expected, because .write_html() prints all
whitespace unchanged as it finds them, while webbrowsers rather collapse each run of consecutive whitespace into a single
space character.

Signature and parameters for .write_html()

(C September 30, 2025

- 52/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write_html

4.2 Line breaks

4.2 Line breaks

When using multi cell() or write(), each time a line reaches the right extremity of the cell or a carriage return character (\n) is
met, a line break is issued and a new line automatically created under the current one.

An automatic break is performed at the location of the nearest space or soft-hyphen (\ueead) character before the right limit. A
soft-hyphen will be replaced by a normal hyphen when triggering a line break, and ignored otherwise.

If the parameter print_sh=False in multi_cell() or write() is setto True, then they will print the soft-hyphen character to the
document (as a normal hyphen with most fonts) instead of using it as a line break opportunity.

© February 17,2025

-53/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write

4.3 Page breaks

4.3 Page breaks

By default, fpdf2 will automatically perform page breaks whenever a cell or the text from a write() is rendered at the bottom of
a page with a height greater than the page bottom margin.

This behaviour can be controlled using those methods:

* set_auto_page_break
* accept_page_break

* will_page_break

4.3.1 Manually trigger a page break

Simply call .add_page() .

4.3.2 Inserting the final number of pages of the document

The special string {nb} will be substituted by the total number of pages on document closure. This special value can changed by
calling alias nb pages().

"Ais is currently incompatible with text shaping.
cf. GitHub issue #1090

4.3.3 will_page_break

will_page_break(height) lets you know if adding an element will trigger a page break, based on its height and the current
ordinate (y position).

4.3.4 Unbreakable sections

In order to render content, like tables, with the insurance that no page break will be performed in it, on the can use the
FPDF.unbreakable() context-manager:

pdf = fpdf.FPDF()
pdf.add_page()
pdf.set_font("Times", size=16)
line_height = pdf.font_size * 2
col_width = pdf.epw / 4 # distribute content evenly
for i in range(4): # repeat table 4 times
with pdf.unbreakable() as doc:
for row in data: # data comes from snippets on the Tables documentation page
for datum in row:
doc.cell(col_width, line_height, f"{datum} ({i})", border=1)
doc. ln(line_height)
print('page_break_triggered:', doc.page_break_triggered)
pdf.1ln(line_height * 2)
pdf.output("unbreakable_tables.pdf")

An alternative approach is offset_rendering() that allows to test the results of some operations on the global layout before
performing them "for real":

with pdf.offset_rendering() as dummy:
Dummy rendering:
dummy .multi_cell(...)
if dummy.page_break_triggered:
We trigger a page break manually beforehand:
pdf.add_page()
We duplicate the section header:
pdf.cell(text="Appendix C")
Now performing our rendering for real:
pdf.multi_cell(...)

- 54/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_auto_page_break
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_auto_page_break
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.accept_page_break
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.accept_page_break
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.will_page_break
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.will_page_break
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.alias_nb_pages
https://github.com/py-pdf/fpdf2/issues/1090
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.offset_rendering
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.offset_rendering

4.3.4 Unbreakable sections

(S August 5,2025

- 55/193 -

4.4 Text styling

4.4.1 .set_font()

Setting emphasis on text can be controlled by using .set_font(style=...

¢ style="B" indicates bold

e style="1" indicates italics

* style="s" indicates strikethrough
e style="u" indicates underline

Letters can be combined, for example: style="BI1" indicates bold italics

from fpdf import FPDF

pdf

pdf.
pdf.
pdf.
pdf.
pdf.
pdf.
pdf.
pdf.
pdf.
pdf.

= FPDF()
add_page()

set_font("Times",
cell(text="This"
set_font(style="B"

cell(text="is")

set_font(style="I"

cell(text="a")

set_font(style="u"
cell(text="PDF")

size=36)

output("style.pdf")

4.4.2 .set_stretching(stretching=100)

4.4 Text styling

Text can be stretched horizontally with this setting, measured in percent. If the argument is less than 100, then all characters are
rendered proportionally narrower and the text string will take less space. If it is larger than 100, then the width of all characters
will be expanded accordingly.

The example shows the same text justified to the same width, with stretching values of 100 and 150.

pdf

pdf.
pdf.
pdf.
pdf.
pdf.
pdf.
pdf.

Lorem

= FPDF()
add_page()

set_font("Helvetica", size=8)
set_fill_color (255, 255, 0)
multi_cell(w=50, text=LOREM_IPSUM[:100], new_x="LEFT", fill=True)

n()

set_stretching(150)
multi_cell(w=50, text=LOREM_IPSUM[:100], new_x="LEFT", fill=True)

ipsum Ut nostrud irure

reprehenderit anim nostrud dolore sed
ut Excepteur dolore ut sunt irure

Lorem

ipsum Ut nostrud

irure reprehenderit anim
nostrud dolore sed ut
Excepteur dolore ut sunt
irure

4.4.3 .set_char_spacing(spacing=0)

This method changes the distance between individual characters of a test string. Normally, characters are placed at a given

distance according the width information in the font file. If spacing is larger than 0, then their distance will be larger, creating a
gap in between. If it is less than 0, then their distance will be smaller, possibly resulting in an overlap. The change in distance is

given in typographic points (Pica), which makes it easy to adapt it relative to the current font size.

Character spacing works best for formatting single line text created by any method, or for highlighting individual words included

in a block of text with .write() .

- 56/193 -

4.4.4 Subscript, Superscript, and Fractional Numbers

Limitations: Spacing will only be changed within a sequence of characters that fpdf2 adds to the PDF in one go. This means
that there will be no extra distance eg. between text parts that are placed successively with write() . Also, if you apply different
font styles using the Markdown functionality of .cell() and .multi cell() or by using html_write(), then any parts given
different styles will have the original distance between them. This is so because fpdf2 has to add each styled fragment to the

PDF file separately.

The example shows the same text justified to the same width, with char spacing values of 0 and 10 (font size 8 pt).

pdf = FPDF()

pdf.add_page()

pdf.set_font("Helvetica", size=8)

pdf.set_fill_color (255, 255, 0)

pdf.multi_cell(w=150, text=LOREM_IPSUM[:200], new_x="LEFT", fill=True)
pdf.1ln()

pdf.set_char_spacing(10)

pdf.multi_cell(w=150, text=LOREM_IPSUM[:200], new_x="LEFT", fill=True)

Lorem ipsum Ut nostrud irure reprehenderit anim nostrud dolore sed ut Excepteur dolore ut sunt irure consectetur
tempor eu tempor nostrud dolore sint exercitation aliquip velit ullamco esse dolore mol

L or e m i p s um U t n o s tr ud i rur e
r e pre hender:i:Ht a n i m n o s tr ud
d ol o r e s e d u t E x ¢c e pte ur d ¢l or e
u t s un t i rur e c on s e ¢ct et ur
t empor e u t emp or n o s tr ud
d ol or e s i nt e x e r c i tati on
al i g ui p v e | it ul |l a m ¢ o e s s e
d ol or e m o |

For a more complete support of Markdown syntax, check out this guide to combine fpdf2 with the mistletoe library: Combine
with Markdown.

4.4.4 Subscript, Superscript, and Fractional Numbers

The class attribute .char_vpos controls special vertical positioning modes for text:

¢ "LINE" - normal line text (default)

"SUP" - superscript (exponent)

"SUB" - subscript (index)

"NOM" - nominator of a fraction with "/"

"DENOM" - denominator of a fraction with "/"

For each positioning mode there are two parameters that can be configured. The defaults have been set to result in a decent
layout with most fonts, and are given in parens.

The size multiplier for the font size:

e .sup_scale (0.7)

e .sub_scale (0.7)

¢ .nom_scale (0.75)

* .denom_scale (0.75)
The lift is given as fraction of the unscaled font size and indicates how much the glyph gets lifted above the base line (negative
for below):

e .sup_lift (0.4)

e .sub_lift (-0.15)

e .nom_lift (0.2)

e .denom_lift (0.0)

Limitations: The individual glyphs will be scaled down as configured. This is not typographically correct, as it will also reduce

the stroke width, making them look lighter than the normal text. Unicode fonts may include characters in the subscripts and
superscripts range. In a high quality font, those glyphs will be smaller than the normal ones, but have a proportionally stronger

-57/193 -

https://en.wikipedia.org/wiki/Unicode_subscripts_and_superscripts
https://en.wikipedia.org/wiki/Unicode_subscripts_and_superscripts

4.4.4 Subscript, Superscript, and Fractional Numbers

stroke width in order to maintain the same visual density. If available in good quality, using Characters from this range is
preferred and will look better. Unfortunately, many fonts either don't (fully) cover this range, or the glyphs are of unsatisfactory
quality. In those cases, this feature of fpdf2 offers a reliable workaround with suboptimal but consistent output quality.

Practical use is essentially limited to .write() and html_write() . The feature does technically work with .cell() and
.multi_cell, but is of limited usefulness there, since you can't change font properties in the middle of a line (there is no
markdown support). It currently gets completely ignored by .text() .

The example shows the most common use cases:

pdf = fpdf.FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=20)
pdf.write(text="2")

pdf.char_vpos = "SUP"
pdf.write(text="56")
pdf.char_vpos = "LINE"
pdf.write(text=" more line text")
pdf.char_vpos = "SUB"
pdf.write(text="(idx)")
pdf.char_vpos = "LINE"
pdf.write(text=" end")

pdf.1ln()

pdf.write(text="1234 + ")
pdf.char_vpos = "NOM"
pdf.write(text="5")

pdf.char_vpos = "LINE"
pdf.write(text="/")

pdf.char_vpos = "DENOM"
pdf.write(text="16")
pdf.char_vpos = "LINE"
pdf.write(text=" + 987 = x")

2% more line textqx, end
1234 + 5/16 + 987 = X

-58/193 -

4.4.5 .text mode

4.4.5 text_mode

The PDF spec defines several text modes:

TABLE 5.3 Text rendering modes
MODE EXAMPLE DESCRIPTION

0 Fill text.
1 D Stroke text.

2 D Fill, then stroke text.

3 Neither fill nor stroke text (invisible).

—

Fill text and add to path for clipping (see above).

Stroke text and add to path for clipping.

Fill, then stroke text and add to path for clipping.

)

Add text to path for clipping.

(11
[

The text mode can be controlled with the .text_mode attribute. With sTRokE modes, the line width is induced by .1line width, and
its color can be configured with set_draw_color(). With FILL modes, the filling color can be controlled by set_fill color() or
set_text_color() .

With any of the 4 cLIP modes, the letters will be filled by vector drawings made afterwards, as can be seen in this example:

from fpdf import FPDF

pdf = FPDF(orientation="1landscape")
pdf.add_page()
pdf.set_font("Helvetica", size=100)

with pdf.local_context(text_mode="STROKE", line_width=2)

pdf.cell(text="Hello world")
Outside the local context, text_mode & line_width are reverted

-59/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_draw_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_draw_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fill_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fill_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_text_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_text_color

4.4.6 markdown=True

back to their original default values
pdf.1n()

with pdf.local_context(text_mode="CLIP"):
pdf.cell(text="CLIP text mode")

for r in range(©, 250, 2): # drawing concentric circles
pdf.circle(x=130-r/2, y=70-r/2, radius=r)

O W

iy ! u, i, ; N \
i I / 1y, 7 N\
/ / (””W// /// r/%// %/////é :—_{\\\\\\\\\ .\&\\ \\\\\\\\\ \\\\\\\\ \ \\\\\\\‘.\\\ \1\\\\\1\\ \ uunm\“

SERARININ -

pdf.output("text-modes.pdf")

|

|

|
“llunnn\l[“ i

==
==

=

=
&

More examples from test text mode.py :

* text modes.pdf

¢ clip text modes.pdf

4.4.6 markdown=True

An optional markdown=True parameter can be passed to the cell() & multi cell() methods in order to enable basic Markdown-
like styling: **bold**, __italics__, --underlined-- .

If the printable text contains a character sequence that would be incorrectly interpreted as a formatting marker, it can be
escaped using \ . The escape character works the same way it generally does in Python (see the example below).

Bold & italics require using dedicated fonts for each style.

For the standard fonts (Courier, Helvetica & Times), those dedicated fonts are configured by default:

from fpdf import FPDF

pdf = FPDF()

pdf.add_page()

pdf.set_font("Times", size=50)

pdf.cell(text="**Lorem** Ipsum. --dolor--", markdown=True, new_x='LEFT', new_y='NEXT'
pdf.cell(text="**Lorem** __Ipsum\\\\ --dolor--", markdown=True)
pdf.output("markdown-styled.pdf")

Lorem /psum dolor
**Lorem™* \Ipsum\ dolor

Using other fonts means that their variants (bold, italics) must be registered using add_font with style="B" and style="I".
Several unit tests in test/text/ demonstrate that:

* test_cell markdown with_ttf fonts

* test multi cell markdown with ttf fonts

- 60/193 -

https://github.com/py-pdf/fpdf2/blob/master/test/text/test_text_mode.py
https://github.com/py-pdf/fpdf2/blob/master/test/text/test_text_mode.py
https://github.com/py-pdf/fpdf2/blob/master/test/text/text_modes.pdf
https://github.com/py-pdf/fpdf2/blob/master/test/text/clip_text_modes.pdf
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://github.com/py-pdf/fpdf2/blob/2.6.1/test/text/test_cell.py#L155
https://github.com/py-pdf/fpdf2/blob/2.6.1/test/text/test_multi_cell_markdown.py#L27

4.4.7 write html()

4.4.7 .write_html()

.write_html() allows to set emphasis on text through the , <i> and <u> tags:

pdf.write_html("""bold
<I>italic</I>
<U>under lined</U>
<I><U>all at once!</U></I>"""

(C February 20, 2025

-61/193 -

4.5 Fonts and Unicode

4.5 Fonts and Unicode

Besides the limited set of latin fonts built into the PDF format, fpdf2 offers full support for using and embedding Unicode
(TrueType "ttf" and OpenType "otf") fonts. To keep the output file size small, it only embeds the subset of each font that is
actually used in the document. This part of the code has been completely rewritten since the fork from PyFPDF. It uses the
fonttools library for parsing the font data, and harfbuzz (via uharfbuzz) for text shaping.

To make use of that functionality, you have to install at least one Unicode font, either in the system font folder or in some other
location accessible to your program. For professional work, many designers prefer commercial fonts, suitable to their specific
needs. There are also many sources of free TTF fonts that can be downloaded online and used free of cost (some of them may
have restrictions on commercial redistribution, such as server installations or including them in a software project).

» Font Library - A collection of fonts for many languages with an open source type license.

* Google Fonts - A collection of free to use fonts for many languages.

* Microsoft Font Library - A large collection of fonts that are free to use.

» GitHub: Fonts - Links to public repositories of open source font projects as well as font related software projects.

* GNU FreeFont family: FreeSans, FreeSerif, FreeMono

To use a Unicode font in your program, use the add_font(), and then the set_font() method calls.

Web fonts (WOFF and WOFF2)

WOFF and WOFF2 are web-optimized, compressed containers for TrueType and OpenType fonts, designed to reduce download
size for browsers. fpdf2 supports these formats by decompressing them before embedding the resulting font data into the
generated PDF.

Font collections (TTC/OTC)

TrueType and OpenType collections bundle multiple font faces into a single file. When adding a collection with add_font() , you
can choose which face to load using the collection_font_number argument. If not specified, it defaults to O (the first face in the
collection).

Built-in Fonts vs. Unicode Fonts

The PDF file format knows a small number of "standard" fonts, namely Courier, Helvetica, Times, Symbol, and ZapfDingbats.
The first three are available in regular, bold, italic, and bold-italic versions. This gives us a set of fonts known as "14 Standard
PDF fonts". Any PDF processor (eg. a viewer) must provide those fonts for display. To use them, you don't need to call

.add_font() , but only .set_font() .

-62/193 -

https://fonttools.readthedocs.io/en/latest/
https://harfbuzz.github.io/
https://github.com/harfbuzz/uharfbuzz
https://fontlibrary.org/
https://fonts.google.com/
https://learn.microsoft.com/en-gb/typography/font-list/
https://github.com/topics/fonts
http://www.gnu.org/software/freefont/
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_font

4.5 Fonts and Unicode

Couriler

Courier Bold

Courier Italics
Courier Bold Italics
Helvetica

Helvetica Bold

Helvetica ltalics

Helvetica Bold Italics
Times

Times Bold

Times Italics

Times Bold Italics

Symbol : XyufoA
Zapfdingbats : &k OSV A

(script used to generate this: tutorial/core fonts.py)

While that may seem convenient, there's a big drawback. Those fonts only support latin characters, or a set of special characters
for the last two. If you try to render any Unicode character outside of those ranges, then you'll get an error like:

"Character "@" at index 13 in text is outside the range of characters supported by the font used: "courier". Please consider
using a Unicode font.". So if you want to create documents with any characters other than those common in English and a small
number of european languages, then you need to add a Unicode font containing the respective glyph as described in this
document.

Note that even if you have a font eg. named "Courier" installed as a system font on your computer, by default this will not be
used. You'll have to explicitly call eg. .add_font("Courier2", fname=r"c:\Windows\Fonts\cour.ttf") to make it available. If the name
is really the same (ignoring case), then you'll have to use a suitable variation, since trying to overwrite one of the "standard"
names with .add_font() will result in an error.

- 63/193 -

https://github.com/py-pdf/fpdf2/blob/master/tutorial/core_fonts.py

4.5 Fonts and Unicode

Adding and Using Fonts

Before using a Unicode font, you need to load it from a font file. Usually you'll have call add_font() for each style of the same
font family you want to use. The styles that fpdf2 understands are:

* Regular:
* Bold: "b"
e ITtalic/Oblique: "i"
* Bold-Italic: "bi"

Note that we use the same family name for each of them, but load them from different files. Only when a font has variants (eg.
"narrow"), or there are more styles than the four standard ones (eg. "black" or "extra light"), you'll have to add those with a
different family name. If the font files are not located in the current directory, you'll have to provide a file name with a relative or
absolute path. If the font is not found elsewhere, then fpdf2 will look for it in a subdirectory named "font".

from fpdf import FPDF

pdf = FPDF()

pdf.add_page()

Different styles of the same font family.

pdf.add_font("dejavu-sans", style="", fname="DejavuSans.ttf")
pdf.add_font("dejavu-sans", style="b", fname="DejaVuSans-Bold.ttf")
pdf.add_font("dejavu-sans", style="i", fname="DejaVuSans-Oblique.ttf")
pdf.add_font("dejavu-sans", style="bi", fname="DejaVuSans-BoldOblique.ttf")

Different type of the same font design.

pdf.add_font("dejavu-sans-narrow", style="", fname="DejaVuSansCondensed.ttf")
pdf.add_font("dejavu-sans-narrow", style="i", fname="DejaVuSansCondensed-Oblique.ttf")

To actually use the loaded font, or to use one of the standard built-in fonts, you'll have to set the current font before calling any
text generating method. .set_font() uses the same combinations of family name and style as arguments, plus the font size in
typographic points. In addition to the previously mentioned styles, the letter u may be included for creating underlined text, and
s for creating strikethrough text. If the family or size are omitted, the already set values will be retained. If the style is omitted,
it defaults to regular.

Set and use first family in regular style.

pdf.set_font(family="dejavu-sans", style="", size=12)

pdf.cell(text="Hello")

Set and use the same family in bold style.

pdf.set_font(style="b", size=18) # still uses the same dejavu-sans font family.
pdf.cell(text="Fat World")

Set and use a variant in italic and underlined.
pdf.set_font(family="dejavu-sans-narrow", style="iu", size=12)
pdf.cell(text="1lean on me")

Hello Fat WOI‘ld lean on me

Note on non-latin languages

Many non-latin writing systems have complex ways to combine characters, ligatures, and possibly multiple diacritic symbols
together, change the shape of characters depending on its location in a word, or use a different writing direction. A small number
of examples are:

e Hebrew - right-to-left, placement of diacritics

* Arabic - right-to-left, contextual shapes

» Thai - stacked diacritics

* Devanagari (and other indic scripts) - multi-character ligatures, reordering

To make sure those scripts to be rendered correctly, text shaping must be enabled with .set_text_shaping(True) .

- 64/193 -

4.5.1 Example

Right-to-Left scripts

When text shaping is enabled, fpdf2 will apply the Unicode Bidirectional Algorithm to render correctly any text, including
bidirectional (mix of right-to-left and left-to-right scripts).

4.5.1 Example
This example uses several free fonts to display some Unicode strings. Be sure to install the fonts in the font directory first.

#1/usr/bin/env python
-*- coding: utf8 -*-

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_text_shaping(True)

Add a DejaVu Unicode font (uses UTF-8)

Supports more than 200 languages. For a coverage status see:

http://dejavu.svn.sourceforge.net/viewvc/dejavu/trunk/dejavu-fonts/langcover.txt
pdf.add_font(fname='DejaVuSansCondensed.ttf')

pdf.set_font('DejaVuSansCondensed', size=14)

text = u"""

English: Hello World

Greek: leld oou KOOHOG
Polish: witaj swiecie
Portuguese: 0la mundo
Russian: 3papaBcTByii, Mup
Vietnamese: Xin chao thé gidi
Arabic: oJledl Loo

Hebrew: D21y DiYy

for txt in text.split('\n'):
pdf.write(8, txt)
pdf.1n(8)

Add a Indic Unicode font (uses UTF-8)

Supports: Bengali, Devanagari, Gujarati,

Gurmukhi (including the variants for Punjabi)

Kannada, Malayalam, Oriya, Tamil, Telugu, Tibetan
pdf.add_font(fname='gargi.ttf')

pdf.set_font('gargi', size=14)

pdf.write(8, u'Hindi: oooooo oooooo')

pdf.1n(20)

Add a AR PL New Sung Unicode font (uses UTF-8)

The Open Source Chinese Font (also supports other east Asian languages)
pdf.add_font(fname="'fireflysung.ttf')

pdf.set_font('fireflysung', size=14)

pdf.write(8, u'Chinese: oooo\n')

pdf.write(8, u'Japanese: ooooooo\n')

pdf.1ln(10)

-

Add a Alee Unicode font (uses UTF-8)

General purpose Hangul truetype fonts that contain Korean syllable
and Latin9 (1s08859-15) characters.
pdf.add_font(fname='Eunjin.ttf"')

pdf.set_font('Eunjin', size=14)

pdf.write(8, u'Korean: ooooo')

pdf.1n(20)

Add a Fonts-TLWG (formerly ThaiFonts-Scalable) (uses UTF-8)
pdf.add_font(fname='waree.ttf"')

pdf.set_font('Waree', size=14)

pdf.write(8, u'Thai: ooooosooooos')

pdf.1n(20)

- h

Select a standard font (uses windows-1252)
pdf.set_font('helvetica', size=14)

pdf.1ln(10)

pdf.write(5, 'This is standard built-in font')

pdf.output("unicode.pdf")

View the result here: unicode.pdf

- 65/193 -

https://www.unicode.org/reports/tr9/
https://github.com/py-pdf/fpdf2/raw/master/tutorial/unicode.pdf

4.5.2 Free Font Pack

4.5.2 Free Font Pack

For your convenience, the author of the original PyFPDF has collected 96 TTF files in an optional "Free Unicode TrueType Font
Pack for FPDF", with useful fonts commonly distributed with GNU/Linux operating systems. Note that this collection is from
2015, so it will not contain any newer fonts or possible updates.

4.5.3 Fallback fonts
New in Q 2.7.0

The method set_fallback_fonts() allows you to specify a list of fonts to be used if any character is not available on the font
currently set. When a character doesn’t exist on the current font, fpdf2 will look if it’s available on the fallback fonts, on the
same order the list was provided.

Common scenarios are use of special characters like emojis within your text, greek characters in formulas or citations mixing
different languages.

Example:

import fpdf

pdf = fpdf.FPDF()

pdf.add_page()

pdf.add_font(fname="Roboto.ttf")

twitter emoji font: https://github.com/13racl/twemoji-color-font/releases
pdf.add_font(fname="TwitterEmoji.ttf")

pdf.set_font("Roboto", size=15)

pdf.set_fallback_fonts(["TwitterEmoji"])

pdf.write(text="text with an emoji &")

pdf.output("text_with_emoji.pdf")

When a glyph cannot be rendered uing the current font, fpdf2 will look for a fallback font matching the current character
emphasis (bold/italics). By default, if it does not find such matching font, the character will not be rendered using any fallback
font. This behaviour can be relaxed by passing exact_match=False to set_fallback_fonts() .

Moreover, for more control over font fallback election logic, the get _fallback font() can be overridden. An example of this can
be found in test/fonts/test font fallback.py.

4.5.4 Unicode range limits
New in (> 2.8.5

The unicode_range parameter in add_font() allows you to restrict which Unicode characters a font will handle, similar to CSS
@font-face unicode-range rules. This gives you fine-grained control over font priority on a per-character basis.

This is particularly useful when you want fallback fonts to take priority for specific character ranges, even when the main font
technically supports those characters. A common scenario is preferring colorful emoji fonts over monochrome glyphs that exist in
regular fonts.

Example:

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()

Main font for text
pdf.add_font(family="Dejavu", fname="DejaVuSans.ttf", unicode_range="U+0020-007E")

Emoji font restricted to emoticons range only
pdf.add_font(
family="NotoEmoji",
fname="colrvi-NotoColorEmoji.ttf",
unicode_range="U+1F600-1F64F", # Emoticons

)

pdf.set_font("Dejavu", size=24)
pdf.set_fallback_fonts(["NotoEmoji"])

Emojis in the specified range render from NotoEmoji (colorful)

- 66/193 -

https://github.com/reingart/pyfpdf/releases/download/binary/fpdf_unicode_font_pack.zip
https://github.com/reingart/pyfpdf/releases/download/binary/fpdf_unicode_font_pack.zip
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fallback_fonts
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fallback_fonts
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fallback_fonts
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fallback_fonts
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.get_fallback_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.get_fallback_font
https://github.com/py-pdf/fpdf2/blob/master/test/fonts/test_font_fallback.py
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_font

4.5.5 Variable Fonts

pdf.write(text="Hello World! @ @ w==")
pdf.output("emoji_with_unicode_range.pdf")

Hello World! & ©

Supported Formats for unicode_range param

CSS-style string with comma-separated ranges
pdf.add_font(fname="font.ttf", unicode_range="U+1F600-1F64F, U+2600-26FF, U+2615")

List of strings
pdf.add_font(fname="font.ttf", unicode_range=["U+1F600-1F64F", "U+2600", "U+26FF"])

List of tuples (start, end)
pdf.add_font(fname="font.ttf", unicode_range=[(0x1F600, Ox1F64F), (0x2600, Ox26FF)])

List of integers (individual codepoints)
pdf.add_font(fname="font.ttf", unicode_range=[0x1F600, 0x2600, 128512])

When you specify a unicode range, the font's internal character map (cmap) is trimmed to only include codepoints within the
specified ranges. This ensures that:

» The font will only be used for characters in its allowed ranges
« Fallback fonts can take priority for characters outside those ranges

* You avoid unwanted "fallback pollution" from fonts with poor-quality glyphs

For more information on fallback fonts, see the Fallback fonts section.

4.5.5 Variable Fonts
New in Q} 2.8.5

A variable font allows users to use a single font file containing many variations of a typeface, such as weight, width, optical size,
and slant. Each such variable which modifies the typeface is called an axis. These variables have specific tags which are used to
specify their values, such as "wdth" for modifying width, and "wght" for modifying weight. For a full list of tags, please check the
documentation of your variable font.

The variations parameter in add font allows you to specify the value of one or more axes, thus creating a static font from the
variable font.

The following examples assume that the provided font is a variable font.

Specify width and weight in regular style.
pdf.add_font(

"Roboto Variable", "", "Roboto-variable.ttf", variations={"wdth": 75, "wght": 300}
)

Specify weight for bold style.
pdf.add_font("Roboto Vvariable", "B", "Roboto-variable.ttf", variations={"wght": 600})

The above examples provide the axes dictionary to specify the styles. If an axis is not mentioned, the default width will be used,
and the axis will be dropped as shown below.

Creating an italic version of the variable font.
If an axis is set to None, or if the axis is unspecified
it will not be variable in the created font.
pdf.add_font(

"Roboto Variable",

g,

"Roboto-Vvariable.ttf",

variations={"wght": 800, "wdth": None},

=

-67/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_font

4.5.6 Color Font Palette Selection

It is also possible to specify more than 1 style in the variations dictionary. If a separate axes dictionary is specified for each
style, then the style parameter is ignored as shown below.

pdf.add_font(
"Roboto Variable",
style="", # ignored
fname="Roboto-Vvariable.ttf",
variations={"": {"wght": 300}, "B": {"wght": 700}},

A Typeerror will be raised if variations is not a dictionary, and an AttributeError will be raised if variations is used but the font is
not a variable font.

4.5.6 Color Font Palette Selection
New in Q 2.8.5

Some color fonts (COLRv0O, COLRv1, CBDT, SBIX, SVG) contain multiple predefined color palettes. The palette parameter in
add_font() allows you to select which palette to use when rendering the font.

This is useful when you want to use different color schemes from the same font file without having to embed the font multiple
times.

Example:

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()

Add the same color font with different palettes using different family names
pdf.add_font(

family="Nabla-Default",

fname="Nabla-Regular-COLRv1l.ttf",

palette=0 # Use palette 0 (default)

S

pdf.add_font(
family="Nabla-Blue",
fname="Nabla-Regular-COLRv1.ttf",

palette=1 # Use palette 1

pdf.add_font(
family="Nabla-Grey",
fname="Nabla-Regular-COLRv1l.ttf",
palette=2 # Use palette 2

)

Use the fonts with different palettes
pdf.set_font("Nabla-Default", size=24)
pdf.cell(text="Text with Palette 0", new_x="1lmargin", new_y="next")

=

pdf.set_font("Nabla-Blue", size=24)
pdf.cell(text="Text with Palette 1", new_x="1lmargin", new_y="next")

pdf.set_font("Nabla-Grey", size=24)
pdf.cell(text="Text with Palette 2", new_x="1lmargin", new_y="next")
pdf.output("color_font_palettes.pdf")
If you specify a palette index that is out of range, fpdf2 will log a warning and fall back to palette 0. You can check the number

of available palettes in your color font's documentation or by inspecting the font file.

(February 1,2026

- 68/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_font

4.6 Text Shaping

4.6 Text Shaping
New in (> 2.7.5

s is currently incompatible with the special {nb} string that inserts the number of pages.
cf. GitHub issue #1090

4.6.1 What is text shaping?

Text shaping is a fundamental process in typography and computer typesetting that influences the aesthetics and readability of
text in various languages and scripts. It involves the transformation of Unicode text into glyphs, which are then positioned for
display or print.

For texts in latin script, text shaping can improve the aesthetics by replacing characters that would collide or overlap by a single
glyph specially crafted to look harmonious.

Without shaping:
different final floating stulf

With shaping:
different fina loating stufl

This process is especially important for scripts that require complex layout, such as Arabic or Indic scripts, where characters
change shape depending on their context.

There are three primary aspects of text shaping that contribute to the overall appearance of the text: kerning, ligatures, and
glyph substitution.
Kerning

Kerning refers to the adjustment of space between individual letter pairs in a font. This process is essential to avoid awkward
gaps or overlaps that may occur due to the default spacing of the font. By manually or programmatically modifying the kerning,

we can ensure an even and visually pleasing distribution of letters, which significantly improves the readability and aesthetic
quality of the text.

- 69/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/issues/1090

4.6.2 Usage

Ligatures

Ligatures are special characters that are created by combining two or more glyphs. This is frequently used to avoid collision
between characters or to adhere to the typographic traditions. For instance, in English typography, the most common ligatures
are "fi" and "fl", which are often fused into single characters to provide a more seamless reading experience.

Glyph Substitution

Glyph substitution is a mechanism that replaces one glyph or a set of glyphs with one or more alternative glyphs. This is a crucial
aspect of text shaping, especially for complex scripts where the representation of a character can significantly vary based on its
surrounding characters. For example, in Arabic script, a letter can have different forms depending on whether it's at the

beginning, middle, or end of a word.

Another common use of glyph substitution is to replace a sequence of characters by a symbol that better represent the meaning

of those characters on a specialized context (mathematical, programming, etc.).

Without shaping:
/* www OXFF c++ --> %/

With shaping:
/* ww OxFF c+H+ — %/

4.6.2 Usage

Text shaping is disabled by default to keep backwards compatibility, reduce resource requirements and not make uharfbuzz a

hard dependency.

If you want to use text shaping, the first step is installing the uharfbuzz package via pip.

pip install uharfbuzz

I Text shaping is not available for type 1 fonts.

-70/193 -

4.6.3 Bidirectional Text

Basic usage

The method set_text_shaping() is used to control text shaping on a document. The only mandatory argument, use_shaping_engine
can be set to True to enable the shaping mechanism or False to disable it.

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.add_font(family="viaodalLibre", fname=HERE / "ViaodaLibre-Regular.ttf")
pdf.set_font("ViaodaLibre", size=40)
pdf.set_text_shaping(True)
pdf.cell(text="final soft stuff")
pdf.output("Example.pdf")
Features

On most languages, Harfbuzz enables all features by default. If you want to enable or disable a specific feature you can pass a
dictionary containing the 4 digit OpenType feature code as key and a boolean value to indicate if it should be enabled or disable.

Example:

pdf.set_text_shaping(use_shaping_engine=True, features={"kern": False, "liga": False})

The full list of OpenType feature codes can be found here

Additional options

To perform the text shaping, harfbuzz needs to know some information like the language and the direction (right-to-left, left-to-
right, etc) in order to apply the correct rules. Those information can be guessed based on the text being shaped, but you can also
set the information to make sure the correct rules will be applied.

Examples:
pdf.set_text_shaping(use_shaping_engine=True, direction="rtl", script="arab", language="ara")

pdf.set_text_shaping(use_shaping_engine=True, direction="1tr", script="1latn", language="eng")

Direction can be 1tr (left to right) or rt1 (right to left). The ttb (top to bottom) and btt (bottom to top) directions are not
supported by fpdf2 for now.

Valid OpenType script tags

Valid OpenType language codes

4.6.3 Bidirectional Text
New in Q 2.7.8

Bidirectional text refers to text containing both left-to-right (LTR) and right-to-left (RTL) language scripts. Languages such as
Arabic, Hebrew, and Persian are written from right to left, whereas languages like English, Spanish, and French are written from
left to right. The Unicode Bidirectional Algorithm is a set of rules defined by the Unicode Consortium to properly display mixed-
directional text. This algorithm ensures that characters are shown in their correct order, preserving the logical sequence of the
text.

Unicode Bidirectional Algorithm

The Unicode Bidirectional Algorithm, often abbreviated as the Bidi Algorithm, is essential for displaying text containing both RTL
and LTR scripts. It determines the directionality of characters and arranges them in a visually correct order. This algorithm takes
into account the inherent directionality of characters (such as those in Arabic or Hebrew being inherently RTL) and the
surrounding context to decide how text should be displayed.

-71/193 -

https://learn.microsoft.com/en-us/typography/opentype/spec/featuretags
https://learn.microsoft.com/en-us/typography/opentype/spec/scripttags
https://learn.microsoft.com/en-us/typography/opentype/spec/languagetags
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

4.6.3 Bidirectional Text

Paragraph direction

Firsstep- readingheinputtextandsplittingintodirectional segments according to the Unicode bidirectional :
and fragment characteristics (font, style, etc.)

P LTRD LTRI LTRD RTLI RTLD RTLD LTRD RTLY

Secondtep- thefragmentaregroupedhtodirectionalnsandshaped witharfBuzand a paragraph is built, line by
according theparagraptiirection

Examplwithparagrapdirectiotefttoright

Exampleithparagraptirectionightoleft:

Bidirectional text in fpdf2
fpdf2 will automatically apply the unicode bidirectional algorithm if text shaping is enabled.

If no direction parameter is provided - or direction is None - paragraph direction will be set according to the first directional
character present on the text.

If there is a need to explicitly set the direction of a paragraph, regardless of the content, you can force the paragraph direction to
either RTL or LTR.

fpdf.set_text_shaping(use_shaping_engine=True, direction="rtl")

C February 20, 2025

-72/193 -

4.7 Emojis, Symbols & Dingbats

4.7 Emojis, Symbols & Dingbats

4.7.1 Emojis
Displaying emojis requires the use of a Unicode font file. Here is an example using the DejaVu font:

import fpdf

pdf = fpdf.FPDF()

pdf.add_font(fname="DejaVuSans.ttf")

pdf.set_font("DejavuSans", size=64)

pdf.add_page()

pdf.multi_cell(0, text="".join([chr(6x1F600 + x) for x in range(68)]))
pdf.set_font_size(32)

pdf.text(10, 270, "".join([chr(Ox1FBA® + x) for x in range(15)]))
pdf.output("fonts_emoji_glyph.pdf")

This code produces this PDF file: fonts emoji glyph.pdf

Another font supporting emojis is: twemoji

4.7.2 Color fonts and emojis

A wide variety of color fonts are supported - SBIX, CBDT/CBLC, SVG, COLRv0 and COLRv1. If a loaded font provides color
glyphs, fpdf2 will render them automatically.

Bitmap-only fonts using EBDT/EBLC (for example, monochrome or grayscale bitmap strikes) are also supported. These are
rendered using the current text color, with grayscale values applied as alpha.

To always draw emoji as outline/monochrome even if the font includes color glyphs, set: FPDF.render_color_fonts = False

4.7.3 Symbols

The Symbol font is one of the built-in fonts in the PDF format. Hence you can include its symbols very easily:

import fpdf

pdf = fpdf.FPDF()

pdf.add_page()

pdf.set_font("symbol", size=36)

pdf.cell(h=16, text="\u0022 \ub068 \ub024 \ubO65 \ubGbce \udOC2, \ubB68/\u0O65 \udO40 \udOas5",
new_x="LMARGIN", new_y="NEXT")

pdf.cell(h=16, text="\u©044 \ub046 \ub053 \ubO57 \ubO59 \ubdO61 \udO62 \udB63",
new_x="LMARGIN", new_y="NEXT")

pdf.cell(h=16, text="\uG0a® \ubOa7 \ub0a8 \ubGa9 \uGbaa \uGdab \uGOac \udOad \udBae \uOBaf \u0ddb \uGedc \ubOde",
new_x="LMARGIN", new_y="NEXT")

pdf.output("symbol.pdf")

This results in:

Vndee R, ne=o
ADPEXQY afBy
CErovaocTIosleces

The following table will help you find which characters map to which symbol: symbol.pdf. For reference, it was built using this
script: symbol.py.

-73/193 -

https://dejavu-fonts.github.io
https://github.com/py-pdf/fpdf2/blob/master/test/fonts/fonts_emoji_glyph.pdf
https://github.com/13rac1/twemoji-color-font

4.7.4 Dingbats

4.7.4 Dingbats

The ZapfDingbats font is one of the built-in fonts in the PDF format. Hence you can include its dingbats very easily:

import fpdf

pdf

pdf.
pdf.
pdf.
pdf.

= fpdf.FPDF()
add_page()

set_font("zapfdingbats", size=36)

cell(text="+ 3 8 A r \uGGa6 } \uGOa8 \ubGa9 \uGOaa \uBdab ~")
output("zapfdingbat.pdf")

This results in:

15/ XX [Je®do¢6¥Va”

The following table will help you find which characters map to which dingbats: zapfdingbats.pdf. For reference, it was built using

this script: zapfdingbats.py.

4.7.5 Fallback fonts

If you need to mix special characters and emojis within normal text, it is possible to specify alternative fonts for FPDF to use as

fallback fonts. See an example of use Here

(C February 7,2026

- 74/193 -

https://en.wikipedia.org/wiki/Dingbat

4.8 HTML

4.8 HTML

fpdf2 supports basic rendering from HTML.

This is implemented by using html.parser.HTMLParser from the Python standard library. The whole HTML 5 specification is not
supported, and neither is CSS, but bug reports & contributions are very welcome to improve this. cf. Supported HTML features

below for details on its current limitations.

For a more robust & feature-full HTML-to-PDF converter in Python, you may want to check Reportlab (or xhtml2pdf based on it),
WeasyPrint or borb.

4.8.1 write_html usage example
HTML rendering requires the use of FPDF.write_html() :

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.write_html("""
<d1>
<dt>Description title</dt>
<dd>Description Detail</dd>
</d1>
<h1>Big title</h1>
<section>
<h2>Section title</h2>
<p>Hello world. <u>I am</u> <i>tired</i>.</p>
<p>py-pdf/fpdf2 GitHub repo</p>
<p align="right">right aligned text</p>
<p>i am a paragraph
in two parts.</p>
<p>hello in green</p>
<p>hello small</p>
<p>hello helvetica</p>
<p>hello times</p>
</section>
<section>
<h2>0ther section title</h2>
<ul type="circle">
unordered</1i>
list</1i>
items</1i>

<ol start="3" type="i">
ordered</1i>
list</1i>
items</1i>

<pre>i am preformatted text.</pre>

<blockquote>hello blockquote</blockquote>
<table width="50%">
<thead>
<tr>
<th width="30%">ID</th>
<th width="70%">Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alice</td>
</tr>
<tr>
<td>2</td>
<td>Bob</td>
</tr>
</tbody>
</table>
</section>

iy

pdf.output("html.pdf")

Internally FPDF.write_html() uses the fpdf.html.HTML2FPDF class that implements HTML parsing using html.parser.HTMLParser .

- 75/193 -

https://www.reportlab.com
https://pypi.org/project/xhtml2pdf/
https://weasyprint.org
https://github.com/jorisschellekens/borb-examples/#76-exporting-html-as-pdf
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write_html
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write_html
https://py-pdf.github.io/fpdf2/fpdf/html.html#fpdf.html.HTML2FPDF
https://py-pdf.github.io/fpdf2/fpdf/html.html#fpdf.html.HTML2FPDF
https://docs.python.org/3/library/html.parser.html
https://docs.python.org/3/library/html.parser.html

Styling HTML tags globally

New in Q 2.7.9

4.8.2 Supported HTML features

The style of several HTML tags (<a>, <blockquote>, <code>, <pre>, <hi>, <h2>, <h3>...) can be set globally, for the whole HTML

document, by passing tag_styles to FPDF.write_html() :

from fpdf import FPDF, FontFace

pdf = FPDF()
pdf.add_page()
pdf.write_html("""
<h1>Big title</h1>
<section>
<h2>Section title</h2>
<p>Hello world!</p>
</section>
" tag_styles={
"h1": FontFace(color="#948b8b", size pt=32),
"h2": FontFace(color="#948b8b", size_pt=24),
1
pdf.output("html_styled.pdf")

Similarly, the indentation of several HTML tags (<blockquote>, <dd>,) can be set globally, for the whole HTML document, by

passing tag_styles to FPDF.write_html() :

from fpdf import FPDF, TextStyle

pdf = FPDF()
pdf.add_page()
pdf.write_html("""
<d1>
<dt>Term</dt>
<dd>Definition</dd>
</d1>
<blockquote>
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed non risus.

Suspendisse lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor.

Cras elementum ultrices diam.
</blockquote>
"t tag_styles={
"dd": TextStyle(l_margin=5),
"blockquote": TextStyle(color="#ccc", font_style="I"
t_margin=5, b_margin=5, 1_margin=10),
1)
pdf.output("html_dd_indented.pdf")

I Note that this styling is currently only supported for a subset of all HTML tags, and that some FontFace or TextStyle

properties may not be honored. However, Pull Request are welcome to implement missing features!

Default font
New in Q 2.8.0

The default font used by FpoF.write html() is Times.

You can change this default font by passing font_family to this method:

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.write_html("""
<h1>Big title</h1>
<section>
<h2>Section title</h2>
<p>Hello world!</p>
</section>
men, font_family="Helvetica")
pdf.output("html_helvetica.pdf")

4.8.2 Supported HTML features

* <h1> to <h6>: headings (and align attribute)

* <p>:paragraphs (and align, line-height attributes)

- 76/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fonts.html#fpdf.fonts.FontFace
https://py-pdf.github.io/fpdf2/fpdf/fonts.html#fpdf.fonts.FontFace
https://py-pdf.github.io/fpdf2/fpdf/fonts.html#fpdf.fonts.TextStyle
https://py-pdf.github.io/fpdf2/fpdf/fonts.html#fpdf.fonts.TextStyle
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write_html
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write_html

4.8.3 Known limitations

 & <hr> tags

* , <i>, <s>, <u>: bold, italic, strikethrough, underline

: (and face, size, color attributes)

<center> for aligning

<a>: links (and href attribute) to a file, URL, or page number.

<pre> & <code> tags

: images (and src, width, height attributes)

, , : ordered, unordered and list items (can be nested)

<d1>, <dt>, <dd>: description list, title, details (can be nested)

<sup>, <sub>: superscript and subscript text

<table>: (with align, border, width, cellpadding, cellspacing attributes) those tags are rendered using fpdf2 Tables layout
and the following sub-tags are supported:

<thead> : optional tag, wraps the table header row

<tfoot>: optional tag, wraps the table footer row

<tbody> : optional tag, wraps the table rows with actual content

<tr>:rows (with align, bgcolor attributes)

<th>: heading cells (with align, bgcolor, width attributes)

<td>: cells (with align, bgcolor, width, rowspan, colspan attributes)

Page breaks
New in y 2.8.0
Page breaks can be triggered explicitly using the break-before or break-after CSS properties. For example you can use:
<br style="break-after: page">

or:

<p style="break-before: page">
Top of a new page.
</p>

4.8.3 Known limitations
fpdf2 HTML renderer does not support some configurations of nested tags. For example:

e <table> cells can contain <td>nested tags forming a single text block</td>, but not <td>arbitrarily
nested tags</td> - cf. issue #845

You can also check the currently open GitHub issues with the tag htm1: label:html is:open

4.8.4 Using Markdown

Check the dedicated page: Combine with Markdown

C October 15,2025

-77/193 -

https://py-pdf.github.io/fpdf2/Tables.html
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://developer.mozilla.org/en-US/docs/Web/CSS/break-before
https://developer.mozilla.org/en-US/docs/Web/CSS/break-after
https://github.com/py-pdf/fpdf2/issues/845
https://github.com/py-pdf/fpdf2/issues?q=is-3Aopen+label-3Ahtml

5. Graphics Content

5. Graphics Content

5.1 Images

When rendering an image, its size on the page can be specified in several ways:
* explicit width and height (expressed in user units). The image is scaled to those dimensions, unless keep_aspect_ratio=True is
specified.
» one explicit dimension, the other being calculated automatically in order to keep the original proportions

* no explicit dimension, in which case the image is put at 72 dpi

Note that if an image is displayed several times, only one copy is embedded in the file.

5.1.1 Simple example

from fpdf import FPDF
pdf = FPDF()
pdf.add_page()

pdf.image("docs/fpdf2-logo.png", x=20, y=60)
pdf.output("pdf-with-image.pdf")

By default an image is rendered with a resolution of 72 dpi, but you can control its dimension on the page using the w= & h=
parameters of the image() method.

5.1.2 Alpha / transparency
fpdf2 allows to embed images with alpha pixels.

Technically, it is implemented by extracting an /sMask from images with transparency, and inserting it along with the image data
in the PDF document. Related code is in the image parsing module.

5.1.3 Assembling images

The following code snippets provide examples of some basic layouts for assembling images into PDF files.

Side by side images, full height, landscape page

from fpdf import FPDF

pdf = FPDF(orientation="1landscape")

pdf.set_margin(0)

pdf.add_page()

pdf.image("imgA.png", h=pdf.eph, w=pdf.epw/2) # full page height, half page width

pdf.set_y(0)

pdf.image("imgB.jpg", h=pdf.eph, w=pdf.epw/2, x=pdf.epw/2) # full page height, half page width, right half of the page
pdf.output("side-by-side.pdf")

Fitting an image inside a rectangle

When you want to scale an image to fill a rectangle, while keeping its aspect ratio, and ensuring it does not overflow the
rectangle width nor height in the process, you can set w / h and also provide keep_aspect_ratio=True to the image() method. This
will place the image at the centre of the bounding box.

The following unit tests illustrate that:

 test image fit.py

* resulting document: image fit in rect.pdf

- 78/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://github.com/py-pdf/fpdf2/blob/master/fpdf/image_parsing.py
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://github.com/py-pdf/fpdf2/blob/master/test/image/test_image_fit.py
https://github.com/py-pdf/fpdf2/blob/master/test/image/image_fit_in_rect.pdf

5.1.3 Assembling images

IMAGE ALIGNMENT IN THE BOUNDING BOX
To anchor the image to a specific corner, you can use this function:

from typing import Literal, TypedDict
from fpdf import FPDF
from fpdf.image_parsing import preload_image

class FpdfBoundingBox(TypedDict):
x: float
y: float
w: float
h: float

de

“

scale_and_position_image(
pdf: FPDF,
image_path: str,
bounding_box: FpdfBoundingBox,
anchor: Literal["TL", "TR", "BL", "BR", "C"],
) -> None:
if anchor == "c":
pdf.image(
str(image_path),
x=bounding_box["x"],
y=bounding_box["y"],
w=bounding_box["w"],
h=bounding_box["h"],
keep_aspect_ratio=True,
)

return

info = preload_image(pdf.image_cache, str(image_path))[2]
_, _, scaled_w, scaled_h = info.scale_inside_box(**bounding_box)

default to top left
X, y = bounding_box["x"], bounding_box["y"]
if "B" in anchor:
y = bounding_box["y"] + bounding_box["h"] - scaled_h
if "R" in anchor:
X = bounding_box["x"] + bounding_box["w"] - scaled_w

pdf.image(
str(image_path),
X=X,
Y=Y,
w=scaled_w,
h=scaled_h,
keep_aspect_ratio=True,

)

Usage example:

pdf = FPDF()

pdf.add_page()

bounding_box = FpdfBoundingBox(x=pdf.w-pdf.r_margin-100, y=pdf.t_margin, w=100, h=50)

Render the bounding box:

pdf.set_draw_color (255, 0, 0)

pdf.rect(**bounding_box, style="D")

Insert image:

scale_and_position_image(pdf, "./test/image/png_indexed/flowerl.png", bounding_box, "BR")
pdf.output("image_in_bounding_box_example.pdf")

Blending images

You can control the color blending mode of overlapping images. Valid values for blend_mode are Normal, Multiply, Screen,
Overlay, Darken, Lighten, ColorDodge, ColorBurn, HardLight, SoftLight, Difference, Exclusion, Hue, Saturation, Color and

Luminosity .

from fpdf import FPDF

pdf = EPDF()

pdf.add_page()

pdf.image("imgA.png", ...)

with pdf.local_context(blend_mode="ColorBurn"):
pdf.image("imgB.jpg", ...)

pdf.output("blended-images.pdf")

Demo of all color blend modes: blending images.pdf

-79/193 -

https://github.com/py-pdf/fpdf2/blob/master/test/drawing/generated_pdf/blending_images.pdf

5.1.4 Image clipping

You can select only a portion of the image to render using clipping methods:

rect_clip() :
example code
resulting PDF
round_clip() :
example code
resulting PDF
elliptic_clip() :
example code

resulting PDF

5.1.5 Alternative description

A

textual description of the image can be provided, for accessibility purposes:

pdf.image("docs/fpdf2-logo.png", x=20, y=60, alt_text="Snake logo of the fpdf2 library")

5.1.6 Usage with Pillow

You can perform image manipulations using the Pillow library, and easily embed the result:

from fpdf import FPDF
from PIL import Image

pdf = FPDF()
pdf.add_page()

img = Image.open('"docs/fpdf2-logo.png")

img = img.crop((10, 10, 490, 490)).resize((96, 96), resample=Image.NEAREST)
pdf.image(img, x=80, y=100)

pdf.output("pdf-with-image.pdf")

5.1.7 SVG images

SVG images passed to the image() method will be embedded as PDF paths:

from fpdf import FPDF

pdf = FPDF()

pdf.add_page()
pdf.image("SVG_logo.svg", w=100)
pdf.output("pdf-with-vector-image.pdf")

- 80/193 -

5.1.4 Image clipping

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rect_clip
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rect_clip
https://github.com/py-pdf/fpdf2/blob/master/test/image/test_image_clipping.py#L10
https://github.com/py-pdf/fpdf2/blob/master/test/image/rect_clip.pdf
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.round_clip
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.round_clip
https://github.com/py-pdf/fpdf2/blob/master/test/image/test_image_clipping.py#L33
https://github.com/py-pdf/fpdf2/blob/master/test/image/round_clip.pdf
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.elliptic_clip
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.elliptic_clip
https://github.com/py-pdf/fpdf2/blob/master/test/image/test_image_clipping.py#L56
https://github.com/py-pdf/fpdf2/blob/master/test/image/elliptic_clip.pdf
https://pillow.readthedocs.io/en/stable/
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image

5.1.8 Retrieve images from URLs

5.1.8 Retrieve images from URLs
URLs to images can be directly passed to the image() method:

pdf.image("https://upload.wikimedia.org/wikipedia/commons/7/70/Example.png")

5.1.9 Image compression

By default, fpdf2 will avoid altering or recompressing your images: when possible, the original bytes from the JPG or TIFF file
will be used directly. Bitonal images are by default compressed as TIFF Group4.

However, you can easily tell fpdf2 to embed all images as JPEGs in order to reduce your PDF size, using set_image filter() :

from fpdf import FPDF

pdf = FPDF()

pdf.set_image_filter ("DCTDecode")
pdf.add_page()
pdf.image("docs/fpdf2-logo.png", x=20, y=60)
pdf.output("pdf-with-image.pdf")

The allowed image_filter values are listed in the set_image filter() method documentation.

Beware that "flattening" images into JPEGs this way will fill transparent areas of your images with color (usually black).

5.1.10 Output Intents
New in y 2.8.3

Output Intents [allow] the contents of referenced icc profiles to be embedded directly within the body of the PDF file. This makes
the PDF file a self-contained unit that can be stored or transmitted as a single entity.

The dedicated method for adding output intent to a PDF is add_output_intent() .
You can optionally provide a PDFICCProfileObject as icc_profile.
Example:

from pathlib import Path

from fpdf import FPDF

from fpdf.enums import OutputIntentSubType
from fpdf.output import PDFICCProfileObject

HERE = Path(__file__).resolve().parent
pdf = FPDF()

with open(HERE / "sRGB2014.icc", "rb") as iccp_file:
icc_profile = PDFICCProfileObject(
contents=iccp_file.read(), n=3, alternate="DeviceRGB"
)
pdf.add_output_intent(
OutputIntentSubType.PDFA,
"sRGB",
'IEC 61966-2-1:1999',
"http://www.color.org",
icc_file,
"SRGB2014 (v2)",

The needed profiles and descriptions can be found at International Color Consortium.

5.1.11 ICC Profiles

The ICC profile of the included images are read through the PIL function Image.info.get("icc_profile)" and are included in the
PDF as objects.

An ICC profile can also be added by using the .add_output_intent() method, as described in the previous section.

-81/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_image_filter
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_image_filter
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_image_filter
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_image_filter
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_output_intent
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_output_intent
https://py-pdf.github.io/fpdf2/fpdf/output.html#fpdf.output.PDFICCProfileObject
https://py-pdf.github.io/fpdf2/fpdf/output.html#fpdf.output.PDFICCProfileObject
https://color.org/
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_output_intent
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_output_intent

5.1.12 Oversized images detection & downscaling

5.1.12 Oversized images detection & downscaling

If the resulting PDF size is a concern, you may want to check if some inserted images are oversized, meaning their resolution is
unnecessarily high given the size they are displayed.

There is how to enable this detection mechanism with fpdf2:

pdf.oversized_images = "WARN"

After setting this property, a wArRNING log will be displayed whenever an oversized image is inserted.
fpdf2 is also able to automatically downscale such oversized images:

pdf.oversized_images = "DOWNSCALE"

After this, oversized images will be automatically resized, generating peBuG logs like this:

OVERSIZED: Generated new low-res image with name=lowres-test.png dims=(319, 451) id=2

For finer control, you can set pdf.oversized images_ratio to set the threshold determining if an image is oversized.

If the concepts of "image compression" or "image resolution" are a bit obscure for you, this article is a recommended reading:
The 5 minute guide to image quality

5.1.13 Disabling transparency

By default images transparency is preserved: alpha channels are extracted and converted to an embedded swmask . This can be
disabled by setting .allow_images_transparency, e.g. to allow compliance with PDF/A-1:

from fpdf import FPDF

pdf = FPDF()
pdf.allow_images_transparency = False
pdf.set_font("Helvetica", size=15)

pdf.cell(w=pdf.epw, h=30, text="Text behind. " * 6)
pdf.image("docs/fpdf2-logo.png", x=0)
pdf.output("pdf-including-image-without-transparency.pdf")

This will fill transparent areas of your images with color (usually black).

cf. also documentation on controlling transparency.

5.1.14 Page background

cf. Per-page format, orientation and background

5.1.15 Sharing the image cache among FPDF instances
Image parsing is often the most CPU & memory intensive step when inserting pictures in a PDF.
If you create several PDF files that use the same illustrations, you can share the images cache among FPDF instances:

image_cache = None

for ... # loop

pdf = FPDF()
if image_cache is None:

image_cache = pdf.image_cache
EjliSek:

pdf.image_cache = image_cache

. # build the PDF

pdf.output(...)
Reset the "usages" count, to avoid ALL images to be inserted in subsequent PDFs:
image_cache.reset_usages()

This recipe is valid for fpdf2 v2.5.7+. For previous versions of fpdf2, a deepcopy of .images must be made, (cf. issue #501).

- 82/193 -

https://medium.com/unsplash/the-5-minute-guide-to-image-quality-ad7c3503c845
https://en.wikipedia.org/wiki/PDF/A#Description
https://github.com/py-pdf/fpdf2/issues/501#issuecomment-1224310277

5.1.15 Sharing the image cache among FPDF instances

(S January 12,2026

- 83/193 -

5.2

The

Shapes

following code snippets show examples of rendering various shapes.

5.2.1 Lines

Using line() to draw a thin plain orange line:

from fpdf import FPDF

pdf

pdf.
pdf.
pdf.
pdf.
pdf.

= FPDF()

add_page()

set_line_width(0.5)
set_draw_color(r=255, g=128, b=0)
line(x1=50, y1=50, x2=150, y2=100)
output("orange_plain_line.pdf")

Drawing a dashed light blue line:

from fpdf import FPDF

pdf

pdf.
pdf.
pdf.
pdf.
pdf.
pdf.

= FPDF()
add_page()

set_line_width(0.5)
set_draw_color(r=0, g=128, b=255)
set_dash_pattern(dash=2, gap=3)
line(x1=50, y1=50, x2=150, y2=100)
output("blue_dashed_line.pdf")

- 84/193 -

5.2 Shapes

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.line
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.line

5.2.2 Circle

5.2.2 Circle
Using circle() to draw a disc filled in pink with a grey outline:

from fpdf import FPDF

pdf = FPDF()

pdf.add_page()

pdf.set_line_width(2)

pdf.set_draw_color(240)
pdf.set_fill_color(r=230, g=30, b=180)
pdf.circle(x=50, y=50, radius=50, style="FD")
pdf.output("circle.pdf")

- 85/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.circle
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.circle

5.2.3 Ellipse

"Ais method changed parameters in release 2.8.1

5.2.3 Ellipse

Using ellipse(), filled in grey with a pink outline:

from fpdf import FPDF

pdf

pdf.
pdf.
pdf.
pdf.
pdf.
pdf.

= FPDF()

add_page()

set_line_width(2)

set_draw_color(r=230, g=30, b=180)
set_fill_color(240)

ellipse(x=50, y=50, w=100, h=50, style="FD")
output("ellipse.pdf")

- 86/193 -

https://github.com/py-pdf/fpdf2/releases/tag/2.8.1
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.ellipse
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.ellipse

5.2.4 Rectangle

5.2.4 Rectangle
Using rect() to draw nested squares:

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
for i in range(15):
pdf.set_fill_color (255 - 15*i)
pdf.rect(x=5+5*1, y=5+5*i, w=200-10*i, h=200-10*i, style="FD")
pdf.output("squares.pdf")

-87/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rect
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rect

5.2.4 Rectangle

Using rect() to draw rectangles with round corners:

from fpdf import FPDF

pdf
pd

S5

= FPDF()

.add_page()
pdf.

set_draw_color(200)
10

.rect(60, y, 33, 28, round_corners=True, style="D")

.set_fill_color(0, 255, 0)
.rect(100, y, 50, 10, round_corners=("BOTTOM_RIGHT"), style="DF")

.set_fill_color (255, 255, 0)
.rect(160, y, 10, 10, round_corners=("TOP_LEFT", "BOTTOM_LEFT"), style="F")
.output("round_corners_rectangles.pdf")

- 88/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rect
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rect

5.2.5 Polygon

5.2.5 Polygon
Using polygon() :

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()

pdf.set_line_width(2)

pdf.set_fill_color(r=255, g=0, b=0)

coords = ((160, 0), (5, 69), (41, 181), (159, 181), (195, 69))
pdf.polygon(coords, style="DF")

pdf.output("polygon.pdf")

- 89/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.polygon
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.polygon

5.2.6 Arc

Using arc() :

from fpdf import FPDF

pdf
pd

=

pdf.
pdf.

pdf.
pdf.

pdf.

= FPDF()

.add_page()
pdf.
pdf.
pdf.

set_line_width(2)
set_fill_color(r=255, g=0, b=0)
arc(x=75, y=75, a=25, b=25, start_angle=90, end_angle=260, style="FD")

set_fill_color(r=255, g=0, b=255)
arc(x=105, y=75, a=25, b=50, start_angle=180, end_angle=360, style="FD")

set_fill_color(r=0, g=255, b=0)
arc(x=135, y=75, a=25, b=25, start_angle=0, end_angle=130, style="FD")

output("arc.pdf")

-90/193 -

5.2.6 Arc

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.arc
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.arc

5.2.7 Solid arc

(A

5.2.7 Solid arc

Using solid_arc() :

from fpdf import FPDF

pdf = FPDF()

pdf.add_page()

pdf.set_line_width(2)

pdf.set_fill color(r=255, g=0, b=0)

pdf.solid_arc(x=75, y=75, a=25, b=25, start_angle=90, end_angle=260, style="FD")

=

S5

pdf.set_fill_color(r=255, g=0, b=255)
pdf.solid_arc(x=105, y=75, a=25, b=50, start_angle=180, end_angle=360, style="FD")

pdf.set_fill_color(r=0, g=255, b=0)
pdf.solid_arc(x=135, y=75, a=25, b=25, start_angle=0, end_angle=130, style="FD")

pdf.output("solid_arc.pdf")

QAo

5.2.8 Bezier Curve

New in Q 2.8.0
Using bezier() to create a cubic Bézier curve:

from fpdf import FPDF

pdf = FPDF()

pdf.add_page()

pdf.set_fill _color(r=255, g=0, b=255)

pdf.bezier([(20, 80), (40, 20), (60, 80)], style="DF")
pdf.output("bezier.pdf")

-91/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.solid_arc
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.solid_arc
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.bezier
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.bezier

5.2.8 Bezier Curve

One of the nice properties of Bézier curves is that they can be chained:

-92/193 -

5.2.9 Regular Polygon

Chaining quadratic curves:

o o (o)

/ N\
o o (o] o
Chaining cubic curves:
o (o]
. /
\\\ ////
o o

Note that, for smooth joining cubic Bézier curves, neighbor control points around the joining point must mirror each other (cf.
Wikipedia).

Source code: test bezier chaining() in test _bezier.py

5.2.9 Regular Polygon
Using regular_polygon() :

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_line_width(0.5)

pdf.set_fill_color(r=30, g=200, b=0)
pdf.regular_polygon(x=40, y=80, polyWidth=30, rotateDegrees=270, numSides=3, style="FD")

pdf.set_fill color(r=10, g=30, b=255)
pdf.regular_polygon(x=80, y=80, polywWwidth=30, rotateDegrees=135, numSides=4, style="FD")

pdf.set_fill_color(r=165, g=10, b=255)
pdf.regular_polygon(x=120, y=80, polyWidth=30, rotateDegrees=198, numSides=5, style="FD")

&3

pdf.set_fill_color(r=255, g=125, b=10)
pdf.regular_polygon(x=160, y=80, polyWidth=30, rotateDegrees=270, numSides=6, style="FD")
pdf.output("regular_polygon.pdf")

-93/193 -

https://en.wikipedia.org/wiki/Composite_B-C3-A9zier_curve#Smooth_joining
https://github.com/py-pdf/fpdf2/blob/master/test/shapes/test_bezier.py
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.regular_polygon
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.regular_polygon

AROO

5.2.10 Regular Star

Using star() :

from fpdf import FPDF

pdf
pd

5

pdf.

pdf.
pdf.

Y <+

= FPDF()

.add_page()

set_line_width(0.5)

set_fill_color(r=255, g=0, b=0)

star(x=40, y=80, r_in=5, r_out=15, rotate_degrees=0, corners=3, style="FD")
.set_fill _color(r=0, g=255, b=255)

.star(x=80, y=80, r_in=5, r_out=15, rotate_degrees=90, corners=4, style="FD")
.set_fill_color(r=255, g=255, b=0)

.star(x=120, y=80, r_in=5, r_out=15, rotate_degrees=180, corners=5, style="FD")
.set_fill_color(r=255, g=0, b=255)

.star(x=160, y=80, r_in=5, r_out=15, rotate_degrees=270, corners=6, style="FD")
.output("star.pdf")

5.2.11 Path styling

e line width specifies the thickness of the line used to stroke a path

* stroke_join_style defines how the corner joining two path components should be rendered:

from fpdf import FPDF
from fpdf.enums import StrokeJoinStyle

pdf

= FPDF()

pdf.add_page()

pdf.
pdf.

set_line_width(5)
set_fill_color(r=255, g=128, b=0)

with pdf.local_context(stroke_join_style=StrokeJoinStyle.ROUND):

pdf.regular_polygon(x=50, y=120, polyWidth=100, numSides=8, style="FD")

pdf.output("regular_polygon_rounded.pdf")

-94/193 -

5.2.10 Regular Star

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.star
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.star
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_line_width
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_line_width
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.StrokeJoinStyle
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.StrokeJoinStyle

5.2.11 Path styling

e stroke_cap_style defines how the end of a stroke should be rendered. This affects the ends of the segments of dashed strokes,
as well.

from fpdf import FPDF
from fpdf.enums import StrokeCapStyle

pdf = FPDF()

pdf.add_page()

pdf.set_line_width(5)

pdf.set_fill_color(r=255, g=128, b=0)

with pdf.local_context(stroke_cap_style=StrokeCapStyle.ROUND):
pdf.line(x1=50, y1=50, x2=150, y2=100)

pdf.output("line_with_round_ends.pdf")

There are even more specific path styling settings supported: dash_pattern, stroke_opacity, stroke_miter_limit ...

All of those settings can be set in a local_context() .

(3 February 9, 2026

-95/193 -

https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.StrokeCapStyle
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.StrokeCapStyle
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_dash_pattern
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_dash_pattern
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.local_context
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.local_context

5.3 Transformations

5.3 Transformations

5.3.1 Rotation
The rotation() context-manager will apply a rotation to all objects inserted in its indented block:

from fpdf import FPDF

pdf = FPDF(format=(40, 40))
pdf.add_page()
X, y = 15, 15
with pdf.rotation(60, x=x, y=y):
pdf.circle(x=x, y=y+15, radius=5)
Inserting a small base64-encoded image:
pdf.image("data:image/
png; base64, iVBORWOKGgOAAAANSUhEUgAAABAAAAAQBAMAAAD t 3e JISAAAAMFBMVEUOOKArMjhobHEOPUPFEBIUOOL+AAC2FBZ2JyuNICOfGX7xAwWTjCALCNTVVDA1alLzQ3C0jMAAAAVULEQVQI12NgwAaCDSA
0888GCItjnOszWGBJITVOGSCjWs8T1eQCQYV95evdxkFT8KpeOPLDi5sWfKd4LUSNS5zS1sKFolt8bwAZrCaGqNYJAgFDEpQAAAZmXafI4vZWwWAAAABIRUSErkJggg==", x=x, y=y)
pdf.rect(x=x-10, y=y+10, w=25, h=15)
pdf.output("rotations.pdf")

5.3.2 Skew

skew creates a skewing transformation of magnitude ax in the horizontal axis and ay in the vertical axis. The transformation
originates from x, y and will use a default origin unless specified otherwise:

with pdf.skew(ax=0, ay=10):
pdf.cell(text="text skewed on the y-axis")

-96/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rotation
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rotation

5.3.3 Mirror

with pdf.skew(ax=10, ay=0):
pdf.cell(text="text skewed on the x-axis")

text skewed on the x-axis

pdf.set_line_width(2)

pdf.set_draw_color(240)

pdf.set_fill color(r=230, g=30, b=180)

with pdf.skew(ax=-45, ay=0, x=100, y=170):
pdf.circle(x=100, y=170, radius=10, style="FD")

W\

5.3.3 Mirror
New in Q 2.7.5

The mirror context-manager applies a mirror transformation to all objects inserted in its indented block over a given mirror line
by specifying starting co-ordinate and angle.

X, y = 100, 100

pdf.text(x, y, text="mirror this text")

with pdf.mirror((x, y), "EAST"):
pdf.set_text_color(r=255, g=128, b=0)
pdf.text(x, y, text="mirror this text")

i

pdf.text(x, y, text="mirror this text")

with pdf.mirror((x, y), "NORTH"):
pdf.set_text_color(r=255, g=128, b=0)
pdf.text(x, y, text="mirror this text")

-97/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

mirror this text

prev_x, prev_y = pdf.x, pdf.y

pdf.multi_cell(w=50, text=LOREM_IPSUM)

with pdf.mirror((pdf.x, pdf.y), "NORTHEAST"):
Reset cursor to rror original multi-cell
pdf.x = prev_x

pdf.y = prev_y

pdf.multi_cell(w=50, text=LOREM_IPSUM, fill=True)

Lorem ipsum Ut nostrud
irure reprehenderit anim
nostrud dolore sed ut
Excepteur dolore ut sunt
irure

EXcebgent qojowe nf 2nug
Uo2fLNg qojoLe 26q nf
ILNLe Leblepeuqell; suw
rowsw 1benw Nf voeng

ILLE

-98/193 -

5.3.3 Mirror

(S February 17,2025

-99/193 -

5.4 Transparency

5.4 Transparency

The alpha opacity of text, shapes and even images can be controlled through stroke opacity (for lines) & fill opacity (for all
other content types):

pdf = FPDF()
pdf.set_font("Helvetica", style="B", size=24)
pdf.set_line_width(1.5)

pdf.add_page()

Draw an opaque red square:
pdf.set_fill_color (255, 0, 0)
pdf.rect(10, 10, 40, 40, "DF")

Set alpha to semi-transparency for shape lines & filled areas:
with pdf.local_context(fill_opacity=0.5, stroke_opacity=0.5):

Draw a green square:

pdf.set_fill_color(®, 255, 0)

pdf.rect(20, 20, 40, 40, "DF")

Set transparency for images & text:
with pdf.local_context(fill_opacity=0.25):
Insert an image:
pdf.image(HERE / "../docs/fpdf2-logo.png", 30, 30, 40)
Print some text:
pdf.text(22, 29, "You are...")

Print some text with full opacity:
pdf.text(30, 45, "Over the top")

Produce the resulting PDF:

pdf.output("transparency.pdf")

Results in:

-100/193 -

5.4 Transparency

O

(November 20, 2024

-101/193 -

5.5 Patterns and Gradients

5.5 Patterns and Gradients

New in §> 2.8.3

5.5.1 Overview

In PDF (Portable Document Format), a pattern is a graphical object that can be used to fill (or stroke) shapes. Patterns can
include simple color fills, images, or more advanced textures and gradients.

The patterns on PDF documents are grouped on 2 types: - Tiling patterns for any repeating patters.
- Shading patterns for gradients.

fpdf2 provides a context manager pdf.use_pattern(...) . Within this context, all drawn shapes or text will use the specified
pattern. Once the context ends, drawing reverts to the previously defined color.

At this moment, tiling patterns are not yet supported by fpdf2.

5.5.2 2. Gradients
2.1 What is a Gradient?

A gradient is a progressive blend between two or more colors. In PDF terms, gradients are implemented as shading patterns—
they allow a smooth color transition based on geometry.

2.2 Linear Gradients (axial shading)
A linear gradient blends colors along a straight line between two points. For instance, you can define a gradient that goes:

e Left to right
e Top to bottom

» Diagonally
or in any arbitrary orientation by specifying coordinates.
Example: Creating a Linear Gradient

from fpdf import FPDF
from fpdf.pattern import LinearGradient

pdf = FPDF()
pdf.add_page()

Define a linear gradient
linear_grad = LinearGradient(

pdf,

from_x=10, # Starting x-coordinate
from_y=0, # Starting y-coordinate
to_x=100, # Ending x-coordinate
to_y=0, # Ending y-coordinate
colors=["#C33764", "#1D2671"] # Start -> End color

)
with pdf.use_pattern(linear_grad):
Draw a rectangle that will be filled with the gradient
pdf.rect(x=10, y=10, w=100, h=20, style="FD")
pdf.output("pattern_linear_demo.pdf")
Result: pattern_linear demo.pdf

Key Parameters:

* from_x, from_y, to_x, to_y: The coordinates defining the line along which colors will blend.

* colors: A list of colors (hex strings or (R,G,B) tuples). The pattern will interpolate between these colors.

-102/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

5.5.3 4. Advanced Usage

2.3 Radial Gradients

A radial gradient blends colors in a circular or elliptical manner from an inner circle to an outer circle. This is perfect for
spotlight-like effects or circular color transitions.

Example: Creating a Radial Gradient

from fpdf import FPDF
from fpdf.pattern import RadialGradient

pdf = FPDF()
pdf.add_page()

Define a radial gradient
radial_grad = RadialGradient(
pdf,
start_circle_x=30,
start_circle_y=30,
start_circle_radius=0,
end_circle_x=50,
end_circle_y=50,
end_circle_radius=25
colors=["#FFFFOO", "#FFO000"],

Center X of inner circle
Center Y of inner circle
Radius of inner circle
Center X of outer circle
Center Y of outer circle
Radius of outer circle
Inner -> Outer color

S

)

with pdf.use_pattern(radial_grad):
Draw a circle filled with the radial gradient
pdf.circle(x=50, y=50, radius=25, style="FD")

pdf.output("pattern_radial_demo.pdf")
Result: pattern radial demo.pdf
Key Parameters:

 start_circle_x, start_circle_y, start_circle_radius: Center and radius of the inner circle.
* end_circle_x, end_circle_y, end_circle_radius: Center and radius of the outer circle.

* colors: A list of colors to be interpolated from inner circle to outer circle.

5.5.3 4. Advanced Usage
4.1 Multiple Colors

Both linear and radial gradients support multiple colors. If you pass, for example, colors=["#C33764", "#1D2671", "#FFA500"], the
resulting pattern will interpolate color transitions through each color in that order.

4.2 Extending & Background for Linear Gradients

» extend_before: Extends the first color before the starting point (i.e., x1,y1).
» extend_after: Extends the last color beyond the end point (i.e., x2,y2).

* background: Ensures that if any area is uncovered by the gradient (e.g., a rectangle that is bigger than the gradient line), it’ll
show the given background color.
4.3 Custom Bounds

For linear gradients or radial gradients, passing bounds=[0.2, 0.4, 0.7, ...] (values between 0 and 1) fine-tunes where each
color transition occurs. For instance, if you have 5 colors, you can specify 3 boundary values that partition the color progression
among them.

For example, taking a gradient with 5 colors and bounds=[6.1, 0.8, 0.9] : - The transition from color 1 to color 2 starts at the
beginning (0%) and ends at 10% - The transition from color 2 to color 3 starts at 10% and ends at 80% - The transition from color
3 to color 4 starts at 80% and ends at 90% - The transition from color 4 to color 5 starts at 90% and goes to the end (100%)

In other words, each boundary value dictates where the color transitions will occur along the total gradient length.

-103/193 -

5.5.3 4. Advanced Usage

(S February 20,2025

- 104/193 -

5.6 Barcodes

5.6 Barcodes
5.6.1 Code 39
Here is an example on how to generate a Code 39 barcode:
from fpdf import FPDF
pdf = FPDF()
pdf.add_page()

pdf.code39("*fpdf2*", x=30, y=50, w=4, h=20)
pdf.output('"code39.pdf")

Output preview:

fpdf2

5.6.2 Interleaved 2 of 5
Here is an example on how to generate an Interleaved 2 of 5 barcode:
from fpdf import FPDF
pdf = FPDF()
pdf.add_page()

pdf.interleaved2of5("1337", x=50, y=50, w=4, h=20)
pdf.output("interleaved2of5.pdf")

Output preview:

1337

5.6.3 PDF-417
Here is an example on how to generate a PDF-417 barcode using the pdf417 lib:
from fpdf import FPDF
from pdf417 import encode, render_image

pdf = FPDF()

-105/193 -

https://fr.wikipedia.org/wiki/Code_39
https://en.wikipedia.org/wiki/Interleaved_2_of_5
https://fr.wikipedia.org/wiki/PDF-417
https://github.com/mosquito/pdf417
https://github.com/mosquito/pdf417

5.6.4 QRCode

pdf.add_page()

img = render_image(encode("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed non risus. Suspendisse lectus tortor, dignissim sit amet, adipiscing
nec, ultricies sed, dolor. Cras elementum ultrices diam."))

pdf.image(img, x=10, y=50)

pdf.output("pdf417.pdf")

Output preview:

5.6.4 QRCode
Here is an example on how to generate a QR Code using the python-grcode lib:

from fpdf import FPDF
import qgrcode

pdf = FPDF()

pdf.add_page()

img = qrcode.make("fpdf2")
pdf.image(img.get_image(), x=50, y=50)
pdf.output("qgrcode.pdf")

aQ

Q

Output preview:

-106/193 -

https://en.wikipedia.org/wiki/QR_code
https://github.com/lincolnloop/python-qrcode
https://github.com/lincolnloop/python-qrcode

5.6.5 DataMatrix

5.6.5 DataMatrix

fpdf2 can be combined with the pystrich library to generate DataMatrix barcodes: pystrich generates pilimages, which can
then be inserted into the PDF file via the FPDF.image() method.

from fpdf import FPDF
from pystrich.datamatrix import DataMatrixEncoder, DataMatrixRenderer

Define the properties of the barcode
positionX = 10

positiony = 10

width = 57

height = 57

cellsize = 5

Prepare the datamatrix renderer that will be used to generate the pilimage
encoder = DataMatrixEncoder("[Text to be converted to a datamatrix barcode]")
encoder .width = width

encoder.height = height

renderer = DataMatrixRenderer(encoder.matrix, encoder.regions)

Generate a pilimage and move it into the memory stream
img = renderer.get_pilimage(cellsize)

Draw the barcode image into a PDF file

pdf = FPDF()

pdf.add_page()

pdf.image(img, positionX, positionY, width, height)
pdf.output("datamatrix.pdf")

- fj.

| I*lrll

Extend FPDF with a datamatrix() method
The code above could be added to the FPDF class as an extension method in the following way:

from fpdf import FPDF
from pystrich.datamatrix import DataMatrixEncoder, DataMatrixRenderer

class PDF(FPDF):
def datamatrix(self, text, w, h=None, x=None, y=None, cellsize=5):
if x is None:

-107/193 -

https://github.com/mmulqueen/pyStrich
https://github.com/mmulqueen/pyStrich
https://en.wikipedia.org/wiki/Data_Matrix

5.6.6 Aztec Code

x = self.x
if y is None:

y = self.y
if h is None:

h=w
encoder = DataMatrixEncoder (text)
encoder.width = w
encoder.height = h
renderer = DataMatrixRenderer(encoder.matrix, encoder.regions)
img = renderer.get_pilimage(cellsize)
self.image(img, x, y, w, h)

Usage example:

pdf = PDF()

pdf.add_page()

pdf.set_font("Helvetica", size=24)
pdf.datamatrix("Hello world!", w=100)
pdf.output("datamatrix_from_method.pdf")

5.6.6 Aztec Code

fpdf2 can be combined with the aztec_code_generator Pypi library to generate Aztec codes. It can be installed by running pip
install aztec_code_generator :

from fpdf import FPDF
from aztec_code_generator import AztecCode

pdf = FPDF()

pdf.add_page()

aztec_code = AztecCode("https://py-pdf.github.io/fpdf2/")
pdf.image(aztec_code.image(), x=10, y=10, w=100, h=100)
pdf.output("aztec_code.pdf")

Output preview:
b oy

A

LA T2

5.6.7 Codel28

Here is an example on how to generate a Code 128 barcode using the python-barcode lib, that can be installed by running pip

install python-barcode :

from io import BytesIO

from fpdf import FPDF

from barcode import Code128

from barcode.writer import SVGWriter

Create a new PDF document
pdf = FPDF()
pdf.add_page()

Set the position and size of the image in the PDF
X = 50

y = 50

w = 100

h =70

Generate a Codel28 Barcode as SVG:

svg_img_bytes = BytesIO()

Code128("100000902922", writer=SVGWriter()).write(svg_img_bytes)
pdf.image(svg_img_bytes, Xx=x, y=y, w=w, h=h)

Output a PDF file:
pdf.output("code128_barcode.pdf")

Output Preview:

-108/193 -

https://pypi.org/project/aztec-code-generator/
https://pypi.org/project/aztec-code-generator/
https://en.wikipedia.org/wiki/Aztec_Code
https://en.wikipedia.org/wiki/Code_128
https://github.com/WhyNotHugo/python-barcode
https://github.com/WhyNotHugo/python-barcode

5.6.7 Codel128

C April 18,2025

-109/193 -

5.7 Drawing

5.7 Drawing

The fpdf.drawing module provides an API for composing paths out of an arbitrary sequence of straight lines and curves. This
allows fairly low-level control over the graphics primitives that PDF provides, giving the user the ability to draw pretty much any
vector shape on the page.

The drawing API makes use of features (notably transparency and blending modes) that were introduced in PDF 1.4. Therefore,
use of the features of this module will automatically set the output version to 1.4 (fpdf normally defaults to version 1.3. Because
the PDF 1.4 specification was originally published in 2001, this version should be compatible with all viewers currently in general
use).

5.7.1 Getting Started

The easiest way to add a drawing to the document is via fpdf.FPDF.new_path . This is a context manager that takes care of
serializing the path to the document once the context is exited.

Drawings follow the fpdf convention that the origin (that is, coordinate(0, 0)), is at the top-left corner of the page. The numbers
specified to the various path commands are interpreted in the document units.

import fpdf

pdf = fpdf.FPDF(unit='mm', format=(10, 10))
pdf.add_page()

with pdf.new_path() as path:
path.move_to(2, 2)
path.line_to(8, 8)
path.horizontal_line_relative(-6)
path.line_relative(6, -6)
path.close()

pdf.output("drawing-demo.pdf")

This example draws an hourglass shape centered on the page:

view as PDF

-110/193 -

5.7.2 Adding Some Style

5.7.2 Adding Some Style

Drawings can be styled, changing how they look and blend with other drawings. Styling can change the color, opacity, stroke
shape, and other attributes of a drawing.

Let's add some color to the above example:

import fpdf

pdf = fpdf.FPDF(unit="mm', format=(10, 10))
pdf.add_page()

with pdf.new_path() as path:
path.style.fill color = '#AQ70D0O'
path.style.stroke_color = fpdf.drawing.gray8(210)
path.style.stroke_width = 1
path.style.stroke_opacity = 0.75
path.style.stroke_join_style = 'round'

path.move_to(2, 2)
path.line_to(8, 8)
path.horizontal_line_relative(-6)
path.line_relative(6, -6)
path.close()

pdf.output("drawing-demo.pdf")

If you make color choices like these, it's probably not a good idea to quit your day job to become a graphic designer. Here's what
the output should look like:

view as PDF

5.7.3 Transforms And You

Transforms provide the ability to manipulate the placement of points within a path without having to do any pesky math yourself.
Transforms are composable using python's matrix multiplication operator (@), so, for example, a transform that both rotates and
scales an object can be create by matrix multiplying a rotation transform with a scaling transform.

-111/193 -

5.7.3 Transforms And You

An important thing to note about transforms is that the result is order dependent, which is to say that something like performing
a rotation followed by scaling will not, in the general case, result in the same output as performing the same scaling followed by
the same rotation.

Additionally, it's not generally possible to deconstruct a composed transformation (representing an ordered sequence of
translations, scaling, rotations, shearing) back into the sequence of individual transformation functions that produced it. That's
okay, because this isn't important unless you're trying to do something like animate transforms after they've been composed,
which you can't do in a PDF anyway.

All that said, let's take the example we've been working with for a spin (the pun is intended, you see, because we're going to
rotate the drawing). Explaining the joke does make it better.

An easy way to apply a transform to a path is through the path.transform property.

import fpdf

pdf = fpdf.FPDF(unit="mm", format=(10, 10))
pdf.add_page()

with pdf.new_path() as path:
path.style.fill_color = "#A070DO"
path.style.stroke_color = fpdf.drawing.gray8(210)
path.style.stroke_width = 1
path.style.stroke_opacity = 0.75
path.style.stroke_join_style = "round"
path.transform = fpdf.drawing.Transform.rotation_d(45).scale(0.707).about(5, 5)

path.move_to(2, 2)
path.line_to(8, 8)
path.horizontal_line_relative(-6)
path.line_relative(6, -6)
path.close()

pdf.output("drawing-demo.pdf")

view as PDF

The transform in the above example rotates the path 45 degrees clockwise and scales it by 1/sqrt(2) around its center point.
This transform could be equivalently written as:

-112/193 -

5.7.4 Clipping Paths

import fpdf
T = fpdf.drawing.Transform

T.translation(-5, -5) @ T.rotation_d(45) @ T.scaling(0.707) @ T.translation(5, 5)

Because all transforms operate on points relative to the origin, if we had rotated the path without first centering it on the origin,
we would have rotated it partway off of the page. Similarly, the size-reduction from the scaling would have moved it closer to the
origin. By bracketing the transforms with the two translations, the placement of the drawing on the page is preserved.

5.7.4 Clipping Paths

The clipping path is used to define the region that the normal path is actually painted. This can be used to create drawings that
would otherwise be difficult to produce.

import fpdf

pdf = fpdf.FPDF(unit="mm", format=(10, 10))
pdf.add_page()

clipping_path = fpdf.drawing.ClippingPath()
clipping_path.rectangle(x=2.5, y=2.5, w=5, h=5, rx=1, ry=1)

with pdf.new_path() as path:
path.style.fill_color = "#A@760D0"
path.style.stroke_color = fpdf.drawing.gray8(210)
path.style.stroke_width = 1
path.style.stroke_opacity = 0.75
path.style.stroke_join_style = "round"

path.clipping_path = clipping_path
path.move_to(2, 2)

path.line_to(8, 8)
path.horizontal_line_relative(-6)
path.line_relative(6, -6)

path.close()

pdf.output("drawing-demo.pdf")

view as PDF

-113/193 -

5.7.5 Compositing operations

5.7.5 Compositing operations
New in (> 2.8.5

The drawing API also supports compositing operations, which control how a path blends with another. These are based on the
Porter-Duff compositing model and the blend modes defined in PDF 1.4.

You can set a compositing operation via the PaintComposite class:

from fpdf import FPDF
from fpdf.drawing import PaintedPath, PaintComposite
from fpdf.enums import CompositingOperation

from pathlib import Path

pdf = FPDF()
pdf.add_page()

with pdf.drawing_context() as gc:
blue_square = PaintedPath()
blue_square.rectangle(10, 10, 50, 50)
blue_square.style.fill_color = "#0000ff"
red_square = PaintedPath()
red_square.rectangle(35, 35, 50, 50)
red_square.style.fill_color = "#ff0000"

composite = PaintComposite(backdrop=red_square, source=blue_square, operation=CompositingOperation.DESTINATION_ATOP)
gc.add_item(composite)

pdf.output('compositing-demo.pdf')

5.7.6 Next Steps

The presented API style is designed to make it simple to produce shapes declaratively in your Python scripts. However, paths can
just as easily be created programmatically by creating instances of the fpdf.drawing.PaintedPath for paths and
fpdf.drawing.Graphicscontext for groups of paths.

Storing paths in intermediate objects allows reusing them and can open up more advanced use-cases. The fpdf.svg SVG

converter, for example, is implemented using the fpdf.drawing interface.

(S October 14, 2025

-114/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://en.wikipedia.org/wiki/Alpha_compositing

5.8 Scalable Vector Graphics (SVG)

5.8 Scalable Vector Graphics (SVG)

fpdf2 supports basic conversion of SVG paths into PDF paths, which can be inserted into an existing PDF document or used as
the contents of a new PDF document.

Not all SVGs will convert correctly. Please see the list of unsupported features for more information about what to look out for.

5.8.1 Basic usage
SVG files can be directly inserted inside a PDF file using the image() method:

from fpdf import FPDF

pdf = FPDF()

pdf.add_page()
pdf.image("vector.svg")
pdf.output("doc-with-svg.pdf")

Either the embedded .svg file must includes width and/or height attributes (absolute or relative), or some dimensions must be
provided to .image() through its w= and/or h= parameters.

5.8.2 Detailed example
The following script will create a PDF that consists only of the graphics contents of the provided SVG file, filling the whole page:

import fpdf
svg = fpdf.svg.SvGObject.from_file("my_file.svg")

pdf = fpdf.FPDF(unit="pt", format=(svg.width, svg.height))
pdf.add_page()
svg.draw_to_page(pdf)

pdf.output("my_file.pdf")

Because this takes the PDF document size from the source SVG, it does assume that the width/height of the SVG are specified in
absolute units rather than relative ones (i.e. the top-level <svg> tag has something like width="5cm" and not width=50%). In this
case, if the values are percentages, they will be interpreted as their literal numeric value (i.e. 100% would be treated as 100 pt).
The next example uses transform_to_page_viewport , which will scale an SVG with a percentage based width to the pre-defined
PDF page size.

The converted SVG object can be returned as an fpdf.drawing.GraphicsContext collection of drawing directives for more control
over how it is rendered:

import fpdf
svg = fpdf.svg.SVGObject.from_file("my file.svg")

pdf = FPDF(unit="in", format=(8.5, 11))
pdf.add_page()

We pass align_viewbox=False because we want to perform positioning manually
after the size transform has been computed.
width, height, paths = svg.transform_to_page_viewport(pdf, align_viewbox=False)
note: transformation order is important! This centers the svg drawing at the
origin, rotates it 90 degrees clockwise, and then repositions it to the
middle of the output page.
paths.transform = paths.transform @ fpdf.drawing.Transform.translation(

-width / 2, -height / 2
).rotate_d(90).translate(pdf.w / 2, pdf.h / 2)

pdf.draw_path(paths)

pdf.output("my_file.pdf")

5.8.3 Converting vector graphics to raster graphics

Usually, embedding SVG as vector graphics in PDF documents is the best approach, as it is both lightweight and will allow for
better details / precision of the images inserted.

-115/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image

5.8.3 Converting vector graphics to raster graphics

But sometimes, SVG images cannot be directly embedded as vector graphics (SVG), and a conversion to raster graphics (PNG,

JPG) must be performed.

The following sections demonstrate how to perform such conversion, using Pygal charts as examples:

Using cairosvg

A faster and efficient approach for embedding pygal SVG charts into a PDF file is to use the cairosvg library to convert the
vector graphics generated into a BytesIo instance, so that we can keep these data in an in-memory buffer:

import pygal

from fpdf

import FPDF

from io import BytesIO
import cairosvg

Create a Pygal bar chart

bar_chart

bar_chart.
bar_chart.
bar_chart.
bar_chart.
bar_chart.
bar_chart.

svg_img =

Convert

= pygal.Bar()

o,

54.7,

3.9, 10.8, 23.8,

44.8, 36.2, 26.6,

35.3])
20.1])

title = 'Browser usage evolution (in %)'

x_labels = map(str, range(2002, 2013))

add('Firefox', [None, None, O, 16.6, 25, 31, 36.4, 45.5, 46.3, 42.8, 37.1])
add('Chrome', [None, None, None, None, None, None,

add('IE', [85.8, 84.6, 84.7, 74.5, 66, 58.6,

add('Others', [14.2, 15.4, 15.3, 8.9, 9, 10.4,

bar_chart.render()

the SVG chart to a PNG image in a BytesIO object

img_bytesio = BytesIO()
cairosvg.svg2png(svg_img, write_to=img_bytesio, dpi=96)

Set the
X = 50
y = 50
w = 100
h =70

*

position and size of the image in the PDF

Build the PDF

pdf = FPDF()
pdf.add_page()

pdf.image(img_bytesio, x=x, y=y, w=w, h=h)
pdf.output('browser-usage-bar-chart.pdf')

8.9,

5.8, 6.7, 6.8,

-116/193 -

7.5])

5.8.3 Converting vector graphics to raster graphics

The above code generates a PDF with the following graph:
Browser usage evolution (in %)

B Firefox
B Chrome =

W 1e
Others

L T T e L L L L L L L L N L L L

1 EEEEE CEEEE

Bl

-l R e

wlh---------

2002 2003 2004 2805 2806 2007 2088 2009 2010 2011 2012

!l Troubleshooting advice !!
You may encounter 6Tk (Gnome Toolkit) errors while executing the above example in windows. Error could be like following -

OSError: no library called "cairo-2" was found

no library called "cairo" was found

no library called "libcairo-2" was found

cannot load library 'libcairo.so.2': error 0x7e
cannot load library 'libcairo.2.dylib': error 0x7e
cannot load library 'libcairo-2.d11l': error 0x7e

In this case install install 6Tk from GTK-for-Windows-Runtime-Environment-Installer. Restart your editor. And you are all done.

Using svglib and reportlab
An alternative, purely pythonic but slightly slower solution is to use reportlab and svglib:

import io

import pygal

from reportlab.graphics import renderPM
from svglib.svglib import SvgRenderer
from fpdf import FPDF

from 1xml import etree

Create a Pygal bar chart

bar_chart = pygal.Bar()

bar_chart.title = 'Sales by Year'

bar_chart.x_labels = ['2016', '2017', '2018', '2019',6 '2020']
bar_chart.add('Product A', [500, 750, 1000, 1250, 1500])
bar_chart.add('Product B', [750, 1000, 1250, 1500, 1750])
svg_img = bar_chart.render()

Convert the SVG chart to a JPEG image in a BytesIO object
drawing = SvgRenderer('').render(etree.fromstring(svg_img))

-117/193 -

https://github.com/tschoonj/GTK-for-Windows-Runtime-Environment-Installer/releases

5.8.4 Warning logs

jpg_img_bytes = renderPM.drawToString(drawing, fmt='JPG', dpi=72)
img_bytesio = io.BytesIO(jpg_img_bytes)

Set the position and size of the image in the PDF
50
50
100

#
X
y
w
h 70

*

Build the PDF

pdf = FPDF()

pdf.add_page()

pdf.image(img_bytesio, x=x, y=y, w=w, h=h)
pdf.output('sales-by-year-bar-chart.pdf')

The above code generates the following output:

Sales by Year

B Product A
[Product B

2016 2017 2018 2019 2024

Performance considerations

Regarding performance, cairosvg is generally faster than svglib when it comes to rendering SVG files to other formats. This is
because cairosvg is built on top of a fast C-based rendering engine, while svglib is written entirely in Python, and hence a bit
slower. Additionally, cairosvg offers various options for optimizing the rendering performance, such as disabling certain features,
like fonts or filters.

5.8.4 Warning logs

The fpdf.svg module produces WARNING log messages for some unsupported SVG tags & attributes. If need be, you can
suppress those logs:

logging.getLogger("fpdf.svg").propagate = False

-118/193 -

5.8.5 Supported SVG Features

5.8.5 Supported SVG Features

e groups (<g>)

e paths (<path>)

* basic shapes (<rect>, <circle>, <ellipse>, <line>, <polyline>, <polygon>)
¢ basic <image> elements

* basic cross-references, with defs tags anywhere in the SVG code

* stroke & fill coloring and opacity

* basic stroke styling

* inline CSS styling via style="..." attributes

* clipping paths

e gradients: <linearGradient> and <radialGradient> elements with stops, opacity, transforms, and spread methods

5.8.6 Currently Unsupported Notable SVG Features

Everything not listed as supported is unsupported, which is a lot. SVG is a very complex format that has become increasingly
complex as it absorbs more of the entire browser rendering stack into its specification.

However, there are some pretty commonly used features that are unsupported and may cause unexpected results, up to and
including a normal-looking SVG rendering as a completely blank PDF.

There are some common SVG features that are currently unsupported, but that fpdf2 could end up supporting with the help of
contributors :

e <tspan> / <textPath> / <text> (-> there is a starting draft PR)

* <symbol>

* <marker>

* <pattern>

* embedded non-image content (including nested SVGs)

* many standard attributes

* CSS styling via <style> tags or external *.css files.

Contributions would be very welcome to add support for more SVG features! /-

If you are interested in contributing to fpdf2 regarding this, drop a comment on GitHub issue #537 and a maintainer will give

some pointers to start poking with the code =

(S November 13, 2025

-119/193 -

https://github.com/py-pdf/fpdf2/pull/1029
https://github.com/py-pdf/fpdf2/issues/537

5.9 Charts & graphs

5.9 Charts & graphs

5.9.1 Charts
Using Matplotlib
Before running this example, please install the required dependencies using the command below:
pip install fpdf2 matplotlib
Example taken from Matplotlib artist tutorial:

from fpdf import FPDF

from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure

import numpy as np

from PIL import Image

fig = Figure(figsize=(6, 4), dpi=300)
fig.subplots_adjust(top=0.8)

axl = fig.add_subplot(211)
axl.set_ylabel("volts")
axl.set_title("a sine wave")

t = np.arange(0.0, 1.0, 0.01)
s = np.sin(2 * np.pi * t)
(line,) = ax1l.plot(t, s, color="blue", 1lw=2)

Fixing random state for reproducibility
np.random.seed(19680801)

ax2 = fig.add_axes([0.15, 0.1, 0.7, 0.3])
n, bins, patches = ax2.hist(

np.random.randn(1000), 50, facecolor="yellow", edgecolor="yellow"
)

ax2.set_xlabel("time (s)")

Converting Figure to an image:

canvas = FigureCanvas(fig)

canvas.draw()

img = Image.fromarray(np.asarray(canvas.buffer_rgba()))

pdf = FPDF()
pdf.add_page()

pdf.image(img, w=pdf.epw) # Make the image full width
pdf.output("matplotlib.pdf")

Result:

-120/193 -

https://matplotlib.org/stable/tutorials/intermediate/artists.html

a sine wave

0.0 0.2 0.4 0.6

time (s)

You can also embed a figure as SVG (but there may be some limitations):

from fpdf import FPDF
import matplotlib.pyplot as plt
import numpy as np

plt.figure(figsize=[2, 2])

X = np.arange(0, 10, 0.00001)

y = x*np.sin(2* np.pi * x)

plt.plot(y)

plt.savefig("figure.svg", format="svg")

pdf = FPDF()

pdf.add_page()
pdf.image("figure.svg")
pdf.output("doc-with-figure.pdf")

Using Pandas
The dependencies required for the following examples can be installed using this command:

pip install fpdf2 matplotlib pandas

Create a plot using pandas.DataFrame.plot:

from io import BytesIO

from fpdf import FPDF

import pandas as pd

import matplotlib.pyplot as plt
import io

DATA = {
"Unemployment_Rate": [6.1, 5.8, 5.7, 5.7, 5.8, 5.6, 5.5, 5.3, 5.2, 5.2],
"Stock_Index_Price": [1500, 1520, 1525, 1523, 1515, 1540, 1545, 1560, 1555, 1565]
}
COLUMNS = tuple(DATA.keys())

plt.figure() # Create a new figure object

df = pd.DataFrame(DATA, columns=COLUMNS)
df.plot (x=COLUMNS[O], y=COLUMNS[1], kind="scatter")

-121/193 -

5.9.1 Charts

https://py-pdf.github.io/fpdf2/SVG.html#currently-unsupported-notable-svg-features
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.html

Converting Figure to an image:
img_buf = BytesIO() # Create image object
plt.savefig(img_buf, dpi=200) # Save the image

pdf = FPDF()

pdf.add_page()

pdf.image(img_buf, w=pdf.epw) # Make the image full width
pdf.output("matplotlib_pandas.pdf")

img_buf.close()

- h

5.9.1 Charts

Result:
L
1560 A °
L
1550 A
0]
O ¢
[
a- 1540 A ®
x
0}
©
E| 1530 A
AV
S 8
- —
2 1520 o
L
1510 A
1500 A L
1 I I 1 I
5.2 5.4 5.6 5.8 6.0
Unemployment Rate
Create a table with pandas DataFrame:
from fpdf import FPDF
import pandas as pd
DF = pd.DataFrame(
{
"First name": ["Jules", "Mary", "Carlson", "Lucas"],
"Last name": ["Smith", "Ramos", "Banks", "Cimon"],
"Age": [34, 45, 19, 31]
"City": ["San Juan", "Orlando", "Los Angeles", "Saint-Mathurin-sur-Loire"],
}

Convert all data inside dataframe into string type:
) .applymap(str)

COLUMNS = [list(DF)] # Get list of dataframe columns
ROWS = DF.values.tolist() # Get list of dataframe rows
DATA = COLUMNS + ROWS # Combine columns and rows in one list

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=10)
with pdf.table(
borders_layout="MINIMAL"
cell_fill_color=200, # grey
cell_fill_mode="ROWS",
line_height=pdf.font_size * 2.5,
text_align="CENTER",
width=160,
) as table:
for data_row in DATA:
row = table.row()
for datum in data_row:

-122/193 -

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

row.cell(datum)
pdf.output("table_from_pandas.pdf")

5.9.1 Charts

Result:
First name Last name Age City
Jules Smith 34 San Juan
Mary Ramos 45 Orlando
Carlson Banks 19 Los Angeles
Lucas Cimon 31 Saint-Mabhturin-sur-Loire
Using Ibis

The Ibis library provides a unified interface for analytical workflows across different backends (such as DuckDB, BigQuery,
pandas, and more). Ibis table expressions are lazy and backend-agnostic; to retrieve the actual data, you need to execute the

expression, which typically returns a pandas DataFrame.

This makes it straightforward to use Ibis with fpdf2 : simply execute your Ibis table expression to get a DataFrame, then render
it as a table in your PDF using the same approach as with pandas.

Before running the following example, please install the required dependencies:

pip install "ibis-framework[duckdb]" fpdf2 pandas

Example: Render an Ibis table as a table in a PDF document:

from fpdf import FPDF
import ibis
import pandas as pd

Connect to a DuckDB in-memory database (as an example backend)

con = ibis.duckdb.connect()

Create a sample table in DuckDB with a SQL INSERT command:

con.raw_sql("""

CREATE TABLE people (
first_name VARCHAR,
last_name VARCHAR,
age INTEGER,
city VARCHAR

)i

INSERT INTO people VALUES
('Jules', 'smith', 34, 'San Juan'),
('Mary', 'Ramos', 45, 'Orlando'),
('Carlson', 'Banks', 19, 'Los Angeles'),
('Lucas', 'Cimon', 31, 'Angers');

"""

Get an Ibis table expression
t = con.table("people")

(Optional) Apply Ibis expressions, e.g., filtering or selecting columns

expr = t # or: t.filter(t.age > 30)

Execute the Ibis expression to get a pandas DataFrame
df = expr.execute()

Extract column headers and row data for PDF rendering
COLUMNS = [list(df)] # column headers

ROWS = df.values.tolist() # data rows

DATA = COLUMNS + ROWS

=

pdf = FPDF()

pdf.add_page()

pdf.set_font("Times", size=10)

with pdf.table(
borders_layout="MINIMAL"
cell_fill_color=200, # grey
cell_fill_mode="ROWS",

-123/193 -

https://ibis-project.org/

line_height=pdf.font_size * 2.5,

text_align="CENTER",
width=160,
) as table:
for data_row in DATA:
row = table.row()
for datum in data_row:
row.cell(datum)
pdf.output("table_from_ibis.pdf")

5.9.1 Charts

This approach works with any Ibis backend (DuckDB, pandas, BigQuery, etc.)—just use .execute() to get a DataFrame, then

render as shown above.

References:

* Ibis documentation

¢ fpdf2 documentation: Using Pandas

Using Plotly

Before running this example, please install the required dependencies using the command below:

pip install fpdf2 plotly kaleido numpy

kaleido is a cross-platform library for generating static images that is used by plotly.

Example taken from Plotly static image export tutorial:

import io

import plotly.graph_objects as go
import numpy as np

from fpdf import FPDF

np.random.seed(1)

N = 100

X = np.random.rand(N)

y = np.random.rand(N)
colors = np.random.rand(N)
sz = np.random.rand(N) * 30

fig = go.Figure()
fig.add_trace(
go.Scatter (
X=X,
Y=Y,
mode="markers",
marker=go.scatter.Marker (

size=sz, color=colors, opacity=0.6, colorscale="Viridis"

)

)

Convert the figure to png using kaleido
image_data = fig.to_image(format="png", engine="kaleido")

Create an io.BytesIO object which can be used by FPDF2

image = io.BytesIO(image_data)
pdf = FPDF()
pdf.add_page()

pdf.image(image, w=pdf.epw) # Width of the image is equal to the width of the page

pdf.output("plotly_demo.pdf")

Result:

-124/193 -

https://ibis-project.org/docs/
https://pypi.org/project/kaleido/
https://plotly.com/python/static-image-export/

5.9.1 Charts

o
0.8 . . ’
N @ 0. ‘ ,
v e o %
0.4 ‘
®
s 0 g0 g o

While you can also embed a figure as SVG, this is not recommended as text data - such as the x and y axis bars - might not be
displayed, because plotly places this data in a SVG text tag which is currently not supported by fpdf2.

Before running this example, please install the required dependencies:
pip install fpdf2 plotly kaleido pandas
from fpdf import FPDF

import plotly.express as px

fig = px.bar(x=["a", "b", "c"], y=[1, 3, 2])
fig.write_image("figure.svg")

pdf = FPDF()
pdf.add_page()

pdf.image("figure.svg", w=pdf.epw)
pdf.output("plotly.pdf")

Result:

- 125/193 -

https://github.com/py-pdf/fpdf2/issues/537
https://github.com/py-pdf/fpdf2/issues/537

5.9.2 Mathematical formulas

Using Pygal
Pygal is a Python graph plotting library. You can install it using: pip install pygal

fpdf2 can embed graphs and charts generated using pygal library. However, they cannot be embedded as SVG directly, because
Pygal inserts <style> & <script> tags in the images it produces (cf. pygal/svg.py), which is currently not supported by fpdf2.
The full list of supported & unsupported SVG features can be found there: SVG page.

You can find documentation on how to convert vector images (SVG) to raster images (PNG, JPG), with a practical example of
embedding PyGal charts, there: SVG page > Converting vector graphics to raster graphics.

5.9.2 Mathematical formulas

fpdf2 can only insert mathematical formula in the form of images. The following sections will explain how to generate and
embed such images.

Using Google Charts API
Official documentation: Google Charts Infographics - Mathematical Formulas.
Example:

from io import BytesIO

from urllib.parse import quote
from urllib.request import urlopen
from fpdf import FPDF

formula = "xAn + yAn = a/b"
height = 170
url = f"https://chart.googleapis.com/chart?cht=tx&chs={height}&chl={quote(formula)}"
with urlopen(url) as img_file: # nosec B310
img = BytesIO(img_file.read())

pdf = FPDF()
pdf.add_page()

pdf.image(img, w=30)
pdf.output("equation_google_charts.pdf")

Result:

-126/193 -

https://www.pygal.org/en/stable/
https://github.com/Kozea/pygal/blob/3.0.0/pygal/svg.py#L449
https://github.com/Kozea/pygal/blob/3.0.0/pygal/svg.py#L449
https://developers.google.com/chart/infographics/docs/formulas

5.9.2 Mathematical formulas

r"+y"=a/b

Using LaTeX & Matplotlib
Matplotlib can render LaTeX: Text rendering With LaTeX.
Example:

from io import BytesIO
from fpdf import FPDF
from matplotlib.figure import Figure

fig = Figure(figsize=(6, 2))

gca = fig.gca()

gca.text(0, 0.5, r"$xAn + yAn = \frac{a}{b}$", fontsize=60)
gca.axis("off")

Converting Figure to a SVG image:
img = BytesIO()
fig.savefig(img, format="svg")

pdf = FPDF()
pdf.add_page()

pdf.image(img, w=100)
pdf.output("equation_matplotlib.pdf")

—d
X"+ ”—5

If you have trouble with the SVG export, you can also render the matplotlib figure as pixels:

from fpdf import FPDF

from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure

import numpy as np

from PIL import Image

fig = Figure(figsize=(6, 2), dpi=300)

gca = fig.gca()

gca.text(0, 0.5, r"$xAn + yAn = \frac{a}{b}$", fontsize=60)
gca.axis("off")

canvas = FigureCanvas(fig)
canvas.draw()
img = Image.fromarray(np.asarray(canvas.buffer_rgba()))

pdf = FPDF()
pdf.add_page()

pdf.image(img, w=100)
pdf.output("equation_matplotlib_raster.pdf")

© June 24,2025

-127/193 -

https://matplotlib.org/stable/tutorials/text/usetex.html

6. PDF Features

6. PDF Features

6.1 Links

fpdf2 can generate both internal links (to other pages in the document) & hyperlinks (links to external URLs that will be
opened in a browser).

6.1.1 Hyperlink with FPDF.cell
This method makes the whole cell clickable (not only the text):

from fpdf import FPDF

pdf = FPDF()

pdf.add_page()

pdf.set_font("helvetica", size=24)

pdf.cell(text="Cell link", border=1, center=True,
link="https://github.com/py-pdf/fpdf2")

.output ("hyperlink.pdf")

S5

pd

6.1.2 Hyperlink with FPDE.multi_cell

from fpdf import FPDF

pdf = FPDF()

pdf.set_font("helvetica", size=24)

pdf.add_page()

pdf.multi_cell(
pdf.epw,
text="**Website:** [fpdf2](https://py-pdf.github.io/fpdf2/) _ Go visit it!__",
markdown=True,

)
pdf.output("hyperlink.pdf")

Links defined this way in Markdown can be styled by setting Fpbr class attributes MARKDOWN_LINK_cOLOR (default: None) &
MARKDOWN_LINK_UNDERLINE (default: True).

link="https://...your-url" can also be used to make the whole cell clickable.

6.1.3 Hyperlink with FPDF.link

The FpDF.1link is a low-level method that defines a rectangular clickable area.
There is an example showing how to place such rectangular link over some text:

from fpdf import FPDF

pdf = FPDF()

pdf.add_page()

pdf.set_font("helvetica", size=36)

line_height = 10

text = "Text link"

pdf.text(x=0, y=line_height, text=text)

width = pdf.get_string width(text)

pdf.link(x=0, y=0, w=width, h=1line_height, link="https://github.com/py-pdf/fpdf2")
pdf.output("hyperlink.pdf")

6.1.4 Hyperlink with write_html
An alternative method using FPDF.write_html:

from fpdf import FPDF

pdf = FPDF()

pdf.set_font_size(16)

pdf.add_page()

pdf.write_html('Link defined as HTML')
pdf.output("hyperlink.pdf")

-128/193 -

The hyperlinks defined this way will be rendered in blue with underline.

6.1.5 Internal links
Internal links are links redirecting to other pages in the document.
Using FPDF.cell:

from fpdf import FPDF

pdf = FPDF()
pdf.set_font("helvetica", size=24)

pdf.add_page()

pdf.cell(text="welcome on first page!", align="C", center=True)
pdf.add_page()

link = pdf.add_link(page=1)

pdf.cell(text="Internal link to first page", border=1, link=1link)
pdf.output("internal_link.pdf")

6.1.5 Internal links

There are some situations where a user wants to create an internal link to another page in the PDF document, but the page
number is not known at the time of link creation. In this case, the link can be created using pdf.add_link() as before, and then

later re-reference to a specific page using pdf.set_link() . In this example our goal is to link to a page that occurs after a section

with a variable amount of text, potentially occupying multiple pages:

from fpdf import FPDF
import random

pdf = FPDF()
pdf.set_font("helvetica", size=24)
pdf.add_page()

create a link to a page that will be created later

link_to_summary_page = pdf.add_link()

pdf.cell(text="Link to summary after elements", border=1, link=1link_to_summary_page)
pdf.1n(20)

pdf.cell(text="List of elements", align="C", center=True)
pdf.1n(20)

this num_elements variable can vary across runs

resulting in a different number of pages

num_elements = random.randint(10,30)

for i in range(num_elements):
pdf.cell(text=f"Element {i+1}", align="C", center=True)
pdf.1n(20)

“set_link® to change page referenced by the link

pdf.add_page()

pdf.set_link(link_to_summary_page)

pdf.cell(text=f"Summary: there are {num_elements} elements", align="C", center=True)
pdf.1n(20)

link back to the first page

link = pdf.add_link(page=1)

pdf.cell(text="Internal link to first page", border=1, link=1link)

pdf.output("internal_link_unknown_pages.pdf")
Other methods can also insert internal links:

* FPDFE.multi cell using link= or markdown=True and this syntax: [link text](page number)
e FPDF.link

* FPDFEwrite html using anchor tags: link text

The unit tests test_internal_links() in test links.py provides examples for all of those methods.

6.1.6 Links to other documents on the filesystem
Using FPDF.cell:

from fpdf import FPDF

pdf = FPDF()

pdf.set_font("helvetica", size=24)

pdf.add_page()

pdf.cell(text="Link to other_doc.pdf", border=1, link="other_doc.pdf")
pdf.output("link_to_other_doc.pdf")

-129/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.link
https://github.com/py-pdf/fpdf2/blob/master/test/test_links.py

6.1.7 Alternative description

Other methods can also insert internal links:

* FPDFE multi cell using link= or markdown=True and this syntax: [link text](other_doc.pdf)
e FPDF.link

» FPDF.write html using anchor tags: 1link text

The unit test test_link_to_other_document() in test links.py provides examples for all of those methods.

6.1.7 Alternative description
An optional textual description of the link can be provided, for accessibility purposes:

pdf.link(x=0, y=0, w=width, h=line_height, link="https://github.com/py-pdf/fpdf2",
alt_text="GitHub page for fpdf2")

C April 26,2025

- 130/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.link
https://github.com/py-pdf/fpdf2/blob/master/test/test_links.py

6.2 Metadata

6.2 Metadata

The PDF specification contain two types of metadata, the newer XMP (Extensible Metadata Platform, XML-based) and older
DocumentInformation dictionary. The PDF 2.0 specification removes the DocumentInformation dictionary.

Currently, the following methods on fpdf.FpDF allow to set metadata information in the bocumentInformation dictionary:

* set_title()

* set_lang()

* set_subject()

* set_author()

* set_keywords()

* set_producer()

* set_creator()

* set_creation_date()

* set_xmp_metadata() , that requires you to craft the necessary XML string

(S September 25,2025

-131/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_title
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_title
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_lang
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_lang
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_subject
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_subject
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_author
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_author
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_keywords
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_keywords
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_producer
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_producer
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_creator
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_creator
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_creation_date
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_creation_date
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_xmp_metadata
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_xmp_metadata

6.3

Annotations

The PDF format allows to add various annotations to a document.

6.3.1 Text annotations

They are rendered this way by Sumatra PDF reader:

Some teXt- %is is a text annotation. i

from fpdf import FPDF

pdf
pdf
pdf
pdf
pdf

)
pdf

= FPDF()

.add_page()

.set_font("Helvetica", size=24)
.text(x=60, y=140, text="Some text.")
.text_annotation(

Xx=100,

y=130,

text="This is a text annotation.",

.output("text_annotation.pdf")

Method documentation: FPDF.text annotation

6.3.2 Free Text Annotations

They are rendered this way by Adobe Acrobat Reader:

This is a free text annotation.

Some text.

from fpdf import FPDF

pdf

pdf.
pdf.
pdf.
pdf.
pdf.
pdf.

)
pdf

= FPDF()

add_page()

set_font("Helvetica", size=24)
text(x=60, y=140, text="Some text.")
set_draw_color(255,0,0)

set_font_size(12)

free_text_annotation(

Xx=100,

y=130,

text="This is a free text annotation.",
w=150,

h=15,
.output("free_text_annotation.pdf")

Method documentation: FPDF.free text annotation

6.3.3 Highlights

from fpdf import FPDF

pdf
pdf
pdf

= FPDF()
.add_page()
.set_font("Helvetica", size=24)

with pdf.highlight("Highlight comment"):

pdf
pdf

pdf.text(50, 50, "Line 1")

pdf.set_y(50)

pdf.multi_cell(w=30, text="Line 2")
.cell(w=60, text="Not highlighted", border=1)
.output("highlighted.pdf")

-132/193 -

6.3 Annotations

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.text_annotation
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.text_annotation
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.free_text_annotation
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.free_text_annotation

6.3.4 Ink annotations

Rendering by Sumatra PDF reader:

. Li ne [HJighlight comment
Line 2

Not highlighted

Method documentation: FPDF.highlight

The appearance of the "highlight effect" can be controlled through the type argument: it can be Highlight (default), underline,

Squiggly oOr Strikeout .
6.3.4 Ink annotations

Those annotations allow to draw paths around parts of a document to highlight them:

from fpdf import FPDF
pdf = FPDF()
pdf.ink_annotation([(100, 200), (200, 100), (300, 200), (200, 300), (100, 200)],

title="Lucas", contents="Hello world!")
pdf.output("ink_annotation_demo.pdf")

Rendering by Firefox internal PDF viewer:

Lucas

Hello world!

- 133/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.highlight
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.highlight

6.3.5 File attachments

Method documentation: FPDF.ink_annotation

6.3.5 File attachments

cf. the dedicated page: File attachments

6.3.6 Named actions

The four standard PDF named actions provide some basic navigation relative to the current page: NextPage, PrevPage, FirstPage
and LastPage .

from fpdf import FPDF
from fpdf.actions import NamedAction

pdf = FPDF()
pdf.set_font("Helvetica", size=24)
pdf.add_page()
pdf.text(x=80, y=140, text="First page")
pdf.add_page()
pdf.underline = True
for x, y, named_action in ((40, 80, "NextPage"), (120, 80, "PrevPage"), (40, 200, "FirstPage"), (120, 200, "LastPage")):
pdf.text(x=x, y=y, text=named_action)
pdf.add_action(
NamedAction(named_action),
X=X,
y=y - pdf.font_size,
w=pdf.get_string_width(named_action),
h=pdf.font_size,
)
pdf.underline = False
pdf.add_page()
pdf.text(x=80, y=140, text="Last page")
pdf.output("named_actions.pdf")

6.3.7 Launch actions
Used to launch an application or open or print a document:

from fpdf import FPDF
from fpdf.actions import LaunchAction

pdf = FPDF()
pdf.set_font("Helvetica", size=24)
pdf.add_page()
X, y, text = 80, 140, "Launch action"
pdf.text(x=x, y=y, text=text)
pdf.add_action(
LaunchAction("another_file_in_same_directory.pdf"),
X=X,
y=y - pdf.font_size,
w=pdf.get_string_width(text),
h=pdf.font_size,
)
pdf.output("launch_action.pdf")

(December 5,2023

- 134/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.ink_annotation
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.ink_annotation

6.4 Presentations

6.4 Presentations

Presentation mode can usually be enabled with the cTrRL + L shortcut.

As of june 2021, the features described below are honored by Adobe Acrobat reader, but ignored by Sumatra PDF reader.

6.4.1 Page display duration
Pages can be associated with a "display duration" until when the viewer application automatically advances to the next page:

from fpdf import FPDF

pdf = fpdf.FPDF()
pdf.set_font("Helvetica", size=120)
pdf.add_page(duration=3)
pdf.cell(text="Page 1")
pdf.page_duration = .5
pdf.add_page()

pdf.cell(text="Page 2")
pdf.add_page()

pdf.cell(text="Page 3")
pdf.output("presentation.pdf")

It can also be configured globally through the page duration FPDF property.

6.4.2 Transitions
Pages can be associated with visual transitions to use when moving from another page to the given page during a presentation:

from fpdf import FPDF
from fpdf.transitions import *

pdf = fpdf.FPDF()
pdf.set_font("Helvetica", size=120)
pdf.add_page()

pdf.text(x=40, y=150, text="Page 0")
pdf.add_page(transition=SplitTransition("Vv", "0"))
pdf.text(x=40, y=150, text="Page 1")
pdf.add_page(transition=BlindsTransition("H"))
pdf.text(x=40, y=150, text="Page 2")
pdf.add_page(transition=BoxTransition("I"))
pdf.text(x=40, y=150, text="Page 3")
pdf.add_page(transition=WipeTransition(90))
pdf.text(x=40, y=150, text="Page 4")
pdf.add_page(transition=DissolveTransition())
pdf.text(x=40, y=150, text="Page 5")
pdf.add_page(transition=GlitterTransition(315))
pdf.text(x=40, y=150, text="Page 6")
pdf.add_page(transition=FlyTransition("H"))
pdf.text(x=40, y=150, text="Page 7")
pdf.add_page(transition=PushTransition(270))
pdf.text(x=40, y=150, text="Page 8")
pdf.add_page(transition=CoverTransition(270))
pdf.text(x=40, y=150, text="Page 9")
pdf.add_page(transition=UncoverTransition(270))
pdf.text(x=40, y=150, text="Page 10")
pdf.add_page(transition=FadeTransition())
pdf.text(x=40, y=150, text="Page 11")
pdf.output("transitions.pdf")

It can also be configured globally through the page_transition FPDF property.

(3 November 3, 2024

- 135/193 -

6.5 Document Outline & Table of Contents

6.5 Document Outline & Table of Contents

6.5.1 Overview

This document explains how to implement and customize the Document Outline (also known as Bookmarks) and Table of

Contents (ToC) features in fpdf2.

6.5.2 Document Outline (Bookmarks)

Document outlines allow users to navigate quickly through sections in the PDF by creating a hierarchical structure of clickable

links.

Quoting the 6th edition of the PDF format reference (v1.7 - 2006) :

A PDF document may optionally display a document outline on the screen, allowing the user to navigate interactively from one
part of the document to another. The outline consists of a tree-structured hierarchy of outline items (sometimes called
bookmarks), which serve as a visual table of contents to display the document’s structure to the user.

For example, there is how a document outline looks like in Sumatra PDF Reader:

-

- Figures

.. Tables

.- Preface

-1 Introduction

1- 2 Overview

| B3 Syntax

i 3.1 Lexical Conventions
-3.2 Objects

- 3.3 Filters

- 3.4 File Structure
-3.5 Encryption

- [F)
k)
00 O O o OO
(L < e o g 5

--3.5.1 General Encryptio
(- 3.5.2 Standard Security
- 3.5.3 Public-Key Securi
..3.5.4 Crypt Filters

- 3.6 Document Structure

i 3.7 Content Streams and R

- 3.8 Common Data Structu

i 3.9 Functions

| +)- 3.10 File Specifications

| -4 Graphics

Il = €Tea

e T o O o WO o

[l

PDF Reference

sixth edition

Adobe® Portable Document Format
Version 1.7
November 2006

Adobe Systems Incorporated

Since fpdf2.3.3, you can use the start_section method to add entries in the internal "outline" table, which is used to render

both the outline and ToC.

Note that by default, calling start_section only records the current position in the PDF and renders nothing. However, you can
configure global title styles by calling set_section_title_styles, after which calls to start_section will render titles visually

using the styles defined.

To provide a document outline to the PDF you generate, you just have to call the start_section method for every hierarchical

section you want to define.

Nested outlines

Outlines can be nested by specifying different levels. Higher-level outlines (e.g., level 0) appear at the top, while sub-levels (e.g.,

level 1, level 2) are indented.

-136/193 -

https://www.sumatrapdfreader.org/free-pdf-reader.html
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.start_section
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.start_section
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_section_title_styles
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_section_title_styles

6.5.3 Table of Contents

pdf.start_section(name="Chapter 1: Introduction", level=0)
pdf.start_section(name="Section 1.1: Background", level=1)

6.5.3 Table of Contents
Quoting Wikipedia, a table of contents is:

a list, usually found on a page before the start of a written work, of its chapter or section titles or brief descriptions with their
commencing page numbers.

Inserting a Table of Contents
Use the insert_toc_placeholder method to define a placeholder for the ToC. A page break is triggered after inserting the ToC.
Parameters:
* render_toc_function: Function called to render the ToC, receiving two parameters: pdf, an FPDF instance, and outline, a
list of fpdf.outline.OutlineSection .
* pages: The number of pages that the ToC will span, including the current one. A page break occurs for each page specified.
» allow_extra_pages: If True, allows unlimited additional pages to be added to the ToC as needed. These extra ToC pages are

initially created at the end of the document and then reordered when the final PDF is produced.

Note: Enabling allow_extra_pages may affect page numbering for headers or footers. Since extra ToC pages are added after the
document content, they might cause page numbers to appear out of sequence. To maintain consistent numbering, use (Page
Labels)[PageLabels.md] to assign a specific numbering style to the ToC pages. When using Page Labels, any extra ToC pages will
follow the numbering style of the first ToC page.

Reference Implementation
New in (> 2.8.2
The fpdf.outline.TableofContents class provides a reference implementation of the ToC, which can be used as-is or subclassed.
from fpdf import FPDF
from fpdf.outline import TableOfContents
pdf = FPDF()
pdf.add_page()

toc = TableOfContents()
pdf.insert_toc_placeholder(toc.render_toc, allow_extra_pages=True)

6.5.4 Using Outlines and ToC with HTML

When using FPDF.write_html, a document outline is automatically generated, and a ToC can be added with the <toc> tag.
To customize ToC styling, override the render_toc method in a subclass:

from fpdf import FPDF, HTML2FPDF

class CustomHTML2FPDF(HTML2FPDF):
def render_toc(self, pdf, outline):
pdf.cell(text="'Table of contents:', new_x="LMARGIN", new_y="NEXT")
for section in outline:
pdf.cell(text=f'* {section.name} (page {section.page_number})', new_x="LMARGIN", new_y="NEXT")

class PDF(FPDF):
HTML2FPDF_CLASS = CustomHTML2FPDF

pdf = PDF()

pdf.add_page()

pdf.write_html("""<toc></toc>
<hi>Level 1</h1>
<h2>Level 2</h2>
<h3>Level 3</h3>
<h4>Level 4</h4>
<h5>Level 5</h5>

-137/193 -

https://en.wikipedia.org/wiki/Table_of_contents
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.insert_toc_placeholder
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.insert_toc_placeholder
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

6.5.5 Additional Code Samples

<hé>Level 6</h6>
<p>paragraph<p>""")
pdf.output("html_toc.pdf")

6.5.5 Additional Code Samples
The regression tests are a good place to find code samples.
For example, the test_simple_outline test function generates the PDF document simple outline.pdf.

Similarly, test_html_toc generates test html toc.pdf.

6.5.6 Manually Adjusting pdf.page

I\ Setting pdf.page manually may result in unexpected behavior. pdf.add_page() takes special care to ensure the page's content
stream matches fpdf's instance attributes. Manually setting the page does not.

(C February 17,2025

-138/193 -

https://github.com/py-pdf/fpdf2/blob/master/test/outline/test_outline.py
https://github.com/py-pdf/fpdf2/blob/master/test/outline/test_outline.py
https://github.com/py-pdf/fpdf2/blob/master/test/outline/simple_outline.pdf
https://github.com/py-pdf/fpdf2/blob/master/test/outline/test_outline_html.py
https://github.com/py-pdf/fpdf2/blob/master/test/outline/test_outline_html.py
https://github.com/py-pdf/fpdf2/blob/5453422bf560a909229c82e53eb516e44fea1817/test/outline/test_html_toc.pdf

6.6 Page Labels

6.6 Page Labels

New in §> 2.8.2

6.6.1 Overview

In a PDF document, each page is identified by an integer page index, representing the page's position within the document.
Optionally, a document can also define page labels to visually display page identifiers.

Page labels can be customized. For example, a document might begin with front matter numbered in roman numerals and
transition to arabic numerals for the main content. In this case:

* The first page (index o) would have a label i

* The twelfth page (index 11) would have label xii

e The thirteenth page (index 12) would start with label 1
The most popular PDF readers, such as Sumatra PDF and Adobe Acrobat Reader, will accurately display page labels as
configured in the PDF. However, not all PDF readers support this feature, and some may not honor or display page labels

correctly. In particular, browser-based PDF viewers, like those in Chrome and Edge, currently do not display page labels and will
only show default page numbering.

- 139/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

6.6.2 Page Label Components

Sumatra PDF Reader

(e = Home X toc_with_extra_page_1.p
D & | Page: ijG/2n ¢« > B0 0ae
Bookmarks ‘

' ;-Table of Contents 1

Adobe Acrobat Reader

2 of 27 27

~N N OGO O O On
>

6.6.2 Page Label Components

A page label consists of three main parts: style, prefix, and Start .

- 140/193 -

6.6.3 Using Page Labels in fpdf2

1. Style
The style defines the numbering format for the numeric portion of each page label. Available styles are:

¢ "D": Decimal Arabic numerals (1, 2, 3, ...)

"R": Uppercase Roman numerals (I, II, III, ...)

"r": Lowercase Roman numerals (i, ii, iii, ...)

"A": Uppercase letters (A to Z, then AA to ZZ, and so on)

"a": Lowercase letters (a to z, then aa to zz, and so on)

2. Prefix
The prefix is an optional string added before the numeric portion of each page label. For instance, a prefix of "Appendix-" with a
style of "p" might result in labels like "Appendix-1", "Appendix-2", etc.

3. Start

The starting number for the first page of a labeled section. This is the initial numeric value applied to the first page of the label
range.

6.6.3 Using Page Labels in fpdf2

You can add page labels directly when adding a new page using the add_page() method or update them later using
set_page_label() .

Adding a Page with Labels in add_page()

When adding a page, you can specify the values for label_style, label_prefix, and label_start to define the page label. Here's
how to do it:

from fpdf import FPDF
pdf = FPDF()

Add a page with specific label parameters

pdf.add_page(
label_style="r", # Lowercase Roman numerals
label_prefix="Preface-", # Prefix for the label
label_start=1 Start numbering at 1

+

)
pdf.output("document_with_labels.pdf")

Modifying Page Labels with set_page_label()

You can also modify page labels after a page has been added by using set_page_label() . This is helpful to set a new label after
adding a ToC placeholder or other action that automatically adds a page break, but keep in mind set_page_label() will always
happen after the header have been rendered. If you need this, prefer to have the label written on footer only.

Set a page label with style, prefix, and start value
pdf.set_page_label(

label_style="D", # Decimal Arabic numerals
label_prefix="Chapter-", # Prefix for the label
label_start=1 # Start numbering at 1

Retrieving the Current Page Label with get_page label()

If you need to get the current page label, for example, to display it in a header or footer, you can use the get _page_label()
method.

-141/193 -

6.6.4 Example Usage

ﬂcase of a table of contents spanning more than one page, the page number returned by get_page_label() will be

incorrect.
cf. GitHub issue #1343

6.6.4 Example Usage
Below is a complete example that demonstrates adding multiple pages with different page label styles and prefixes:

from fpdf import FPDF
pdf = FPDF()

Adding front matter with lowercase Roman numerals
pdf.add_page(label_style="r", label_start=1) # Starts with "i", "ii", "iii", etc.

Adding main content with decimal numbers and a prefix
pdf.add_page(label_style="D", label_prefix="Chapter-", label_start=1) # "Chapter-1", "Chapter-2", etc

Adding an appendix section with uppercase letters
pdf.add_page(label_style="A", label_prefix="Appendix-", label_start=1) # "Appendix-A", "Appendix-B", etc.

pdf.output("labeled_document.pdf")

This example creates a document with three sections, each using a different labeling style and prefix.

(CC February 20, 2025

-142/193 -

https://github.com/py-pdf/fpdf2/issues/1343

6.7 Encryption

6.7 Encryption
New in) 2.6.1
A PDF document can be encrypted to protect access to its contents.

An owner password is mandatory. Using the owner password anyone can perform any change on the document, including
removing all encryption and access permissions.

The optional parameters are user password, access permissions and encryption method.

6.7.1 Password locking
User password is optional. If none is provided the document content is accessible for everyone.

If a user password is set, the content of the document will be encrypted and a password prompt displayed when a user opens the
document. The document will only be displayed after either the user or owner password is entered.

pdf.set_encryption(
owner_password="foo",
user_password="bar"

6.7.2 Access permissions

Using access permissions flags you can restrict how the user interact with the document. The available access permission flags
are:

* PRINT_LOW_RES Print the document, limiting the quality of the printed version.

* PRINT_HIGH_RES Print the document at the highest quality.

* MoDIFY Modify the contents of the document.

» copy Copy or extract text and graphics from the document.

e ANNOTATION Add or modify text annotations.

e FILL_rorms Fill in existing interactive form fields.

* COPY_FOR_ACCESSIBILITY Extract text and graphics in support of accessibility to users with disabilities

* AsSeMBLE Insert, rotate or delete pages and create bookmarks or thumbnail images.

The flags can be combined using | :

from fpdf import FPDF
from fpdf.enums import AccessPermission

pdf = FPDF()
pdf.add_page()
pdf.set_font("helvetica", size=12)
pdf.cell(text="hello world")

pdf.set_encryption(
owner_password="98765421"

permissions=AccessPermission.PRINT_LOW_RES | AccessPermission.PRINT_HIGH_RES

)

pdf.output("output.pdf")

The method all() grants all permissions and none() denies all permissions.

pdf.set_encryption(
owner_password="xyz",
permissions=AccessPermission.all()

If no permission is specified it will default to al1() .

-143/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

6.7.3 Encryption method

There are 4 available encryption methods:

* NO_ENCRYPTION Data is not encrypted, only add the access permission flags.

e Rc4 (default) Default PDF encryption algorithm.

e AEs_128 Encrypts the data with 128 bit key AES algorithm. Requires the cryptography package.
* AEs_256 Encrypts the data with 256 bit key AES algorithm. Requires the cryptography package.

from fpdf import FPDF
from fpdf.enums import AccessPermission, EncryptionMethod

pdf

pdf.
pdf.
pdf.

pdf.

= FPDF()

add_page()
set_font("helvetica", size=12)
cell(text="hello world")

set_encryption(

owner_password="123",
encryption_method=EncryptionMethod.AES_128,
permissions=AccessPermission.none()

.output("output.pdf")

€ October 11,2023

- 144/193 -

6.7.3 Encryption method

6.8 Signing

6.8 Signing
New in) 2.5.6

A digital signature may be used to authenticate the identity of a user and the document’s contents. It stores information about

the signer and the state of the document when it was signed.
fpdf2 allows to sign documents using PKCS#12 certificates (RFC 7292).
The endesive package is required to do so.

pdf = FPDF()
pdf.add_page()

pdf.sign_pkcs12("certs.p12", password=b"1234")
pdf.output("signed_doc.pdf")

Lb Signé au moyen de signatures valables.

@ Signatures X
o [Z] ~ Valider tout
v b= Rév. 1: Signé par USER 1
é:‘ Signature valable :
%g Le document n'a pas été modifié depuis I'apposition de la signature.
L'identité du signataire est valable.
L'heure de signature est déterminée a partir de I'horloge de I'ordinateur du signataire.
La signature est compatible ALT »

Détails de la signat Propriétés de la signature
> Détails de la signature

Derniére vérification : 2022.07.05 11:39:34 +02'00" La signature est VALABLE (signée par USER 1).
Champ : signature (signature invisible) &a Heure de signature : 1969/12/31 19:00:00 +02'00'

Cliquer pour afficher cette version 3) o
Résumé de la validité

Les document n'ont pas été modifiées depuis I'apposition de la signature.

Le certificateur a spécifié que le remplissage, |a signature et |'ajout de
commentaires a ce formulaire sont autorisés, mais qu'aucune autre modification
ne peut étre effectuée.

L'identité du signataire est valable.

L'heure de signature est déterminée a partir de I'horloge de I'ordinateur du
signataire.

La signature a été validée a compter de I'heure de signature :
1969/12/31 19:00:00 +02'00"

Informations sur le signataire
Les vérifications de validation de chemin ont réussi.

La vérification de révocation de ces certificats n'a pas été effectuée, carils ont
€été directement approuvés,

I Afficher le certificat du signataire... |

Propriétés avancées... ‘ Valider la signature ’ Fermer

The lower-level sign() method allows to add a signature based on arbitrary key & certificates, not necessarily from a PKCS#12
file.

endesive also provides basic code to check PDFs signatures. examples/pdf-verify.py or the check_signature() function used in
fpdf2 unit tests can be good starting points for you, if you want to perform PDF signature control.

- 145/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://en.wikipedia.org/wiki/PKCS_12
https://datatracker.ietf.org/doc/html/rfc7292
https://pypi.org/project/endesive/
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.sign
https://github.com/m32/endesive/blob/master/examples/pdf-verify.py
https://github.com/py-pdf/fpdf2/blob/master/test/conftest.py#L111
https://github.com/py-pdf/fpdf2/blob/master/test/conftest.py#L111

6.8 Signing

If you want to sign existing PDF documents, you should consider using PyHanko: https://pyhanko.readthedocs.io.

€ January 17,2025

-146/193 -

https://pyhanko.readthedocs.io

6.9 File attachments

6.9 File attachments

6.9.1 Embedded file streams

Embedded file streams [allow] the contents of referenced files to be embedded directly within the body of the PDF file. This
makes the PDF file a self-contained unit that can be stored or transmitted as a single entity.

fpdf2 gives access to this feature through the method embed file() :

pdf = FPDF()
pdf.add_page()
pdf.embed_file(__file__, desc="Source Python code", compress=True)
pdf.output("embedded_file.pdf")
6.9.2 Annotations
A file attachment annotation contains a reference to a file, which typically shall be embedded in the PDF file.

fpdf2 gives access to this feature through the method file attachment _annotation() :

pdf = FPDF()

pdf.add_page()
pdf.file_attachment_annotation(__file_, x=50, y=50)
pdf.output("file_attachment_annotation.pdf")

Resulting PDF: file attachment annotation.pdf

Browser PDF viewers do not usually display embedded files & file attachment annotations, so you may want to download this file
and open it with your desktop PDF viewer in order to visualize the file attachments.

5 @‘ Page : 1/1 &€ = ‘ 9 D C —Q Q Q‘ Rechercher :
X

Signets

requirements.txt

(February 17,2025

-147/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.embed_file
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.embed_file
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.file_attachment_annotation
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.file_attachment_annotation
https://github.com/py-pdf/fpdf2/blob/master/test/file_attachment_annotation.pdf

6.10 PDF/A with fpdf2

6.10 PDF/A with fpdf2

New in Q 2.8.5

6.10.1 What is PDF/A

PDF/A is the ISO standard for long-term archiving of PDFs. It restricts features that aren’t stable for preservation (e.g.,
JavaScript, encryption, multimedia) and requires self-containment (fonts embedded, color spaces defined, predictable
rendering).

-148/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

6.10.2 Choosing a PDF/A Profile

6.10.2 Choosing a PDF/A Profile

- 149/193 -

Profile

PDF/A-1B

PDF/A-2B

PDF/A-2U

PDF/A-3B

PDF/A-3U

PDF/A-4

PDF/A-4E

PDF/A-4F

Description

“B” = Basic visual
appearance. Earliest
profile, based on PDF
1.4; stricter feature
set (no transparency/
layers).

“B” = Basic visual
appearance. Ensures
documents can be
reliably rendered
visually. Based on PDF
1.7.

Adds “U” = Unicode
text mapping. Same as
2B + text must be
Unicode-mapped for
reliable search/extract.

Like 2B, plus allows
embedding arbitrary
files as attachments
(XML, CSV, DOCX,
etc.).

3B + Unicode
requirement for text.

Based on PDF 2.0 (ISO
32000-2). Simplified
model; no A/B/U tiers—
modern baseline.

“E” = Engineering.
Tailored for
engineering/CAD
workflows; supports
3D model containers.

“F” = File
attachments. Focused

Actions Allowed

{71 Embedding
fonts

{74 JPEG/PNG/
TIFF images
(PDF 1.4 codecs)
{74 Digital
signatures
41Ccc
OutputIntent for
color
management

{74 Embedding
fonts

(71 JPEG/
JPEG2000/PNG/
TIFF images

{74 Transparency
7] Layers (OCGs)
[Digital
signatures

{71 Same as 2B
{74 Text
extractable &
searchable

{71 Same as 2B
{74 Embed
external files
inside the PDF

7] Same as 3B +
searchable text

{74 Unicode text
mapping

{71 Attachments
allowed

{74 Transparency,
layers, signatures

7] Same as 4

{71 Engineering/
CAD payloads
(e.g., model data)

{7 Same as 4
{74 File

-150/193 -

Actions
Disallowed

>{ Encryption

> JavaScript

> Multimedia
(audio/video)

>{ External
content
dependencies

>{ Transparency
(blend modes/
soft masks)

>{ Layers (OCGs)
Y JPEG2000
images

>{ Embedded file
attachments

>{ Encryption
>{ JavaScript
>{ Multimedia
(audio/video)
>{ External
content
dependencies

> Same
restrictions as 2B

>{ Encryption
> JavaScript
> Multimedia

>{ Same as 3B

>{ Encryption
> JavaScript
> Multimedia

>{ Encryption
>{ JavaScript
Y Non-archival
multimedia

>{ Encryption
> JavaScript
> Multimedia

6.10.2 Choosing a PDF/A Profile

Recommended Use
Cases

Legacy/long-term
archives needing
maximum compatibility;
scanned documents
where appearance is
paramount.

Scanned documents
where only appearance
must be preserved
(invoices, contracts for
viewing).

Searchable archives
(legal texts, regulations,
scientific articles).

Compound documents
(e-invoices with XML,
submissions needing
source data).

Archival packages that
need attachments +
searchable text.

Modern general-
purpose archiving for
libraries, government,
enterprises.

Engineering & CAD
archiving (technical
drawings, 3D models,
BOMs).

Data-centric bundles
(PDF + XML/CSV/JSON
source files).

6.10.3 How to produce PDF/A with fpdf2

Profile Description Actions Allowed Actions Recommended Use
Disallowed Cases
on embedded attachments
companion files. emphasized

6.10.3 How to produce PDF/A with fpdf2
Pick a profile at construction time

from fpdf import FPDF
from fpdf.enums import DocumentCompliance

pdf = FPDF(enforce_compliance=DocumentCompliance.PDFA_4)

* When enforce_compliance is set, fpdf2 actively prevents non-compliant operations and will raise errors if you try
something forbidden for the selected profile.

Quick example

pdf = FPDF(enforce_compliance=DocumentCompliance.PDFA_4)
pdf.add_page()

pdf.set_font("Helvetica", size=12)

pdf.cell(®, 10, "Modern archival PDF, PDF 2.0 based.")
pdf.output("example-4.pdf")

6.10.4 Future: Accessible documents (WCAG/PDF/UA)

To enable PDF/A 2A and 3A compliance FPDF needs to be able to produce accessible documents. Those features need to be
implemented:

» Tagged PDFs (logical structure, reading order)
* Alt text for images, meaningful link text

* Color contrast and keyboard-navigable annotations

C October 14, 2025

-151/193 -

7. Mixing other libs

7. Mixing other libs

7.1 Combine with pypdf

fpdf2 cannot parse existing PDF files.
However, other Python libraries can be combined with fpdf2 in order to add new content to existing PDF files.

This page provides several examples of doing so using pypdf, an actively-maintained library formerly known as pyPDF2 .

7.1.1 Adding content onto an existing PDF page
In this code snippet, new content will be added on top of existing content:

#1/usr/bin/env python3

USAGE: ./add_on_page_with_pypdf.py src_file.pdf dest_file.pdf
import io, sys

from contextlib import contextmanager

Before 2.8.2 use: from fpdf.util import get_scale_factor
from fpdf import FPDF, get_scale_factor
from pypdf import PdfReader, PdfwWriter

IN_FILEPATH = sys.argv[1]
OUT_FILEPATH = sys.argv[2]

@contextmanager
def add_to_page(reader_page, unit="mm"):
k = get_scale_factor(unit)
format = (reader_page.mediabox[2] / k, reader_page.mediabox[3] / k)
pdf = FPDF(format=format, unit=unit)
pdf.add_page()
yield pdf
page_overlay = PdfReader(io.BytesIO(pdf.output())).pages[0]
reader_page.merge_page(page2=page_over lay)

reader = PdfReader (IN_FILEPATH)

with add_to_page(reader.pages[0]) as pdf:
pdf.set_font("times", style="B", size=30)
pdf.text(50, 150, "Hello World!")

writer = PdfWriter()
writer.append_pages_from_reader (reader)
writer.write(OUT_FILEPATH)

7.1.2 Adding a page to an existing PDF

#1/usr/bin/env python3
USAGE: ./add_new_page_with_pypdf.py src_file.pdf dest_file.pdf
import io, sys

from fpdf import FPDF
from pypdf import PdfReader, PdfwWriter

IN_FILEPATH = sys.argv[1]
OUT_FILEPATH = sys.argv[2]
ON_PAGE_INDEX = 2 # Index at which the page will be inserted (starts at zero)

def build_page():
pdf = FPDF()
pdf.add_page()
pdf.set_font("times", style="B", size=19)
pdf.text(50, 10, "Hello World!")
return io.BytesIO(pdf.output())

writer = PdfWriter(clone_from=IN_FILEPATH)
new_page = PdfReader (build_page()).pages[0]
writer.insert_page(new_page, index=ON_PAGE_INDEX)
writer.write(OUT_FILEPATH)

-152/193 -

https://github.com/py-pdf/pypdf
https://github.com/py-pdf/pypdf

7.1.3 Altering with pypdf a document generated with fpdf2

7.1.3 Altering with pypdf a document generated with fpdf2
A document created with fpdf2 can the be edited with pypdf by passing its .output() to a pypdf.pdfReader :

import io
from fpdf import FPDF
from pypdf import PdfReader

pdf = FPDF()

pdf.add_page()

pdf.set_font('times', style='B', size=19)
pdf.text(50, 10, 'Hello World!')

reader = PdfReader(io.BytesIO(pdf.output()))

(S November 20, 2024

-153/193 -

7.2 Combine with Markdown

7.2 Combine with Markdown

Several fpdf2 methods allow Markdown syntax elements:

* FPDF.cell() has an optional markdown=True parameter that makes it possible to use **bold**, __italics__, ~-strikethrough~~
or --underlined-- Markdown markers

e FPDF.multi_cell() & FPDF.table() methods have a similar feature

But fpdf2 also allows for basic conversion from HTML to PDF (cf. HTML). This can be combined with a Markdown-rendering
library in order to generate PDF documents from Markdown:

7.2.1 mistletoe
The mistletoe library follows the CommonMark specification:

pip install mistletoe

from mistletoe import markdown

html = markdown ("""
Top title (ATX)

Subtitle (setext)

An even lower heading (ATX)
Text in bold
Text in italics
~~Strikethrough~~
[This is a link](https://github.com/PyFPDF/fpdf2)
<https://py-pdf.github.io/fpdf2/>
This is an unordered list
* an item
* another item
This is an ordered list:
1. first item
2. second item
3. third item with an unordered sublist:
* an item
* another item
Inline “code span”
A table:
| Foo | Bar | Baz

| Foo | Bar | Baz

Actual HTML:

<d1>
<dt>Termi</dt><dd>Definitioni</dd>
<dt>Term2</dt><dd>Definition2</dd>
</d1>

Some horizontal thematic breaks:

wok ke

I[Alternate description](https://py-pdf.github.io/fpdf2/fpdf2-logo.png)
iy

from fpdf import FPDF
pdf = FPDF()
pdf.add_page()

pdf.write_html(html)
pdf.output("pdf-from-markdown-with-mistletoe.pdf")

The library can be easily extended: Creating a custom token and renderer.

- 154/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://github.com/miyuchina/mistletoe
https://spec.commonmark.org
https://github.com/miyuchina/mistletoe/blob/master/dev-guide.md#creating-a-custom-token-and-renderer

7.2.1 mistletoe

Rendering unicode characters

from mistletoe import markdown

html = markdown("""
Unicode:

*

Emoji | Description
c== || =
& | GRINNING FACE |
| GRINNING FACE WITH SMILING EYES |
' | SMILING FACE WITH HORNS |

£3

A checklist:

* o item 1
* @ item 2
* o item 3

iy
from fpdf import FPDF

pdf = FPDF()

pdf.add_font("Dejavusans", fname="test/fonts/DejavuSans.ttf")
pdf.add_font("DejavuSans", fname="test/fonts/DejavuSans-Bold.ttf", style="B")
pdf.set_font("DejavuSans", size=24)

pdf.add_page()

pdf.write_html(html)
pdf.output("pdf-from-markdown-with-mistletoe-unicode.pdf")

Ex

Result:

Unicode:

Description
GRINNING FACE
GRINNING FACE WITH
SMILING EYES
SMILING FACE WITH
HORNS

A checklist:

[l item 1
item 2
(] item 3

- 155/193 -

7.2.2 markdown-it-py

7.2.2 markdown-it-py
The markdown-it-py library also follows the CommonMark specification:

pip install markdown-it-py

from markdown_it import MarkdownIt

md = (
MarkdownIt("commonmark", {"breaks": True, "html": True})
.enable("strikethrough")
.enable("table")

)

html = md.render ("""

Top title (ATX)

Subtitle (setext)

An even lower heading (ATX)

Text in bold

Text in italics

~~Strikethrough~~

[This is a link](https://github.com/PyFPDF/fpdf2)

<https://py-pdf.github.io/fpdf2/>

This is an unordered list:

* an item

* another item

This is an ordered list:

1. first item

2. second item

3. third item with an unordered sublist:
* an item
* another item

Inline “code span”

A table:

Foo | Bar | Baz
| =--i]i---i]i---
Foo | Bar | Baz

Actual HTML:
<d1>
<dt>Termil</dt><dd>Definitioni</dd>

<dt>Term2</dt><dd>Definition2</dd>
</d1>

Some horizontal thematic breaks:

Kk ok

I[Alternate description](https://py-pdf.github.io/fpdf2/fpdf2-logo.png)

iy

from fpdf import FPDF

pdf = FPDF()

pdf.add_page()

pdf.write_html(html)
pdf.output("pdf-from-markdown-with-markdown-it.pdf")

- 156/193 -

https://markdown-it-py.readthedocs.io
https://spec.commonmark.org

7.2.3 mistune

Plugin extensions: the strikethrough & table plugins are embedded within the core package, and many other plugins are then

available via the mdit-py-plugins package, including:

Footnotes
Definition lists
Task lists
Heading anchors
LaTeX math
Containers

Word count

7.2.3 mistune

There is also the mistune library, that may be the fastest, but it does not follow the CommonMark spec:

pip install mistune

from mistune import html

html = html("""
Top title (ATX)

Subtitle (setext)

An even lower heading (ATX)

Text in bold

Text in italics

~~Strikethrough~~

[This is a link](https://github.com/PyFPDF/fpdf2)

<https://py-pdf.github.io/fpdf2/>

This is an unordered list:

* an item

* another item

This is an ordered list:

1. first item

2. second item

3. third item with an unordered sublist:
* an item
* another item

Inline “code span’

A table:

Foo | Bar | Baz

Foo | Bar | Baz

Actual HTML:

<d1>
<dt>Termi</dt><dd>Definitioni</dd>
<dt>Term2</dt><dd>Definition2</dd>
</d1>

Some horizontal thematic breaks:

xxk

I[Alternate description](https://py-pdf.github.io/fpdf2/fpdf2-logo.png)

iy

from fpdf import FPDF

pdf = FPDF()

pdf.add_page()

pdf.write_html(html)
pdf.output("pdf-from-markdown-with-mistune.pdf")

-157/193 -

https://markdown-it-py.readthedocs.io/en/latest/plugins.html
https://mdit-py-plugins.readthedocs.io
https://mistune.lepture.com

7.2.4 Python-Markdown

7.2.4 Python-Markdown

There is also the Python-Markdown library, which is the oldest Markdown rendering Python lib still active, but it does not follow
the CommonMark spec:

pip install markdown

from markdown import markdown
html = markdown (
Wi

Top title (ATX)

Subtitle (setext)

An even lower heading (ATX)

Text in bold

Text in italics

[This is a link](https://github.com/PyFPDF/fpdf2)
<https://py-pdf.github.io/fpdf2/>

This is an unordered list

* an item
* another item

This is an ordered list:

1. first item

2. second item

3. third item with an unordered sublist:
* an item
* another item

Inline "code span”
A table:

Foo | Bar | Baz
P ‘ P ‘ P
Foo | Bar | Baz

Definition list:

Term
: Definition

Actual HTML:

<d1>
<dt>Termi</dt><dd>Definitioni</dd>
<dt>Term2</dt><dd>Definition2</dd>
</d1>

Some horizontal thematic breaks:

e

I[Alternate description](https://py-pdf.github.io/fpdf2/fpdf2-logo.png)

wun
’

extensions=["def_list", "sane_lists", "tables"],

)

from fpdf import FPDF
pdf = FPDF()
pdf.add_page()

pdf.write_html(html)
pdf.output("pdf-from-markdown-with-markdown.pdf")

7.2.5 Text styling, fonts, etc.

Please refer to the dedicated HTML page for information on how to style HTML tags (<a>, <blockquote>, <code>, <pre>, <hi>...)
when using FPDF.write_html(), how to configure fonts, the known limitations, etc.

-158/193 -

https://python-markdown.github.io/
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write_html
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write_html

7.2.5 Text styling, fonts, etc.

(S August 5,2025

-159/193 -

7.3 Combine with livereload

7.3 Combine with livereload

A nice feature of PDF readers is when they detect changes to the .pdf files open and automatically reload them in the viewer.
Adobe Acrobat Reader does not provide this feature but other viewers offer it, like the free & open source Sumatra PDF Reader
under Windows.

When using such PDF reader, it can be very useful to use a "watch" mode, so that every change to the Python code will trigger
the regeneration of the PDF file.

The following script is an example of using livereload with fpdf2 to do that. Launched without parameters, this script only
generates a PDF document. But when launched with --watch as argument, it will detect changes to the Python script itself, and
then reload itself with xreload, and finally regenerate the PDF document.

#!1/usr/bin/env python3
Script Dependencies:

fpdf2
livereload
xreload

import asyncio, logging, sys
from traceback import print_exc

from fpdf import FPDF
from livereload.watcher import get_watcher_class
from xreload import xreload

OUT_FILEPATH = "fpdf2-demo.pdf"

def build_pdf():
pdf = FPDF()
pdf.set_font("Helvetica", size=16)
pdf.add_page()
pdf.y += 50
pdf.multi_cell(
h=10,
w=0,
align="c",
text="""Hello fpdf2 user!
Launch this script with --watch
and then try to modify this text while the script is running""",
)
pdf.output (OUT_FILEPATH)
print(f"{OUT_FILEPATH} has been rebuilt")

async def start_watch_and_rebuild():
logging.basicConfig(
format="%(asctime)s %(name)s [%(levelname)s] %(message)s",
datefmt="%H:%M:%S",
level=logging.INFO,
)
logging.getLogger("livereload").setLevel(logging.INFO)
watcher = get_watcher_class()()
watcher.watch(__file__, build_pdf)
print("watcher started...")
await watch_periodically(watcher)

async def watch_periodically(watcher, delay_secs=0.8):
try:
watcher.examine()
except Exception:
print_exc()
await asyncio.sleep(delay_secs)
xreload(sys.modules[__name__], new_annotations={"XRELOADED": True})
await asyncio.create_task(watch_periodically(watcher))

This conditional ensure that the code below
does not get executed when calling xreload on this module:
if not __annotations__.get("XRELOADED"):
build_pdf()
The --watch mode is very handy when using a PDF reader
that performs hot-reloading, like Sumatra PDF Reader
if "--watch" in sys.argv:
asyncio.run(start_watch_and_rebuild())

Note that the module reloading mechanism provided by xreload has several limitations, cf. xreload.py .

-160/193 -

https://www.sumatrapdfreader.org
https://pypi.org/project/livereload/
https://pypi.org/project/livereload/
https://pypi.org/project/xreload/
https://pypi.org/project/xreload/
https://github.com/Lucas-C/xreload/blob/master/src/xreload.py#L8
https://github.com/Lucas-C/xreload/blob/master/src/xreload.py#L8

7.3 Combine with livereload

(S September 12,2023

-161/193 -

7.4 borb

7.4 borb

Joris Schellekens made another excellent pure-Python library dedicated to reading & write PDF: borb. He even wrote a very
detailed e-book about it, available publicly there: borb-examples.

The maintainer of fpdf2 wrote an article comparing it with borb : borb vs fpdf2.

7.4.1 Creating a document with fpdf2 and transforming it into a borb.pdf.document.Document

from io import BytesIO
from borb.pdf.pdf import PDF
from fpdf import FPDF

pdf = FPDF()
pdf.set_title('Initiating a borb doc from a FPDF instance')

-162/193 -

https://github.com/jorisschellekens/borb/
https://github.com/jorisschellekens/borb-examples/
https://chezsoi.org/lucas/blog/fpdf2-5-2-svg-support-and-borb.html

7.4.1 Creating a document with fpdf2 and transforming it into a borb.pdf.document.Document

pdf.set_font('helvetica', size=12)
pdf.add_page()
pdf.cell(text="Hello world!")

doc = PDF.loads(BytesIO(pdf.output()))
print(doc.get_document_info().get_title())

(3 February 9, 2026

-163/193 -

7.5 Combine with pdfrw

7.5 Combine with pdfrw
fpdf2 cannot parse existing PDF files.
However, other Python libraries can be combined with fpdf2 in order to add new content to existing PDF files.

This page provides several examples of using fpdf2 with pdfrw, a great zero-dependency pure Python library dedicated to
reading & writing PDFs, with numerous examples and a very clean set of classes modelling the PDF internal syntax.

Sadly, this library is not maintained anymore, cf. pmaupin/pdfrw issue #232 & sarnold/pdfrw issue #15.

7.5.1 Adding content onto an existing PDF page

#!/usr/bin/env python3

USAGE: ./add_on_page_with_pdfrw.py src_file.pdf dest_file.pdf
import sys

from fpdf import FPDF

from pdfrw import PageMerge, PdfReader, PdfWriter

from pdfrw.pagemerge import RectXObj

IN_FILEPATH = sys.argv[1]

OUT_FILEPATH = sys.argv[2]

ON_PAGE_INDEX = 1

if True, new content will be placed underneath page (painted first):
UNDERNEATH = False

reader = PdfReader (IN_FILEPATH)
area = RectXObj(reader.pages[0])

def new_content():
fpdf = FPDF(format=(area.w, area.h), unit="pt")
fpdf.add_page()
fpdf.set_font("helvetica", size=36)
fpdf.text(50, 50, "Hello!")
reader = PdfReader (fdata=bytes(fpdf.output()))
return reader.pages[0]

writer = PdfWriter()
writer.pagearray = reader.Root.Pages.Kids
if writer.pagearray[0].Kids:
writer.pagearray = writer.pagearray[0].Kids
PageMerge(writer.pagearray[ON_PAGE_INDEX]).add(
new_content(), prepend=UNDERNEATH
).render()
writer.write(OUT_FILEPATH)

7.5.2 Adding a page to an existing PDF

#!/usr/bin/env python3
USAGE: ./add_new_page_with_pdfrw.py src_file.pdf dest_file.pdf
import sys

from fpdf import FPDF
from pdfrw import PdfReader, PdfWriter

IN_FILEPATH = sys.argv[1]
OUT_FILEPATH = sys.argv[2]
NEW_PAGE_INDEX = 1 # set to None to append at the end

def new_page():
fpdf = FPDF()
fpdf.add_page()
fpdf.set_font("helvetica", size=36)
fpdf.text(50, 50, "Hello!")
reader = PdfReader (fdata=bytes(fpdf.output()))
return reader.pages[0]

writer = PdfWriter(trailer=PdfReader (IN_FILEPATH))
writer.addpage(new_page(), at_index=NEW_PAGE_INDEX)
writer.write(OUT_FILEPATH)

This example relies on pdfrw Pull Request #216. Until it is merged, you can install a forked version of pdfrw including the
required patch:

-164/193 -

https://github.com/pmaupin/pdfrw
https://github.com/pmaupin/pdfrw
https://github.com/pmaupin/pdfrw/issues/232
https://github.com/sarnold/pdfrw/issues/15
https://github.com/pmaupin/pdfrw/pull/216
https://github.com/pmaupin/pdfrw/pull/216

7.5.3 Altering with pdfrw a document generated with fpdf2

pip install git+https://github.com/PyFPDF/pdfrw.git@addpage_at_index

7.5.3 Altering with pdfrw a document generated with fpdf2
A document created with fpdf2 can the be edited with pdfrw by passing its .output() to a pdfrw.PdfReader :

import io
from fpdf import FPDF
from pdfrw import PdfReader

pdf = FPDF()

pdf.add_page()

pdf.set_font('times', style='B', size=19)
pdf.text(50, 10, 'Hello World!')

reader = PdfReader(io.BytesIO(pdf.output()))

(3 November 20, 2024

-165/193 -

7.6 Matplotlib, Pandas, Plotly, Pygal

7.6 Matplotlib, Pandas, Plotly, Pygal

@ April 7,2023

-166/193 -

7.7 Usage in web APIs

7.7 Usage in web APIs

Note that FpDF instance objects are not designed to be reusable: content cannot be added once output() has been called.

Hence, even if the FpDF class should be thread-safe, we recommend that you either create an instance for every request, or if
you want to use a global / shared object, to only store the bytes returned from output() .

7.7.1 Django

Django is:

a high-level Python web framework that encourages rapid development and clean, pragmatic design
There is how you can return a PDF document from a Django view:

from django.http import HttpResponse
from fpdf import FPDF

def report(request):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
pdf.cell(text="hello world")
return HttpResponse(bytes(pdf.output()), content_type="application/pdf")

7.7.2 WSGI applications
The following code can be placed in a fpdf2_app.py to make a WSGI application

from fpdf import FPDF

def app(environ, start_response):

pdf = FPDF()

pdf.add_page()

pdf.set_font("Helvetica", size=12)

pdf.cell(text="Hello world!")

data = bytes(pdf.output())

start_response("200 OK", [
("Content-Type", "application/pdf"),
("Content-Length", str(len(data)))

1)

return iter([data])

This script can then be served as a HTTP application using either:

¢ the standard wsgiref module
* werkzeug.serving.run_simple
* Gunicorn, using: gunicorn --bind localhost:8000 fpdf2_ app:app

* uWSQGI, using: uwsgi --http :8000 --module fpdf2_app:app

Flask
Flask is a micro web framework written in Python.
The following code can be placed in a app.py file and launched using flask run:

from flask import Flask, make_response
from fpdf import FPDF

app = Flask(__name__)

@app.route("/")
def hello_world():
pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
pdf.cell(text="hello world")
response = make_response(bytes(pdf.output()))

-167/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.output
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.output
https://www.djangoproject.com/
https://docs.djangoproject.com/en/4.0/topics/http/views/
https://docs.python.org/3/library/wsgiref.html
https://docs.python.org/3/library/wsgiref.html
https://werkzeug.palletsprojects.com/en/stable/serving/
https://werkzeug.palletsprojects.com/en/stable/serving/
https://gunicorn.org/
https://uwsgi-docs.readthedocs.io/en/latest/
https://flask.palletsprojects.com

7.7.3 AWS lambda

response.headers["Content-Type"] = "application/pdf"
return response

Bottle
Bottle is:

Bottle is a fast, simple and lightweight WSGI micro web-framework for Python. It is distributed as a single file module and has no
dependencies other than the Python Standard Library.

The following code can be placed in a app.py file and launched using python3 app.py

from bottle import route, run, response
from fpdf import FPDF

@route('/")

def hello():
pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
pdf.cell(text="hello world")
pdf_bytes = bytes(pdf.output())

response.set_header('Content-Type', 'application/pdf')
response.status = 200
response.content_length = len(pdf_bytes)

return pdf_bytes

if __pame__ == '__main__'
run(host="'1localhost', port=8080, debug=True)

CherryPy
CherryPy is:

a pythonic, object-oriented web framework, allowing developers to build web applications in much the same way they would
build any other object-oriented Python program.

The following code can be placed in a app.py file and launched using python3 app.py

import cherrypy
from fpdf import FPDF

class Helloworld(object):

@cherrypy.expose

def index(self)
pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
pdf.cell(text="hello world")
pdf_bytes = bytes(pdf.output())

cherrypy.response.headers['content-type'] = 'application/pdf'
cherrypy.response.status = 200

return pdf_bytes

if __name__ == "_main__":
cherrypy.quickstart(Helloworld())

7.7.3 AWS lambda
The following code demonstrates some minimal AWS lambda handler function that returns a PDF file as binary output:

from base64 import b64encode
from fpdf import FPDF

def handler(event, context):

pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
pdf.cell(text="hello world")
return {

'statusCode': 200,

'headers': {

'Content-Type': 'application/json',

-168/193 -

https://bottlepy.org/docs/dev/index.html
https://cherrypy.dev
https://docs.aws.amazon.com/lambda/latest/dg/python-handler.html

7.7.4 streamlit

I
'body': b64encode(pdf.output()).decode('utf-8"),
'isBase64Encoded': True

This AWS lambda function can then be linked to a HTTP endpoint using API Gateway, or simply exposed as a Lambda Function
URL. More information on those pages:

» Tutorial: Creating a Lambda function with a function URL

* Return binary media from a Lambda

For reference, the test lambda function was initiated using the following AWS CLI commands:

-eating & uploading a lambda layer

pyv=3.8
pip${pyv} install fpdf2 -t python/lib/python${pyv}/site-packages/
We use a distinct layer for Pillow:
rm -r python/lib/python${pyv}/site-packages/{PIL,Pillow}*
zip -r fpdf2-deps.zip python > /dev/null
aws lambda publish-layer-version --layer-name fpdf2-deps \
--description "Dependencies for fpdf2 lambda" \
--zip-file fileb://fpdf2-deps.zip --compatible-runtimes python${pyv}

'ating the lambda

AWS_ACCOUNT_ID=...
AWS_REGION=eu-west-3
zip -r fpdf2-test.zip lambda.py
aws lambda create-function --function-name fpdf2-test --runtime python${pyv} \
--zip-file fileb://fpdf2-test.zip --handler lambda.handler \
--role arn:aws:iam::${AWS_ACCOUNT_ID}:role/lambda-fpdf2-role \
--layers arn:aws:lambda:${AWS_REGION}:770693421928: layer :Klayers-python${pyv/./}-Pillow:15 \
arn:aws: lambda: ${AWS_REGION}: ${AWS_ACCOUNT_ID}: layer:fpdf2-deps:1
aws lambda create-function-url-config --function-name fpdf2-test --auth-type NONE

Those commands do not cover the creation of the 1lambda-fpdf2-role role, nor configuring the lambda access permissions, for
example with a FunctionURLAllowPublicAccess resource-based policy.

7.7.4 streamlit

streamlit is:

a Python library that makes it easy to create and share custom web apps for data science

The following code demonstrates how to display a PDF and add a button allowing to download it:

from base64 import b64encode
from fpdf import FPDF
import streamlit as st

st.title("Demo of fpdf2 usage with streamlit")

@st.cache

def gen_pdf():
pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
pdf.cell(text="hello world")
return bytes(pdf.output())

Embed PDF to display it

base64_pdf = b64encode(gen_pdf()).decode("utf-8")

pdf_display = f'<embed src="data:application/pdf;base64, {base64_pdf}" width="700" height="400" type="application/pdf">"
st.markdown(pdf_display, unsafe_allow_html=True)

Add a download button:

st.download_button(
label="Download PDF",
data=gen_pdf(),
file_name="file_name.pdf",
mime="application/pdf",

-169/193 -

https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway.html
https://aws.amazon.com/fr/blogs/aws/announcing-aws-lambda-function-urls-built-in-https-endpoints-for-single-function-microservices/
https://aws.amazon.com/fr/blogs/aws/announcing-aws-lambda-function-urls-built-in-https-endpoints-for-single-function-microservices/
https://docs.aws.amazon.com/lambda/latest/dg/urls-tutorial.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/lambda-proxy-binary-media.html
https://aws.amazon.com/cli/
https://streamlit.io

7.7.5 FastAPI

7.7.5 FastAPI
FastAPI is:
a modern, fast (high-performance), web framework for building APIs with Python 3.7+ based on standard Python type hints.

The following code shows how to generate a PDF file via a POST endpoint that receives a JSON object. The JSON object can be
used to write into the PDF file. The generated PDF file will be returned back to the user/frontend as the response.

from fastapi import FastAPI, Request, Response, HTTPException, status
from fpdf import FPDF

app = FastAPI()

@app.post("/send_data", status_code=status.HTTP_200_0K)
async def create_pdf(request: Request):
wn
POST endpoint that accepts a JSON object
This endpoint returns a PDF file as the response
try:
data will read the JSON object and can be accessed like a Python Dictionary
The contents of the JSON object can be used to write into the PDF file (if needed)
data = await request.json()

Create a sample PDF file

pdf = FPDF()

pdf.add_page()

pdf.set_font("Helvetica", size=24)

pdf.cell(text="hello world")

pdf.cell(text=data["content"]) # Using the contents of the JSON object to write into the PDF file
Use str(data["content"]) if the content is non-string type

Prepare the filename and headers
filename = "<file_name_here>.pdf"
headers = {
"Content-Disposition": f"attachment; filename={filename}"

Return the file as a response
return Response(content=bytes(pdf.output()), media_type="application/pdf", headers=headers)

except Exception as e:
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=str(e))

7.7.6 Plone
Plone is:
a powerful open source Content Management System built on Python and the Zope application server

Plone is widely used for building secure and scalable web applications. Here's how to generate and serve PDF documents with
fpdf2 in Plone.

As a Browser View
The most common approach is to create a browser view that generates and returns a PDF:

from Products.Five import BrowserView
from fpdf import FPDF

class PDFReportView(BrowserView):
"""Generate and serve a PDF report"""

def __call__(self):
Create PDF
pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
pdf.cell(text="Hello from Plone!")

Add content from the context

pdf.1ln(10)

pdf.set_font("Helvetica", size=12)
pdf.cell(text=f"Title: {self.context.Title()}")

-170/193 -

https://fastapi.tiangolo.com/
https://plone.org/

Generate PDF bytes
pdf_bytes = bytes(pdf.output())

Set response headers

self.request.response.setHeader ('Content-Type',

self.request.response.setHeader (
'Content-Disposition’,
'attachment; filename="report.pdf"'

)

'application/pdf')

self.request.response.setHeader('Content-Length', len(pdf_bytes))

return pdf_bytes

Register the view in your package's configure

<browser :page
name="

class=".views.PDFReportView"
_n

permission="zope2.View"
/>

.zeml :

The PDF can then be accessed at: http://yoursite.com/path/to/content/@@pdf-report

As a Custom Content Type Method

For a custom Dexterity content type, you can add a method that generates PDFs:

from plone.dexterity.content import Container
from fpdf import FPDF

class Report(Container):

"""Custom content type that can generate PDF reports"""

def generate_pdf(self):
"""Generate PDF from content type data
pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", "B", 16)
pdf.cell(text=self.title)

wun

pdf.1ln(10)
pdf.set_font("Helvetica", size=12)
if self.description:

pdf.multi_cell(0, 5, text=self.description)

return bytes(pdf.output())

Then create a view to serve it:

from Products.Five import BrowserView

class DownloadPDFView(BrowserView):
"""Download PDF for Report content type"""

def __call__(self):
pdf_bytes = self.context.generate_pdf()

self.request.response.setHeader ('Content-Type',

self.request.response.setHeader (
'Content-Disposition',

'application/pdf')

f'attachment; filename="{self.context.getId()}.pdf"'

)

return pdf_bytes

Register this view in configure.zcml:

<browser :page

name="download-pdf"
nterfaces.IReport"
.views.DownloadPDFView"
permission="zope2.View"
/>

With Catalog Queries

Generate PDF's from catalog search results:

-171/193 -

7.7.6 Plone

from Products.Five import BrowserView
from fpdf import FPDF

class CatalogReportView(BrowserView):
"""Generate PDF report from catalog query

def __call__(self):

catalog = self.context.portal_catalog
results = catalog(portal_type='Document',
review_state='published')

pdf = FPDF()
pdf.add_page()

pdf.set_font("Helvetica", "B", 16)
pdf.cell(text="Published Documents Report")

pdf.1ln(10)
pdf.set_font("Helvetica", size=10)

for brain in results:
pdf.cell(text=brain.Title)
pdf.1n()

pdf_bytes = bytes(pdf.output())

self.request.response.setHeader('Content-Type',
self.request.response.setHeader (
'Content-Disposition',

—n

'attachment; filename="catalog-report.pdf"'

)

return pdf_bytes

Notes for Plone Developers

7.7.7 Jupyter

Check tutorial/notebook.ipynb

7.7.8 web2py

'application/pdf')

Always create a new FpDF() instance for each request to ensure thread safety
Use appropriate permissions in your ZCML configuration
Consider caching PDF generation for large documents using plone.memoize

For complex PDFs, consider generating them asynchronously using Celery or similar task queues

7.7.7 Jupyter

Usage of the original PyFPDF library with web2py is described here: https://github.com/reingart/pyfpdf/blob/master/docs/
Web2Py.md

vi.7.2 of PyFPDF is included in web2py since release 1.85.2 : https://github.com/web2py/web2py/tree/master/gluon/contrib/fpdf

€ October 14, 2025

-172/193 -

https://github.com/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
http://www.web2py.com/
https://github.com/reingart/pyfpdf/blob/master/docs/Web2Py.md
https://github.com/reingart/pyfpdf/blob/master/docs/Web2Py.md
https://github.com/web2py/web2py/tree/master/gluon/contrib/fpdf

7.8 Rendering spreadsheets as PDF tables

7.8 Rendering spreadsheets as PDF tables

Name HEX RGB
White #FFFFFF rgb(100,100,100)
Silver #COCOCO rgb(75,75,75)

#FFFFO0 rgb(100,100,0)

All the details on tables and options to style them are detailed on the dedicated page: Tables.

-173/193 -

7.8.1 From a .csv spreadsheet

7.8.1 From a .csv spreadsheet
Example input file: color srgb.csv

#1/usr/bin/env python3

USAGE: ./csv2table.py color_srgb.csv

import csv, sys

from fpdf import FPDF, FontFace

from fpdf.drawing_primitives import color_from_hex_string

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=22)
with pdf.table() as table:
with open(sys.argv[1], encoding="utf-8") as csv_file:
reader = csv.reader(csv_file, delimiter=",")
for i, row in enumerate(reader):
style = None
if i > 0:
We color the row based on the hexadecimal code in the 2nd column:
style = FontFace(fill_color=color_from_hex_string(row[1]))
table.row(row, style=style)
pdf.output("from-csv.pdf")

7.8.2 From a .xlIsx spreadsheet
Example input file: color srgb.xlsx

#!/usr/bin/env python3

Script Dependencies:

openxlsx

USAGE: ./xlsx2table.py color_srgb.xlsx

import sys

from fpdf import FPDF, FontFace

from fpdf.drawing_primitives import color_from_hex_string
from openpyxl import load_workbook

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=22)
wb = load_workbook(sys.argv[1])
ws = wh.active
with pdf.table() as table:
for i, row in enumerate(ws.rows):
style = None
if i > 0:
We color the row based on the hexadecimal code in the 2nd column:
style = FontFace(fill_color=color_from_hex_string(row[1]))
table.row([cell.value for cell in row], style=style)
pdf.output("from-xlsx.pdf")

7.8.3 From an .ods spreadsheet
Example input file: color srgb.ods

#1/usr/bin/env python3

Script Dependencies:

odfpy

USAGE: ./ods2table.py color_srgb.ods

import sys

from fpdf import FPDF, FontFace

from fpdf.drawing_primitives import color_from_hex_string
from odf.opendocument import load

from odf.table import Table, TableCell, TableRow

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=22)
ods = load(sys.argv[1])
for sheet in ods.getElementsByType(Table):
with pdf.table() as table:
for i, row in enumerate(sheet.getElementsByType(TableRow)):
row = [str(cell) for cell in row.getElementsByType(TableCell)]
style = None
if i > 0:
We color the row based on the hexadecimal code in the 2nd column:
style = FontFace(fill_color=color_from_hex_string(row[1]))
table.row(row, style=style)
.output("from-ods.pdf")

S5

pd

-174/193 -

7.8.4 From pandas DataFrame

7.8.4 From pandas DataFrame

cf. Maths documentation page

(December 11,2024

-175/193 -

7.9 Templating with Jinja

7.9 Templating with Jinja

Jinja is a fast, expressive, extensible templating engine.

7.9.1 Combining Jinja & write_html

from fpdf import FPDF
from jinja2 import Environment

template = Environment().from_string("""
<h1>{{ title | escape }}</h1>

{% for item in items %}
{{ item }}
{% endfor %}

"

title = "HTML & Jinja demo"
items = [

"FIRST",

"SECOND",

"LAST"
]

pdf = FPDF()

pdf.add_page()
pdf.write_html(template.render(**globals()))
pdf.output("templating_with_jinja.pdf")

More details about the supported HTML features: HTML

(& November 20, 2022

-176/193 -

https://jinja.palletsprojects.com/

7.10 Combine with Rough.js

7.10 Combine with Rough.js

Rough.js is a small graphics library that lets you draw in a sketchy, hand-drawn-like, style. The library defines primitives to draw

lines, curves, arcs, polygons, circles, and ellipses. It also supports drawing SVG paths.

/

Rough.js is able to produce SVG files that can then be embedded by fpdf2 (with some limitations regarding SVG support).
This documentation page will guide you on how to do so.

Because there is no Python port of Rough.js, this tutorial requires that you install Node.js & npm to be able to execute Javascript
code.

7.10.1 Producing SVG with Rough.js
First, install the required dependencies:

npm install roughjs xmldom

-177/193 -

https://roughjs.com/
https://roughjs.com/
https://py-pdf.github.io/fpdf2/SVG.html#currently-unsupported-notable-svg-features
https://nodejs.org/fr
https://www.npmjs.com/

7.10.1 Producing SVG with Rough.js

Create some graphics using Rough.js API in Javascript. As a starting point, you can copy the following code in a gen-svg.mjs file:

import { DOMImplementation, XMLSerializer } from "xmldom";
import roughjs from "roughjs/bundled/rough.cjs.js";
const { svg: roughSvg } = roughjs;

// Creating <svg> element

const document = new DOMImplementation().createDocument("http://www.w3.0rg/1999/xhtml", "html", null);
const svg = document.createElementNS("http://www.w3.0rg/2000/svg", "svg");

svg.setAttribute("viewBox", "0 0 200 200"); // max-X = max-Y = 200

// Drawing rosace using Rough.js:
const rc = roughSvg(svg);
const center = {x: 100, y: 100}
const bigRadius = 66, smallRadius = 50;
const count = 12;
const letters = "0123456789abcdef";
for (let i = 0; i < count; i++) {
const randColor = '#' + [...Array(6)].map(_ => letters[Math.floor(Math.random() * 16)]).join('");
svg.appendChild(rc.circle(center.x + bigRadius*Math.cos(i * 2*Math.PI/count),
center.y + bigRadius*Math.sin(i * 2*Math.PI/count),
smallRadius, { fill: randColor }));
}

// Writing SVG to file:
const xmlSerializer = new XMLSerializer();
await writeFile("graphics.svg", xmlSerializer.serializeToString(svg));

Then execute this code:

node gen-svg.mjs

-178/193 -

7.10.2 Embedding Rough.js SVG files

A graphics.svg file should be produced, similar to this one:

Alternatively, you can convert an existing SVG file to a Rough.js-sketchy version using for example svg2roughjs.

7.10.2 Embedding Rough.js SVG files
Nothing fancy there, just embedding a SVG image file as described on the SVG page:
from fpdf import FPDF

pdf = FPDF()
pdf.add_page()

-179/193 -

https://github.com/fskpf/svg2roughjs

7.10.2 Embedding Rough.js SVG files

pdf.image("docs/graphics.svg")
pdf.output("graphics_svg.pdf")

Result: graphics svg.pdf

(3 December 16, 2024

-180/193 -

8.

Development

8. Development

8.1 Development

This page has summary information about developing the fpdf2 library.

8.1.1 Repository structure

.github/ - GitHub Actions configuration

docs/ - documentation folder

fpdf/ - library sources

scripts/ - utilities to validate PDF files & publish the package on Pypi

test/ - non-regression tests

tutorial/ - tutorials (see also Tutorial)

README.md - Github and PyPI ReadMe

CHANGELOG.md - details of each release content

LICENSE - code license information

CODEOWNERS - define individuals or teams responsible for code in this repository
CONTRIBUTORS.md - the people who helped build this library @

setup.cfg, setup.py, MANIFEST.in - packaging configuration to publish a package on Pypi
mkdocs.yml - configuration for MkDocs

tox.ini - configuration for Tox

.banditrc.yml - configuration for bandit

.pylintrc - configuration for Pylint

Deprecation policy

We aim to keep public behaviour stable for as long as possible, so removals go through a staged process.

Method deprecation - Document the deprecation directly in the docstring using a ..
Deprecationwarning , while still executing a compatible code path when feasible. - Example (from fpdf/fpdf.py):

def set_doc_option(self, opt, value):

wun

Defines a document option.

Args:
opt (str): name of the option to set
value (str): option value

. deprecated:: 2.4.0
Simply set the “FPDF.core_fonts_encoding™ property as a replacement

warnings.warn(
(
"set_doc_option() is deprecated since v2.4.0 "
"and will be removed in a future release. "
"Simply set the ".core_fonts_encoding® property as a replacement."
)
DeprecationWarning,
stacklevel=get_stack_level(),
)
if opt != "core_fonts_encoding":
raise FPDFException(f'Unknown document option "{opt}"')
self.core_fonts_encoding = value

deprecated::

directive. - Emit a

Parameter deprecation - Step 1: Mark the parameter as deprecated in the documentation and emit a warning when it is
supplied. - Step 2: After a few releases, add the @deprecated_parameter() decorator so that the argument disappears from the

-181/193 -

https://pypi.org/project/fpdf2/
https://www.mkdocs.org/
https://tox.readthedocs.io/en/latest/
https://pypi.org/project/bandit/
http://pylint.pycqa.org/en/latest/

8.1.2 Installing fpdf2 from a local git repository

public signature and linters/IDEs flag its usage. - Step 3: Remove support for the parameter entirely, once it is safe with respect
to backwards compatibility.

We try to leave generous time between these steps and only delete behaviour when absolutely necessary.

8.1.2 Installing fpdf2 from a local git repository

pip install --editable $path/to/fpdf/repo

This will link the installed Python package to the repository location, basically meaning any changes to the code package will get
reflected directly in your environment.
8.1.3 Code auto-formatting

We use black as a code prettifier. This "uncomprimising Python code formatter" must be installed in your development
environment in order to auto-format source code before any commit:

pip install black
black . # inside fpdf2 root directory

8.1.4 Linting

We use pylint as a static code analyzer to detect potential issues in the code. You can install & execute it by running those
commands:

pip install pylint
pylint fpdf/ test/

In case of special "false positive" cases, checks can be disabled locally with #pylint disable=xxx code comments, or globally
through the .pylintrc file.
8.1.5 Static typing

Strict typing is enforced in CI with mypy and pyright (see pyproject.toml). Run them locally before pushing, or enable the pre-
commit hook so they run automatically:

pip install fpdf2[dev]
mypy
pyright

General guidelines: - Use # type: ignore[...] sparingly - Prefer real types over Any - Keep casts to unavoidable spots

8.1.6 Pre-commit hook
This project uses git pre-commit hooks: https://pre-commit.com
Those hooks are configured in .pre-commit-config.yaml .

They are intended to abort your commit if pylint found issues or black detected non-properly formatted code. In the later case
though, it will auto-format your code and you will just have to run git commit -a again.

To install pre-commit hooks on your computer, run:

pip install pre-commit
pre-commit install

8.1.7 Testing
Running tests

To run tests, cd into fpdf2 repository, install the dependencies using pip install .[dev,test], and run pytest .

-182/193 -

https://github.com/psf/black
https://github.com/PyCQA/pylint/
https://github.com/py-pdf/fpdf2/blob/master/.pre-commit-config.yaml
https://github.com/py-pdf/fpdf2/blob/master/.pre-commit-config.yaml

8.1.7 Testing

You may also need to install SWIG and Ghostscript, because they are dependencies for camelot, a library for table extraction in
PDF that we test in test/table/test_table_extraction.py . Those tests will always be executed by the GitHub Actions pipeline, so
you can also not bother installing those tools and skip those tests by running pytest -k "not camelot" .

You can run a single test by executing: pytest -k function_name .
Alternatively, you can use Tox. It is self-documented in the tox.ini file in the repository. To run tests for all versions of Python,
simply run tox . If you do not want to run tests for all versions of python, run tox -e py313 (or your version of Python).

Why is a test failing?

If there are some failing tests after you made a code change, it is usually because there are difference between an expected
PDF generated and the actual one produced.

Calling pytest -vv will display the difference of PDF source code between the expected & actual files, but that may be
difficult to understand,

You can also have a look at the PDF files involved by navigating to the temporary test directory that is printed out during the test
failure:

FAILURES
test_html_simple_table

tmp_path = PosixPath('/tmp/pytest-of-runner/pytest-0/test_html_simple_table0')

This directory contains the actual & expected files, that you can vsualize to spot differences:

$ 1s /tmp/pytest-of-runner/pytest-0/test_html_simple_table®
actual.pdf

actual_qpdf.pdf

expected_qgpdf.pdf

assert_pdf_equal & writing new tests

When a unit test generates a PDF, it is recommended to use the assert _pdf_equal utility function in order to validate the output.
It relies on the very handy gpdf CLI program to generate a PDF that is easy to compare: annotated, strictly formatted, with
uncompressed internal streams. You will need to have its binary in your $pATH, otherwise assert_pdf_equal will fall back to hash-
based comparison.

All generated PDF files (including those processed by qgpdf) will be stored in
/tmp/pytest-of-USERNAME/pytest -current/NAME_OF_TEST/ . By default, three last test runs will be saved and then automatically
deleted, so you can check the output in case of a failed test.

Generating PDF files for testing

In order to generate a "reference" PDF file, simply call assert_pdf_equal once with generate=True .

def test_some_feature(tmp_path):
pdf = FPDF()
pdf.add_page()
pdf.rect(10, 10, 60, 80)
assert_pdf_equal(pdf, HERE / "some_feature.pdf", tmp_path, generate=True)

Next you can invoke pytest path/to/test.py to generate the file some_feature.pdf .

Visually comparing all PDF reference files modified on a branch

This script will build an serve a single HTML page containing all PDF references file modified on your current git branch, and
render them side by side with the PDF file from the master branch, so that you can quickly scroll and check for visible
differences:

scripts/compare-changed-pdfs.py

-183/193 -

https://swig.org/index.html
https://www.ghostscript.com/
https://tox.readthedocs.io/en/latest/
https://github.com/qpdf/qpdf

8.1.8 Testing performances

8.1.8 Testing performances

Code speed & profiling

First, try to write a really MINIMAL Python script that focus strictly on the performance point you are investigating. Try to
choose the input dataset so that the script execution time is between 1 and 15 seconds.

Then, you can use cProfile to profile your code and produce a .pstats file:
python -m cProfile -o profile.pstats script.py

Finally, you can quickly convert this .pstats file into a SVG flamegraph using flameprof :

pip install flameprof
flameprof profile.pstats > script-flamegraph.svg

You will get something like this:

T eREEHe peoben getgven
gettetwidth _.\III\ | |
renderpottecut
|| R ncer_por tex: |
|| rendersmied eexeline S
I

1l I|| cell

Jlwapper
B Fmodutes
<built-in method builtins.exec>

| e B pice siven _\I e font | eGSO _co_ (ISR <o <bu-i[SBi <bucin n[SEHE (ERSHGGEER
pickglyph g

‘ ren: l‘ <me <methc‘ ren __hash_get <gene ren get te)‘

I| pick - pick - |.. <n“ pic <bunt. get_wic |p|ck P
rende pick render_j pick . pch.‘ ren get_te - ‘ render_pdf te n

e rene rendr rencr Gl ren pc rn e el cll render e ¢
ene reng_ender, rencer g ————

<built-in methc¢ render_pdf_ti pick pick

l get_text_width- render_pdf_text_t render_pdf_text_ttf H
oetwidin_rende sty ender x|
_render_styled cell _render_styled.te
el wapper el
\wrapper <module> wrapper

=« :find__am =t :find__and_
\IIH-\ 1=

Source GitHub thread where this was produced: issue #907

Tracking memory usage

A good way to track memory usage is to insert calls to fpdf.util.print_mem_usage() in the code you are investigating. This
function will display the current process resident set size (RSS) which is currently, to the maintainer knowledge, one of the best

way to get an accurate measure of Python scripts memory usage.

There is an example of using this function to track fpdf2 memory usage in this issue comment: issue #641. This thread also
includes some tests of other libs & tools to track memory usage.

-184/193 -

https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://pypi.org/project/flameprof/
https://pypi.org/project/flameprof/
https://github.com/py-pdf/fpdf2/issues/907#issuecomment-1705219932
https://fr.wikipedia.org/wiki/Resident_set_size
https://github.com/py-pdf/fpdf2/issues/641#issuecomment-1485048161

8.1.9 GitHub pipeline

Non-regression performance tests

We try to have a small number of unit tests that ensure that the library performances do not degrade over time, when refactoring
are made and new features added.

We have 2 test decorators to help with this:

¢ @ensure exec time below

e @ensure rss memory below
As of fpdf2 v2.7.6, we only keep 3 non-regression performance tests:

* test intense image rendering() in test perfs.py
e test charmap first 999 chars() in test charmap.py

* test cell speed with long text() in test cell.py

8.1.9 GitHub pipeline
A GitHub Actions pipeline is executed on every commit on the master branch, and for every Pull Request.

It performs all validation steps detailed above: code checking with black, static code analysis with pylint, unit tests... Pull
Requests submitted must pass all those checks in order to be approved. Ask maintainers through comments if some errors in the
pipeline seem obscure to you.

Renovate, GitHub Actions & security

We use Renovate to detect dependency updates & create PRs for the Python dependencies / GitHub Actions / NPM dependencies
that we use.

Its configuration file is renovate.json, and the full tool documentation is there: docs.renovatebot.com.
To debug issues with Renovate, it can be useful to invoke it locally using Docker, like this:

docker run -e LOG_LEVEL=debug docker.io/renovate/renovate:41-full --dry-run --token "$GITHUB_OAUTH_TOKEN" py-pdf/fpdf2

We also use zizmor as a GitHub Action to perform static analysis on our pipeline definition files.
In order to use zizmor locally:

zizmor .github/workflows/*.yml

typos
typos is a handy CLI tool to detect & auto-fix typos in source files. Installation is relatively straightforward (read the docs).
This tool is invoked in the pre-commit hooks and in our CI pipeline.
If it fails, you should either:

* auto-fix the errors detected by invoking typos --write-changes

¢ add an exclusion rule to .typos.toml

8.1.10 Release checklist

1. complete cHANGELOG.md and add the version & date of the new release

2. bump FPDF_VERSION in fpdf/fpdf.py . Also (optional, once every year), update contributors/contributors-map-small.png based on
https://py-pdf.github.io/fpdf2/contributors.html

3. update the announce block in docs/overrides/main.html to mention the new release

- 185/193 -

https://github.com/py-pdf/fpdf2/blob/2.7.5/test/conftest.py#L252
https://github.com/py-pdf/fpdf2/blob/2.7.5/test/conftest.py#L286
https://github.com/py-pdf/fpdf2/blob/2.7.5/test/test_perfs.py
https://github.com/py-pdf/fpdf2/blob/2.7.5/test/fonts/test_charmap.py#L41
https://github.com/py-pdf/fpdf2/blob/master/test/text/test_cell.py#L311
https://help.github.com/en/actions/reference
https://github.com/apps/renovate
https://github.com/py-pdf/fpdf2/blob/master/renovate.json
https://docs.renovatebot.com/
https://woodruffw.github.io/zizmor/
https://github.com/crate-ci/typos
https://en.wikipedia.org/wiki/Typographical_error
https://github.com/crate-ci/typos?tab=readme-ov-file#install
https://py-pdf.github.io/fpdf2/contributors.html

8.1.11 Documentation

4. git commit & git push (if editing in a fork: submit and merge a PR)
5. check that the GitHub Actions succeed, and that a new release appears on Pypi
6. perform a GitHub release, taking the description from the cHANGELOG.md . It will create a new git tag.

7. (optional) add a comment mentioning that the feature/fix has been released in all the GitHub issues mentioned in the CHANGELOG.md

8.1.11 Documentation
The standalone documentation is in the docs/ subfolder, written in Markdown.
After being committed to the master branch, documentation is automatically uploaded to GitHub Pages.

Building instructions are contained in .github/workflows/continuous-integration-workflow.yml .

Main documentation using mkdoc
Configuration file: mkdocs.ymtl
To preview the documentation, launch a local rendering server with:

mkdocs serve --open

API documentation using pdoc3
Configuration file: docs/pdoc/config.mako
It is generated from inline comments, and is available on the API page.
There is a useful one-page example Python module with docstrings illustrating how to document code: pdoc3 example pkg.
To preview the API documentation, launch a local rendering server with:

pdoc --html -o public/ fpdf --template-dir docs/pdoc --http :

8.1.12 PDF spec & new features

The PDF 1.7 spec is available on Adobe website: PDF32000 2008.pdf.

The PDF 2.0 spec is available on the Adobe website or on the PDF Association website.

It may be intimidating at first, but while technical, it is usually quite clear and understandable.

It is also a great place to look for new features for fpdf2: there are still many PDF features that this library does not support.

8.1.13 Useful tools to manipulate PDFs

qpdf

gpdf is a very powerful tool to analyze PDF documents.

One of it most useful features is the QDF mode that can convert any PDF file to a human-readable, decompressed & annotated
new PDF document:

gpdf --qdf doc.pdf doc-qdf.pdf

This is extremely useful to peek into the PDF document structure.

pdfly

pdfly is a very handy CLI tool to manipulate PDF files: py-pdf/pdfly.

-186/193 -

https://github.com/py-pdf/fpdf2/actions
https://pypi.org/project/fpdf2/#history
https://github.com/py-pdf/fpdf2/releases
https://py-pdf.github.io/fpdf2/
https://github.com/py-pdf/fpdf2/blob/master/.github/workflows/continuous-integration-workflow.yml
https://github.com/py-pdf/fpdf2/blob/master/.github/workflows/continuous-integration-workflow.yml
https://github.com/py-pdf/fpdf2/blob/master/mkdocs.yml
https://github.com/py-pdf/fpdf2/blob/master/mkdocs.yml
https://github.com/py-pdf/fpdf2/blob/master/docs/pdoc/config.mako
https://github.com/py-pdf/fpdf2/blob/master/docs/pdoc/config.mako
https://py-pdf.github.io/fpdf2/fpdf/
https://github.com/pdoc3/pdoc/blob/master/pdoc/test/example_pkg/__init__.py
https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/PDF32000_2008.pdf
https://developer.adobe.com/document-services/docs/assets/5b15559b96303194340b99820d3a70fa/PDF_ISO_32000-2.pdf
https://www.pdfa.org/sponsored-standards
https://qpdf.sourceforge.io/
https://qpdf.readthedocs.io/en/stable/qdf.html
https://github.com/py-pdf/pdfly?tab=readme-ov-file#usage

8.1.13 Useful tools to manipulate PDFs

Those are some very useful commands:

* cat : concatenate pages from PDF files into a single PDF file

* meta : show metadata of a PDF file

e x2pdf : convert one or more files to PDF. Each file is a page.

e update-offsets : rebuild a PDF xref table. This is allows to manually edit a PDF file in a text editor, and then fix its xref table so

that a PDF viewer will be able to open it.

A xref table is basically an index of the document internal sections. When manually modifying a PDF file (for example one
produced by qpdf --qdf), if the characters count in any of its sections changes, the xref table must be rebuilt.

(January 8,2026

-187/193 -

8.2 Logging

8.2 Logging

fpdf.FPDF generates useful DEBUG logs on generated sections sizes when calling the output() method., that can help to identify

what part of a PDF takes most space (fonts, images, pages...).

Here is an example of setup code to display them:

import logging

logging.basicConfig(format="%(asctime)s %(name)s [%(levelname)s] %(message)s",
datefmt="%H:%M:%S",

Example output using the Tutorial first code snippet:

level=1logging.DEBUG)

19:25:24 fpdf.output [DEBUG] Final size summary of the biggest document sections:

19:25:24 fpdf.output [DEBUG] - pages: 223.0B
19:25:24 fpdf.output [DEBUG] - fonts: 102.0B

8.2.1 fonttools verbose logs

Since fpdf2 v2.5.7, verbose INFO logs are generated by fonttools, a library we use to parse font files:

fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.

'o', 'one

fontTools.
fontTools.
fontTools.

'o', 'one

fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.
fontTools.

subset
subset
subset
subset
subset
subset
subset
subset
subset
subset
subset
subset
subset
subset
subset
Qo
subset
subset
subset
prt
subset
subset
subset
subset
subset
subset
subset
subset
subset
subset
subset
subset
subset
subset
subset
subset
subset
subset

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
'seven’
[INFO]
[INFO]
[INFO]
'seven’
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

maxp
cmap
post
EBDT
EBLC
GDEF
GPOS
GSuB
DSIG
name
glyf

Added gid® to subset
Added first four glyphs to subset

pruned
pruned
pruned
dropped
dropped
dropped
dropped
dropped
dropped
pruned
pruned

Closing glyph list over 'glyf': 25 glyphs before

Glyph names:

, 'six', 'space

Glyph IDs:

, 'six', 'space

Glyph IDs:

'
7

'
7

fo,

['.notdef',
"three',
[e, 1, 2, 3, 19, 20, 21, 22, 23, 24, 25, 26, 27,
Closed glyph list over 'glyf': 25 glyphs after

Glyph names: ['.notdef',
'three',

1,

Retaining 25 glyphs

head
hhea
maxp
0S/2
hmtx
cmap
fpgm
prep
cvt

loca
post
name
glyf
head
0s/2
glyf

subsetting
subsetting
subsetting
subsetting
subsetted
subsetted
subsetting
subsetting
subsetting
subsetting
subsetted
subsetting
subsetted
pruned

not

Unicode ranges

pruned

b,

b,

'braceleft',
'two',

'braceleft',
'two',

'braceright', 'd',

'braceright', 'd',

2, 3, 19, 20, 21, 22, 23, 24, 25, 26, 27,

needed
needed
needed
needed

needed
needed
needed
needed

needed

pruned:

[e]

You can easily suppress those logs with this single line of code:

logging.getLogger('fontTools.subset').level = logging.WARN

Similarly, you can omit verbose logs from fontTools.ttLib.ttFont :

logging.getLogger('fontTools.ttLib.ttFont').level = logging.WARN

8.2.2 Warning logs for unsupported SVG features

'e', 'eight', 'five', 'four', 'glyph1',
28, 69, 71, 72, 75, 79, 81, 82, 85, 90,
'e', 'eight', 'five', 'four', 'glyph1',

28, 69, 71, 72, 75, 79, 81, 82, 85, 90,

'glyph2',
94, 96]
'glyph2’,

94, 96]

he,

he,

",

",

n',

n',

'nine’,

'nine’,

The fpdf.svg module produces wARNING log messages for unsupported SVG tags & attributes. If need be, you can suppress
those logs:

-188/193 -

8.2.2 Warning logs for unsupported SVG features

logging.getLogger("fpdf.svg").propagate = False

(3 November 22, 2023

-189/193 -

8.3 fpdf2 internals

8.3 fpdf2 internals

8.3.1 FPDF.pages
FPDF is designed to add content progressively to the document generated, page by page.

Each page is an entry in the .pages attribute of FpDF instances. Indices start at 1 (the first page) and values are PbFPage
instances.

PDFPage instances have a .contents attribute that is a bytearray and contains the Content Stream for this page (bytearray
makes things a lot faster).

Going back to a previously generated page to add content is possible, using the .page attribute, but may result in unexpected
behavior, because .add page() takes special care to ensure the page's content stream matches FprDF 's instance attributes.

8.3.2 syntax.py & objects serialization
The syntax.py package contains classes representing core elements of the PDF syntax.
Classes inherit from the PDFObject class, that has the following properties:

» every PDF object has an .id, that is assigned during the document serialization by the OutputProducer
e the .serialize() method renders the PDF object as an obj<<...>>endobj text block. It can be overridden by child classes

e the .content_stream() method must return non empty bytes if the PDF Object has a content stream
Other notable core classes are:

* Name

* Raw

* PDFString
* PDFArray
* PDFDate

8.3.3 GraphicsStateMixin
This mixin class, inherited by the FpbF class, allows to manage a stack of graphics state variables:

* docstring: fpdf.graphics state.GraphicsStateMixin
« source file: graphics state.py

* data container: fpdf.graphics state.GraphicsState
The main methods of this API are:

e push local stack(): Push a graphics state on the stack

* pop local stack(): Pop the last graphics state on the stack

* get current graphics state(): Retrieve the current graphics state

» is current graphics state nested(): Indicate if a nested graphics state is active

Each stack entry is a Graphicsstate dataclass, and _get_current_graphics_state() returns a copy used by fragments or temporary
contexts.

Thanks to this mixin, we can use the following semantics:
from fpdf.graphics_state import GraphicsStateMixin

f = GraphicsStateMixin()
Push initial state in stack: gs®

-190/193 -

https://py-pdf.github.io/fpdf2/fpdf/output.html#fpdf.output.PDFPage
https://py-pdf.github.io/fpdf2/fpdf/output.html#fpdf.output.PDFPage
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytearray
https://github.com/reingart/pyfpdf/pull/164
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.page
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.page
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_page
https://github.com/py-pdf/fpdf2/blob/master/fpdf/syntax.py
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.syntax.PDFObject
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.syntax.Name
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.syntax.Raw
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.syntax.PDFString
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.syntax.PDFArray
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.syntax.PDFDate
https://py-pdf.github.io/fpdf2/fpdf/graphics_state.html#fpdf.graphics_state.GraphicsStateMixin
https://github.com/py-pdf/fpdf2/blob/master/fpdf/graphics_state.py
https://py-pdf.github.io/fpdf2/fpdf/graphics_state.html#fpdf.graphics_state.GraphicsState
https://py-pdf.github.io/fpdf2/fpdf/graphics_state.html#fpdf.graphics_state.GraphicsStateMixin._push_local_stack
https://py-pdf.github.io/fpdf2/fpdf/graphics_state.html#fpdf.graphics_state.GraphicsStateMixin._pop_local_stack
https://py-pdf.github.io/fpdf2/fpdf/graphics_state.html#fpdf.graphics_state.GraphicsStateMixin._get_current_graphics_state
https://py-pdf.github.io/fpdf2/fpdf/graphics_state.html#fpdf.graphics_state.GraphicsStateMixin._is_current_graphics_state_nested

8.3.4 OutputProducer

gs®@ = f._push_local_stack()

Step 1 - set some graphic styles: gsi
f.font_size pt = 16

f.underline = True

gsl = f._get_current_graphics_state()

Step 2 - restore gsoO
f._pop_local_stack()
print(f"{f.font_size_pt=} {f.underline=}")
-> f.font_size_pt=0 f.underline=False

The graphics states used in the code above can be depicted by this diagram:

stateDiagram-v2

direction LR

state gso {
initiall : Base state

}

state gs1 {
initial2 : Base state
font_size_pt2 : font_size_pt=16
underline2 : underline=True
font_size pt2 --> initial2
underline2 --> font_size pt2

}

gs@ --> gsl: Step 1

state "gsO" as stack2 {
initial3 : Base state

}

gsl --> stack2: Step 2

8.3.4 OutputProducer

In fpdf2, the FPDF class is used to store the document definition, its state as it is progressively built. Most attributes and
internal data is mutable.

Once it's done, when the FPDF.output() method is called, the actual PDF file creation is delegated to the OutputProducer class.

It performs the serialization of the PDF document, including the generation of the cross-reference table & file trailer. This class
uses the FPDF instance as immutable input: it does not perform any modification on it.

@ January 20, 2026

-191/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.output
https://py-pdf.github.io/fpdf2/fpdf/output.html#fpdf.output.OutputProducer
https://py-pdf.github.io/fpdf2/fpdf/output.html#fpdf.output.PDFXrefAndTrailer

9. History

9. History

This project, fpdf2 is a fork of the pyFPDF project, which can still be found on GitHub at reingart/pyfpdf, but has been totally
inactive since January 2018, and has not seen any new release since 2015.

About the original pyFpDF lib:

This project started as a Python fork of the FPDF PHP library, ported to Python by Max Pat in 2006: http://www.fpdf.org/dl.php?
id=94. The original FPDF library was developed in PHP several years ago, and has been ported to many programming languages:
http://www.fpdf.org. Later, in the Python FPDF library, code for native reading TTF fonts was added. In 2008 it was moved from a
SVN repository to git on Google Code by Mariano Reingart, who became the maintainer of FPDF. In 2013, it was migrated to
GitHub: https://github.com/reingart/pyfpdf. You can still access the old issues, and old wiki, that were moved to a dedicated
repository. The original roadmap can also still be found there: https://github.com/reingart/pyfpdf/wiki/Roadmap

9.1 How fpdf2 came to be

During the spring of 2016, David Ankin (@alexanderankin) started a fork of PyFPDF, and added the first commit of what became
fpdf2 : bd608e4. On May of 2017, the first release of fpdf2 was published on Pypi: v2.0.0.

On 2020, the first PRs were merged from external contributors. At the end of the year, Lucas Cimon (@Lucas-C) started
contributing several improvements, in order to use fpdf2 for his Undying Dusk project. Version 2.1.0 was released and on
2021/01/10 fpdf2 was moved to a dedicated pyrpPDF GitHub organization, and @Lucas-c became another maintainer of the
project.

On 2023/08/04, fpdf2 moved to the py-pdf organization: https://github.com/py-pdf/fpdf2. The context for this move can be found
there: discussion #752. On this date, the pyFpbF GitHub organization has been archived. The same month, Georg Mischler
(@gmischler) and Anderson Herzogenrath da Costa (@andersonhc) joined the project as new maintainers.

9.2 Compatibility between PyFPDF & fpdf2

fpdf2 aims to be fully compatible with PyFPDF original code (fpdf==1.7.2).
The notable exceptions are:

e for the cell() method, the default value of h has changed. It used to be o and is now set to the current value of
FPDF.font_size

* the font caching mechanism, that used the pickle module, has been removed, for security reasons, and because it provided
little performance gain, and only for specific use cases - cf. issue #345.

* Template elements now have a transparent background by default, instead of white

Additionally, HTML rendering is not guaranteed to be identical regarding whitespace, especially since version 2.7.6 and the new
set of classes introduced to manage text flow: Text Flow Regions

-192/193 -

https://github.com/reingart/pyfpdf
http://fpdf.org/
http://www.fpdf.org/dl.php?id=94
http://www.fpdf.org/dl.php?id=94
http://www.fpdf.org
https://code.google.com/p/pyfpdf/
https://github.com/reingart/pyfpdf
https://github.com/reingart/pyfpdf_googlecode/issues
https://github.com/reingart/pyfpdf_googlecode/tree/wiki
https://github.com/reingart/pyfpdf/wiki/Roadmap
https://github.com/py-pdf/fpdf2/commits/master?after=1db5f7fdc93eac981c8f1d15856649b68e523ec8+69&branch=master&qualified_name=refs-2Fheads-2Fmaster
https://pypi.org/project/fpdf2/#history
https://github.com/Lucas-C/
https://lucas-c.itch.io/undying-dusk
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md#210---2020-12-07
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md#210---2020-12-07
https://github.com/py-pdf/fpdf2
https://github.com/py-pdf/fpdf2/discussions/752
https://github.com/gmischler
https://github.com/andersonhc
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.cell
https://github.com/py-pdf/fpdf2/issues/345
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template

9.2 Compatibility between PyFPDF & fpdf2

Some features are also deprecated. As of version 2.8.4 they still work but generate a warning when used:

e | FPDF.rotate() can produce malformed PDFs: use FPDF.rotation() instead

e font aliases (Arial — Helvetica, CourierNew — Courier , TimesNewRoman — Times)

* FPDF.set doc option(): simply set the .core_fonts_encoding property as a replacement

» FPDFE.dashed line(): use FPDF.set dash pattern() and the normal drawing operations instead
e the font_cache dir parameter of FPDF() constructor, that is currently ignored

e the uni parameter of FPDF.add font(), that is currently ignored: if the value of the fname argument passed to add_font() ends
with .ttf, it is considered a TrueType font

e the type parameter of FPDF.image(), that is currently ignored

* the dest parameter of FPDF.output(), that is currently ignored

e the 1n parameter of FPDEmulti cell(): use new_x= & new_y= instead

e the split_only parameter of FPDFmulti cell(): use dry_run=True and output="LINES" instead

e the HTMLMixin class: you can now directly use the FPDF.write html() method

* the infile parametyer of Template() constructor, that is currently ignored

e the parameters x/y/w/h of code39 elements provided to the Template system: please use xi/yi1/y2/size instead

e the dest parameter of Template.render(), that is currently ignored

* to improve naming consistency, the txt parameters of FPDF.cell(), FPDF.multi_cell(), FPDF.text() & FPDF.write() have been

renamed to text

Note that peprecationwarning messages are not displayed by Python by default. To get warned about deprecated features used in
your code, you must execute your scripts with the -wd option (cf. documentation), or enable them programmatically with

warnings.simplefilter('default', DeprecationWarning) .

€ October 15,2025

-193/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rotate
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rotation
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_doc_option
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.dashed_line
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_dash_pattern
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.output
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/html.html#fpdf.html.HTMLMixin
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write_html
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template.render
https://docs.python.org/3/using/cmdline.html#cmdoption-W

	fpdf2 manual
	1. fpdf2
	1.1 Main features
	1.2 Tutorials
	1.3 Installation
	1.3.1 Displaying deprecation warnings

	1.4 Community
	1.4.1 Support
	1.4.2 They use fpdf2
	1.4.3 Usage statistics
	1.4.4 Related

	1.5 Misc

	2. Tutorial
	2.1 Hello World with fpdf2
	2.2 Tutorial
	2.2.1 Tuto 1 - Minimal Example
	2.2.2 Tuto 2 - Header, footer, page break and image
	2.2.3 Tuto 3 - Line breaks and colors
	2.2.4 Tuto 4 - Multi Columns
	2.2.5 Tuto 5 - Creating Tables
	2.2.6 Tuto 6 - Creating links and mixing text styles
	2.2.7 Tuto 7 - Creating PDF/A Documents
	PDF/A Standards
	Conformance Classes

	3. Page Layout
	3.1 Page format and orientation
	3.1.1 Per-page format, orientation and background
	3.1.2 Page layout & zoom level
	3.1.3 Viewer preferences
	3.1.4 Full screen

	3.2 Margins
	3.3 Templates
	3.3.1 Using Template
	3.3.2 Using FlexTemplate
	3.3.3 Details - Template definition
	3.3.4 How to create a template
	Example - Python dict
	Example - Elements defined in JSON file
	Example - Elements defined in CSV file

	3.4 Text Flow Regions
	3.4.1 Text Flow Regions
	General Operation
	Text Start Position
	Interaction Between Regions
	Common Parameters
	Common Methods

	Paragraphs
	Possible Future Extensions

	Images

	3.4.2 Text Columns
	Text Columns
	Single-Column Example
	Multi-Column Example
	Balanced Columns
	Possible future extensions

	3.5 Tables
	3.5.1 Features
	3.5.2 Setting table & column widths
	3.5.3 Setting text alignment
	3.5.4 Setting cell padding
	3.5.5 Setting vertical alignment of text in cells
	3.5.6 Setting row height
	3.5.7 Disable table headings
	3.5.8 Style table headings
	3.5.9 Set cells background
	3.5.10 Set borders layout
	3.5.11 Set cell borders
	3.5.12 Insert images
	3.5.13 Adding links to cells
	3.5.14 Syntactic sugar
	3.5.15 Gutter
	3.5.16 Column span and row span
	3.5.17 Table with multiple heading rows
	3.5.18 Table from pandas DataFrame or spreadsheet files
	3.5.19 Using write_html
	3.5.20 "Parsabilty" of the tables generated

	4. Text Content
	4.1 Adding Text
	4.1.1 Simple Text Methods
	4.1.2 Flowable Text Regions
	4.1.3 Typography and Language Specific Concepts
	Supported Features
	Limitations
	Character or Word Based Line Wrapping

	4.1.4 Text Formatting
	4.1.5 Change in current position
	4.1.6 .text()
	4.1.7 .cell()
	4.1.8 .multi_cell()
	4.1.9 .write()
	4.1.10 .write_html()

	4.2 Line breaks
	4.3 Page breaks
	4.3.1 Manually trigger a page break
	4.3.2 Inserting the final number of pages of the document
	4.3.3 will_page_break
	4.3.4 Unbreakable sections

	4.4 Text styling
	4.4.1 .set_font()
	4.4.2 .set_stretching(stretching=100)
	4.4.3 .set_char_spacing(spacing=0)
	4.4.4 Subscript, Superscript, and Fractional Numbers
	4.4.5 .text_mode
	4.4.6 markdown=True
	4.4.7 .write_html()

	4.5 Fonts and Unicode
	Web fonts (WOFF and WOFF2)
	Font collections (TTC/OTC)
	Built-in Fonts vs. Unicode Fonts
	Adding and Using Fonts
	Note on non-latin languages
	Right-to-Left scripts
	4.5.1 Example
	4.5.2 Free Font Pack
	4.5.3 Fallback fonts
	4.5.4 Unicode range limits
	4.5.5 Variable Fonts
	4.5.6 Color Font Palette Selection

	4.6 Text Shaping
	4.6.1 What is text shaping?
	Kerning
	Ligatures
	Glyph Substitution

	4.6.2 Usage
	Basic usage
	Features
	Additional options

	4.6.3 Bidirectional Text
	Unicode Bidirectional Algorithm
	Paragraph direction
	Bidirectional text in fpdf2

	4.7 Emojis, Symbols & Dingbats
	4.7.1 Emojis
	4.7.2 Color fonts and emojis
	4.7.3 Symbols
	4.7.4 Dingbats
	4.7.5 Fallback fonts

	4.8 HTML
	4.8.1 write_html usage example
	Styling HTML tags globally
	Default font

	4.8.2 Supported HTML features
	Page breaks

	4.8.3 Known limitations
	4.8.4 Using Markdown

	5. Graphics Content
	5.1 Images
	5.1.1 Simple example
	5.1.2 Alpha / transparency
	5.1.3 Assembling images
	Side by side images, full height, landscape page
	Fitting an image inside a rectangle
	Image alignment in the bounding box

	Blending images

	5.1.4 Image clipping
	5.1.5 Alternative description
	5.1.6 Usage with Pillow
	5.1.7 SVG images
	5.1.8 Retrieve images from URLs
	5.1.9 Image compression
	5.1.10 Output Intents
	5.1.11 ICC Profiles
	5.1.12 Oversized images detection & downscaling
	5.1.13 Disabling transparency
	5.1.14 Page background
	5.1.15 Sharing the image cache among FPDF instances

	5.2 Shapes
	5.2.1 Lines
	5.2.2 Circle
	5.2.3 Ellipse
	5.2.4 Rectangle
	5.2.5 Polygon
	5.2.6 Arc
	5.2.7 Solid arc
	5.2.8 Bezier Curve
	5.2.9 Regular Polygon
	5.2.10 Regular Star
	5.2.11 Path styling

	5.3 Transformations
	5.3.1 Rotation
	5.3.2 Skew
	5.3.3 Mirror

	5.4 Transparency
	5.5 Patterns and Gradients
	5.5.1 Overview
	5.5.2 2. Gradients
	2.1 What is a Gradient?
	2.2 Linear Gradients (axial shading)
	2.3 Radial Gradients

	5.5.3 4. Advanced Usage
	4.1 Multiple Colors
	4.2 Extending & Background for Linear Gradients
	4.3 Custom Bounds

	5.6 Barcodes
	5.6.1 Code 39
	5.6.2 Interleaved 2 of 5
	5.6.3 PDF-417
	5.6.4 QRCode
	5.6.5 DataMatrix
	Extend FPDF with a datamatrix() method

	5.6.6 Aztec Code
	5.6.7 Code128

	5.7 Drawing
	5.7.1 Getting Started
	5.7.2 Adding Some Style
	5.7.3 Transforms And You
	5.7.4 Clipping Paths
	5.7.5 Compositing operations
	5.7.6 Next Steps

	5.8 Scalable Vector Graphics (SVG)
	5.8.1 Basic usage
	5.8.2 Detailed example
	5.8.3 Converting vector graphics to raster graphics
	Using cairosvg
	Using svglib and reportlab

	5.8.4 Warning logs
	5.8.5 Supported SVG Features
	5.8.6 Currently Unsupported Notable SVG Features

	5.9 Charts & graphs
	5.9.1 Charts
	Using Matplotlib
	Using Pandas
	Using Ibis
	Using Plotly
	Using Pygal

	5.9.2 Mathematical formulas
	Using Google Charts API
	Using LaTeX & Matplotlib

	6. PDF Features
	6.1 Links
	6.1.1 Hyperlink with FPDF.cell
	6.1.2 Hyperlink with FPDF.multi_cell
	6.1.3 Hyperlink with FPDF.link
	6.1.4 Hyperlink with write_html
	6.1.5 Internal links
	6.1.6 Links to other documents on the filesystem
	6.1.7 Alternative description

	6.2 Metadata
	6.3 Annotations
	6.3.1 Text annotations
	6.3.2 Free Text Annotations
	6.3.3 Highlights
	6.3.4 Ink annotations
	6.3.5 File attachments
	6.3.6 Named actions
	6.3.7 Launch actions

	6.4 Presentations
	6.4.1 Page display duration
	6.4.2 Transitions

	6.5 Document Outline & Table of Contents
	6.5.1 Overview
	6.5.2 Document Outline (Bookmarks)
	Nested outlines

	6.5.3 Table of Contents
	Inserting a Table of Contents
	Reference Implementation

	6.5.4 Using Outlines and ToC with HTML
	6.5.5 Additional Code Samples
	6.5.6 Manually Adjusting pdf.page

	6.6 Page Labels
	6.6.1 Overview
	6.6.2 Page Label Components
	1. Style
	2. Prefix
	3. Start

	6.6.3 Using Page Labels in fpdf2
	Adding a Page with Labels in add_page()
	Modifying Page Labels with set_page_label()
	Retrieving the Current Page Label with get_page_label()

	6.6.4 Example Usage

	6.7 Encryption
	6.7.1 Password locking
	6.7.2 Access permissions
	6.7.3 Encryption method

	6.8 Signing
	6.9 File attachments
	6.9.1 Embedded file streams
	6.9.2 Annotations

	6.10 PDF/A with fpdf2
	6.10.1 What is PDF/A
	6.10.2 Choosing a PDF/A Profile
	6.10.3 How to produce PDF/A with fpdf2
	Pick a profile at construction time
	Quick example

	6.10.4 Future: Accessible documents (WCAG/PDF/UA)

	7. Mixing other libs
	7.1 Combine with pypdf
	7.1.1 Adding content onto an existing PDF page
	7.1.2 Adding a page to an existing PDF
	7.1.3 Altering with pypdf a document generated with fpdf2

	7.2 Combine with Markdown
	7.2.1 mistletoe
	Rendering unicode characters

	7.2.2 markdown-it-py
	7.2.3 mistune
	7.2.4 Python-Markdown
	7.2.5 Text styling, fonts, etc.

	7.3 Combine with livereload
	7.4 borb
	7.4.1 Creating a document with fpdf2 and transforming it into a borb.pdf.document.Document

	7.5 Combine with pdfrw
	7.5.1 Adding content onto an existing PDF page
	7.5.2 Adding a page to an existing PDF
	7.5.3 Altering with pdfrw a document generated with fpdf2

	7.6 Matplotlib, Pandas, Plotly, Pygal
	7.7 Usage in web APIs
	7.7.1 Django
	7.7.2 WSGI applications
	Flask
	Bottle
	CherryPy

	7.7.3 AWS lambda
	7.7.4 streamlit
	7.7.5 FastAPI
	7.7.6 Plone
	As a Browser View
	As a Custom Content Type Method
	With Catalog Queries
	Notes for Plone Developers

	7.7.7 Jupyter
	7.7.8 web2py

	7.8 Rendering spreadsheets as PDF tables
	7.8.1 From a .csv spreadsheet
	7.8.2 From a .xlsx spreadsheet
	7.8.3 From an .ods spreadsheet
	7.8.4 From pandas DataFrame

	7.9 Templating with Jinja
	7.9.1 Combining Jinja & write_html

	7.10 Combine with Rough.js
	7.10.1 Producing SVG with Rough.js
	7.10.2 Embedding Rough.js SVG files

	8. Development
	8.1 Development
	8.1.1 Repository structure
	Deprecation policy

	8.1.2 Installing fpdf2 from a local git repository
	8.1.3 Code auto-formatting
	8.1.4 Linting
	8.1.5 Static typing
	8.1.6 Pre-commit hook
	8.1.7 Testing
	Running tests
	Why is a test failing?
	assert_pdf_equal & writing new tests
	Generating PDF files for testing
	Visually comparing all PDF reference files modified on a branch

	8.1.8 Testing performances
	Code speed & profiling
	Tracking memory usage
	Non-regression performance tests

	8.1.9 GitHub pipeline
	Renovate, GitHub Actions & security
	typos

	8.1.10 Release checklist
	8.1.11 Documentation
	Main documentation using mkdoc
	API documentation using pdoc3

	8.1.12 PDF spec & new features
	8.1.13 Useful tools to manipulate PDFs
	qpdf
	pdfly

	8.2 Logging
	8.2.1 fonttools verbose logs
	8.2.2 Warning logs for unsupported SVG features

	8.3 fpdf2 internals
	8.3.1 FPDF.pages
	8.3.2 syntax.py & objects serialization
	8.3.3 GraphicsStateMixin
	8.3.4 OutputProducer

	9. History
	9.1 How fpdf2 came to be
	9.2 Compatibility between PyFPDF & fpdf2

