N

ks

Uniwersytet
>) Wroctawski

Regular Games

General Game Description Language Based on Finite Automata

Radostaw Miernik, radoslaw.miernik@cs.uni.wroc.pl

Computational Intelligence Research Group,
Institute of Computer Science, University of Wroctaw

General Game Playing

General Game Playing (GGP) aims to design, implement,
and analyze artificial intelligence programs in a general way,
i.e., not bound to a single game (more generally, a single
problem). It is considered a necessary step towards AGlI.

While some GGP environments focus on APl-level gen-
eralism (where the agent can play all games using a fixed
API interface), most of them use a formal game descrip-
tion language of varying complexity levels (where the agent
can play all games describable using this language).

Arguably, the most popular GGP language is Game De-
scription Language (GDL), created at Stanford University in
2005 [1], describing all finite, deterministic, turn-based
games with perfect information.

Regular Boardgames

The objective of Regular Boardgames (RBG) [2, 3] was
to join the key GGP properties, such as expressiveness,
efficiency, and naturalness, in one formalism, while com-
pensating certain drawbacks of the existing languages.

This makes RBG more suitable for various research and
practical developments in GGP. While dedicated mainly to
describing human-playable board games, RBG covers the
same class of games as GDL, often with significantly
shorter and easier to understand definitions.

RBG was the first GGP language that allowed efficient
encoding and playing games with complex rules and a large
branching factor (e.g., Amazons, Arimaa, large Chess vari-
ants, Go, International Checkers, Paper Soccer).

e

38 board : Position —> Piece ?
39 board = { =
40 vixX) = S
41 if Y < 2 then blackpawn else —
42 if Y > 5 then whitepawn else empty @ =
43 where X 1n 0..7, Y 1n 0..7

44

45

46 graph move(me: Player) {

47 forall p:Position {

48 check(p '= null && board[p] == piece(me))

49 board[p] = empty

50 position = direction(me) (p)

51 $p

52 g

53 branch {

54 check(board[position] == empty) $ F

55 } or {

56 branch {

57 position = left(position) $ L

58 } or |

59 position = right(position) $ R

60 }

61 check(position != null)

62 check(board[position] != piecelme])

63 i

64 |}

65

66 graph turn() {

67 player = me

A fully-fledged Integrated Development Environment (IDE)
is available at radekmie.dev/rg. The code editor on the
left implements most features available in commercial IDEs,
like syntax highlighting, type hints, and symbol renaming.

Breakthrough.hrg s 2 Automaton —

v Optimizations
——compactComparisons
——compactSkipEdges
——inlineAssignment
——inlineReachability
——joinExclusiveEdges
——joinForkPrefixes
——joinForkSuffixes
——propagateConstants
——pruneSingletonTypes
——pruneUnreachableNodes

begin
rules_begin move_call_2
/ wr = melme = opponent[me]
move_begin

The right panel begins with translation settings (e.g., which
optimizations should be applied), a game benchmarking tool,
and an automaton visualization. All options are applied im-
mediately and work on-the-fly, right in the user’s browser.

Regular Games Breathrough.hrg Related Work

a wide array of game-ind
There is also a "High
ever, contrary to "High

Regular Games (RG) is meant to supersede RBG by being
an even more expressive and performant GGP language.
Most importantly, it is designed to describe games with
imperfect information, e.g., Poker.

The main difference is that it no longer defines the game
as a regular expression but as a finite automaton instead.
Such a paradigm change results in new challenges but also

epend
evel

ent Improvements.
RG" (HRG) language. How-

_evel

ferent language — not a set of extensions. It is meant to
look more like a general programming language, where the
underlying automaton is more of an implementation detail.

RBG", it is an entirely dif-

Interpreter Performance

_change come at a price.

Variant No optimizations All optimizations
.hrg 48.60 + 1.26 28.24 +0.34
. hI‘g—I"F 47.22 +0.74 29.16 £+ 0.44
.I'g 52.60 £ 1.02 39.68 + 0.56
. I‘bg 388.7 £ 0.38 H4.07 £ 0.78
CKif 458.4 +16.9 192.8 + 7.81

Average TicTacToe simulation time (in microseconds).

While the translations allow us to run GDL and RBG
games using RG's interpreter or compiler, the paradigm

The —rf variant of the HRG game version uses the
——reuseFunctions option to produce a smaller automa-
ton at a cost of (potentially) more variables.

Automaton Size

Variant No optimizations All optimizations
.hrg 92 : 87 54 : 49
.hrg-rf 57 : 54 34 : 31

.Ig 30 : 27 27 : 24
.rbg 333 : 322 139 : 126
CKif 1260 : 1132 626 : 487

TicTacToe automaton size — number of edges and nodes. =

Every translation may be approached differently, result-
ing in different automaton characteristics, like their size,
number of used variables, or expressions complexity.

The RBG translation is based on Thompson's algorithm,
l.e., a non-deterministic automaton accepting legal moves.

The GDL translation builds an automaton that performs
depth-first search of the legal moves. The construction itself
is trivial, but requires grounding of al
definition, which often results in an exponential explosion.

terms in the game

domain Piece = blackpawn | empty | whitepawn

domain Player = white | black

domain Score = 0 | 100

domain Position = null | V(X,Y) where X in 0..7, Y in 0..7

// Other directions look similar...

left : Position —> Position

left(null) = null

left(V(X, Y)) = if X == 0 then null else V(X - 1, Y)
direction : Player -> Position -> Position
direction(white) = up

direction(_) = down

piece : Player —> Piece
piece(white) = whitepawn
piece(_) = blackpawn

opponent : Player —> Player
opponent(white) = black
opponent(_) = white

me : Player
position : Position
board : Position —> Piece
board = {
V(iX, Y) =
if Y < 2 then blackpawn else
if Y > 5 then whitepawn else empty
where X in 0..7, Y in 0..7

}

graph move(me: Player) {
forall p:Position {

check(p !'= null && board[p] == piece(me))
board[p] = empty
position = direction(me) (p)
$p
¥
branch {
check(board[position] == empty) $ F
y oor {
branch {
position = left(position) $ L
yoor A
position = right(position) $ R
’
check(position != null)
check(board[position] != piecelme])

¥
¥

graph turn() {

player = me

move(me)

board [position] = piece(me)

player = keeper

if direction(me) (position) == null ||

not(reachable(move(opponent(me)))) {

goals[me] = 100
goals[opponent(me)] = @
end()

’

me = opponent(me)

}

graph rules() {
loop {
turn()
}
’

Regular Games started with an informal language speci-
fication, basic type checker, and a naive interpreter. Over
time, the project attracted multiple students to extend it in
their theses, building a compiler, a Language Server Proto-
col server, and numerous optimization passes.

Thanks to gdl2rg and rbg2rg, we are no longer lim-
ited to native games — all games written in GDL and RBG
can be automatically translated (with some overhead).

[4] Transformations
A

.hrg — hrg2rg Validators

N v

.kif — gdl2rg — .rg — AST —> Interpreter

o N /N

rbg2rg [5] LSP [6] Compiler

/ v
.rbg —> Compiler —> C++ C++
[2, 3]

N

Neural Agent
[7, 8]

References

[1] Michael Thielscher. A General Game Description Language for
Incomplete Information Games. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 24(1):994-999, 2010.

Jakub Kowalski, Maksymilian Mika, Jakub Sutowicz, and Marek
Szykuta. Regular Boardgames. AAAIl Conference on Artificial
Intelligence, 33(1):1699-1706, 2019.

Jakub Kowalski, Radostaw Miernik, Maksymilian Mika, Wojciech
Pawlik, Jakub Sutowicz, Marek Szykuta, and Andrzej Tkaczyk.
Efficient Reasoning in Regular Boardgames. In IEEE Conference

on Games, pages 455—-462, 2020.

2]

[3]

Jakub Ciesluk. Optimizations in Regular Games. Master's thesis,
University of Wroctaw, (in progress).

[4]
[5]

Jakub Ciesluk. IDE for Regular Games. Engineer’s thesis, Univer-
sity of Wroctaw, 2024.

tukasz Galas and Wojciech Pawlik. Optimizations in Regular
Games. Master's thesis, University of Wroctaw, (in progress).

Michat. Maras, Michat Kepa, Jakub Kowalski, and Marek Szykufta.
Fast and Knowledge-Free Deep Learning for General Game Playing
(Student Abstract). AAAI Conference on Artificial Intelligence,
38(21):23576-23578, 2024.

Michat. Maras and Michat Kepa. Enhancing self-play learning of a
general agent for Regular Boardgames. Master's thesis, University
of Wroctaw, (in progress).

[6]
[7]

8]

https://radekmie.dev/rg/

