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QO Is a huge effort

. SELECT *
e Transform SQL INtO a FROM tl1l, t2 WHERE..

guery plan
* 42K LOC in PG12
* 1M+ SQL Server v
* 45-55 FTES, Oracle
(~ $5mil/year) “
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QOs aren’t that good

60.2s B PostgreSQL
i PostgreSQL (no loop join)
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0.4s ._
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JOB Query




QOs are leaving info on the table
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QOs are leaving info on the table

—>  Optimizer — A@ — Engine

y do

Bao, Neo, Lero, Hero,
DQ, Balsa, LEON,

PilotScope, Eraser, v
GenJoin, Roq, Lemo,
Loger, QueryFormer, ... < Latency Result

At least 29 others!
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The Initial (failed) pitch

* “Put this cool RL stuff into your QO!” — Us
* ... no.” — basically everyone we talked to

Sample Inefficiency Exploration . Regressions Hot-path Complexity
Even an hour of Unpredictable query Putting RL components
startup time kills POCs slowdowns turn into 3AM (complex) into a QO

pages. (complex) is scary
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What ended up landing
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* Use RL offline, cache good plans, reuse live.

Optimizer —» Engine Result
Plan
Cache |
: Verified
RL Optimizer — A@ — Engine Plan
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Problem Solved?

I Best Known Plan
Bl AutoSteer’s Inference Mode
Bl PrestoDB

0.38
—0.48
0.77

50% 75% 98% 99%
Percentile

99.9%



Problem Not Solved

» Offline execution time is a resource
- ... and therefore, as DB folks, we must optimize it!

* Given X hours of oflfine exploration time,
maximize the improvement to my workload
latency
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* Why learn a query optimizer?

* Lessons learned deploying learned QOs
* LimeQO, an offline learned query optimizer
 The end of RL for QO?

Joint work with Zixuan Vi,
Yao Tian, and Zack Ives
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Default plan

AutoSteer tests one hint per query offline
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AutoSteer tests one hint per query offline



Default plan

Some hints don’t work out (slower)



Default plan

Some hints do work out (faster)



Default plan

/

Offline time used: 43 + 8 + 10 + 32 = 93s



Default plan

Offline time used: 43 + 8 + 10 # 32 = 98s
Reduction in query time: (21 — 8) + (18 — 19) = 12s



Key insight!

Default plan

\4

We want to minimize offline time
used and maximize reduction in
guery time!

Offline time used: 43 + 8 + 10 + 32 = 93s
Reduction in query time: (21 — 8) + (18 — 19) = 12s



Workload
Matrix

W is the partially observed workload matrix

W is the full workload matrix



Singular Value (X 10°)
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— the workload matrix has low rank




Matrix Properties of W

Q><H %4

RxK N x K

N is the number of queries in the workload
K is the number of possible hints

Why is W low rank?
— Queries with similar performance on H, are
likely to have similar performance on Hy



LimeQO

 Given a partially observed W , predict W

Default plan

LimeQO




LimeQO

 Given a partially observed W , predict W

Default plan

LimeQO

Use matrix completion to guess the rest of the matrix



LimeQO

 Given a partially observed W , predict W

Default plan

LimeQO

Identify candidates for exploration (consider cost and benefit)
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Default plan

LimeQO
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Identify candidates for exploration (consider cost and benefit)



LimeQO

 Given a partially observed W , predict W

Default plan

LimeQO

Censored observation



LimeQO

 Given a partially observed W , predict W

Default plan

LimeQO

Do matrix completion again with new values



LimeQO

 Given a partially observed W , predict W

Default plan

LimeQO

> 22

|dentify candidates for exploration (consider cost and benefit)



LimeQO

 Given a partially observed W , predict W

Default plan

LimeQO

> 22 =8

|dentify candidates for exploration (consider cost and benefit)



LimeQO

 Given a partially observed W , predict W

Default plan

LimeQO
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Many more fun problems...

e Matrix completion with censored observations

* Which entries to explore? —
e _, “acquisition function”
* Full experimental rundown . A
e https://rm.cab/limego

Joint work with Zixuan Yi, Yao Tian, and Zack Ives


https://rm.cab/limeqo

What about the query level?

* LimeQO is an offline * BayesQO is an offline
optimizer for a workload optimizer for a single
- Core approach: query
transductive learning - Core approach: Bayes opt
— Assumes each query has - Only works on one query

a small set of options at a time
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RL for QO Woes

Sample Inefficiency Exploration —. Regressions Hot-path Complexity
Even an hour of Unpredictable query Putting RL components
startup time kills POCs slowdowns turn into 3AM (complex) into a QO

pages. (complex) is scary



Time

Morsel-Driven Parallelism

maorse

maorse

maorse

morse

maorse

Sample Inefficiency?
1k-2k+ morsels per

query!

filter(*)

Learned Kernel
Selector

Experience

|

|

|
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Selection Observation :
|

|

Exploration . Regressions? Hot-path Complexity?
Incorrect decisions average The EE is often less complex
out over the course of a single than the QO, but is not

query! simple. /1



Adversarial Benchmark Generation % Penn

Jeffrey Tao, Yimeng Zheng, Natalie Maus, Haydn Jones, Jacob Gardner, Ryan Marcus | DB@Penn nivinsty of Pesvamivans

Surrogate Model @ Acauire latent space point @ Decode query

—> (o] [T T [0 Joud ———> [a[ [-]

. Observations :
§ ey . 23 Soft tokens ¥
£ Uncertainty embedding
£ @ Decode o qwen-2.5-0.58
oo

e [o.]-] arammar

@ Update surrogate 2B Constrained decoding ¥
(' @ 8ayesian Optimization (table1 (attr = 5)) (table 2)
Proceeds in a loop of 26 Non-cross join
(E«ﬂé- . ,gfﬂ], v/ 0-0 v path through schema
eadroon,
Plan String' [ 3, 1, 2, 1 [tabte]
DB . .
Join Order Hint ((tablel p table3) w table2) 2d Resolve SQL
@ Execute query with and without hint
A SELECT count ("

)
FRO tablel, table2, table3
WHERE attrl = §

Figure 1. Our system generates a benchmark by searching the joint space of queries and plans using Bayesian Optimization.

Motivation I | Results I

Benchmarks help us build high-performance 175
systems. Recent SQL database benchmarks have Figure 2. O
focused on reafism. But we may be over-indexing 150 m::‘;:d~ m‘:" cos
on optimizing what's already fast’! produ
125 more headroom
We propose a direct method? for generating (difference in plan
ours

‘maximally challenging benchmarks: 100 ‘a‘eh"c.” "‘“s prior
1. Propose potentially difficult qu s focigues because
2. Use offline optimization to find faster plans for clffernre
3. Maximize the DBMS's under-performance 50 for difference

We model this as a black-box optimization 28 witness plan and

problem and leverage Bayesian optimization -

techniques. This allows us to directly find 00

Average Headroom

the DBMS query
optimizer's plan.
it B JOB-Complex _ Stack
performance bugs within a given DBMS. e B
- 300000, - e
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3250000
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Figure 3. Left: We conduct optimization runs for absolute (DBMS -
with >1s. Both optimization targets find

| Future Work I

« Generate benchmarks on other DBMSes to establish
generality of our technique

« Compare performance bugs across systems

« Investigate why the DBMS's plan differs from the
witness.

Jeff Tao

Ve[ ] R AV SICIS IR L -6 i) Through Low Overhead RL

Zijie Zhao, Ryan Marcus

[WHO needs to be adaptive?] = -
Low-level kernels in modern data systems. L“iii!;z::f:“nﬂ:ﬁ“EZ;:;:V'E]M;. beta: int) -> Mozsel
def slice iter(x: Moxsel, olpha: float, beta: int) -> Horsel B
[Adaptive to WHAT?] class Filter (AdaptiveKeznel)
KERNELS = [index_iter, slice_iter] |
hardware, query, and data.
Gef ot teatures c1s, x: orss I
[0K, Anything else interesting besides applying e e |
fyour_favourite_rl_algo} to this problem?] et bsstern e )
- A ! N goiction _observaton !
New constraint: Decision must be ' g R | |
which need to be invoked thousands times in a sec.
oot 2 Hitter.odoptive_oxecute(doto, features, 0.1, 9 [ “ - “ e !
New opportunity: Handle“what-if"” problem by ) - o L _ NN TN

selectively generating counterfactuals.

Leaxning by bootstrapping counterfactuals Experiments

End to End Latency CDF (Lower is better)
Input: Query q, history @ = {(x;, )},

in E

III | T

level a, bandwidth h, threshold N,

1. Similarity weighting (RBF): w; = exp

2. i i istribution

(sw) Aoueynq

3. Kernel-wise mean & variance (CLT):

- R 1
He= Z,n:l WiYike "Jk = ;

Percent of QUETIES (%)  mywme mamo mus mon moss Pexcent of Querie|
& se test (z-test): o8 Stackover£lon
Select k* s.t. for all k # k*, reject ;4,.* < py at level a.

Xw, ) We generated 500 hundred queries using LLM on IMDB and StackOverflow Dataset,
5. Decision rule: If N,y = —=—— > N,;,, exploit k¥, else end latencies. We compared our method against the human defined heuristics, the o
wi vanilla UCB algorithm, and the optimal . Our method constantly outperforms all othe

evaluate all kernels and update & show near optimal performance.

Zijle Zhao

Get these slides: https://rm.cab/nedb26
My homepage: https://ryanmarc.us
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