
fpdf2 manual

A minimalist PDF creation library for Python

v2.8.6

Table of contents

41. fpdf2

41.1 Main features

51.2 Tutorials

61.3 Installation

61.4 Community

81.5 Misc

92. Tutorial

92.1 Hello World with fpdf2

102.2 Tutorial

173. Page Layout

173.1 Page format and orientation

193.2 Margins

203.3 Templates

283.4 Text Flow Regions

353.5 Tables

504. Text Content

504.1 Adding Text

534.2 Line breaks

544.3 Page breaks

564.4 Text styling

624.5 Fonts and Unicode

694.6 Text Shaping

734.7 Emojis, Symbols & Dingbats

754.8 HTML

785. Graphics Content

785.1 Images

845.2 Shapes

965.3 Transformations

1005.4 Transparency

1025.5 Patterns and Gradients

1055.6 Barcodes

1105.7 Drawing

1155.8 Scalable Vector Graphics (SVG)

1205.9 Charts & graphs

Table of contents

- 2/193 -

1286. PDF Features

1286.1 Links

1316.2 Metadata

1326.3 Annotations

1356.4 Presentations

1366.5 Document Outline & Table of Contents

1396.6 Page Labels

1436.7 Encryption

1456.8 Signing

1476.9 File attachments

1486.10 PDF/A with fpdf2

1527. Mixing other libs

1527.1 Combine with pypdf

1547.2 Combine with Markdown

1607.3 Combine with livereload

1627.4 borb

1647.5 Combine with pdfrw

1667.6 Matplotlib, Pandas, Plotly, Pygal

1677.7 Usage in web APIs

1737.8 Rendering spreadsheets as PDF tables

1767.9 Templating with Jinja

1777.10 Combine with Rough.js

1818. Development

1818.1 Development

1888.2 Logging

1908.3 fpdf2 internals

1929. History

1929.1 How fpdf2 came to be

1929.2 Compatibility between PyFPDF & fpdf2

Table of contents

- 3/193 -

1. fpdf2

fpdf2 is a library for simple & fast PDF document generation in Python. It is a fork and the successor of PyFPDF (cf. history).

Latest Released Version:

Go try it now online in a Jupyter notebook: or

1.1 Main features

Easy to use, with a user-friendly API, and easy to extend

Python 3.10+ support

Unicode (UTF-8) TrueType font subset embedding (Central European, Cyrillic, Greek, Baltic, Thai, Chinese, Japanese, Korean,

Hindi and almost any other language in the world)

Internal / external links

pypipypi v2.8.5v2.8.5

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_font('Helvetica', size=12)
pdf.cell(text="Hello world!")
pdf.output("hello_world.pdf")

Open in ColabOpen in Colab Open InOpen In nbviewernbviewer

•

•

•

•

1. fpdf2

- 4/193 -

https://pypi.python.org/pypi/fpdf2
https://pypi.python.org/pypi/fpdf2
https://colab.research.google.com/github/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
https://colab.research.google.com/github/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
https://nbviewer.org/github/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
https://nbviewer.org/github/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
https://py-pdf.github.io/fpdf2/fpdf/

Embedding images, including transparency and alpha channel, using Pillow (Python Imaging Library)

Arbitrary path drawing and basic SVG import

Embedding barcodes, charts & graphs, emojis, symbols & dingbats

Tables, and also cell / multi-cell / plaintext writing, with automatic page breaks, line break and text justification

Choice of measurement unit, page format & margins. Optional page header and footer

Basic conversion from HTML to PDF

A templating system to render PDFs in batchs

Images & links alternative descriptions, for accessibility

Table of contents & document outline

Document encryption & document signing

Annotations, including text highlights, and file attachments

Presentation mode with control over page display duration & transitions

Optional basic Markdown-like styling: **bold**, __italics__

It has very few dependencies: Pillow, defusedxml, & fonttools

Can render mathematical equations & charts

Many example scripts available throughout this documentation, including usage examples with Django, Flask, FastAPI,

streamlit, AWS lambdas... : Usage in web APIs

more than 1300 unit tests with qpdf -based PDF diffing, and PDF samples validation using 3 different checkers:

1.2 Tutorials

English

Deutsch

Italian

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.2 Tutorials

- 5/193 -

https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/
https://pypi.org/project/defusedxml/
https://pypi.org/project/fonttools/
https://www.djangoproject.com/
https://flask.palletsprojects.com
https://fastapi.tiangolo.com/
https://streamlit.io/
https://github.com/qpdf/qpdf
https://github.com/qpdf/qpdf
https://www.datalogics.com/repair-pdf-files
https://www.datalogics.com/repair-pdf-files
https://verapdf.org
https://verapdf.org

español

français

हिंदी

português

Русский

Ελληνικά

עברית

简体中文

বাংলা

ភាសា���ខ្មែរ

日本語

Dutch

Polski

Türkçe

Indonesian

Slovenščina

Українська

1.3 Installation

From PyPI:

To get the latest, unreleased, development version straight from the development branch of this repository:

Development: check the dedicated documentation page.

1.3.1 Displaying deprecation warnings

DeprecationWarning s are not displayed by Python by default.

Hence, every time you use a newer version of fpdf2 , we strongly encourage you to execute your scripts with the -Wd option (cf.

documentation) in order to get warned about deprecated features used in your code.

This can also be enabled programmatically with warnings.simplefilter('default', DeprecationWarning) .

1.4 Community

1.4.1 Support

For community support, please feel free to file an issue or open a discussion.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

pip install fpdf2

pip install git+https://github.com/py-pdf/fpdf2.git@master

1.3 Installation

- 6/193 -

https://pypi.python.org/pypi/fpdf2
https://docs.python.org/3/using/cmdline.html#cmdoption-W
https://github.com/py-pdf/fpdf2/issues
https://github.com/py-pdf/fpdf2/discussions

1.4.2 They use fpdf2

Online classes & open source projects:

Harvard University uses fpdf2 in their CS50 introductory class

Undying Dusk : a video game in PDF format, with a gameplay based on exploration and logic puzzles, in the tradition of

dungeon crawlers

OpenDroneMap : a command line toolkit for processing aerial drone imagery

OpenSfM : a Structure from Motion library, serving as a processing pipeline for reconstructing camera poses and 3D scenes

from multiple images

RPA Framework : libraries and tools for Robotic Process Automation (RPA), designed to be used with both Robot Framework :

rpa-pdf package

Concordia : a platform developed by the US Library of Congress for crowdsourcing transcription and tagging of text in

digitized images

FreeCAD-Beginner-Assistant : FreeCAD plugin providing feedback on best practices for beginning FreeCAD users

wudududu/extract-video-ppt : create a one-page-per-frame PDF from a video or PPT file. fpdf2 also has a demo script to

convert a GIF into a one-page-per-frame PDF: gif2pdf.py

Planet-Matriarchy-RPG-CharGen : a PyQt based desktop application (= .exe under Windows) that provides a RPG character

sheet generator

1.4.3 Usage statistics

PyPI download stats - Downloads per release on Pepy

pip trends: fpdf2 VS other PDF rendering libs

packages using fpdf2 can be listed using:

Wheelodex

deps.dev

packages.ecosyste.ms

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.4.2 They use fpdf2

- 7/193 -

https://cs50.harvard.edu/python/2022/psets/8/shirtificate/
https://lucas-c.itch.io/undying-dusk
https://github.com/OpenDroneMap/ODM
https://github.com/mapillary/OpenSfM
https://github.com/robocorp/rpaframework
https://robotframework.org
https://pypi.org/project/rpa-pdf/
https://github.com/LibraryOfCongress/concordia
https://github.com/alekssadowski95/FreeCAD-Beginner-Assistant
https://github.com/wudududu/extract-video-ppt
https://github.com/py-pdf/fpdf2/blob/master/tutorial/gif2pdf.py
https://github.com/ShawnDriscoll/Planet-Matriarchy-RPG-CharGen
https://pypistats.org/packages/fpdf2
https://pepy.tech/project/fpdf2
https://piptrends.com/compare/fpdf2-vs-fpdf-vs-pypdf-vs-borb-vs-reportlab
https://www.wheelodex.org/projects/fpdf2/rdepends/
https://deps.dev/pypi/fpdf2/2.8.1/dependents
https://packages.ecosyste.ms/registries/pypi.org/packages/fpdf2/dependent_packages

1.4.4 Related

Looking for alternative libraries? Check out pypdf, borb, pikepdf, WeasyPrint, pydyf and PyMuPDF: features comparison,

examples, Jupyter notebooks. We have some documentations about combining fpdf2 with borb & pypdf .

Create PDFs with Python : a series of tutorial videos by bvalgard

GitHub gist providing borders around any fpdf2 area, by @hyperstown

digidigital/Extensions-and-Scripts-for-pyFPDF-fpdf2 : scripts ported from PHP to add transparency to elements of the page or

part of an image, allow to write circular text, draw pie charts and bar diagrams, embed JavaScript, draw rectangles with

rounded corners, draw a star shape, restrict the rendering of some elements to screen or printout, paint linear / radial / multi-

color gradients gradients, add stamps & watermarks, write sheared text...

1.5 Misc

Release notes for every versions of fpdf2 : CHANGELOG.md

This library could only exist thanks to the dedication of many volunteers around the world: list & map of contributors

You can download an offline PDF version of this manual: fpdf2-manual.pdf

October 22, 2025

star-history.com
2018 2020 2022 2024 2026

200

400

600

800

1000

1200

1400 py-pdf/fpdf2

Star History

Date

Gi
tH
ub

St
ar

s

•

•

•

•

•

•

•

1.4.4 Related

- 8/193 -

https://star-history.com/#py-pdf/fpdf2
https://star-history.com/#py-pdf/fpdf2
https://github.com/py-pdf/pypdf
https://github.com/jorisschellekens/borb
https://github.com/pikepdf/pikepdf
https://github.com/Kozea/WeasyPrint
https://pypi.org/project/pydyf/
https://pymupdf.readthedocs.io/en/latest/index.html
https://pymupdf.readthedocs.io/en/latest/about.html
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/examples#examples
https://github.com/pymupdf/PyMuPDF-Utilities/tree/master/jupyter-notebooks
https://www.youtube.com/playlist?list=PLjNQtX45f0dR9K2sMJ5ad9wVjqslNBIC0
https://gist.github.com/hyperstown/88a44b28313549a43255f590f4915b1a
https://github.com/hyperstown
https://github.com/digidigital/Extensions-and-Scripts-for-pyFPDF-fpdf2
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/README.md#contributors-
https://py-pdf.github.io/fpdf2/fpdf2-manual.pdf

2. Tutorial

2.1 Hello World with fpdf2

This Jupyter notebook demontrates some basic usage of the Python fpdf2 library

Click to download PDF

To continue learning about fpdf2 , check our tutorial: - English - Deutsch - español - हिंदी - português - Русский - Italian -

français - Ελληνικά - עברית - Dutch - Polski - Türkçe - Indonesian

February 19, 2026

Open in ColabOpen in Colab

Open InOpen In nbviewernbviewer

Installation of fpdf2 with PIP:
!pip install fpdf2

Enable deprecation warnings:
import warnings
warnings.simplefilter('default', DeprecationWarning)

Generate a PDF:
from fpdf import FPDF
pdf = FPDF()
pdf.add_page()
pdf.set_font('helvetica', size=48)
pdf.cell(text="hello world")
pdf_bytes = pdf.output()

Display the PDF in the notebook by embedding it as HTML content:
WIDTH, HEIGHT = 800, 400
from base64 import b64encode
from IPython.display import display, HTML
base64_pdf = b64encode(pdf_bytes).decode("utf-8")
display(HTML(f'<embed height="{HEIGHT}" src="data:application/pdf;base64,{base64_pdf}" type="application/pdf" width="{WIDTH}"/>'))

Display a download button:
display(HTML(f'Click to download PDF'))

2. Tutorial

- 9/193 -

https://colab.research.google.com/github/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
https://colab.research.google.com/github/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
https://nbviewer.org/github/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
https://nbviewer.org/github/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
https://jupyter.org/
https://github.com/py-pdf/fpdf2
data:application/pdf;base64,JVBERi0xLjMKMyAwIG9iago8PC9UeXBlIC9QYWdlCi9QYXJlbnQgMSAwIFIKL1Jlc291cmNlcyAyIDAgUgovQ29udGVudHMgNCAwIFI+PgplbmRvYmoKNCAwIG9iago8PC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzM+PgpzdHJlYW0KeJwzUvDiMtAzNVco53IKUdB3M1QwsdAzMFAISVNwDQEJGRvqGVoomJub6hmaKISkKGhkpObk5CuU5xflpGgqhGSBlAEAC64QcgplbmRzdHJlYW0KZW5kb2JqCjEgMCBvYmoKPDwvVHlwZSAvUGFnZXMKL0tpZHMgWzMgMCBSXQovQ291bnQgMQovTWVkaWFCb3ggWzAgMCA1OTUuMjggODQxLjg5XQo+PgplbmRvYmoKNSAwIG9iago8PC9UeXBlIC9Gb250Ci9CYXNlRm9udCAvSGVsdmV0aWNhCi9TdWJ0eXBlIC9UeXBlMQovRW5jb2RpbmcgL1dpbkFuc2lFbmNvZGluZwo+PgplbmRvYmoKMiAwIG9iago8PAovUHJvY1NldCBbL1BERiAvVGV4dCAvSW1hZ2VCIC9JbWFnZUMgL0ltYWdlSV0KL0ZvbnQgPDwKL0YxIDUgMCBSCj4+Ci9YT2JqZWN0IDw8Cj4+Cj4+CmVuZG9iago2IDAgb2JqCjw8Ci9DcmVhdGlvbkRhdGUgKEQ6MjAyMjA5MTUwNjU0NDJaMDYnNTQnKQo+PgplbmRvYmoKNyAwIG9iago8PAovVHlwZSAvQ2F0YWxvZwovUGFnZXMgMSAwIFIKL09wZW5BY3Rpb24gWzMgMCBSIC9GaXRIIG51bGxdCi9QYWdlTGF5b3V0IC9PbmVDb2x1bW4KPj4KZW5kb2JqCnhyZWYKMCA4CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDIyOSAwMDAwMCBuIAowMDAwMDAwNDExIDAwMDAwIG4gCjAwMDAwMDAwMDkgMDAwMDAgbiAKMDAwMDAwMDA4NyAwMDAwMCBuIAowMDAwMDAwMzE1IDAwMDAwIG4gCjAwMDAwMDA1MTUgMDAwMDAgbiAKMDAwMDAwMDU3NiAwMDAwMCBuIAp0cmFpbGVyCjw8Ci9TaXplIDgKL1Jvb3QgNyAwIFIKL0luZm8gNiAwIFIKL0lEIFs8NEU0Nzc0MTZCRTlCODJGQjQ4QTcxMzRCMkVDODAxNTk+PDRFNDc3NDE2QkU5QjgyRkI0OEE3MTM0QjJFQzgwMTU5Pl0KPj4Kc3RhcnR4cmVmCjY3OQolJUVPRgo=
https://py-pdf.github.io/fpdf2/Tutorial.html
https://py-pdf.github.io/fpdf2/Tutorial-de.html
https://py-pdf.github.io/fpdf2/Tutorial-es.html
https://py-pdf.github.io/fpdf2/Tutorial-%E0%A4%B9%E0%A4%BF%E0%A4%82%E0%A4%A6%E0%A5%80.html
https://py-pdf.github.io/fpdf2/Tutorial-pt.html
https://py-pdf.github.io/fpdf2/Tutorial-ru.html
https://py-pdf.github.io/fpdf2/Tutorial-it.html
https://py-pdf.github.io/fpdf2/Tutorial-fr.html
https://py-pdf.github.io/fpdf2/Tutorial-gr.html
https://py-pdf.github.io/fpdf2/Tutorial-he.html
https://py-pdf.github.io/fpdf2/Tutorial-nl.html
https://py-pdf.github.io/fpdf2/Tutorial-pl.html
https://py-pdf.github.io/fpdf2/Tutorial-tr.html
https://py-pdf.github.io/fpdf2/Tutorial-id.html

2.2 Tutorial

Methods full documentation: fpdf.FPDF API doc

2.2.1 Tuto 1 - Minimal Example

Let's start with the classic example:

Resulting PDF

After including the library file, we create an FPDF object. The FPDF constructor is used here with the default values: pages are in

A4 portrait and the measure unit is millimeter. It could have been specified explicitly with:

It is possible to set the PDF in landscape mode (L) or to use other page formats (such as Letter and Legal) and measure units

(pt , cm , in).

There is no page for the moment, so we have to add one with add_page. The origin is at the upper-left corner and the current

position is by default placed at 1 cm from the borders; the margins can be changed with set_margins.

Before we can print text, it is mandatory to select a font with set_font, otherwise the document would be invalid. We choose

Helvetica bold 16:

We could have specified italics with I , underlined with U or a regular font with an empty string (or any combination). Note that

the font size is given in points, not millimeters (or another user unit); it is the only exception. The other built-in fonts are Times ,

Courier , Symbol and ZapfDingbats .

We can now print a cell with cell. A cell is a rectangular area, possibly framed, which contains some text. It is rendered at the

current position. We specify its dimensions, its text (centered or aligned), if borders should be drawn, and where the current

position moves after it (to the right, below or to the beginning of the next line). To add a frame, we would do this:

To add a new cell next to it with centered text and go to the next line, we would do:

Remark: the line break can also be done with ln. This method allows to specify in addition the height of the break.

Finally, the document is closed and saved under the provided file path using output. Without any parameter provided, output()

returns the PDF bytearray buffer.

2.2.2 Tuto 2 - Header, footer, page break and image

Here is a two page example with header, footer and logo:

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_font("helvetica", style="B", size=16)
pdf.cell(40, 10, "Hello World!")
pdf.output("tuto1.pdf")

pdf = FPDF(orientation="P", unit="mm", format="A4")

pdf.set_font('Helvetica', style='B', size=16)

pdf.cell(40, 10, 'Hello World!', 1)

pdf.cell(60, 10, 'Powered by FPDF.', new_x="LMARGIN", new_y="NEXT", align='C')

from fpdf import FPDF

class PDF(FPDF):
def header(self):

Rendering logo:
self.image("../docs/fpdf2-logo.png", 10, 8, 33)

2.2 Tutorial

- 10/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF
https://github.com/py-pdf/fpdf2/raw/master/tutorial/tuto1.pdf
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_page
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_margins
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.ln
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.output

Resulting PDF

This example makes use of the header and footer methods to process page headers and footers. They are called automatically.

They already exist in the FPDF class but do nothing, therefore we have to extend the class and override them.

The logo is printed with the image method by specifying its upper-left corner and its width. The height is calculated

automatically to respect the image proportions.

To print the page number, a null value is passed as the cell width. It means that the cell should extend up to the right margin of

the page; it is handy to center text. The current page number is returned by the page_no method; as for the total number of

pages, it is obtained by means of the special value {nb} which will be substituted on document closure (this special value can be

changed by alias_nb_pages()). Note the use of the set_y method which allows to set position at an absolute location in the page,

starting from the top or the bottom.

Another interesting feature is used here: the automatic page breaking. As soon as a cell would cross a limit in the page (at 2

centimeters from the bottom by default), a break is performed and the font restored. Although the header and footer select their

own font (helvetica), the body continues with Times . This mechanism of automatic restoration also applies to colors and line

width. The limit which triggers page breaks can be set with set_auto_page_break.

2.2.3 Tuto 3 - Line breaks and colors

Let's continue with an example which prints justified paragraphs. It also illustrates the use of colors.

Setting font: helvetica bold 15
self.set_font("helvetica", style="B", size=15)
Moving cursor to the right:
self.cell(80)
Printing title:
self.cell(30, 10, "Title", border=1, align="C")
Performing a line break:
self.ln(20)

def footer(self):
Position cursor at 1.5 cm from bottom:
self.set_y(-15)
Setting font: helvetica italic 8
self.set_font("helvetica", style="I", size=8)
Printing page number:
self.cell(0, 10, f"Page {self.page_no()}/{{nb}}", align="C")

Instantiation of inherited class
pdf = PDF()
pdf.add_page()
pdf.set_font("Times", size=12)
for i in range(1, 41):

pdf.cell(0, 10, f"Printing line number {i}", new_x="LMARGIN", new_y="NEXT")
pdf.output("new-tuto2.pdf")

from fpdf import FPDF

class PDF(FPDF):
def header(self):

Setting font: helvetica bold 15
self.set_font("helvetica", style="B", size=15)
Calculating width of title and setting cursor position:
width = self.get_string_width(self.title) + 6
self.set_x((210 - width) / 2)
Setting colors for frame, background and text:
self.set_draw_color(0, 80, 180)
self.set_fill_color(230, 230, 0)
self.set_text_color(220, 50, 50)
Setting thickness of the frame (1 mm)
self.set_line_width(1)
Printing title:
self.cell(

width,
9,
self.title,
border=1,
new_x="LMARGIN",
new_y="NEXT",
align="C",
fill=True,

)
Performing a line break:
self.ln(10)

def footer(self):
Setting position at 1.5 cm from bottom:

2.2.3 Tuto 3 - Line breaks and colors

- 11/193 -

https://github.com/py-pdf/fpdf2/raw/master/tutorial/tuto2.pdf
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.header
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.footer
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.page_no
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.alias_nb_pages
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_y
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_auto_page_break

Resulting PDF

Jules Verne text

The get_string_width method allows determining the length of a string in the current font, which is used here to calculate the

position and the width of the frame surrounding the title. Then colors are set (via set_draw_color, set_fill_color and

set_text_color) and the thickness of the line is set to 1 mm (against 0.2 by default) with set_line_width. Finally, we output the cell

(the last parameter to true indicates that the background must be filled).

The method used to print the paragraphs is multi_cell. Text is justified by default. Each time a line reaches the right extremity of

the cell or a carriage return character (\n) is met, a line break is issued and a new cell automatically created under the current

one. An automatic break is performed at the location of the nearest space or soft-hyphen (\u00ad) character before the right

limit. A soft-hyphen will be replaced by a normal hyphen when triggering a line break, and ignored otherwise.

Two document properties are defined: the title (set_title) and the author (set_author). Properties can be viewed by two means.

First is to open the document directly with Acrobat Reader, go to the File menu and choose the Document Properties option. The

second, also available from the plug-in, is to right-click and select Document Properties.

2.2.4 Tuto 4 - Multi Columns

This example is a variant of the previous one, showing how to lay the text across multiple columns.

self.set_y(-15)
Setting font: helvetica italic 8
self.set_font("helvetica", style="I", size=8)
Setting text color to gray:
self.set_text_color(128)
Printing page number
self.cell(0, 10, f"Page {self.page_no()}", align="C")

def chapter_title(self, num, label):
Setting font: helvetica 12
self.set_font("helvetica", size=12)
Setting background color
self.set_fill_color(200, 220, 255)
Printing chapter name:
self.cell(

0,
6,
f"Chapter {num} : {label}",
new_x="LMARGIN",
new_y="NEXT",
align="L",
fill=True,

)
Performing a line break:
self.ln(4)

def chapter_body(self, filepath):
Reading text file:
with open(filepath, "rb") as fh:

txt = fh.read().decode("latin-1")
Setting font: Times 12
self.set_font("Times", size=12)
Printing justified text:
self.multi_cell(0, 5, txt)
Performing a line break:
self.ln()
Final mention in italics:
self.set_font(style="I")
self.cell(0, 5, "(end of excerpt)")

def print_chapter(self, num, title, filepath):
self.add_page()
self.chapter_title(num, title)
self.chapter_body(filepath)

pdf = PDF()
pdf.set_title("20000 Leagues Under the Seas")
pdf.set_author("Jules Verne")
pdf.print_chapter(1, "A RUNAWAY REEF", "20k_c1.txt")
pdf.print_chapter(2, "THE PROS AND CONS", "20k_c1.txt")
pdf.output("tuto3.pdf")

from fpdf import FPDF

class PDF(FPDF):
def header(self):

self.set_font("helvetica", style="B", size=15)

2.2.4 Tuto 4 - Multi Columns

- 12/193 -

https://github.com/py-pdf/fpdf2/raw/master/tutorial/tuto3.pdf
https://github.com/py-pdf/fpdf2/raw/master/tutorial/20k_c1.txt
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.get_string_width
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_draw_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fill_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_text_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_line_width
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_title
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_author

Resulting PDF

Jules Verne text

The key difference from the previous tutorial is the use of the text_columns method. It collects all the text, possibly in

increments, and distributes it across the requested number of columns, automatically inserting page breaks as necessary. Note

that while the TextColumns instance is active as a context manager, text styles and other font properties can be changed. Those

changes will be contained to the context. Once it is closed the previous settings will be reinstated.

2.2.5 Tuto 5 - Creating Tables

This tutorial will explain how to create two different tables, to demonstrate what can be achieved with some simple adjustments.

width = self.get_string_width(self.title) + 6
self.set_x((210 - width) / 2)
self.set_draw_color(0, 80, 180)
self.set_fill_color(230, 230, 0)
self.set_text_color(220, 50, 50)
self.set_line_width(1)
self.cell(

width,
9,
self.title,
border=1,
new_x="LMARGIN",
new_y="NEXT",
align="C",
fill=True,

)
self.ln(10)

def footer(self):
self.set_y(-15)
self.set_font("helvetica", style="I", size=8)
self.set_text_color(128)
self.cell(0, 10, f"Page {self.page_no()}", align="C")

def chapter_title(self, num, label):
self.set_font("helvetica", size=12)
self.set_fill_color(200, 220, 255)
self.cell(

0,
6,
f"Chapter {num} : {label}",
new_x="LMARGIN",
new_y="NEXT",
border="L",
fill=True,

)
self.ln(4)

def chapter_body(self, fname):
Reading text file:
with open(fname, "rb") as fh:

txt = fh.read().decode("latin-1")
with self.text_columns(

ncols=3, gutter=5, text_align="J", line_height=1.19
) as cols:

Setting font: Times 12
self.set_font("Times", size=12)
cols.write(txt)
cols.ln()
Final mention in italics:
self.set_font(style="I")
cols.write("(end of excerpt)")

def print_chapter(self, num, title, fname):
self.add_page()
self.chapter_title(num, title)
self.chapter_body(fname)

pdf = PDF()
pdf.set_title("20000 Leagues Under the Seas")
pdf.set_author("Jules Verne")
pdf.print_chapter(1, "A RUNAWAY REEF", "20k_c1.txt")
pdf.print_chapter(2, "THE PROS AND CONS", "20k_c1.txt")
pdf.output("tuto4.pdf")

import csv
from fpdf import FPDF
from fpdf.fonts import FontFace
from fpdf.enums import TableCellFillMode

with open("countries.txt", encoding="utf8") as csv_file:
data = list(csv.reader(csv_file, delimiter=","))

2.2.5 Tuto 5 - Creating Tables

- 13/193 -

https://github.com/py-pdf/fpdf2/raw/master/tutorial/tuto4.pdf
https://github.com/py-pdf/fpdf2/raw/master/tutorial/20k_c1.txt
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.text_column
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.text_column

Resulting PDF - Countries CSV data

The first example is achieved in the most basic way possible, feeding data to FPDF.table() . The result is rudimentary but very

quick to obtain.

The second table brings some improvements: colors, limited table width, reduced line height, centered titles, columns with

custom widths, figures right aligned... Moreover, horizontal lines have been removed. This was done by picking a borders_layout

among the available values: TableBordersLayout .

2.2.6 Tuto 6 - Creating links and mixing text styles

This tutorial will explain several ways to insert links inside a pdf document, as well as adding links to external sources.

It will also show several ways we can use different text styles, (bold, italic, underline) within the same text.

Resulting PDF - fpdf2-logo

pdf = FPDF()
pdf.set_font("helvetica", size=14)

Basic table:
pdf.add_page()
with pdf.table() as table:

for data_row in data:
row = table.row()
for datum in data_row:

row.cell(datum)

Styled table:
pdf.add_page()
pdf.set_draw_color(255, 0, 0)
pdf.set_line_width(0.3)
headings_style = FontFace(emphasis="BOLD", color=255, fill_color=(255, 100, 0))
with pdf.table(

borders_layout="NO_HORIZONTAL_LINES",
cell_fill_color=(224, 235, 255),
cell_fill_mode=TableCellFillMode.ROWS,
col_widths=(42, 39, 35, 42),
headings_style=headings_style,
line_height=6,
text_align=("LEFT", "CENTER", "RIGHT", "RIGHT"),
width=160,

) as table:
for data_row in data:

row = table.row()
for datum in data_row:

row.cell(datum)

pdf.output("tuto5.pdf")

from fpdf import FPDF

pdf = FPDF()

First page:
pdf.add_page()
pdf.set_font("helvetica", size=20)
pdf.write(5, "To find out what's new in self tutorial, click ")
pdf.set_font(style="U")
link = pdf.add_link(page=2)
pdf.write(5, "here", link)
pdf.set_font()

Second page:
pdf.add_page()
pdf.image(

"../docs/fpdf2-logo.png", 10, 10, 50, 0, "", "https://py-pdf.github.io/fpdf2/"
)
pdf.set_left_margin(60)
pdf.set_font_size(18)
pdf.write_html(

"""You can print text mixing different styles using HTML tags: bold, <i>italic</i>,
<u>underlined</u>, or <i><u>all at once</u></i>!

You can also insert links on text, such as https://py-pdf.github.io/fpdf2/,
or on an image: the logo is clickable!"""
)
pdf.output("tuto6.pdf")

2.2.6 Tuto 6 - Creating links and mixing text styles

- 14/193 -

https://github.com/py-pdf/fpdf2/raw/master/tutorial/tuto5.pdf
https://github.com/py-pdf/fpdf2/raw/master/tutorial/countries.txt
https://py-pdf.github.io/fpdf2/Tables.html
https://py-pdf.github.io/fpdf2/Tables.html
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.TableBordersLayout
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.TableBordersLayout
https://github.com/py-pdf/fpdf2/raw/master/tutorial/tuto6.pdf
https://py-pdf.github.io/fpdf2/fpdf2-logo.png

The new method shown here to print text is write() . It is very similar to multi_cell() , the key differences being:

The end of line is at the right margin and the next line begins at the left margin.

The current position moves to the end of the text.

The method therefore allows us to write a chunk of text, alter the font style, and continue from the exact place we left off. On the

other hand, its main drawback is that we cannot justify the text like we do with the multi_cell() method.

In the first page of the example, we used write() for this purpose. The beginning of the sentence is written in regular style text,

then using the set_font() method, we switched to underline and finished the sentence.

To add an internal link pointing to the second page, we used the add_link() method, which creates a clickable area which we

named "link" that directs to another page within the document.

To create the external link using an image, we used image() . The method has the option to pass a link as one of its arguments.

The link can be both internal or external.

As an alternative, another option to change the font style and add links is to use the write_html() method. It is an html parser,

which allows adding text, changing font style and adding links using html.

2.2.7 Tuto 7 - Creating PDF/A Documents

New in 2.8.3

PDF/A Standards

PDF/A-1 uses PDF-Version 1.4. All resources (pictures, graphics, fonts) must be embedded in the document. The color

management must be precise and platform independently specified with ICC-Profiles and the document metadata must be given

with XMP-Metadata.

PDF/A-2 uses PDF-Version 1.7. It allows compression with JPEG2000, transparent elements, open type fonts and digital

signatures.

The only extension for PDF/A-3 is the possibility to embed any possible file.

Conformance Classes

Level A (accessible) encompasses all the requirements of the standard, including mapping the content structure and the correct

reading order of the document content. Text content must be extractable, and the structure must reflect the natural reading

sequence.

Level B (Basic) guarantees a clear visual reproducibility of the content. Level B is generally easier to generate than Level A, but

it does not ensure 100 percent text extraction or searchability. The hassle-free reuse of the content is not necessarily given.

To achieve this, here a little example:

•

•

from pathlib import Path

from fpdf import FPDF
from fpdf import FPDF_VERSION

DIR = Path(__file__).parent
FONT_DIR = DIR / ".." / "test" / "fonts"

pdf = FPDF(enforce_compliance="PDF/A-3B")
pdf.set_lang("en-US")
pdf.set_title("Tutorial7")
pdf.set_author(["John Dow", "Jane Dow"])
pdf.set_subject("Example for PDF/A")
pdf.set_keywords(["example", "tutorial", "fpdf", "pdf/a"])
pdf.set_producer(f"py-pdf/fpdf2 {FPDF_VERSION}")
pdf.add_font(fname=FONT_DIR / "DejaVuSans.ttf")
pdf.add_font("DejaVuSans", style="B", fname=FONT_DIR / "DejaVuSans-Bold.ttf")
pdf.add_font("DejaVuSans", style="I", fname=FONT_DIR / "DejaVuSans-Oblique.ttf")
pdf.add_page()
pdf.set_font("DejaVuSans", style="B", size=20)
pdf.write(text="Header")
pdf.ln(20)
pdf.set_font(size=12)

2.2.7 Tuto 7 - Creating PDF/A Documents

- 15/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_link
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

Resulting PDF: tuto7.pdf

Tools like VeraPDF can check conformance of PDF documents produced:

Produces:

September 25, 2025

pdf.write(text="Example text")
pdf.ln(20)
pdf.set_font(style="I")
pdf.write(text="Example text in italics")

pdf.output("tuto7.pdf")

verapdf --format text -v tutorial/tuto7.pdf

PASS fpdf2/tutorial/tuto7.pdf 3b

2.2.7 Tuto 7 - Creating PDF/A Documents

- 16/193 -

https://github.com/py-pdf/fpdf2/raw/master/tutorial/tuto7.pdf
https://verapdf.org/

3. Page Layout

3.1 Page format and orientation

By default, a FPDF document has a A4 format with portrait orientation.

Other formats & orientation can be specified to FPDF constructor:

Currently supported formats are a3 , a4 , a5 , letter , legal or a tuple (width, height) . Additional standard formats are welcome

and can be suggested through pull requests.

3.1.1 Per-page format, orientation and background

.set_page_background() lets you set a background for all pages following this call until the background is removed. The value

must be of type str , io.BytesIO , PIL.Image.Image , drawing.DeviceRGB , tuple or None

The following code snippet illustrates how to configure different page formats for specific pages as well as setting different

backgrounds and then removing it:

Similarly, an orientation parameter can be provided to the add_page method.

3.1.2 Page layout & zoom level

set_display_mode() allows to set the zoom level: pages can be displayed entirely on screen, occupy the full width of the window,

use the real size, be scaled by a specific zooming factor or use the viewer default (configured in its Preferences menu).

The page layout can also be specified: single page at a time, continuous display, two columns or viewer default.

3.1.3 Viewer preferences

Those settings are detailed in the official PDF format specification, but may not be honored by PDF viewers. If a setting seems

ignored, this is probably not a bug with fpdf2 , but a choice or a missing feature from your PDF renderer software.

pdf = fpdf.FPDF(orientation="landscape", format="A5")

from fpdf import FPDF

pdf = FPDF()
pdf.set_font("Helvetica")
pdf.set_page_background((252,212,255))
for i in range(9):

if i == 6:
pdf.set_page_background('image_path.png')

pdf.add_page(format=(210 * (1 - i/10), 297 * (1 - i/10)))
pdf.cell(text=str(i))

pdf.set_page_background(None)
pdf.add_page(same=True)
pdf.cell(text="9")
pdf.output("varying_format.pdf")

from fpdf import FPDF

pdf = FPDF()
pdf.set_display_mode(zoom="default", layout="TWO_COLUMN_LEFT")
pdf.set_font("helvetica", size=30)
pdf.add_page()
pdf.cell(text="page 1")
pdf.add_page()
pdf.cell(text="page 2")
pdf.output("two-column.pdf")

from fpdf import FPDF, ViewerPreferences

pdf = FPDF()
pdf.viewer_preferences = ViewerPreferences(

hide_toolbar=True,
hide_menubar=True,

3. Page Layout

- 17/193 -

https://en.wikipedia.org/wiki/ISO_216#A_series
https://en.wikipedia.org/wiki/ISO_216#A_series
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_page_background
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_page_background
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_page
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_page
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.FPDF.set_display_mode
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.FPDF.set_display_mode

3.1.4 Full screen

February 17, 2025

hide_window_u_i=True,
fit_window=True,
center_window=True,
display_doc_title=True,
non_full_screen_page_mode="USE_OUTLINES",

)
pdf.set_font("helvetica", size=30)
pdf.add_page()
pdf.cell(text="page 1")
pdf.add_page()
pdf.cell(text="page 2")
pdf.output("viewer-prefs.pdf")

from fpdf import FPDF

pdf = FPDF()
pdf.page_mode = "FULL_SCREEN"
pdf.output("full-screen.pdf")

3.1.4 Full screen

- 18/193 -

3.2 Margins

By default a FPDF document has a 2cm margin at the bottom, and 1cm margin on the other sides.

Those margins control the initial current X & Y position to render elements on a page, and also define the height limit that

triggers automatic page breaks when they are enabled.

Margins can be completely removed:

Several methods can be used to set margins:

set_margin

set_left_margin

set_right_margin

set_top_margin

set_margins

set_auto_page_break

February 17, 2025

pdf.set_margin(0)

•

•

•

•

•

•

3.2 Margins

- 19/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.FPDF.set_margin
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.FPDF.set_left_margin
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.FPDF.set_right_margin
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.FPDF.set_top_margin
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.FPDF.set_margins
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.FPDF.set_auto_page_break

3.3 Templates

Templates are a fpdf2 feature that define predefined documents (like invoices, tax forms, etc.), or parts of such documents,

where each element (text, lines, barcodes, etc.) has a fixed position (x1 , y1 , x2 , y2), style (font , size , etc.) and a default text.

These elements can act as placeholders, so the program can change the default text "filling in" the document.

Besides being defined in code, the elements can also be defined in a CSV file, a JSON file, or in a database, so the user can easily

adapt the form to his printing needs.

A template is used like a dict, setting its items' values.

There are two approaches to using templates:

3.3.1 Using Template

The traditional approach is to use the Template class. This class accepts one template definition, and can apply it to each page of

a document. The usage pattern here is:

The Template class will create and manage its own FPDF instance, so you don't need to worry about how it all works together. It

also allows to set the page format, title of the document, measuring unit, and other metadata for the PDF file.

Check the dedicated page for the full method signatures: Template .

You can also check the unit tests in test_template.py for more usage examples of Template .

Setting text values for specific template items is done by treating the class as a dict, with the name of the item as the key:

3.3.2 Using FlexTemplate

When more flexibility is desired, then the FlexTemplate class comes into play. In this case, you first need to create your own FPDF

instance. You can then pass this to the constructor of one or several FlexTemplate instances, and have each of them load a

template definition. For any page of the document, you can set text values on a template, and then render it on that page. After

rendering, the template will be reset to its default values.

tmpl = Template(elements=elements)
first page and content
tmpl.add_page()
tmpl[item_key_01] = "Text 01"
tmpl[item_key_02] = "Text 02"
...

second page and content
tmpl.add_page()
tmpl[item_key_01] = "Text 11"
tmpl[item_key_02] = "Text 12"
...

possibly more pages
...

finalize document and write to file
tmpl.render(outfile="example.pdf")

Template["company_name"] = "Sample Company"

from fpdf import FlexTemplate, FPDF

pdf = FPDF()
pdf.add_page()
One template for the first page
fp_tmpl = FlexTemplate(pdf, elements=fp_elements)
fp_tmpl["item_key_01"] = "Text 01"
fp_tmpl["item_key_02"] = "Text 02"
...
fp_tmpl.render() # add template items to first page

add some more non-template content to the first page
pdf.polyline(point_list, fill=False, polygon=False)

3.3 Templates

- 20/193 -

https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://github.com/py-pdf/fpdf2/blob/master/test/template/test_template.py
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.FlexTemplate
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.FlexTemplate
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF

Evidently, this can end up quite a bit more involved, but there are hardly any limits on how you can combine templated and non-

templated content on each page. Just think of the different templates as of building blocks, like configurable rubber stamps,

which you can apply in any combination on any page you like.

Of course, you can just as well use a set of full-page templates, possibly differentiating between cover page, table of contents,

normal content pages, and an index page, or something along those lines.

And here's how you can use a template several times on one page (and by extension, several times on several pages). When

rendering with an offsetx and/or offsety argument, the contents of the template will end up in a different place on the page. A

rotate argument will change its orientation, rotated around the origin of the template. The pivot of the rotation is the offset

location. And finally, a scale argument allows you to insert the template larger or smaller than it was defined.

Check the dedicated page for the full method signatures: FlexTemplate .

You can also check the unit tests in test_flextemplate.py for more usage examples of FlexTemplate .

The dict syntax for setting text values is the same as above:

second page
pdf.add_page()
header for the second page
h_tmpl = FlexTemplate(pdf, elements=h_elements)
h_tmpl["item_key_HA"] = "Text 2A"
h_tmpl["item_key_HB"] = "Text 2B"
...
h_tmpl.render() # add header items to second page

footer for the second page
f_tmpl = FlexTemplate(pdf, elements=f_elements)
f_tmpl["item_key_FC"] = "Text 2C"
f_tmpl["item_key_FD"] = "Text 2D"
...
f_tmpl.render() # add footer items to second page

other content on the second page
pdf.set_dash_pattern(dash=1, gap=1)
pdf.line(x1, y1, x2, y2):
pdf.set_dash_pattern()

third page
pdf.add_page()
header for the third page, just reuse the same template instance after render()
h_tmpl["item_key_HA"] = "Text 3A"
h_tmpl["item_key_HB"] = "Text 3B"
...
h_tmpl.render() # add header items to third page

footer for the third page
f_tmpl["item_key_FC"] = "Text 3C"
f_tmpl["item_key_FD"] = "Text 3D"
...
f_tmpl.render() # add footer items to third page

other content on the third page
pdf.rect(x, y, w, h, style=None)

possibly more pages
pdf.add_page()
...
...

finally write everything to a file
pdf.output("example.pdf")

from fpdf import FlexTemplate, FPDF

pdf = FPDF()
pdf.add_page()
templ = FlexTemplate(pdf, [

{"name":"box", "type":"B", "x1":0, "y1":0, "x2":50, "y2":50,},
{"name":"d1", "type":"L", "x1":0, "y1":0, "x2":50, "y2":50,},
{"name":"d2", "type":"L", "x1":0, "y1":50, "x2":50, "y2":0,},
{"name":"label", "type":"T", "x1":0, "y1":52, "x2":50, "y2":57, "text":"Label",},

])
templ["label"] = "Offset: 50 / 50 mm"
templ.render(offsetx=50, offsety=50)
templ["label"] = "Offset: 50 / 120 mm"
templ.render(offsetx=50, offsety=120)
templ["label"] = "Offset: 120 / 50 mm, Scale: 0.5"
templ.render(offsetx=120, offsety=50, scale=0.5)
templ["label"] = "Offset: 120 / 120 mm, Rotate: 30°, Scale=0.5"
templ.render(offsetx=120, offsety=120, rotate=30.0, scale=0.5)
pdf.output("example.pdf")

3.3.2 Using FlexTemplate

- 21/193 -

https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.FlexTemplate
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.FlexTemplate
https://github.com/py-pdf/fpdf2/blob/master/test/template/test_flextemplate.py

FlexTemplate["company_name"] = "Sample Company"

3.3.2 Using FlexTemplate

- 22/193 -

3.3.3 Details - Template definition

A template definition consists of a number of elements, which have the following properties (columns in a CSV, items in a dict,

name/value pairs in a JSON object, fields in a database). Dimensions (except font size, which always uses points) are given in

user defined units (default: mm). Those are the units that can be specified when creating a Template or a FPDF instance.

3.3.3 Details - Template definition

- 23/193 -

https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF

name : placeholder identification (unique text string)

mandatory

type :

T : Text - places one or several lines of text on the page

L : Line - draws a line from x1 / y1 to x2 / y2

I : Image - positions and scales an image into the bounding box

B : Box - draws a rectangle around the bounding box

E : Ellipse - draws an ellipse inside the bounding box

BC : Barcode - inserts an Interleaved 2 of 5 type barcode

C39 : Code 39 - inserts a Code 39 type barcode

W : "Write" - uses the FPDF.write() method to add text to the page

mandatory

x1, y1, x2, y2 : top-left, bottom-right coordinates, defining a bounding box in most cases

for multiline text, this is the bounding box of just the first line, not the complete box

for the barcodes types, the height of the barcode is y2 - y1 , x2 is ignored.

mandatory (x2 optional for the barcode types)

font : the name of a font type for the text types

optional

default: helvetica

size : the size property of the element (float value)

for text, the font size (in points!)

for line, box, and ellipse, the line width

for the barcode types, the width of one bar

optional

default: 10 for text, 2 for BC , 1.5 for C39

dash_pattern(dash, gap, phase) : a dict of the line dash pattern for the element

optional

for line, box, ellipse follows the parameters of set_dash_pattern()

Only supported in dict/JSON

There are three allowed keys: dash , gap , and phase . At least dash must be present.

default: dash=0 (solid lines)

bold, italic, underline : text style properties

in dict/JSON, enabled with True/true or equivalent value

in CSV, only int values, 0 as false, non-0 as true

optional

default: false

foreground, background : text and fill colors (int value, commonly given in hex as 0xRRGGBB)

in JSON, a decimal value or a HTML style #RRGGBB string (6 digits) can be given.

optional

default: foreground 0x000000 = black; background None/empty = transparent

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.3.3 Details - Template definition

- 24/193 -

http://127.0.0.1:8000/fpdf2/Barcodes.html#interleaved-2-of-5
http://127.0.0.1:8000/fpdf2/Barcodes.html#code-39
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_dash_pattern

align : text alignment, L : left, R : right, C : center

optional

default: 'L'

text : default string, can be replaced at runtime

displayed text for T and W

data to encode for barcode types

optional (if missing for text/write, the element is ignored)

default: empty

priority : Z-order (int value)

optional

default: 0

multiline : configure text wrapping

in dicts/JSON, None/null for single line, True/true for multicells (multiple lines), False/false trims to exactly fit the space

defined

in CSV, 0 for single line, >0 for multiple lines, <0 for exact fit

optional

default: single line

rotation : rotate the element in degrees around the top left corner x1 / y1 (float)

optional

default: 0.0 - no rotation

wrapmode : optionally set wrapmode to 'CHAR' to support multiline line wrapping on characters instead of words

optional

default: 'WORD'

Fields that are not relevant to a specific element type will be ignored there, but if not left empty, they must still adhere to the

specified data type (in dicts, string fields may be None).

3.3.4 How to create a template

A template can be created in several ways:

By defining everything directly as a Python dictionary - example 1

By reading the template definition from a JSON document with .parse_json() - example 2

By reading the template definition from a CSV document with .parse_csv() - example 3

Example - Python dict

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

from fpdf import Template

#this will define the ELEMENTS that will compose the template.
elements = [

{ 'name': 'company_logo', 'type': 'I', 'x1': 20.0, 'y1': 17.0, 'x2': 78.0, 'y2': 30.0, 'font': None, 'size': 0.0, 'bold': 0, 'italic': 0, 'underline': 0,
'align': 'C', 'text': 'logo', 'priority': 2, 'multiline': False},

{ 'name': 'company_name', 'type': 'T', 'x1': 17.0, 'y1': 32.5, 'x2': 115.0, 'y2': 37.5, 'font': 'helvetica', 'size': 12.0, 'bold': 1, 'italic': 0,
'underline': 0,'align': 'C', 'text': '', 'priority': 2, 'multiline': False},

{ 'name': 'multiline_text', 'type': 'T', 'x1': 20, 'y1': 100, 'x2': 40, 'y2': 105, 'font': 'helvetica', 'size': 12, 'bold': 0, 'italic': 0, 'underline':
0, 'background': 0x88ff00, 'align': 'C', 'text': 'Lorem ipsum dolor sit amet, consectetur adipisici elit', 'priority': 2, 'multiline': True, 'wrapmode':
'WORD'},

{ 'name': 'box', 'type': 'B', 'x1': 15.0, 'y1': 15.0, 'x2': 185.0, 'y2': 260.0, 'font': 'helvetica', 'size': 0.0, 'bold': 0, 'italic': 0, 'underline': 0,
'align': 'C', 'text': None, 'priority': 0, 'multiline': False},

{ 'name': 'box_x', 'type': 'B', 'x1': 95.0, 'y1': 15.0, 'x2': 105.0, 'y2': 25.0, 'font': 'helvetica', 'size': 0.0, 'bold': 1, 'italic': 0, 'underline':
0, 'align': 'C', 'text': None, 'priority': 2, 'multiline': False},

{ 'name': 'line1', 'type': 'L', 'x1': 100.0, 'y1': 25.0, 'x2': 100.0, 'y2': 57.0, 'font': 'helvetica', 'size': 0, 'bold': 0, 'italic': 0, 'underline': 0,
'align': 'C', 'text': None, 'priority': 3, 'multiline': False},

{ 'name': 'barcode', 'type': 'BC', 'x1': 20.0, 'y1': 246.5, 'x2': 140.0, 'y2': 254.0, 'font': 'Interleaved 2of5 NT', 'size': 0.75, 'bold': 0, 'italic':
0, 'underline': 0, 'align': 'C', 'text': '200000000001000159053338016581200810081', 'priority': 3, 'multiline': False},
]

3.3.4 How to create a template

- 25/193 -

Example - Elements defined in JSON file

New in 2.8.0

The JSON file must consist of an array of objects. Each object with its name/value pairs define a template element:

Then you import and use that template as follows:

Example - Elements defined in CSV file

You can define template elements in a CSV file template_definition.csv . It can look like this:

Remember that each line represents an element and each field represents one of the properties of the element in the following

order:

('name','type','x1','y1','x2','y2','font','size','bold','italic','underline','foreground','background','align','text','priority',

'multiline', 'rotate', 'wrapmode') As noted above, most fields may be left empty, so a line is valid with only 6 items. The

empty_fields line of the example demonstrates all that can be left away. In addition, for the barcode types, x2 may be empty.

Then you can use the file like this:

#here we instantiate the template
f = Template(format="A4", elements=elements,

title="Sample Invoice")
f.add_page()

#we FILL some of the fields of the template with the information we want
#note we access the elements treating the template instance as a "dict"
f["company_name"] = "Sample Company"
f["company_logo"] = "docs/fpdf2-logo.png"

#and now we render the page
f.render("./template.pdf")

[
{

"name": "employee_name",
"type": "T",
"x1": 20,
"y1": 75,
"x2": 118,
"y2": 90,
"font": "helvetica",
"size": 12,
"bold": true,
"underline": true,
"text": ""

}
]

def test_template():
f = Template(format="A4", title="Template Demo")
f.parse_json("myjsonfile.json")
f.add_page()
f["employee_name"] = "Joe Doe"
return f.render("./template.pdf")

line0;L;20.0;12.0;190.0;12.0;times;0.5;0;0;0;0;16777215;C;;0;0;0.0
line1;L;20.0;36.0;190.0;36.0;times;0.5;0;0;0;0;16777215;C;;0;0;0.0
name0;T;21.0;14.0;104.0;25.0;times;16.0;0;0;0;0;16777215;L;name;2;0;0.0
title0;T;21.0;26.0;104.0;30.0;times;10.0;0;0;0;0;16777215;L;title;2;0;0.0
multiline;T;21.0;50.0;28.0;54.0;times;10.5;0;0;0;0;0xffff00;L;multi line;0;1;0.0
numeric_text;T;21.0;80.0;100.0;84.0;times;10.5;0;0;0;0;;R;007;0;0;0.0
empty_fields;T;21.0;100.0;100.0;104.0
rotated;T;21.0;80.0;100.0;84.0;times;10.5;0;0;0;0;;R;ROTATED;0;0;30.0

def test_template():
f = Template(format="A4",

title="Sample Invoice")
f.parse_csv("template_definition.csv", delimiter=";")
f.add_page()
f["name0"] = "Joe Doe"
return f.render("./template.pdf")

3.3.4 How to create a template

- 26/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

October 14, 2025

3.3.4 How to create a template

- 27/193 -

3.4 Text Flow Regions

New in 2.7.6

3.4.1 Text Flow Regions

Text regions are a hierarchy of classes that enable to flow text within a given outline. In the simplest case, it is just the running

text column of a page. But it can also be a sequence of outlines, such as several parallel columns or the cells of a table. Other

outlines may be combined by addition or subtraction to create more complex shapes.

There are two general categories of regions. One defines boundaries for running text that will just continue in the same manner

one the next page. Those include columns and tables. The second category are distinct shapes. Examples would be a circle, a

rectangle, a polygon of individual shape or even an image. They may be used individually, in combination, or to modify the outline

of a multipage column. Shape regions will typically not cause a page break when they are full. In the future, a possibility to chain

them may be implemented, so that a new shape will continue with the text that didn't fit into the previous one.

The currently implemented text regions are:

Text Columns

Other types like Table cells, shaped regions and combinations are still in the design phase, see Quo vadis, .write()?.

General Operation

Using the different region types and combination always follows the same pattern. The main difference to the normal

FPDF.write() method is that all added text will first be buffered, and only gets rendered on the page when the context of the

region is closed. This is necessary so that text can be aligned within the given boundaries even if its font, style, or size are

arbitrarily varied along the way.

Create the region instance with an FPDF method, , for example text_columns().

Use the .write() method of this text region in order to feed text into its buffer.

Best practice is to use the region instance as a context manager for filling.

Text will be rendered automatically after closing the context.

When used as a context manager, you can change all text styling parameters within that context, and they will be used by the

added text, but won't leak to the surroundings

Alternatively, eg. for filling a single column of text with the already existing settings, just use the region instance as is. In that

case, you'll have to explicitly use the render() method after adding the text.

Within a region, paragraphs can be inserted. The primary purpose of a paragraph is to apply a different horizontal alignment

than the surrounding text. It is also possible to apply margins to the top and bottom of each paragraph.

•

•

•

•

•

•

•

•

3.4 Text Flow Regions

- 28/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/discussions/339
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.text_columns

The graphic shows the relationship of page, text areas and paragraphs (with varying alignment) for the example of a two-column

layout.

TEXT START POSITION

When rendering, the vertical start position of the text will be at the lowest one out of:

the current y position

the top of the region (if it has a defined top)

the top margin of the page.

The horizontal start position will be either at the current x position, if that lies within the boundaries of the region/column, or at

the left edge of the region. In both horizontal and vertical positioning, regions with multiple columns may follow additional rules

and restrictions.

INTERACTION BETWEEN REGIONS

Several region instances can exist at the same time. But only one of them can act as context manager at any given time. It is not

currently possible to activate them recursively. But it is possible to use them intermittingly. This will probably most often make

sense between a columnar region and a table or a graphic. You may have some running text ending at a given height, then insert

a table/graphic, and finally continue the running text at the new height below the table within the existing column(s).

•

•

•

3.4.1 Text Flow Regions

- 29/193 -

COMMON PARAMETERS

All types of text regions have the following constructor parameters in common:

text (str, optional) - text content to add to the region. This is a convenience parameter for cases when all text is available in

one piece, and no partition into paragraphs (possibly with different parameters) is required. (Default: None)

text_align (Align/str, optional) - the horizontal alignment of the text in the region. (Default: Align.L)

line_height (float, optional) - This is a factor by which the line spacing will be different from the font height. It works similar to

the attribute of the same name in HTML/CSS. (default: 1.0)

print_sh (bool, optional) - Treat a soft-hyphen (\u00ad) as a printable character, instead of a line breaking opportunity.

(Default: False)

skip_leading_spaces (default: False) - This flag is primarily used by write_html() , but may also have other uses. It removes all

space characters at the beginning of each line.

wrapmode (default WORD) -

image (str or PIL.Image.Image or io.BytesIO, optional) - An image to add to the region. This is a convenience parameter for

cases when no further text or images need to be added to the paragraph. If both text and image arguments are present, the

text will be inserted first. (Default: None)

image_fill_width (bool, optional) - Indicates whether to increase the size of the image to fill the width of the column. Larger

images will always be reduced to column width. (Default: False)

All of those values can be overridden for each individual paragraph.

COMMON METHODS

.paragraph() [see characteristic parameters below] - establish a new paragraph in the text. The text added to this paragraph

will start on a new line.

.write(text: str, link: = None) - write text to the region. This is only permitted when no explicit paragraph is currently active.

.image() [see characteristic parameters below] - insert a vector or raster image in the region, flowing with the text like a

paragraph.

.ln(h: float = None) - Start a new line moving either by the current font height or by the parameter h . Only permitted when

no explicit paragraph is currently active.

.render() - if the region is not used as a context manager with with , this method must be called to actually process the added

text.

Paragraphs

The primary purpose of paragraphs is to enable variations in horizontal text alignment, while the horizontal extents of the text

are managed by the text region. To set the alignment, you can use the align argument when creating the paragraph. Valid

values are defined in the Align enum .

•

•

•

•

•

•

•

•

•

•

•

•

•

3.4.1 Text Flow Regions

- 30/193 -

https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.Align
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.Align

For more typographical control, you can use the following arguments. Most of those override the settings of the current region

when set, and default to the value set there.

text_align (Align, optional) - The horizontal alignment of the paragraph.

line_height (float, optional) - factor by which the line spacing will be different from the font height. (default: by region)

top_margin (float, optional) - how much spacing is added above the paragraph. No spacing will be added at the top of the

paragraph if the current y position is at (or above) the top margin of the page. (Default: 0.0 mm)

bottom_margin (float, optional) - Those two values determine how much spacing is added below the paragraph. No spacing will

be added at the bottom if it would result in overstepping the bottom margin of the page. (Default: 0.0 mm)

indent (float, optional): determines the indentation of the paragraph. (Default: 0.0 mm)

bullet_r_margin (float, optional) - determines the relative displacement of the bullet along the x-axis. The distance is between

the rightmost point of the bullet to the leftmost point of the paragraph's text. (Default: 2.0 mm)

bullet_string (str, optional): determines the fragments and text lines of the bullet. (Default: "")

skip_leading_spaces (float, optional) - removes all space characters at the beginning of each line.

wrapmode (WrapMode, optional)

Other than text regions, paragraphs should always be used as context managers and never be reused. Violating those rules may

result in the entered text turning up on the page out of sequence.

POSSIBLE FUTURE EXTENSIONS

Those features are currently not supported, but Pull Requests are welcome to implement them:

per-paragraph indentation

first-line indentation

Images

New in 2.7.7

Most arguments for inserting images into text regions are the same as for the FPDF.image() method, and have the same or

equivalent meaning.

Since the image will be placed automatically, the x and y parameters are not available. The positioning can be controlled with

align , where the default is LEFT , with the alternatives RIGHT and CENTER .

If neither width nor height are specified, the image will be inserted with the size resulting from the PDF default resolution of 72

dpi. If the fill_width parameter is set to True, it increases the size to fill the full column width if necessary. If the image is wider

than the column width, it will always be reduced in size proportionally.

The top_margin and bottom_margin parameters have the same effect as with text paragraphs.

February 20, 2025

•

•

•

•

•

•

•

•

•

•

•

3.4.1 Text Flow Regions

- 31/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

3.4.2 Text Columns

New in 2.7.6

Text Columns

The FPDF.text_columns() method allows to create columnar layouts, with one or several columns. Columns will always be of equal

width.

Text columns support all the standard text region methods, and some extra ones:

.paragraph()

.write()

.ln()

.new_column()

A form feed character (\u000c) in the text will have the same effect as an explicit call to .new_column() ,

Note that when used within balanced columns, switching to a new column manually will result in incorrect balancing.

SINGLE-COLUMN EXAMPLE

In this example an inserted paragraph is used in order to format its content with justified alignment, while the rest of the text

uses the default left alignment.

New in 2.8.3

Indentation can be set on the first line of paragraphs by passing a first_line_indent value to .paragraph() .

MULTI-COLUMN EXAMPLE

Here we have a layout with three columns. Note that font type and text size can be varied within a text region, while still

maintaining the justified (in this case) horizontal alignment.

•

•

•

•

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=12)
with pdf.text_columns() as cols:

cols.write(text=LOREM_IPSUM[:400])
with cols.paragraph(

text_align="J",
top_margin=pdf.font_size,
bottom_margin=pdf.font_size

) as paragraph:
paragraph.write(text=LOREM_IPSUM[:400])

cols.write(text=LOREM_IPSUM[:400])
pdf.output("text_columns.pdf")

from fpdf import FPDF

3.4.2 Text Columns

- 32/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.text_columns
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.text_columns
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.paragraph
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.paragraph
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.write
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.write
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.ln
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.ln
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.new_column
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.new_column
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.paragraph
https://py-pdf.github.io/fpdf2/fpdf/text_region.html#fpdf.text_region.TextColumns.paragraph

BALANCED COLUMNS

Normally the columns will be filled left to right, and if the text ends before the page is full, the rightmost column will be shorter

than the others. If you prefer that all columns on a page end on the same height, you can use the balance=True argument. In that

case a simple algorithm will be applied that attempts to approximately balance their bottoms.

pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=16)
with pdf.text_columns(text_align="J", ncols=3, gutter=5) as cols:

cols.write(text=LOREM_IPSUM[:600])
pdf.set_font("Times", size=18)
cols.write(text=LOREM_IPSUM[:500])
pdf.set_font("Courier", size=20)
cols.write(text=LOREM_IPSUM[:500])

pdf.output("multi_columns.pdf")

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=12)

cols = pdf.text_columns(text_align="J", ncols=3, gutter=5, balance=True)
fill columns with balanced text
with cols:

pdf.set_font("Times", size=14)
cols.write(text=LOREM_IPSUM[:300])

add an image below
img_info = pdf.image(".../fpdf2/docs/regular_polygon.png",

x=pdf.l_margin, w=pdf.epw)
continue multi-column text
with cols:

cols.write(text=LOREM_IPSUM[300:600])
pdf.output("balanced_columns.pdf")

3.4.2 Text Columns

- 33/193 -

Note that column balancing only works reliably when the font size (specifically the line height) doesn't change, and if there are

no images included. If parts of the text use a larger or smaller font than the rest, then the balancing will usually be out of whack.

Contributions for a more refined balancing algorithm are welcome.

POSSIBLE FUTURE EXTENSIONS

Those features are currently not supported, but Pull Requests are welcome to implement them:

Columns with differing widths (no balancing possible in this case).

April 14, 2025

•

3.4.2 Text Columns

- 34/193 -

3.5 Tables

New in 2.7.0

Tables can be built using the table() method. Here is a simple example:

Result:

3.5.1 Features

support cells with content wrapping over several lines

control over column & row sizes (automatically computed by default)

allow to style table headings (top row), or disable them

control over borders: color, width & where they are drawn

handle splitting a table over page breaks, with headings repeated

control over cell background color

control over cell borders

control table width & position

control over text alignment in cells, globally or per row

allow to embed images in cells

merge cells across columns and rows

from fpdf import FPDF

TABLE_DATA = (
("First name", "Last name", "Age", "City"),
("Jules", "Smith", "34", "San Juan"),
("Mary", "Ramos", "45", "Orlando"),
("Carlson", "Banks", "19", "Los Angeles"),
("Lucas", "Cimon", "31", "Angers"),

)
pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=16)
with pdf.table() as table:

for data_row in TABLE_DATA:
row = table.row()
for datum in data_row:

row.cell(datum)
pdf.output('table.pdf')

•

•

•

•

•

•

•

•

•

•

•

3.5 Tables

- 35/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

3.5.2 Setting table & column widths

The col_widths optional parameter can be provided to configure this.

If a single number is provided as col_widths , it is interpreted as a fixed column width in document units.

If an array of numbers is provided as col_widths , the values are considered to be fractions of the full effective page width,

meaning that col_widths=(1, 1, 2) is strictly equivalent to col_widths=(25, 25, 50) .

Result:

align can be passed to table() to set the table horizontal position relative to the page, when it's not using the full page width.

It's centered by default.

3.5.3 Setting text alignment

This can be set globally, or on a per-column basis:

Result:

...
with pdf.table(width=150, col_widths=(30, 30, 10, 30)) as table:

...

...
with pdf.table(text_align="CENTER") as table:

...
pdf.ln()
with pdf.table(text_align=("CENTER", "CENTER", "RIGHT", "LEFT")) as table:

...

3.5.2 Setting table & column widths

- 36/193 -

3.5.4 Setting cell padding

New in 2.7.6

Cell padding (the space between the cells content and the edge of the cell) can be set globally or on a per-cell basis.

Following the CCS standard the padding can be specified using 1,2 3 or 4 values.

When one value is specified, it applies the same padding to all four sides.

When two values are specified, the first padding applies to the top and bottom, the second to the left and right.

When three values are specified, the first padding applies to the top, the second to the right and left, the third to the bottom.

When four values are specified, the paddings apply to the top, right, bottom, and left in that order (clockwise)

(also an example of coloring individual cells)

•

•

•

•

...
red = (255, 0, 0)
style = FontFace(color=black, fill_color=red)
with pdf.table(line_height=pdf.font_size, padding=2) as table:

for irow in range(5):
row = table.row()
for icol in range(5):

datum = "Circus"
if irow == 3 and icol % 2 == 0:

row.cell("custom padding", style=style, padding=(2 * icol, 8, 8, 8))
else:

row.cell(datum)

3.5.4 Setting cell padding

- 37/193 -

https://github.com/PyFPDF/fpdf2/blob/master/CHANGELOG.md
https://github.com/PyFPDF/fpdf2/blob/master/CHANGELOG.md
https://github.com/PyFPDF/fpdf2/blob/master/CHANGELOG.md

Note: the c_margin parameter (default 1.0) also controls the horizontal margins in a cell. If a non-zero padding for left and right

is supplied then c_margin is ignored.

3.5.5 Setting vertical alignment of text in cells

New in 2.7.6

Can be set globally, per row or per cell, by passing a string or a VAlign enum value as v_align :

3.5.6 Setting row height

First, line_height can be provided to set the height of every individual line of text:

New in 2.8.3

Second, a global min_row_height can be set, or configured per row as min_height :

3.5.7 Disable table headings

By default, fpdf2 considers that the first row of tables contains its headings. This can however be disabled:

New in 2.7.9

The repetition of table headings on every page can also be disabled:

...
with pdf.table(v_align=VAlign.M) as table:

...
row.cell(f"custom v-align", v_align="TOP")

...
with pdf.table(line_height=2.5 * pdf.font_size) as table:

...

...
with pdf.table(min_row_height=30) as table:

row = table.row()
row.cell("A")
row.cell("B")
row = table.row(min_height=50)
row.cell("C")
row.cell("D")

...
with pdf.table(first_row_as_headings=False) as table:

...

...
with pdf.table(repeat_headings=0) as table:

...

3.5.5 Setting vertical alignment of text in cells

- 38/193 -

https://github.com/PyFPDF/fpdf2/blob/master/CHANGELOG.md
https://github.com/PyFPDF/fpdf2/blob/master/CHANGELOG.md
https://github.com/PyFPDF/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.VAlign
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

"ON_TOP_OF_EVERY_PAGE" is an equivalent valid value for repeat_headings , cf. documentation on TableHeadingsDisplay .

3.5.8 Style table headings

Result:

It's possible to override the style of individual cells in the heading. The overriding style will take precedence for any specified

values, while retaining the default style for unspecified values:

Result:

from fpdf.fonts import FontFace

...
blue = (0, 0, 255)
grey = (128, 128, 128)
headings_style = FontFace(emphasis="ITALICS", color=blue, fill_color=grey)
with pdf.table(headings_style=headings_style) as table:

...

...
headings_style = FontFace(emphasis="ITALICS", color=blue, fill_color=grey)
override_style = FontFace(emphasis="BOLD")
with pdf.table(headings_style=headings_style) as table:

headings = table.row()
headings.cell("First name", style=override_style)
headings.cell("Last name", style=override_style)
headings.cell("Age")
headings.cell("City")
...

3.5.8 Style table headings

- 39/193 -

https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.TableHeadingsDisplay
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.TableHeadingsDisplay

3.5.9 Set cells background

Result:

Result:

The cell color is set following those settings, ordered by priority:

The cell style , provided to Row.cell()

The row style , provided to Table.row()

The table setting headings_style.fill_color , if the cell is part of some headings row

The table setting cell_fill_color , if cell_fill_mode indicates to fill a cell

The document .fill_color set before rendering the table

New in 2.7.9

Finally, it is possible to define your own cell-filling logic:

...
greyscale = 200
with pdf.table(cell_fill_color=greyscale, cell_fill_mode="ROWS") as table:

...

...
lightblue = (173, 216, 230)
with pdf.table(cell_fill_color=lightblue, cell_fill_mode="COLUMNS") as table:

...

1.

2.

3.

4.

5.

3.5.9 Set cells background

- 40/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

3.5.10 Set borders layout

Result:

Result:

Result:

class EvenOddCellFillMode():
@staticmethod
def should_fill_cell(i, j):

return i % 2 and j % 2

...
with pdf.table(cell_fill_color=lightblue, cell_fill_mode=EvenOddCellFillMode()) as table:

...

...
with pdf.table(borders_layout="INTERNAL") as table:

...

...
with pdf.table(borders_layout="MINIMAL") as table:

...

...
pdf.set_draw_color(50) # very dark grey
pdf.set_line_width(.5)
with pdf.table(borders_layout="SINGLE_TOP_LINE") as table:

...

3.5.10 Set borders layout

- 41/193 -

It is also possible to create a custom border layout, controlling thickness, color, and dash pattern:

Result:

All the possible layout values are described there: TableBordersLayout .

3.5.11 Set cell borders

New in 2.8.2

from fpdf.table import TableBordersLayout, TableBorderStyle, TableCellStyle

gray = (150, 150, 150)
red = (255, 0, 0)
custom_layout = TableBordersLayout(

cell_style_getter=lambda row_num, col_num, num_heading_rows, num_rows, num_cols: TableCellStyle(
left=(

True if col_num == 0
else TableBorderStyle(color=(150, 150, 150), dash=2) if col_num == 2
else False

), bottom=True if row_num == num_rows - 1 else False,
right=True if col_num == num_cols - 1 else False,
top=(

True if row_num == 0
else TableBorderStyle(thickness=1) if row_num == num_heading_rows
else TableBorderStyle(color=red, dash=2)

),
)

)

with pdf.table(borders_layout=custom_layout) as table:
...

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=16)
with pdf.table() as table:

for data_row in TABLE_DATA:
row = table.row()
for datum in data_row:

3.5.11 Set cell borders

- 42/193 -

https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.TableBordersLayout
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.TableBordersLayout
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

Result:

Result:

Result:

row.cell(datum, border="LEFT")
pdf.output('table.pdf')

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=16)
with pdf.table() as table:

for data_row in TABLE_DATA:
row = table.row()
for datum in data_row:

row.cell(datum, border="TOP")
pdf.output('table.pdf')

from fpdf import FPDF
from fpdf.enums import CellBordersLayout

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=16)
with pdf.table() as table:

for data_row in TABLE_DATA:
row = table.row()
for datum in data_row:

row.cell(datum, border=CellBordersLayout.TOP | CellBordersLayout.LEFT)
pdf.output('table.pdf')

3.5.11 Set cell borders

- 43/193 -

All the possible borders values are described there: CellBordersLayout .

3.5.12 Insert images

Result:

By default, images height & width are constrained by the row height (based on text content) and the column width. To render

bigger images, you can set the line_height to increase the row height, or pass img_fill_width=True to .cell() :

Result:

TABLE_DATA = (
("First name", "Last name", "Image", "City"),
("Jules", "Smith", "shirt.png", "San Juan"),
("Mary", "Ramos", "joker.png", "Orlando"),
("Carlson", "Banks", "socialist.png", "Los Angeles"),
("Lucas", "Cimon", "circle.bmp", "Angers"),

)
pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=16)
with pdf.table() as table:

for i, data_row in enumerate(TABLE_DATA):
row = table.row()
for j, datum in enumerate(data_row):

if j == 2 and i > 0:
row.cell(img=datum)

else:
row.cell(datum)

pdf.output('table_with_images.pdf')

row.cell(img=datum, img_fill_width=True)

3.5.12 Insert images

- 44/193 -

https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.CellBordersLayout
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.CellBordersLayout

3.5.13 Adding links to cells

3.5.14 Syntactic sugar

To simplify table() usage, shorter, alternative usage forms are allowed.

This sample code:

row.cell(..., link="https://py-pdf.github.io/fpdf2/")
row.cell(..., link=pdf.add_link(page=1))

with pdf.table() as table:
for data_row in TABLE_DATA:

row = table.row()

3.5.13 Adding links to cells

- 45/193 -

Can be shortened to the following code, by passing lists of strings as the cells optional argument of .row() :

And even shortened further to a single line, by passing lists of lists of strings as the rows optional argument of .table() :

3.5.15 Gutter

Spacing can be introduced between rows and/or columns:

Result:

3.5.16 Column span and row span

Cells spanning multiple columns or rows can be defined by passing a colspan or rowspan argument to .cell() . Only the cells

with data in them need to be defined. This means that the number of cells on each row can be different.

result:

for datum in data_row:
row.cell(datum)

with pdf.table() as table:
for data_row in TABLE_DATA:

table.row(data_row)

with pdf.table(TABLE_DATA):
pass

with pdf.table(TABLE_DATA, gutter_height=3, gutter_width=3):
pass

...
with pdf.table(col_widths=(1, 2, 1, 1)) as table:

row = table.row()
row.cell("0")
row.cell("1")
row.cell("2")
row.cell("3")

row = table.row()
row.cell("A1")
row.cell("A2", colspan=2)
row.cell("A4")

row = table.row()
row.cell("B1", colspan=2)
row.cell("B3")
row.cell("B4")

...

3.5.15 Gutter

- 46/193 -

result:

Alternatively, the spans can be defined using the placeholder elements TableSpan.COL and TableSpan.ROW . These elements merge

the current cell with the previous column or row respectively.

For example, the previous example table can be defined as follows:

...
with pdf.table(text_align="CENTER") as table:

row = table.row()
row.cell("A1", colspan=2, rowspan=3)
row.cell("C1", colspan=2)

row = table.row()
row.cell("C2", colspan=2, rowspan=2)

row = table.row()
all columns of this row are spanned by previous rows

row = table.row()
row.cell("A4", colspan=4)

row = table.row()
row.cell("A5", colspan=2)
row.cell("C5")
row.cell("D5")

row = table.row()
row.cell("A6")
row.cell("B6", colspan=2, rowspan=2)
row.cell("D6", rowspan=2)

row = table.row()
row.cell("A7")

...

3.5.16 Column span and row span

- 47/193 -

result:

3.5.17 Table with multiple heading rows

The number of heading rows is defined by passing the num_heading_rows argument to Table() . The default value is 1 . To

guarantee backwards compatibility with the first_row_as_headings argument, the following applies: - If num_heading_rows==1 : The

value of first_row_as_headings defines whether the first row is treated as heading or standard row. - Otherwise, the value of

num_heading_rows decides the number of heading rows.

Result:

...
TABLE_DATA = [

["A", "B", "C", "D"],
["A1", TableSpan.COL, "C1", TableSpan.COL],
[TableSpan.ROW, TableSpan.ROW, "C2", TableSpan.COL],
[TableSpan.ROW, TableSpan.ROW, TableSpan.ROW, TableSpan.ROW],
["A4", TableSpan.COL, TableSpan.COL, TableSpan.COL],
["A5", TableSpan.COL, "C5", "D5"],
["A6", "B6", TableSpan.COL, "D6"],
["A7", TableSpan.ROW, TableSpan.ROW, TableSpan.ROW],

]

with pdf.table(TABLE_DATA, text_align="CENTER"):
pass

...

with pdf.table(TABLE_DATA, num_heading_rows=2):
pass

3.5.17 Table with multiple heading rows

- 48/193 -

3.5.18 Table from pandas DataFrame or spreadsheet files

We have dedicated pages about those topics:

Maths documentation page

Rendering spreadsheets as PDF tables

3.5.19 Using write_html

Tables can also be defined in HTML using FPDF.write_html . With the same data as above, and column widths defined as percent

of the effective width:

Note that write_html has some limitations, notably regarding multi-lines cells.

3.5.20 "Parsabilty" of the tables generated

The PDF file format is not designed to embed structured tables. Hence, it can be tricky to extract tables data from PDF

documents.

In our tests suite, we ensure that several PDF-tables parsing Python libraries can successfully extract tables in documents

generated with fpdf2 . Namely, we test camelot-py & tabula-py: test/table/test_table_extraction.py.

Based on those tests, if you want to ease table extraction from the documents you produce, we recommend the following

guidelines:

avoid splitting tables on several pages

avoid the INTERNAL / MINIMAL / SINGLE_TOP_LINE borders layouts

July 1, 2025

•

•

from fpdf import FPDF

pdf = FPDF()
pdf.set_font_size(16)
pdf.add_page()
pdf.write_html(

f"""<table border="1"><thead><tr>
 <th width="25%">{TABLE_DATA[0][0]}</th>
 <th width="25%">{TABLE_DATA[0][1]}</th>
 <th width="15%">{TABLE_DATA[0][2]}</th>
 <th width="35%">{TABLE_DATA[0][3]}</th>
</tr></thead><tbody><tr>
 <td>{'</td><td>'.join(TABLE_DATA[1])}</td>
</tr><tr>
 <td>{'</td><td>'.join(TABLE_DATA[2])}</td>
</tr><tr>
 <td>{'</td><td>'.join(TABLE_DATA[3])}</td>
</tr><tr>
 <td>{'</td><td>'.join(TABLE_DATA[4])}</td>
</tr></tbody></table>""",

table_line_separators=True,
)
pdf.output('table_html.pdf')

•

•

3.5.18 Table from pandas DataFrame or spreadsheet files

- 49/193 -

https://camelot-py.readthedocs.io
https://tabula-py.readthedocs.io
https://github.com/py-pdf/fpdf2/blob/master/test/table/test_table_extraction.py

4. Text Content

4.1 Adding Text

There are several ways in fpdf to add text to a PDF document, each of which comes with its own special features and its own set

of advantages and disadvantages. You will need to pick the right one for your specific task.

4.1.1 Simple Text Methods

4.1.2 Flowable Text Regions

Text regions allow to insert flowing text into a predefined region on the page. It is possible to change the formatting and even the

font within paragraphs, which will still be aligned as one text block. The currently implemented type of text regions is

text_columns(), which defines one or several columns that can be filled sequentially or height-balanced.

4.1.3 Typography and Language Specific Concepts

Supported Features

With supporting Unicode fonts, fpdf2 should handle the following text shaping features correctly. More details can be found in

TextShaping.

Automatic ligatures / glyph substitution - Some writing systems (eg. most Indic scripts such as Devaganari, Tamil, Kannada)

frequently combine a number of written characters into a single glyph. In latin script, "ff", "fi", "ft", "st" and others are often

combined. In programming fonts "<=", "++" "!=" etc. may be combined into more compact representations.

Special diacritics that use separate code points (eg. in Diné Bizaad, Hebrew) will be placed in the correct location relative to

their base character.

Kerning, where the spacing between characters varies depending on their combination (eg. moving the succeeding lowercase

character closer to an uppercase "T".

Left-to-right and right-to-left text formatting (the latter most prominently in Arabic and Hebrew).

Method Lines Markdown &

HTML support

Supports text

shaping

Details

.text() one none no Inserts a single-line text string

with a precise location on the

base line of the font.

.cell() one Markdown yes Inserts a single-line text string

within the boundaries of a given

box, optionally with background

and border.

.multi_cell() several Markdown yes Inserts a multi-line text string

within the boundaries of a given

box, optionally with background,

border and padding.

.write() several none yes Inserts a multi-line text string

within the boundaries of the page

margins, starting at the current x/

y location (typically the end of the

last inserted text).

.write_html() several HTML yes auto

•

•

•

•

4. Text Content

- 50/193 -

Limitations

There are a few advanced typesetting features that fpdf2 doesn't currently support:

Contextual forms - In some writing systems (eg. Arabic, Mongolian, etc.), characters may take a different shape, depending on

whether they appear at the beginning, in the middle, or at the end of a word, or isolated. Fpdf will always use the same

standard shape in those cases.

Vertical writing - Some writing systems are meant to be written vertically. Doing so is not directly supported. In cases where

this just means to stack characters on top of each other (eg. Chinese, Japanese, etc.), client software can implement this by

placing each character individually at the correct location. In cases where the characters are connected with each other (eg.

Mongolian), this may be more difficult, if possible at all.

Character or Word Based Line Wrapping

By default, multi_cell() and write() will wrap lines based on words, using space characters and soft hyphens as separators.

Non-breaking spaces (\U00a0) do not trigger a word wrap, but are otherwise treated exactly as a normal space character. For

languages like Chinese and Japanese, that don't usually separate their words, character based wrapping is more appropriate. In

such a case, the argument wrapmode="CHAR" can be used (the default is "WORD"), and each line will get broken right before the

character that doesn't fit anymore.

4.1.4 Text Formatting

For all text insertion methods, the relevant font related properties (eg. font/style and foreground/background color) must be set

before invoking them. This includes using:

.set_font()

.set_text_color()

.set_draw_color() - for cell borders

.set_fill_color() - for the background

All three set_*_colors() methods accept either a single greyscale value, 3 values as RGB components, a single #abc or #abcdef

hexadecimal color string, or an instance of fpdf.drawing.DeviceCMYK , fpdf.drawing.DeviceRGB or fpdf.drawing.DeviceGray . You can

even use named web colors by using html.color_as_decimal() .

More text styling options can be found on the page Text styling, including Markdown syntax and HTML markup.

4.1.5 Change in current position

.cell() and .multi_cell() let you specify where the current position (.x / .y) should go after the call. This is handled by the

parameters new_x and new_y . Their values must one of the following enums values or an equivalent string:

XPos

YPos

4.1.6 .text()

Prints a single-line character string. In contrast to the other text methods, the position is given explicitly, and not taken from

.x / .y . The origin is on the left of the first character, on the baseline. This method allows placing a string with typographical

precision on the page, but it is usually easier to use the .cell() , .multi_cell() or .write() methods.

Signature and parameters for .text()

4.1.7 .cell()

Prints a cell (rectangular area) with optional borders, background color and character string. The upper-left corner of the cell

corresponds to the current position. The text can be aligned or centered. After the call, the current position moves to the

•

•

•

•

•

•

•

•

4.1.4 Text Formatting

- 51/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_text_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_text_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_draw_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_draw_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fill_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fill_color
https://py-pdf.github.io/fpdf2/fpdf/drawing.html#fpdf.drawing.DeviceCMYK
https://py-pdf.github.io/fpdf2/fpdf/drawing.html#fpdf.drawing.DeviceCMYK
https://py-pdf.github.io/fpdf2/fpdf/drawing.html#fpdf.drawing.DeviceRGB
https://py-pdf.github.io/fpdf2/fpdf/drawing.html#fpdf.drawing.DeviceRGB
https://py-pdf.github.io/fpdf2/fpdf/drawing.html#fpdf.drawing.DeviceGray
https://py-pdf.github.io/fpdf2/fpdf/drawing.html#fpdf.drawing.DeviceGray
https://en.wikipedia.org/wiki/Web_colors#HTML_color_names
https://py-pdf.github.io/fpdf2/fpdf/html.html#fpdf.html.color_as_decimal
https://py-pdf.github.io/fpdf2/fpdf/html.html#fpdf.html.color_as_decimal
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.XPos
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.XPos
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.YPos
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.YPos
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.text

selected new_x / new_y position. It is possible to put a link on the text. If markdown=True , then minimal markdown styling is enabled,

to render parts of the text in bold, italics, strikethrough and/or underlined.

If automatic page breaking is enabled and the cell goes beyond the limit, a page break is performed before outputting.

Signature and parameters for.cell()

4.1.8 .multi_cell()

Allows printing text with word or character based line breaks. Those can be automatic (breaking at the most recent space or soft-

hyphen character) as soon as the text reaches the right border of the cell, or explicit (via the \\n character). As many cells as

necessary are stacked, one below the other. Text can be aligned, centered or justified. The cell block can be framed and the

background painted. Padding between text and the cell edge can be specified in the same way as for tables.

Using new_x="RIGHT", new_y="TOP", maximum height=pdf.font_size can be useful to build tables with multiline text in cells.

In normal operation, returns a boolean indicating if page break was triggered. The return value can be altered by specifying the

output parameter.

Signature and parameters for.multi_cell()

4.1.9 .write()

Prints multi-line text between the page margins, starting from the current position. When the right margin is reached, a line

break occurs at the most recent space or soft-hyphen character (in word wrap mode) or at the current position (in character

break mode), and text continues from the left margin. A manual break happens any time the \n character is met. Upon method

exit, the current position is left near the end of the text, ready for the next call to continue without a gap, potentially with a

different font or size set. Returns a boolean indicating if page break was triggered.

The primary purpose of this method is to print continuously wrapping text, where different parts may be rendered in different

fonts or font sizes. This contrasts eg. with .multi_cell() , where a change in font family or size can only become effective on a

new line.

Signature and parameters for.write()

4.1.10 .write_html()

This method is very similar to .write() , but accepts basic HTML formatted text as input. See html.py for more details and the

supported HTML tags.

Note that when using data from actual web pages, the result may not look exactly as expected, because .write_html() prints all

whitespace unchanged as it finds them, while webbrowsers rather collapse each run of consecutive whitespace into a single

space character.

Signature and parameters for .write_html()

September 30, 2025

4.1.8 .multi_cell()

- 52/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write_html

4.2 Line breaks

When using multi_cell() or write(), each time a line reaches the right extremity of the cell or a carriage return character (\n) is

met, a line break is issued and a new line automatically created under the current one.

An automatic break is performed at the location of the nearest space or soft-hyphen (\u00ad) character before the right limit. A

soft-hyphen will be replaced by a normal hyphen when triggering a line break, and ignored otherwise.

If the parameter print_sh=False in multi_cell() or write() is set to True , then they will print the soft-hyphen character to the

document (as a normal hyphen with most fonts) instead of using it as a line break opportunity.

February 17, 2025

4.2 Line breaks

- 53/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write

4.3 Page breaks

By default, fpdf2 will automatically perform page breaks whenever a cell or the text from a write() is rendered at the bottom of

a page with a height greater than the page bottom margin.

This behaviour can be controlled using those methods:

set_auto_page_break

accept_page_break

will_page_break

4.3.1 Manually trigger a page break

Simply call .add_page() .

4.3.2 Inserting the final number of pages of the document

The special string {nb} will be substituted by the total number of pages on document closure. This special value can changed by

calling alias_nb_pages().

4.3.3 will_page_break

will_page_break(height) lets you know if adding an element will trigger a page break, based on its height and the current

ordinate (y position).

4.3.4 Unbreakable sections

In order to render content, like tables, with the insurance that no page break will be performed in it, on the can use the

FPDF.unbreakable() context-manager:

An alternative approach is offset_rendering() that allows to test the results of some operations on the global layout before

performing them "for real":

•

•

•

This is currently incompatible with text shaping.

cf. GitHub issue #1090

pdf = fpdf.FPDF()
pdf.add_page()
pdf.set_font("Times", size=16)
line_height = pdf.font_size * 2
col_width = pdf.epw / 4 # distribute content evenly
for i in range(4): # repeat table 4 times

with pdf.unbreakable() as doc:
for row in data: # data comes from snippets on the Tables documentation page

for datum in row:
doc.cell(col_width, line_height, f"{datum} ({i})", border=1)

doc.ln(line_height)
print('page_break_triggered:', doc.page_break_triggered)
pdf.ln(line_height * 2)

pdf.output("unbreakable_tables.pdf")

with pdf.offset_rendering() as dummy:
Dummy rendering:
dummy.multi_cell(...)

if dummy.page_break_triggered:
We trigger a page break manually beforehand:
pdf.add_page()
We duplicate the section header:
pdf.cell(text="Appendix C")

Now performing our rendering for real:
pdf.multi_cell(...)

4.3 Page breaks

- 54/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_auto_page_break
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_auto_page_break
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.accept_page_break
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.accept_page_break
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.will_page_break
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.will_page_break
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.alias_nb_pages
https://github.com/py-pdf/fpdf2/issues/1090
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.offset_rendering
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.offset_rendering

August 5, 2025

4.3.4 Unbreakable sections

- 55/193 -

4.4 Text styling

4.4.1 .set_font()

Setting emphasis on text can be controlled by using .set_font(style=...) :

style="B" indicates bold

style="I" indicates italics

style="S" indicates strikethrough

style="U" indicates underline

Letters can be combined, for example: style="BI" indicates bold italics

4.4.2 .set_stretching(stretching=100)

Text can be stretched horizontally with this setting, measured in percent. If the argument is less than 100, then all characters are

rendered proportionally narrower and the text string will take less space. If it is larger than 100, then the width of all characters

will be expanded accordingly.

The example shows the same text justified to the same width, with stretching values of 100 and 150.

4.4.3 .set_char_spacing(spacing=0)

This method changes the distance between individual characters of a test string. Normally, characters are placed at a given

distance according the width information in the font file. If spacing is larger than 0, then their distance will be larger, creating a

gap in between. If it is less than 0, then their distance will be smaller, possibly resulting in an overlap. The change in distance is

given in typographic points (Pica), which makes it easy to adapt it relative to the current font size.

Character spacing works best for formatting single line text created by any method, or for highlighting individual words included

in a block of text with .write() .

•

•

•

•

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=36)
pdf.cell(text="This")
pdf.set_font(style="B")
pdf.cell(text="is")
pdf.set_font(style="I")
pdf.cell(text="a")
pdf.set_font(style="U")
pdf.cell(text="PDF")
pdf.output("style.pdf")

pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=8)
pdf.set_fill_color(255, 255, 0)
pdf.multi_cell(w=50, text=LOREM_IPSUM[:100], new_x="LEFT", fill=True)
pdf.ln()
pdf.set_stretching(150)
pdf.multi_cell(w=50, text=LOREM_IPSUM[:100], new_x="LEFT", fill=True)

4.4 Text styling

- 56/193 -

Limitations: Spacing will only be changed within a sequence of characters that fpdf2 adds to the PDF in one go. This means

that there will be no extra distance eg. between text parts that are placed successively with write() . Also, if you apply different

font styles using the Markdown functionality of .cell() and .multi_cell() or by using html_write() , then any parts given

different styles will have the original distance between them. This is so because fpdf2 has to add each styled fragment to the

PDF file separately.

The example shows the same text justified to the same width, with char_spacing values of 0 and 10 (font size 8 pt).

For a more complete support of Markdown syntax, check out this guide to combine fpdf2 with the mistletoe library: Combine

with Markdown.

4.4.4 Subscript, Superscript, and Fractional Numbers

The class attribute .char_vpos controls special vertical positioning modes for text:

"LINE" - normal line text (default)

"SUP" - superscript (exponent)

"SUB" - subscript (index)

"NOM" - nominator of a fraction with "/"

"DENOM" - denominator of a fraction with "/"

For each positioning mode there are two parameters that can be configured. The defaults have been set to result in a decent

layout with most fonts, and are given in parens.

The size multiplier for the font size:

.sup_scale (0.7)

.sub_scale (0.7)

.nom_scale (0.75)

.denom_scale (0.75)

The lift is given as fraction of the unscaled font size and indicates how much the glyph gets lifted above the base line (negative

for below):

.sup_lift (0.4)

.sub_lift (-0.15)

.nom_lift (0.2)

.denom_lift (0.0)

Limitations: The individual glyphs will be scaled down as configured. This is not typographically correct, as it will also reduce

the stroke width, making them look lighter than the normal text. Unicode fonts may include characters in the subscripts and

superscripts range. In a high quality font, those glyphs will be smaller than the normal ones, but have a proportionally stronger

pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=8)
pdf.set_fill_color(255, 255, 0)
pdf.multi_cell(w=150, text=LOREM_IPSUM[:200], new_x="LEFT", fill=True)
pdf.ln()
pdf.set_char_spacing(10)
pdf.multi_cell(w=150, text=LOREM_IPSUM[:200], new_x="LEFT", fill=True)

•

•

•

•

•

•

•

•

•

•

•

•

•

4.4.4 Subscript, Superscript, and Fractional Numbers

- 57/193 -

https://en.wikipedia.org/wiki/Unicode_subscripts_and_superscripts
https://en.wikipedia.org/wiki/Unicode_subscripts_and_superscripts

stroke width in order to maintain the same visual density. If available in good quality, using Characters from this range is

preferred and will look better. Unfortunately, many fonts either don't (fully) cover this range, or the glyphs are of unsatisfactory

quality. In those cases, this feature of fpdf2 offers a reliable workaround with suboptimal but consistent output quality.

Practical use is essentially limited to .write() and html_write() . The feature does technically work with .cell() and

.multi_cell , but is of limited usefulness there, since you can't change font properties in the middle of a line (there is no

markdown support). It currently gets completely ignored by .text() .

The example shows the most common use cases:

pdf = fpdf.FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=20)
pdf.write(text="2")
pdf.char_vpos = "SUP"
pdf.write(text="56")
pdf.char_vpos = "LINE"
pdf.write(text=" more line text")
pdf.char_vpos = "SUB"
pdf.write(text="(idx)")
pdf.char_vpos = "LINE"
pdf.write(text=" end")
pdf.ln()
pdf.write(text="1234 + ")
pdf.char_vpos = "NOM"
pdf.write(text="5")
pdf.char_vpos = "LINE"
pdf.write(text="/")
pdf.char_vpos = "DENOM"
pdf.write(text="16")
pdf.char_vpos = "LINE"
pdf.write(text=" + 987 = x")

4.4.4 Subscript, Superscript, and Fractional Numbers

- 58/193 -

4.4.5 .text_mode

The PDF spec defines several text modes:

The text mode can be controlled with the .text_mode attribute. With STROKE modes, the line width is induced by .line_width , and

its color can be configured with set_draw_color() . With FILL modes, the filling color can be controlled by set_fill_color() or

set_text_color() .

With any of the 4 CLIP modes, the letters will be filled by vector drawings made afterwards, as can be seen in this example:

from fpdf import FPDF

pdf = FPDF(orientation="landscape")
pdf.add_page()
pdf.set_font("Helvetica", size=100)

with pdf.local_context(text_mode="STROKE", line_width=2):
pdf.cell(text="Hello world")

Outside the local context, text_mode & line_width are reverted

4.4.5 .text_mode

- 59/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_draw_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_draw_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fill_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fill_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_text_color
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_text_color

More examples from test_text_mode.py :

text_modes.pdf

clip_text_modes.pdf

4.4.6 markdown=True

An optional markdown=True parameter can be passed to the cell() & multi_cell() methods in order to enable basic Markdown-

like styling: **bold**, __italics__, --underlined-- .

If the printable text contains a character sequence that would be incorrectly interpreted as a formatting marker, it can be

escaped using \ . The escape character works the same way it generally does in Python (see the example below).

Bold & italics require using dedicated fonts for each style.

For the standard fonts (Courier, Helvetica & Times), those dedicated fonts are configured by default:

Using other fonts means that their variants (bold, italics) must be registered using add_font with style="B" and style="I" .

Several unit tests in test/text/ demonstrate that:

test_cell_markdown_with_ttf_fonts

test_multi_cell_markdown_with_ttf_fonts

back to their original default values
pdf.ln()

with pdf.local_context(text_mode="CLIP"):
pdf.cell(text="CLIP text mode")
for r in range(0, 250, 2): # drawing concentric circles

pdf.circle(x=130-r/2, y=70-r/2, radius=r)

pdf.output("text-modes.pdf")

•

•

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=50)
pdf.cell(text="**Lorem** __Ipsum__ --dolor--", markdown=True, new_x='LEFT', new_y='NEXT')
pdf.cell(text="**Lorem** __Ipsum__ --dolor--", markdown=True)
pdf.output("markdown-styled.pdf")

•

•

4.4.6 markdown=True

- 60/193 -

https://github.com/py-pdf/fpdf2/blob/master/test/text/test_text_mode.py
https://github.com/py-pdf/fpdf2/blob/master/test/text/test_text_mode.py
https://github.com/py-pdf/fpdf2/blob/master/test/text/text_modes.pdf
https://github.com/py-pdf/fpdf2/blob/master/test/text/clip_text_modes.pdf
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://github.com/py-pdf/fpdf2/blob/2.6.1/test/text/test_cell.py#L155
https://github.com/py-pdf/fpdf2/blob/2.6.1/test/text/test_multi_cell_markdown.py#L27

4.4.7 .write_html()

.write_html() allows to set emphasis on text through the , <i> and <u> tags:

February 20, 2025

pdf.write_html("""bold
 <I>italic</I>
 <U>underlined</U>
 <I><U>all at once!</U></I>"""
)

4.4.7 .write_html()

- 61/193 -

4.5 Fonts and Unicode

Besides the limited set of latin fonts built into the PDF format, fpdf2 offers full support for using and embedding Unicode

(TrueType "ttf" and OpenType "otf") fonts. To keep the output file size small, it only embeds the subset of each font that is

actually used in the document. This part of the code has been completely rewritten since the fork from PyFPDF. It uses the

fonttools library for parsing the font data, and harfbuzz (via uharfbuzz) for text shaping.

To make use of that functionality, you have to install at least one Unicode font, either in the system font folder or in some other

location accessible to your program. For professional work, many designers prefer commercial fonts, suitable to their specific

needs. There are also many sources of free TTF fonts that can be downloaded online and used free of cost (some of them may

have restrictions on commercial redistribution, such as server installations or including them in a software project).

Font Library - A collection of fonts for many languages with an open source type license.

Google Fonts - A collection of free to use fonts for many languages.

Microsoft Font Library - A large collection of fonts that are free to use.

GitHub: Fonts - Links to public repositories of open source font projects as well as font related software projects.

GNU FreeFont family: FreeSans, FreeSerif, FreeMono

To use a Unicode font in your program, use the add_font() , and then the set_font() method calls.

Web fonts (WOFF and WOFF2)

WOFF and WOFF2 are web-optimized, compressed containers for TrueType and OpenType fonts, designed to reduce download

size for browsers. fpdf2 supports these formats by decompressing them before embedding the resulting font data into the

generated PDF.

Font collections (TTC/OTC)

TrueType and OpenType collections bundle multiple font faces into a single file. When adding a collection with add_font() , you

can choose which face to load using the collection_font_number argument. If not specified, it defaults to 0 (the first face in the

collection).

Built-in Fonts vs. Unicode Fonts

The PDF file format knows a small number of "standard" fonts, namely Courier, Helvetica, Times, Symbol, and ZapfDingbats.

The first three are available in regular, bold, italic, and bold-italic versions. This gives us a set of fonts known as "14 Standard

PDF fonts". Any PDF processor (eg. a viewer) must provide those fonts for display. To use them, you don't need to call

.add_font() , but only .set_font() .

•

•

•

•

•

4.5 Fonts and Unicode

- 62/193 -

https://fonttools.readthedocs.io/en/latest/
https://harfbuzz.github.io/
https://github.com/harfbuzz/uharfbuzz
https://fontlibrary.org/
https://fonts.google.com/
https://learn.microsoft.com/en-gb/typography/font-list/
https://github.com/topics/fonts
http://www.gnu.org/software/freefont/
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_font

(script used to generate this: tutorial/core_fonts.py)

While that may seem convenient, there's a big drawback. Those fonts only support latin characters, or a set of special characters

for the last two. If you try to render any Unicode character outside of those ranges, then you'll get an error like:

" Character "θ" at index 13 in text is outside the range of characters supported by the font used: "courier". Please consider

using a Unicode font. ". So if you want to create documents with any characters other than those common in English and a small

number of european languages, then you need to add a Unicode font containing the respective glyph as described in this

document.

Note that even if you have a font eg. named "Courier" installed as a system font on your computer, by default this will not be

used. You'll have to explicitly call eg. .add_font("Courier2", fname=r"C:\Windows\Fonts\cour.ttf") to make it available. If the name

is really the same (ignoring case), then you'll have to use a suitable variation, since trying to overwrite one of the "standard"

names with .add_font() will result in an error.

4.5 Fonts and Unicode

- 63/193 -

https://github.com/py-pdf/fpdf2/blob/master/tutorial/core_fonts.py

Adding and Using Fonts

Before using a Unicode font, you need to load it from a font file. Usually you'll have call add_font() for each style of the same

font family you want to use. The styles that fpdf2 understands are:

Regular: ""

Bold: "b"

Italic/Oblique: "i"

Bold-Italic: "bi"

Note that we use the same family name for each of them, but load them from different files. Only when a font has variants (eg.

"narrow"), or there are more styles than the four standard ones (eg. "black" or "extra light"), you'll have to add those with a

different family name. If the font files are not located in the current directory, you'll have to provide a file name with a relative or

absolute path. If the font is not found elsewhere, then fpdf2 will look for it in a subdirectory named "font".

To actually use the loaded font, or to use one of the standard built-in fonts, you'll have to set the current font before calling any

text generating method. .set_font() uses the same combinations of family name and style as arguments, plus the font size in

typographic points. In addition to the previously mentioned styles, the letter u may be included for creating underlined text, and

s for creating strikethrough text. If the family or size are omitted, the already set values will be retained. If the style is omitted,

it defaults to regular.

Note on non-latin languages

Many non-latin writing systems have complex ways to combine characters, ligatures, and possibly multiple diacritic symbols

together, change the shape of characters depending on its location in a word, or use a different writing direction. A small number

of examples are:

Hebrew - right-to-left, placement of diacritics

Arabic - right-to-left, contextual shapes

Thai - stacked diacritics

Devanagari (and other indic scripts) - multi-character ligatures, reordering

To make sure those scripts to be rendered correctly, text shaping must be enabled with .set_text_shaping(True) .

•

•

•

•

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
Different styles of the same font family.
pdf.add_font("dejavu-sans", style="", fname="DejaVuSans.ttf")
pdf.add_font("dejavu-sans", style="b", fname="DejaVuSans-Bold.ttf")
pdf.add_font("dejavu-sans", style="i", fname="DejaVuSans-Oblique.ttf")
pdf.add_font("dejavu-sans", style="bi", fname="DejaVuSans-BoldOblique.ttf")
Different type of the same font design.
pdf.add_font("dejavu-sans-narrow", style="", fname="DejaVuSansCondensed.ttf")
pdf.add_font("dejavu-sans-narrow", style="i", fname="DejaVuSansCondensed-Oblique.ttf")

Set and use first family in regular style.
pdf.set_font(family="dejavu-sans", style="", size=12)
pdf.cell(text="Hello")
Set and use the same family in bold style.
pdf.set_font(style="b", size=18) # still uses the same dejavu-sans font family.
pdf.cell(text="Fat World")
Set and use a variant in italic and underlined.
pdf.set_font(family="dejavu-sans-narrow", style="iu", size=12)
pdf.cell(text="lean on me")

•

•

•

•

4.5 Fonts and Unicode

- 64/193 -

Right-to-Left scripts

When text shaping is enabled, fpdf2 will apply the Unicode Bidirectional Algorithm to render correctly any text, including

bidirectional (mix of right-to-left and left-to-right scripts).

4.5.1 Example

This example uses several free fonts to display some Unicode strings. Be sure to install the fonts in the font directory first.

View the result here: unicode.pdf

#!/usr/bin/env python
-*- coding: utf8 -*-

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_text_shaping(True)

Add a DejaVu Unicode font (uses UTF-8)
Supports more than 200 languages. For a coverage status see:
http://dejavu.svn.sourceforge.net/viewvc/dejavu/trunk/dejavu-fonts/langcover.txt
pdf.add_font(fname='DejaVuSansCondensed.ttf')
pdf.set_font('DejaVuSansCondensed', size=14)

text = u"""
English: Hello World
Greek: Γειά σου κόσμος
Polish: Witaj świecie
Portuguese: Olá mundo
Russian: Здравствуй, Мир
Vietnamese: Xin chào thế giới

Arabic: مرحبا العالم
Hebrew: שלום עולם
"""

for txt in text.split('\n'):
pdf.write(8, txt)
pdf.ln(8)

Add a Indic Unicode font (uses UTF-8)
Supports: Bengali, Devanagari, Gujarati,
Gurmukhi (including the variants for Punjabi)
Kannada, Malayalam, Oriya, Tamil, Telugu, Tibetan
pdf.add_font(fname='gargi.ttf')
pdf.set_font('gargi', size=14)
pdf.write(8, u'Hindi: नमस्ते दुनिया')
pdf.ln(20)

Add a AR PL New Sung Unicode font (uses UTF-8)
The Open Source Chinese Font (also supports other east Asian languages)
pdf.add_font(fname='fireflysung.ttf')
pdf.set_font('fireflysung', size=14)
pdf.write(8, u'Chinese: 你好世界\n')
pdf.write(8, u'Japanese: こんにちは世界\n')
pdf.ln(10)

Add a Alee Unicode font (uses UTF-8)
General purpose Hangul truetype fonts that contain Korean syllable
and Latin9 (iso8859-15) characters.
pdf.add_font(fname='Eunjin.ttf')
pdf.set_font('Eunjin', size=14)
pdf.write(8, u'Korean: 안녕하세요')
pdf.ln(20)

Add a Fonts-TLWG (formerly ThaiFonts-Scalable) (uses UTF-8)
pdf.add_font(fname='Waree.ttf')
pdf.set_font('Waree', size=14)
pdf.write(8, u'Thai: สวัสดีชาวโลก')
pdf.ln(20)

Select a standard font (uses windows-1252)
pdf.set_font('helvetica', size=14)
pdf.ln(10)
pdf.write(5, 'This is standard built-in font')

pdf.output("unicode.pdf")

4.5.1 Example

- 65/193 -

https://www.unicode.org/reports/tr9/
https://github.com/py-pdf/fpdf2/raw/master/tutorial/unicode.pdf

4.5.2 Free Font Pack

For your convenience, the author of the original PyFPDF has collected 96 TTF files in an optional "Free Unicode TrueType Font

Pack for FPDF", with useful fonts commonly distributed with GNU/Linux operating systems. Note that this collection is from

2015, so it will not contain any newer fonts or possible updates.

4.5.3 Fallback fonts

New in 2.7.0

The method set_fallback_fonts() allows you to specify a list of fonts to be used if any character is not available on the font

currently set. When a character doesn’t exist on the current font, fpdf2 will look if it’s available on the fallback fonts, on the

same order the list was provided.

Common scenarios are use of special characters like emojis within your text, greek characters in formulas or citations mixing

different languages.

Example:

When a glyph cannot be rendered uing the current font, fpdf2 will look for a fallback font matching the current character

emphasis (bold/italics). By default, if it does not find such matching font, the character will not be rendered using any fallback

font. This behaviour can be relaxed by passing exact_match=False to set_fallback_fonts() .

Moreover, for more control over font fallback election logic, the get_fallback_font() can be overridden. An example of this can

be found in test/fonts/test_font_fallback.py.

4.5.4 Unicode range limits

New in 2.8.5

The unicode_range parameter in add_font() allows you to restrict which Unicode characters a font will handle, similar to CSS

@font-face unicode-range rules. This gives you fine-grained control over font priority on a per-character basis.

This is particularly useful when you want fallback fonts to take priority for specific character ranges, even when the main font

technically supports those characters. A common scenario is preferring colorful emoji fonts over monochrome glyphs that exist in

regular fonts.

Example:

import fpdf

pdf = fpdf.FPDF()
pdf.add_page()
pdf.add_font(fname="Roboto.ttf")
twitter emoji font: https://github.com/13rac1/twemoji-color-font/releases
pdf.add_font(fname="TwitterEmoji.ttf")
pdf.set_font("Roboto", size=15)
pdf.set_fallback_fonts(["TwitterEmoji"])

pdf.write(text="text with an emoji 🌭")
pdf.output("text_with_emoji.pdf")

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()

Main font for text
pdf.add_font(family="DejaVu", fname="DejaVuSans.ttf", unicode_range="U+0020-007E")

Emoji font restricted to emoticons range only
pdf.add_font(

family="NotoEmoji",
fname="colrv1-NotoColorEmoji.ttf",
unicode_range="U+1F600-1F64F", # Emoticons

)

pdf.set_font("DejaVu", size=24)
pdf.set_fallback_fonts(["NotoEmoji"])

Emojis in the specified range render from NotoEmoji (colorful)

4.5.2 Free Font Pack

- 66/193 -

https://github.com/reingart/pyfpdf/releases/download/binary/fpdf_unicode_font_pack.zip
https://github.com/reingart/pyfpdf/releases/download/binary/fpdf_unicode_font_pack.zip
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fallback_fonts
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fallback_fonts
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fallback_fonts
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_fallback_fonts
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.get_fallback_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.get_fallback_font
https://github.com/py-pdf/fpdf2/blob/master/test/fonts/test_font_fallback.py
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_font

Supported Formats for unicode_range param

When you specify a unicode_range, the font's internal character map (cmap) is trimmed to only include codepoints within the

specified ranges. This ensures that:

The font will only be used for characters in its allowed ranges

Fallback fonts can take priority for characters outside those ranges

You avoid unwanted "fallback pollution" from fonts with poor-quality glyphs

For more information on fallback fonts, see the Fallback fonts section.

4.5.5 Variable Fonts

New in 2.8.5

A variable font allows users to use a single font file containing many variations of a typeface, such as weight, width, optical size,

and slant. Each such variable which modifies the typeface is called an axis. These variables have specific tags which are used to

specify their values, such as "wdth" for modifying width, and "wght" for modifying weight. For a full list of tags, please check the

documentation of your variable font.

The variations parameter in add_font allows you to specify the value of one or more axes, thus creating a static font from the

variable font.

The following examples assume that the provided font is a variable font.

The above examples provide the axes dictionary to specify the styles. If an axis is not mentioned, the default width will be used,

and the axis will be dropped as shown below.

pdf.write(text="Hello World! 😀 😊 😎")
pdf.output("emoji_with_unicode_range.pdf")

CSS-style string with comma-separated ranges
pdf.add_font(fname="font.ttf", unicode_range="U+1F600-1F64F, U+2600-26FF, U+2615")

List of strings
pdf.add_font(fname="font.ttf", unicode_range=["U+1F600-1F64F", "U+2600", "U+26FF"])

List of tuples (start, end)
pdf.add_font(fname="font.ttf", unicode_range=[(0x1F600, 0x1F64F), (0x2600, 0x26FF)])

List of integers (individual codepoints)
pdf.add_font(fname="font.ttf", unicode_range=[0x1F600, 0x2600, 128512])

•

•

•

Specify width and weight in regular style.
pdf.add_font(

"Roboto Variable", "", "Roboto-Variable.ttf", variations={"wdth": 75, "wght": 300}
)

Specify weight for bold style.
pdf.add_font("Roboto Variable", "B", "Roboto-Variable.ttf", variations={"wght": 600})

Creating an italic version of the variable font.
If an axis is set to None, or if the axis is unspecified,
it will not be variable in the created font.
pdf.add_font(

"Roboto Variable",
"B",
"Roboto-Variable.ttf",
variations={"wght": 800, "wdth": None},

)

4.5.5 Variable Fonts

- 67/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_font

It is also possible to specify more than 1 style in the variations dictionary. If a separate axes dictionary is specified for each

style, then the style parameter is ignored as shown below.

A TypeError will be raised if variations is not a dictionary, and an AttributeError will be raised if variations is used but the font is

not a variable font.

4.5.6 Color Font Palette Selection

New in 2.8.5

Some color fonts (COLRv0, COLRv1, CBDT, SBIX, SVG) contain multiple predefined color palettes. The palette parameter in

add_font() allows you to select which palette to use when rendering the font.

This is useful when you want to use different color schemes from the same font file without having to embed the font multiple

times.

Example:

If you specify a palette index that is out of range, fpdf2 will log a warning and fall back to palette 0. You can check the number

of available palettes in your color font's documentation or by inspecting the font file.

February 1, 2026

pdf.add_font(
"Roboto Variable",
style="", # ignored
fname="Roboto-Variable.ttf",
variations={"": {"wght": 300}, "B": {"wght": 700}},

)

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()

Add the same color font with different palettes using different family names
pdf.add_font(

family="Nabla-Default",
fname="Nabla-Regular-COLRv1.ttf",
palette=0 # Use palette 0 (default)

)

pdf.add_font(
family="Nabla-Blue",
fname="Nabla-Regular-COLRv1.ttf",
palette=1 # Use palette 1

)

pdf.add_font(
family="Nabla-Grey",
fname="Nabla-Regular-COLRv1.ttf",
palette=2 # Use palette 2

)

Use the fonts with different palettes
pdf.set_font("Nabla-Default", size=24)
pdf.cell(text="Text with Palette 0", new_x="lmargin", new_y="next")

pdf.set_font("Nabla-Blue", size=24)
pdf.cell(text="Text with Palette 1", new_x="lmargin", new_y="next")

pdf.set_font("Nabla-Grey", size=24)
pdf.cell(text="Text with Palette 2", new_x="lmargin", new_y="next")

pdf.output("color_font_palettes.pdf")

4.5.6 Color Font Palette Selection

- 68/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_font

4.6 Text Shaping

New in 2.7.5

4.6.1 What is text shaping?

Text shaping is a fundamental process in typography and computer typesetting that influences the aesthetics and readability of

text in various languages and scripts. It involves the transformation of Unicode text into glyphs, which are then positioned for

display or print.

For texts in latin script, text shaping can improve the aesthetics by replacing characters that would collide or overlap by a single

glyph specially crafted to look harmonious.

This process is especially important for scripts that require complex layout, such as Arabic or Indic scripts, where characters

change shape depending on their context.

There are three primary aspects of text shaping that contribute to the overall appearance of the text: kerning, ligatures, and

glyph substitution.

Kerning

Kerning refers to the adjustment of space between individual letter pairs in a font. This process is essential to avoid awkward

gaps or overlaps that may occur due to the default spacing of the font. By manually or programmatically modifying the kerning,

we can ensure an even and visually pleasing distribution of letters, which significantly improves the readability and aesthetic

quality of the text.

This is currently incompatible with the special {nb} string that inserts the number of pages.

cf. GitHub issue #1090

4.6 Text Shaping

- 69/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/issues/1090

Ligatures

Ligatures are special characters that are created by combining two or more glyphs. This is frequently used to avoid collision

between characters or to adhere to the typographic traditions. For instance, in English typography, the most common ligatures

are "fi" and "fl", which are often fused into single characters to provide a more seamless reading experience.

Glyph Substitution

Glyph substitution is a mechanism that replaces one glyph or a set of glyphs with one or more alternative glyphs. This is a crucial

aspect of text shaping, especially for complex scripts where the representation of a character can significantly vary based on its

surrounding characters. For example, in Arabic script, a letter can have different forms depending on whether it's at the

beginning, middle, or end of a word.

Another common use of glyph substitution is to replace a sequence of characters by a symbol that better represent the meaning

of those characters on a specialized context (mathematical, programming, etc.).

4.6.2 Usage

Text shaping is disabled by default to keep backwards compatibility, reduce resource requirements and not make uharfbuzz a

hard dependency.

If you want to use text shaping, the first step is installing the uharfbuzz package via pip.

⚠️ Text shaping is not available for type 1 fonts.

pip install uharfbuzz

4.6.2 Usage

- 70/193 -

Basic usage

The method set_text_shaping() is used to control text shaping on a document. The only mandatory argument, use_shaping_engine

can be set to True to enable the shaping mechanism or False to disable it.

Features

On most languages, Harfbuzz enables all features by default. If you want to enable or disable a specific feature you can pass a

dictionary containing the 4 digit OpenType feature code as key and a boolean value to indicate if it should be enabled or disable.

Example:

The full list of OpenType feature codes can be found here

Additional options

To perform the text shaping, harfbuzz needs to know some information like the language and the direction (right-to-left, left-to-

right, etc) in order to apply the correct rules. Those information can be guessed based on the text being shaped, but you can also

set the information to make sure the correct rules will be applied.

Examples:

Direction can be ltr (left to right) or rtl (right to left). The ttb (top to bottom) and btt (bottom to top) directions are not

supported by fpdf2 for now.

Valid OpenType script tags

Valid OpenType language codes

4.6.3 Bidirectional Text

New in 2.7.8

Bidirectional text refers to text containing both left-to-right (LTR) and right-to-left (RTL) language scripts. Languages such as

Arabic, Hebrew, and Persian are written from right to left, whereas languages like English, Spanish, and French are written from

left to right. The Unicode Bidirectional Algorithm is a set of rules defined by the Unicode Consortium to properly display mixed-

directional text. This algorithm ensures that characters are shown in their correct order, preserving the logical sequence of the

text.

Unicode Bidirectional Algorithm

The Unicode Bidirectional Algorithm, often abbreviated as the Bidi Algorithm, is essential for displaying text containing both RTL

and LTR scripts. It determines the directionality of characters and arranges them in a visually correct order. This algorithm takes

into account the inherent directionality of characters (such as those in Arabic or Hebrew being inherently RTL) and the

surrounding context to decide how text should be displayed.

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.add_font(family="ViaodaLibre", fname=HERE / "ViaodaLibre-Regular.ttf")
pdf.set_font("ViaodaLibre", size=40)
pdf.set_text_shaping(True)
pdf.cell(text="final soft stuff")
pdf.output("Example.pdf")

pdf.set_text_shaping(use_shaping_engine=True, features={"kern": False, "liga": False})

pdf.set_text_shaping(use_shaping_engine=True, direction="rtl", script="arab", language="ara")

pdf.set_text_shaping(use_shaping_engine=True, direction="ltr", script="latn", language="eng")

4.6.3 Bidirectional Text

- 71/193 -

https://learn.microsoft.com/en-us/typography/opentype/spec/featuretags
https://learn.microsoft.com/en-us/typography/opentype/spec/scripttags
https://learn.microsoft.com/en-us/typography/opentype/spec/languagetags
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

Paragraph direction

Bidirectional text in fpdf2

fpdf2 will automatically apply the unicode bidirectional algorithm if text shaping is enabled.

If no direction parameter is provided - or direction is None - paragraph direction will be set according to the first directional

character present on the text.

If there is a need to explicitly set the direction of a paragraph, regardless of the content, you can force the paragraph direction to

either RTL or LTR.

February 20, 2025

Input text

LTR1 LTR2 LTR3 RTL1 RTL2 RTL3 LTR4 RTL4

LTR1 LTR2 LTR3 LTR4RTL3 RTL2 RTL1 RTL4

LTR4 LTR1 LTR2 LTR3RTL1RTL2RTL3RTL4

Firststep– readingtheinputtextandsplittingit intodirectional segments according to the Unicode bidirectional algorithm
and fragment characteristics (font, style, etc.)

Secondstep– thefragmentsaregroupedintodirectionalrunsandshaped withHarfBuzzand a paragraph is built, line by line,
according totheparagraphdirection.

Examplewithparagraphdirectionlefttoright:

Examplewithparagraphdirectionrighttoleft:

fpdf.set_text_shaping(use_shaping_engine=True, direction="rtl")

4.6.3 Bidirectional Text

- 72/193 -

4.7 Emojis, Symbols & Dingbats

4.7.1 Emojis

Displaying emojis requires the use of a Unicode font file. Here is an example using the DejaVu font:

This code produces this PDF file: fonts_emoji_glyph.pdf

Another font supporting emojis is: twemoji

4.7.2 Color fonts and emojis

A wide variety of color fonts are supported - SBIX, CBDT/CBLC, SVG, COLRv0 and COLRv1. If a loaded font provides color

glyphs, fpdf2 will render them automatically.

Bitmap-only fonts using EBDT/EBLC (for example, monochrome or grayscale bitmap strikes) are also supported. These are

rendered using the current text color, with grayscale values applied as alpha.

To always draw emoji as outline/monochrome even if the font includes color glyphs, set: FPDF.render_color_fonts = False

4.7.3 Symbols

The Symbol font is one of the built-in fonts in the PDF format. Hence you can include its symbols very easily:

This results in:

The following table will help you find which characters map to which symbol: symbol.pdf. For reference, it was built using this

script: symbol.py.

import fpdf

pdf = fpdf.FPDF()
pdf.add_font(fname="DejaVuSans.ttf")
pdf.set_font("DejaVuSans", size=64)
pdf.add_page()
pdf.multi_cell(0, text="".join([chr(0x1F600 + x) for x in range(68)]))
pdf.set_font_size(32)
pdf.text(10, 270, "".join([chr(0x1F0A0 + x) for x in range(15)]))
pdf.output("fonts_emoji_glyph.pdf")

import fpdf

pdf = fpdf.FPDF()
pdf.add_page()
pdf.set_font("symbol", size=36)
pdf.cell(h=16, text="\u0022 \u0068 \u0024 \u0065 \u00ce \u00c2, \u0068/\u0065 \u0040 \u00a5",

new_x="LMARGIN", new_y="NEXT")
pdf.cell(h=16, text="\u0044 \u0046 \u0053 \u0057 \u0059 \u0061 \u0062 \u0063",

new_x="LMARGIN", new_y="NEXT")
pdf.cell(h=16, text="\u00a0 \u00a7 \u00a8 \u00a9 \u00aa \u00ab \u00ac \u00ad \u00ae \u00af \u00db \u00dc \u00de",

new_x="LMARGIN", new_y="NEXT")
pdf.output("symbol.pdf")

4.7 Emojis, Symbols & Dingbats

- 73/193 -

https://dejavu-fonts.github.io
https://github.com/py-pdf/fpdf2/blob/master/test/fonts/fonts_emoji_glyph.pdf
https://github.com/13rac1/twemoji-color-font

4.7.4 Dingbats

The ZapfDingbats font is one of the built-in fonts in the PDF format. Hence you can include its dingbats very easily:

This results in:

The following table will help you find which characters map to which dingbats: zapfdingbats.pdf. For reference, it was built using

this script: zapfdingbats.py.

4.7.5 Fallback fonts

If you need to mix special characters and emojis within normal text, it is possible to specify alternative fonts for FPDF to use as

fallback fonts. See an example of use Here

February 7, 2026

import fpdf

pdf = fpdf.FPDF()
pdf.add_page()
pdf.set_font("zapfdingbats", size=36)
pdf.cell(text="+ 3 8 A r \u00a6 } \u00a8 \u00a9 \u00aa \u00ab ~")
pdf.output("zapfdingbat.pdf")

4.7.4 Dingbats

- 74/193 -

https://en.wikipedia.org/wiki/Dingbat

4.8 HTML

fpdf2 supports basic rendering from HTML.

This is implemented by using html.parser.HTMLParser from the Python standard library. The whole HTML 5 specification is not

supported, and neither is CSS, but bug reports & contributions are very welcome to improve this. cf. Supported HTML features

below for details on its current limitations.

For a more robust & feature-full HTML-to-PDF converter in Python, you may want to check Reportlab (or xhtml2pdf based on it),

WeasyPrint or borb.

4.8.1 write_html usage example

HTML rendering requires the use of FPDF.write_html() :

Internally FPDF.write_html() uses the fpdf.html.HTML2FPDF class that implements HTML parsing using html.parser.HTMLParser .

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.write_html("""
 <dl>
 <dt>Description title</dt>
 <dd>Description Detail</dd>
 </dl>
 <h1>Big title</h1>
 <section>
 <h2>Section title</h2>
 <p>Hello world. <u>I am</u> <i>tired</i>.</p>
 <p>py-pdf/fpdf2 GitHub repo</p>
 <p align="right">right aligned text</p>
 <p>i am a paragraph
in two parts.</p>
 <p>hello in green</p>
 <p>hello small</p>
 <p>hello helvetica</p>
 <p>hello times</p>
 </section>
 <section>
 <h2>Other section title</h2>
 <ul type="circle">
 unordered
 list
 items

 <ol start="3" type="i">
 ordered
 list
 items

 <pre>i am preformatted text.</pre>

 <blockquote>hello blockquote</blockquote>
 <table width="50%">
 <thead>
 <tr>
 <th width="30%">ID</th>
 <th width="70%">Name</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>1</td>
 <td>Alice</td>
 </tr>
 <tr>
 <td>2</td>
 <td>Bob</td>
 </tr>
 </tbody>
 </table>
 </section>
""")
pdf.output("html.pdf")

4.8 HTML

- 75/193 -

https://www.reportlab.com
https://pypi.org/project/xhtml2pdf/
https://weasyprint.org
https://github.com/jorisschellekens/borb-examples/#76-exporting-html-as-pdf
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write_html
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write_html
https://py-pdf.github.io/fpdf2/fpdf/html.html#fpdf.html.HTML2FPDF
https://py-pdf.github.io/fpdf2/fpdf/html.html#fpdf.html.HTML2FPDF
https://docs.python.org/3/library/html.parser.html
https://docs.python.org/3/library/html.parser.html

Styling HTML tags globally

New in 2.7.9

The style of several HTML tags (<a> , <blockquote> , <code> , <pre> , <h1> , <h2> , <h3> ...) can be set globally, for the whole HTML

document, by passing tag_styles to FPDF.write_html() :

Similarly, the indentation of several HTML tags (<blockquote> , <dd> ,) can be set globally, for the whole HTML document, by

passing tag_styles to FPDF.write_html() :

⚠️ Note that this styling is currently only supported for a subset of all HTML tags, and that some FontFace or TextStyle

properties may not be honored. However, Pull Request are welcome to implement missing features!

Default font

New in 2.8.0

The default font used by FPDF.write_html() is Times.

You can change this default font by passing font_family to this method:

4.8.2 Supported HTML features

<h1> to <h6> : headings (and align attribute)

<p> : paragraphs (and align , line-height attributes)

from fpdf import FPDF, FontFace

pdf = FPDF()
pdf.add_page()
pdf.write_html("""
 <h1>Big title</h1>
 <section>
 <h2>Section title</h2>
 <p>Hello world!</p>
 </section>
""", tag_styles={

"h1": FontFace(color="#948b8b", size_pt=32),
"h2": FontFace(color="#948b8b", size_pt=24),

})
pdf.output("html_styled.pdf")

from fpdf import FPDF, TextStyle

pdf = FPDF()
pdf.add_page()
pdf.write_html("""
 <dl>
 <dt>Term</dt>
 <dd>Definition</dd>
 </dl>
 <blockquote>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed non risus.
 Suspendisse lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor.
 Cras elementum ultrices diam.
 </blockquote>
""", tag_styles={

"dd": TextStyle(l_margin=5),
"blockquote": TextStyle(color="#ccc", font_style="I",

t_margin=5, b_margin=5, l_margin=10),
})

pdf.output("html_dd_indented.pdf")

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.write_html("""
 <h1>Big title</h1>
 <section>
 <h2>Section title</h2>
 <p>Hello world!</p>
 </section>
""", font_family="Helvetica")
pdf.output("html_helvetica.pdf")

•

•

4.8.2 Supported HTML features

- 76/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fonts.html#fpdf.fonts.FontFace
https://py-pdf.github.io/fpdf2/fpdf/fonts.html#fpdf.fonts.FontFace
https://py-pdf.github.io/fpdf2/fpdf/fonts.html#fpdf.fonts.TextStyle
https://py-pdf.github.io/fpdf2/fpdf/fonts.html#fpdf.fonts.TextStyle
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write_html
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write_html

 & <hr> tags

 , <i> , <s> , <u> : bold, italic, strikethrough, underline

 : (and face , size , color attributes)

<center> for aligning

<a> : links (and href attribute) to a file, URL, or page number.

<pre> & <code> tags

 : images (and src , width , height attributes)

 , , : ordered, unordered and list items (can be nested)

<dl> , <dt> , <dd> : description list, title, details (can be nested)

<sup> , <sub> : superscript and subscript text

<table> : (with align , border , width , cellpadding , cellspacing attributes) those tags are rendered using fpdf2 Tables layout

and the following sub-tags are supported:

<thead> : optional tag, wraps the table header row

<tfoot> : optional tag, wraps the table footer row

<tbody> : optional tag, wraps the table rows with actual content

<tr> : rows (with align , bgcolor attributes)

<th> : heading cells (with align , bgcolor , width attributes)

<td> : cells (with align , bgcolor , width , rowspan , colspan attributes)

Page breaks

New in 2.8.0

Page breaks can be triggered explicitly using the break-before or break-after CSS properties. For example you can use:

or:

4.8.3 Known limitations

fpdf2 HTML renderer does not support some configurations of nested tags. For example:

<table> cells can contain <td>nested tags forming a single text block</td> , but not <td>arbitrarily

nested tags</td> - cf. issue #845

You can also check the currently open GitHub issues with the tag html : label:html is:open

4.8.4 Using Markdown

Check the dedicated page: Combine with Markdown

October 15, 2025

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

<br style="break-after: page">

<p style="break-before: page">
Top of a new page.
</p>

•

4.8.3 Known limitations

- 77/193 -

https://py-pdf.github.io/fpdf2/Tables.html
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://developer.mozilla.org/en-US/docs/Web/CSS/break-before
https://developer.mozilla.org/en-US/docs/Web/CSS/break-after
https://github.com/py-pdf/fpdf2/issues/845
https://github.com/py-pdf/fpdf2/issues?q=is-3Aopen+label-3Ahtml

5. Graphics Content

5.1 Images

When rendering an image, its size on the page can be specified in several ways:

explicit width and height (expressed in user units). The image is scaled to those dimensions, unless keep_aspect_ratio=True is

specified.

one explicit dimension, the other being calculated automatically in order to keep the original proportions

no explicit dimension, in which case the image is put at 72 dpi

Note that if an image is displayed several times, only one copy is embedded in the file.

5.1.1 Simple example

By default an image is rendered with a resolution of 72 dpi, but you can control its dimension on the page using the w= & h=

parameters of the image() method.

5.1.2 Alpha / transparency

fpdf2 allows to embed images with alpha pixels.

Technically, it is implemented by extracting an /SMask from images with transparency, and inserting it along with the image data

in the PDF document. Related code is in the image_parsing module.

5.1.3 Assembling images

The following code snippets provide examples of some basic layouts for assembling images into PDF files.

Side by side images, full height, landscape page

Fitting an image inside a rectangle

When you want to scale an image to fill a rectangle, while keeping its aspect ratio, and ensuring it does not overflow the

rectangle width nor height in the process, you can set w / h and also provide keep_aspect_ratio=True to the image() method. This

will place the image at the centre of the bounding box.

The following unit tests illustrate that:

test_image_fit.py

resulting document: image_fit_in_rect.pdf

•

•

•

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.image("docs/fpdf2-logo.png", x=20, y=60)
pdf.output("pdf-with-image.pdf")

from fpdf import FPDF

pdf = FPDF(orientation="landscape")
pdf.set_margin(0)
pdf.add_page()
pdf.image("imgA.png", h=pdf.eph, w=pdf.epw/2) # full page height, half page width
pdf.set_y(0)
pdf.image("imgB.jpg", h=pdf.eph, w=pdf.epw/2, x=pdf.epw/2) # full page height, half page width, right half of the page
pdf.output("side-by-side.pdf")

•

•

5. Graphics Content

- 78/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://github.com/py-pdf/fpdf2/blob/master/fpdf/image_parsing.py
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://github.com/py-pdf/fpdf2/blob/master/test/image/test_image_fit.py
https://github.com/py-pdf/fpdf2/blob/master/test/image/image_fit_in_rect.pdf

IMAGE ALIGNMENT IN THE BOUNDING BOX

To anchor the image to a specific corner, you can use this function:

Blending images

You can control the color blending mode of overlapping images. Valid values for blend_mode are Normal , Multiply , Screen ,

Overlay , Darken , Lighten , ColorDodge , ColorBurn , HardLight , SoftLight , Difference , Exclusion , Hue , Saturation , Color and

Luminosity .

Demo of all color blend modes: blending_images.pdf

from typing import Literal, TypedDict
from fpdf import FPDF
from fpdf.image_parsing import preload_image

class FpdfBoundingBox(TypedDict):
x: float
y: float
w: float
h: float

def scale_and_position_image(
pdf: FPDF,
image_path: str,
bounding_box: FpdfBoundingBox,
anchor: Literal["TL", "TR", "BL", "BR", "C"],

) -> None:
if anchor == "C":

pdf.image(
str(image_path),
x=bounding_box["x"],
y=bounding_box["y"],
w=bounding_box["w"],
h=bounding_box["h"],
keep_aspect_ratio=True,

)
return

info = preload_image(pdf.image_cache, str(image_path))[2]
_, _, scaled_w, scaled_h = info.scale_inside_box(**bounding_box)

default to top left
x, y = bounding_box["x"], bounding_box["y"]
if "B" in anchor:

y = bounding_box["y"] + bounding_box["h"] - scaled_h
if "R" in anchor:

x = bounding_box["x"] + bounding_box["w"] - scaled_w

pdf.image(
str(image_path),
x=x,
y=y,
w=scaled_w,
h=scaled_h,
keep_aspect_ratio=True,

)

Usage example:
pdf = FPDF()
pdf.add_page()
bounding_box = FpdfBoundingBox(x=pdf.w-pdf.r_margin-100, y=pdf.t_margin, w=100, h=50)
Render the bounding box:
pdf.set_draw_color(255, 0, 0)
pdf.rect(**bounding_box, style="D")
Insert image:
scale_and_position_image(pdf, "./test/image/png_indexed/flower1.png", bounding_box, "BR")
pdf.output("image_in_bounding_box_example.pdf")

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.image("imgA.png", ...)
with pdf.local_context(blend_mode="ColorBurn"):

pdf.image("imgB.jpg", ...)
pdf.output("blended-images.pdf")

5.1.3 Assembling images

- 79/193 -

https://github.com/py-pdf/fpdf2/blob/master/test/drawing/generated_pdf/blending_images.pdf

5.1.4 Image clipping

You can select only a portion of the image to render using clipping methods:

rect_clip() :

example code

resulting PDF

round_clip() :

example code

resulting PDF

elliptic_clip() :

example code

resulting PDF

5.1.5 Alternative description

A textual description of the image can be provided, for accessibility purposes:

5.1.6 Usage with Pillow

You can perform image manipulations using the Pillow library, and easily embed the result:

5.1.7 SVG images

SVG images passed to the image() method will be embedded as PDF paths:

•

•

•

•

•

•

•

•

•

pdf.image("docs/fpdf2-logo.png", x=20, y=60, alt_text="Snake logo of the fpdf2 library")

from fpdf import FPDF
from PIL import Image

pdf = FPDF()
pdf.add_page()
img = Image.open("docs/fpdf2-logo.png")
img = img.crop((10, 10, 490, 490)).resize((96, 96), resample=Image.NEAREST)
pdf.image(img, x=80, y=100)
pdf.output("pdf-with-image.pdf")

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.image("SVG_logo.svg", w=100)
pdf.output("pdf-with-vector-image.pdf")

5.1.4 Image clipping

- 80/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rect_clip
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rect_clip
https://github.com/py-pdf/fpdf2/blob/master/test/image/test_image_clipping.py#L10
https://github.com/py-pdf/fpdf2/blob/master/test/image/rect_clip.pdf
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.round_clip
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.round_clip
https://github.com/py-pdf/fpdf2/blob/master/test/image/test_image_clipping.py#L33
https://github.com/py-pdf/fpdf2/blob/master/test/image/round_clip.pdf
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.elliptic_clip
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.elliptic_clip
https://github.com/py-pdf/fpdf2/blob/master/test/image/test_image_clipping.py#L56
https://github.com/py-pdf/fpdf2/blob/master/test/image/elliptic_clip.pdf
https://pillow.readthedocs.io/en/stable/
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image

5.1.8 Retrieve images from URLs

URLs to images can be directly passed to the image() method:

5.1.9 Image compression

By default, fpdf2 will avoid altering or recompressing your images: when possible, the original bytes from the JPG or TIFF file

will be used directly. Bitonal images are by default compressed as TIFF Group4.

However, you can easily tell fpdf2 to embed all images as JPEGs in order to reduce your PDF size, using set_image_filter() :

The allowed image_filter values are listed in the set_image_filter() method documentation.

Beware that "flattening" images into JPEGs this way will fill transparent areas of your images with color (usually black).

5.1.10 Output Intents

New in 2.8.3

Output Intents [allow] the contents of referenced icc profiles to be embedded directly within the body of the PDF file. This makes

the PDF file a self-contained unit that can be stored or transmitted as a single entity.

The dedicated method for adding output intent to a PDF is add_output_intent() .

You can optionally provide a PDFICCProfileObject as icc_profile .

Example:

The needed profiles and descriptions can be found at International Color Consortium.

5.1.11 ICC Profiles

The ICC profile of the included images are read through the PIL function Image.info.get("icc_profile)" and are included in the

PDF as objects.

An ICC profile can also be added by using the .add_output_intent() method, as described in the previous section.

pdf.image("https://upload.wikimedia.org/wikipedia/commons/7/70/Example.png")

from fpdf import FPDF

pdf = FPDF()
pdf.set_image_filter("DCTDecode")
pdf.add_page()
pdf.image("docs/fpdf2-logo.png", x=20, y=60)
pdf.output("pdf-with-image.pdf")

from pathlib import Path
from fpdf import FPDF
from fpdf.enums import OutputIntentSubType
from fpdf.output import PDFICCProfileObject

HERE = Path(__file__).resolve().parent

pdf = FPDF()

with open(HERE / "sRGB2014.icc", "rb") as iccp_file:
icc_profile = PDFICCProfileObject(

contents=iccp_file.read(), n=3, alternate="DeviceRGB"
)

pdf.add_output_intent(
OutputIntentSubType.PDFA,
"sRGB",
'IEC 61966-2-1:1999',
"http://www.color.org",
icc_file,
"sRGB2014 (v2)",

)

5.1.8 Retrieve images from URLs

- 81/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_image_filter
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_image_filter
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_image_filter
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_image_filter
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_output_intent
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_output_intent
https://py-pdf.github.io/fpdf2/fpdf/output.html#fpdf.output.PDFICCProfileObject
https://py-pdf.github.io/fpdf2/fpdf/output.html#fpdf.output.PDFICCProfileObject
https://color.org/
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_output_intent
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_output_intent

5.1.12 Oversized images detection & downscaling

If the resulting PDF size is a concern, you may want to check if some inserted images are oversized, meaning their resolution is

unnecessarily high given the size they are displayed.

There is how to enable this detection mechanism with fpdf2 :

After setting this property, a WARNING log will be displayed whenever an oversized image is inserted.

fpdf2 is also able to automatically downscale such oversized images:

After this, oversized images will be automatically resized, generating DEBUG logs like this:

For finer control, you can set pdf.oversized_images_ratio to set the threshold determining if an image is oversized.

If the concepts of "image compression" or "image resolution" are a bit obscure for you, this article is a recommended reading:

The 5 minute guide to image quality

5.1.13 Disabling transparency

By default images transparency is preserved: alpha channels are extracted and converted to an embedded SMask . This can be

disabled by setting .allow_images_transparency , e.g. to allow compliance with PDF/A-1:

This will fill transparent areas of your images with color (usually black).

cf. also documentation on controlling transparency.

5.1.14 Page background

cf. Per-page format, orientation and background

5.1.15 Sharing the image cache among FPDF instances

Image parsing is often the most CPU & memory intensive step when inserting pictures in a PDF.

If you create several PDF files that use the same illustrations, you can share the images cache among FPDF instances:

This recipe is valid for fpdf2 v2.5.7+. For previous versions of fpdf2 , a deepcopy of .images must be made, (cf. issue #501).

pdf.oversized_images = "WARN"

pdf.oversized_images = "DOWNSCALE"

OVERSIZED: Generated new low-res image with name=lowres-test.png dims=(319, 451) id=2

from fpdf import FPDF

pdf = FPDF()
pdf.allow_images_transparency = False
pdf.set_font("Helvetica", size=15)
pdf.cell(w=pdf.epw, h=30, text="Text behind. " * 6)
pdf.image("docs/fpdf2-logo.png", x=0)
pdf.output("pdf-including-image-without-transparency.pdf")

image_cache = None

for ... # loop
pdf = FPDF()
if image_cache is None:

image_cache = pdf.image_cache
else:

pdf.image_cache = image_cache
... # build the PDF
pdf.output(...)
Reset the "usages" count, to avoid ALL images to be inserted in subsequent PDFs:
image_cache.reset_usages()

5.1.12 Oversized images detection & downscaling

- 82/193 -

https://medium.com/unsplash/the-5-minute-guide-to-image-quality-ad7c3503c845
https://en.wikipedia.org/wiki/PDF/A#Description
https://github.com/py-pdf/fpdf2/issues/501#issuecomment-1224310277

January 12, 2026

5.1.15 Sharing the image cache among FPDF instances

- 83/193 -

5.2 Shapes

The following code snippets show examples of rendering various shapes.

5.2.1 Lines

Using line() to draw a thin plain orange line:

Drawing a dashed light blue line:

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_line_width(0.5)
pdf.set_draw_color(r=255, g=128, b=0)
pdf.line(x1=50, y1=50, x2=150, y2=100)
pdf.output("orange_plain_line.pdf")

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_line_width(0.5)
pdf.set_draw_color(r=0, g=128, b=255)
pdf.set_dash_pattern(dash=2, gap=3)
pdf.line(x1=50, y1=50, x2=150, y2=100)
pdf.output("blue_dashed_line.pdf")

5.2 Shapes

- 84/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.line
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.line

5.2.2 Circle

Using circle() to draw a disc filled in pink with a grey outline:

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_line_width(2)
pdf.set_draw_color(240)
pdf.set_fill_color(r=230, g=30, b=180)
pdf.circle(x=50, y=50, radius=50, style="FD")
pdf.output("circle.pdf")

5.2.2 Circle

- 85/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.circle
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.circle

5.2.3 Ellipse

Using ellipse() , filled in grey with a pink outline:

This method changed parameters in release 2.8.1

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_line_width(2)
pdf.set_draw_color(r=230, g=30, b=180)
pdf.set_fill_color(240)
pdf.ellipse(x=50, y=50, w=100, h=50, style="FD")
pdf.output("ellipse.pdf")

5.2.3 Ellipse

- 86/193 -

https://github.com/py-pdf/fpdf2/releases/tag/2.8.1
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.ellipse
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.ellipse

5.2.4 Rectangle

Using rect() to draw nested squares:

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
for i in range(15):

pdf.set_fill_color(255 - 15*i)
pdf.rect(x=5+5*i, y=5+5*i, w=200-10*i, h=200-10*i, style="FD")

pdf.output("squares.pdf")

5.2.4 Rectangle

- 87/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rect
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rect

Using rect() to draw rectangles with round corners:

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_draw_color(200)
y = 10
pdf.rect(60, y, 33, 28, round_corners=True, style="D")

pdf.set_fill_color(0, 255, 0)
pdf.rect(100, y, 50, 10, round_corners=("BOTTOM_RIGHT"), style="DF")

pdf.set_fill_color(255, 255, 0)
pdf.rect(160, y, 10, 10, round_corners=("TOP_LEFT", "BOTTOM_LEFT"), style="F")
pdf.output("round_corners_rectangles.pdf")

5.2.4 Rectangle

- 88/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rect
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rect

5.2.5 Polygon

Using polygon() :

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_line_width(2)
pdf.set_fill_color(r=255, g=0, b=0)
coords = ((100, 0), (5, 69), (41, 181), (159, 181), (195, 69))
pdf.polygon(coords, style="DF")
pdf.output("polygon.pdf")

5.2.5 Polygon

- 89/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.polygon
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.polygon

5.2.6 Arc

Using arc() :

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_line_width(2)
pdf.set_fill_color(r=255, g=0, b=0)
pdf.arc(x=75, y=75, a=25, b=25, start_angle=90, end_angle=260, style="FD")

pdf.set_fill_color(r=255, g=0, b=255)
pdf.arc(x=105, y=75, a=25, b=50, start_angle=180, end_angle=360, style="FD")

pdf.set_fill_color(r=0, g=255, b=0)
pdf.arc(x=135, y=75, a=25, b=25, start_angle=0, end_angle=130, style="FD")

pdf.output("arc.pdf")

5.2.6 Arc

- 90/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.arc
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.arc

5.2.7 Solid arc

Using solid_arc() :

5.2.8 Bezier Curve

New in 2.8.0

Using bezier() to create a cubic Bézier curve:

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_line_width(2)
pdf.set_fill_color(r=255, g=0, b=0)
pdf.solid_arc(x=75, y=75, a=25, b=25, start_angle=90, end_angle=260, style="FD")

pdf.set_fill_color(r=255, g=0, b=255)
pdf.solid_arc(x=105, y=75, a=25, b=50, start_angle=180, end_angle=360, style="FD")

pdf.set_fill_color(r=0, g=255, b=0)
pdf.solid_arc(x=135, y=75, a=25, b=25, start_angle=0, end_angle=130, style="FD")

pdf.output("solid_arc.pdf")

from fpdf import FPDF
pdf = FPDF()
pdf.add_page()
pdf.set_fill_color(r=255, g=0, b=255)
pdf.bezier([(20, 80), (40, 20), (60, 80)], style="DF")
pdf.output("bezier.pdf")

5.2.7 Solid arc

- 91/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.solid_arc
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.solid_arc
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.bezier
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.bezier

One of the nice properties of Bézier curves is that they can be chained:

5.2.8 Bezier Curve

- 92/193 -

Note that, for smooth joining cubic Bézier curves, neighbor control points around the joining point must mirror each other (cf.

Wikipedia).

Source code: test_bezier_chaining() in test_bezier.py

5.2.9 Regular Polygon

Using regular_polygon() :

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_line_width(0.5)

pdf.set_fill_color(r=30, g=200, b=0)
pdf.regular_polygon(x=40, y=80, polyWidth=30, rotateDegrees=270, numSides=3, style="FD")

pdf.set_fill_color(r=10, g=30, b=255)
pdf.regular_polygon(x=80, y=80, polyWidth=30, rotateDegrees=135, numSides=4, style="FD")

pdf.set_fill_color(r=165, g=10, b=255)
pdf.regular_polygon(x=120, y=80, polyWidth=30, rotateDegrees=198, numSides=5, style="FD")

pdf.set_fill_color(r=255, g=125, b=10)
pdf.regular_polygon(x=160, y=80, polyWidth=30, rotateDegrees=270, numSides=6, style="FD")
pdf.output("regular_polygon.pdf")

5.2.9 Regular Polygon

- 93/193 -

https://en.wikipedia.org/wiki/Composite_B-C3-A9zier_curve#Smooth_joining
https://github.com/py-pdf/fpdf2/blob/master/test/shapes/test_bezier.py
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.regular_polygon
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.regular_polygon

5.2.10 Regular Star

Using star() :

5.2.11 Path styling

line_width specifies the thickness of the line used to stroke a path

stroke_join_style defines how the corner joining two path components should be rendered:

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_line_width(0.5)

pdf.set_fill_color(r=255, g=0, b=0)
pdf.star(x=40, y=80, r_in=5, r_out=15, rotate_degrees=0, corners=3, style="FD")

pdf.set_fill_color(r=0, g=255, b=255)
pdf.star(x=80, y=80, r_in=5, r_out=15, rotate_degrees=90, corners=4, style="FD")

pdf.set_fill_color(r=255, g=255, b=0)
pdf.star(x=120, y=80, r_in=5, r_out=15, rotate_degrees=180, corners=5, style="FD")

pdf.set_fill_color(r=255, g=0, b=255)
pdf.star(x=160, y=80, r_in=5, r_out=15, rotate_degrees=270, corners=6, style="FD")
pdf.output("star.pdf")

•

•

from fpdf import FPDF
from fpdf.enums import StrokeJoinStyle

pdf = FPDF()
pdf.add_page()
pdf.set_line_width(5)
pdf.set_fill_color(r=255, g=128, b=0)
with pdf.local_context(stroke_join_style=StrokeJoinStyle.ROUND):

pdf.regular_polygon(x=50, y=120, polyWidth=100, numSides=8, style="FD")
pdf.output("regular_polygon_rounded.pdf")

5.2.10 Regular Star

- 94/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.star
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.star
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_line_width
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_line_width
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.StrokeJoinStyle
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.StrokeJoinStyle

stroke_cap_style defines how the end of a stroke should be rendered. This affects the ends of the segments of dashed strokes,

as well.

There are even more specific path styling settings supported: dash_pattern , stroke_opacity , stroke_miter_limit ...

All of those settings can be set in a local_context() .

February 9, 2026

•

from fpdf import FPDF
from fpdf.enums import StrokeCapStyle

pdf = FPDF()
pdf.add_page()
pdf.set_line_width(5)
pdf.set_fill_color(r=255, g=128, b=0)
with pdf.local_context(stroke_cap_style=StrokeCapStyle.ROUND):

pdf.line(x1=50, y1=50, x2=150, y2=100)
pdf.output("line_with_round_ends.pdf")

5.2.11 Path styling

- 95/193 -

https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.StrokeCapStyle
https://py-pdf.github.io/fpdf2/fpdf/enums.html#fpdf.enums.StrokeCapStyle
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_dash_pattern
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_dash_pattern
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.local_context
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.local_context

5.3 Transformations

5.3.1 Rotation

The rotation() context-manager will apply a rotation to all objects inserted in its indented block:

5.3.2 Skew

skew creates a skewing transformation of magnitude ax in the horizontal axis and ay in the vertical axis. The transformation

originates from x , y and will use a default origin unless specified otherwise:

from fpdf import FPDF

pdf = FPDF(format=(40, 40))
pdf.add_page()
x, y = 15, 15
with pdf.rotation(60, x=x, y=y):

pdf.circle(x=x, y=y+15, radius=5)
Inserting a small base64-encoded image:
pdf.image("
0888GCItjn0szWGBJTVoGSCjWs8TleQCQYV95evdxkFT8Kpe0PLDi5WfKd4LUsN5zS1sKFolt8bwAZrCaGqNYJAgFDEpQAAAzmxafI4vZWwAAAABJRU5ErkJggg==", x=x, y=y)

pdf.rect(x=x-10, y=y+10, w=25, h=15)
pdf.output("rotations.pdf")

with pdf.skew(ax=0, ay=10):
pdf.cell(text="text skewed on the y-axis")

5.3 Transformations

- 96/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rotation
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rotation

5.3.3 Mirror

New in 2.7.5

The mirror context-manager applies a mirror transformation to all objects inserted in its indented block over a given mirror line

by specifying starting co-ordinate and angle.

with pdf.skew(ax=10, ay=0):
pdf.cell(text="text skewed on the x-axis")

pdf.set_line_width(2)
pdf.set_draw_color(240)
pdf.set_fill_color(r=230, g=30, b=180)
with pdf.skew(ax=-45, ay=0, x=100, y=170):

pdf.circle(x=100, y=170, radius=10, style="FD")

x, y = 100, 100
pdf.text(x, y, text="mirror this text")
with pdf.mirror((x, y), "EAST"):

pdf.set_text_color(r=255, g=128, b=0)
pdf.text(x, y, text="mirror this text")

pdf.text(x, y, text="mirror this text")
with pdf.mirror((x, y), "NORTH"):

pdf.set_text_color(r=255, g=128, b=0)
pdf.text(x, y, text="mirror this text")

5.3.3 Mirror

- 97/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

prev_x, prev_y = pdf.x, pdf.y
pdf.multi_cell(w=50, text=LOREM_IPSUM)
with pdf.mirror((pdf.x, pdf.y), "NORTHEAST"):

Reset cursor to mirror original multi-cell
pdf.x = prev_x
pdf.y = prev_y
pdf.multi_cell(w=50, text=LOREM_IPSUM, fill=True)

5.3.3 Mirror

- 98/193 -

February 17, 2025

5.3.3 Mirror

- 99/193 -

5.4 Transparency

The alpha opacity of text, shapes and even images can be controlled through stroke_opacity (for lines) & fill_opacity (for all

other content types):

Results in:

pdf = FPDF()
pdf.set_font("Helvetica", style="B", size=24)
pdf.set_line_width(1.5)
pdf.add_page()

Draw an opaque red square:
pdf.set_fill_color(255, 0, 0)
pdf.rect(10, 10, 40, 40, "DF")

Set alpha to semi-transparency for shape lines & filled areas:
with pdf.local_context(fill_opacity=0.5, stroke_opacity=0.5):

Draw a green square:
pdf.set_fill_color(0, 255, 0)
pdf.rect(20, 20, 40, 40, "DF")

Set transparency for images & text:
with pdf.local_context(fill_opacity=0.25):

Insert an image:
pdf.image(HERE / "../docs/fpdf2-logo.png", 30, 30, 40)
Print some text:
pdf.text(22, 29, "You are...")

Print some text with full opacity:
pdf.text(30, 45, "Over the top")

Produce the resulting PDF:
pdf.output("transparency.pdf")

5.4 Transparency

- 100/193 -

November 20, 2024

5.4 Transparency

- 101/193 -

5.5 Patterns and Gradients

New in 2.8.3

5.5.1 Overview

In PDF (Portable Document Format), a pattern is a graphical object that can be used to fill (or stroke) shapes. Patterns can

include simple color fills, images, or more advanced textures and gradients.

The patterns on PDF documents are grouped on 2 types: - Tiling patterns for any repeating patters.

- Shading patterns for gradients.

fpdf2 provides a context manager pdf.use_pattern(...) . Within this context, all drawn shapes or text will use the specified

pattern. Once the context ends, drawing reverts to the previously defined color.

At this moment, tiling patterns are not yet supported by fpdf2 .

5.5.2 2. Gradients

2.1 What is a Gradient?

A gradient is a progressive blend between two or more colors. In PDF terms, gradients are implemented as shading patterns—

they allow a smooth color transition based on geometry.

2.2 Linear Gradients (axial shading)

A linear gradient blends colors along a straight line between two points. For instance, you can define a gradient that goes:

Left to right

Top to bottom

Diagonally

or in any arbitrary orientation by specifying coordinates.

Example: Creating a Linear Gradient

Result: pattern_linear_demo.pdf

Key Parameters:

from_x, from_y, to_x, to_y: The coordinates defining the line along which colors will blend.

colors: A list of colors (hex strings or (R,G,B) tuples). The pattern will interpolate between these colors.

•

•

•

from fpdf import FPDF
from fpdf.pattern import LinearGradient

pdf = FPDF()
pdf.add_page()

Define a linear gradient
linear_grad = LinearGradient(

pdf,
from_x=10, # Starting x-coordinate
from_y=0, # Starting y-coordinate
to_x=100, # Ending x-coordinate
to_y=0, # Ending y-coordinate
colors=["#C33764", "#1D2671"] # Start -> End color

)

with pdf.use_pattern(linear_grad):
Draw a rectangle that will be filled with the gradient
pdf.rect(x=10, y=10, w=100, h=20, style="FD")

pdf.output("pattern_linear_demo.pdf")

•

•

5.5 Patterns and Gradients

- 102/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

2.3 Radial Gradients

A radial gradient blends colors in a circular or elliptical manner from an inner circle to an outer circle. This is perfect for

spotlight-like effects or circular color transitions.

Example: Creating a Radial Gradient

Result: pattern_radial_demo.pdf

Key Parameters:

start_circle_x, start_circle_y, start_circle_radius: Center and radius of the inner circle.

end_circle_x, end_circle_y, end_circle_radius: Center and radius of the outer circle.

colors: A list of colors to be interpolated from inner circle to outer circle.

5.5.3 4. Advanced Usage

4.1 Multiple Colors

Both linear and radial gradients support multiple colors. If you pass, for example, colors=["#C33764", "#1D2671", "#FFA500"] , the

resulting pattern will interpolate color transitions through each color in that order.

4.2 Extending & Background for Linear Gradients

extend_before: Extends the first color before the starting point (i.e., x1,y1).

extend_after: Extends the last color beyond the end point (i.e., x2,y2).

background: Ensures that if any area is uncovered by the gradient (e.g., a rectangle that is bigger than the gradient line), it’ll

show the given background color.

4.3 Custom Bounds

For linear gradients or radial gradients, passing bounds=[0.2, 0.4, 0.7, ...] (values between 0 and 1) fine-tunes where each

color transition occurs. For instance, if you have 5 colors, you can specify 3 boundary values that partition the color progression

among them.

For example, taking a gradient with 5 colors and bounds=[0.1, 0.8, 0.9] : - The transition from color 1 to color 2 starts at the

beginning (0%) and ends at 10% - The transition from color 2 to color 3 starts at 10% and ends at 80% - The transition from color

3 to color 4 starts at 80% and ends at 90% - The transition from color 4 to color 5 starts at 90% and goes to the end (100%)

In other words, each boundary value dictates where the color transitions will occur along the total gradient length.

from fpdf import FPDF
from fpdf.pattern import RadialGradient

pdf = FPDF()
pdf.add_page()

Define a radial gradient
radial_grad = RadialGradient(

pdf,
start_circle_x=30, # Center X of inner circle
start_circle_y=30, # Center Y of inner circle
start_circle_radius=0, # Radius of inner circle
end_circle_x=50, # Center X of outer circle
end_circle_y=50, # Center Y of outer circle
end_circle_radius=25, # Radius of outer circle
colors=["#FFFF00", "#FF0000"], # Inner -> Outer color

)

with pdf.use_pattern(radial_grad):
Draw a circle filled with the radial gradient
pdf.circle(x=50, y=50, radius=25, style="FD")

pdf.output("pattern_radial_demo.pdf")

•

•

•

•

•

•

5.5.3 4. Advanced Usage

- 103/193 -

February 20, 2025

5.5.3 4. Advanced Usage

- 104/193 -

5.6 Barcodes

5.6.1 Code 39

Here is an example on how to generate a Code 39 barcode:

Output preview:

5.6.2 Interleaved 2 of 5

Here is an example on how to generate an Interleaved 2 of 5 barcode:

Output preview:

5.6.3 PDF-417

Here is an example on how to generate a PDF-417 barcode using the pdf417 lib:

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.code39("*fpdf2*", x=30, y=50, w=4, h=20)
pdf.output("code39.pdf")

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.interleaved2of5("1337", x=50, y=50, w=4, h=20)
pdf.output("interleaved2of5.pdf")

from fpdf import FPDF
from pdf417 import encode, render_image

pdf = FPDF()

5.6 Barcodes

- 105/193 -

https://fr.wikipedia.org/wiki/Code_39
https://en.wikipedia.org/wiki/Interleaved_2_of_5
https://fr.wikipedia.org/wiki/PDF-417
https://github.com/mosquito/pdf417
https://github.com/mosquito/pdf417

Output preview:

5.6.4 QRCode

Here is an example on how to generate a QR Code using the python-qrcode lib:

Output preview:

pdf.add_page()
img = render_image(encode("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed non risus. Suspendisse lectus tortor, dignissim sit amet, adipiscing
nec, ultricies sed, dolor. Cras elementum ultrices diam."))
pdf.image(img, x=10, y=50)
pdf.output("pdf417.pdf")

from fpdf import FPDF
import qrcode

pdf = FPDF()
pdf.add_page()
img = qrcode.make("fpdf2")
pdf.image(img.get_image(), x=50, y=50)
pdf.output("qrcode.pdf")

5.6.4 QRCode

- 106/193 -

https://en.wikipedia.org/wiki/QR_code
https://github.com/lincolnloop/python-qrcode
https://github.com/lincolnloop/python-qrcode

5.6.5 DataMatrix

fpdf2 can be combined with the pystrich library to generate DataMatrix barcodes: pystrich generates pilimages, which can

then be inserted into the PDF file via the FPDF.image() method.

Extend FPDF with a datamatrix() method

The code above could be added to the FPDF class as an extension method in the following way:

from fpdf import FPDF
from pystrich.datamatrix import DataMatrixEncoder, DataMatrixRenderer

Define the properties of the barcode
positionX = 10
positionY = 10
width = 57
height = 57
cellsize = 5

Prepare the datamatrix renderer that will be used to generate the pilimage
encoder = DataMatrixEncoder("[Text to be converted to a datamatrix barcode]")
encoder.width = width
encoder.height = height
renderer = DataMatrixRenderer(encoder.matrix, encoder.regions)

Generate a pilimage and move it into the memory stream
img = renderer.get_pilimage(cellsize)

Draw the barcode image into a PDF file
pdf = FPDF()
pdf.add_page()
pdf.image(img, positionX, positionY, width, height)
pdf.output("datamatrix.pdf")

from fpdf import FPDF
from pystrich.datamatrix import DataMatrixEncoder, DataMatrixRenderer

class PDF(FPDF):
def datamatrix(self, text, w, h=None, x=None, y=None, cellsize=5):

if x is None:

5.6.5 DataMatrix

- 107/193 -

https://github.com/mmulqueen/pyStrich
https://github.com/mmulqueen/pyStrich
https://en.wikipedia.org/wiki/Data_Matrix

5.6.6 Aztec Code

fpdf2 can be combined with the aztec_code_generator Pypi library to generate Aztec codes. It can be installed by running pip

install aztec_code_generator :

Output preview:

5.6.7 Code128

Here is an example on how to generate a Code 128 barcode using the python-barcode lib, that can be installed by running pip

install python-barcode :

Output Preview:

x = self.x
if y is None:

y = self.y
if h is None:

h = w
encoder = DataMatrixEncoder(text)
encoder.width = w
encoder.height = h
renderer = DataMatrixRenderer(encoder.matrix, encoder.regions)
img = renderer.get_pilimage(cellsize)
self.image(img, x, y, w, h)

Usage example:
pdf = PDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
pdf.datamatrix("Hello world!", w=100)
pdf.output("datamatrix_from_method.pdf")

from fpdf import FPDF
from aztec_code_generator import AztecCode

pdf = FPDF()
pdf.add_page()
aztec_code = AztecCode("https://py-pdf.github.io/fpdf2/")
pdf.image(aztec_code.image(), x=10, y=10, w=100, h=100)
pdf.output("aztec_code.pdf")

from io import BytesIO
from fpdf import FPDF
from barcode import Code128
from barcode.writer import SVGWriter

Create a new PDF document
pdf = FPDF()
pdf.add_page()

Set the position and size of the image in the PDF
x = 50
y = 50
w = 100
h = 70

Generate a Code128 Barcode as SVG:
svg_img_bytes = BytesIO()
Code128("100000902922", writer=SVGWriter()).write(svg_img_bytes)
pdf.image(svg_img_bytes, x=x, y=y, w=w, h=h)

Output a PDF file:
pdf.output("code128_barcode.pdf")

5.6.6 Aztec Code

- 108/193 -

https://pypi.org/project/aztec-code-generator/
https://pypi.org/project/aztec-code-generator/
https://en.wikipedia.org/wiki/Aztec_Code
https://en.wikipedia.org/wiki/Code_128
https://github.com/WhyNotHugo/python-barcode
https://github.com/WhyNotHugo/python-barcode

April 18, 2025

5.6.7 Code128

- 109/193 -

5.7 Drawing

The fpdf.drawing module provides an API for composing paths out of an arbitrary sequence of straight lines and curves. This

allows fairly low-level control over the graphics primitives that PDF provides, giving the user the ability to draw pretty much any

vector shape on the page.

The drawing API makes use of features (notably transparency and blending modes) that were introduced in PDF 1.4. Therefore,

use of the features of this module will automatically set the output version to 1.4 (fpdf normally defaults to version 1.3. Because

the PDF 1.4 specification was originally published in 2001, this version should be compatible with all viewers currently in general

use).

5.7.1 Getting Started

The easiest way to add a drawing to the document is via fpdf.FPDF.new_path . This is a context manager that takes care of

serializing the path to the document once the context is exited.

Drawings follow the fpdf convention that the origin (that is, coordinate(0, 0)), is at the top-left corner of the page. The numbers

specified to the various path commands are interpreted in the document units.

This example draws an hourglass shape centered on the page:

view as PDF

import fpdf

pdf = fpdf.FPDF(unit='mm', format=(10, 10))
pdf.add_page()

with pdf.new_path() as path:
path.move_to(2, 2)
path.line_to(8, 8)
path.horizontal_line_relative(-6)
path.line_relative(6, -6)
path.close()

pdf.output("drawing-demo.pdf")

5.7 Drawing

- 110/193 -

5.7.2 Adding Some Style

Drawings can be styled, changing how they look and blend with other drawings. Styling can change the color, opacity, stroke

shape, and other attributes of a drawing.

Let's add some color to the above example:

If you make color choices like these, it's probably not a good idea to quit your day job to become a graphic designer. Here's what

the output should look like:

view as PDF

5.7.3 Transforms And You

Transforms provide the ability to manipulate the placement of points within a path without having to do any pesky math yourself.

Transforms are composable using python's matrix multiplication operator (@), so, for example, a transform that both rotates and

scales an object can be create by matrix multiplying a rotation transform with a scaling transform.

import fpdf

pdf = fpdf.FPDF(unit='mm', format=(10, 10))
pdf.add_page()

with pdf.new_path() as path:
path.style.fill_color = '#A070D0'
path.style.stroke_color = fpdf.drawing.gray8(210)
path.style.stroke_width = 1
path.style.stroke_opacity = 0.75
path.style.stroke_join_style = 'round'

path.move_to(2, 2)
path.line_to(8, 8)
path.horizontal_line_relative(-6)
path.line_relative(6, -6)
path.close()

pdf.output("drawing-demo.pdf")

5.7.2 Adding Some Style

- 111/193 -

An important thing to note about transforms is that the result is order dependent, which is to say that something like performing

a rotation followed by scaling will not, in the general case, result in the same output as performing the same scaling followed by

the same rotation.

Additionally, it's not generally possible to deconstruct a composed transformation (representing an ordered sequence of

translations, scaling, rotations, shearing) back into the sequence of individual transformation functions that produced it. That's

okay, because this isn't important unless you're trying to do something like animate transforms after they've been composed,

which you can't do in a PDF anyway.

All that said, let's take the example we've been working with for a spin (the pun is intended, you see, because we're going to

rotate the drawing). Explaining the joke does make it better.

An easy way to apply a transform to a path is through the path.transform property.

view as PDF

The transform in the above example rotates the path 45 degrees clockwise and scales it by 1/sqrt(2) around its center point.

This transform could be equivalently written as:

import fpdf

pdf = fpdf.FPDF(unit="mm", format=(10, 10))
pdf.add_page()

with pdf.new_path() as path:
path.style.fill_color = "#A070D0"
path.style.stroke_color = fpdf.drawing.gray8(210)
path.style.stroke_width = 1
path.style.stroke_opacity = 0.75
path.style.stroke_join_style = "round"
path.transform = fpdf.drawing.Transform.rotation_d(45).scale(0.707).about(5, 5)

path.move_to(2, 2)
path.line_to(8, 8)
path.horizontal_line_relative(-6)
path.line_relative(6, -6)

path.close()

pdf.output("drawing-demo.pdf")

5.7.3 Transforms And You

- 112/193 -

Because all transforms operate on points relative to the origin, if we had rotated the path without first centering it on the origin,

we would have rotated it partway off of the page. Similarly, the size-reduction from the scaling would have moved it closer to the

origin. By bracketing the transforms with the two translations, the placement of the drawing on the page is preserved.

5.7.4 Clipping Paths

The clipping path is used to define the region that the normal path is actually painted. This can be used to create drawings that

would otherwise be difficult to produce.

view as PDF

import fpdf
T = fpdf.drawing.Transform

T.translation(-5, -5) @ T.rotation_d(45) @ T.scaling(0.707) @ T.translation(5, 5)

import fpdf

pdf = fpdf.FPDF(unit="mm", format=(10, 10))
pdf.add_page()

clipping_path = fpdf.drawing.ClippingPath()
clipping_path.rectangle(x=2.5, y=2.5, w=5, h=5, rx=1, ry=1)

with pdf.new_path() as path:
path.style.fill_color = "#A070D0"
path.style.stroke_color = fpdf.drawing.gray8(210)
path.style.stroke_width = 1
path.style.stroke_opacity = 0.75
path.style.stroke_join_style = "round"

path.clipping_path = clipping_path

path.move_to(2, 2)
path.line_to(8, 8)
path.horizontal_line_relative(-6)
path.line_relative(6, -6)

path.close()

pdf.output("drawing-demo.pdf")

5.7.4 Clipping Paths

- 113/193 -

5.7.5 Compositing operations

New in 2.8.5

The drawing API also supports compositing operations, which control how a path blends with another. These are based on the

Porter–Duff compositing model and the blend modes defined in PDF 1.4.

You can set a compositing operation via the PaintComposite class:

5.7.6 Next Steps

The presented API style is designed to make it simple to produce shapes declaratively in your Python scripts. However, paths can

just as easily be created programmatically by creating instances of the fpdf.drawing.PaintedPath for paths and

fpdf.drawing.GraphicsContext for groups of paths.

Storing paths in intermediate objects allows reusing them and can open up more advanced use-cases. The fpdf.svg SVG

converter, for example, is implemented using the fpdf.drawing interface.

October 14, 2025

from fpdf import FPDF
from fpdf.drawing import PaintedPath, PaintComposite
from fpdf.enums import CompositingOperation

from pathlib import Path

pdf = FPDF()
pdf.add_page()

with pdf.drawing_context() as gc:
blue_square = PaintedPath()
blue_square.rectangle(10, 10, 50, 50)
blue_square.style.fill_color = "#0000ff"

red_square = PaintedPath()
red_square.rectangle(35, 35, 50, 50)
red_square.style.fill_color = "#ff0000"

composite = PaintComposite(backdrop=red_square, source=blue_square, operation=CompositingOperation.DESTINATION_ATOP)
gc.add_item(composite)

pdf.output('compositing-demo.pdf')

5.7.5 Compositing operations

- 114/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://en.wikipedia.org/wiki/Alpha_compositing

5.8 Scalable Vector Graphics (SVG)

fpdf2 supports basic conversion of SVG paths into PDF paths, which can be inserted into an existing PDF document or used as

the contents of a new PDF document.

Not all SVGs will convert correctly. Please see the list of unsupported features for more information about what to look out for.

5.8.1 Basic usage

SVG files can be directly inserted inside a PDF file using the image() method:

Either the embedded .svg file must includes width and/or height attributes (absolute or relative), or some dimensions must be

provided to .image() through its w= and/or h= parameters.

5.8.2 Detailed example

The following script will create a PDF that consists only of the graphics contents of the provided SVG file, filling the whole page:

Because this takes the PDF document size from the source SVG, it does assume that the width/height of the SVG are specified in

absolute units rather than relative ones (i.e. the top-level <svg> tag has something like width="5cm" and not width=50%). In this

case, if the values are percentages, they will be interpreted as their literal numeric value (i.e. 100% would be treated as 100 pt).

The next example uses transform_to_page_viewport , which will scale an SVG with a percentage based width to the pre-defined

PDF page size.

The converted SVG object can be returned as an fpdf.drawing.GraphicsContext collection of drawing directives for more control

over how it is rendered:

5.8.3 Converting vector graphics to raster graphics

Usually, embedding SVG as vector graphics in PDF documents is the best approach, as it is both lightweight and will allow for

better details / precision of the images inserted.

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.image("vector.svg")
pdf.output("doc-with-svg.pdf")

import fpdf

svg = fpdf.svg.SVGObject.from_file("my_file.svg")

pdf = fpdf.FPDF(unit="pt", format=(svg.width, svg.height))
pdf.add_page()
svg.draw_to_page(pdf)

pdf.output("my_file.pdf")

import fpdf

svg = fpdf.svg.SVGObject.from_file("my_file.svg")

pdf = FPDF(unit="in", format=(8.5, 11))
pdf.add_page()

We pass align_viewbox=False because we want to perform positioning manually
after the size transform has been computed.
width, height, paths = svg.transform_to_page_viewport(pdf, align_viewbox=False)
note: transformation order is important! This centers the svg drawing at the
origin, rotates it 90 degrees clockwise, and then repositions it to the
middle of the output page.
paths.transform = paths.transform @ fpdf.drawing.Transform.translation(

-width / 2, -height / 2
).rotate_d(90).translate(pdf.w / 2, pdf.h / 2)

pdf.draw_path(paths)

pdf.output("my_file.pdf")

5.8 Scalable Vector Graphics (SVG)

- 115/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image

But sometimes, SVG images cannot be directly embedded as vector graphics (SVG), and a conversion to raster graphics (PNG,

JPG) must be performed.

The following sections demonstrate how to perform such conversion, using Pygal charts as examples:

Using cairosvg

A faster and efficient approach for embedding Pygal SVG charts into a PDF file is to use the cairosvg library to convert the

vector graphics generated into a BytesIO instance, so that we can keep these data in an in-memory buffer:

import pygal
from fpdf import FPDF
from io import BytesIO
import cairosvg

Create a Pygal bar chart
bar_chart = pygal.Bar()
bar_chart.title = 'Browser usage evolution (in %)'
bar_chart.x_labels = map(str, range(2002, 2013))
bar_chart.add('Firefox', [None, None, 0, 16.6, 25, 31, 36.4, 45.5, 46.3, 42.8, 37.1])
bar_chart.add('Chrome', [None, None, None, None, None, None, 0, 3.9, 10.8, 23.8, 35.3])
bar_chart.add('IE', [85.8, 84.6, 84.7, 74.5, 66, 58.6, 54.7, 44.8, 36.2, 26.6, 20.1])
bar_chart.add('Others', [14.2, 15.4, 15.3, 8.9, 9, 10.4, 8.9, 5.8, 6.7, 6.8, 7.5])
svg_img = bar_chart.render()

Convert the SVG chart to a PNG image in a BytesIO object
img_bytesio = BytesIO()
cairosvg.svg2png(svg_img, write_to=img_bytesio, dpi=96)

Set the position and size of the image in the PDF
x = 50
y = 50
w = 100
h = 70

Build the PDF
pdf = FPDF()
pdf.add_page()
pdf.image(img_bytesio, x=x, y=y, w=w, h=h)
pdf.output('browser-usage-bar-chart.pdf')

5.8.3 Converting vector graphics to raster graphics

- 116/193 -

The above code generates a PDF with the following graph:

!! Troubleshooting advice !!

You may encounter GTK (Gnome Toolkit) errors while executing the above example in windows. Error could be like following -

In this case install install GTK from GTK-for-Windows-Runtime-Environment-Installer. Restart your editor. And you are all done.

Using svglib and reportlab

An alternative, purely pythonic but slightly slower solution is to use reportlab and svglib :

OSError: no library called "cairo-2" was found
no library called "cairo" was found
no library called "libcairo-2" was found
cannot load library 'libcairo.so.2': error 0x7e
cannot load library 'libcairo.2.dylib': error 0x7e
cannot load library 'libcairo-2.dll': error 0x7e

import io
import pygal
from reportlab.graphics import renderPM
from svglib.svglib import SvgRenderer
from fpdf import FPDF
from lxml import etree

Create a Pygal bar chart
bar_chart = pygal.Bar()
bar_chart.title = 'Sales by Year'
bar_chart.x_labels = ['2016', '2017', '2018', '2019', '2020']
bar_chart.add('Product A', [500, 750, 1000, 1250, 1500])
bar_chart.add('Product B', [750, 1000, 1250, 1500, 1750])
svg_img = bar_chart.render()

Convert the SVG chart to a JPEG image in a BytesIO object
drawing = SvgRenderer('').render(etree.fromstring(svg_img))

5.8.3 Converting vector graphics to raster graphics

- 117/193 -

https://github.com/tschoonj/GTK-for-Windows-Runtime-Environment-Installer/releases

The above code generates the following output:

Performance considerations

Regarding performance, cairosvg is generally faster than svglib when it comes to rendering SVG files to other formats. This is

because cairosvg is built on top of a fast C-based rendering engine, while svglib is written entirely in Python, and hence a bit

slower. Additionally, cairosvg offers various options for optimizing the rendering performance, such as disabling certain features,

like fonts or filters.

5.8.4 Warning logs

The fpdf.svg module produces WARNING log messages for some unsupported SVG tags & attributes. If need be, you can

suppress those logs:

jpg_img_bytes = renderPM.drawToString(drawing, fmt='JPG', dpi=72)
img_bytesio = io.BytesIO(jpg_img_bytes)

Set the position and size of the image in the PDF
x = 50
y = 50
w = 100
h = 70

Build the PDF
pdf = FPDF()
pdf.add_page()
pdf.image(img_bytesio, x=x, y=y, w=w, h=h)
pdf.output('sales-by-year-bar-chart.pdf')

logging.getLogger("fpdf.svg").propagate = False

5.8.4 Warning logs

- 118/193 -

5.8.5 Supported SVG Features

groups (<g>)

paths (<path>)

basic shapes (<rect> , <circle> , <ellipse> , <line> , <polyline> , <polygon>)

basic <image> elements

basic cross-references, with defs tags anywhere in the SVG code

stroke & fill coloring and opacity

basic stroke styling

inline CSS styling via style="..." attributes

clipping paths

gradients: <linearGradient> and <radialGradient> elements with stops, opacity, transforms, and spread methods

5.8.6 Currently Unsupported Notable SVG Features

Everything not listed as supported is unsupported, which is a lot. SVG is a very complex format that has become increasingly

complex as it absorbs more of the entire browser rendering stack into its specification.

However, there are some pretty commonly used features that are unsupported and may cause unexpected results, up to and

including a normal-looking SVG rendering as a completely blank PDF.

There are some common SVG features that are currently unsupported, but that fpdf2 could end up supporting with the help of

contributors :

<tspan> / <textPath> / <text> (-> there is a starting draft PR)

<symbol>

<marker>

<pattern>

embedded non-image content (including nested SVGs)

many standard attributes

CSS styling via <style> tags or external *.css files.

November 13, 2025

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Contributions would be very welcome to add support for more SVG features! 👍

If you are interested in contributing to fpdf2 regarding this, drop a comment on GitHub issue #537 and a maintainer will give

some pointers to start poking with the code 😊

5.8.5 Supported SVG Features

- 119/193 -

https://github.com/py-pdf/fpdf2/pull/1029
https://github.com/py-pdf/fpdf2/issues/537

5.9 Charts & graphs

5.9.1 Charts

Using Matplotlib

Before running this example, please install the required dependencies using the command below:

Example taken from Matplotlib artist tutorial:

Result:

pip install fpdf2 matplotlib

from fpdf import FPDF
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
import numpy as np
from PIL import Image

fig = Figure(figsize=(6, 4), dpi=300)
fig.subplots_adjust(top=0.8)
ax1 = fig.add_subplot(211)
ax1.set_ylabel("volts")
ax1.set_title("a sine wave")

t = np.arange(0.0, 1.0, 0.01)
s = np.sin(2 * np.pi * t)
(line,) = ax1.plot(t, s, color="blue", lw=2)

Fixing random state for reproducibility
np.random.seed(19680801)

ax2 = fig.add_axes([0.15, 0.1, 0.7, 0.3])
n, bins, patches = ax2.hist(

np.random.randn(1000), 50, facecolor="yellow", edgecolor="yellow"
)
ax2.set_xlabel("time (s)")

Converting Figure to an image:
canvas = FigureCanvas(fig)
canvas.draw()
img = Image.fromarray(np.asarray(canvas.buffer_rgba()))

pdf = FPDF()
pdf.add_page()
pdf.image(img, w=pdf.epw) # Make the image full width
pdf.output("matplotlib.pdf")

5.9 Charts & graphs

- 120/193 -

https://matplotlib.org/stable/tutorials/intermediate/artists.html

You can also embed a figure as SVG (but there may be some limitations):

Using Pandas

The dependencies required for the following examples can be installed using this command:

Create a plot using pandas.DataFrame.plot:

from fpdf import FPDF
import matplotlib.pyplot as plt
import numpy as np

plt.figure(figsize=[2, 2])
x = np.arange(0, 10, 0.00001)
y = x*np.sin(2* np.pi * x)
plt.plot(y)
plt.savefig("figure.svg", format="svg")

pdf = FPDF()
pdf.add_page()
pdf.image("figure.svg")
pdf.output("doc-with-figure.pdf")

pip install fpdf2 matplotlib pandas

from io import BytesIO
from fpdf import FPDF
import pandas as pd
import matplotlib.pyplot as plt
import io

DATA = {
"Unemployment_Rate": [6.1, 5.8, 5.7, 5.7, 5.8, 5.6, 5.5, 5.3, 5.2, 5.2],
"Stock_Index_Price": [1500, 1520, 1525, 1523, 1515, 1540, 1545, 1560, 1555, 1565],

}
COLUMNS = tuple(DATA.keys())

plt.figure() # Create a new figure object
df = pd.DataFrame(DATA, columns=COLUMNS)
df.plot(x=COLUMNS[0], y=COLUMNS[1], kind="scatter")

5.9.1 Charts

- 121/193 -

https://py-pdf.github.io/fpdf2/SVG.html#currently-unsupported-notable-svg-features
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.html

Result:

Create a table with pandas DataFrame:

Converting Figure to an image:
img_buf = BytesIO() # Create image object
plt.savefig(img_buf, dpi=200) # Save the image

pdf = FPDF()
pdf.add_page()
pdf.image(img_buf, w=pdf.epw) # Make the image full width
pdf.output("matplotlib_pandas.pdf")
img_buf.close()

from fpdf import FPDF
import pandas as pd

DF = pd.DataFrame(
{

"First name": ["Jules", "Mary", "Carlson", "Lucas"],
"Last name": ["Smith", "Ramos", "Banks", "Cimon"],
"Age": [34, 45, 19, 31],
"City": ["San Juan", "Orlando", "Los Angeles", "Saint-Mathurin-sur-Loire"],

}
Convert all data inside dataframe into string type:

).applymap(str)

COLUMNS = [list(DF)] # Get list of dataframe columns
ROWS = DF.values.tolist() # Get list of dataframe rows
DATA = COLUMNS + ROWS # Combine columns and rows in one list

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=10)
with pdf.table(

borders_layout="MINIMAL",
cell_fill_color=200, # grey
cell_fill_mode="ROWS",
line_height=pdf.font_size * 2.5,
text_align="CENTER",
width=160,

) as table:
for data_row in DATA:

row = table.row()
for datum in data_row:

5.9.1 Charts

- 122/193 -

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

Result:

Using Ibis

The Ibis library provides a unified interface for analytical workflows across different backends (such as DuckDB, BigQuery,

pandas, and more). Ibis table expressions are lazy and backend-agnostic; to retrieve the actual data, you need to execute the

expression, which typically returns a pandas DataFrame.

This makes it straightforward to use Ibis with fpdf2 : simply execute your Ibis table expression to get a DataFrame, then render

it as a table in your PDF using the same approach as with pandas.

Before running the following example, please install the required dependencies:

Example: Render an Ibis table as a table in a PDF document:

row.cell(datum)
pdf.output("table_from_pandas.pdf")

pip install "ibis-framework[duckdb]" fpdf2 pandas

from fpdf import FPDF
import ibis
import pandas as pd

Connect to a DuckDB in-memory database (as an example backend)
con = ibis.duckdb.connect()

Create a sample table in DuckDB with a SQL INSERT command:
con.raw_sql("""
CREATE TABLE people (
 first_name VARCHAR,
 last_name VARCHAR,
 age INTEGER,
 city VARCHAR
);
INSERT INTO people VALUES
 ('Jules', 'Smith', 34, 'San Juan'),
 ('Mary', 'Ramos', 45, 'Orlando'),
 ('Carlson', 'Banks', 19, 'Los Angeles'),
 ('Lucas', 'Cimon', 31, 'Angers');
""")

Get an Ibis table expression
t = con.table("people")

(Optional) Apply Ibis expressions, e.g., filtering or selecting columns
expr = t # or: t.filter(t.age > 30)

Execute the Ibis expression to get a pandas DataFrame
df = expr.execute()

Extract column headers and row data for PDF rendering
COLUMNS = [list(df)] # column headers
ROWS = df.values.tolist() # data rows
DATA = COLUMNS + ROWS

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=10)
with pdf.table(

borders_layout="MINIMAL",
cell_fill_color=200, # grey
cell_fill_mode="ROWS",

5.9.1 Charts

- 123/193 -

https://ibis-project.org/

This approach works with any Ibis backend (DuckDB, pandas, BigQuery, etc.)—just use .execute() to get a DataFrame, then

render as shown above.

References:

Ibis documentation

fpdf2 documentation: Using Pandas

Using Plotly

Before running this example, please install the required dependencies using the command below:

kaleido is a cross-platform library for generating static images that is used by plotly.

Example taken from Plotly static image export tutorial:

Result:

line_height=pdf.font_size * 2.5,
text_align="CENTER",
width=160,

) as table:
for data_row in DATA:

row = table.row()
for datum in data_row:

row.cell(datum)
pdf.output("table_from_ibis.pdf")

•

•

pip install fpdf2 plotly kaleido numpy

import io
import plotly.graph_objects as go
import numpy as np
from fpdf import FPDF

np.random.seed(1)

N = 100
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)
sz = np.random.rand(N) * 30

fig = go.Figure()
fig.add_trace(

go.Scatter(
x=x,
y=y,
mode="markers",
marker=go.scatter.Marker(

size=sz, color=colors, opacity=0.6, colorscale="Viridis"
),

)
)

Convert the figure to png using kaleido
image_data = fig.to_image(format="png", engine="kaleido")

Create an io.BytesIO object which can be used by FPDF2
image = io.BytesIO(image_data)
pdf = FPDF()
pdf.add_page()
pdf.image(image, w=pdf.epw) # Width of the image is equal to the width of the page
pdf.output("plotly_demo.pdf")

5.9.1 Charts

- 124/193 -

https://ibis-project.org/docs/
https://pypi.org/project/kaleido/
https://plotly.com/python/static-image-export/

While you can also embed a figure as SVG, this is not recommended as text data - such as the x and y axis bars - might not be

displayed, because plotly places this data in a SVG text tag which is currently not supported by fpdf2 .

Before running this example, please install the required dependencies:

Result:

pip install fpdf2 plotly kaleido pandas

from fpdf import FPDF
import plotly.express as px

fig = px.bar(x=["a", "b", "c"], y=[1, 3, 2])
fig.write_image("figure.svg")

pdf = FPDF()
pdf.add_page()
pdf.image("figure.svg", w=pdf.epw)
pdf.output("plotly.pdf")

5.9.1 Charts

- 125/193 -

https://github.com/py-pdf/fpdf2/issues/537
https://github.com/py-pdf/fpdf2/issues/537

Using Pygal

Pygal is a Python graph plotting library. You can install it using: pip install pygal

fpdf2 can embed graphs and charts generated using Pygal library. However, they cannot be embedded as SVG directly, because

Pygal inserts <style> & <script> tags in the images it produces (cf. pygal/svg.py), which is currently not supported by fpdf2 .

The full list of supported & unsupported SVG features can be found there: SVG page.

You can find documentation on how to convert vector images (SVG) to raster images (PNG, JPG), with a practical example of

embedding PyGal charts, there: SVG page > Converting vector graphics to raster graphics.

5.9.2 Mathematical formulas

fpdf2 can only insert mathematical formula in the form of images. The following sections will explain how to generate and

embed such images.

Using Google Charts API

Official documentation: Google Charts Infographics - Mathematical Formulas.

Example:

Result:

from io import BytesIO
from urllib.parse import quote
from urllib.request import urlopen
from fpdf import FPDF

formula = "x^n + y^n = a/b"
height = 170
url = f"https://chart.googleapis.com/chart?cht=tx&chs={height}&chl={quote(formula)}"
with urlopen(url) as img_file: # nosec B310

img = BytesIO(img_file.read())

pdf = FPDF()
pdf.add_page()
pdf.image(img, w=30)
pdf.output("equation_google_charts.pdf")

5.9.2 Mathematical formulas

- 126/193 -

https://www.pygal.org/en/stable/
https://github.com/Kozea/pygal/blob/3.0.0/pygal/svg.py#L449
https://github.com/Kozea/pygal/blob/3.0.0/pygal/svg.py#L449
https://developers.google.com/chart/infographics/docs/formulas

Using LaTeX & Matplotlib

Matplotlib can render LaTeX: Text rendering With LaTeX.

Example:

Result:

If you have trouble with the SVG export, you can also render the matplotlib figure as pixels:

June 24, 2025

from io import BytesIO
from fpdf import FPDF
from matplotlib.figure import Figure

fig = Figure(figsize=(6, 2))
gca = fig.gca()
gca.text(0, 0.5, r"$x^n + y^n = \frac{a}{b}$", fontsize=60)
gca.axis("off")

Converting Figure to a SVG image:
img = BytesIO()
fig.savefig(img, format="svg")

pdf = FPDF()
pdf.add_page()
pdf.image(img, w=100)
pdf.output("equation_matplotlib.pdf")

from fpdf import FPDF
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
import numpy as np
from PIL import Image

fig = Figure(figsize=(6, 2), dpi=300)
gca = fig.gca()
gca.text(0, 0.5, r"$x^n + y^n = \frac{a}{b}$", fontsize=60)
gca.axis("off")

canvas = FigureCanvas(fig)
canvas.draw()
img = Image.fromarray(np.asarray(canvas.buffer_rgba()))

pdf = FPDF()
pdf.add_page()
pdf.image(img, w=100)
pdf.output("equation_matplotlib_raster.pdf")

5.9.2 Mathematical formulas

- 127/193 -

https://matplotlib.org/stable/tutorials/text/usetex.html

6. PDF Features

6.1 Links

fpdf2 can generate both internal links (to other pages in the document) & hyperlinks (links to external URLs that will be

opened in a browser).

6.1.1 Hyperlink with FPDF.cell

This method makes the whole cell clickable (not only the text):

6.1.2 Hyperlink with FPDF.multi_cell

Links defined this way in Markdown can be styled by setting FPDF class attributes MARKDOWN_LINK_COLOR (default: None) &

MARKDOWN_LINK_UNDERLINE (default: True).

link="https://...your-url" can also be used to make the whole cell clickable.

6.1.3 Hyperlink with FPDF.link

The FPDF.link is a low-level method that defines a rectangular clickable area.

There is an example showing how to place such rectangular link over some text:

6.1.4 Hyperlink with write_html

An alternative method using FPDF.write_html :

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_font("helvetica", size=24)
pdf.cell(text="Cell link", border=1, center=True,

link="https://github.com/py-pdf/fpdf2")
pdf.output("hyperlink.pdf")

from fpdf import FPDF

pdf = FPDF()
pdf.set_font("helvetica", size=24)
pdf.add_page()
pdf.multi_cell(

pdf.epw,
text="**Website:** [fpdf2](https://py-pdf.github.io/fpdf2/) __Go visit it!__",
markdown=True,

)
pdf.output("hyperlink.pdf")

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_font("helvetica", size=36)
line_height = 10
text = "Text link"
pdf.text(x=0, y=line_height, text=text)
width = pdf.get_string_width(text)
pdf.link(x=0, y=0, w=width, h=line_height, link="https://github.com/py-pdf/fpdf2")
pdf.output("hyperlink.pdf")

from fpdf import FPDF

pdf = FPDF()
pdf.set_font_size(16)
pdf.add_page()
pdf.write_html('Link defined as HTML')
pdf.output("hyperlink.pdf")

6. PDF Features

- 128/193 -

The hyperlinks defined this way will be rendered in blue with underline.

6.1.5 Internal links

Internal links are links redirecting to other pages in the document.

Using FPDF.cell :

There are some situations where a user wants to create an internal link to another page in the PDF document, but the page

number is not known at the time of link creation. In this case, the link can be created using pdf.add_link() as before, and then

later re-reference to a specific page using pdf.set_link() . In this example our goal is to link to a page that occurs after a section

with a variable amount of text, potentially occupying multiple pages:

Other methods can also insert internal links:

FPDF.multi_cell using link= or markdown=True and this syntax: [link text](page number)

FPDF.link

FPDF.write_html using anchor tags: link text

The unit tests test_internal_links() in test_links.py provides examples for all of those methods.

6.1.6 Links to other documents on the filesystem

Using FPDF.cell :

from fpdf import FPDF

pdf = FPDF()
pdf.set_font("helvetica", size=24)
pdf.add_page()
pdf.cell(text="Welcome on first page!", align="C", center=True)
pdf.add_page()
link = pdf.add_link(page=1)
pdf.cell(text="Internal link to first page", border=1, link=link)
pdf.output("internal_link.pdf")

from fpdf import FPDF
import random

pdf = FPDF()
pdf.set_font("helvetica", size=24)
pdf.add_page()

create a link to a page that will be created later
link_to_summary_page = pdf.add_link()
pdf.cell(text="Link to summary after elements", border=1, link=link_to_summary_page)
pdf.ln(20)

pdf.cell(text="List of elements", align="C", center=True)
pdf.ln(20)

this num_elements variable can vary across runs
resulting in a different number of pages
num_elements = random.randint(10,30)
for i in range(num_elements):

pdf.cell(text=f"Element {i+1}", align="C", center=True)
pdf.ln(20)

`set_link` to change page referenced by the link
pdf.add_page()
pdf.set_link(link_to_summary_page)
pdf.cell(text=f"Summary: there are {num_elements} elements", align="C", center=True)
pdf.ln(20)

link back to the first page
link = pdf.add_link(page=1)
pdf.cell(text="Internal link to first page", border=1, link=link)

pdf.output("internal_link_unknown_pages.pdf")

•

•

•

from fpdf import FPDF

pdf = FPDF()
pdf.set_font("helvetica", size=24)
pdf.add_page()
pdf.cell(text="Link to other_doc.pdf", border=1, link="other_doc.pdf")
pdf.output("link_to_other_doc.pdf")

6.1.5 Internal links

- 129/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.link
https://github.com/py-pdf/fpdf2/blob/master/test/test_links.py

Other methods can also insert internal links:

FPDF.multi_cell using link= or markdown=True and this syntax: [link text](other_doc.pdf)

FPDF.link

FPDF.write_html using anchor tags: link text

The unit test test_link_to_other_document() in test_links.py provides examples for all of those methods.

6.1.7 Alternative description

An optional textual description of the link can be provided, for accessibility purposes:

April 26, 2025

•

•

•

pdf.link(x=0, y=0, w=width, h=line_height, link="https://github.com/py-pdf/fpdf2",
alt_text="GitHub page for fpdf2")

6.1.7 Alternative description

- 130/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.link
https://github.com/py-pdf/fpdf2/blob/master/test/test_links.py

6.2 Metadata

The PDF specification contain two types of metadata, the newer XMP (Extensible Metadata Platform, XML-based) and older

DocumentInformation dictionary. The PDF 2.0 specification removes the DocumentInformation dictionary.

Currently, the following methods on fpdf.FPDF allow to set metadata information in the DocumentInformation dictionary:

set_title()

set_lang()

set_subject()

set_author()

set_keywords()

set_producer()

set_creator()

set_creation_date()

set_xmp_metadata() , that requires you to craft the necessary XML string

September 25, 2025

•

•

•

•

•

•

•

•

•

6.2 Metadata

- 131/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_title
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_title
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_lang
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_lang
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_subject
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_subject
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_author
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_author
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_keywords
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_keywords
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_producer
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_producer
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_creator
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_creator
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_creation_date
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_creation_date
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_xmp_metadata
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_xmp_metadata

6.3 Annotations

The PDF format allows to add various annotations to a document.

6.3.1 Text annotations

They are rendered this way by Sumatra PDF reader:

Method documentation: FPDF.text_annotation

6.3.2 Free Text Annotations

They are rendered this way by Adobe Acrobat Reader:

Method documentation: FPDF.free_text_annotation

6.3.3 Highlights

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
pdf.text(x=60, y=140, text="Some text.")
pdf.text_annotation(

x=100,
y=130,
text="This is a text annotation.",

)
pdf.output("text_annotation.pdf")

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica",size=24)
pdf.text(x=60, y=140, text="Some text.")
pdf.set_draw_color(255,0,0)
pdf.set_font_size(12)
pdf.free_text_annotation(

x=100,
y=130,
text="This is a free text annotation.",
w=150,
h=15,

)
pdf.output("free_text_annotation.pdf")

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
with pdf.highlight("Highlight comment"):

pdf.text(50, 50, "Line 1")
pdf.set_y(50)
pdf.multi_cell(w=30, text="Line 2")

pdf.cell(w=60, text="Not highlighted", border=1)
pdf.output("highlighted.pdf")

6.3 Annotations

- 132/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.text_annotation
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.text_annotation
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.free_text_annotation
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.free_text_annotation

Rendering by Sumatra PDF reader:

Method documentation: FPDF.highlight

The appearance of the "highlight effect" can be controlled through the type argument: it can be Highlight (default), Underline ,

Squiggly or StrikeOut .

6.3.4 Ink annotations

Those annotations allow to draw paths around parts of a document to highlight them:

Rendering by Firefox internal PDF viewer:

from fpdf import FPDF

pdf = FPDF()
pdf.ink_annotation([(100, 200), (200, 100), (300, 200), (200, 300), (100, 200)],

title="Lucas", contents="Hello world!")
pdf.output("ink_annotation_demo.pdf")

6.3.4 Ink annotations

- 133/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.highlight
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.highlight

Method documentation: FPDF.ink_annotation

6.3.5 File attachments

cf. the dedicated page: File attachments

6.3.6 Named actions

The four standard PDF named actions provide some basic navigation relative to the current page: NextPage , PrevPage , FirstPage

and LastPage .

6.3.7 Launch actions

Used to launch an application or open or print a document:

December 5, 2023

from fpdf import FPDF
from fpdf.actions import NamedAction

pdf = FPDF()
pdf.set_font("Helvetica", size=24)
pdf.add_page()
pdf.text(x=80, y=140, text="First page")
pdf.add_page()
pdf.underline = True
for x, y, named_action in ((40, 80, "NextPage"), (120, 80, "PrevPage"), (40, 200, "FirstPage"), (120, 200, "LastPage")):

pdf.text(x=x, y=y, text=named_action)
pdf.add_action(

NamedAction(named_action),
x=x,
y=y - pdf.font_size,
w=pdf.get_string_width(named_action),
h=pdf.font_size,

)
pdf.underline = False
pdf.add_page()
pdf.text(x=80, y=140, text="Last page")
pdf.output("named_actions.pdf")

from fpdf import FPDF
from fpdf.actions import LaunchAction

pdf = FPDF()
pdf.set_font("Helvetica", size=24)
pdf.add_page()
x, y, text = 80, 140, "Launch action"
pdf.text(x=x, y=y, text=text)
pdf.add_action(

LaunchAction("another_file_in_same_directory.pdf"),
x=x,
y=y - pdf.font_size,
w=pdf.get_string_width(text),
h=pdf.font_size,

)
pdf.output("launch_action.pdf")

6.3.5 File attachments

- 134/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.ink_annotation
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.ink_annotation

6.4 Presentations

Presentation mode can usually be enabled with the CTRL + L shortcut.

As of june 2021, the features described below are honored by Adobe Acrobat reader, but ignored by Sumatra PDF reader.

6.4.1 Page display duration

Pages can be associated with a "display duration" until when the viewer application automatically advances to the next page:

It can also be configured globally through the page_duration FPDF property.

6.4.2 Transitions

Pages can be associated with visual transitions to use when moving from another page to the given page during a presentation:

It can also be configured globally through the page_transition FPDF property.

November 3, 2024

from fpdf import FPDF

pdf = fpdf.FPDF()
pdf.set_font("Helvetica", size=120)
pdf.add_page(duration=3)
pdf.cell(text="Page 1")
pdf.page_duration = .5
pdf.add_page()
pdf.cell(text="Page 2")
pdf.add_page()
pdf.cell(text="Page 3")
pdf.output("presentation.pdf")

from fpdf import FPDF
from fpdf.transitions import *

pdf = fpdf.FPDF()
pdf.set_font("Helvetica", size=120)
pdf.add_page()
pdf.text(x=40, y=150, text="Page 0")
pdf.add_page(transition=SplitTransition("V", "O"))
pdf.text(x=40, y=150, text="Page 1")
pdf.add_page(transition=BlindsTransition("H"))
pdf.text(x=40, y=150, text="Page 2")
pdf.add_page(transition=BoxTransition("I"))
pdf.text(x=40, y=150, text="Page 3")
pdf.add_page(transition=WipeTransition(90))
pdf.text(x=40, y=150, text="Page 4")
pdf.add_page(transition=DissolveTransition())
pdf.text(x=40, y=150, text="Page 5")
pdf.add_page(transition=GlitterTransition(315))
pdf.text(x=40, y=150, text="Page 6")
pdf.add_page(transition=FlyTransition("H"))
pdf.text(x=40, y=150, text="Page 7")
pdf.add_page(transition=PushTransition(270))
pdf.text(x=40, y=150, text="Page 8")
pdf.add_page(transition=CoverTransition(270))
pdf.text(x=40, y=150, text="Page 9")
pdf.add_page(transition=UncoverTransition(270))
pdf.text(x=40, y=150, text="Page 10")
pdf.add_page(transition=FadeTransition())
pdf.text(x=40, y=150, text="Page 11")
pdf.output("transitions.pdf")

6.4 Presentations

- 135/193 -

6.5 Document Outline & Table of Contents

6.5.1 Overview

This document explains how to implement and customize the Document Outline (also known as Bookmarks) and Table of

Contents (ToC) features in fpdf2 .

6.5.2 Document Outline (Bookmarks)

Document outlines allow users to navigate quickly through sections in the PDF by creating a hierarchical structure of clickable

links.

Quoting the 6th edition of the PDF format reference (v1.7 - 2006) :

A PDF document may optionally display a document outline on the screen, allowing the user to navigate interactively from one

part of the document to another. The outline consists of a tree-structured hierarchy of outline items (sometimes called

bookmarks), which serve as a visual table of contents to display the document’s structure to the user.

For example, there is how a document outline looks like in Sumatra PDF Reader:

Since fpdf2.3.3 , you can use the start_section method to add entries in the internal "outline" table, which is used to render

both the outline and ToC.

Note that by default, calling start_section only records the current position in the PDF and renders nothing. However, you can

configure global title styles by calling set_section_title_styles , after which calls to start_section will render titles visually

using the styles defined.

To provide a document outline to the PDF you generate, you just have to call the start_section method for every hierarchical

section you want to define.

Nested outlines

Outlines can be nested by specifying different levels. Higher-level outlines (e.g., level 0) appear at the top, while sub-levels (e.g.,

level 1, level 2) are indented.

6.5 Document Outline & Table of Contents

- 136/193 -

https://www.sumatrapdfreader.org/free-pdf-reader.html
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.start_section
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.start_section
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_section_title_styles
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_section_title_styles

6.5.3 Table of Contents

Quoting Wikipedia, a table of contents is:

a list, usually found on a page before the start of a written work, of its chapter or section titles or brief descriptions with their

commencing page numbers.

Inserting a Table of Contents

Use the insert_toc_placeholder method to define a placeholder for the ToC. A page break is triggered after inserting the ToC.

Parameters:

render_toc_function: Function called to render the ToC, receiving two parameters: pdf , an FPDF instance, and outline , a

list of fpdf.outline.OutlineSection .

pages: The number of pages that the ToC will span, including the current one. A page break occurs for each page specified.

allow_extra_pages: If True , allows unlimited additional pages to be added to the ToC as needed. These extra ToC pages are

initially created at the end of the document and then reordered when the final PDF is produced.

Note: Enabling allow_extra_pages may affect page numbering for headers or footers. Since extra ToC pages are added after the

document content, they might cause page numbers to appear out of sequence. To maintain consistent numbering, use (Page

Labels)[PageLabels.md] to assign a specific numbering style to the ToC pages. When using Page Labels, any extra ToC pages will

follow the numbering style of the first ToC page.

Reference Implementation

New in 2.8.2

The fpdf.outline.TableOfContents class provides a reference implementation of the ToC, which can be used as-is or subclassed.

6.5.4 Using Outlines and ToC with HTML

When using FPDF.write_html , a document outline is automatically generated, and a ToC can be added with the <toc> tag.

To customize ToC styling, override the render_toc method in a subclass:

pdf.start_section(name="Chapter 1: Introduction", level=0)
pdf.start_section(name="Section 1.1: Background", level=1)

•

•

•

from fpdf import FPDF
from fpdf.outline import TableOfContents

pdf = FPDF()
pdf.add_page()
toc = TableOfContents()
pdf.insert_toc_placeholder(toc.render_toc, allow_extra_pages=True)

from fpdf import FPDF, HTML2FPDF

class CustomHTML2FPDF(HTML2FPDF):
def render_toc(self, pdf, outline):

pdf.cell(text='Table of contents:', new_x="LMARGIN", new_y="NEXT")
for section in outline:

pdf.cell(text=f'* {section.name} (page {section.page_number})', new_x="LMARGIN", new_y="NEXT")

class PDF(FPDF):
HTML2FPDF_CLASS = CustomHTML2FPDF

pdf = PDF()
pdf.add_page()
pdf.write_html("""<toc></toc>
 <h1>Level 1</h1>
 <h2>Level 2</h2>
 <h3>Level 3</h3>
 <h4>Level 4</h4>
 <h5>Level 5</h5>

6.5.3 Table of Contents

- 137/193 -

https://en.wikipedia.org/wiki/Table_of_contents
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.insert_toc_placeholder
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.insert_toc_placeholder
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

6.5.5 Additional Code Samples

The regression tests are a good place to find code samples.

For example, the test_simple_outline test function generates the PDF document simple_outline.pdf.

Similarly, test_html_toc generates test_html_toc.pdf.

6.5.6 Manually Adjusting pdf.page

⚠️ Setting pdf.page manually may result in unexpected behavior. pdf.add_page() takes special care to ensure the page's content

stream matches fpdf's instance attributes. Manually setting the page does not.

February 17, 2025

 <h6>Level 6</h6>
 <p>paragraph<p>""")
pdf.output("html_toc.pdf")

6.5.5 Additional Code Samples

- 138/193 -

https://github.com/py-pdf/fpdf2/blob/master/test/outline/test_outline.py
https://github.com/py-pdf/fpdf2/blob/master/test/outline/test_outline.py
https://github.com/py-pdf/fpdf2/blob/master/test/outline/simple_outline.pdf
https://github.com/py-pdf/fpdf2/blob/master/test/outline/test_outline_html.py
https://github.com/py-pdf/fpdf2/blob/master/test/outline/test_outline_html.py
https://github.com/py-pdf/fpdf2/blob/5453422bf560a909229c82e53eb516e44fea1817/test/outline/test_html_toc.pdf

6.6 Page Labels

New in 2.8.2

6.6.1 Overview

In a PDF document, each page is identified by an integer page index, representing the page's position within the document.

Optionally, a document can also define page labels to visually display page identifiers.

Page labels can be customized. For example, a document might begin with front matter numbered in roman numerals and

transition to arabic numerals for the main content. In this case:

The first page (index 0) would have a label i

The twelfth page (index 11) would have label xii

The thirteenth page (index 12) would start with label 1

The most popular PDF readers, such as Sumatra PDF and Adobe Acrobat Reader, will accurately display page labels as

configured in the PDF. However, not all PDF readers support this feature, and some may not honor or display page labels

correctly. In particular, browser-based PDF viewers, like those in Chrome and Edge, currently do not display page labels and will

only show default page numbering.

•

•

•

6.6 Page Labels

- 139/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

6.6.2 Page Label Components

A page label consists of three main parts: Style , Prefix , and Start .

6.6.2 Page Label Components

- 140/193 -

1. Style

The style defines the numbering format for the numeric portion of each page label. Available styles are:

"D": Decimal Arabic numerals (1, 2, 3, ...)

"R": Uppercase Roman numerals (I, II, III, ...)

"r": Lowercase Roman numerals (i, ii, iii, ...)

"A": Uppercase letters (A to Z, then AA to ZZ, and so on)

"a": Lowercase letters (a to z, then aa to zz, and so on)

2. Prefix

The prefix is an optional string added before the numeric portion of each page label. For instance, a prefix of "Appendix-" with a

style of "D" might result in labels like "Appendix-1", "Appendix-2", etc.

3. Start

The starting number for the first page of a labeled section. This is the initial numeric value applied to the first page of the label

range.

6.6.3 Using Page Labels in fpdf2

You can add page labels directly when adding a new page using the add_page() method or update them later using

set_page_label() .

Adding a Page with Labels in add_page()

When adding a page, you can specify the values for label_style , label_prefix , and label_start to define the page label. Here’s

how to do it:

Modifying Page Labels with set_page_label()

You can also modify page labels after a page has been added by using set_page_label() . This is helpful to set a new label after

adding a ToC placeholder or other action that automatically adds a page break, but keep in mind set_page_label() will always

happen after the header have been rendered. If you need this, prefer to have the label written on footer only.

Retrieving the Current Page Label with get_page_label()

If you need to get the current page label, for example, to display it in a header or footer, you can use the get_page_label()

method.

•

•

•

•

•

from fpdf import FPDF

pdf = FPDF()

Add a page with specific label parameters
pdf.add_page(

label_style="r", # Lowercase Roman numerals
label_prefix="Preface-", # Prefix for the label
label_start=1 # Start numbering at 1

)
pdf.output("document_with_labels.pdf")

Set a page label with style, prefix, and start value
pdf.set_page_label(

label_style="D", # Decimal Arabic numerals
label_prefix="Chapter-", # Prefix for the label
label_start=1 # Start numbering at 1

)

6.6.3 Using Page Labels in fpdf2

- 141/193 -

6.6.4 Example Usage

Below is a complete example that demonstrates adding multiple pages with different page label styles and prefixes:

This example creates a document with three sections, each using a different labeling style and prefix.

February 20, 2025

In case of a table of contents spanning more than one page, the page number returned by get_page_label() will be

incorrect.

cf. GitHub issue #1343

from fpdf import FPDF

pdf = FPDF()

Adding front matter with lowercase Roman numerals
pdf.add_page(label_style="r", label_start=1) # Starts with "i", "ii", "iii", etc.

Adding main content with decimal numbers and a prefix
pdf.add_page(label_style="D", label_prefix="Chapter-", label_start=1) # "Chapter-1", "Chapter-2", etc.

Adding an appendix section with uppercase letters
pdf.add_page(label_style="A", label_prefix="Appendix-", label_start=1) # "Appendix-A", "Appendix-B", etc.

pdf.output("labeled_document.pdf")

6.6.4 Example Usage

- 142/193 -

https://github.com/py-pdf/fpdf2/issues/1343

6.7 Encryption

New in 2.6.1

A PDF document can be encrypted to protect access to its contents.

An owner password is mandatory. Using the owner password anyone can perform any change on the document, including

removing all encryption and access permissions.

The optional parameters are user password, access permissions and encryption method.

6.7.1 Password locking

User password is optional. If none is provided the document content is accessible for everyone.

If a user password is set, the content of the document will be encrypted and a password prompt displayed when a user opens the

document. The document will only be displayed after either the user or owner password is entered.

6.7.2 Access permissions

Using access permissions flags you can restrict how the user interact with the document. The available access permission flags

are:

PRINT_LOW_RES Print the document, limiting the quality of the printed version.

PRINT_HIGH_RES Print the document at the highest quality.

MODIFY Modify the contents of the document.

COPY Copy or extract text and graphics from the document.

ANNOTATION Add or modify text annotations.

FILL_FORMS Fill in existing interactive form fields.

COPY_FOR_ACCESSIBILITY Extract text and graphics in support of accessibility to users with disabilities

ASSEMBLE Insert, rotate or delete pages and create bookmarks or thumbnail images.

The flags can be combined using | :

The method all() grants all permissions and none() denies all permissions.

If no permission is specified it will default to all() .

pdf.set_encryption(
owner_password="foo",
user_password="bar"

)

•

•

•

•

•

•

•

•

from fpdf import FPDF
from fpdf.enums import AccessPermission

pdf = FPDF()
pdf.add_page()
pdf.set_font("helvetica", size=12)
pdf.cell(text="hello world")

pdf.set_encryption(
owner_password="98765421",
permissions=AccessPermission.PRINT_LOW_RES | AccessPermission.PRINT_HIGH_RES

)

pdf.output("output.pdf")

pdf.set_encryption(
owner_password="xyz",
permissions=AccessPermission.all()

)

6.7 Encryption

- 143/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

6.7.3 Encryption method

There are 4 available encryption methods:

NO_ENCRYPTION Data is not encrypted, only add the access permission flags.

RC4 (default) Default PDF encryption algorithm.

AES_128 Encrypts the data with 128 bit key AES algorithm. Requires the cryptography package.

AES_256 Encrypts the data with 256 bit key AES algorithm. Requires the cryptography package.

October 11, 2023

•

•

•

•

from fpdf import FPDF
from fpdf.enums import AccessPermission, EncryptionMethod

pdf = FPDF()
pdf.add_page()
pdf.set_font("helvetica", size=12)
pdf.cell(text="hello world")

pdf.set_encryption(
owner_password="123",
encryption_method=EncryptionMethod.AES_128,
permissions=AccessPermission.none()

)

pdf.output("output.pdf")

6.7.3 Encryption method

- 144/193 -

6.8 Signing

New in 2.5.6

A digital signature may be used to authenticate the identity of a user and the document’s contents. It stores information about

the signer and the state of the document when it was signed.

fpdf2 allows to sign documents using PKCS#12 certificates (RFC 7292).

The endesive package is required to do so.

The lower-level sign() method allows to add a signature based on arbitrary key & certificates, not necessarily from a PKCS#12

file.

endesive also provides basic code to check PDFs signatures. examples/pdf-verify.py or the check_signature() function used in

fpdf2 unit tests can be good starting points for you, if you want to perform PDF signature control.

pdf = FPDF()
pdf.add_page()
pdf.sign_pkcs12("certs.p12", password=b"1234")
pdf.output("signed_doc.pdf")

6.8 Signing

- 145/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://en.wikipedia.org/wiki/PKCS_12
https://datatracker.ietf.org/doc/html/rfc7292
https://pypi.org/project/endesive/
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.sign
https://github.com/m32/endesive/blob/master/examples/pdf-verify.py
https://github.com/py-pdf/fpdf2/blob/master/test/conftest.py#L111
https://github.com/py-pdf/fpdf2/blob/master/test/conftest.py#L111

If you want to sign existing PDF documents, you should consider using PyHanko: https://pyhanko.readthedocs.io.

January 17, 2025

6.8 Signing

- 146/193 -

https://pyhanko.readthedocs.io

6.9 File attachments

6.9.1 Embedded file streams

Embedded file streams [allow] the contents of referenced files to be embedded directly within the body of the PDF file. This

makes the PDF file a self-contained unit that can be stored or transmitted as a single entity.

fpdf2 gives access to this feature through the method embed_file() :

6.9.2 Annotations

A file attachment annotation contains a reference to a file, which typically shall be embedded in the PDF file.

fpdf2 gives access to this feature through the method file_attachment_annotation() :

Resulting PDF: file_attachment_annotation.pdf

Browser PDF viewers do not usually display embedded files & file attachment annotations, so you may want to download this file

and open it with your desktop PDF viewer in order to visualize the file attachments.

February 17, 2025

pdf = FPDF()
pdf.add_page()
pdf.embed_file(__file__, desc="Source Python code", compress=True)
pdf.output("embedded_file.pdf")

pdf = FPDF()
pdf.add_page()
pdf.file_attachment_annotation(__file__, x=50, y=50)
pdf.output("file_attachment_annotation.pdf")

6.9 File attachments

- 147/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.embed_file
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.embed_file
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.file_attachment_annotation
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.file_attachment_annotation
https://github.com/py-pdf/fpdf2/blob/master/test/file_attachment_annotation.pdf

6.10 PDF/A with fpdf2

New in 2.8.5

6.10.1 What is PDF/A

PDF/A is the ISO standard for long-term archiving of PDFs. It restricts features that aren’t stable for preservation (e.g.,

JavaScript, encryption, multimedia) and requires self-containment (fonts embedded, color spaces defined, predictable

rendering).

6.10 PDF/A with fpdf2

- 148/193 -

https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md

6.10.2 Choosing a PDF/A Profile

6.10.2 Choosing a PDF/A Profile

- 149/193 -

Profile Description Actions Allowed Actions

Disallowed

Recommended Use

Cases

PDF/A-1B “B” = Basic visual

appearance. Earliest

profile, based on PDF

1.4; stricter feature

set (no transparency/

layers).

✅ Embedding

fonts

✅ JPEG/PNG/

TIFF images

(PDF 1.4 codecs)

✅ Digital

signatures

✅ ICC

OutputIntent for

color

management

❌ Encryption

❌ JavaScript

❌ Multimedia

(audio/video)

❌ External

content

dependencies

❌ Transparency

(blend modes/

soft masks)

❌ Layers (OCGs)

❌ JPEG2000

images

❌ Embedded file

attachments

Legacy/long-term

archives needing

maximum compatibility;

scanned documents

where appearance is

paramount.

PDF/A-2B “B” = Basic visual

appearance. Ensures

documents can be

reliably rendered

visually. Based on PDF

1.7.

✅ Embedding

fonts

✅ JPEG/

JPEG2000/PNG/

TIFF images

✅ Transparency

✅ Layers (OCGs)

✅ Digital

signatures

❌ Encryption

❌ JavaScript

❌ Multimedia

(audio/video)

❌ External

content

dependencies

Scanned documents

where only appearance

must be preserved

(invoices, contracts for

viewing).

PDF/A-2U Adds “U” = Unicode

text mapping. Same as

2B + text must be

Unicode-mapped for

reliable search/extract.

✅ Same as 2B

✅ Text

extractable &

searchable

❌ Same

restrictions as 2B

Searchable archives

(legal texts, regulations,

scientific articles).

PDF/A-3B Like 2B, plus allows

embedding arbitrary

files as attachments

(XML, CSV, DOCX,

etc.).

✅ Same as 2B

✅ Embed

external files

inside the PDF

❌ Encryption

❌ JavaScript

❌ Multimedia

Compound documents

(e-invoices with XML,

submissions needing

source data).

PDF/A-3U 3B + Unicode

requirement for text.

✅ Same as 3B +

searchable text

❌ Same as 3B Archival packages that

need attachments +

searchable text.

PDF/A-4 Based on PDF 2.0 (ISO

32000-2). Simplified

model; no A/B/U tiers—

modern baseline.

✅ Unicode text

mapping

✅ Attachments

allowed

✅ Transparency,

layers, signatures

❌ Encryption

❌ JavaScript

❌ Multimedia

Modern general-

purpose archiving for

libraries, government,

enterprises.

PDF/A-4E “E” = Engineering.

Tailored for

engineering/CAD

workflows; supports

3D model containers.

✅ Same as 4

✅ Engineering/

CAD payloads

(e.g., model data)

❌ Encryption

❌ JavaScript

❌ Non-archival

multimedia

Engineering & CAD

archiving (technical

drawings, 3D models,

BOMs).

PDF/A-4F “F” = File

attachments. Focused

✅ Same as 4

✅ File

❌ Encryption

❌ JavaScript

❌ Multimedia

Data-centric bundles

(PDF + XML/CSV/JSON

source files).

6.10.2 Choosing a PDF/A Profile

- 150/193 -

6.10.3 How to produce PDF/A with fpdf2

Pick a profile at construction time

When enforce_compliance is set, fpdf2 actively prevents non-compliant operations and will raise errors if you try

something forbidden for the selected profile.

Quick example

6.10.4 Future: Accessible documents (WCAG/PDF/UA)

To enable PDF/A 2A and 3A compliance FPDF needs to be able to produce accessible documents. Those features need to be

implemented:

Tagged PDFs (logical structure, reading order)

Alt text for images, meaningful link text

Color contrast and keyboard-navigable annotations

October 14, 2025

Profile Description Actions Allowed Actions

Disallowed

Recommended Use

Cases

on embedded

companion files.

attachments

emphasized

from fpdf import FPDF
from fpdf.enums import DocumentCompliance

pdf = FPDF(enforce_compliance=DocumentCompliance.PDFA_4)

•

pdf = FPDF(enforce_compliance=DocumentCompliance.PDFA_4)
pdf.add_page()
pdf.set_font("Helvetica", size=12)
pdf.cell(0, 10, "Modern archival PDF, PDF 2.0 based.")
pdf.output("example-4.pdf")

•

•

•

6.10.3 How to produce PDF/A with fpdf2

- 151/193 -

7. Mixing other libs

7.1 Combine with pypdf

fpdf2 cannot parse existing PDF files.

However, other Python libraries can be combined with fpdf2 in order to add new content to existing PDF files.

This page provides several examples of doing so using pypdf , an actively-maintained library formerly known as PyPDF2 .

7.1.1 Adding content onto an existing PDF page

In this code snippet, new content will be added on top of existing content:

7.1.2 Adding a page to an existing PDF

#!/usr/bin/env python3
USAGE: ./add_on_page_with_pypdf.py src_file.pdf dest_file.pdf
import io, sys
from contextlib import contextmanager

Before 2.8.2 use: from fpdf.util import get_scale_factor
from fpdf import FPDF, get_scale_factor
from pypdf import PdfReader, PdfWriter

IN_FILEPATH = sys.argv[1]
OUT_FILEPATH = sys.argv[2]

@contextmanager
def add_to_page(reader_page, unit="mm"):

k = get_scale_factor(unit)
format = (reader_page.mediabox[2] / k, reader_page.mediabox[3] / k)
pdf = FPDF(format=format, unit=unit)
pdf.add_page()
yield pdf
page_overlay = PdfReader(io.BytesIO(pdf.output())).pages[0]
reader_page.merge_page(page2=page_overlay)

reader = PdfReader(IN_FILEPATH)
with add_to_page(reader.pages[0]) as pdf:

pdf.set_font("times", style="B", size=30)
pdf.text(50, 150, "Hello World!")

writer = PdfWriter()
writer.append_pages_from_reader(reader)
writer.write(OUT_FILEPATH)

#!/usr/bin/env python3
USAGE: ./add_new_page_with_pypdf.py src_file.pdf dest_file.pdf
import io, sys

from fpdf import FPDF
from pypdf import PdfReader, PdfWriter

IN_FILEPATH = sys.argv[1]
OUT_FILEPATH = sys.argv[2]
ON_PAGE_INDEX = 2 # Index at which the page will be inserted (starts at zero)

def build_page():
pdf = FPDF()
pdf.add_page()
pdf.set_font("times", style="B", size=19)
pdf.text(50, 10, "Hello World!")
return io.BytesIO(pdf.output())

writer = PdfWriter(clone_from=IN_FILEPATH)
new_page = PdfReader(build_page()).pages[0]
writer.insert_page(new_page, index=ON_PAGE_INDEX)
writer.write(OUT_FILEPATH)

7. Mixing other libs

- 152/193 -

https://github.com/py-pdf/pypdf
https://github.com/py-pdf/pypdf

7.1.3 Altering with pypdf a document generated with fpdf2

A document created with fpdf2 can the be edited with pypdf by passing its .output() to a pypdf.PdfReader :

November 20, 2024

import io
from fpdf import FPDF
from pypdf import PdfReader

pdf = FPDF()
pdf.add_page()
pdf.set_font('times', style='B', size=19)
pdf.text(50, 10, 'Hello World!')

reader = PdfReader(io.BytesIO(pdf.output()))

7.1.3 Altering with pypdf a document generated with fpdf2

- 153/193 -

7.2 Combine with Markdown

Several fpdf2 methods allow Markdown syntax elements:

FPDF.cell() has an optional markdown=True parameter that makes it possible to use **bold** , __italics__ , ~~strikethrough~~

or --underlined-- Markdown markers

FPDF.multi_cell() & FPDF.table() methods have a similar feature

But fpdf2 also allows for basic conversion from HTML to PDF (cf. HTML). This can be combined with a Markdown-rendering

library in order to generate PDF documents from Markdown:

7.2.1 mistletoe

The mistletoe library follows the CommonMark specification:

The library can be easily extended: Creating a custom token and renderer.

•

•

pip install mistletoe

from mistletoe import markdown

html = markdown("""
Top title (ATX)

Subtitle (setext)

An even lower heading (ATX)

Text in bold

Text in italics

~~Strikethrough~~

[This is a link](https://github.com/PyFPDF/fpdf2)

<https://py-pdf.github.io/fpdf2/>

This is an unordered list:
* an item
* another item

This is an ordered list:
1. first item
2. second item
3. third item with an unordered sublist:
 * an item
 * another item

Inline `code span`

A table:

| Foo | Bar | Baz |
| ---:|:---:|:--- |
| Foo | Bar | Baz |

Actual HTML:

<dl>
 <dt>Term1</dt><dd>Definition1</dd>
 <dt>Term2</dt><dd>Definition2</dd>
</dl>

Some horizontal thematic breaks:

![Alternate description](https://py-pdf.github.io/fpdf2/fpdf2-logo.png)
""")

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.write_html(html)
pdf.output("pdf-from-markdown-with-mistletoe.pdf")

7.2 Combine with Markdown

- 154/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://github.com/miyuchina/mistletoe
https://spec.commonmark.org
https://github.com/miyuchina/mistletoe/blob/master/dev-guide.md#creating-a-custom-token-and-renderer

Rendering unicode characters

Result:

from mistletoe import markdown

html = markdown("""
Unicode:

| Emoji | Description |
| --- | - |

| 😀 | GRINNING FACE |

| 😁 | GRINNING FACE WITH SMILING EYES |

| 😈 | SMILING FACE WITH HORNS |

A checklist:

* ☐ item 1
* ☑ item 2
* ☐ item 3
""")

from fpdf import FPDF

pdf = FPDF()
pdf.add_font("DejaVuSans", fname="test/fonts/DejaVuSans.ttf")
pdf.add_font("DejaVuSans", fname="test/fonts/DejaVuSans-Bold.ttf", style="B")
pdf.set_font("DejaVuSans", size=24)
pdf.add_page()
pdf.write_html(html)
pdf.output("pdf-from-markdown-with-mistletoe-unicode.pdf")

7.2.1 mistletoe

- 155/193 -

7.2.2 markdown-it-py

The markdown-it-py library also follows the CommonMark specification:

pip install markdown-it-py

from markdown_it import MarkdownIt

md = (
MarkdownIt("commonmark", {"breaks": True, "html": True})
.enable("strikethrough")
.enable("table")

)
html = md.render("""
Top title (ATX)

Subtitle (setext)

An even lower heading (ATX)

Text in bold

Text in italics

~~Strikethrough~~

[This is a link](https://github.com/PyFPDF/fpdf2)

<https://py-pdf.github.io/fpdf2/>

This is an unordered list:
* an item
* another item

This is an ordered list:
1. first item
2. second item
3. third item with an unordered sublist:
 * an item
 * another item

Inline `code span`

A table:

| Foo | Bar | Baz |
| ---:|:---:|:--- |
| Foo | Bar | Baz |

Actual HTML:

<dl>
 <dt>Term1</dt><dd>Definition1</dd>
 <dt>Term2</dt><dd>Definition2</dd>
</dl>

Some horizontal thematic breaks:

![Alternate description](https://py-pdf.github.io/fpdf2/fpdf2-logo.png)
""")

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.write_html(html)
pdf.output("pdf-from-markdown-with-markdown-it.pdf")

7.2.2 markdown-it-py

- 156/193 -

https://markdown-it-py.readthedocs.io
https://spec.commonmark.org

Plugin extensions: the strikethrough & table plugins are embedded within the core package, and many other plugins are then

available via the mdit-py-plugins package, including:

Footnotes

Definition lists

Task lists

Heading anchors

LaTeX math

Containers

Word count

7.2.3 mistune

There is also the mistune library, that may be the fastest, but it does not follow the CommonMark spec:

•

•

•

•

•

•

•

pip install mistune

from mistune import html

html = html("""
Top title (ATX)

Subtitle (setext)

An even lower heading (ATX)

Text in bold

Text in italics

~~Strikethrough~~

[This is a link](https://github.com/PyFPDF/fpdf2)

<https://py-pdf.github.io/fpdf2/>

This is an unordered list:
* an item
* another item

This is an ordered list:
1. first item
2. second item
3. third item with an unordered sublist:
 * an item
 * another item

Inline `code span`

A table:

| Foo | Bar | Baz |
| ---:|:---:|:--- |
| Foo | Bar | Baz |

Actual HTML:

<dl>
 <dt>Term1</dt><dd>Definition1</dd>
 <dt>Term2</dt><dd>Definition2</dd>
</dl>

Some horizontal thematic breaks:

![Alternate description](https://py-pdf.github.io/fpdf2/fpdf2-logo.png)
""")

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.write_html(html)
pdf.output("pdf-from-markdown-with-mistune.pdf")

7.2.3 mistune

- 157/193 -

https://markdown-it-py.readthedocs.io/en/latest/plugins.html
https://mdit-py-plugins.readthedocs.io
https://mistune.lepture.com

7.2.4 Python-Markdown

There is also the Python-Markdown library, which is the oldest Markdown rendering Python lib still active, but it does not follow

the CommonMark spec:

7.2.5 Text styling, fonts, etc.

Please refer to the dedicated HTML page for information on how to style HTML tags (<a> , <blockquote> , <code> , <pre> , <h1> ...)

when using FPDF.write_html() , how to configure fonts, the known limitations, etc.

pip install markdown

from markdown import markdown

html = markdown(
"""

Top title (ATX)

Subtitle (setext)

An even lower heading (ATX)

Text in bold

Text in italics

[This is a link](https://github.com/PyFPDF/fpdf2)

<https://py-pdf.github.io/fpdf2/>

This is an unordered list:

* an item
* another item

This is an ordered list:

1. first item
2. second item
3. third item with an unordered sublist:
 * an item
 * another item

Inline `code span`

A table:

Foo | Bar | Baz
--- | --- | ---
Foo | Bar | Baz

Definition list:

Term
: Definition

Actual HTML:

<dl>
 <dt>Term1</dt><dd>Definition1</dd>
 <dt>Term2</dt><dd>Definition2</dd>
</dl>

Some horizontal thematic breaks:

![Alternate description](https://py-pdf.github.io/fpdf2/fpdf2-logo.png)
""",

extensions=["def_list", "sane_lists", "tables"],
)

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()
pdf.write_html(html)
pdf.output("pdf-from-markdown-with-markdown.pdf")

7.2.4 Python-Markdown

- 158/193 -

https://python-markdown.github.io/
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write_html
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write_html

August 5, 2025

7.2.5 Text styling, fonts, etc.

- 159/193 -

7.3 Combine with livereload

A nice feature of PDF readers is when they detect changes to the .pdf files open and automatically reload them in the viewer.

Adobe Acrobat Reader does not provide this feature but other viewers offer it, like the free & open source Sumatra PDF Reader

under Windows.

When using such PDF reader, it can be very useful to use a "watch" mode, so that every change to the Python code will trigger

the regeneration of the PDF file.

The following script is an example of using livereload with fpdf2 to do that. Launched without parameters, this script only

generates a PDF document. But when launched with --watch as argument, it will detect changes to the Python script itself, and

then reload itself with xreload , and finally regenerate the PDF document.

Note that the module reloading mechanism provided by xreload has several limitations, cf. xreload.py .

#!/usr/bin/env python3
Script Dependencies:
fpdf2
livereload
xreload
import asyncio, logging, sys
from traceback import print_exc

from fpdf import FPDF
from livereload.watcher import get_watcher_class
from xreload import xreload

OUT_FILEPATH = "fpdf2-demo.pdf"

def build_pdf():
pdf = FPDF()
pdf.set_font("Helvetica", size=16)
pdf.add_page()
pdf.y += 50
pdf.multi_cell(

h=10,
w=0,
align="C",
text="""Hello fpdf2 user!

Launch this script with --watch
and then try to modify this text while the script is running""",

)
pdf.output(OUT_FILEPATH)
print(f"{OUT_FILEPATH} has been rebuilt")

async def start_watch_and_rebuild():
logging.basicConfig(

format="%(asctime)s %(name)s [%(levelname)s] %(message)s",
datefmt="%H:%M:%S",
level=logging.INFO,

)
logging.getLogger("livereload").setLevel(logging.INFO)
watcher = get_watcher_class()()
watcher.watch(__file__, build_pdf)
print("Watcher started...")
await watch_periodically(watcher)

async def watch_periodically(watcher, delay_secs=0.8):
try:

watcher.examine()
except Exception:

print_exc()
await asyncio.sleep(delay_secs)
xreload(sys.modules[__name__], new_annotations={"XRELOADED": True})
await asyncio.create_task(watch_periodically(watcher))

This conditional ensure that the code below
does not get executed when calling xreload on this module:
if not __annotations__.get("XRELOADED"):

build_pdf()
The --watch mode is very handy when using a PDF reader
that performs hot-reloading, like Sumatra PDF Reader:
if "--watch" in sys.argv:

asyncio.run(start_watch_and_rebuild())

7.3 Combine with livereload

- 160/193 -

https://www.sumatrapdfreader.org
https://pypi.org/project/livereload/
https://pypi.org/project/livereload/
https://pypi.org/project/xreload/
https://pypi.org/project/xreload/
https://github.com/Lucas-C/xreload/blob/master/src/xreload.py#L8
https://github.com/Lucas-C/xreload/blob/master/src/xreload.py#L8

September 12, 2023

7.3 Combine with livereload

- 161/193 -

7.4 borb

Joris Schellekens made another excellent pure-Python library dedicated to reading & write PDF: borb. He even wrote a very

detailed e-book about it, available publicly there: borb-examples.

The maintainer of fpdf2 wrote an article comparing it with borb : borb vs fpdf2.

7.4.1 Creating a document with fpdf2 and transforming it into a borb.pdf.document.Document

from io import BytesIO
from borb.pdf.pdf import PDF
from fpdf import FPDF

pdf = FPDF()
pdf.set_title('Initiating a borb doc from a FPDF instance')

7.4 borb

- 162/193 -

https://github.com/jorisschellekens/borb/
https://github.com/jorisschellekens/borb-examples/
https://chezsoi.org/lucas/blog/fpdf2-5-2-svg-support-and-borb.html

February 9, 2026

pdf.set_font('helvetica', size=12)
pdf.add_page()
pdf.cell(text="Hello world!")

doc = PDF.loads(BytesIO(pdf.output()))
print(doc.get_document_info().get_title())

7.4.1 Creating a document with fpdf2 and transforming it into a borb.pdf.document.Document

- 163/193 -

7.5 Combine with pdfrw

fpdf2 cannot parse existing PDF files.

However, other Python libraries can be combined with fpdf2 in order to add new content to existing PDF files.

This page provides several examples of using fpdf2 with pdfrw , a great zero-dependency pure Python library dedicated to

reading & writing PDFs, with numerous examples and a very clean set of classes modelling the PDF internal syntax.

Sadly, this library is not maintained anymore, cf. pmaupin/pdfrw issue #232 & sarnold/pdfrw issue #15.

7.5.1 Adding content onto an existing PDF page

7.5.2 Adding a page to an existing PDF

This example relies on pdfrw Pull Request #216. Until it is merged, you can install a forked version of pdfrw including the

required patch:

#!/usr/bin/env python3
USAGE: ./add_on_page_with_pdfrw.py src_file.pdf dest_file.pdf
import sys
from fpdf import FPDF
from pdfrw import PageMerge, PdfReader, PdfWriter
from pdfrw.pagemerge import RectXObj

IN_FILEPATH = sys.argv[1]
OUT_FILEPATH = sys.argv[2]
ON_PAGE_INDEX = 1
if True, new content will be placed underneath page (painted first):
UNDERNEATH = False

reader = PdfReader(IN_FILEPATH)
area = RectXObj(reader.pages[0])

def new_content():
fpdf = FPDF(format=(area.w, area.h), unit="pt")
fpdf.add_page()
fpdf.set_font("helvetica", size=36)
fpdf.text(50, 50, "Hello!")
reader = PdfReader(fdata=bytes(fpdf.output()))
return reader.pages[0]

writer = PdfWriter()
writer.pagearray = reader.Root.Pages.Kids
if writer.pagearray[0].Kids:

writer.pagearray = writer.pagearray[0].Kids
PageMerge(writer.pagearray[ON_PAGE_INDEX]).add(

new_content(), prepend=UNDERNEATH
).render()
writer.write(OUT_FILEPATH)

#!/usr/bin/env python3
USAGE: ./add_new_page_with_pdfrw.py src_file.pdf dest_file.pdf
import sys

from fpdf import FPDF
from pdfrw import PdfReader, PdfWriter

IN_FILEPATH = sys.argv[1]
OUT_FILEPATH = sys.argv[2]
NEW_PAGE_INDEX = 1 # set to None to append at the end

def new_page():
fpdf = FPDF()
fpdf.add_page()
fpdf.set_font("helvetica", size=36)
fpdf.text(50, 50, "Hello!")
reader = PdfReader(fdata=bytes(fpdf.output()))
return reader.pages[0]

writer = PdfWriter(trailer=PdfReader(IN_FILEPATH))
writer.addpage(new_page(), at_index=NEW_PAGE_INDEX)
writer.write(OUT_FILEPATH)

7.5 Combine with pdfrw

- 164/193 -

https://github.com/pmaupin/pdfrw
https://github.com/pmaupin/pdfrw
https://github.com/pmaupin/pdfrw/issues/232
https://github.com/sarnold/pdfrw/issues/15
https://github.com/pmaupin/pdfrw/pull/216
https://github.com/pmaupin/pdfrw/pull/216

7.5.3 Altering with pdfrw a document generated with fpdf2

A document created with fpdf2 can the be edited with pdfrw by passing its .output() to a pdfrw.PdfReader :

November 20, 2024

pip install git+https://github.com/PyFPDF/pdfrw.git@addpage_at_index

import io
from fpdf import FPDF
from pdfrw import PdfReader

pdf = FPDF()
pdf.add_page()
pdf.set_font('times', style='B', size=19)
pdf.text(50, 10, 'Hello World!')

reader = PdfReader(io.BytesIO(pdf.output()))

7.5.3 Altering with pdfrw a document generated with fpdf2

- 165/193 -

7.6 Matplotlib, Pandas, Plotly, Pygal

April 7, 2023

7.6 Matplotlib, Pandas, Plotly, Pygal

- 166/193 -

7.7 Usage in web APIs

Note that FPDF instance objects are not designed to be reusable: content cannot be added once output() has been called.

Hence, even if the FPDF class should be thread-safe, we recommend that you either create an instance for every request, or if

you want to use a global / shared object, to only store the bytes returned from output() .

7.7.1 Django

Django is:

a high-level Python web framework that encourages rapid development and clean, pragmatic design

There is how you can return a PDF document from a Django view:

7.7.2 WSGI applications

The following code can be placed in a fpdf2_app.py to make a WSGI application

This script can then be served as a HTTP application using either:

the standard wsgiref module

werkzeug.serving.run_simple

Gunicorn, using: gunicorn --bind localhost:8000 fpdf2_app:app

uWSGI, using: uwsgi --http :8000 --module fpdf2_app:app

Flask

Flask is a micro web framework written in Python.

The following code can be placed in a app.py file and launched using flask run :

from django.http import HttpResponse
from fpdf import FPDF

def report(request):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
pdf.cell(text="hello world")
return HttpResponse(bytes(pdf.output()), content_type="application/pdf")

from fpdf import FPDF

def app(environ, start_response):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=12)
pdf.cell(text="Hello world!")
data = bytes(pdf.output())
start_response("200 OK", [

("Content-Type", "application/pdf"),
("Content-Length", str(len(data)))

])
return iter([data])

•

•

•

•

from flask import Flask, make_response
from fpdf import FPDF

app = Flask(__name__)

@app.route("/")
def hello_world():

pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
pdf.cell(text="hello world")
response = make_response(bytes(pdf.output()))

7.7 Usage in web APIs

- 167/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.output
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.output
https://www.djangoproject.com/
https://docs.djangoproject.com/en/4.0/topics/http/views/
https://docs.python.org/3/library/wsgiref.html
https://docs.python.org/3/library/wsgiref.html
https://werkzeug.palletsprojects.com/en/stable/serving/
https://werkzeug.palletsprojects.com/en/stable/serving/
https://gunicorn.org/
https://uwsgi-docs.readthedocs.io/en/latest/
https://flask.palletsprojects.com

Bottle

Bottle is:

Bottle is a fast, simple and lightweight WSGI micro web-framework for Python. It is distributed as a single file module and has no

dependencies other than the Python Standard Library.

The following code can be placed in a app.py file and launched using python3 app.py

CherryPy

CherryPy is:

a pythonic, object-oriented web framework, allowing developers to build web applications in much the same way they would

build any other object-oriented Python program.

The following code can be placed in a app.py file and launched using python3 app.py

7.7.3 AWS lambda

The following code demonstrates some minimal AWS lambda handler function that returns a PDF file as binary output:

response.headers["Content-Type"] = "application/pdf"
return response

from bottle import route, run, response
from fpdf import FPDF

@route('/')
def hello():

pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
pdf.cell(text="hello world")
pdf_bytes = bytes(pdf.output())

response.set_header('Content-Type', 'application/pdf')
response.status = 200
response.content_length = len(pdf_bytes)

return pdf_bytes

if __name__ == '__main__':
run(host='localhost', port=8080, debug=True)

import cherrypy
from fpdf import FPDF

class HelloWorld(object):
@cherrypy.expose
def index(self):

pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
pdf.cell(text="hello world")
pdf_bytes = bytes(pdf.output())

cherrypy.response.headers['content-type'] = 'application/pdf'
cherrypy.response.status = 200

return pdf_bytes

if __name__ == "__main__":
cherrypy.quickstart(HelloWorld())

from base64 import b64encode
from fpdf import FPDF

def handler(event, context):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
pdf.cell(text="hello world")
return {

'statusCode': 200,
'headers': {

'Content-Type': 'application/json',

7.7.3 AWS lambda

- 168/193 -

https://bottlepy.org/docs/dev/index.html
https://cherrypy.dev
https://docs.aws.amazon.com/lambda/latest/dg/python-handler.html

This AWS lambda function can then be linked to a HTTP endpoint using API Gateway, or simply exposed as a Lambda Function

URL. More information on those pages:

Tutorial: Creating a Lambda function with a function URL

Return binary media from a Lambda

For reference, the test lambda function was initiated using the following AWS CLI commands:

Those commands do not cover the creation of the lambda-fpdf2-role role, nor configuring the lambda access permissions, for

example with a FunctionURLAllowPublicAccess resource-based policy.

7.7.4 streamlit

streamlit is:

a Python library that makes it easy to create and share custom web apps for data science

The following code demonstrates how to display a PDF and add a button allowing to download it:

},
'body': b64encode(pdf.output()).decode('utf-8'),
'isBase64Encoded': True

}

•

•

Creating & uploading a lambda layer

pyv=3.8
pip${pyv} install fpdf2 -t python/lib/python${pyv}/site-packages/
We use a distinct layer for Pillow:
rm -r python/lib/python${pyv}/site-packages/{PIL,Pillow}*
zip -r fpdf2-deps.zip python > /dev/null
aws lambda publish-layer-version --layer-name fpdf2-deps \

--description "Dependencies for fpdf2 lambda" \
--zip-file fileb://fpdf2-deps.zip --compatible-runtimes python${pyv}

Creating the lambda

AWS_ACCOUNT_ID=...
AWS_REGION=eu-west-3
zip -r fpdf2-test.zip lambda.py
aws lambda create-function --function-name fpdf2-test --runtime python${pyv} \

--zip-file fileb://fpdf2-test.zip --handler lambda.handler \
--role arn:aws:iam::${AWS_ACCOUNT_ID}:role/lambda-fpdf2-role \
--layers arn:aws:lambda:${AWS_REGION}:770693421928:layer:Klayers-python${pyv/./}-Pillow:15 \

arn:aws:lambda:${AWS_REGION}:${AWS_ACCOUNT_ID}:layer:fpdf2-deps:1
aws lambda create-function-url-config --function-name fpdf2-test --auth-type NONE

from base64 import b64encode
from fpdf import FPDF
import streamlit as st

st.title("Demo of fpdf2 usage with streamlit")

@st.cache
def gen_pdf():

pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
pdf.cell(text="hello world")
return bytes(pdf.output())

Embed PDF to display it:
base64_pdf = b64encode(gen_pdf()).decode("utf-8")
pdf_display = f'<embed src="data:application/pdf;base64,{base64_pdf}" width="700" height="400" type="application/pdf">'
st.markdown(pdf_display, unsafe_allow_html=True)

Add a download button:
st.download_button(

label="Download PDF",
data=gen_pdf(),
file_name="file_name.pdf",
mime="application/pdf",

)

7.7.4 streamlit

- 169/193 -

https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway.html
https://aws.amazon.com/fr/blogs/aws/announcing-aws-lambda-function-urls-built-in-https-endpoints-for-single-function-microservices/
https://aws.amazon.com/fr/blogs/aws/announcing-aws-lambda-function-urls-built-in-https-endpoints-for-single-function-microservices/
https://docs.aws.amazon.com/lambda/latest/dg/urls-tutorial.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/lambda-proxy-binary-media.html
https://aws.amazon.com/cli/
https://streamlit.io

7.7.5 FastAPI

FastAPI is:

a modern, fast (high-performance), web framework for building APIs with Python 3.7+ based on standard Python type hints.

The following code shows how to generate a PDF file via a POST endpoint that receives a JSON object. The JSON object can be

used to write into the PDF file. The generated PDF file will be returned back to the user/frontend as the response.

7.7.6 Plone

Plone is:

a powerful open source Content Management System built on Python and the Zope application server

Plone is widely used for building secure and scalable web applications. Here's how to generate and serve PDF documents with

fpdf2 in Plone.

As a Browser View

The most common approach is to create a browser view that generates and returns a PDF:

from fastapi import FastAPI, Request, Response, HTTPException, status
from fpdf import FPDF

app = FastAPI()

@app.post("/send_data", status_code=status.HTTP_200_OK)
async def create_pdf(request: Request):

"""
 POST endpoint that accepts a JSON object
 This endpoint returns a PDF file as the response
 """

try:
data will read the JSON object and can be accessed like a Python Dictionary
The contents of the JSON object can be used to write into the PDF file (if needed)
data = await request.json()

Create a sample PDF file
pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
pdf.cell(text="hello world")
pdf.cell(text=data["content"]) # Using the contents of the JSON object to write into the PDF file
Use str(data["content"]) if the content is non-string type

Prepare the filename and headers
filename = "<file_name_here>.pdf"
headers = {

"Content-Disposition": f"attachment; filename={filename}"
}

Return the file as a response
return Response(content=bytes(pdf.output()), media_type="application/pdf", headers=headers)

except Exception as e:
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=str(e))

from Products.Five import BrowserView
from fpdf import FPDF

class PDFReportView(BrowserView):
"""Generate and serve a PDF report"""

def __call__(self):
Create PDF
pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", size=24)
pdf.cell(text="Hello from Plone!")

Add content from the context
pdf.ln(10)
pdf.set_font("Helvetica", size=12)
pdf.cell(text=f"Title: {self.context.Title()}")

7.7.5 FastAPI

- 170/193 -

https://fastapi.tiangolo.com/
https://plone.org/

Register the view in your package's configure.zcml :

The PDF can then be accessed at: http://yoursite.com/path/to/content/@@pdf-report

As a Custom Content Type Method

For a custom Dexterity content type, you can add a method that generates PDFs:

Then create a view to serve it:

Register this view in configure.zcml :

With Catalog Queries

Generate PDFs from catalog search results:

Generate PDF bytes
pdf_bytes = bytes(pdf.output())

Set response headers
self.request.response.setHeader('Content-Type', 'application/pdf')
self.request.response.setHeader(

'Content-Disposition',
'attachment; filename="report.pdf"'

)
self.request.response.setHeader('Content-Length', len(pdf_bytes))

return pdf_bytes

<browser:page
name="pdf-report"
for="*"
class=".views.PDFReportView"
permission="zope2.View"
/>

from plone.dexterity.content import Container
from fpdf import FPDF

class Report(Container):
"""Custom content type that can generate PDF reports"""

def generate_pdf(self):
"""Generate PDF from content type data"""
pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", "B", 16)
pdf.cell(text=self.title)

pdf.ln(10)
pdf.set_font("Helvetica", size=12)
if self.description:

pdf.multi_cell(0, 5, text=self.description)

return bytes(pdf.output())

from Products.Five import BrowserView

class DownloadPDFView(BrowserView):
"""Download PDF for Report content type"""

def __call__(self):
pdf_bytes = self.context.generate_pdf()

self.request.response.setHeader('Content-Type', 'application/pdf')
self.request.response.setHeader(

'Content-Disposition',
f'attachment; filename="{self.context.getId()}.pdf"'

)

return pdf_bytes

<browser:page
name="download-pdf"
for=".interfaces.IReport"
class=".views.DownloadPDFView"
permission="zope2.View"
/>

7.7.6 Plone

- 171/193 -

Notes for Plone Developers

Always create a new FPDF() instance for each request to ensure thread safety

Use appropriate permissions in your ZCML configuration

Consider caching PDF generation for large documents using plone.memoize

For complex PDFs, consider generating them asynchronously using Celery or similar task queues

7.7.7 Jupyter

Check tutorial/notebook.ipynb

7.7.8 web2py

Usage of the original PyFPDF library with web2py is described here: https://github.com/reingart/pyfpdf/blob/master/docs/

Web2Py.md

v1.7.2 of PyFPDF is included in web2py since release 1.85.2 : https://github.com/web2py/web2py/tree/master/gluon/contrib/fpdf

October 14, 2025

from Products.Five import BrowserView
from fpdf import FPDF

class CatalogReportView(BrowserView):
"""Generate PDF report from catalog query"""

def __call__(self):
catalog = self.context.portal_catalog
results = catalog(portal_type='Document',

review_state='published')

pdf = FPDF()
pdf.add_page()
pdf.set_font("Helvetica", "B", 16)
pdf.cell(text="Published Documents Report")

pdf.ln(10)
pdf.set_font("Helvetica", size=10)

for brain in results:
pdf.cell(text=brain.Title)
pdf.ln()

pdf_bytes = bytes(pdf.output())

self.request.response.setHeader('Content-Type', 'application/pdf')
self.request.response.setHeader(

'Content-Disposition',
'attachment; filename="catalog-report.pdf"'

)

return pdf_bytes

•

•

•

•

7.7.7 Jupyter

- 172/193 -

https://github.com/py-pdf/fpdf2/blob/master/tutorial/notebook.ipynb
http://www.web2py.com/
https://github.com/reingart/pyfpdf/blob/master/docs/Web2Py.md
https://github.com/reingart/pyfpdf/blob/master/docs/Web2Py.md
https://github.com/web2py/web2py/tree/master/gluon/contrib/fpdf

7.8 Rendering spreadsheets as PDF tables

All the details on tables and options to style them are detailed on the dedicated page: Tables.

7.8 Rendering spreadsheets as PDF tables

- 173/193 -

7.8.1 From a .csv spreadsheet

Example input file: color_srgb.csv

7.8.2 From a .xlsx spreadsheet

Example input file: color_srgb.xlsx

7.8.3 From an .ods spreadsheet

Example input file: color_srgb.ods

#!/usr/bin/env python3
USAGE: ./csv2table.py color_srgb.csv
import csv, sys
from fpdf import FPDF, FontFace
from fpdf.drawing_primitives import color_from_hex_string

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=22)
with pdf.table() as table:

with open(sys.argv[1], encoding="utf-8") as csv_file:
reader = csv.reader(csv_file, delimiter=",")
for i, row in enumerate(reader):

style = None
if i > 0:

We color the row based on the hexadecimal code in the 2nd column:
style = FontFace(fill_color=color_from_hex_string(row[1]))

table.row(row, style=style)
pdf.output("from-csv.pdf")

#!/usr/bin/env python3
Script Dependencies:
openxlsx
USAGE: ./xlsx2table.py color_srgb.xlsx
import sys
from fpdf import FPDF, FontFace
from fpdf.drawing_primitives import color_from_hex_string
from openpyxl import load_workbook

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=22)
wb = load_workbook(sys.argv[1])
ws = wb.active
with pdf.table() as table:

for i, row in enumerate(ws.rows):
style = None
if i > 0:

We color the row based on the hexadecimal code in the 2nd column:
style = FontFace(fill_color=color_from_hex_string(row[1]))

table.row([cell.value for cell in row], style=style)
pdf.output("from-xlsx.pdf")

#!/usr/bin/env python3
Script Dependencies:
odfpy
USAGE: ./ods2table.py color_srgb.ods
import sys
from fpdf import FPDF, FontFace
from fpdf.drawing_primitives import color_from_hex_string
from odf.opendocument import load
from odf.table import Table, TableCell, TableRow

pdf = FPDF()
pdf.add_page()
pdf.set_font("Times", size=22)
ods = load(sys.argv[1])
for sheet in ods.getElementsByType(Table):

with pdf.table() as table:
for i, row in enumerate(sheet.getElementsByType(TableRow)):

row = [str(cell) for cell in row.getElementsByType(TableCell)]
style = None
if i > 0:

We color the row based on the hexadecimal code in the 2nd column:
style = FontFace(fill_color=color_from_hex_string(row[1]))

table.row(row, style=style)
pdf.output("from-ods.pdf")

7.8.1 From a .csv spreadsheet

- 174/193 -

7.8.4 From pandas DataFrame

cf. Maths documentation page

December 11, 2024

7.8.4 From pandas DataFrame

- 175/193 -

7.9 Templating with Jinja

Jinja is a fast, expressive, extensible templating engine.

7.9.1 Combining Jinja & write_html

More details about the supported HTML features: HTML

November 20, 2022

from fpdf import FPDF
from jinja2 import Environment

template = Environment().from_string("""
<h1>{{ title | escape }}</h1>

{% for item in items %}
 {{ item }}
{% endfor %}

""")

title = "HTML & Jinja demo"
items = [

"FIRST",
"SECOND",
"LAST"

]

pdf = FPDF()
pdf.add_page()
pdf.write_html(template.render(**globals()))
pdf.output("templating_with_jinja.pdf")

7.9 Templating with Jinja

- 176/193 -

https://jinja.palletsprojects.com/

7.10 Combine with Rough.js

Rough.js is a small graphics library that lets you draw in a sketchy, hand-drawn-like, style. The library defines primitives to draw

lines, curves, arcs, polygons, circles, and ellipses. It also supports drawing SVG paths.

Rough.js is able to produce SVG files that can then be embedded by fpdf2 (with some limitations regarding SVG support).

This documentation page will guide you on how to do so.

Because there is no Python port of Rough.js, this tutorial requires that you install Node.js & npm to be able to execute Javascript

code.

7.10.1 Producing SVG with Rough.js

First, install the required dependencies:

npm install roughjs xmldom

7.10 Combine with Rough.js

- 177/193 -

https://roughjs.com/
https://roughjs.com/
https://py-pdf.github.io/fpdf2/SVG.html#currently-unsupported-notable-svg-features
https://nodejs.org/fr
https://www.npmjs.com/

Create some graphics using Rough.js API in Javascript. As a starting point, you can copy the following code in a gen-svg.mjs file:

Then execute this code:

import { DOMImplementation, XMLSerializer } from "xmldom";
import roughjs from "roughjs/bundled/rough.cjs.js";
const { svg: roughSvg } = roughjs;

// Creating <svg> element:
const document = new DOMImplementation().createDocument("http://www.w3.org/1999/xhtml", "html", null);
const svg = document.createElementNS("http://www.w3.org/2000/svg", "svg");
svg.setAttribute("viewBox", "0 0 200 200"); // max-X = max-Y = 200

// Drawing rosace using Rough.js:
const rc = roughSvg(svg);
const center = {x: 100, y: 100}
const bigRadius = 66, smallRadius = 50;
const count = 12;
const letters = "0123456789abcdef";
for (let i = 0; i < count; i++) {

const randColor = '#' + [...Array(6)].map(_ => letters[Math.floor(Math.random() * 16)]).join('');
svg.appendChild(rc.circle(center.x + bigRadius*Math.cos(i * 2*Math.PI/count),

center.y + bigRadius*Math.sin(i * 2*Math.PI/count),
smallRadius, { fill: randColor }));

}

// Writing SVG to file:
const xmlSerializer = new XMLSerializer();
await writeFile("graphics.svg", xmlSerializer.serializeToString(svg));

node gen-svg.mjs

7.10.1 Producing SVG with Rough.js

- 178/193 -

A graphics.svg file should be produced, similar to this one:

Alternatively, you can convert an existing SVG file to a Rough.js-sketchy version using for example svg2roughjs.

7.10.2 Embedding Rough.js SVG files

Nothing fancy there, just embedding a SVG image file as described on the SVG page:

Tip

from fpdf import FPDF

pdf = FPDF()
pdf.add_page()

7.10.2 Embedding Rough.js SVG files

- 179/193 -

https://github.com/fskpf/svg2roughjs

Result: graphics_svg.pdf

December 16, 2024

pdf.image("docs/graphics.svg")
pdf.output("graphics_svg.pdf")

7.10.2 Embedding Rough.js SVG files

- 180/193 -

8. Development

8.1 Development

This page has summary information about developing the fpdf2 library.

8.1.1 Repository structure

.github/ - GitHub Actions configuration

docs/ - documentation folder

fpdf/ - library sources

scripts/ - utilities to validate PDF files & publish the package on Pypi

test/ - non-regression tests

tutorial/ - tutorials (see also Tutorial)

README.md - Github and PyPI ReadMe

CHANGELOG.md - details of each release content

LICENSE - code license information

CODEOWNERS - define individuals or teams responsible for code in this repository

CONTRIBUTORS.md - the people who helped build this library ❤️

setup.cfg , setup.py , MANIFEST.in - packaging configuration to publish a package on Pypi

mkdocs.yml - configuration for MkDocs

tox.ini - configuration for Tox

.banditrc.yml - configuration for bandit

.pylintrc - configuration for Pylint

Deprecation policy

We aim to keep public behaviour stable for as long as possible, so removals go through a staged process.

Method deprecation - Document the deprecation directly in the docstring using a .. deprecated:: directive. - Emit a

DeprecationWarning , while still executing a compatible code path when feasible. - Example (from fpdf/fpdf.py):

Parameter deprecation - Step 1: Mark the parameter as deprecated in the documentation and emit a warning when it is

supplied. - Step 2: After a few releases, add the @deprecated_parameter() decorator so that the argument disappears from the

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

def set_doc_option(self, opt, value):
"""

 Defines a document option.

 Args:
 opt (str): name of the option to set
 value (str): option value

 .. deprecated:: 2.4.0
 Simply set the `FPDF.core_fonts_encoding` property as a replacement.
 """

warnings.warn(
(

"set_doc_option() is deprecated since v2.4.0 "
"and will be removed in a future release. "
"Simply set the `.core_fonts_encoding` property as a replacement."

),
DeprecationWarning,
stacklevel=get_stack_level(),

)
if opt != "core_fonts_encoding":

raise FPDFException(f'Unknown document option "{opt}"')
self.core_fonts_encoding = value

8. Development

- 181/193 -

https://pypi.org/project/fpdf2/
https://www.mkdocs.org/
https://tox.readthedocs.io/en/latest/
https://pypi.org/project/bandit/
http://pylint.pycqa.org/en/latest/

public signature and linters/IDEs flag its usage. - Step 3: Remove support for the parameter entirely, once it is safe with respect

to backwards compatibility.

We try to leave generous time between these steps and only delete behaviour when absolutely necessary.

8.1.2 Installing fpdf2 from a local git repository

This will link the installed Python package to the repository location, basically meaning any changes to the code package will get

reflected directly in your environment.

8.1.3 Code auto-formatting

We use black as a code prettifier. This "uncomprimising Python code formatter" must be installed in your development

environment in order to auto-format source code before any commit:

8.1.4 Linting

We use pylint as a static code analyzer to detect potential issues in the code. You can install & execute it by running those

commands:

In case of special "false positive" cases, checks can be disabled locally with #pylint disable=XXX code comments, or globally

through the .pylintrc file.

8.1.5 Static typing

Strict typing is enforced in CI with mypy and pyright (see pyproject.toml). Run them locally before pushing, or enable the pre-

commit hook so they run automatically:

General guidelines: - Use # type: ignore[...] sparingly - Prefer real types over Any - Keep casts to unavoidable spots

8.1.6 Pre-commit hook

This project uses git pre-commit hooks: https://pre-commit.com

Those hooks are configured in .pre-commit-config.yaml .

They are intended to abort your commit if pylint found issues or black detected non-properly formatted code. In the later case

though, it will auto-format your code and you will just have to run git commit -a again.

To install pre-commit hooks on your computer, run:

8.1.7 Testing

Running tests

To run tests, cd into fpdf2 repository, install the dependencies using pip install .[dev,test] , and run pytest .

pip install --editable $path/to/fpdf/repo

pip install black
black . # inside fpdf2 root directory

pip install pylint
pylint fpdf/ test/

pip install fpdf2[dev]
mypy
pyright

pip install pre-commit
pre-commit install

8.1.2 Installing fpdf2 from a local git repository

- 182/193 -

https://github.com/psf/black
https://github.com/PyCQA/pylint/
https://github.com/py-pdf/fpdf2/blob/master/.pre-commit-config.yaml
https://github.com/py-pdf/fpdf2/blob/master/.pre-commit-config.yaml

You may also need to install SWIG and Ghostscript, because they are dependencies for camelot , a library for table extraction in

PDF that we test in test/table/test_table_extraction.py . Those tests will always be executed by the GitHub Actions pipeline, so

you can also not bother installing those tools and skip those tests by running pytest -k "not camelot" .

You can run a single test by executing: pytest -k function_name .

Alternatively, you can use Tox. It is self-documented in the tox.ini file in the repository. To run tests for all versions of Python,

simply run tox . If you do not want to run tests for all versions of python, run tox -e py313 (or your version of Python).

Why is a test failing?

If there are some failing tests after you made a code change, it is usually because there are difference between an expected

PDF generated and the actual one produced.

Calling pytest -vv will display the difference of PDF source code between the expected & actual files, but that may be

difficult to understand,

You can also have a look at the PDF files involved by navigating to the temporary test directory that is printed out during the test

failure:

This directory contains the actual & expected files, that you can vsualize to spot differences:

assert_pdf_equal & writing new tests

When a unit test generates a PDF, it is recommended to use the assert_pdf_equal utility function in order to validate the output.

It relies on the very handy qpdf CLI program to generate a PDF that is easy to compare: annotated, strictly formatted, with

uncompressed internal streams. You will need to have its binary in your $PATH , otherwise assert_pdf_equal will fall back to hash-

based comparison.

All generated PDF files (including those processed by qpdf) will be stored in

/tmp/pytest-of-USERNAME/pytest-current/NAME_OF_TEST/ . By default, three last test runs will be saved and then automatically

deleted, so you can check the output in case of a failed test.

Generating PDF files for testing

In order to generate a "reference" PDF file, simply call assert_pdf_equal once with generate=True .

Next you can invoke pytest path/to/test.py to generate the file some_feature.pdf .

Visually comparing all PDF reference files modified on a branch

This script will build an serve a single HTML page containing all PDF references file modified on your current git branch, and

render them side by side with the PDF file from the master branch, so that you can quickly scroll and check for visible

differences:

=================================== FAILURES ===================================
____________________________ test_html_simple_table ____________________________

tmp_path = PosixPath('/tmp/pytest-of-runner/pytest-0/test_html_simple_table0')

$ ls /tmp/pytest-of-runner/pytest-0/test_html_simple_table0
actual.pdf
actual_qpdf.pdf
expected_qpdf.pdf

def test_some_feature(tmp_path):
pdf = FPDF()
pdf.add_page()
pdf.rect(10, 10, 60, 80)
assert_pdf_equal(pdf, HERE / "some_feature.pdf", tmp_path, generate=True)

scripts/compare-changed-pdfs.py

8.1.7 Testing

- 183/193 -

https://swig.org/index.html
https://www.ghostscript.com/
https://tox.readthedocs.io/en/latest/
https://github.com/qpdf/qpdf

8.1.8 Testing performances

Code speed & profiling

First, try to write a really MINIMAL Python script that focus strictly on the performance point you are investigating. Try to

choose the input dataset so that the script execution time is between 1 and 15 seconds.

Then, you can use cProfile to profile your code and produce a .pstats file:

Finally, you can quickly convert this .pstats file into a SVG flamegraph using flameprof :

You will get something like this:

Source GitHub thread where this was produced: issue #907

Tracking memory usage

A good way to track memory usage is to insert calls to fpdf.util.print_mem_usage() in the code you are investigating. This

function will display the current process resident set size (RSS) which is currently, to the maintainer knowledge, one of the best

way to get an accurate measure of Python scripts memory usage.

There is an example of using this function to track fpdf2 memory usage in this issue comment: issue #641. This thread also

includes some tests of other libs & tools to track memory usage.

python -m cProfile -o profile.pstats script.py

pip install flameprof
flameprof profile.pstats > script-flamegraph.svg

<built-in method builtins.exec>

<module>

_find_and_load

_find_and_load_unlocked

_handle_fromlist

_call_with_frames_removed

<module>

_find_and_load

_find_and_load_unlocked

<module>

_find_and_load

_find_and_load_unlocked

<module>

_find_and_load

_find_and_load_unlocked

<module>

_find_and_load

_find_and_load_unlocked

<module>

_find_and_load

_find_and_load_unlocked

<module>

_find_and_load

_find_and_load_unlocked

<module>

_find_and_load

_find_and_load_unlocked

_load_unlocked

exec_module

_call_with_frames_removed

<built-in method builtins.__import__>

_find_and_load

_find_and_load_unlocked

<built-in method builtins.exec>

<module>

wrapper

cell

_render_styled_text_line

render_pdf_text

render_pdf_text_ttf

_find_spec

<module>

_find_and_load

_find_and_load_unlocked

_load_unlocked

exec_module

_call_with_frames_removed

_handle_fromlist

_call_with_frames_removed

<built-in method builtins.__import__>

_find_and_load

_find_and_load_unlocked

<built-in method builtins.exec>

<module>

wrapper

cell

_render_styled_text_line

render_pdf_text

render_pdf_text_ttf

<module>

wrapper

cell

coerce

__call__<built-in method builtins.isinstance>

coerce_render_styled_text_line

_perform_page_break_if_need_be_outis_ttf_fontget_width

get_text_width

<built-in method builtins.sum>

<genexpr>

<built-in method builtins.ord>

font_size_ptchar_spacing

render_pdf_text

is_ttf_fontrender_pdf_text_ttf

pick

pick_glyph

__eq____hash__

<built-in method builtins.hash>

<method 'get' of 'dict' objects>

__eq____hash__

<built-in method builtins.hash>

get_glyph

<built-in method builtins.isinstance><method 'get' of 'dict' objects>

font stringescape_parens

<method 'replace' of 'str' objects>

<built-in method builtins.chr><built-in method builtins.ord><method 'encode' of 'str' objects>

_preload_font_styles

_parse_chars

is_ttf_font_get_current_graphics_state__init__

normalize_text

is_ttf_font

output

bufferize

_add_pagesserialize

_build_obj_dict

_find_and_load

_find_and_load_unlocked

_load_unlocked

exec_module

_call_with_frames_removed

<built-in method builtins.__import__>

_find_and_load

_find_and_load_unlocked

<built-in method builtins.exec>

<module>

_find_spec

coerce

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_handle_fromlistexec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

coerce

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

get_text_width

get_width

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_handle_fromlistexec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<genexpr>

<built-in method builtins.sum>

get_text_width

get_width

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

_handle_fromlistexec_module

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

pick

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

_handle_fromlistexec_module

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

pick_glyph

pick

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

_handle_fromlistexec_module

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

get_glyph

pick

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

_handle_fromlistexec_module

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

is_ttf_font

normalize_text

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

_parse_chars

_preload_font_styles

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

_out

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

current_font

is_ttf_font

__init__

_parse_chars

_preload_font_styles

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

font

is_ttf_fontrender_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

is_ttf_fontfont_size_pt

get_width

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

char_spacing

get_width

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

get_width

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

_handle_fromlistexec_module

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

escape_parens

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

__call__

coerce

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

__eq__

pick_glyph

pick

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

<method 'get' of 'dict' objects>

pick_glyph

pick

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

get_glyph

pick

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_handle_fromlistexec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

__hash__

pick_glyph

pick

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

exec_module

<method 'get' of 'dict' objects>

pick_glyph

pick

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

exec_module

get_glyph

pick

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_handle_fromlistexec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<built-in method builtins.chr>

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

<built-in method builtins.hash>

__hash__

pick_glyph

pick

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

<method 'get' of 'dict' objects>

pick_glyph

pick

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

get_glyph

pick

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<built-in method builtins.isinstance>

coerce

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

get_glyph

pick

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

<built-in method builtins.ord>

<genexpr>

<built-in method builtins.sum>

get_text_width

get_width

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

exec_module

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

<built-in method builtins.sum>

get_text_width

get_width

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

exec_module

<built-in method posix.stat>

_path_stat

<method 'append' of 'list' objects><method 'encode' of 'str' objects>

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<method 'get' of 'dict' objects>

pick_glyph

pick

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_find_and_load_unlocked

_find_and_load

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

_call_with_frames_removed

<module>

<built-in method builtins.exec>

<built-in method builtins.__import__>

_call_with_frames_removed

_handle_fromlistexec_module

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

get_glyph

pick

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

_handle_fromlist

<module>

<built-in method builtins.exec>

_call_with_frames_removed

exec_module

_load_unlocked

_find_and_load_unlocked

_find_and_load

<method 'join' of 'str' objects><method 'replace' of 'str' objects>

escape_parens

render_pdf_text_ttf

render_pdf_text

_render_styled_text_line

cell

wrapper

<module>

<built-in method builtins.exec>

_call_with_frames_removed

8.1.8 Testing performances

- 184/193 -

https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html
https://pypi.org/project/flameprof/
https://pypi.org/project/flameprof/
https://github.com/py-pdf/fpdf2/issues/907#issuecomment-1705219932
https://fr.wikipedia.org/wiki/Resident_set_size
https://github.com/py-pdf/fpdf2/issues/641#issuecomment-1485048161

Non-regression performance tests

We try to have a small number of unit tests that ensure that the library performances do not degrade over time, when refactoring

are made and new features added.

We have 2 test decorators to help with this:

@ensure_exec_time_below

@ensure_rss_memory_below

As of fpdf2 v2.7.6, we only keep 3 non-regression performance tests:

test_intense_image_rendering() in test_perfs.py

test_charmap_first_999_chars() in test_charmap.py

test_cell_speed_with_long_text() in test_cell.py

8.1.9 GitHub pipeline

A GitHub Actions pipeline is executed on every commit on the master branch, and for every Pull Request.

It performs all validation steps detailed above: code checking with black , static code analysis with pylint , unit tests... Pull

Requests submitted must pass all those checks in order to be approved. Ask maintainers through comments if some errors in the

pipeline seem obscure to you.

Renovate, GitHub Actions & security

We use Renovate to detect dependency updates & create PRs for the Python dependencies / GitHub Actions / NPM dependencies

that we use.

Its configuration file is renovate.json, and the full tool documentation is there: docs.renovatebot.com.

To debug issues with Renovate, it can be useful to invoke it locally using Docker, like this:

We also use zizmor as a GitHub Action to perform static analysis on our pipeline definition files.

In order to use zizmor locally:

typos

typos is a handy CLI tool to detect & auto-fix typos in source files. Installation is relatively straightforward (read the docs).

This tool is invoked in the pre-commit hooks and in our CI pipeline.

If it fails, you should either:

auto-fix the errors detected by invoking typos --write-changes

add an exclusion rule to .typos.toml

8.1.10 Release checklist

complete CHANGELOG.md and add the version & date of the new release

bump FPDF_VERSION in fpdf/fpdf.py . Also (optional, once every year), update contributors/contributors-map-small.png based on

https://py-pdf.github.io/fpdf2/contributors.html

update the announce block in docs/overrides/main.html to mention the new release

•

•

•

•

•

docker run -e LOG_LEVEL=debug docker.io/renovate/renovate:41-full --dry-run --token "$GITHUB_OAUTH_TOKEN" py-pdf/fpdf2

zizmor .github/workflows/*.yml

•

•

1.

2.

3.

8.1.9 GitHub pipeline

- 185/193 -

https://github.com/py-pdf/fpdf2/blob/2.7.5/test/conftest.py#L252
https://github.com/py-pdf/fpdf2/blob/2.7.5/test/conftest.py#L286
https://github.com/py-pdf/fpdf2/blob/2.7.5/test/test_perfs.py
https://github.com/py-pdf/fpdf2/blob/2.7.5/test/fonts/test_charmap.py#L41
https://github.com/py-pdf/fpdf2/blob/master/test/text/test_cell.py#L311
https://help.github.com/en/actions/reference
https://github.com/apps/renovate
https://github.com/py-pdf/fpdf2/blob/master/renovate.json
https://docs.renovatebot.com/
https://woodruffw.github.io/zizmor/
https://github.com/crate-ci/typos
https://en.wikipedia.org/wiki/Typographical_error
https://github.com/crate-ci/typos?tab=readme-ov-file#install
https://py-pdf.github.io/fpdf2/contributors.html

git commit & git push (if editing in a fork: submit and merge a PR)

check that the GitHub Actions succeed, and that a new release appears on Pypi

perform a GitHub release, taking the description from the CHANGELOG.md . It will create a new git tag.

(optional) add a comment mentioning that the feature/fix has been released in all the GitHub issues mentioned in the CHANGELOG.md

8.1.11 Documentation

The standalone documentation is in the docs/ subfolder, written in Markdown.

After being committed to the master branch, documentation is automatically uploaded to GitHub Pages.

Building instructions are contained in .github/workflows/continuous-integration-workflow.yml .

Main documentation using mkdoc

Configuration file: mkdocs.yml

To preview the documentation, launch a local rendering server with:

API documentation using pdoc3

Configuration file: docs/pdoc/config.mako

It is generated from inline comments, and is available on the API page.

There is a useful one-page example Python module with docstrings illustrating how to document code: pdoc3 example_pkg.

To preview the API documentation, launch a local rendering server with:

8.1.12 PDF spec & new features

The PDF 1.7 spec is available on Adobe website: PDF32000_2008.pdf.

The PDF 2.0 spec is available on the Adobe website or on the PDF Association website.

It may be intimidating at first, but while technical, it is usually quite clear and understandable.

It is also a great place to look for new features for fpdf2 : there are still many PDF features that this library does not support.

8.1.13 Useful tools to manipulate PDFs

qpdf

qpdf is a very powerful tool to analyze PDF documents.

One of it most useful features is the QDF mode that can convert any PDF file to a human-readable, decompressed & annotated

new PDF document:

This is extremely useful to peek into the PDF document structure.

pdfly

pdfly is a very handy CLI tool to manipulate PDF files: py-pdf/pdfly.

4.

5.

6.

7.

mkdocs serve --open

pdoc --html -o public/ fpdf --template-dir docs/pdoc --http :

qpdf --qdf doc.pdf doc-qdf.pdf

8.1.11 Documentation

- 186/193 -

https://github.com/py-pdf/fpdf2/actions
https://pypi.org/project/fpdf2/#history
https://github.com/py-pdf/fpdf2/releases
https://py-pdf.github.io/fpdf2/
https://github.com/py-pdf/fpdf2/blob/master/.github/workflows/continuous-integration-workflow.yml
https://github.com/py-pdf/fpdf2/blob/master/.github/workflows/continuous-integration-workflow.yml
https://github.com/py-pdf/fpdf2/blob/master/mkdocs.yml
https://github.com/py-pdf/fpdf2/blob/master/mkdocs.yml
https://github.com/py-pdf/fpdf2/blob/master/docs/pdoc/config.mako
https://github.com/py-pdf/fpdf2/blob/master/docs/pdoc/config.mako
https://py-pdf.github.io/fpdf2/fpdf/
https://github.com/pdoc3/pdoc/blob/master/pdoc/test/example_pkg/__init__.py
https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/PDF32000_2008.pdf
https://developer.adobe.com/document-services/docs/assets/5b15559b96303194340b99820d3a70fa/PDF_ISO_32000-2.pdf
https://www.pdfa.org/sponsored-standards
https://qpdf.sourceforge.io/
https://qpdf.readthedocs.io/en/stable/qdf.html
https://github.com/py-pdf/pdfly?tab=readme-ov-file#usage

Those are some very useful commands:

cat : concatenate pages from PDF files into a single PDF file

meta : show metadata of a PDF file

x2pdf : convert one or more files to PDF. Each file is a page.

update-offsets : rebuild a PDF xref table. This is allows to manually edit a PDF file in a text editor, and then fix its xref table so

that a PDF viewer will be able to open it.

A xref table is basically an index of the document internal sections. When manually modifying a PDF file (for example one

produced by qpdf --qdf), if the characters count in any of its sections changes, the xref table must be rebuilt.

January 8, 2026

•

•

•

•

8.1.13 Useful tools to manipulate PDFs

- 187/193 -

8.2 Logging

fpdf.FPDF generates useful DEBUG logs on generated sections sizes when calling the output() method., that can help to identify

what part of a PDF takes most space (fonts, images, pages...).

Here is an example of setup code to display them:

Example output using the Tutorial first code snippet:

8.2.1 fonttools verbose logs

Since fpdf2 v2.5.7, verbose INFO logs are generated by fonttools , a library we use to parse font files:

You can easily suppress those logs with this single line of code:

Similarly, you can omit verbose logs from fontTools.ttLib.ttFont :

8.2.2 Warning logs for unsupported SVG features

The fpdf.svg module produces WARNING log messages for unsupported SVG tags & attributes. If need be, you can suppress

those logs:

import logging

logging.basicConfig(format="%(asctime)s %(name)s [%(levelname)s] %(message)s",
datefmt="%H:%M:%S", level=logging.DEBUG)

19:25:24 fpdf.output [DEBUG] Final size summary of the biggest document sections:
19:25:24 fpdf.output [DEBUG] - pages: 223.0B
19:25:24 fpdf.output [DEBUG] - fonts: 102.0B

fontTools.subset [INFO] maxp pruned
fontTools.subset [INFO] cmap pruned
fontTools.subset [INFO] post pruned
fontTools.subset [INFO] EBDT dropped
fontTools.subset [INFO] EBLC dropped
fontTools.subset [INFO] GDEF dropped
fontTools.subset [INFO] GPOS dropped
fontTools.subset [INFO] GSUB dropped
fontTools.subset [INFO] DSIG dropped
fontTools.subset [INFO] name pruned
fontTools.subset [INFO] glyf pruned
fontTools.subset [INFO] Added gid0 to subset
fontTools.subset [INFO] Added first four glyphs to subset
fontTools.subset [INFO] Closing glyph list over 'glyf': 25 glyphs before
fontTools.subset [INFO] Glyph names: ['.notdef', 'b', 'braceleft', 'braceright', 'd', 'e', 'eight', 'five', 'four', 'glyph1', 'glyph2', 'h', 'l', 'n', 'nine',
'o', 'one', 'r', 'seven', 'six', 'space', 'three', 'two', 'w', 'zero']
fontTools.subset [INFO] Glyph IDs: [0, 1, 2, 3, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 69, 71, 72, 75, 79, 81, 82, 85, 90, 94, 96]
fontTools.subset [INFO] Closed glyph list over 'glyf': 25 glyphs after
fontTools.subset [INFO] Glyph names: ['.notdef', 'b', 'braceleft', 'braceright', 'd', 'e', 'eight', 'five', 'four', 'glyph1', 'glyph2', 'h', 'l', 'n', 'nine',
'o', 'one', 'r', 'seven', 'six', 'space', 'three', 'two', 'w', 'zero']
fontTools.subset [INFO] Glyph IDs: [0, 1, 2, 3, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 69, 71, 72, 75, 79, 81, 82, 85, 90, 94, 96]
fontTools.subset [INFO] Retaining 25 glyphs
fontTools.subset [INFO] head subsetting not needed
fontTools.subset [INFO] hhea subsetting not needed
fontTools.subset [INFO] maxp subsetting not needed
fontTools.subset [INFO] OS/2 subsetting not needed
fontTools.subset [INFO] hmtx subsetted
fontTools.subset [INFO] cmap subsetted
fontTools.subset [INFO] fpgm subsetting not needed
fontTools.subset [INFO] prep subsetting not needed
fontTools.subset [INFO] cvt subsetting not needed
fontTools.subset [INFO] loca subsetting not needed
fontTools.subset [INFO] post subsetted
fontTools.subset [INFO] name subsetting not needed
fontTools.subset [INFO] glyf subsetted
fontTools.subset [INFO] head pruned
fontTools.subset [INFO] OS/2 Unicode ranges pruned: [0]
fontTools.subset [INFO] glyf pruned

logging.getLogger('fontTools.subset').level = logging.WARN

logging.getLogger('fontTools.ttLib.ttFont').level = logging.WARN

8.2 Logging

- 188/193 -

November 22, 2023

logging.getLogger("fpdf.svg").propagate = False

8.2.2 Warning logs for unsupported SVG features

- 189/193 -

8.3 fpdf2 internals

8.3.1 FPDF.pages

FPDF is designed to add content progressively to the document generated, page by page.

Each page is an entry in the .pages attribute of FPDF instances. Indices start at 1 (the first page) and values are PDFPage

instances.

PDFPage instances have a .contents attribute that is a bytearray and contains the Content Stream for this page (bytearray

makes things a lot faster).

Going back to a previously generated page to add content is possible, using the .page attribute, but may result in unexpected

behavior, because .add_page() takes special care to ensure the page's content stream matches FPDF 's instance attributes.

8.3.2 syntax.py & objects serialization

The syntax.py package contains classes representing core elements of the PDF syntax.

Classes inherit from the PDFObject class, that has the following properties:

every PDF object has an .id , that is assigned during the document serialization by the OutputProducer

the .serialize() method renders the PDF object as an obj<<...>>endobj text block. It can be overridden by child classes

the .content_stream() method must return non empty bytes if the PDF Object has a content stream

Other notable core classes are:

Name

Raw

PDFString

PDFArray

PDFDate

8.3.3 GraphicsStateMixin

This mixin class, inherited by the FPDF class, allows to manage a stack of graphics state variables:

docstring: fpdf.graphics_state.GraphicsStateMixin

source file: graphics_state.py

data container: fpdf.graphics_state.GraphicsState

The main methods of this API are:

_push_local_stack(): Push a graphics state on the stack

_pop_local_stack(): Pop the last graphics state on the stack

_get_current_graphics_state(): Retrieve the current graphics state

_is_current_graphics_state_nested(): Indicate if a nested graphics state is active

Each stack entry is a GraphicsState dataclass, and _get_current_graphics_state() returns a copy used by fragments or temporary

contexts.

Thanks to this mixin, we can use the following semantics:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

from fpdf.graphics_state import GraphicsStateMixin

f = GraphicsStateMixin()
Push initial state in stack: gs0

8.3 fpdf2 internals

- 190/193 -

https://py-pdf.github.io/fpdf2/fpdf/output.html#fpdf.output.PDFPage
https://py-pdf.github.io/fpdf2/fpdf/output.html#fpdf.output.PDFPage
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytearray
https://github.com/reingart/pyfpdf/pull/164
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.page
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.page
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_page
https://github.com/py-pdf/fpdf2/blob/master/fpdf/syntax.py
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.syntax.PDFObject
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.syntax.Name
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.syntax.Raw
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.syntax.PDFString
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.syntax.PDFArray
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.syntax.PDFDate
https://py-pdf.github.io/fpdf2/fpdf/graphics_state.html#fpdf.graphics_state.GraphicsStateMixin
https://github.com/py-pdf/fpdf2/blob/master/fpdf/graphics_state.py
https://py-pdf.github.io/fpdf2/fpdf/graphics_state.html#fpdf.graphics_state.GraphicsState
https://py-pdf.github.io/fpdf2/fpdf/graphics_state.html#fpdf.graphics_state.GraphicsStateMixin._push_local_stack
https://py-pdf.github.io/fpdf2/fpdf/graphics_state.html#fpdf.graphics_state.GraphicsStateMixin._pop_local_stack
https://py-pdf.github.io/fpdf2/fpdf/graphics_state.html#fpdf.graphics_state.GraphicsStateMixin._get_current_graphics_state
https://py-pdf.github.io/fpdf2/fpdf/graphics_state.html#fpdf.graphics_state.GraphicsStateMixin._is_current_graphics_state_nested

The graphics states used in the code above can be depicted by this diagram:

8.3.4 OutputProducer

In fpdf2 , the FPDF class is used to store the document definition, its state as it is progressively built. Most attributes and

internal data is mutable.

Once it's done, when the FPDF.output() method is called, the actual PDF file creation is delegated to the OutputProducer class.

It performs the serialization of the PDF document, including the generation of the cross-reference table & file trailer. This class

uses the FPDF instance as immutable input: it does not perform any modification on it.

January 20, 2026

gs0 = f._push_local_stack()
Step 1 - set some graphic styles: gs1
f.font_size_pt = 16
f.underline = True
gs1 = f._get_current_graphics_state()
Step 2 - restore gs0
f._pop_local_stack()
print(f"{f.font_size_pt=} {f.underline=}")
-> f.font_size_pt=0 f.underline=False

stateDiagram-v2
 direction LR
 state gs0 {
 initial1 : Base state
 }
 state gs1 {
 initial2 : Base state
 font_size_pt2 : font_size_pt=16
 underline2 : underline=True
 font_size_pt2 --> initial2
 underline2 --> font_size_pt2
 }
 gs0 --> gs1: Step 1
 state "gs0" as stack2 {
 initial3 : Base state
 }
 gs1 --> stack2: Step 2

8.3.4 OutputProducer

- 191/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.output
https://py-pdf.github.io/fpdf2/fpdf/output.html#fpdf.output.OutputProducer
https://py-pdf.github.io/fpdf2/fpdf/output.html#fpdf.output.PDFXrefAndTrailer

9. History

This project, fpdf2 is a fork of the PyFPDF project, which can still be found on GitHub at reingart/pyfpdf, but has been totally

inactive since January 2018, and has not seen any new release since 2015.

About the original PyFPDF lib:

This project started as a Python fork of the FPDF PHP library, ported to Python by Max Pat in 2006: http://www.fpdf.org/dl.php?

id=94. The original FPDF library was developed in PHP several years ago, and has been ported to many programming languages:

http://www.fpdf.org. Later, in the Python FPDF library, code for native reading TTF fonts was added. In 2008 it was moved from a

SVN repository to git on Google Code by Mariano Reingart, who became the maintainer of FPDF. In 2013, it was migrated to

GitHub: https://github.com/reingart/pyfpdf. You can still access the old issues, and old wiki, that were moved to a dedicated

repository. The original roadmap can also still be found there: https://github.com/reingart/pyfpdf/wiki/Roadmap

9.1 How fpdf2 came to be

During the spring of 2016, David Ankin (@alexanderankin) started a fork of PyFPDF, and added the first commit of what became

fpdf2 : bd608e4. On May of 2017, the first release of fpdf2 was published on Pypi: v2.0.0.

On 2020, the first PRs were merged from external contributors. At the end of the year, Lucas Cimon (@Lucas-C) started

contributing several improvements, in order to use fpdf2 for his Undying Dusk project. Version 2.1.0 was released and on

2021/01/10 fpdf2 was moved to a dedicated PyFPDF GitHub organization, and @Lucas-C became another maintainer of the

project.

On 2023/08/04, fpdf2 moved to the py-pdf organization: https://github.com/py-pdf/fpdf2. The context for this move can be found

there: discussion #752. On this date, the PyFPDF GitHub organization has been archived. The same month, Georg Mischler

(@gmischler) and Anderson Herzogenrath da Costa (@andersonhc) joined the project as new maintainers.

9.2 Compatibility between PyFPDF & fpdf2

fpdf2 aims to be fully compatible with PyFPDF original code (fpdf==1.7.2).

The notable exceptions are:

for the cell() method, the default value of h has changed. It used to be 0 and is now set to the current value of

FPDF.font_size

the font caching mechanism, that used the pickle module, has been removed, for security reasons, and because it provided

little performance gain, and only for specific use cases - cf. issue #345.

Template elements now have a transparent background by default, instead of white

Additionally, HTML rendering is not guaranteed to be identical regarding whitespace, especially since version 2.7.6 and the new

set of classes introduced to manage text flow: Text Flow Regions

•

•

•

9. History

- 192/193 -

https://github.com/reingart/pyfpdf
http://fpdf.org/
http://www.fpdf.org/dl.php?id=94
http://www.fpdf.org/dl.php?id=94
http://www.fpdf.org
https://code.google.com/p/pyfpdf/
https://github.com/reingart/pyfpdf
https://github.com/reingart/pyfpdf_googlecode/issues
https://github.com/reingart/pyfpdf_googlecode/tree/wiki
https://github.com/reingart/pyfpdf/wiki/Roadmap
https://github.com/py-pdf/fpdf2/commits/master?after=1db5f7fdc93eac981c8f1d15856649b68e523ec8+69&branch=master&qualified_name=refs-2Fheads-2Fmaster
https://pypi.org/project/fpdf2/#history
https://github.com/Lucas-C/
https://lucas-c.itch.io/undying-dusk
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md#210---2020-12-07
https://github.com/py-pdf/fpdf2/blob/master/CHANGELOG.md#210---2020-12-07
https://github.com/py-pdf/fpdf2
https://github.com/py-pdf/fpdf2/discussions/752
https://github.com/gmischler
https://github.com/andersonhc
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.cell
https://github.com/py-pdf/fpdf2/issues/345
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template

Some features are also deprecated. As of version 2.8.4 they still work but generate a warning when used:

⚠️ FPDF.rotate() can produce malformed PDFs: use FPDF.rotation() instead

font aliases (Arial → Helvetica , CourierNew → Courier , TimesNewRoman → Times)

FPDF.set_doc_option(): simply set the .core_fonts_encoding property as a replacement

FPDF.dashed_line(): use FPDF.set_dash_pattern() and the normal drawing operations instead

the font_cache_dir parameter of FPDF() constructor, that is currently ignored

the uni parameter of FPDF.add_font(), that is currently ignored: if the value of the fname argument passed to add_font() ends

with .ttf , it is considered a TrueType font

the type parameter of FPDF.image(), that is currently ignored

the dest parameter of FPDF.output(), that is currently ignored

the ln parameter of FPDF.multi_cell(): use new_x= & new_y= instead

the split_only parameter of FPDF.multi_cell(): use dry_run=True and output="LINES" instead

the HTMLMixin class: you can now directly use the FPDF.write_html() method

the infile parametyer of Template() constructor, that is currently ignored

the parameters x/y/w/h of code39 elements provided to the Template system: please use x1/y1/y2/size instead

the dest parameter of Template.render(), that is currently ignored

to improve naming consistency, the txt parameters of FPDF.cell() , FPDF.multi_cell() , FPDF.text() & FPDF.write() have been

renamed to text

Note that DeprecationWarning messages are not displayed by Python by default. To get warned about deprecated features used in

your code, you must execute your scripts with the -Wd option (cf. documentation), or enable them programmatically with

warnings.simplefilter('default', DeprecationWarning) .

October 15, 2025

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

9.2 Compatibility between PyFPDF & fpdf2

- 193/193 -

https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rotate
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.rotation
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_doc_option
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.dashed_line
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.set_dash_pattern
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.add_font
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.image
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.output
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.multi_cell
https://py-pdf.github.io/fpdf2/fpdf/html.html#fpdf.html.HTMLMixin
https://py-pdf.github.io/fpdf2/fpdf/fpdf.html#fpdf.fpdf.FPDF.write_html
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template
https://py-pdf.github.io/fpdf2/fpdf/template.html#fpdf.template.Template.render
https://docs.python.org/3/using/cmdline.html#cmdoption-W

	fpdf2 manual
	1. fpdf2
	1.1 Main features
	1.2 Tutorials
	1.3 Installation
	1.3.1 Displaying deprecation warnings

	1.4 Community
	1.4.1 Support
	1.4.2 They use fpdf2
	1.4.3 Usage statistics
	1.4.4 Related

	1.5 Misc

	2. Tutorial
	2.1 Hello World with fpdf2
	2.2 Tutorial
	2.2.1 Tuto 1 - Minimal Example
	2.2.2 Tuto 2 - Header, footer, page break and image
	2.2.3 Tuto 3 - Line breaks and colors
	2.2.4 Tuto 4 - Multi Columns
	2.2.5 Tuto 5 - Creating Tables
	2.2.6 Tuto 6 - Creating links and mixing text styles
	2.2.7 Tuto 7 - Creating PDF/A Documents
	PDF/A Standards
	Conformance Classes

	3. Page Layout
	3.1 Page format and orientation
	3.1.1 Per-page format, orientation and background
	3.1.2 Page layout & zoom level
	3.1.3 Viewer preferences
	3.1.4 Full screen

	3.2 Margins
	3.3 Templates
	3.3.1 Using Template
	3.3.2 Using FlexTemplate
	3.3.3 Details - Template definition
	3.3.4 How to create a template
	Example - Python dict
	Example - Elements defined in JSON file
	Example - Elements defined in CSV file

	3.4 Text Flow Regions
	3.4.1 Text Flow Regions
	General Operation
	Text Start Position
	Interaction Between Regions
	Common Parameters
	Common Methods

	Paragraphs
	Possible Future Extensions

	Images

	3.4.2 Text Columns
	Text Columns
	Single-Column Example
	Multi-Column Example
	Balanced Columns
	Possible future extensions

	3.5 Tables
	3.5.1 Features
	3.5.2 Setting table & column widths
	3.5.3 Setting text alignment
	3.5.4 Setting cell padding
	3.5.5 Setting vertical alignment of text in cells
	3.5.6 Setting row height
	3.5.7 Disable table headings
	3.5.8 Style table headings
	3.5.9 Set cells background
	3.5.10 Set borders layout
	3.5.11 Set cell borders
	3.5.12 Insert images
	3.5.13 Adding links to cells
	3.5.14 Syntactic sugar
	3.5.15 Gutter
	3.5.16 Column span and row span
	3.5.17 Table with multiple heading rows
	3.5.18 Table from pandas DataFrame or spreadsheet files
	3.5.19 Using write_html
	3.5.20 "Parsabilty" of the tables generated

	4. Text Content
	4.1 Adding Text
	4.1.1 Simple Text Methods
	4.1.2 Flowable Text Regions
	4.1.3 Typography and Language Specific Concepts
	Supported Features
	Limitations
	Character or Word Based Line Wrapping

	4.1.4 Text Formatting
	4.1.5 Change in current position
	4.1.6 .text()
	4.1.7 .cell()
	4.1.8 .multi_cell()
	4.1.9 .write()
	4.1.10 .write_html()

	4.2 Line breaks
	4.3 Page breaks
	4.3.1 Manually trigger a page break
	4.3.2 Inserting the final number of pages of the document
	4.3.3 will_page_break
	4.3.4 Unbreakable sections

	4.4 Text styling
	4.4.1 .set_font()
	4.4.2 .set_stretching(stretching=100)
	4.4.3 .set_char_spacing(spacing=0)
	4.4.4 Subscript, Superscript, and Fractional Numbers
	4.4.5 .text_mode
	4.4.6 markdown=True
	4.4.7 .write_html()

	4.5 Fonts and Unicode
	Web fonts (WOFF and WOFF2)
	Font collections (TTC/OTC)
	Built-in Fonts vs. Unicode Fonts
	Adding and Using Fonts
	Note on non-latin languages
	Right-to-Left scripts
	4.5.1 Example
	4.5.2 Free Font Pack
	4.5.3 Fallback fonts
	4.5.4 Unicode range limits
	4.5.5 Variable Fonts
	4.5.6 Color Font Palette Selection

	4.6 Text Shaping
	4.6.1 What is text shaping?
	Kerning
	Ligatures
	Glyph Substitution

	4.6.2 Usage
	Basic usage
	Features
	Additional options

	4.6.3 Bidirectional Text
	Unicode Bidirectional Algorithm
	Paragraph direction
	Bidirectional text in fpdf2

	4.7 Emojis, Symbols & Dingbats
	4.7.1 Emojis
	4.7.2 Color fonts and emojis
	4.7.3 Symbols
	4.7.4 Dingbats
	4.7.5 Fallback fonts

	4.8 HTML
	4.8.1 write_html usage example
	Styling HTML tags globally
	Default font

	4.8.2 Supported HTML features
	Page breaks

	4.8.3 Known limitations
	4.8.4 Using Markdown

	5. Graphics Content
	5.1 Images
	5.1.1 Simple example
	5.1.2 Alpha / transparency
	5.1.3 Assembling images
	Side by side images, full height, landscape page
	Fitting an image inside a rectangle
	Image alignment in the bounding box

	Blending images

	5.1.4 Image clipping
	5.1.5 Alternative description
	5.1.6 Usage with Pillow
	5.1.7 SVG images
	5.1.8 Retrieve images from URLs
	5.1.9 Image compression
	5.1.10 Output Intents
	5.1.11 ICC Profiles
	5.1.12 Oversized images detection & downscaling
	5.1.13 Disabling transparency
	5.1.14 Page background
	5.1.15 Sharing the image cache among FPDF instances

	5.2 Shapes
	5.2.1 Lines
	5.2.2 Circle
	5.2.3 Ellipse
	5.2.4 Rectangle
	5.2.5 Polygon
	5.2.6 Arc
	5.2.7 Solid arc
	5.2.8 Bezier Curve
	5.2.9 Regular Polygon
	5.2.10 Regular Star
	5.2.11 Path styling

	5.3 Transformations
	5.3.1 Rotation
	5.3.2 Skew
	5.3.3 Mirror

	5.4 Transparency
	5.5 Patterns and Gradients
	5.5.1 Overview
	5.5.2 2. Gradients
	2.1 What is a Gradient?
	2.2 Linear Gradients (axial shading)
	2.3 Radial Gradients

	5.5.3 4. Advanced Usage
	4.1 Multiple Colors
	4.2 Extending & Background for Linear Gradients
	4.3 Custom Bounds

	5.6 Barcodes
	5.6.1 Code 39
	5.6.2 Interleaved 2 of 5
	5.6.3 PDF-417
	5.6.4 QRCode
	5.6.5 DataMatrix
	Extend FPDF with a datamatrix() method

	5.6.6 Aztec Code
	5.6.7 Code128

	5.7 Drawing
	5.7.1 Getting Started
	5.7.2 Adding Some Style
	5.7.3 Transforms And You
	5.7.4 Clipping Paths
	5.7.5 Compositing operations
	5.7.6 Next Steps

	5.8 Scalable Vector Graphics (SVG)
	5.8.1 Basic usage
	5.8.2 Detailed example
	5.8.3 Converting vector graphics to raster graphics
	Using cairosvg
	Using svglib and reportlab

	5.8.4 Warning logs
	5.8.5 Supported SVG Features
	5.8.6 Currently Unsupported Notable SVG Features

	5.9 Charts & graphs
	5.9.1 Charts
	Using Matplotlib
	Using Pandas
	Using Ibis
	Using Plotly
	Using Pygal

	5.9.2 Mathematical formulas
	Using Google Charts API
	Using LaTeX & Matplotlib

	6. PDF Features
	6.1 Links
	6.1.1 Hyperlink with FPDF.cell
	6.1.2 Hyperlink with FPDF.multi_cell
	6.1.3 Hyperlink with FPDF.link
	6.1.4 Hyperlink with write_html
	6.1.5 Internal links
	6.1.6 Links to other documents on the filesystem
	6.1.7 Alternative description

	6.2 Metadata
	6.3 Annotations
	6.3.1 Text annotations
	6.3.2 Free Text Annotations
	6.3.3 Highlights
	6.3.4 Ink annotations
	6.3.5 File attachments
	6.3.6 Named actions
	6.3.7 Launch actions

	6.4 Presentations
	6.4.1 Page display duration
	6.4.2 Transitions

	6.5 Document Outline & Table of Contents
	6.5.1 Overview
	6.5.2 Document Outline (Bookmarks)
	Nested outlines

	6.5.3 Table of Contents
	Inserting a Table of Contents
	Reference Implementation

	6.5.4 Using Outlines and ToC with HTML
	6.5.5 Additional Code Samples
	6.5.6 Manually Adjusting pdf.page

	6.6 Page Labels
	6.6.1 Overview
	6.6.2 Page Label Components
	1. Style
	2. Prefix
	3. Start

	6.6.3 Using Page Labels in fpdf2
	Adding a Page with Labels in add_page()
	Modifying Page Labels with set_page_label()
	Retrieving the Current Page Label with get_page_label()

	6.6.4 Example Usage

	6.7 Encryption
	6.7.1 Password locking
	6.7.2 Access permissions
	6.7.3 Encryption method

	6.8 Signing
	6.9 File attachments
	6.9.1 Embedded file streams
	6.9.2 Annotations

	6.10 PDF/A with fpdf2
	6.10.1 What is PDF/A
	6.10.2 Choosing a PDF/A Profile
	6.10.3 How to produce PDF/A with fpdf2
	Pick a profile at construction time
	Quick example

	6.10.4 Future: Accessible documents (WCAG/PDF/UA)

	7. Mixing other libs
	7.1 Combine with pypdf
	7.1.1 Adding content onto an existing PDF page
	7.1.2 Adding a page to an existing PDF
	7.1.3 Altering with pypdf a document generated with fpdf2

	7.2 Combine with Markdown
	7.2.1 mistletoe
	Rendering unicode characters

	7.2.2 markdown-it-py
	7.2.3 mistune
	7.2.4 Python-Markdown
	7.2.5 Text styling, fonts, etc.

	7.3 Combine with livereload
	7.4 borb
	7.4.1 Creating a document with fpdf2 and transforming it into a borb.pdf.document.Document

	7.5 Combine with pdfrw
	7.5.1 Adding content onto an existing PDF page
	7.5.2 Adding a page to an existing PDF
	7.5.3 Altering with pdfrw a document generated with fpdf2

	7.6 Matplotlib, Pandas, Plotly, Pygal
	7.7 Usage in web APIs
	7.7.1 Django
	7.7.2 WSGI applications
	Flask
	Bottle
	CherryPy

	7.7.3 AWS lambda
	7.7.4 streamlit
	7.7.5 FastAPI
	7.7.6 Plone
	As a Browser View
	As a Custom Content Type Method
	With Catalog Queries
	Notes for Plone Developers

	7.7.7 Jupyter
	7.7.8 web2py

	7.8 Rendering spreadsheets as PDF tables
	7.8.1 From a .csv spreadsheet
	7.8.2 From a .xlsx spreadsheet
	7.8.3 From an .ods spreadsheet
	7.8.4 From pandas DataFrame

	7.9 Templating with Jinja
	7.9.1 Combining Jinja & write_html

	7.10 Combine with Rough.js
	7.10.1 Producing SVG with Rough.js
	7.10.2 Embedding Rough.js SVG files

	8. Development
	8.1 Development
	8.1.1 Repository structure
	Deprecation policy

	8.1.2 Installing fpdf2 from a local git repository
	8.1.3 Code auto-formatting
	8.1.4 Linting
	8.1.5 Static typing
	8.1.6 Pre-commit hook
	8.1.7 Testing
	Running tests
	Why is a test failing?
	assert_pdf_equal & writing new tests
	Generating PDF files for testing
	Visually comparing all PDF reference files modified on a branch

	8.1.8 Testing performances
	Code speed & profiling
	Tracking memory usage
	Non-regression performance tests

	8.1.9 GitHub pipeline
	Renovate, GitHub Actions & security
	typos

	8.1.10 Release checklist
	8.1.11 Documentation
	Main documentation using mkdoc
	API documentation using pdoc3

	8.1.12 PDF spec & new features
	8.1.13 Useful tools to manipulate PDFs
	qpdf
	pdfly

	8.2 Logging
	8.2.1 fonttools verbose logs
	8.2.2 Warning logs for unsupported SVG features

	8.3 fpdf2 internals
	8.3.1 FPDF.pages
	8.3.2 syntax.py & objects serialization
	8.3.3 GraphicsStateMixin
	8.3.4 OutputProducer

	9. History
	9.1 How fpdf2 came to be
	9.2 Compatibility between PyFPDF & fpdf2

