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QO is a huge effort

● Transform SQL into a 
query plan

● 42K LOC in PG12
● 1M+ SQL Server
● 45-55 FTEs, Oracle

 (~ $5mil/year)

SELECT * 
FROM t1, t2 WHERE… 

Query Optimizer



  

QOs aren’t that good
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QOs are leaving info on the table

Q Optimizer Engine

Result
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QOs are leaving info on the table

Q Optimizer Engine

ResultLatency

Bao, Neo, Lero, Hero,
DQ, Balsa, LEON, 
PilotScope, Eraser, 

GenJoin, Roq, Lemo, 
Loger, QueryFormer, …

At least 29 others!
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The initial (failed) pitch
● “Put this cool RL stuff into your QO!” – Us
● “… no.” – basically everyone we talked to

Sample Inefficiency
Even an hour of 

startup time kills POCs

Exploration → Regressions
Unpredictable query 

slowdowns turn into 3AM 
pages.

Hot-path Complexity
Putting RL components 

(complex) into a QO 
(complex) is scary



  

What ended up landing
● Use RL offline, cache good plans, reuse live.

Q Optimizer Engine Result

Online

Offline

Q RL Optimizer Engine
Verified 

Plan

Plan 
Cache



  

Problem Solved?



  

Problem Not Solved
● Offline execution time is a resource 

– … and therefore, as DB folks, we must optimize it!

● Given X hours of oflfine exploration time, 
maximize the improvement to my workload 
latency



  

This Talk
● Why learn a query optimizer?
● Lessons learned deploying learned QOs
● LimeQO, an offline learned query optimizer
● The end of RL for QO?

Joint work with Zixuan Yi, 
Yao Tian, and Zack Ives
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Default plan



  

H1 H2 H3 H4 ... Hk

Q1 23

Q2 21

Q3 18

... ...

Qn 22

Default plan

AutoSteer tests one hint per query offline
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Q2 21 8
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Default plan

AutoSteer tests one hint per query offline
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H1 H2 H3 H4 ... Hk

Q1 23 43

Q2 21 8

Q3 18 10

... ...

Qn 22 32

Default plan

Some hints do work out (faster)
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Offline time used: 43 + 8 + 10 + 32 = 93s 
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Qn 22 32

Default plan

Offline time used: 43 + 8 + 10 + 32 = 93s 
Reduction in query time: (21 – 8) + (18 – 19) = 12s



  

H1 H2 H3 H4 ... Hk

Q1 23 43

Q2 21 8

Q3 18 10

... ...

Qn 22 32

Default plan

Offline time used: 43 + 8 + 10 + 32 = 93s 
Reduction in query time: (21 – 8) + (18 – 19) = 12s

We want to minimize offline time 
used and maximize reduction in 
query time!

Key insight!



  

H1 H2 H3 H4 ... Hk

Q1 23 43

Q2 21 8

Q3 18 10

... ...

Qn 22 32

Workload
Matrix



  

Matrix Properties of W

→ the workload matrix has low rank



  

Matrix Properties of W

N x R R x K N x K

N is the number of queries in the workload
K is the number of possible hints

Why is W low rank?
→ Queries with similar performance on Ha are 

            likely to have similar performance on Hb



  

LimeQO
● Given a partially observed      , predict  

Default plan

H1 H2 H3 H4 ... Hk

Q1 23

Q2 21

Q3 18

... ... ... ...  ... ...  ...

Qn 22



  

LimeQO
● Given a partially observed      , predict  

H1 H2 H3 H4 ... Hk

Q1 23 ≈ 22 ≈ 31 ≈ 81 ≈ ... ≈ 62

Q2 21 ≈ 9 ≈ 14 ≈ 43 ≈ ... ≈ 11

Q3 18 ≈ 12 ≈ 9 ≈ 12 ≈ ... ≈ 4

... ≈ ... ≈ ... ≈ ... ≈ ... ≈ ... ≈ ...

Qn 22 ≈ 19 ≈ 23 ≈ 4 ≈ ... ≈ 16

Default plan

Use matrix completion to guess the rest of the matrix
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LimeQO
● Given a partially observed      , predict  

H1 H2 H3 H4 ... Hk

Q1 23  ...

Q2 21 ≈ 9  ...

Q3 18  ... ≈ 4

... ...  ...

Qn 22 ≈ 4  ...

Default plan

Identify candidates for exploration (consider cost and benefit)



  

LimeQO
● Given a partially observed      , predict  

H1 H2 H3 H4 ... Hk

Q1 23  ...

Q2 21 18  ...

Q3 18  ... 4

... ...  ...

Qn 22 > 22  ...

Default plan

Censored observation



  

LimeQO
● Given a partially observed      , predict  

H1 H2 H3 H4 ... Hk

Q1 23 ≈ 14 ≈ 11 ≈ 22 ≈ ... ≈ 88

Q2 21 18 ≈ 17 ≈ 43 ≈ ... ≈ 22

Q3 18 ≈ 11 ≈ 15 ≈ 16 ≈ ... 4

... ≈ ... ≈ ... ≈ ... ≈ ... ≈ ... ≈ ...

Qn 22 ≈ 22 ≈ 8 > 22 ≈ ... ≈ 24

Default plan

Do matrix completion again with new values



  

LimeQO
● Given a partially observed      , predict  

H1 H2 H3 H4 ... Hk

Q1 23 ≈ 14 ≈ 11 ≈ 22 ≈ ... ≈ 88

Q2 21 18 ≈ 17 ≈ 43 ≈ ... ≈ 22

Q3 18 ≈ 11 ≈ 15 ≈ 16 ≈ ... 4

... ≈ ... ≈ ... ≈ ... ≈ ... ≈ ... ≈ ...

Qn 22 ≈ 22 ≈ 11 > 22 ≈ ... ≈ 8

Default plan

Identify candidates for exploration (consider cost and benefit)



  

LimeQO
● Given a partially observed      , predict  

H1 H2 H3 H4 ... Hk

Q1 23 ≈ 11  ...

Q2 21 18 ≈ 17  ...

Q3 18  ... 4

...  ...  ...  ...  ...  ...

Qn 22 > 22  ... ≈ 8

Default plan

Identify candidates for exploration (consider cost and benefit)



  

LimeQO
● Given a partially observed      , predict  

H1 H2 H3 H4 ... Hk

Q1 23 > 23  ...

Q2 21 18 12  ...

Q3 18  ... 4

...  ...  ...  ...  ...  ...

Qn 22 > 22  ... 14

Default plan
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QO-Advisor Random Lime-MC

PostgreSQL default

Optimal

After 1h of offline 
execution, workload goes 

from 3h to 1.5h

… almost 2x more than 
QO-Advisor!



  

Many more fun problems...
● Matrix completion with censored observations
● Which entries to explore?
● → “acquisition function”

● Full experimental rundown
● https://rm.cab/limeqo

Joint work with Zixuan Yi, Yao Tian, and Zack Ives

https://rm.cab/limeqo


  

What about the query level?
● LimeQO is an offline 

optimizer for a workload
– Core approach: 

transductive learning
– Assumes each query has 

a small set of options

● BayesQO is an offline 
optimizer for a single 
query
– Core approach: Bayes opt
– Only works on one query 

at a time 



  

This Talk
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● LimeQO, an offline learned query optimizer
● The end of RL for QO?



  

RL for QO Woes

Sample Inefficiency
Even an hour of 

startup time kills POCs

Exploration → Regressions
Unpredictable query 

slowdowns turn into 3AM 
pages.

Hot-path Complexity
Putting RL components 

(complex) into a QO 
(complex) is scary



  

Morsel-Driven Parallelism
morsel

morsel

morsel

morsel

morsel

T
im

e

Task 1C: Drop-in replacement kernel library

Learned Kernel 
Selector 

filter(*) Task 1A: 
Kernel 

Choices

Task 1B: 
Lightweight 

RL
Experience

K1 K2 K3 K4 K5

Selection Observation

Train

Sample Inefficiency?
1k-2k+ morsels per 

query! ✅

Exploration → Regressions?
Incorrect decisions average 

out over the course of a single 
query! ✅

Hot-path Complexity?
The EE is often less complex 

than the QO, but is not 
simple. ⚠️



  

Jeffrey Tao, Yimeng Zheng, Natalie Maus, Haydn Jones, Jacob Gardner, Ryan Marcus | DB@Penn

Adversarial Benchmark Generation

[1] Tao et al., Learned Offline Query Planning via Bayesian Optimization, SIGMOD ‘25

[2] Marcus et al., Survivorship Bias in Industrial Database Workloads, CIDR ‘26

[3] Zeng et al., Adversarial Query Synthesis via Bayesian Optimization, ML for Systems@NeurIPS ‘25

[4] Wehrstein et al., JOB-Complex: A Challenging Benchmark for Traditional & Learned Query 
      Optimization, AIDB ‘25

[5] Marcus et al., Bao: Making Learned Query Optimization Practical, SIGMOD ‘21

Motivation

Generate benchmarks on other DBMSes to establish 
generality of our technique

Compare performance bugs across systems

Investigate why the DBMS’s plan differs from the 
witness

Future Work

Results

Surrogate Model

Observations

Uncertainty

Latent space
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m

DB

Proceeds in a loop of
1 5

6 Bayesian Optimization

2 Decode query

3 Decode plan

1 Acquire latent space point

Query

q1 q256...

Plan

p1 p64... q1 q256...

qwen-2.5-0.5B

embedding

grammar

(table1 (attr1 = 5)) (table 2)

SELECT count(*) 
FROM table1, table2, table3

WHERE attr1 = 5

table1table1

table4

table2

p1 p64...

Plan VAE

Decoder

Plan String1

Join Order Hint

3, 1, 2, 1

((table1 ⋈ table3) ⋈ table2)

4 Execute query  and  hintwith without

2a Soft tokens

2b Constrained decoding

2d Resolve SQL

2c Non-cross join

path through schema

5 Update surrogate

([q1,...,p64],

 )headroom

speculative.tech/nedb2026

Figure 1. Our system generates a benchmark by searching the joint space of queries and plans using Bayesian Optimization.

Benchmarks help us build high-performance 
systems. Recent SQL database benchmarks have 
focused on realism. But we may be over-indexing 
on optimizing what’s already fast2!



We propose a direct method3 for generating 
maximally challenging benchmarks:


Propose potentially difficult queries

Use offline optimization to find faster plans

Maximize the DBMS’s under-performance



We model this as a black-box optimization 
problem and leverage Bayesian optimization 
techniques. This allows us to directly find 
performance bugs within a given DBMS.

Figure 2. Our 
method produces 
more headroom 
(difference in plan 
latency) than prior 
techniques because 
it directly optimizes 
for difference 
between the 
witness plan and 
the DBMS query 
optimizer’s plan.

Figure 3. Left: We conduct optimization runs for absolute (DBMS - witness) and relative (DBMS / witness) difference, taking all queries

with absolute difference > 1s. Right: Both optimization targets find many overlapping and some unique queries.

table3

Adaptive Execution Engine Through Low Overhead RL
Zijie Zhao, Ryan Marcus

# Different kernel implementations 
def index_iter(x: Morsel, alpha: float, beta: int) -> Morsel: ... 
def slice_iter(x: Morsel, alpha: float, beta: int) -> Morsel: ... 

class Filter(AdaptiveKernel): 
    KERNELS = [index_iter, slice_iter] 

    @classmethod 
    def extract_features(cls, x: Morsel): 
        # return factors that will change the kernel selection 
        return [x.selectivity, x.length] 

    @classmethod 
    def fallback(cls, features) -> int: 
        # define a fallback option 
        return 0 

# Enjoy! 
out = Filter.adaptive_execute(data, features, 0.1, 3)

VIM

[Adaptive to WHAT?]
hardware, query, and data.

[WHO needs to be adaptive?]

Low-level kernels in modern data systems.

[OK, Anything else interesting besides applying  
{your_favourite_rl_algo} to this problem?]

New constraint: Decision must be ultra-lightweight,  
which need to be invoked thousands times in a sec.

Learning by bootstrapping counterfactuals Experiments
Input: Query , history ,  

level , bandwidth , threshold .

q 𝒟 = {(xi, yi)}n
i=1

α h Nmin

1. Similarity weighting (RBF):  

2. Normalized sampling distribution:  

3. Kernel-wise mean & variance (CLT): 

, .  

4. Pairwise test (z-test): 
Select  s.t. for all , reject  at level . 

5. Decision rule: If , exploit ,  else 

evaluate all kernels and update 

wi = exp (−
∥xi − q∥2

h2 )
w̃i = wi/∑n

j=1 wj

̂μk = ∑n
i=1 w̃iyi,k ̂σ2

k =
1
n (

n

∑
i=1

w̃iy2
i,k − ̂μ2

k)
k* k ≠ k* μ*i ≤ μk α

Neff =
(∑ wi)2

∑ w2
i

> Nmin k*

𝒟

Percent of Queries(%) Percent of Queries(%)

Latency (ms)

Latency (ms)

IMDB StackOverflow

We generated 500 hundred queries using LLM on IMDB and StackOverflow Dataset, then we measured the end to 
end latencies. We compared our method against the human defined heuristics, the ad-hoc single best kernel,  
vanilla UCB algorithm, and the optimal . Our method constantly outperforms all other methods, and in most cases 
show near optimal performance.

End to End Latency CDF (Lower is better)

New opportunity: Handle“what-if” problem by  
selectively generating counterfactuals. 

Our advantage over 
heuristics in P80 latency.

Zijie Zhao

Jeff Tao Get these slides: https://rm.cab/nedb26
My homepage: https://ryanmarc.us

https://rm.cab/nedb26
https://ryanmarc.us/
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