

Next Steps for
Learned Query Optimization

Ryan Marcus
University of Pennsylvania

Slides: https://rm.cab/nedb26

https://rm.cab/nedb26

This Talk
● Why learn a query optimizer?
● Lessons learned deploying learned QOs
● LimeQO, an offline learned query optimizer
● The end of RL for QO?

This Talk
● Why learn a query optimizer?
● Lessons learned deploying learned QOs
● LimeQO, an offline learned query optimizer
● The end of RL for QO?

QO is a huge effort

● Transform SQL into a
query plan

● 42K LOC in PG12
● 1M+ SQL Server
● 45-55 FTEs, Oracle

 (~ $5mil/year)

SELECT *
FROM t1, t2 WHERE…

Query Optimizer

QOs aren’t that good

16b 24b
JOB Query

0

20

40

60
Qu

er
y

la
te

nc
y

(s
ec

on
ds

)
60.2s

0.4s

21.2s 19.7s

PostgreSQL
PostgreSQL (no loop join)

QOs are leaving info on the table

Q Optimizer Engine

Result

QOs are leaving info on the table

Q Optimizer Engine

ResultLatency

QOs are leaving info on the table

Q Optimizer Engine

ResultLatency

QOs are leaving info on the table

Q Optimizer Engine

ResultLatency

Bao, Neo, Lero, Hero,
DQ, Balsa, LEON,
PilotScope, Eraser,

GenJoin, Roq, Lemo,
Loger, QueryFormer, …

At least 29 others!

This Talk
● Why learn a query optimizer?
● Lessons learned deploying learned QOs
● LimeQO, an offline learned query optimizer
● The end of RL for QO?

The initial (failed) pitch
● “Put this cool RL stuff into your QO!” – Us
● “… no.” – basically everyone we talked to

Sample Inefficiency
Even an hour of

startup time kills POCs

Exploration → Regressions
Unpredictable query

slowdowns turn into 3AM
pages.

Hot-path Complexity
Putting RL components

(complex) into a QO
(complex) is scary

What ended up landing
● Use RL offline, cache good plans, reuse live.

Q Optimizer Engine Result

Online

Offline

Q RL Optimizer Engine
Verified

Plan

Plan
Cache

Problem Solved?

Problem Not Solved
● Offline execution time is a resource

– … and therefore, as DB folks, we must optimize it!

● Given X hours of oflfine exploration time,
maximize the improvement to my workload
latency

This Talk
● Why learn a query optimizer?
● Lessons learned deploying learned QOs
● LimeQO, an offline learned query optimizer
● The end of RL for QO?

Joint work with Zixuan Yi,
Yao Tian, and Zack Ives

H1 H2 H3 H4 ... Hk

Q1

Q2

Q3

...

Qn

Default plan

H1 H2 H3 H4 ... Hk

Q1 23

Q2 21

Q3 18

... ...

Qn 22

Default plan

AutoSteer tests one hint per query offline

H1 H2 H3 H4 ... Hk

Q1 23 43

Q2 21 8

Q3 18 10

... ...

Qn 22 32

Default plan

AutoSteer tests one hint per query offline

H1 H2 H3 H4 ... Hk

Q1 23 43

Q2 21 8

Q3 18 10

... ...

Qn 22 32

Default plan

Some hints don’t work out (slower)

H1 H2 H3 H4 ... Hk

Q1 23 43

Q2 21 8

Q3 18 10

... ...

Qn 22 32

Default plan

Some hints do work out (faster)

H1 H2 H3 H4 ... Hk

Q1 23 43

Q2 21 8

Q3 18 10

... ...

Qn 22 32

Default plan

Offline time used: 43 + 8 + 10 + 32 = 93s

H1 H2 H3 H4 ... Hk

Q1 23 43

Q2 21 8

Q3 18 10

... ...

Qn 22 32

Default plan

Offline time used: 43 + 8 + 10 + 32 = 93s
Reduction in query time: (21 – 8) + (18 – 19) = 12s

H1 H2 H3 H4 ... Hk

Q1 23 43

Q2 21 8

Q3 18 10

... ...

Qn 22 32

Default plan

Offline time used: 43 + 8 + 10 + 32 = 93s
Reduction in query time: (21 – 8) + (18 – 19) = 12s

We want to minimize offline time
used and maximize reduction in
query time!

Key insight!

H1 H2 H3 H4 ... Hk

Q1 23 43

Q2 21 8

Q3 18 10

... ...

Qn 22 32

Workload
Matrix

Matrix Properties of W

→ the workload matrix has low rank

Matrix Properties of W

N x R R x K N x K

N is the number of queries in the workload
K is the number of possible hints

Why is W low rank?
→ Queries with similar performance on Ha are

 likely to have similar performance on Hb

LimeQO
● Given a partially observed , predict

Default plan

H1 H2 H3 H4 ... Hk

Q1 23

Q2 21

Q3 18

...

Qn 22

LimeQO
● Given a partially observed , predict

H1 H2 H3 H4 ... Hk

Q1 23 ≈ 22 ≈ 31 ≈ 81 ≈ ... ≈ 62

Q2 21 ≈ 9 ≈ 14 ≈ 43 ≈ ... ≈ 11

Q3 18 ≈ 12 ≈ 9 ≈ 12 ≈ ... ≈ 4

... ≈ ... ≈ ... ≈ ... ≈ ... ≈ ... ≈ ...

Qn 22 ≈ 19 ≈ 23 ≈ 4 ≈ ... ≈ 16

Default plan

Use matrix completion to guess the rest of the matrix

LimeQO
● Given a partially observed , predict

H1 H2 H3 H4 ... Hk

Q1 23 ≈ 22 ≈ 31 ≈ 81 ≈ ... ≈ 62

Q2 21 ≈ 9 ≈ 14 ≈ 43 ≈ ... ≈ 11

Q3 18 ≈ 12 ≈ 9 ≈ 12 ≈ ... ≈ 4

... ≈ ... ≈ ... ≈ ... ≈ ... ≈ ... ≈ ...

Qn 22 ≈ 19 ≈ 23 ≈ 4 ≈ ... ≈ 16

Default plan

Identify candidates for exploration (consider cost and benefit)

LimeQO
● Given a partially observed , predict

H1 H2 H3 H4 ... Hk

Q1 23 ...

Q2 21 ≈ 9 ...

Q3 18 ... ≈ 4

...

Qn 22 ≈ 4 ...

Default plan

Identify candidates for exploration (consider cost and benefit)

LimeQO
● Given a partially observed , predict

H1 H2 H3 H4 ... Hk

Q1 23 ...

Q2 21 18 ...

Q3 18 ... 4

...

Qn 22 > 22 ...

Default plan

Censored observation

LimeQO
● Given a partially observed , predict

H1 H2 H3 H4 ... Hk

Q1 23 ≈ 14 ≈ 11 ≈ 22 ≈ ... ≈ 88

Q2 21 18 ≈ 17 ≈ 43 ≈ ... ≈ 22

Q3 18 ≈ 11 ≈ 15 ≈ 16 ≈ ... 4

... ≈ ... ≈ ... ≈ ... ≈ ... ≈ ... ≈ ...

Qn 22 ≈ 22 ≈ 8 > 22 ≈ ... ≈ 24

Default plan

Do matrix completion again with new values

LimeQO
● Given a partially observed , predict

H1 H2 H3 H4 ... Hk

Q1 23 ≈ 14 ≈ 11 ≈ 22 ≈ ... ≈ 88

Q2 21 18 ≈ 17 ≈ 43 ≈ ... ≈ 22

Q3 18 ≈ 11 ≈ 15 ≈ 16 ≈ ... 4

... ≈ ... ≈ ... ≈ ... ≈ ... ≈ ... ≈ ...

Qn 22 ≈ 22 ≈ 11 > 22 ≈ ... ≈ 8

Default plan

Identify candidates for exploration (consider cost and benefit)

LimeQO
● Given a partially observed , predict

H1 H2 H3 H4 ... Hk

Q1 23 ≈ 11 ...

Q2 21 18 ≈ 17 ...

Q3 18 ... 4

...

Qn 22 > 22 ... ≈ 8

Default plan

Identify candidates for exploration (consider cost and benefit)

LimeQO
● Given a partially observed , predict

H1 H2 H3 H4 ... Hk

Q1 23 > 23 ...

Q2 21 18 12 ...

Q3 18 ... 4

...

Qn 22 > 22 ... 14

Default plan

0 1 2 3 4 5 6
Offline Exploration Time (hours)

1.0

1.5

2.0

2.5

3.0

To
ta

l L
at

en
cy

 (
ho

ur
s)

QO-Advisor Random Lime-MC

PostgreSQL default

Optimal

After 1h of offline
execution, workload goes

from 3h to 1.5h

… almost 2x more than
QO-Advisor!

Many more fun problems...
● Matrix completion with censored observations
● Which entries to explore?
● → “acquisition function”

● Full experimental rundown
● https://rm.cab/limeqo

Joint work with Zixuan Yi, Yao Tian, and Zack Ives

https://rm.cab/limeqo

What about the query level?
● LimeQO is an offline

optimizer for a workload
– Core approach:

transductive learning
– Assumes each query has

a small set of options

● BayesQO is an offline
optimizer for a single
query
– Core approach: Bayes opt
– Only works on one query

at a time

This Talk
● Why learn a query optimizer?
● Lessons learned deploying learned QOs
● LimeQO, an offline learned query optimizer
● The end of RL for QO?

RL for QO Woes

Sample Inefficiency
Even an hour of

startup time kills POCs

Exploration → Regressions
Unpredictable query

slowdowns turn into 3AM
pages.

Hot-path Complexity
Putting RL components

(complex) into a QO
(complex) is scary

Morsel-Driven Parallelism
morsel

morsel

morsel

morsel

morsel

T
im

e

Task 1C: Drop-in replacement kernel library

Learned Kernel
Selector

filter(*) Task 1A:
Kernel

Choices

Task 1B:
Lightweight

RL
Experience

K1 K2 K3 K4 K5

Selection Observation

Train

Sample Inefficiency?
1k-2k+ morsels per

query! ✅

Exploration → Regressions?
Incorrect decisions average

out over the course of a single
query! ✅

Hot-path Complexity?
The EE is often less complex

than the QO, but is not
simple. ⚠️

Jeffrey Tao, Yimeng Zheng, Natalie Maus, Haydn Jones, Jacob Gardner, Ryan Marcus | DB@Penn

Adversarial Benchmark Generation

[1] Tao et al., Learned Offline Query Planning via Bayesian Optimization, SIGMOD ‘25

[2] Marcus et al., Survivorship Bias in Industrial Database Workloads, CIDR ‘26

[3] Zeng et al., Adversarial Query Synthesis via Bayesian Optimization, ML for Systems@NeurIPS ‘25

[4] Wehrstein et al., JOB-Complex: A Challenging Benchmark for Traditional & Learned Query 
 Optimization, AIDB ‘25

[5] Marcus et al., Bao: Making Learned Query Optimization Practical, SIGMOD ‘21

Motivation

Generate benchmarks on other DBMSes to establish
generality of our technique

Compare performance bugs across systems

Investigate why the DBMS’s plan differs from the
witness

Future Work

Results

Surrogate Model

Observations

Uncertainty

Latent space

H
ea

dr
oo

m

DB

Proceeds in a loop of
1 5

6 Bayesian Optimization

2 Decode query

3 Decode plan

1 Acquire latent space point

Query

q1 q256...

Plan

p1 p64... q1 q256...

qwen-2.5-0.5B

embedding

grammar

(table1 (attr1 = 5)) (table 2)

SELECT count(*) 
FROM table1, table2, table3

WHERE attr1 = 5

table1table1

table4

table2

p1 p64...

Plan VAE

Decoder

Plan String1

Join Order Hint

3, 1, 2, 1

((table1 ⋈ table3) ⋈ table2)

4 Execute query and hintwith without

2a Soft tokens

2b Constrained decoding

2d Resolve SQL

2c Non-cross join

path through schema

5 Update surrogate

([q1,...,p64],

)headroom

speculative.tech/nedb2026

Figure 1. Our system generates a benchmark by searching the joint space of queries and plans using Bayesian Optimization.

Benchmarks help us build high-performance
systems. Recent SQL database benchmarks have
focused on realism. But we may be over-indexing
on optimizing what’s already fast2!

We propose a direct method3 for generating
maximally challenging benchmarks:

Propose potentially difficult queries

Use offline optimization to find faster plans

Maximize the DBMS’s under-performance

We model this as a black-box optimization
problem and leverage Bayesian optimization
techniques. This allows us to directly find
performance bugs within a given DBMS.

Figure 2. Our
method produces
more headroom
(difference in plan
latency) than prior
techniques because
it directly optimizes
for difference
between the
witness plan and
the DBMS query
optimizer’s plan.

Figure 3. Left: We conduct optimization runs for absolute (DBMS - witness) and relative (DBMS / witness) difference, taking all queries

with absolute difference > 1s. Right: Both optimization targets find many overlapping and some unique queries.

table3

Adaptive Execution Engine Through Low Overhead RL
Zijie Zhao, Ryan Marcus

Different kernel implementations
def index_iter(x: Morsel, alpha: float, beta: int) -> Morsel: ...
def slice_iter(x: Morsel, alpha: float, beta: int) -> Morsel: ...

class Filter(AdaptiveKernel):
 KERNELS = [index_iter, slice_iter]

 @classmethod
 def extract_features(cls, x: Morsel):
 # return factors that will change the kernel selection
 return [x.selectivity, x.length]

 @classmethod
 def fallback(cls, features) -> int:
 # define a fallback option
 return 0

Enjoy!
out = Filter.adaptive_execute(data, features, 0.1, 3)

VIM

[Adaptive to WHAT?]
hardware, query, and data.

[WHO needs to be adaptive?]

Low-level kernels in modern data systems.

[OK, Anything else interesting besides applying
{your_favourite_rl_algo} to this problem?]

New constraint: Decision must be ultra-lightweight,
which need to be invoked thousands times in a sec.

Learning by bootstrapping counterfactuals Experiments
Input: Query , history ,

level , bandwidth , threshold .

q 𝒟 = {(xi, yi)}n
i=1

α h Nmin

1. Similarity weighting (RBF):

2. Normalized sampling distribution:

3. Kernel-wise mean & variance (CLT):

, .

4. Pairwise test (z-test):
Select s.t. for all , reject at level .

5. Decision rule: If , exploit , else

evaluate all kernels and update

wi = exp (−
∥xi − q∥2

h2)
w̃i = wi/∑n

j=1 wj

̂μk = ∑n
i=1 w̃iyi,k ̂σ2

k =
1
n (

n

∑
i=1

w̃iy2
i,k − ̂μ2

k)
k* k ≠ k* μ*i ≤ μk α

Neff =
(∑ wi)2

∑ w2
i

> Nmin k*

𝒟

Percent of Queries(%) Percent of Queries(%)

Latency (ms)

Latency (ms)

IMDB StackOverflow

We generated 500 hundred queries using LLM on IMDB and StackOverflow Dataset, then we measured the end to
end latencies. We compared our method against the human defined heuristics, the ad-hoc single best kernel,
vanilla UCB algorithm, and the optimal . Our method constantly outperforms all other methods, and in most cases
show near optimal performance.

End to End Latency CDF (Lower is better)

New opportunity: Handle“what-if” problem by
selectively generating counterfactuals.

Our advantage over
heuristics in P80 latency.

Zijie Zhao

Jeff Tao Get these slides: https://rm.cab/nedb26
My homepage: https://ryanmarc.us

https://rm.cab/nedb26
https://ryanmarc.us/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

