Next Steps for
Learned Query Optimization

Ryan Marcus
University of Pennsylvania

Slides: https://rm.cab/nedb26

Penn
Engmeermg

IIIIIIIIIIIIIIIIIIIII

https://rm.cab/nedb26

This Talk

* Why learn a query optimizer?

* Lessons learned deploying learned QOs
* LimeQO, an offline learned query optimizer
 The end of RL for QO?

This Talk

* Why learn a query optimizer?

* Lessons learned deploying learned QOs
* LimeQO, an offline learned query optimizer
 The end of RL for QO?

QO Is a huge effort

. SELECT *
e Transform SQL INtO a FROM tl1l, t2 WHERE..

guery plan
* 42K LOC in PG12
* 1M+ SQL Server v
* 45-55 FTES, Oracle
(~ $5mil/year) “

&)
o

N
o

N
o

Query latency (seconds)

o

QOs aren’t that good

60.2s B PostgreSQL
i PostgreSQL (no loop join)

19.7s

0.4s ._

16b 24b
JOB Query

QOs are leaving info on the table

R . He —
Sommar = Ene

v

Result

QOs are leaving info on the table

— [opiier |~ — | Ewine

"/

Latency Result

QOs are leaving info on the table

1o — [ERGREI

v

< Latency Result

QOs are leaving info on the table

—> Optimizer — A@ — Engine

y do

Bao, Neo, Lero, Hero,
DQ, Balsa, LEON,

PilotScope, Eraser, v
GenJoin, Roq, Lemo,
Loger, QueryFormer, ... < Latency Result

At least 29 others!

This Talk

* Why learn a query optimizer?

* Lessons learned deploying learned QOs
* LimeQO, an offline learned query optimizer
 The end of RL for QO?

The Initial (failed) pitch

* “Put this cool RL stuff into your QO!” — Us
* ... no.” — basically everyone we talked to

Sample Inefficiency Exploration . Regressions Hot-path Complexity
Even an hour of Unpredictable query Putting RL components
startup time kills POCs slowdowns turn into 3AM (complex) into a QO

pages. (complex) is scary

Online

Q

Q

—

—>

Offline

What ended up landing

10—

* Use RL offline, cache good plans, reuse live.

Optimizer —» Engine Result
Plan
Cache |
: Verified
RL Optimizer — A@ — Engine Plan

[

de

Wall Time [m]

N W R Ot
o O O O o O

Problem Solved?

I Best Known Plan
Bl AutoSteer’s Inference Mode
Bl PrestoDB

0.38
—0.48
0.77

50% 75% 98% 99%
Percentile

99.9%

Problem Not Solved

» Offline execution time is a resource
- ... and therefore, as DB folks, we must optimize it!

* Given X hours of oflfine exploration time,
maximize the improvement to my workload
latency

This Talk

* Why learn a query optimizer?

* Lessons learned deploying learned QOs
* LimeQO, an offline learned query optimizer
 The end of RL for QO?

Joint work with Zixuan Vi,
Yao Tian, and Zack Ives

Default plan

Default plan

AutoSteer tests one hint per query offline

Default plan

AutoSteer tests one hint per query offline

Default plan

Some hints don’t work out (slower)

Default plan

Some hints do work out (faster)

Default plan

/

Offline time used: 43 + 8 + 10 + 32 = 93s

Default plan

Offline time used: 43 + 8 + 10 # 32 = 98s
Reduction in query time: (21 — 8) + (18 — 19) = 12s

Key insight!

Default plan

\4

We want to minimize offline time
used and maximize reduction in
guery time!

Offline time used: 43 + 8 + 10 + 32 = 93s
Reduction in query time: (21 — 8) + (18 — 19) = 12s

Workload
Matrix

W is the partially observed workload matrix

W is the full workload matrix

Singular Value (X 10°)

N

P
L

O

Matrix Properties of W

1 90000000000
T T

—a— (CEB Matrix

o Random Matrix

O0O0oO0OOoOoOOoOooQOoan
T

0 5 10 15 20 25 30 35 40 45
Singular Value Index

— the workload matrix has low rank

Matrix Properties of W

Q><H %4

RxK N x K

N is the number of queries in the workload
K is the number of possible hints

Why is W low rank?
— Queries with similar performance on H, are
likely to have similar performance on Hy

LimeQO

 Given a partially observed W , predict W

Default plan

LimeQO

LimeQO

 Given a partially observed W , predict W

Default plan

LimeQO

Use matrix completion to guess the rest of the matrix

LimeQO

 Given a partially observed W , predict W

Default plan

LimeQO

Identify candidates for exploration (consider cost and benefit)

LimeQO

 Given a partially observed W , predict W

Default plan

LimeQO

=4

Identify candidates for exploration (consider cost and benefit)

LimeQO

 Given a partially observed W , predict W

Default plan

LimeQO

Censored observation

LimeQO

 Given a partially observed W , predict W

Default plan

LimeQO

Do matrix completion again with new values

LimeQO

 Given a partially observed W , predict W

Default plan

LimeQO

> 22

|dentify candidates for exploration (consider cost and benefit)

LimeQO

 Given a partially observed W , predict W

Default plan

LimeQO

> 22 =8

|dentify candidates for exploration (consider cost and benefit)

LimeQO

 Given a partially observed W , predict W

Default plan

LimeQO

Total Latency (hours)

D
W

.
S

1.51

U
-

PostgreSQL default

QO-Advisor == == Random Lime-MC
Ir ______________________ 4
\
\\
N ... almost 2x more than
\\ QO-Advisor!
N
~ ~ N
4 After 1h of offline
-— execution, workload goes
from 3h to 1.5h ——
Optimal
0 1 2 3 4 5 6

Offline Exploration Time (hours)

Many more fun problems...

e Matrix completion with censored observations

* Which entries to explore? —
e _, “acquisition function”
* Full experimental rundown . A
e https://rm.cab/limego

Joint work with Zixuan Yi, Yao Tian, and Zack Ives

https://rm.cab/limeqo

What about the query level?

* LimeQO is an offline * BayesQO is an offline
optimizer for a workload optimizer for a single
- Core approach: query
transductive learning - Core approach: Bayes opt
— Assumes each query has - Only works on one query

a small set of options at a time

This Talk

* Why learn a query optimizer?

* Lessons learned deploying learned QOs
* LimeQO, an offline learned query optimizer
 The end of RL for QO?

RL for QO Woes

Sample Inefficiency Exploration —. Regressions Hot-path Complexity
Even an hour of Unpredictable query Putting RL components
startup time kills POCs slowdowns turn into 3AM (complex) into a QO

pages. (complex) is scary

Time

Morsel-Driven Parallelism

maorse

maorse

maorse

morse

maorse

Sample Inefficiency?
1k-2k+ morsels per

query!

filter(*)

Learned Kernel
Selector

Experience

|

|

|

|

Selection Observation :
|

|

Exploration . Regressions? Hot-path Complexity?
Incorrect decisions average The EE is often less complex
out over the course of a single than the QO, but is not

query! simple. /1

Adversarial Benchmark Generation % Penn

Jeffrey Tao, Yimeng Zheng, Natalie Maus, Haydn Jones, Jacob Gardner, Ryan Marcus | DB@Penn nivinsty of Pesvamivans

Surrogate Model @ Acauire latent space point @ Decode query

—> (o] [T T [0 Joud ———> [a[[-]

. Observations :
§ ey . 23 Soft tokens ¥
£ Uncertainty embedding
£ @ Decode o qwen-2.5-0.58
oo

e [o.]-] arammar

@ Update surrogate 2B Constrained decoding ¥
(' @ 8ayesian Optimization (table1 (attr = 5)) (table 2)
Proceeds in a loop of 26 Non-cross join
(E«ﬂé- . ,gfﬂ], v/ 0-0 v path through schema
eadroon,
Plan String' [3, 1, 2, 1 [tabte]
DB . .
Join Order Hint ((tablel p table3) w table2) 2d Resolve SQL
@ Execute query with and without hint
A SELECT count ("

)
FRO tablel, table2, table3
WHERE attrl = §

Figure 1. Our system generates a benchmark by searching the joint space of queries and plans using Bayesian Optimization.

Motivation I | Results I

Benchmarks help us build high-performance 175
systems. Recent SQL database benchmarks have Figure 2. O
focused on reafism. But we may be over-indexing 150 m::‘;:d~ m‘:" cos
on optimizing what's already fast’! produ
125 more headroom
We propose a direct method? for generating (difference in plan
ours

‘maximally challenging benchmarks: 100 ‘a‘eh"c.” "‘“s prior
1. Propose potentially difficult qu s focigues because
2. Use offline optimization to find faster plans for clffernre
3. Maximize the DBMS's under-performance 50 for difference

We model this as a black-box optimization 28 witness plan and

problem and leverage Bayesian optimization -

techniques. This allows us to directly find 00

Average Headroom

the DBMS query
optimizer's plan.
it B JOB-Complex _ Stack
performance bugs within a given DBMS. e B
- 300000, - e
100 7 L
3250000
a £ .
/ 8200000 . .
g 60 H / g o Overapping (683)
H S1s0000 R
‘5‘ 2 ; Absolute-only (316)
- £ 100000,
& oo 2
2 '
ofs #

10 20 00 20 40 60
Absolute difference (s) Relative difference

Figure 3. Left: We conduct optimization runs for absolute (DBMS -
with >1s. Both optimization targets find

| Future Work I

« Generate benchmarks on other DBMSes to establish
generality of our technique

« Compare performance bugs across systems

« Investigate why the DBMS's plan differs from the
witness.

Jeff Tao

Ve[] R AV SICIS IR L -6 i) Through Low Overhead RL

Zijie Zhao, Ryan Marcus

[WHO needs to be adaptive?] = -
Low-level kernels in modern data systems. L“iii!;z::f:“nﬂ:ﬁ“EZ;:;:V'E]M;. beta: int) -> Mozsel
def slice iter(x: Moxsel, olpha: float, beta: int) -> Horsel B
[Adaptive to WHAT?] class Filter (AdaptiveKeznel)
KERNELS = [index_iter, slice_iter] |
hardware, query, and data.
Gef ot teatures c1s, x: orss I
[0K, Anything else interesting besides applying e e |
fyour_favourite_rl_algo} to this problem?] et bsstern e)
- A ! N goiction _observaton !
New constraint: Decision must be ' g R | |
which need to be invoked thousands times in a sec.
oot 2 Hitter.odoptive_oxecute(doto, features, 0.1, 9 [“ - “ e !
New opportunity: Handle“what-if"” problem by) - o L _ NN TN

selectively generating counterfactuals.

Leaxning by bootstrapping counterfactuals Experiments

End to End Latency CDF (Lower is better)
Input: Query q, history @ = {(x;,)},

in E

III | T

level a, bandwidth h, threshold N,

1. Similarity weighting (RBF): w; = exp

2. i i istribution

(sw) Aoueynq

3. Kernel-wise mean & variance (CLT):

- R 1
He= Z,n:l WiYike "Jk = ;

Percent of QUETIES (%) mywme mamo mus mon moss Pexcent of Querie|
& se test (z-test): o8 Stackover£lon
Select k* s.t. for all k # k*, reject ;4,.* < py at level a.

Xw,) We generated 500 hundred queries using LLM on IMDB and StackOverflow Dataset,
5. Decision rule: If N,y = —=—— > N,;,, exploit k¥, else end latencies. We compared our method against the human defined heuristics, the o
wi vanilla UCB algorithm, and the optimal . Our method constantly outperforms all othe

evaluate all kernels and update & show near optimal performance.

Zijle Zhao

Get these slides: https://rm.cab/nedb26
My homepage: https://ryanmarc.us

https://rm.cab/nedb26
https://ryanmarc.us/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

