
RegularGames
General Game Description Language Based on Finite Automata

Radosław Miernik, radoslaw.miernik@cs.uni.wroc.pl
Computational Intelligence Research Group,

Institute of Computer Science, University of Wrocław

General Game Playing
General Game Playing (GGP) aims to design, implement,

and analyze artificial intelligence programs in a general way,
i.e., not bound to a single game (more generally, a single
problem). It is considered a necessary step towards AGI.

While some GGP environments focus on API-level gen-
eralism (where the agent can play all games using a fixed
API interface), most of them use a formal game descrip-
tion language of varying complexity levels (where the agent
can play all games describable using this language).

Arguably, the most popular GGP language is Game De-
scription Language (GDL), created at Stanford University in
2005 [1], describing all finite, deterministic, turn-based
games with perfect information.

Regular Boardgames
The objective of Regular Boardgames (RBG) [2, 3] was

to join the key GGP properties, such as expressiveness,
efficiency, and naturalness, in one formalism, while com-
pensating certain drawbacks of the existing languages.

This makes RBG more suitable for various research and
practical developments in GGP. While dedicated mainly to
describing human-playable board games, RBG covers the
same class of games as GDL, often with significantly
shorter and easier to understand definitions.

RBG was the first GGP language that allowed efficient
encoding and playing games with complex rules and a large
branching factor (e.g., Amazons, Arimaa, large Chess vari-
ants, Go, International Checkers, Paper Soccer).

Regular Games
Regular Games (RG) is meant to supersede RBG by being

an even more expressive and performant GGP language.
Most importantly, it is designed to describe games with
imperfect information, e.g., Poker.

The main difference is that it no longer defines the game
as a regular expression but as a finite automaton instead.
Such a paradigm change results in new challenges but also
a wide array of game-independent improvements.

There is also a "High Level RG" (HRG) language. How-
ever, contrary to "High Level RBG", it is an entirely dif-
ferent language – not a set of extensions. It is meant to
look more like a general programming language, where the
underlying automaton is more of an implementation detail.

Integrated Development Environment

A fully-fledged Integrated Development Environment (IDE)
is available at radekmie.dev/rg. The code editor on the
left implements most features available in commercial IDEs,
like syntax highlighting, type hints, and symbol renaming.

The right panel begins with translation settings (e.g., which
optimizations should be applied), a game benchmarking tool,
and an automaton visualization. All options are applied im-
mediately and work on-the-fly, right in the user’s browser.

Related Work
Regular Games started with an informal language speci-

fication, basic type checker, and a naive interpreter. Over
time, the project attracted multiple students to extend it in
their theses, building a compiler, a Language Server Proto-
col server, and numerous optimization passes.

Thanks to gdl2rg and rbg2rg, we are no longer lim-
ited to native games – all games written in GDL and RBG
can be automatically translated (with some overhead).

.rg AST

LSP

Transformations

Validators

Interpreter

rbg2rg

.rbg

hrg2rg.hrg

gdl2rg.kif

Compiler

C++Compiler C++

Neural Agent

[4]

[1]

[5] [6]

[2, 3]

[7, 8]

References
[1] Michael Thielscher. A General Game Description Language for

Incomplete Information Games. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 24(1):994–999, 2010.

[2] Jakub Kowalski, Maksymilian Mika, Jakub Sutowicz, and Marek
Szykuła. Regular Boardgames. AAAI Conference on Artificial
Intelligence, 33(1):1699–1706, 2019.

[3] Jakub Kowalski, Radosław Miernik, Maksymilian Mika, Wojciech
Pawlik, Jakub Sutowicz, Marek Szykuła, and Andrzej Tkaczyk.
Efficient Reasoning in Regular Boardgames. In IEEE Conference
on Games, pages 455–462, 2020.

[4] Jakub Cieśluk. Optimizations in Regular Games. Master’s thesis,
University of Wrocław, (in progress).

[5] Jakub Cieśluk. IDE for Regular Games. Engineer’s thesis, Univer-
sity of Wrocław, 2024.

[6] Łukasz Galas and Wojciech Pawlik. Optimizations in Regular
Games. Master’s thesis, University of Wrocław, (in progress).

[7] Michał. Maras, Michał Kępa, Jakub Kowalski, and Marek Szykuła.
Fast and Knowledge-Free Deep Learning for General Game Playing
(Student Abstract). AAAI Conference on Artificial Intelligence,
38(21):23576–23578, 2024.

[8] Michał. Maras and Michał Kępa. Enhancing self-play learning of a
general agent for Regular Boardgames. Master’s thesis, University
of Wrocław, (in progress).

Breathrough.hrg

Interpreter Performance
Variant No optimizations All optimizations
.hrg 48.60± 1.26 28.24± 0.34
.hrg-rf 47.22± 0.74 29.16± 0.44
.rg 52.60± 1.02 39.68± 0.56
.rbg 388.7± 0.38 54.07± 0.78
.kif 458.4± 16.9 192.8± 7.81

Average TicTacToe simulation time (in microseconds).

While the translations allow us to run GDL and RBG
games using RG’s interpreter or compiler, the paradigm
change come at a price.

The -rf variant of the HRG game version uses the
--reuseFunctions option to produce a smaller automa-
ton at a cost of (potentially) more variables.

Automaton Size
Variant No optimizations All optimizations
.hrg 92 : 87 54 : 49
.hrg-rf 57 : 54 34 : 31
.rg 30 : 27 27 : 24
.rbg 333 : 322 139 : 126
.kif 1260 : 1132 626 : 487

TicTacToe automaton size – number of edges and nodes.

Every translation may be approached differently, result-
ing in different automaton characteristics, like their size,
number of used variables, or expressions complexity.

The RBG translation is based on Thompson’s algorithm,
i.e., a non-deterministic automaton accepting legal moves.

The GDL translation builds an automaton that performs
depth-first search of the legal moves. The construction itself
is trivial, but requires grounding of all terms in the game
definition, which often results in an exponential explosion.

https://radekmie.dev/rg/

