APPLICATION OF OBJECT-ORIENTATION TO
HDL-BASED DESIGNS

David Cabanis

A thesis submitted in partial

fulfilment of the requirements
for the degree of

Doctor of Philosophy

Bournemouth University

September

2000

DAVID CABANIS
APPLICATION OF OBIJECT ORIENTATION TO HDL-BASED

DESIGN

ABSTRACT

The increase in the scale of VVLSI circuits over the last two decades has been
of great importance to the development process. To cope with this ever-
growing design complexity, new development techniques and methodologies
have been researched and applied. The early 90's have witnessed the uptake of
a new kind of design methodology based on Hardware Description
Languages (HDL). This methodology has helped to master the possibilities
inherent in our ability to manufacture ever-larger designs. However, while
HDL based design methodology is sufficient to address today’s standard
ASIC sizes, it reaches its limits when considering tomorrow’s design scales.
Already, RISC processor chip descriptions can contain tens of thousands of
HDL lines.

Object-Oriented design methodology has recently had a considerable impact
in the software design community as it is tightly coupled with the handling of
complex systems. Object-Orientation concentrates on data rather than
functions since, throughout the design process, data are more stable than
functions. Methodologies for both hardware and software have been
introduced through the application of HDLs to hardware design. Common
design constructs and principles that have proved successful in software
language development should therefore be considered in order to assess their

suitability for HDLs based designs.

A new methodology was created to emphasise on encapsulation, abstraction
and classification of designs, using standard VHDL constructs. This achieves

higher levels of modelling along with an improved reusability through design

inheritance.

The development of extended semantics for integrating Object-Orientation in
the VHDL language is described. Comparisons are made between the

modelling abilities of the proposed extension and other competing proposals.

A UNIX based Object-Oriented to standard VHDL pre-processor is
described along with translation techniques and their issues related to
synthesis and simulation. This tool permitted validation of the new design

methodology by application to existing design problems.

TABLE OF CONTENTS

AADSEIACT ...ttt i
TabIe OF CONTENES ... [
LISE OF FIQUIES.....ovvvureerererriesssssss s ssssssssssssssssssssssssssss s sssssssssssssssssssssssssssssssssssssnssssns iii
LIST OF TABLESosi s sssnssssns Vi
ACKNOWIBAGIMENTS. ... vil
GHOSSAIY w..vvvorervressrsessessssessssssssssssssssssssssss s ss s sssss s sesss st ss st sesssssssssssssnnsssns viii
Chapter 1. Overview and Requirements SPeCifiCationscouwvmrermrrermmsesnrsesnseenns 3
1.1 INEFOTUCTION oot 3
1.2 RALIONAIE..... .ot 3
1.3 AIMS aNA ODJECLIVEScvvrmrrirrrieserisseesissesssssesssssessssssssssssssssssssssssssessssseses 9
1.4 Taxonomy OF ChAPLEIS........cccvrrerierisesesse s sssss s sssssesessssseses 9
Chapter 2: Review of VLSI Design Methods..........cccourririnsinnssississsssnnns 12
2.1 INEFOTUCTION .ot 12
2.2 Schematic Capture Based Methodology..........ccrereresmresneresneeenns 13
2.3 Current Hardware System Design Methods and their LIimits.............c........ 19
2.4 Object-Oriented Methodology for HDL’s Based DesSigns..........ccc.eevvennnn. 24
2.5 Object-Orientation in Standard VHDL ... 30
2.6 EXisting EXteNSION PropoSals..........c..reremnrensesnssssessssssssssssssssssssaes 62
2.7 CONCIUSIONSooovevirisirese s sess s 66
Chapter 3: Language DESIONocvrieiirisissississssssssssssssssssssssessssssssssssssssnses 68
3.1 INEFOTUCTION oottt 68
3.2 Language DeSIigN DECISIONS..........ourermrermeresseresssesesssssesssssesssesssssssssssesesss 69
3.3 LaNgUAJE SEMANTICSuvevrmurermmresseressesesssesesssesesssessssssssssssssssssesssssesssssssssns 84
3.4 CONCIUSIONS ...oovvvrerrriieseriseses s 112
Chapter 4. Comparative study of proposed eXtensions..........c.oumreeressnsrsnsenns 114
4.1 INEFOUUCTION «..ovoovevrerseesesesessssesss st sssss s sss st sssssssssssnssssssssans 114
4.2 Study Of the VISTA Proposalc...courmmrmremmissesnssssssssssssssssssssssssssans 114
4.3 Study of the ACtIVE PropOSalS.......c..couermrisrinnissssssssssssesssssssssssssssnnes 119
4.4 CONCIUSIONS ...t 148
Chapter 5: Case Study: The Edge Filter DeSIgN.........cccuomrvmerrimmeesneesssessssees 149
5.1 INEFOTUCTION. 1.vvvvveerrrirerersssesessssssss s sssssssssssssssssssesssssssssssssssssssssesssssnssssnsens 149
5.2 OVEIVIEW Of FUNCLION.ovivrierieiine s ssssssssssssssssssnsens 149
5.3 Filter External INTerface.ccoovrrisiessssssesssssssssssssssssseens 151
5.4 Filter PartitiONing.oeveerremrernrsesnsessssssnsssssssssssssessssssssssssssssssssssssssssssansess 152
5.5 SUPPOITING Class STTUCLUIE........c..omrverrriieiesesessssesssssessssessssssssses 158
5.6 Edge Filter implementation ..., 164
5.7 CoMPArative STUAY ... ssssssssssssssssssssssssssanss 167
5.8 CONCIUSIONSooorvivmrrirreiseseises st 170
Chapter 6: PreproCessOr GESIGN..........wreemerrssesssssesssssesssssessssssesssssesssssssssssseens 172
6.1 INEFOTUCTION .ocvvoeeet s 172
6.2 REQUITEMENTS ..ot sssssssssssns 172
6.3 SYSLEM DESIGN....vvvvurverirrisereisee it 173
6.4 Specification of the Translation Mechanism........cc..ccourmrrinnrermmeeinnreeinneens 174

6.5 Full Application EXaMPIE........cc.covrnriiniinniisississssssssssssssssssssssssssssanss 179

5.6 CONCIUSIONS ...t ee et ses e s e s e neseeseesaneee e eesensenenees 187

Chapter 7: Overall conclusions and recommendation for further work.............. 188
RETEIBINCES ..ottt 193
Appendix A: Edge filter SUPPOrtiNg ClaSSES........c.ovvvverinriieriinrisrississsissssssissinnns 199
Appendix A-1. Edge Filter Class STrUCTUTE.........ooc.veerereeressseseseeeens 199
Appendix A-2. Class Structure COEommrereresnesessesessessssseseens 200
Appendix B: EAge filter COUE ... sssssssesssssssssssssssnnes 205
Appendix B-1. Mult Mask Code Using the Proposed Extension................... 205
Appendix B-2. NS & WE Mask Code Using the Proposed Extension......... 211
Appendix B-3. Line Store Code Using the Proposed Extension.................... 216
Appendix B-4. Threshold Mult Code Using the Proposed Extension.......... 218
Appendix B-5. Interface Code Using the Proposed Extension.............c....... 221
Appendix B-6. RAM Write Code Using the Proposed Extension................. 225
Appendix B-7. RAM Code Using the Proposed EXtension ..., 226
Appendix B-8. Filtercore Code Using the Proposed Extension 228
Appendix B-9. Mult Mask Code Using RTL VHDLccccoouvinrinnrinnrinnnnn. 231
Appendix B-10. NS Mask and WE Mask Code Using RTL VHDL.............. 237
Appendix B-11. Line Store Code Using the RTL VHDL......cc..ccooccrmmrrrnreennne. 242
Appendix B-12. Threshold Multiplexor Code Using the RTL VHDL 245
Appendix B-13. Interface Code Using RTL VHDL ... 248
Appendix B-14. RAM Write Code Using RTL VHDLccooconmrrrnrrenereonnnn, 252
Appendix B-15. RAM Code Using RTL VHDLc..cccoeinmrnmmrinnrernnrennree, 254
Appendix B-16. Filtercore Code Using RTL VHDLccccccovviinnrinnrinsrnnnnnn. 256
Appendix B-17. Mask Types Code Using RTL VHDL.........ccccccouuvinnrinirinnnnnn. 259

LIST OF FIGURES

Figure 1-1. Rigid Functional DeCoOmPOSITION.coccveevereresereseresseresssssesenns 6
Figure 2-1. Time Related Cash FIOW.cccccorrimrenmrrinnreinseinssessssssssssessssssssses 14
Figure 2-2. Schematic Based Design Capture. ..., 15
Figure 2-3 Applications of Abstraction LeVels. ..., 17
Figure 2-4. Functional DeCOMPOSITION.c..mrrrmmrermrrermresnsesnsssssssssssssssssssssssns 20
Figure 2-5. Petri Net DESCIPLION.c..ovrverrererriinressesssssssssssssssssssssssssssssssssssssssnes 21
Figure 2-6. State Machine Graphical DesCription. ..., 22
Figure 2-7. Object Based Design Representation.ccceernnssnsrsssssennn, 27
Figure 2-8. Queues IMpIementation. ... 28
Figure 2-9. Algorithmic Description of the Register ADT. ... 33
Figure 2-10. Algorithmic Description of the Counter ADT.......cccooevvvvrirnriinnrnnne, 33
Figure 2-11. Message Oriented Communication SCheme..........ccccovevrevrrnrrnnronne, 34
Figure 2-12. RegiSter COUE RE-USE.cccccurerereierissesesssesesssesssssesssssssssssessess 35
Figure 2-13. Block-Based DeSign StrUCLUIE............ooveeereemereseressesesssesessneeeens 36
Figure 2-14. Use of the VHDL Block Statement...........ccccvrvnrinnrinsiinsrnsssnssonnn, 38
Figure 2-15. Counter Described Using The ‘Abstract Component’ Style.......... 39
Figure 2-16. Use of an ‘Abstract COmMPONENTcc.comremreinresmeresneeesneeeens 40
Figure 2-17. Use of a Package for Building Abstract Data Types...........cccuueeent 43
Figure 2-18. Package, Visibility throughout the Entity/Architecture.................. 44
Figure 2-19. Narrowing the Accessibility of a Packagecccvverivnriincrisrinsrinne, 44
Figure 2-20. Selective Access to Package INSLaNCeS...........coovwmremereenneeessnnenenns 45
Figure 2-21. Data Structure Inheritance in Standard VHDL..........ccccoouvvvvinnnnee 49
Figure 2-22. Abstract Data Type With RECOIdS ..., 50
Figure 2-23. Abstract Data Type and Inheritance with Records............cc.ouvvnne.. 51
Figure 2-24. Inheritance via Component INStantiationccoerenmreennreennne. 52
Figure 2-25. Initial Code for Abstract Data Type Based Component................. 53
Figure 2-26. Class Structure for the Counter Abstract Data Type.........ccouvvvnee. 55
Figure 2-27. Static Polymorphism through Configuration............cccoeeoverinninnne, 59
Figure 2-28. Benefits of Dynamic POlymOrphismccomennrennneennnee, 60
Figure 3-1. CIass DECIArationcccccreresereiesisesesssesesssesssssessssssssssssseess 85
Figure 3-2. Class Declaration with a Generic Declaration.............cccoeervnrinnionne, 86
Figure 3-3. Class Declaration with an interface Declaration............ccccc.couvinernnne, 87
Figure 3-4. Class Declaration with a Generic Declaration...............ccooueeneees 88
Figure 3-5. Class with Two Methods and an Execution Priority..............cccu.... 92
Figure 3-6. Virtual Class Definition ..., 94
Figure 3.7. Class DefiNitioN.........c.ccccvmirininrinisssssssssssssssssssssssssssssssssans 97
Figure 3-8. Class Declaration with a Creator Method..............cccouevrnreinnereinnneenns 98
Figure 3-9. Dynamic Creation and Removal of an Object..........ccecvnrriinnnnnnns 99
Figure 3-10. Object Instantiation with a Generic Map........ccouvvernnriinsrsssrnssonn, 99
Figure 3-11. Object Instantiation with an Interface Map.........cccoocovmvinerisnriiennns 100
Figure 3.12. Declaration of an Array of ODJECtS. ..., 101
Figure 3-13. Non Blocking ODbject Calls...........cccrmrrreneesiesesii, 102
Figure 3-14. Object SNAlloOW COPYccvvvvriiriinrirsssssssssssssssssssssssssssenes 103

Figure 3-15. Class Encapsulation LEVES............cccc.ormrrereeessiesiess 104
Figure 3-16. Public Encapsulation during the Inheritance Process................... 105
Figure 3-17. Multiple Inheritance EXamPple.........cocrnrinerinsiinsrisssssissinnnns 106
Figure 3-18. Class Declaration with a Feature Map........cccooevvevinerinninsrsnsiinnnns 106
Figure 3-19. Polymorphic BENAVIOUTcccvcerermrrennrerinssesnsesssesssssssssssssssssneens 108
Figure 3-20. Class Using a Type Declared Within a Package ..., 109
Figure 3-21. Wait Statement Synchronised on a ‘stable Attribute.................... 111
Figure 3-22. Use Of Pre ASSEITIONS.........ccoviernriernsississsssisssssssssssssssssienes 112
Figure 4-1. The EntityObject Abstract Data TYPeccccomrrmmmrremnerirnesresneen 115
Figure 4-2. Grouping of Un-related Types in an Array......... 118
Figure 4-3. ADT Declaration in SUAVE/ZOIdenburg........ccccoeiervnrinsisnsinnnns 120
Figure 4-4. ADT Declaration in Objective VHDL and our Proposal............. 120
Figure 4-5. Method Declarations in SUAVE/OIdenburg.cccoccomrvennriernneens 121
Figure 4-6. Method Declaration in Objective VHDL.........cc.ccoovinmriinnnreinnrieinneens 121
Figure 4-7. Method Declaration in our Proposal..........cccernnnnsiinsinnns 123
Figure 4-8. Abstract Class Declaration in SUAVE ..., 123
Figure 4-9. Abstract Class Declaration in Objective VHDL. ..., 124
Figure 4-10. Abstract Class Declaration in our Proposal...........c.c. 124
Figure 4-11. Visible an Non-Visible Declaration in SUAVE. ..., 125
Figure 4-12. Hidden Type Declaration in SUAVE..........cccouimirinnninsiinssiinnnns 126
Figure 4-13. Visible and Non Visible Declarations in Objective VHDL........ 127
Figure 4-14. Hidden Attribute Declarations in Objective VHDL.................... 127
Figure 4-15. Encapsulation Control in our Proposal.........ccc.ccinninnns 128
Figure 4-16. Use of Public Instance Variables in our Proposal..............cccccu. 129
Figure 4-17. Example Class StrUCLUTE.ccccrerierierisessssseesessessssees 131
Figure 4-18. Example Add_Shift CIaSS........ccc.ouremmmriimmrerinnreinresnnesnsesssssssssssnneens 132
Figure 4-19. Feature Mapping in our Proposal...........cccorirnnsssnsinnns 133
Figure 4-20. Inheritance Limits in SUAVE/OIdenburg. ..., 135
Figure 4-21. Inheritance Limits in Objective VHDL.ccccccouvvinmriinnrreinnniiinnenns 136
Figure 4.22. Repeated Inheritance for an Hand-bell Counter.cccccoouuneee. 137
Figure 4-23. Instantiation in SUAVE/Oldenburg & Objective VHDL.......... 138
Figure 4-24. Object Instantiation in our Proposal..........c.ornsinninnns 138
Figure 4-25. Multiple Drivers Assignment in VHDL.ccccoovinreiinnreinnneinneens 140
Figure 4-26. Improper Description 0f @ COUNEccccwmreemreeinrerensernnessnneens 141
Figure 4-27. Proper Description of @ COUNLE ... 141
Figure 4-28. Message Passing in SUAVE/OIdenburg, 145
Figure 4-29. Message Passing in Objective VHDL. ..., 146
Figure 4-30. Message Passing in our Proposed EXtension. ..., 147
Figure 5-1. Edge Filter TOP LEVEL ... 151
Figure 5-2. Edge Filter DeCOMPOSILION.ocverierinriiesiissisessssssssssesssssssnnes 152
Figure 5-3. MUlt-Mask TOP LEVEL........ccoririesiseseiss e 153
Figure 5-4. LiNe-Store TOP LEVEL......covmrrrreinrsisssessssssssssssssssssssssssssssssnneens 154
Figure 5-5. Threshold Multiplexor TOp LeVeLl. ... 154
Figure 5-6. Interface TOP LEVEL........cccoriinsssssss s 156
Figure 5-7. RAM TOP LEVEL ... sisssssssssssssssssssssssssssssssssssneens 157
Figure 5-8. RamM WIite TOP LEVEL.....cvvvvreererereierrissressssisssessssssssssssssssssssnneens 157

Figure 5-9. Filtercore TOP LEVEL ... 158

Figure 6-1. Operation Of Pre-PrOCESSOFcourrrieriserissesessssssessessssees 173
Figure 6-2. Class DECIaration..........c..cociirnississssisssssssssssssessssssssnes 174
Figure 6-3. Translated Version of the Class Declaration. ..., 175
Figure 6-4. Child Class of the ‘shift_reg’ CIass. ... 176
Figure 6-5. Translated Version of a Child CIass. ..., 177
Figure 6-6. Object-Oriented Method Calls. ..., 178
Figure 6-7. Translation for Method Calls. ... 178
Figure 6-8. Object-Oriented Version of the Example.........ccccoenrinnerrinne, 182
Figure 6-9. Translated Version of the ShiftRightReg. ..., 183
Figure 6-10. Translated Version of the ShiftLeftReg.ccccovvvvverivnrincriisriiennns 184
Figure 6-11. Translated Version of the BidirShiftReg..........ccceiverivnrinriissriinnnns 185
Figure 6-12. Translated Version of the COUNTEr. ..., 186

LIST OF TABLES

Table 5-1. Threshold Decoding Table Top LeVel........nrineincrinnsisniinnn, 155
Table 5-2. Detail of Write and Read Operations...........ccoeeenereeeresn: 156
Table 5-3. Case Study Comparative Table...........cc.ccourimerinernnernrieerinns 170
Table 6-1 Translation Process According to Inherited Attributes. 176

Vi

ACKNOWLEDGMENTS
This research was sponsored by the School of Design, Engineering and

Computing at Bournemouth University and IBM Havant, UK.

The author would like to acknowledge the help and support given by his

supervisor Doctor David Long and Nick Weavers.

The author would also like to acknowledge the support of the fellow
researchers and members of staff of the School of Design, Engineering and

Computing at Bournemouth University.

vii

GLOSSARY

ASIC. Stands for Application Specific Integrated Circuit. This is usually used
to refer to an integrated circuit (IC) that is designed to implement the
functionality required for a popular product as opposed to standard 1Cs that
implement a more diverse function that can be used in wide range of
products. An ASIC solution reduces the number of ICs required for a
product and so reduces the production cost. ASICs are one of the major
growth areas in electronics.

Abstract Data Type. An abstract data type is a type, which defines a set of
visibility rules and interfaces for accessing its internal properties. ADTS
represent the back-bone of Object-Oriented programming.

Abstraction Level. Term used in the latest Hardware Description Languages
to indicate the level of details used to describe a design. Commonly, three
main levels are specified: Behavioural, Register Transfer, and Structural. The
Behavioural level represents the most abstract form of description, mainly
focusing on the behaviour of a design. The Register Transfer defines the
implementation details of a design. The structural level is mainly used for
assembling hierarchical blocks of a design.

Attribute. Also referred as feature, name given to the composing elements of
an abstract data type such as access messages and internal instance variables.

BNF. Stands for Backus Naur Form. A context-free method for expressing
the syntax and structure of a programming language. Used extensively in the
IEEE VHDL language reference manual.

FPGA. Stands for Field Programmable Gate Array. Also referred as Complex
Programmable Logic Devices (CPLD). This is the cost effective alternative to
an ASIC for smaller production quantities. FPGAs benefits form a fast design
cycle and on site re-programmability due to their static RAM based
architecture. FPGA are generally more expensive than ASICs on a unit basis.
This is caused by their complex coarse-grained architecture.

Genericity. Also referred as tailorability, term used to qualify the level of
reusability of a design. A design is said to be generic if it provides the user
with a number of modifiable parameter to allow for context sensitive
adaptations.

viii

HDL. Stands for Hardware Description Language. Depending on their
complexity, HDLs will support different levels of abstraction. The latest
HDLs languages are based on complex sequential programming languages
and allow high abstraction levels systems description. HDLs are used both for
simulation and implementation (synthesis) purpose.

Inheritance. Inheritance is an important feature of object-orientation.
Inheritance provides a mechanism for design reuse by deriving functionality
from an already existing one. Inheritance is one of the mechanisms
supporting polymorphism.

Logic Synthesis. The logic synthesis operation consists in transforming
register transfer language description in an optimised set of Boolean
equations. The resulting equations are then mapped into ASIC library
component primitives following some user-defined constraints (mainly
related to execution speed and size of the design). High-level synthesis tools
also include a primary operator optimisation stage.

Object-Orientation. The object-orientation is a collection of means for
organising a description (e.g. specification, implementation). From this
perspective, object-orientation may be regarded as a methodology. Two of
the most important mechanisms introduced by object-orientation are
inheritance and polymorphism. These two techniques when used in
disciplined fashion will promote design maintainability and reusability.

Polymorphism. Object-oriented mechanism also known as late binding.
Polymorphism characterises the dynamic type of an element. Polymorphism
due to inheritance is often considered as an important contributor to object-
orientation.

Register Transfer. The register transfer terminology is used to characterise a
description’s level of abstraction. This level is situated under the behavioural
level (also known as executable specifications) and above the gate level (net-
list format). The register transfer level description of a system specifies in
detail the logic building blocks composing it and their connectivity.

Simulator. A simulator can evaluate a system consisting of components
described at different levels of abstraction (e.g. a mixture of behavioural,
register transfer language, and gate level). The evaluation of each of the
system’s node status is generally event based. The input stimuli required for
the execution of the simulation are often referred as test bench or test
harness.

VHDL. Stands for Very High Speed Integrated Circuit Hardware
Description Language. This language was designed by the Institute of
Electrical and Electronic Engineers (IEEE), primarily as a
specification/simulation language. A subset of this language can be translated
into a physical circuit layout by synthesis tools.

VLSI. Stands for Very Large Scale Integration. The technology that enables
integrated circuits (ICs) containing millions of deep sub-micron transistors to
be fabricated.

Chapter 1

OVERVIEW AND REQUIREMENTS SPECIFICATIONS

1.1 Introduction

This thesis describes the research work performed towards the application of
the Object-Oriented paradigm to the Very High Speed Integrated Circuit
Hardware Description Language VHDL (DASC 1993). This chapter
summarises the contents of this thesis through taxonomy of the chapters

along with a definition of the project background and objectives.
1.2 Rationale

The rapid advance in integrated circuit technology over the past two decades
has driven the need for improved design entry tools. There are a number of
advantages to be gained from the introduction of HDLs in ASIC design.
Amongst them, is the ability to describe systems at different levels of
abstraction: from a structural to behavioural description of the design. This
allows faster and more reliable design capture, hence improving time to
market. HDL based ASIC designs represents one of the main growth areas in
the field of the digital electronics. However, although well suited for today’s
design sizes, Hardware Description Languages such as Verilog or VHDL
already show some limits (Weiss 1994) for handling multi-designer large-sized
designs. This is related to the bulk philosophy on which both languages have
been built. This research investigates the limits found in the most popular
HDLs for handling the concepts of design abstraction, reusability,
extendibility and maintainability in an effort to develop a better suited
language based on the Object-Oriented paradigm (Khoshafian 1989) (Booch
1991).

The notion for reusability and extendibility are primordial in the design of any
application specific integrated circuit since most projects either represent a

cut-down or improved version of existing products. This is mainly motivated

by the need to limit development costs for these projects.

As a result, it is crucial to specify and design electronic systems with reuse and

maintainability issues in mind.

The two principal Hardware Description Languages (VHDL and Verilog) do
not represent the ideal solution for the specification and building of large
designs, as both languages are based on the widely used structured and
obsolete programming methodology. Although structured programming
represented a reliable methodology for designing small to medium sized
systems it has long been acknowledged for its limits in the software world. A
new hybrid language has therefore been created along with a pre-processor to
address those limits. This language is enhanced with a layer of constructs
favouring the use of object-oriented techniques for code structuring.
Numerous extensions have been proposed by the design community to
handle large descriptions (Vista) (Shumacher 1995)(Cabanis 1995)(Ashenden
1997)(Radetzki 1997).

An ideal hybrid language should be an orthogonal extension to an already
existing and well-structured language, thus allowing optimal integration within
the type system and philosophy of the original language. Furthermore, the
new capabilities of the language should allow modern analysis and design

methodologies to be used.

With procedural languages such as Verilog or VHDL, a multi-abstraction
level paradigm is used to specify, simulate, design and implement a system.
The Behavioural Level represents an abstraction of the functionality described
during a functional decomposition. Consequently, at this stage of the design
process, only functionality issues are addressed. The Register Transfer Level
(RTL) also known as Data Flow Level, implements the physical aspects of the
required functionality taking into account phenomena such as timing and

power consumption along with cost related issues such as the design size. The
Gate Level will represent the result of an automated translation of an RTL

description into a net list format.

The approach taken in most HDL based designs relies on a functional
decomposition stage, followed by a behavioural specification for the
functional blocks. The behavioural description is used with a test bench to
ensure the consistency and correctness of the design throughout the
construction of the system. The same test bench is then used with the RTL
and gate level versions of the design as a means to cross-check the

functionality during the different stages of the system’s development.

For each level of abstraction, designers are required to build an interface in
order to adapt the test bench to the abstraction of the information exchanged.
The functional blocks interface types are usually different and not compatible
from one level of abstraction to the next. The behavioural level will usually
maintain user-defined types for interfacing. The register transfer level and gate
level will be using more hardware-related types such as “bit” based or

“standard logic” based types (either scalar or composite versions).

A problem with this approach is that the communication channels used to
exchange information throughout functional blocks are often prone to
changes during the life of a project. As a result, any minor changes in the
system specification will have an important effect on the amount of work
required to update the implementation. Furthermore, as can be seen from
Figure 1-1. the structure of any functional block is very rigid and often cannot
be reused for other applications without requiring significant reengineering

effort in terms of design debugging.

FO Abstraction level sensitive

block interface's
L_vLj

V

Figure 1-1. Rigid Functional Decomposition.

The need for an improved method for modelling is increasing as the size and
complexity of new IC’s designs steadily grows. On-going work on the subject
is being carried out by an IEEE committee (Berger 1995) with the intention
of developing a solution for the next generation of HDL. However, the best
alternative is not clear, as there is no one solution to address all aspects of
current design methodologies’ limits. In terms of modelling, a number of

issues that should be resolved can be listed. These include:

Which design methodology ensures better reusability, maintainability and

extendibility of hardware designs.

To what extent a better design methodology could be implemented with

already existing HDLSs.

What would be the requirements for the implementation of an improved

Hardware Description Language.

How to maintain a consistent link with already existing designs and CAD

tools.

To what extent reusability could be achieved with a new language when

compared to existing HDLSs.

What should be the range of applications of any new language? E.g.

specification, simulation, synthesis or formal verification.

Object-Orientation has been used in a number of concurrent processing
applications since the encapsulated nature of an object provides a good
mechanism for representing independent asynchronous processing units.
Consequently, this infers that Object-Oriented modelling might be beneficial

for the description of hardware systems.

Pragmatically, there are three main domains in hardware design where the use
of Object-Orientation might prove beneficial. Primarily, enabling HDLs to
support Object-Oriented constructs would narrow the gap between system
analysis and system design. Both stages could be developed around an object-
based methodology, hence, reducing the costly iterations that typically occur
between the design stage and the analysis stage. This line of thought is related
to the use of abstract interfaces for inter-component communication. For
instance, as designs become more complex, it becomes almost mandatory to
work at different levels of description (Behavioural, RTL, and Gates) for the
different building blocks. As a result this task requires a significant effort in
terms of project planning. Different parts of a system will be developed at a
different pace using a variety of capture tools and means of verification. In
the example of a common design, some parts might be bought from an
external supplier (Intellectual Property) with fixed specifications, and
interfaces. The level of details for those components will inevitably be low
(RTL or Gate) since these models are designed for synthesis. Other
hierarchical blocks of the designed system may require a “top-down”
approach before getting to the implementation stage. With those blocks,
implementation decisions may be delayed until a later stage. As a result,

means of abstraction are needed for the overall design capture.

The second benefit of the use of object-orientation is related to the concept
of inheritance. The inheritance represents a powerful means for categorising
elements of systems and expanding their capabilities by derivation from
already existing element attributes. Most modern ASIC designs are based on
improved versions of existing designs, inheritance if used with hardware
design would simplify the building of the new design and shorten time to

market.

The third aspect is related to the modelling of large designs. Historically,
software and hardware languages have been improved to further extend their
abstraction capabilities. For instance, in the software world, structured
languages such as C and Pascal that replaced assembly code have in turn, been
replaced by Object-Oriented languages (namely C++ and other
implementations of Object-Orientation). A similar analogy can be found in
hardware design where gate level design and logic level description languages
such as ABEL or PALASM have now been replaced by more abstract
languages, namely, Verilog and VHDL.

Although a higher level of abstraction in a design commonly results in a less
efficient implementation, the trade-off has proven worthwhile when the time
to market, design maintainability and design extendibility represent important

criteria.

To some extents, VHDL can be seen as an improved version of the Verilog
language for its support for complex data structure, encapsulation and strong
typing. If inheritance and polymorphism were to be added to the language to
improve its abstraction capabilities, changes would have to be made to the
VHDL encapsulation and type mechanisms to cope with the new designs

inheritance and dynamic types.

This project focuses on improving the modelling capabilities of the VHDL
language by increasing its abstraction level, thereby bringing hardware

modelling to higher grounds. As a result this should be better suited for the
building and verification of large reusable designs. To achieve the announced
objective, language extensions have been researched and added to the VHDL
language with three essential criteria in mind: orthogonality of the new
constructs with the existing ones, respect of the VHDL language philosophy
(strong type system) and minimal changes to the language. Hardware models
based on the new semantics and design methods have been developed,
leading to the creation of a demonstration pre-processor tool to prove the

validity of the research.

1.3 Aims and Objectives

To design a HDL for modelling large reusable hardware/software systems
that is compatible with already used languages and proven design

methodologies namely VHDL and the Object-Orientation.

To develop models in order to validate the proposed semantics and to
illustrate the benefits of object-orientation applied to hardware description
languages when dealing with behavioural and register transfer description

level.

To create an experimental compiler/pre-processor to evaluate and validate

the benefits of the proposed semantics over standard VHDL.

1.4 Taxonomy of Chapters

1.4.1 Chapter 1
This chapter introduces the research work carried out to achieve the project
objectives and main issues involved. A brief description of the thesis layout is

also given.

1.4.2 Chapter 2

An analytical study of the work carried out on design methodologies and
proposed solutions to Object-Orientation applied to Hardware Description
Languages is carried out in this chapter. This review is based on the material
published in a range of software and hardware technical publications, books,

journals and conference proceedings.

1.4.3 Chapter 3
The definition of the new semantics is described in this chapter along with
the motivations for selecting the classification orientation versus other

available solutions for achieving Object-Orientation.

1.4.4 Chapter 4

This chapter evaluates the validity and superiority of the newly proposed
syntactical constructs by comparing our proposed extension to other existing
proposals. The comparison uses a common set of benchmarks derived from

the language design objectives set in chapter 2.

1.4.5 Chapter 5

This chapter demonstrates the proposed extension abilities for implementing
design abstraction, reusability and maintainability. This is done by
implementing a real-life application using our proposed extension. In order to
contrast the proposed extension with standard VHDL code, the studied
design will also be implemented using the VHDL RTL style. The comparison
results will be used to draw conclusions on the benefits of our proposed

extension over conventional VHDL code.

1.4.6 Chapter 6
This chapter presents the overall conclusion of this thesis. It also makes
recommendations for further work and applications for an Object-Oriented

Hardware Description Language.

10

1.4.7 Appendix A

This describes an experimental pre-processor that has been developed to
demonstrate how a pre-processor handling inheritance, dynamic
polymorphism and encapsulation could be developed to support the

semantics developed in this thesis.

1.4.8 Appendix B
This appendix contains the code for the Object-Oriented description of the
supporting classes for the design of the Edge Filter.

1.4.9 Appendix C
This holds both the Object-Oriented and RTL Code for the design of the
Edge Filter.

11

Chapter 2.

REVIEW OF VLSI DESIGN METHODS

2.1 Introduction

VLSI design and software engineering are two key areas for which a rise in
productivity is needed in the near future. There has been an interesting
awareness of similarities in the two fields (Kumar 1993). The willingness to
transfer technologies that have proved to be successful from one area to the
other became stronger because of the limits of the schematic capture based
methodology (Smith 1986), (Wirth 1998), (Shelor 1994). Designers who have
experience in both areas have always spontaneously done technology transfer
between the two disciplines. Some of the fields where technology transfer has
worked successfully are in silicon compilation, in which part, or all of the
process of translating a VLSI design concept into mask level layout
instruction, has been automated. Like software language translators, which
range from assembler to fourth generation languages systems, silicon
compilers automate translations. Similarly, the assembling of predefined
standard cells on a chip using traditional programming concepts to create a
procedural VLSI design methodology has proved to be a success, applying to
a VLSI design program, transformation approaches originally developed for
software. These conclusive experiments led the designers to assume that a
software like capture based methodology could be beneficial to the VLSI

design process and to conceive Hardware Description Languages.

The next step hardware designers took in favour of technology transfer was
the adoption of software analysis and design methodologies. Although
hardware designers valued ASIC design, functional decomposition and
structured analysis/ structured design methodologies, the concept of Object-
Orientation, originally a software concept, was gradually gaining support

within their community. The notion of objects was first introduced in the

12

language Simula (Dahl 1966), designed in the late 1960’s. However, Object-
Oriented programming did not emerge as a new analysis and programming
paradigm until Smalltalk (Goldberg 1989) came along by the end of the 70s.
Many Object-Oriented programming languages are widely used today.
Although some of them have been designed from scratch, most of them are
hybrid languages, that is to say conventional languages with added Obiject-
Oriented concepts. This chapter will examine the limits of the current
methods and identify requirements for an improved Hardware Description

Language.

2.2 Schematic Capture Based Methodology

Critical time to market constraints and hardware costs have led ASIC
development to rely on efficient design methodologies for decades [Figure
2.1]. Mask design was the first methodology used for the production of LSI
designs; it was later replaced by logic level schematic capture. Schematic
capture has been the main design entry technique used until the mid-eighties

when hardware description languages appeared (Barbacci 1981).

13

Although the HDL based technique for developing hardware is similar to
high level language to develop software, a number of issues have motivated

the move from a visual graphical based methodology to a language based one.

Cash Flowr Bieak Eswen Foint

F Y \
Deweloprnent
Begins

/

iy p Pradust Ship

Time to Market
Squeeze

Figure 2-1. Time Related Cash Flow.

In a graphical based methodology, some information is provided to infer and
clarify the functionality described in the schematic. This information will
relate to specific data flow in the circuit, feed back data path, data
dependencies or sequential and parallel operations. This means of
representing a design is very convenient, as it does not just show how electric
components connect but also how they operate. However, as component
complexity increases, representing hierarchy via graphical means becomes
limited. An example of this limitation can be found with the standard
ANSI/IEEE standard symbols such representations are effective for small
and limited functionality components but fail to address LSI or VLSI types of

components, which are too complex to be represented in an efficient way.

14

Ak
Bir

Pk

CiM

Commonly, hardware designers add a number of indications on a design,
such as specific vertical/horizontal alignments (for parallel or sequential
executions), a data flow operating from left to right and others [Figure 2.2]. In
most cases, a schematic should provide information that can be understood
by a person reading it. The interpretation of this information has not been
clearly defined and has been adopted by tradition. All these implicit means of
giving information do not have their counterpart in language based designs;
this justifies the popularity of graphical entry tools as “front ends” to HDL
designs. Design tools such as state diagrams, flow diagrams, logic tables and

others, support different design entry formalisms.

L1

T

ARDZ2

Uz Lz

1 | COuT
L /
AMDZ CR3

U4

T

LIS ARDZ
- |/ B
o

AMDZ 0[]

;|
PR] Uz
AORZ

[—>—o

XOR2

Figure 2-2. Schematic Based Design Capture.

To overcome this lack of information in HDL designs, run time assertions
and inline comments can be used to clarify the code functionality. For
example, information regarding the use of a specific architecture or sequential

statement such as ‘if’ or ‘case’ infers the use of either multiplexor or decoder

15

= COUT

FOUT

based structures. Well-commented code can often overcome some schematic

shortcomings.

Furthermore, HDL based descriptions free the designer from unnecessary
details by abstracting ASIC library components. FPGA designs represent an
exception to the rule. Due to their coarse grain architecture: internal features
(10 blocks, internal clock buffers, etc.) need to be explicitly inferred to
achieve satisfying synthesis results (Xilinx 1997). Ideally these problems
should be solved as synthesis tools improve in the same way as for high level

language software compilers.

In any kind of engineering construction, the most important factor for
productivity is the reuse of prior effort (Keating 1998). This has greater
significance in ASIC design, where getting the design right first time is a
primary goal and design mistakes can jeopardise a project or increase the cost
and shipment time drastically. Consequently, every reuse of well-tested and
validated components increases the overall design reliability and reduces the
cost and effort required. These factors apply equally to schematic or HDL
based design methodology but, the use of the latter maximises its effect.
When designers migrate from a schematic environment to a language
environment, their motivations are often tied to the needs of creating larger
designs within smaller time scales. Therefore the opportunity for reuse of
larger designs increases with larger ASICs. To be able to apply design reuse,
various elements need to be taken into account: the existence of functionality;
what it provides; what it needs; its limitations and whether the level of testing
has been thorough enough. Schematic capture does not guarantee the
development of reusable parts in terms of genericity. Even though provisions
for reuse can be built in, changes in ASIC technology cannot ensure direct
mapping across ASIC libraries. Unlike schematic capture, with a HDL based
design, a switch from one technology to another is a straightforward

16

operation, due to the technology independent nature of HDLs, thus

preventing design obsolescence.

Hardware Description Languages can be classified according to their levels of
abstraction (see Figure 2.3). Most of the early HDLs such as CDL (Chu
1965), DDL (Duley 1968), were designed specifically for description at the
Register Transfer Level. Today, these languages represent the lowest entry
level before the structural level. With these languages, the system had to be

described in depth, using rigid expressions to assist the synthesis tools.

Structural Functional

Algorithm
Register Transfer Language

___ Boolean Equation

Transistor | Differential Equation

Polygons
Sticks
Standard Cells
FloorPlan — —»

Geometric

Figure 2-3 Applications of Abstraction Levels.

Later HDLs such as ARCHI (Nixon 1986), ADL (Leung 1979), S*A
(Dargupta 1981), ZEUS (Lieber herr 1981) were aimed at micro-architecture
level designs. With these HDLs, the description was based around a set of
predefined architectures to make the design process easier, but design
possibilities were restricted by the rigidity of the predefined architectures.
Besides, these languages are not adequate for describing the digital system

17

design process, as they are often restricted in their ability to support different

levels of abstractions.

In recent years, much research has been carried out on Multi-level HDLs.
One of the solutions for this problem was to develop a single language that
could support a large class of architectures. Some languages which fall into
this category are ELLA (Morison 1985), Modlan (Pawlak 1981), UDL/I
(Kartsu 1991), Trio (Coen-Porisini 1991), VHDL (DASC 1993) and Verilog
(Verilog std 1364-1995). Three levels of description are currently supported
by these languages: Structural, Data Flow (or Register Transfer Language) and
Behavioural. Although these languages offer an efficient way of modelling
and designing digital systems, few of them offer links from system
specifications to Register Transfer Level, which represents the closest level to
layout. Consequently, the resulting code for a complex ASIC (Application
Specific Integrated Circuit) will become large. Apart from these languages,
some research has been carried out in the field of specification languages.
They are either a formal semantic for specifications such as ESP (Chu 1993),
or a syntactic scanning, semantic analysis, interpretation generation and model

integration of the English language (Cyre 1989).

Nevertheless, no specification language can be considered complete if it does
not support any development techniques for analysis and reasoning. Typically,
the phases of a development process include various stages: requirement
analysis, design, implementation, test and integration stages. Hardware
Description Languages such as VHDL were primarily designed for addressing
those aspects; although nowadays VHDL cannot be used for all stages of a
design, its use covers most of them. Within one development environment,
engineers are able to specify, design and implement a circuit validating each
level of the hierarchy via high level VHDL test benches. In comparison,
schematic based designs do not allow such abstraction; the highest level often
considered is the top-level block diagram. Furthermore, since a VHDL design

18

methodology is language based, this indirectly provides a convenient means

of documentation.

VHDL, like most of the modern hardware description languages, is based on
a structured programming technique. Structured programming was designed
to organise complex programs more efficiently by linking the processing
functions to the data structures. The method of functional decomposition
characterises the steps that must be taken to reach a particular goal. These
steps may be presented by functions that may take arguments in order to deal
with data that is shared between the successive steps of the computation. In
general, this method is not very good for data hiding. Another problem is that
new designers may not be familiar with viewing their problems in terms of
computation steps. Also, the method does not result in descriptions that are
easy to alter. This leads us to further examine the limitations of current

hardware system design methods in order to offer alternatives.
2.3 Current Hardware System Design Methods and their Limits

The choice of analysis and design methods is often motivated by the
designers’ need to manage design complexity and to keep development and
maintenance costs down. Numerous analysis and design methodologies have
been used since the 70s, contributing to a better definition of design
processes. Besides, there has been an attempt at standardising the system
representations used by designers. Electronic engineers successfully use two

main methods: Functional Decomposition and System Based Analysis.

19

F1 F2

— L~

F11 F12 F13 F21
F111 F112 F121

Figure 2-4. Functional Decomposition.

Functional decomposition treats one function at a time, and hierarchically
decomposes it into a set of sub-functions. This process continues until the
decomposition level is low enough to be implemented by a set of simple
functions as shown in figure 2-4. This method is based on the principle that a
problem can be divided into smaller manageable problems to reduce the
complexity of the design. Consequently, the functional decomposition is seen
as a simple approach towards achieving a sensible solution. Nevertheless,
with this approach, the analysis effort is mainly based on creating design
functions at the expense of data consistency. Furthermore, function
decomposition rules are not clearly stated and therefore the decomposition
hierarchy of a system will vary from one designer to another. Finally, the non-
hierarchical interconnections encountered in the design of complex systems
(between different taxonomies or within the different levels of the same tree)

are difficult to represent with the functional decomposition paradigm.

System based analysis is inspired from the system theory by (Lanffy 1968); the
system is seen as a complex and active object. The structural and functional
aims of such an object are described at the System Analysis stage. Both Data
models and Process models therefore represent the modelling of a system.
Design rules are also provided for a better data consistency and process
description. This approach appears to be an improvement over the functional

decomposition method. However, in this paradigm, the data and processes

description techniques are not closely related.

An alternative approach to the system level description is based on graphical
methods. Like system based analysis, graphical tools rely on an algorithmic
description of the system. One of the most efficient but cumbersome
methods is the Petri net description (Gourgand 1993). By using this paradigm,
the concurrency within a design, as well as the data exchange protocol, can be
expressed in a precise way [Figure 2-5]. As the description gets larger, the
Petri net is more likely to make errors when events drive the system to a dead
end or an infinite loop. Techniques based on matrix resolutions have been
developed to overcome these problems but the description still rapidly

becomes unmanageable.

Figure 2-5. Petri Net Description.

Mixed language and graphical tools based on state diagrams are derived from
the Petri net theory. Some languages that fall into this category are SpecCharts
(Vahid 1991) and StateChar (Harel 1987). These languages represent an
extended way of describing a system’s behaviour at the algorithmic level.
Nevertheless, the progress in system level description tools research (Kurup
1998) has brought new problems to light. For instance, as the level of

abstraction increases, lower level models can no longer be expressed.

21

Conversely, it may not be possible to directly implement expressions in higher

abstraction levels onto lower level models.

As a result, engineers commonly use finite [Figure 2-6] or algorithmic state
machine descriptions, allowing low level modelling at the expense of

abstraction level.

Figure 2-6. State Machine Graphical Description.

In addition to Petri net theory derived descriptions, there has been research
reported on system level description using the well supported structured and
functional analysis techniques (Lahitis 1991), (Bakowski 1992). These consist
of hierarchical data-flow diagrams, which describe the flow of data and
control signals inside the system, in response to external stimuli. It provides a
system level description that is suitable for synthesis, as the method allows
high level representation as well as low level modelling. Furthermore, such
methods are based on reasoning techniques for which the designer follows

clearly defined steps.

Although the latter techniques seem to be the way ahead for system level
synthesis, they soon become inefficient when designs grow in complexity.

22

With large designs, work is usually allocated among different people. Ideally,
designers should not have to know complex details concerning units built or
modified by other people, only how the units they are responsible for interact
with the rest of the system. However, with methodologies that do not
emphasise encapsulation and information hiding, multi-person development

team issues are more inclined to occur.

In addition to the design consistency issues, the development cost of large
designs is usually very high. The cost of developing could be reduced, if some
of the units the system is built from could be taken from already existing
systems. Similarly, it would be beneficial if some parts could be reused in
future projects. Nevertheless, neither functional decomposition nor System
Analysis/ System Design (SA/SD) methods clearly emphasise the reuse and

extendibility aspects of a design.

In addition to the discussed design method limits, the building of large
systems using the functional decomposition or SA/SD methods do not
facilitate the creation of components that closely relate to the application
domain. The reason is that design based on such methods identifies two kinds
of entities: the data, which are passive and represent the system, and the

functions, which manipulate the data.

As a result, the designer of a system written in a procedural language such as
Verilog or VHDL will face two alternatives. Either map the problem into a
set of functions and define the data structure needed by the functions or map
the problem to a set of data and write the functions that transform the input

data into output data.

These observations lead us to look for an improved analysis and design
technique providing an easier development of reusable units (genericity,
tailorability), and a higher level of modelling, together with a better object

abstraction.

23

2.4 Object-Oriented Methodology for HDL'’s Based Designs

The history of programming languages may be regarded as a progression
from low level constructs towards high level of abstractions, that enable the
programmer to specify programs in a more abstract manner thus allowing
problem related abstractions to be captured more directly in a program. This
development towards high level languages was partly motivated by the need

to verify that a program adequately implemented a specification.

Obiject orientation is one of the most commonly used terms in recent design
methodology projects, as it is closely associated with the handling of complex
systems. Object-oriented methods address aspects such as encapsulation,
reuse and derivation techniques to name but a few. Encapsulation is a
technique used to hide the implementation of a design. The designer uses
high level constructs to describe a system’s behaviour without concerns about
the final implementation of the construct. Reusability is achieved through
message passing techniques to get information or to modify the values of an
object. Consequently, the design of the function remains safe. Finally,
derivation or inheritance is one of the most promising features of Object-
orientation. This concept is based on the ability to design new functions from
existing ones. To achieve this, a new design will inherit all the methods of its
ancestors. All these attributes are highly beneficial when applied to hardware

description languages (Takeuchi 1981).

Obiject-orientation has proven useful for numerous purposes within HDL. It
can be useful for configuration management and macro modelling of
analogue devices (Mammen 1994). It also provides a means of higher level
description. Some of the hardware description languages that apply Object
Oriented technology are Odice (Muller 1990), Loglan (Pawlak 1987), OODE
(Takeuchi 1981) and SDL (Glunz 1998). These languages adopt different

approaches for the semantic and object-orientation philosophies. Pascal,

24

Algol and LISP are used as a basis for the semantics, Simula67, Modula2 and

Smalltalk for the Object Oriented Implementation.

The notion of objects, originally introduced in Simula, has significantly
influenced the design of many subsequent languages (e.g. Modula and Ada).
The first well-known object oriented language was Smalltalk. In Smalltalk, the
data hiding aspect of objects has been combined with the mechanism of

inheritance, allowing the reuse of code defining the behaviour of objects.

Both information hiding and data abstraction relieve the programmer’s task
when using existing code; they are no longer distracted by irrelevant
implementation details. On the other hand, the code developer may benefit
from information hiding as well, since they will be able to optimise the

implementation without interfering with the client code.

The advantages of Object-Orientation are clear when considering the gap
between system design and implementation. In a number of instances,
Object-Oriented analysis has been regarded as a solution to this problem of
communication. According to Coad and Yourdon (Coad 1991), Object-
Oriented techniques allow us to capture the system requirements in a model
that directly corresponds to a conceptual model of the problem domain.
Furthermore, proponents of Object-Oriented Programming (OOP) claimed
(Cox 1990) that an Object-Oriented approach enables a more seamless
transition between the respective phases of the software life cycle. If this
turns out to be true, changing user requirements could be more easily
discussed as these changes would be less disruptive for the system and they
could in principle be more easily applied to the successive phases of the
development. One of the basic ideas underlying Object-Oriented analysis is
that the abstractions achieved in developing a conceptual model of the
problem domain will remain stable over time. Consequently, rather than
focusing on specific functional requirements, attention should be given to

modelling the problem domain by means of high level abstractions. Due to

25

the stability of those abstractions, the results of analysis are likely elements for

reuse.

To achieve reusability, extendibility and reliability, the principles of Object-
Oriented design provides the best known technical answer. Object-
Orientation is a way of organising designs by focusing on a fundamental
construct: the Object (Booch 1991). A design therefore represents a
collection of discrete objects that incorporate both data structure and
behaviours. This is often referred to as “tight binding”, as opposed to the
“loose binding” found in common design methodologies. The main
characteristics used to support this paradigm are classification, inheritance and
polymorphism. The classification enables the designer to identify groups of
objects with commonalties and combine them into distinct categories.
Objects are therefore seen as instances of a given class, while a class can
gather an infinite number of objects exhibiting identical attributes. Figure 2-7
illustrates the Object-Oriented view of a design containing a number of FIFO
(First In First Out) and LIFO (Last In First Out) objects gathered in two
distinct groups. The action of grouping similar objects into classes enables
further higher abstraction in the design process as illustrated by the queues

class.

26

DESIGN QUEUS

.. VALUE
/ I‘HHII’ Y RESET
i i PUSH

kY “HHII’ y !EEI POP

.@ FIFO LIFO
) ’ PUSH PUSH
POP POP

Figure 2-7. Object Based Design Representation.

The inheritance would also bring an extra level of organisation flexibility to
hardware designs, as it refers to the action of creating a hierarchy of classes
sharing common data structure and behaviours. A child class will be a
refinement of a parent class, which transfers its unique properties to the
inherited class. Inheritance is used to implement code sharing amongst several
similar classes, therefore reducing code redundancy. In Figure 2-8 an example

of inheritance is given with the queues class.

One can imagine that the two child classes FIFO and LIFO are using the
same code for implementing the reset functionality. As a result, this operation
would be defined at the parent class level thereby promoting code sharing.
Inheritance is not just a module combination and enrichment mechanism, it
also enables the definition of flexible entries that may become attached to
objects of various forms whilst an HDL simulation is executing (referred as:
run time), a property known as polymorphism. A polymorphic operation is
characterised by its ability to adopt different behaviours depending on the

object addressed.

27

Write Pointer

QUEUES Write Sequence
VALUE il
RESET
PUSH
POP N
— .
J Read Pointer
N\ | Read Sequence
FIFO LIFO _
Write Sequence l Write Pointer
_—
PUSH PUSH
POP POP
—_
Read Pointer Read Sequence

Figure 2-8. Queues Implementation.

Considering the example given in Figure 2-8, the operation PUSH could be
identical for the two child classes FIFO and LIFO and could consequently be
defined at the parent class level. However, the POP operation, although
having the same identifier, must behave differently. To do so, the user will
“overload” the two different behaviours for the two different classes and rely
on the execution program (HDL simulator) to select the appropriate one
depending on the class of the selected object. As can be seen, polymorphism
together with encapsulation allows a higher level of system design abstraction
by postponing implementation decisions until later in the development
process. Although it is difficult to find equivalents to some of these new
principles in hardware, it is still sensible to search for similarities between
software design and hardware design methodologies. It is even more relevant
since the introduction of HDLs for hardware design. Indeed, a structure of
hardware entities exchanging signals closely resembles the object model. This
latest advance in the hardware design process is comparable to the

introduction of structured procedural languages in software. Such an increase

28

LIFO

FIFO

in the abstraction level was motivated by an increase in design complexity and
design effort. Already, the hardware community faces identical problems
when considering large HDL descriptions. Design organisation,
maintainability and reusability are some of the main issues that have to be
studied.

In an effort to provide an object-oriented version of the VHDL language, the
IEEE OOVHDL Study Group fwvww.vhdl.org) committee has produced a
requirement and design objectives document. This document identifies the
needs and main requirements for the building of an object-oriented extension.
The requirements are related to many aspects of the language and the design
methodology. However, from this document, eight main points have been
identified.

1) To target higher levels of modelling in order to ease the changes to the

design specifications and make designs less technology dependent.

2) To simplify and speed-up the process of specifications. This should
overcome the challenges faced during the specification of ever

increasingly complex systems.

3) To ease the addition of new functionality thereby reducing the needs for

restructuring large parts of a design.

4) To improve the verification process by bridging the gap between

implementation and specifications.

5) To further the level of reusability; This in turn should yield better design
productivity along with higher design quality.

6) To cater for better documentation capabilities, to help the designs of

growing reusable components libraries.

29

7) To provide better consistency for the creation of Hardware/Software co-

designs.

8) To make the extension easy to learn and apply; Hence allowing a better

acceptance of the new semantics by the designers’ community.

Along with the above guidelines, the IEEE Object-Oriented study group
enumerates a collection of concepts that the object-oriented extension has to
include. Most of these concepts merely characterise the main features of an

object-oriented language. These are:

1) Add better abstract data typing to VHDL.

2) Add inheritance/multiple inheritance.

3) Support for method calls or message passing.

4) Add polymorphism.

5) Add Dynamic creation/removal of objects.

6) Add documentation mechanism.

Having defined the requirements and design objectives for the creation of an
extension to VHDL, we will now examine to what extent VHDL supports
those objectives. We will also identify which of the VHDL constructs and
mechanisms could be used as a base for the building of the language

extension.

2.5 Object-Orientation in Standard VHDL

2.5.1 VHDL Encapsulation and Design Abstraction
Commonly, in most HDL based designs, not all features of the system need

to be accessible by an end user of each component. The designer of a

30

component may therefore want to keep some features private or available
only to specific users (e.g. because they are for internal use only and subject to
changes so letting all users access them directly could endanger further
evolution of the component). This is especially true of features (sub-programs
or attributes) that reflect alternative implementation details of a design rather
than its primary functionality. By keeping such features private, the
component designer protects users against the effect of changes in the final
implementation. This policy is known as information hiding. When
elaborating a design, one may achieve different levels of information hiding.
For immediate functionality (those introduced in the design itself), one may
specify any required encapsulation restrictions by using the public or private
mechanisms as found in C++. Obviously, when considering component
design, a public feature will only be accessible through the ports of the given
component. Consequently, any feature not listed in the port list will be seen as
private. This component approach is somewhat limited and the VHDL

language offers other constructs to achieve an even smoother encapsulation.

VHDL is derived from the ADA language. As such, it supports abstract data
types by means of a syntactic package construct (DASC 1993). To a larger
extent, this is equivalent to the class abstract data type found in most Obiject-
Oriented programming languages. However, the benefits achieved through
abstraction can be obtained only when specific coding style is used. Such a
coding style involves the use of VHDL objects such as block statements,
package design units and configuration design units. In many VHDL designs,
a system can be characterised as a combination of several architectures, each
organised as a collection of processes and related signals. A number of
packages are often used throughout the design to gather common
declarations. Finally, a further level of flexibility is often added to the VHDL
description through the use of configuration statements. From this
observation, we can now examine issues regarding the VHDL code
maintainability and reusability as it stands, and derive an Object-Oriented

31

implementation method to achieve better encapsulation and abstraction. We
will use simple cases with clearly defined goals in order to discuss the various

implementation possibilities.

The first case implements an abstract data type for a register. An inheritance
mechanism is then used to create a counter abstract data type. The
description of the two abstract data types uses a generic algorithmic language.
Figure 2-9 shows the implementation of the base register abstract data type.
An attribute value is defined to hold the internal value of any instance of the
register “ADT”. Methods are used to implement the reset, read, and write
behaviours. This model does not consider any synthesis issues and thus
focuses only on behavioural aspects. Furthermore, the type of assignment is
left undefined. In Figure 2-10, a counter abstract data type is designed by
inheriting the capabilities of the previously defined register ADT. This new
abstract data type needs only to implement the count operation to describe a
complete counter. In both examples, the messages will be considered to be

directly accessible by client applications — i.e. they are public.

Although these two examples do not display the full range of the Object-
Orientation paradigm capabilities, they enable us to understand two of the
main features: encapsulation and inheritance. To compare the two examples
to standard VHDL, a simple direct analogy can be made between the abstract
data type concept and the entity-architecture pair. The entity can be seen as
the ‘shell’ of the class and performs the encapsulation; the architecture part
defines the implementation of the class. Similarly, VHDL signals can be used
to communicate between entities as well as to implement data attributes.

Figure 2-11 demonstrates how the register class can be coded in standard

VHDL with a message oriented communication scheme.

32

Body of Regi ster
(
attribute value: bit_vector(0 to 7)
nmet hod reset
(
val ue becones “00000000"
)
met hod read (v: out bit_vector)
(
v becones val ue
)
method wite (v: in bit_vector)
(
val ue becones v
)
)

Figure 2-9. Algorithmic Description of the Register ADT.

Body of counter inherits register

met hod count

(
)

val ue becones val ue + “00000001”

Figure 2-10. Algorithmic Description of the Counter ADT.

In this example, a user-defined type is created to list the different message
that will be sent to the interface (entity). The message decoding is performed
via the use of a “case” statement and the data attribute takes the form of the

The entity ports are defined for input values by the write method argument

and output values by the read method argument. Using the same approach,

33

the counter is implemented with standard VHDL in an Object-Oriented
fashion [Figure 2-12]. Here, new functionality is added to support the ‘count’

operation.

package reg ADT pkg is
type message_type is (reset, read, wite);
end reg_ADT_pkg;

use work.reg_ADT pkg. al |
entity reg is
port (message: nessage_type;
wite paramin: in bit _vector(0to 7);
read_paramout: out bit_vector(0 to 7)
)i

end reg;

architecture QO of reg is
signal value: bit_vector(0 to 7);

begin
message_exec: process(nessage’transaction)
begin
case nessage is
when reset =>
value <= (others =>'0");
when read =>
read _paramout <= val ue
when wite =>
val ue <= write_param.i n;
when others => nul | ;
end case;
end process message_exec
end OG

Figure 2-11. Message Oriented Communication Scheme.

34

package counter_ ADT pkg is
type nessage type is (reset, read, wite, count);
end counter_ADT_pkg;

use wor k. count er _ADT pkg. al | ;
entity counter is
port (message: nessage_type
wite paramin: in bit_vector(0to 7);
read paramout: out bit_vector(0 to 7)

);

end counter;

architecture QO of counter is
signal value: bit_vector(0 to 7);

begin
nessage_exec: process(message’ transaction)
begin
case nessage is
when reset =>
val ue <= (others =>'0");
when read =>
read_param out <= val ue;
when wite =>
value <= wite_paramin;
when count =>
val ue <= val ue + “00000001";
when ot hers => nul |
end case;
end process nessage_exec;
end OO

Figure 2-12. Register Code Re-use.

Although very similar to the register in its structure, the counter [Figure 2-12]
requires a number of modifications to implement the correct functionality.
The message type had to be changed as well as part of the case statement.
This simple example already highlights the weaknesses of VHDL when

considering code reuse.

Having looked at the most basic way of implementing an abstract data type in

standard VHDL (the component object), we will now consider other options

35

offered by the language in an effort to demonstrate their benefits over the

component object method.

A good design technique recommends the use of local variables instead of
signals whenever it is possible, thus enforcing the encapsulation aspect.
However, large architectures (4000 to 5000-logic gates equivalent) will contain
a significant number of signals, typically implementing control functions or
data path functions. These signals should be rationalised in the same way as
local variables: by logically grouping related signals within the architecture.
Similarly, related processes should be gathered logically to simplify any future
code reuse. The VHDL language provides the “block™ construct to perform

this encapsulation.

Although the block construct has not generated a significant interest within
the design community, we believe that if adequately used, it should prove an

efficient way of increasing designers’ productivity.

@

BLOCK B

BLOCK A

JouT_ 2

Figure 2-13. Block-Based Design Structure

In Figure 2-13, we show an architecture containing four processes that
represents the design of a display driver. Process P1 is a master controller

36

taking synchronisation signals as inputs and generating appropriate sequence
of control signals for the dependent processes. Process P2 is a lower level
controller generating synchronisation signals for the external display and
processes P3 and P4 are for error correction and ‘“de-serialisation”
respectively. The conventional way of designing this system consists of
defining types for the signals, declaring control and data path signals within
the architecture declarative part and finally defining processes P1-P4 (in any
order). However, alterations are often required throughout the design life
cycle to cope with specification changes or design updates. Consequently,
conventional design methods are not adapted for design maintainability and
design reuse. To illustrate this remark, consider a design change such that the
code implementing the data path is replaced. With a conventional coding
style, such operations will require the identification of declarations and
processes to be removed or renamed in order to customise the architecture
for the new application. This operation might represent a long and error
prone process. However, by using the encapsulation capability of the block,
the alteration impact is minimised and simplified. The block encapsulating P3
and P4 contains local declarations regarding the processes (signal SIG_34)
and will simply need to be cut out of the description. Furthermore, the
replacement block will be able to map its interface to the rest of the
architecture blocks through the use of “port map” and *“generic map”
constructs. Figure 2-14 describes the structure of the suggested coding style.
By gathering related processes into sets of blocks, the designer is able to
localise the effect of potential alterations and thus build robust code.
Furthermore, the encapsulation capability of the blocks gives new
opportunities for design reuse. Consequently, the structuring of architectures
around blocks has a significant benefit and should not be eluded.
Unfortunately, the benefits of blocks are constrained to the architecture level
of a VHDL description. However, packages can be employed as abstract data

types to achieve encapsulation at the entity level.

37

architecture rtl of display is
-- global declarations
type t_state is (idle, rd w, int, |oad);
signal state : t_state;
signal sig_12, sig_13, sig_14 : bit;
begin
-- process pl description
bl ock_a: bl ock
-- local declarations
subtype data is bit_vecor(size-1 dowto 0);
signal sig_34 : data
begin
p3: process(in_3);
begin
-- process description
end process p3;
p4: process(sig_34)
begin
-- process description
end process p4;
end bl ock bl ock_a;
bl ock_b: bl ock
-- local declarations
type t_state is (idle, wite, refresh, sync);
signal state t_state;
begin
p2: process(clk, reset)
begin
-- process description
end process p2;
-- concurrent statenents
end bl ock bl ock_b;
end di spl ay;

Figure 2-14. Use of the VHDL Block Statement

So far, packages in VHDL have been described as a convenient means for
gathering shared declarations, using them as abstract data types can add a new
dimension to the design process (Willis 1994). To implement an abstract data
type, a package will have to contain the data structure and various associated
behaviours of an object. The data structure can be implemented via signals or
“shared variables” and the behaviours via subprograms (including “impure”
functions). Figure 2-15 gives the VHDL code used to design the counter
using a package as an abstract data type, while Figure 2-16 demonstrates its

use.

38

package counter is
shared vari able value : int
procedure reset;
procedure count _up(signal c
procedur e count _down(si gna
procedure read(read_return:
end counter;

package body counter is
procedure reset is
begin

val ue : = 0;
end reset;
procedure count up(signal cl
begin

val ue : = value + 1,
end if;
end count _up;
procedure count_down(si gna

end count _down;
procedure read (read_return:
begin
read_return : = val ue;
end read,;
end counter;

if clk'event and clk ='1'

begin

if clk'event and clk ="'1'
val ue := value - 1;

end if;

eger;
Ik: in bit);
clk: in bit);

out integer);

k: inbit) is

t hen

clk: in bit) is

t hen

out integer)is

Figure 2-15. Counter Described Using The ‘Abstract Component’ Style

Although a component instantiation would have ach

ieved the same results in

terms of functionality, the use of the package as an ‘abstract component’

achieves better results on numerous aspects.

39

As shown, the design of a counter using conventional coding styles requires
the use of an entity, architecture and a process. It is possible that after
compilation, this counter could be reused as a component in another design.
Unfortunately, if the new design requires only a part of the functionality of
the component, the redundant functionality will still be implemented.
However, with the ‘abstract component’ approach, only those procedures
used by the new design will be implemented: the synthesis tool will ignore the
rest. Furthermore with conventional coding styles, if changes are required to a
function of the instantiated component, the designer will either have to create
a new version of the component (reducing design reliability) or create
additional functions in the new design (introducing redundant logic). The use
of subprogram overloading simplifies this operation with the ‘abstract

component’ solution and does not add redundant logic.

process
variable result : integer;
begin
wor k. count er. reset ;
wait for 20 ns;
for i in 0O to 10 |oop
wait on clKk;
wor k. count er. count _up(cl k) ;
end | oop;
wor k. count er.read(result);
sig result <= result;
wait for 20 ns;
wait;
end process;

Figure 2-16. Use of an ‘Abstract Component’

The use of packages as abstract data types enables design maintainability
through the use of feature calls as illustrated in Figure 2-16 Due to the
syntactic dot notation used by most Object-Oriented programming languages,
feature calls used as expressions benefit from an important property: the

notation is the same for a call involving a function with no arguments as one

40

involving an attribute. So for instance, the expression UART.data is applicable
whether the feature data is an instance variable or a method. This property of
uniform access assists the smooth evolution of a design by protecting abstract
data types from internal implementation changes in the objects they are

referencing.

A number of styles for message passing between package based abstract data

types can be considered:

A message for linear structures represents the addition or removal of an

information.

Fi f 0. addFi r st (dat a) : adds the element data as the first element

of the ‘first-in first-out’ linear data structure.

Fi f 0. renoveLast : remove and return the last element of the ‘first-

in first-out’ linear data structure.

A message to associative data structures representing the addition or removal

of information.

Bi t Nunber . set (control Reg, 8) : associate the value 8 to the

controlReg field in the bitNumber data dictionary.

Addresses. get (UART) : look up the address associated with
UART in the dictionary called addresses.

Messages to address counters representing position enquiries and calculations.

Addr essCount er . base : answers the value of the starting address

for the counter named addressCounter.

41

Addr essCount er. i sCont ai ned (addressVal ue):. answers true
if the location named addressValue is contained within the counter

address space and false otherwise.

Addr essCount er . i nt er sect (addr essVal ue) . computes the
value that separates the location named address\Value and the current

address value of the counter called addressCounter.

Clearly, the use of packages to build abstract components significantly
outperforms the capabilities of the component instantiation when considering
code reusability and maintainability aspects. Nevertheless, when used as such,
the VHDL abstract data type reveals a lack of encapsulation capabilities over

its Object-Oriented counterpart: the class.

The package construct enables access to data structures without resorting to
subprograms. Consequently, the data-function binding is loose. To illustrate
the deficiencies of the package in terms of data hiding, we will use new
examples. In Figure 2-17, a signal is used as an attribute ‘data’. A public
procedure (visible outside the package) is declared and implements the

behaviour of the abstract data type.

From this abstract data type, we will now consider the different means of
performing operations and assessing their pertinence. Figures 2-18, 2-19 and
2-20 illustrate the different levels of data hiding that can be achieved when
using the package as an abstract data type. In the first instance [Figure 2-18],
the data hiding is minimal as the package is instantiated before the entity
design unit. As a result, any attributes of the package can be accessed with no
restrictions throughout the dependent architectures, with the exception of the

calculate function.

42

package ADT_pkg is
signal data : integer;

procedure set_val ue(signal clk : in bit;
signal value_in : in integer;
end ADT_pkg;
package body ADT_pkg is
procedure set_val ue(signal clk : in bit;
signal value_in : in integer;
signal value_out : out integer) is
begi n
if clk'event and clk="1" then
val ue_out <= value_in;
end if;
end set_val ue;
function calculate(value_in : in integer) return integer is
begi n

return val ue_in*val ue_in;
end cal cul ate;

end ADT pkg;

Figure 2-17. Use of a Package for Building Abstract Data Types

In the package body, the function ‘calculate’ is described but has not been
declared as a part of the package header. Therefore, this simple mechanism
achieves a private encapsulation. Thus, the function ‘calculate’ is not

accessible outside the package.

Although this technique represents the most common way of using packages,
it cannot be considered as a proper means of encapsulation. The realisation of
abstract data types as modules with functions requires additional means to
hide the representation of the data instance variable. By contrast, with an
Object-Oriented approach, employing the encapsulation facilities of classes
effects data hiding. To restrict the access to the package elements, the

designer can alter the code, as shown in Figure 2-19.

Through the use of blocks for instance, the designer is able to restrict the

visibility of a package attributes to a part of an architecture.

43

use wor k. ADT_pkg. al | ;

entity test is
port(input_value : in integer;
clk : inbit);

end test;

architecture ex_1 of test is

signal tenmp_value_1 : integer;
signal tenp_value_2 : integer;
begi n
set _val ue(cl k, input_value, data);
tenp_val ue_1 <= cal cul ate_value(data); -- invalid statenent.
tenp_val ue_2 <= dat a+dat a; -- direct access to data.
end ex_1;

Figure 2-18. Package, Visibility throughout the Entity/Architecture

entity test_2is
port(input_value : in integer;
clk : inbit);

end test_2;

architecture ex_1 of test_2 is

signal tenp_value_1 : integer;
signal tenmp_value_2 : integer;
signal tenp_value_3 : integer;
begi n
encapsul ati on: bl ock
use wor k. ADT_pkg. al | ;
begi n
set _val ue(clk, input_value, data);
tenp_value_1 <= cal cul ate_value(data); -- invalid statenent.
tenp_val ue_2 <= dat atdat a; -- direct access to data.
end bl ock encapsul ati on;
tenp_val ue_3 <= dat atdat a; -- invalid statenent,
end ex_1; -- data not visible.

Figure 2-19. Narrowing the Accessibility of a Package

To conclude on the encapsulation capabilities of the package abstract data
type, an even more rigorous way of performing data hiding is to consider
packages as the implementations of single objects, i.e. packages represent only

one instance. The use of this ADT is outlined in Figure 2.20.

44

entity test_3is
port(input_value : in integer;
clk : inbit);
end test_3;

architecture ex_1 of test_3 is

signal tenp_value_1 : integer;
signal tenp_value_2 : integer;
signal tenp_value_3 : integer;
begi n
encapsul ati on: bl ock
begi n
wor k. ADT_pkg. set _val ue(cl k, input_val ue, work.ADT_pkg. dat a) ;
tenp_val ue_1 <= work. ADT_pkg. cal cul ate_val ue
(wor k. ADT_pkg. data); -- invalid statement.
tenp_value_2 <= data + data; --invalid statement ta not visible
end bl ock encapsul ation;
tenp_val ue_3 <= data+data; -- invalid statement, data not visible
end ex_1;

Figure 2-20. Selective Access to Package Instances

In this example, specifying the full logical path to it accesses any attribute of

the package. The ‘use’ statement then becomes unnecessary.

Such a representation is too cumbersome to be considered for real coding use

and the loss of code robustness is compensated by the code legibility.

Packages seem to be the best contenders to implement abstract data type in
VHDL. However, in order to decide whether package is powerful enough to

support Object-Orientation, other issues still have to be considered.

Presently, the actual benefits of Object-Oriented programming are difficult to
distinguish from existing VHDL language features. From a pragmatic point of
view, Object-Oriented programming offers two main concepts used in
program development: data hiding and inheritance. Encapsulation provides
modularity and, as we have demonstrated in this section, can be achieved in
standard VHDL to a certain extent. One of the limitations is that multiple
instances of an ‘abstract component’ in a design will result in the creation of
multiple occurrences of the required package. However, once a proper
modularisation has been achieved, the designer of the abstract data type may

45

postpone any final decisions concerning the implementation at will. This

feature allows quick programming.

Another advantage of the Object-Oriented approach, often considered as the
main advantage, is the reuse of code. Inheritance is an invaluable mechanism
in this respect, since the code that is reused offers all necessary elements. The
inheritance mechanism enables the programmer to modify the behaviour of a
class of objects without requiring access to the source code. The next section
will focus on how to achieve inheritance in standard VHDL and assess

current capabilities.

2.5.2 Limited Inheritance in Standard VHDL

The basic features of Object-Oriented programming consist of encapsulation
and inheritance. In the previous section, we have shown how encapsulation is
used to support the realisation of abstract data types in a VHDL based design
flow. Inheritance would complement the encapsulation by providing a
mechanism for sharing code. This ultimately provides a mechanism for
defining polymorphic types. The VHDL language does not support
inheritance although the combination of sub-typing and overloading can be
regarded as a step towards it. As a result, this section will focus on identifying
means of approaching inheritance using standard VHDL constructs and
identify the limitations found with the existing semantics of the VHDL type

system.

From a pragmatic point of view, derivation can be assimilated to the
operation of “sub-typing” in procedural languages, the parent type being the
base class and the sub-type being the child class equivalent in the Object-
Oriented domain. From this observation, we will examine the capabilities of
VHDL sub-types and types.

46

Three main cases can be studied from the definition of a parent type. The
first case extends the type capabilities by defining a composite of the parent
type as demonstrated in the following statement:

type array_int is array range (0 to 10) of integer;

signal sig_ 1 : integer;
signal sig_2 : array_int;

This operation is an extension of the parent type capabilities since an object
declared of the derived type will, in this case, represent a collection of
elements of the parent type. This mechanism can be compared to Object-
Oriented inheritance although the terminology “aggregation” would be more

accurate.

The second case consists of refining a type capability though the use of the
range restriction or by declaring a “resolution function”. Using the range
restriction on the parent type forces users of the derived sub-type to assign
values only contained within the specified boundaries. This sub-typing
operation is commonly used throughout VHDL designs to increase the level
of dynamic error checking. This sub-typing is illustrated in the following
statements:

subtype natural is integer range (0 to 2732);
signal sig 3 : natural;

Similarly, the association of a resolution function, although adding an extra
level of information to the type, restricts its use in an interesting way when
compared to the Object-Oriented derivation. The next statements show the

declaration of a sub-type called res_integer.

subtype res_int is resolved integer;
signal sig 4 : res_int;

This sub-type represents an integer with a specific property: a resolution

function resolved is associated with it. This is recognisable as an extension of

47

the capabilities of the standard integer type. However, as for the ranged sub-
type, this represents not only a restriction but also an inconsistency in the
inheritance conformance rule (Eliens 1994). This rule states that for an
assignment such as:

variable x : C Parent;
variabley : CChild,;

X 1=y,

For class C_Child to conform to C_Parent, the base class of C_Child must be a

descendant of the base class of C_Parent.

These remarks lead us to conclude that the VHDL sub-typing operation, as it
stands, is not suitable to implement the inheritance mechanism. To achieve a
proper inheritance, we therefore have to find a VHDL mechanism that
complies with the conformance rule and allows, by its nature, the extension of

the parent type capabilities instead of restricting them. To some extent, the

record (DASC 1993) composite type allows such flexibility.

A primitive form of inheritance can be found in standard VHDL. This limited
inheritance is applied to the record composite types. The record type in
VHDL allows the grouping of elements of different types in a single object,
they are often used for modelling of abstract elements. In Figure 2-21, we
demonstrate how, in standard VHDL, an extended data structure can be
defined by re-using an existing basic data structure. The basic_structure type is
the equivalent of the parent class and the extended_structure is the equivalent of
the child class. The extended_structure, which features a complex field structure
(record of records), inherits, to some extent, all the attributes defined in the
basic_structure. Moreover, multiple inheritance can easily be achieved by

creating record types with two or more complex fields.

48

This inheritance process is interesting from many aspects. As opposed to the
sub-typing operation, the derived record structure respects the inheritance

rule since the following assignment is valid:

sig 1 <= sig_2.basic_structure;

However, this inheritance process is limiting. Due to the intrinsic nature of

the record statement, functions (behaviours) cannot be included in the data

type basic_structure is record
coefficient: integer;
data_1: bit_vector(7 downto 0);
end record;

type extended_structure is record
basi c_el enment : basic_structure;
data_2: bit_vector(7 dowto 0);
data_3: bit_vector(7 dowto 0);
end record;

signal sig_ 1 : basic_structure;
signal sig_2 : extended_structure;

structure.

Figure 2-21. Data Structure Inheritance in Standard VHDL

Composite types are powerful tools for modelling abstract data types and
although they cannot encapsulate behaviours (functions or procedures) well,
it is worthwhile investigating their abstraction capabilities with a simple design

example.

Figure 2-22 shows the construction of an abstract data type using inheritance
and overloading mechanisms. The base type creates a simple counter with a
single operation: count. To achieve this, a record type called attributes is
created containing the element value of type integer. To perform operations
on this data structure, the count procedure is then created. This completes the

counter abstract data type.

49

Figure 2-23 shows the creation of a bounded counter from the previously
designed counter. To perform this operation, a new record type called
extended_attributes is created containing within its data structure one complex
element of type attributes. Another element of type integer is added to the data
structure to implement the bounded counter: boundary. Finally, the procedure
count is overloaded to take elements of type extended attibutes as its parameter.
The new procedure count inherits the behaviour of the previous count
procedure by merely calling it using the appropriate type in its parameter list.
This example is interesting as it shows that inheritance along with abstract
data typing can be achieved in standard VHDL (encapsulation is not taken
into account). This method of coding can therefore be regarded as a first step

towards Object-Oriented design structuring in standard VHDL.

type attributes is record
val ue: integer;
end record;
procedure count(value in : inout attributes) is
begi n
val ue_in.val ue = value_in.val ue + 1;
end count;

Figure 2-22. Abstract Data Type with Records

In structural VHDL designs, a system consists of numerous instantiated
components composing a hierarchical structure. This design method relates

to aggregation techniques and, to some extent, to inheritance.

50

type extended_attributes is record
basic attributes : attributes; -- Inherits attributes.
boundary: i nteger

end record;

procedure count(value_in : inout extended attributes) is

begin

i f(val ue_in.basic_attributes. val ue<val ue_i n. boundary) then
count (val ue_in.basic_attributes); -- Inherits count.

end if;

end count;

Figure 2-23. Abstract Data Type and Inheritance with Records

A component, as demonstrated in a previous section, can be seen as a means
of realising an abstract data type: the entity represents the abstract interface
part and the architecture represents the implementation part. As a result,
instantiation of components is equivalent to Object-Oriented aggregation
(often compared to inheritance in the Object-Oriented design literature
(Eliens 1994)). From a pragmatic point of view, when instantiating an object
as part of another design, all the properties of the given object are inherited
by the new design. To illustrate this, Figure 2-24 uses a register component to

create a counter via component instantiation.

The register in Figure 2-24 has an abstract interface composed of an input,
output, clk and reset ports and its functionality is merely to latch the value of

the input on the output on the positive edge of the clk signal

The counter behaviour is very similar to the register’s behaviour, except that
the output is fed back to the input via some logic to perform an add
operation. By instantiating the register as part of the counter structure, the
new design inherits all the capabilities of the register, consequently the rest of
the design requires minimal coding. This scheme is adequate provided the
inherited object does not need to be altered and all its functionality is required
in the derived design. Obviously, if a change is required in the instantiated

ol

object, this introduces potential hazard within the design flow since, design

units will have to be recompiled in very specific orders.

input(Oto7) | | [] output(0to7)

ck []

reset

input(O to 7)

]

] output(0to 7)
load

enable

Figure 2-24. Inheritance via Component Instantiation

When taking a closer look at abstract data types, one has to realise that, they
were at first developed with correctness and security in mind and not so
much from a concern with extensibility and reuse. Nevertheless, it is
interesting to compare the standard VHDL approach for realising abstract
data types with packages and the Object-Oriented approach, with regards to
the extensibility of a specification, either by adding an enquiry function or a

modification function.

52

package counter is
shared variabl e value : integer;
procedure reset;
procedure count(signal clk: in bit);
procedure read(read _return: out integer);
end counter;

package body counter is
procedure reset is

begin
value := 0;
end reset;
procedure count(signal clk: inbit) is
begin
if clk'event and clk = '1'" then
val ue : = value + 1;
end if;
end count;
procedure read (read_return: out integer)is
begi n
read_return : = val ue
end read;

end counter;

Figure 2-25. Initial Code for Abstract Data Type Based Component

Let us first look at what happens when we add a new modification function
to the abstract data type. To illustrate this, we will once again, consider the
example of a simple counter. This time, we will create a bounded counter
with a lowest and highest boundary (Figure 2-25 gives the initial code for the

counter).

To give an example of this new property, two instance variables of natural
type need to be created. Furthermore, for the realisation of the new package,
a function boundary(lowest, highest) is also required to extend the functionality of
the ADT. As a consequence, to add the new function boundary, it is now
necessary to redefine the sub-program count to take into account the new

restriction introduced by the boundaries.

Clearly, unless special constructs are provided, the addition of a new sub-

program and the extension of the count operation require a disruption of the

53

code when implementing the given abstract data type. In contrast, not
surprisingly, when we wish to alter or redefine the functionality of count to
agree with the new specification of our abstract data type, the Object-
Oriented implementation does not require a disruption of the given code. We
can simply add the definition of the new count function in a child class (we are
thus performing a sub-typing operation). From that respect, adding a new
count method corresponds to the implementation of a virtual (defined but not
yet implemented) method defined as part of the abstract interface of a virtual
class which gives a method interface which its sub-classes must respect. In
Figure 2-26, we represent the class structure for the implementation of the
counter abstract data type. The class generic_counter defines common properties
found in all counters, which are read, reset and count. The method count is
defined as virtual (v) to be further refined in the generic_counter sub-classes by
its defined (d) version. The definition of virtual operations is a powerful
mechanism in Object-Oriented languages with no equivalent in standard
VHDL. In Object-Oriented languages such as Eiffel or C++, it is possible to
declare an operation without choosing an implementation by making it a
virtual operation. This transfers to proper descendants the responsibility for
providing an implementation though a new declaration. Such a feature is
often used when the designer of a parent class cannot yet provide a default

implementation or does not want to for design methodology reasons.

For the complementary case, when adding an enquiry function (for example
get_range) to the abstract data type, neither the package version nor the Object-

Oriented class is better.

o4

reset

read

generic_counter
(v) count

(d) count (d) count

bounded boundary(L, H)

counter

up_counter

Figure 2-26. Class Structure for the Counter Abstract Data Type

Since, in a package realisation of abstract data type, the code is organised
around enquiry functions, adding a new function amounts simply to a
creation operation. When looking at the Object-Oriented solution, the

realisation for the enquiry function is identical to the package approach.

A subtle difference may be stated though: when considering accessibility, the
package-based solution offers more flexibility as instance variables can be

accessed on an element basis using constructs such as:

counter_range : = |ib. Coun_package. hi gh -l i b. Coun_package. | ow

Although types were originally considered as convenient means to assist the
compiler in producing efficient code, types have rapidly been recognised as a
way to capture the meaning of a program in an implementation independent
way. In particular, the notion of abstract data types has become a powerful
device to structure large software systems. The type system introduced by
VHDL through types and sub-types definitions represents an efficient means
to support a procedural language. Nevertheless, as we showed in this section,
such a type system does not comply with the inheritance rule and is an

obstacle to the realisation of an Object-Oriented implementation.

95

Although the inheritance can be, to some extent, manually inferred in
standard VHDL, it is not yet sufficient to implement a useful Object-
Oriented language. To grasp the full extent and practicality of the techniques
introduced, we need to understand polymorphism and dynamic binding.
Some of the most powerful characteristics of the Object-Oriented method

result from these two notions.

2.5.3 Polymorphism

Typed languages like VHDL impose quite severe constraints on the
programmer. It may require considerable effort to arrive at a consistently
typed system and to deal with the additional notational complexity of defining
appropriate types. In practice, programmers seem to prefer working in a non-
typed formalism. Languages such as Verilog are popular precisely because of

the flexibility they offer since static type checking is virtually non-existent.

However, working in a non-typed formalism is often considered as
unsatisfactory, as regards software reliability. To make typing practical, the
support for well-understood mono-morphic typing (such as overloaded sub-
programs) is provided in VHDL. More importantly, to achieve a flexible

object-orientation, one must provide controlled forms of polymorphism.

Polymorphism is defined as the ability of a set of different objects to display a
unique behaviour in response to the same message. This differs from
overloading in standard VHDL in two ways: firstly the overloading of a sub-
program is based on the definition of a set of different arguments for each
new overloaded sub-program and secondly, overloading is a static operation.
This section focuses on the limitations of the VHDL type system when

considering polymorphism and suggests how to achieve it.

As in languages such as Pascal, C or ADA, VHDL relies on a strong type
system. The VHDL language contains a variety of types that can be used to
create objects (signals, variables, constants and files). The language syntax

56

requires that every object declared must have a type. Also, the type of two
objects must be the same on both sides of an assignment statement at
compile time (statically) and at execution time (dynamically). In practice,
strong typing is an efficient means of ensuring code correctness. However, it
is rather cumbersome when designing large systems. In a system with an
important number of objects and data types, it is difficult for the designer to
manage the large variety of types necessary for the description of the system.
Type casting can be used to ease the assignment of related types; However, its

application scope is limited.

Another construct that VHDL provides to soften its strong type nature is
overloading. Sub-program overloading allows the designer to write multiple
versions of a sub-program with the same name, but the number of arguments
and return value can be different. This ability prevents the designer from
having to find a unique name for equivalent sub-programs dealing with
different types. Overloading is an interesting feature for building abstraction
and conciseness in the code but, as for the previously considered constructs
in VHDL, the evaluation for the matching sub-program is performed at
compile time. To that extent, true polymorphism (dynamic types) cannot be
achieved in standard VHDL.

Ecker W. has suggested in (Ecker 1996), that only a form of static
polymorphism can be achieved in standard VHDL (see Figure 2-27). A
component can be seen as a link to an actual entity-architecture pair relying
on the configuration statement to mimic polymorphic behaviour. This
polymorphic behaviour is said to be static since the binding of the actual
entity-architecture pair is performed at elaboration time instead of execution
time. In the case of the shift register, a design using this device has to declare
a component to materialise an instance of this class. The next step is to create
a configuration for an instantiated component (object) by selecting an entity-
architecture pair. This last operation is carried out after the design has been

o7

compiled and any architecture association can be made at this point.
Furthermore, the association of a different entity remains possible provided

that the component and the associated entity have compatible interfaces.

By allowing different versions of a design to be attached to a given
component interface, we achieve a polymorphic operation. However, since
this selection via the configuration is unique for a given design simulation or
synthesis, this polymorphic operation is static instead of dynamic. This
difference is of significant importance when considering the advantages of

dynamic polymorphism combined with inheritance over static polymorphism.

As stated earlier, abstract data types are rather inflexible and inconvenient for
specifying complex systems. To achieve flexibility, one has to organise types
in a design by expressing the commonality between them. This is achieved
through classification. The notion of class in Object-Orientation supports
such an organisation though the inheritance mechanism. Although, until now
we presented inheritance as a combination and enrichment mechanism, it also
enables the definition of flexible entities that may become attached to objects

of various forms at run time, thus introducing dynamic polymorphism.

58

Static Configuration
~

Arch_1 Arch_2 \

fifo alu

AN
\

Design

Arch_1 Arch_2

Figure 2-27. Static Polymorphism through Configuration

This characteristic can be compared to the static typing rule in standard
VHDL in the sense that, by convention, an assignment of the form a ;= bis
permitted if a and b are of the same type. Nevertheless, dynamic
polymorphism brings a new aspect to the assignment convention by stating
that “if a and b are of different types, but class b is a descendant of class a, the
assignment is still valid”. This corresponds to the idea that a value of a more
specialised type may be assigned to an entity of a less specialised type, but not
the reverse. This possibility becomes even more powerful when combined
with the redefinition of inherited methods. The following example (shown in
Figure 2-28), demonstrates the advantages of dynamic polymorphism. In this
example, three objects are declared: 01, 02, 03; the last two objects are of a

derived type of reg, respectively odd_regand even_reg.

59

Reset
Read
Wite
(v)parity

(e)parity (e)parity

even_reg

OL: regq;
@2: odd_reg; -- child of reg
@3: even_reg; -- child of reg

if condition then

a = @
el se

al = G,
end if;

result := Ol.parity

Figure 2-28. Benefits of Dynamic Polymorphism

Both derived types define a version of parity to perform an even or odd parity
depending on the object type; the version to use in any call is determined by

the run-time form of the target.

The assignment 01:= 02 is valid because of the assignment rule defined for
polymorphism; if condition is false, o1 will be attached to an object of type
even_reg for the computation of the operation c1.parity, which will thus use a
even parity check. In the opposite case, c1 will be attached to an object of
type odd_reg, therefore the computation cl.parity will perform an odd

operation. This is a dynamic binding operation.

60

Dynamic binding provides a high degree of flexibility in designs. The
advantage for the user is the ability to request an operation without explicitly
selecting one of its forms. The choice only occurs during the simulation
execution (referred as ‘run time’). This is an important requirement for the
building of large systems, in which many components must be protected
against changes to other components (abstraction). In standard VHDL,
overloading and the ability to create generic designs, do not bring any
improvements in this respect. They do not support a programming
mechanism in which a client module may issue a request to perform an
operation on a VHDL object (signal, variable) that depends on the form of
this object at run time, and permitted here by inheritance, redefinition,

polymorphism and dynamic binding.

These design techniques support a development mode in which every
component is open and incremental. When the designer wants to reuse an
existing class but needs to adapt it to a new context, one can always define a
new descendant of that class (with new properties and redefined ones)

without changing the original.

The power of polymorphism and dynamic binding demands adequate
controls when considering type checking. Type checking is performed
statically at compile time in the VHDL language. In an Object-Oriented
language, dynamic type is checked at run time. When a client sends a message
to an object, the object treats the call provided that it has a corresponding
method defined in its class. However, if the requested object does not have

the required method, a run time error occurs.

Polymorphism is not exclusive to Object-Oriented languages. For example,
languages such as Pascal, and FORTRAN allow an implicit conversion
between certain types. However, in VHDL, an implicit conversion is not
permitted; only a type casting operation can be used on related types.

Polymorphism, including such conversions, relieves the programmer from the

61

rigidity imposed by typing. In other words, polymorphism is used to increase
the expressiveness of the type system. A possible disadvantage when adding
polymorphism to a strongly typed language might be that program
understanding becomes more difficult since many choices are now made by
the dispatching mechanism instead of being written out explicitly. In an
Obiject-Oriented version of VHDL, both dynamic and static type checking
need to be handled to maintain an acceptable level of error recovery. The
static type checking will ensure type consistency for assignments and the
dynamic version will select the appropriate form of an operation depending

on the run-time type of an object.

From this study of the VHDL language we highlighted the limits of the
existing semantic and mechanisms for implementing the design objectives
defined in section 2.5. This leads us to look at attempts from the design
community to overcome the VHDL restrictions. The specific weaknesses of

the proposed extensions will be discusses in chapter 4.
2.6 Existing Extension Proposals

Although the main guidelines for the definition of an Object-Oriented
VHDL extension have been drawn, actual implementations have not yet been
defined. As Object-Oriented VHDL is getting more popular, different
suggestions for possible Object-Oriented extensions have been made (Covnot
1994), (Mills 1993), (Willis 1994), (Zippelius 1992). Along with those
suggestions, a number of actual language extensions were created (Shumacher
1995), (Ashenden 1998), (Radetzki) (Cabanis 1996) . These will seek to help

VHDL reach higher levels of abstraction, reusability and maintainability.

2.6.1 The Vista Proposal
As demonstrated in section 2.5, VHDL lacks adequate support for abstract

data-typing operations. Consequently, all extensions to the language will

62

primarily focus on either extending the existing VHDL abstract data type

capabilities or implementing new abstract data types.

With the Vista proposal, a new abstract data type has been added to the
language in the form of a “component object” (Vista 1994), (Ramesh 1994).
With the component object paradigm, the designer can build abstract data
types and instantiate objects of that type within the VHDL code. The abstract
data type is defined as an entity object and architecture pair. The entityobject
will declare the interface of the abstract data type, i.e. the operations, while the
architecture will declare the behaviour and attributes. Unlike standard VHDL,
the proposed entityobject is a generalised kind of entity that can interact with
standard entities from the same hierarchical level. The Vista entity does not
rely on ports (of standard or enumerated types) and generics but on high level

messages used for concurrent object communications.

The entityobject allows for inheritance: all elements of an entityobject are exported
when inherited. This includes ports, generics, local declarations and
concurrent statements found in the associated architecture. Similarly, in the
proposed extension, standard entities can also be inherited in the same way as
an entityobject (apart from operations). Operations declared within the entity
declarative part are used as abstract interfaces allowing message passing. Like
most object-oriented languages, operations are used for communication
among objects and for access to instance variables. The communication
scheme is based on a synchronisation mechanism, which is a more
convenient means than the existing signal-based communication. Any caller
sends a message to a client object and is blocked until the operation is
completed. Messages are processed sequentially and are placed in a queue if
the target object is servicing too many operations at that time. Once an

operation has been processed, the following one in the queue is run.

Polymorphism is supported in the Vista proposal: different objects can have

identical messages on their abstract interface.

63

Specific constructs have been added to the VHDL language to handle the
concurrency aspect of object accessing. These concurrency control
mechanisms are based on the distributed processing model and the ADA
rendez-vous model. The distributed process aspect is used for the deferment
and queuing of processes; furthermore, priority can be assigned to operations,
in order to perform an automated sorting on incoming message calls. The
ADA rendezvous model allows the selection of a specific message over a
number of incoming calls, or the selection of multiple messages to be active at

the same time.

A more in depth study of the language semantics and abilities will be given
when we will compare our proposed extension to other existing extensions in

chapter 4.

2.6.2 The Oldenburg and SUAVE Proposals

The Oldenburg and SUAVE proposals are very similar in their concept and
implementation since both proposals are inspired from the ADA95 (Taft
1993) language. This is a reasonable approach since the original designers of
the VHDL language borrowed many of the features and language philosophy
from ADA, more specifically in areas such as sequential statements, sub-
programs, design units and more importantly the type system. Similarly,
concepts of operator and sub-program overloading, as well as complex data
structures (such as records and access types) are part of the ADA language.
Since the early 1990’s, ADA has undertaken radical changes (Seidewitz 1991),
(Atkinson 1990), (Nelson 1992) to adapt to new design methodologies based

on Object-Orientation.

This research lead to proposals for protected objects, hierarchical libraries and
support for Object-Oriented programming. A key part of the language
extension for supporting object-orientation is the ability to define new types

in terms of existing ones.

64

The new type inherits the operations and fields that are defined for its parent
type. Furthermore, a new type can redefine or add features to the inherited
ones. In addition to type inheritance, the Ada 95 language allows the
definition of classes of types accessible by sub-programs containing
arguments of these specific types. The selection of a specific operation on a

specific class type is performed at run time allowing dynamic binding.

To implement type inheritance, the two proposals suggest the use of “tagged
records”. A tagged record has identical properties to the standard VHDL
record. In addition, subtypes of tagged records can be declared and a
specialisation mechanism is introduced to allow the addition of new fields.
Associated with the tagged records, are procedures to implement the
behaviour part of the abstract data types. Encapsulation is provided by the
package visibility rules in which both tagged records and related procedures
have to be declared. Procedures can also be redefined for derived types as
well as added. Polymorphism, or more correctly dynamic binding, is achieved
via the creation of heterogeneous object containers. These containers are
defined using a class-wide type, which allows a field to adopt any type

contained in the hierarchy of the class type.
More details on the two proposals will be given in chapter 4.

2.6.3 The Objective VHDL Proposal

The abstract data type in the Objective VHDL proposal differs significantly
from both the VISTA and the Oldenburg/SUAVE proposals. The creation
and utilisation of a class ADT in this proposal resembles what is found in
VHDL with the record composite type. The class ADT will contain both class’s
attributes and method (functions and procedures). As for VHDL'’s records,
the class can be declared inside architectures and packages. However, when

declared, the class will be split in a header and body part.

65

The class supports single inheritance from which class attributes and methods
can be inherited providing they have been declared as part of the class’s
header. The Objective VHDL proposal allows methods to be overridden in
child classes by redefining functions or procedures using identical declarations

to the one found inside the inherited class.

The instantiation of an ADT takes the form of a variable, signal, or constant.

Each implementation has specific application restrictions.

Polymorphism is achieved through the existence of class wide types. This
resembles the mechanism found in both the Oldenburg and SUAVE
proposal. An object of class wide type is allowed to be assigned different class

type objects that are part of its class wide tree.

Further implementation details will be given during the comparative study of

all the proposed extensions in chapter 4.

2.7 Conclusions

This Chapter examined the different design methods used to specify and
implement current hardware design. We demonstrated the limits of functional
decomposition and SA/SD. This led us to conclude that an improved design
method was required for the successful creation of multi-million gate ASICs.
The IEEE OOVHDL study group has acknowledged those limits and
consequently, has defined a set of requirements for the implementation of an
improved design methodology. The proposed requirements are supported by
a number of design objectives/changes that VHDL should undergo, to

comply with the defined requirements.

66

A study of the VHDL semantics and mechanisms allowed us to identify the
limits of the language for implementing object-orientation support along with,

the areas of the language where changes would be the most suitable.

Having looked at VHDL'’s limits, we presented the solution proposed in the
Vista, Oldenburg, SUAVE and Objective VHDL language extensions. All
proposals support the design objectives set by the IEEE OOVHDL study
group; However, aside from the SUAVE and Oldenburg proposals that are
similar, all proposals use different semantics and mechanisms to bring object-

orientation to the VHDL language.

We can conclude from this study that the creation of any language extension
is not a straightforward operation. Nevertheless, it is important to establish
whether a language allows a clear interpretation of the constructs introduced;
whether constructs supporting Object-Orientation are independent of other
constructs of the language; whether an efficient implementation of these
constructs is possible; and whether the language is kept minimal, that is

without superfluous constructs.

67

Chapter 3

LANGUAGE DESIGN

3.1 Introduction

The idea of an Object-Oriented version of VHDL is gaining interest within
the design community (Oczko 1990), (Douglas 1994), (Perry 1992),
(Shumacher 1996). Object Orientation is not a set paradigm but rather a
particular approach to the design methodology. To some extent, Object
Orientation only defines critical issues found in the process of building large

designs and enables designers to deal with them.

The previous chapter examined how encapsulation, late binding and
inheritance could be implemented in VHDL based design using the original
semantics. We showed that this increases productivity when used on an
object-based design, but also that the existing VHDL semantics are

inadequate to address this level of abstraction.

Quality in hardware descriptions is a combination of several elements; the
language extension design concentrated on the factors which, in the current
state of industry, need to be improved. One of the main factors is reusability,
or the ability to produce components that may be used in many different
applications. Another is extendibility: it is notoriously difficult to modify

hardware systems, especially large ones.

Among quality factors, reusability and expandability play a special role:
satisfying them means having less code to write and consequently more time
to devote to other important goals such as efficiency, ease of use or

consistency.

The third important point is reliability. Techniques such as assertions,
disciplined exception handling and static typing, enabling developers to

68

produce hardware descriptions with fewer errors, are part of the approach to

the engineering of better designs.

In this chapter, using the requirement set by the IEEE OOVHDL study
group (see section 2.4) we will examine means of extending the existing
VHDL semantics in order to achieve object orientation. The first part of this
chapter will explain the language design decisions; the second part will then

detail the chosen semantics.

3.2 Language Design Decisions

3.2.1 Abstract Data Type Specification

Chapter 2 highlighted the weaknesses of the VHDL language in terms of data
abstraction to achieve true Object-Orientation. To solve this problem, our
extension offers the creation of a new kind of composite type alongside the
already existing record and array types, which we have called class. The class type
can be considered as a real type and takes a natural place in the VHDL type
system. Regarding these new abstract data types as real types has numerous
important benefits. The realisation of abstract data types means that they may
be treated as any other value in the language, for instance being passed as a
parameter. In contrast, syntactic solutions such as the module in Modula-2 or

the package in ADA do not allow this.

Furthermore, in strongly typed languages, the objective of a type system is the
prevention of errors. Therefore, if the type system lacks sufficient expression,
adequate control for errors may become over restrictive. Generally, the more
expressive the type system, the better is the support that the compiler may
offer. In this respect, associating constructors with types may help in relieving
the programmer from dealing with cumbersome tasks such as initialisation of
complex data structures. Objects, in contrast to modules or packages, allow
automatic initialisation of instances of abstract data types, and allow the

programmer to avoid an error-prone routine.

69

Another area where a more complete type system may improve the designer’s
task, is the association of operations with objects. A polymorphic type system
is needed to provide automatic selection of virtual functions and perform
efficient function overloading. This is a useful mechanism to control the

complexity of a program.

The VHDL language as it stands, is strongly typed to ensure readability and
reliability. Our suggested extension relies on the inherent strongly-type system
of VHDL but also provides a class type with more complex reference rules,

since objects of class types are defined as ‘referenced instances’.

Our new referenced types differ from the basic VHDL types: an object
declared of a referenced type does not represent a value of type but a
reference to an object containing a value. Operations on this object are
defined as part of the properties of the referenced type. The declaration of a

class type will consists of three parts:
1. A class name.
2. A declaration of the variables available to all instances.

3. The methods used by instances to respond to messages.

3.2.2 Visibility

The declaration part of a class will have a visibility over the declaration found
within the scope of the Package, Architecture and Block depending on where
the class has been defined. This visibility can be seen as going against the

encapsulation principle and therefore should be used with caution.

Although it is dangerous from an encapsulation point of view, allowing
visibility to span the class boundaries has numerous benefits. One the main

70

benefits is highlighted when using packages in a design; where common

declarations such as type definition can be shared.

3.2.3 Class Genericity

The generic nature of classes is an important aspect since the designer may
want to create a class that represents a group of instances but to specify size
or timing information at elaboration time rather than at design time. This
mechanism is similar to the mechanism used with VHDL components.
Although class genericity can be achieved with templates like C++, the concept
of generic values rather than generic types was introduced in standard VHDL.
For this reason, the template solution is avoided to prevent language constructs

from overlapping.

3.2.4 Class Tailorability

The proposal relies on a mapping mechanism to enable the designer to adapt
classes to its design requirements. The use of this mapping operation is
related in principle to the alias-based solution found in VHDL'93. The
VHDL'93 version of the language broadens the use of aliases. However, in
our opinion, aliases are only used to give a second name to an existing object
rather than redefining it. This motivated us to favour the mapping construct

extending it to a greater use than simply ports and generics.

As part of its declarative part, each class will be allowed to define mapping
clauses to adapt names of inherited features to the local context of the new
class. Name mapping is particularly useful in two cases. With renaming, it is
possible to correct any name clash occurring through the multiple inheritance
process. A name clash occurs when two or more inherited features have
identical names, and would generally make the class invalid if the features
were not renamed. Renaming also enables a class to offer its inherited features
to its users and descendants under a terminology appropriate to its own

71

context, rather than to the context of the parents from which it inherited
them. In other words, it helps make sure that, aside from offering the right

features, they are presented under the appropriate feature names.

It is important to understand that the proposed renaming mechanism does
not change any of the inherited features, but simply changes the name under
which the clients and descendants of a class will know these features. After
replacing a name of an inherited feature, the old name can be reused for
various purposes. It could be used as an identifier for a new feature
introduced by the new class itself. It could also be used for a feature inherited
from a parent of the new class other than the present one which has a feature
with the same name. In some cases, as one inherits a method or an attribute
from a parent, one may wish to discard the inherited implementation. This is

the process of redefinition, which turns a new feature into an effective one.

3.2.5 Class Instance Variables

Instance variables are elements used to store the class properties. For the
implementation of instance variables, we will be using the VHDL'’s variable
mechanism. Instance variables, unlike variables found in VHDL'’s sub-
programs, will retain their values until changed. The choice of blocking
assignment over non blocking assignment will be discussed in more details in

chapter 4 when we will compare the different OOVHDL implementations.

3.2.6 Class Methods

Methods, in the proposed extension will be similar to VHDL subprograms.
However, they will differ in the capability they offer when used together with
inheritance. From a design perspective, inheritance provides a mechanism for
code sharing and code reuse. Operationally, the power of inheritance in the
proposed extension comes from the use of virtual methods and virtual

classes.

72

A virtual class will be declared if the designer plans to include one or more
features that are specified but not implemented; descendants of the class will
later on in the design process provide the implementations. This is useful to
describe groups of related concepts, or not fully understood concepts. For
example, stacks describe data structures that are managed sequentially,
without indicating any specific implementation. Proper descendants of this
class such as FIFO will describe the concrete sequential structure. Classes and
methods may in fact remain virtual for a long time, providing a high level
notation for system analysis and design. Virtual methods fully exploit this

principle.

3.2.7 Object Instances

Object instances might be declared in packages, architecture blocks and
processes. This will allow designers to define accurately the scope of
accessibility of each object inside a design. During the declaration of a specific
object, the designer will be able to specify its initialisation method and

configuration.

One of the most significant advantages of the use of abstract data types over
conventional VHDL objects (signals and variables) is the ability to
dynamically allocate or de-allocate resources for complex components. The
advantage of dynamic allocations is even more obvious when considering the
synthesis of dynamically re-configurable designs (Rosenberg 1994), (Vasilko
1999), (Faura 1997). With the emergence of new technologies, it is now
permitted to create designs that can evolve while they are being used. In order
to implement dynamic allocation and de-allocation of objects, we will use the

already available VHDL access type. Using access types ensures a better

integration of our semantic changes within the existing language.

3.2.8 Object Initialisation
The initialisation of an object will either be the default style (type’LEFT)

found in standard VHDL or via creator methods. The latter initialisation

73

method can be found in programming languages such as C++. Creator
methods will be used when an object needs to go through a complex

initialisation process before it can be used.

3.2.9 Object Configuration

Objects instantiated inside a design, will have optional configuration
parameters. Those parameters will be used to set generic values (set at
elaboration time) as well as interfaces to interact with the external world. The
interface map declaration is used during the object declaration process as a
means of binding the argument used inside the impure methods to the
argument found inside the client application. This process, although
important in the simplification of concurrent Object-Oriented description,
should be used with caution. The methods, impure by definition, have access
to objects defined outside their parameter lists, inside the interface list. It is
important to consider these interface signals as control lines as opposed to
data lines. Data information should only be carried by parameter list

arguments in order to ensure a proper design encapsulation.

3.2.10 Scalar Types

In standard VHDL, records of records and records containing arrays are valid
constructs and are often used to build abstraction in the design. With the
introduction of class types in the proposed extension, the definition of a
record with a field of a class type represents an issue. Once the record type
has been created, it is possible to declare either a signal or a variable of this
record type. However, elements of object types do not comply with the same
assignment rules as for signals and variables therefore the creation of a record
type containing a element of a class type is not acceptable. Although this
might appear to be a restriction in terms of how well the extension fits the
1076-93 version of the language, it is important to make a few remarks. Such
a restriction in the use of certain types in VHDL is not new to the language
and types such as access types already have numerous restrictions concerning

74

their use. Furthermore, the extension to the language offers a more powerful
mechanism than the record type to build data abstraction and, ideally, the use
of record should be in many cases replaced by the use of classes. The creation
of arrays of ADTs will be fully supported by the proposed extension. Arrays

of ADTs will be used to implement dynamic types.

3.2.11 Message Passing
Different behaviours will be achieved with message patterns depending on
the method specification style. The three main behaviours of a method are

identified in our proposal:

1. Events are used for synchronisation purposes. They are usually encoded by
a message without parameters like 'reset_state'. Here the method indicates

the type of event.

2. Commands are requests to an object to perform a local function. These
may also be transferred by messages, either with or without parameters
like 'StopCount' or 'load("01010")'. Again the method indicates the

command given.

3. Requests ask an object to return some information which is present in (or
can be obtained by) the receiver. They need two messages. The first issues
the actual request. The second one contains the reply, going in the
opposite direction. In a normal mode of operation, the sender waits for
the reply. The method may or may not have arguments but will have a
return type. Requests will take the form of 'GetContent' or
‘evaluate(*'10010")".

Some code maintainability aspects motivate the choice of the ‘dot’ notation
over a standard VHDL sub-program call. When using the notation: X.state , it
is not shown whether in the class of X, state is an attribute or a method
without arguments. This ambiguity is intentional. A user of the class X does

75

not need to know how a state is obtained: the state could be stored as
attribute of every object of class X, or computed via a method from other
attributes. Choosing between these techniques is the role of class X. Since
such implementation choices can often change over the lifetime of a project,

it is essential to protect users against their effects.

Within an object-oriented environment, object can be defined as either active
or passive. An active object will be able to trigger other objects’ activity
without having to be triggered itself. In contrast, a passive object will display
its behaviour only after being triggered. The VHDL environment is based
around concurrent and sequential behaviours. An important choice is whether
to distinguish between active and passive objects or whether to support only
one kind of object. Another important point is how the activity of objects is
to be defined.

Objects in the proposed extension might be referenced in sequential
statements as well as in concurrent statements. However, multiple concurrent
messages are not allowed due to usability issues. In a VHDL environment,
the execution of concurrent statements does not follow any order by
definition (with the exception of postponed processes). This remark leads us
to the study of a simple example illustrating the issues encountered with
concurrent statements associated with object access.

object _1.wite(A*4);

object 1. wite(A*2);
Considering that these two assignments are concurrent blocking assignments,
after a change of the value of A, it is impossible to determine whether the

object_1 will contain the value A*4 or that of A*2.

The alternative to blocking assignments is non-blocking assignments; this
time, all the assignments are performed on the last delta cycle. However, the
latter example will create a situation where two commands are scheduled to

76

be executed at the same time on a common instance variable. This problem is
solved for signals through a resolution function. However, this solution is too
basic to be valid for objects with numerous messages and complex
behaviours. As a result, objects will not handle multi-concurrent calls to the
same-shared resources. However, concurrent calls to distinct resources within

the same object are allowed.

The proposal will differentiate blocking from non-blocking method calls
through the use of two distinctive call semantics. A blocking method call used
within a process will have to be fully executed (including any wait statements)
before executing the next statements in the sequence. Unlike blocking calls,
non-blocking method calls when invoked will trigger concurrent activities and
will not be required to be fully executed prior to moving to the following
statements in the sequence. The principle of spawning concurrent activities
inside a process is not foreign to the HDL world. A similar mechanism is

found in Verilog with the fork-join mechanism.

3.2.12 Object Copy and Assignment

Unlike VHDL's signals, variables or constants, no arithmetic or logical
operators are predefined for objects of class type. The user will either have to
use object access methods or define operators for specific object types.
Furthermore, the object assignment ‘==" has been defined as a clone copy of a
reference as opposed to the copy of a value. The clone copy is necessary to
(Meyer 1992) allow polymorphic behaviour to be expressed using dynamic
typing. To perform clone copying however, simple rules for direct object
reattachment have to be followed. The following example shows a limitation

of direct reattachment using the clone copy.

Assuming a data structure and object declaration of the form:

type counter_array is array(natural range <>) of counter ;
obj ect counter |list : counter_array(0 to 3) ;

7

Where counter is the parent class of the wrapping_counter and the modulo_counter
class. If the first instance of the list is an instance of the modulo _counter type
and the designer needs to obtain its boundary value (max_valug), the following
code might be written:

signal max_value_tnp : integer

obj ect nod_counter_1,

nod_counter_2, nmod _counter_ 3 : nodul o_counter
obj ect wap_counter_1, wap_counter_2 : wappi hg_counter ;

counter list == nod counter 1 & nod counter 2 &
wap_counter_1 & wap_counter_2 ;

nod_counter_3 == counter _|ist(0); -- line 1

max_val ue_tnp <= nod_counter_3.nmax_value ; -- line 2

However, since the assignment rule defined in section 2.5.3 states that only
objects of an identical class or derived class can be assigned to a target object,
line 1 is illegal. In line 1, the designer is assigning an object counter_list(0) of a
type counter (from its original definition) onto an object of type

modulo_counter, lower in the class hierarchy. This creates a type mismatch error.

Since such examples are easy to produce, one might tend to think that strong
typing represents an annoying problem. This is inaccurate: in well-structured
Object-Oriented designs, the problem only arises when dealing with complex
systems. If it is known that an element of such data structure has special
properties, it is then possible to access it separately through an object of the

correct type.

In order to perform the required operation in the example, the designer can

merely replace line 1 by the statement:
nod_counter 3 == nod_counter _1 ;

From this operation, both counter_list(0) and nod_count er _3 are pointing to
the mod counter 1 data structure as required and the assignment is valid.
Similarly, the object equality in our proposed extension is used to determine if
two objects are field-to-field compatible. The result of the expression:

78

object _1 = object_2 will be valid if object 2 is of the same type or a
descendent of object_1. The result will return Boolean true if each field of the
object 2 data structure is identical to those in the object 1 data structure
(following the standard VHDL comparison mechanism). When considering
complex objects, for efficiency reasons, the expression will be true if the two
fields are pointing to the same object. However, the designer (to meet
alternative requirements) can redefine the equality with the class that defines
Object.

Besides the equality operator, two methods will be defined by the system for
every created class: Copy and DeepCopy. All calls to
oj ect _1. Copy(Qbj ect _2) will copy every field of Object 2 onto the
corresponding fields of Object 1. Object 2 must conform to the type of
Object_1. Thus, in general, Object 2 will contain the same amount or more
fields than Object_1.

In order to perform a copy of all the fields of an object (across the hierarchy),
the DeepCopy mechanism is available. A deep copy will replicate the complete

data structure, starting from the top level, down to the lowest level.

3.2.13 Encapsulation Control and Visibility

Encapsulation will be used by the designer to specify/control the visibility of
class properties. The ability to indicate one of the three levels of
encapsulation, namely private, public and restricted provides an improved access
control over the existing mechanism (visible/not visible) in VHDL 93. These
types relate to types found in Object-Oriented programming languages such
as C++. The private type disables any access to the defined class property by
any external requests or by any class methods of potential inheriting sub-
classes. Public type declarations are the complement of private type
declarations. A property declared of a public type will allow access to any
external class requests as well as by any class methods of potential inheriting

classes. Although dangerous as far as encapsulation is concerned, we consider

79

this aspect is important because it helps to reduce the code size of Object-
Oriented designs. In order to assign values to public instance variables, only a
blocking mechanism is supported. Nevertheless, multiple concurrent
assignments to instance variables is not permitted. The restricted type is used
when properties need to be hidden from external requests but accessible by
any class methods of potential inheriting sub-classes. If no encapsulation type
is specified for a class declaration element, a restricted type is assumed.
However, for pragmatic reasons, the default encapsulation kind for methods

is set to public.

3.2.14 Inheritance

Like any object-oriented language, the proposed extension will support single
inheritance. A question of interest is whether a language must support
multiple inheritance. Clearly, there is some disagreement on this issue (Waldo
1991), (Cargill 1991), (Armstrong 1994). For example, Smalltalk-83 does not
support this type of inheritance. The Eiffel language, on the other hand,
supports it. For C++, multiple inheritance was introduced at a later stage. At
first, it was thought to be expensive and not really necessary. Closer analysis
on the issue revealed that the cost was not excessive. The issue of multiple
inheritance is still not resolved completely. Generally, it is acknowledged to be
a powerful and, at the same time, a natural extension of single inheritance.
For that reason, the proposed extension will support multiple inheritance

along with powerful adaptation mechanisms.

As in common OOPLs, the encapsulation control will also be used during the
inheritance process. The intention of encapsulation control at this stage is to
restrict the visibility of any inherited public and restricted defined properties. In
designs, it is often useful to use inheritance for the purpose of code sharing
only, with no intention to declare sub-typing relations between two classes. In
this extension, one will declare a class to be either publicly inherited or
privately inherited. The latter will be used when only code sharing is intended

80

and does not affect the type system, whereas the former will be used when a

subtype relation is needed.

A private inheritance will lead public and restricted inherited (parent) class
properties to become private to the inheriting (child) class. A public inheritance
will assimilate any public inherited properties as public and restricted as restricted. A
restricted inheritance will lead public inherited (parent) class properties to
become restricted to the inheriting (child) class. It should be understood that a
well-designed inheritance hierarchy would include few occurrences of classes
hiding some of their parent’s features. If one has to constantly work
accordingly to the parent designer’s decisions, then it is necessary to consider
improving the inheritance structure (assuming that it is allowed). To overwrite
the inheritance default kind (estricted), the user defines the kind before the

name of the inherited class.

Other Obiject-Oriented languages such as Eiffel allow the redefinition and
removal of inherited features in the child class. This represents a powerful
means of specialising a child class to its use. However, the redefinition as
introduced by Eiffel does not agree with the VHDL language philosophy and
is replaced in the proposed extension by a mapping construct. The removal of
definitions is not directly supported in this extension, for the same reasons as
for the redefinition; although from a methodology point of view, we believe
that a controlled inheritance mechanism agrees better with the object-oriented

idea of class inheritance and specialisation.

3.2.15 Dynamic Types and Polymorphism

The reuse of code is one of the most important aspects of inheritance. The
principle underlying the efficient reuse of code consists of stating the
difference when programming. This means that one has to redefine features
of the derived class, which are added to, or different from what is provided by

the base class. To fully exploit this principle, we need to introduce the

81

extension “virtual methods”. Virtual methods are methods for which dynamic

binding, or more precisely dynamic types, apply.

The concept of dynamic types will be added to the language to soften the
limiting of VHDL's strong typing nature. The dynamic type of an object or an
expression, at some stage of execution, is the type of the object to which it is
attached. This should not be confused with the type called the static type.
This will provide the ability to have more than one dynamic type. The new
type rule means that possible dynamic types for an object must conform to
the static type of this object. This is how polymorphism is implemented and

kept under control by the type system.

A possible disadvantage of this new type rule might be that program
understanding becomes more difficult since many choices are now implicitly

made by the dispatching mechanism instead of being written out explicitly.

3.2.16 Documentation

The use of attributes will be extended to provide users with information
regarding the object’s state. Using attributes, designers are able to inquire
whether an object is currently processing any information or whether it is idle.
Attributes will also allow designers to inquire whether a particular method is

in use, waiting for a valid pre-execution condition or whether it is idle.

Attributes in the proposed extension provide a powerful means for achieving
formal specification when combined with assertions by expressing correctness
conditions. Assertions in the proposed extension can play several roles: they
help in the production of correct and robust code, supply high level
documentation, provide debugging support, and serve as a basis for exception
handling. Assertions will be used to express the specification of components:
to give an indication of what a component does rather than how it do it. This
information is essential to build a component that will perform reliably
(Meyer 1992), to use it and to validate it. In addition to the basic assertion

82

mechanism, the proposed extension will feature pre assert and post assert

statements.

Pre and post conditions will be used to define the requirements that clients of
an object must meet and obligations an object has when executing a method.

This might be seen as a contract between the object and its potential clients.

83

3.3 Language Semantics

3.3.1 Abstract Data Type Specification

3.3.1.1 Class Specification

Class declarations in the proposed extension, are similar to VHDL package
declarations since both class declaration and package declaration define an
abstract interface. The definition of a class requires a class declaration having

the syntactic form:

type definition ::=
scal ar_type_definition
| conposite type definition
| access_type_definition
[file_type_definition
| cl ass_type definition

class _type definition::=
class [use (class_list)]
cl ass_decl arative_part
begin
cl ass_assertions
| met hod_speci fication
| et hod_body
end class [class_sinple nane];

class list::= [encapsulation_kind] class_nane {
[encapsul ation_kind] class_nane }

class_declarative part:: =

cl ass_header
cl ass_decl arative_item

84

An example class declaration with a declarative part is given in Figure: 3-1.

type decoder is class
type opcode is (add, sub, mult, fetch);
i nstance variabl e data : opcode;

begin

end cl ass decoder;

Figure 3-1. Class Declaration

Although it is intentionally similar to a package declaration, the class
declaration differs from the package declaration insofar as elaboration may

result in multiple instances of a class type.

The class header of a class type definition declares objects used for
communication between the abstract data type and its environment. A class

header may contain a generic clause as well as feature mapping constructs.

The class header in the solution we suggest has the syntactic form:

cl ass_header:: =
[generi c_cl ause]
[interface_cl ause]
[feature_map_cl ause]

generic_clause ::=
generic (formal _generic_list);

interface _clause ::=
interface (formal _interface list);

feature_map_cl ause ::=
feature map (feature_association_ list);

The formal generic list in the generic clause defines generic constants whose

values may be determined by the environment. An example class declaration

with a generic declaration is shown in Figure 3-2:

85

type counter is class
generic (size: integer := 8);
i nstance variable value : bit_vector(size-1 downto
0);
begi n
end cl ass counter;

Figure 3-2. Class Declaration with a Generic Declaration

The generic of an abstract data type is defined by a generic interface list
(defined in the LRM section [1.1.1.1]). Each interface element in such a
generic interface list declares a formal generic. Several rules govern the use of
generics. The corresponding actual in a generic association list may specify the
value of a generic constant. If no such actual is specified for a given formal
generic (either because the formal generic is unallocated or because the actual
is open), and if a default expression is specified for that generic, the value of
this expression is the value of the generic. It is an error if no actual is specified
for a given formal generic and no default expression is present in the
corresponding interface element. Similarly, it is an error if some of the sub-
elements of a composite formal generic are connected and others are either
unconnected or unallocated. During the inheritance process, generics of
parent classes are inherited by their child classes. If two generics of the same
name are given a default value, the latest definition will be assimilated as the
valid one unless it is re-mapped via the feature map. These properties
regarding the inheritance of previously defined generics allow the designer to
build complex and fully parameterisable elements through a simple

mechanism.

Following the generic declaration is the interface declaration. Interfaces are
defined as signals that are used for control purposes. The interface declaration

is a convenient means of declaring external parameters that will be accessible

86

by all internal methods without further declaration as part of their parameter
lists. Generally, these interfaces will be used to declare synchronisation

signals. The BNF of the interface declaration is defined as follows:

formal _interface_ |list::= interface_signal declaration
i nterface_signal _declaration ::= (seesection [4.3.2] LRM)

An example of a class interface declaration is shown in Figure 3-3.

type counter is class

interface (signal CLK: bhit);

i nstance variable value : bit_vector (7 downto 0);
begi n
end class counter;

Figure 3-3. Class Declaration with an interface Declaration

The third part of a class header is the feature map construct. The feature map
aspect associates new feature names with formal super-class (public/restricted)
feature names. This is used to avoid feature name conflicts during the

multiple inheritance process.

Feature map aspects appearing immediately within the class header associate
actuals with formals of the abstract data type interface implied by the binding
indication immediately enclosed. This mechanism does not allow a formal to
be associated with more than one actual. The feature map construct is not
required if no feature clashes occur during the multiple inheritance process.
The feature mapping technique can also be used to adapt inherited features to
the purpose of a newly created child class. If a feature clash occurs and no

mapping has been specified, local declarations will take precedence.

87

The BNF of the feature map aspect is defined as follows:

feature_nmap_aspect ::=
feature nap (feature_association_ list);

feature _association_list::= feature_association_element { ,
feature_association_el enent }

feature_association_elenent::= fornmal _feature nane =>
actual feature_ nane

feature nane:: =
feature_designator [(parameter list)]
[return type_mark] of class_nanme [(paraneter_index)

]

The feature designator is the identifier name for a: method, variable, constant,
type, sub-type, alias, attribute, file, group or object. The par anet er _i ndex is
used to identify a given class in the class_list if a given class is inherited more
than once. This situation should occur if repeated inheritance is used. An

example of feature mapping is shown in Figure 3.4.

type up_down _counter is class use (up_counter, down_counter)
feature map (count of up_counter => count_up,
count of down_counter => count_down);
begi n
end cl ass up_down_counter;

Figure 3-4. Class Declaration with a Generic Declaration

The use of paraneter_|ist and type_mark is only allowed for method
features. This should be used when name conflicts are encountered through

the use of a method overloading.

After the definition of a class header is the class declarative part. The class
declarative part of a given class declaration declares items that are common to

all class methods.

88

The BNF of the class declarative items is defined as follows:

class_declarative_item::=

[encapsul ation_kind] subprogram declaration
encapsul ation_kind] type declaration
encapsul ation_kind] subtype_decl aration
encapsul ation_kind] constant _decl aration
encapsul ation_kind] instance_variabl e _declaration
encapsul ation_kind] file_declaration
encapsul ation_kind] alias_declaration
encapsul ation_kind] attributes_declaration
encapsul ation_kind] attribute_specification
encapsul ation_kind] group_tenpl ate_decl aration
encapsul ati on_kind] group_decl aration
encapsul ati on_ki nd] object_decl aration

— e e —— — —

As for any declarations in VHDL, the item contained in a class declarative
part is local to that particular class. However, all the listed declarations have
been updated to contain an extra encapsul ation_kind property.
Encapsulation kind will be examined in section 3.3.7. Sub-program
declaration might seem controversial for Object-Orientation purists.
However, we believe that although made redundant by the existence of
methods, it will occasionally be easier for a trained VHDL designer to relate
to functions and procedures, rather than methods to perform local, hidden

operations (local operator overloading may be one of them).

3.3.1.2 Class body
A class body will only exist if a class is declared within a package. The package
header will contain the class header and the package body will contain the

class body.

When declaring a class inside a package, only method specifications and
feature mapping are allowed inside the class header. The method body is

implemented inside the class body located within the package body.

89

Class bodies have the syntactic form:

class_body ::=
type class_sinple nane is class
cl ass_body_decl arati ve_part
begin
cl ass_assertion
| met hod_body
end class [class_sinple_nane];

cl ass_body declarative part ::=

[encapsul ation_kind] subprogram decl aration
encapsul ati on_ki nd] subprogram body
encapsul ati on_kind] type_declaration
encapsul ati on_ki nd] subtype_decl arati on
encapsul ation_kind] constant_declaration
encapsul ation_kind] instance_variabl e_decl arati on
encapsul ation _kind] file_declaration
encapsul ation_kind] alias_declaration
encapsul ation_kind] attributes declaration
encapsul ation_kind] attribute_specification
encapsul ation_kind] group tenpl ate decl aration
encapsul ati on_kind] group_decl aration
encapsul ati on_kind] object_declaration

—r_ e e —— — —

The ability for the designer to split a class definition into a specification and a
body is crucial for a flexible design organisation. By splitting the class into an
abstract interface (specification) and an implementation part, the designer
benefits from the flexibility of the package definition in terms of primary and

secondary design unit dependency and analysis sequence.

The instance variables declared within the class specification are equivalent to
the shared variable defined in the 1076-93 standard and are used inside the
abstract data type. These variables can be declared of any VHDL types. An
encapsulation property allowing derived classes or outside objects to monitor
and alter their state is also added. The encapsulation property might also be
used to hide information from a derived class or outside objects. The default
encapsulation kind (if not specified) is restricted. A restricted encapsulation
kind will hide the instance variable from the rest of the world, but will still

permit the instance variable to be inherited in child classes.

90

encapsul ation_kind ::= private | public | restricted

i nstance_vari abl e declaration ::=
i nstance variable identifier_list : subtype_indication

Instance variables are only accessible by an external object if they are declared
as public. The private encapsulation kind will forbid both the inheritance and
external access to the instance variable. Encapsulation kind will be discussed

in details in section 3.3.7

3.3.1.3 Methods

Methods in the proposed extension resemble the mechanisms found in C++
or Eiffel. Unlike ADA95 methods can be used as both expressions and
statements depending on the style used for the method call. This represents in
our opinion a more pragmatic approach to message passing furthermore, the
use of methods instead of VHDL's sub-programs clearly states the distinction
in between the two mechanisms. Each method specified within a class
specification defines an abstract operation, which operates atomically on a
unique object of the associated class type. The following BNF description
shows the definition of a method specification.

net hod_specification ::=

[encapsul ation_ki nd] nethod designator [
(formal _parameter _list)] [return type_nmark]

The user of a class’s object will see methods as messages. These messages will
be used to access or modify the state of this object. Methods will support
overloading therefore, when a message is sent, the method with matching
message pattern is selected from the class of the receiver. Expressions in the
selected method are evaluated one after another. Once all the expressions are

evaluated, a value is returned to the sender of the message.

a1

The example in Figure 3.5 demonstrates the creation of methods within our

proposed extension.

type reg is class
i nstance variable value : bit_vector(7 downto 0);

begin
public method reset is
begin
value := (others => '0");

end net hod reset;
public method wite(signal clk: bit; data in:
bit_vector(7 dowmnto 0)) is

begin
if clk'event and clk ="'1") then
value := data_ in;
end if;

end nethod wite;
nmet hod read return bit_vector is
begin
return val ue
end net hod read;
end cl ass reg;

Figure 3-5. Class with Two Methods and an Execution Priority

Method formal parameters may be constants, signals, variables, files or objects (the
default being constant). The only mode that is allowed for the formal

parameters of a method is the mode in. In the case of files and objects, the

parameters have no mode.

Two categories of methods can be identified: standard methods and virtual
methods. The most straightforward category is the standard and merely
defines an implementation for a given method specification. Unlike standard
methods, virtual methods only define a specification, leaving the method
body to be defined in child classes after the inheritance process. Figure 3.6

demonstrates the creation of a virtual method.

Method bodies are similar to procedure bodies insofar as they will accept

sequential statements (including the wait statement).

92

that refers to the message receiver

itself.

‘this’ and the formal parameters are available only during the execution of a
local method. In addition, a method may obtain two different kinds of

variables. These kinds of variables differ in terms of how widely they are

available (their scope) and how long they persist.

Instance variables exist for the entire lifetime of the object. Temporary
variables (local to methods) are created for specific activity and are available

only for the duration of the activity.

Including a temporary variable declaration within the declarative part of a
method indicates temporary variables. These variables are dynamically
elaborated at run time. A temporary variable declaration consists of a variable
name, its type and an optional default assignment. Instance variables
represent the current state of an object. Temporary variables represent the
transitory state necessary to carry out some activity. Temporary variables are
typically associated with a single execution of a method: they are created when
a message causes the method to be executed and are discarded when the
method is completed and returns a value. Figure 3.6 demonstrates the

creation of a virtual class.

type counter is class
i nstance variabl e val ue: integer;
begin
public nethod reset is
begin
value : = 0;
end net hod reset;

public nethod read return integer is
begin

return val ue;
end net hod read;

public nethod count;
end cl ass counter

Figure 3-6. Virtual Class Definition

This example illustrates the creation of a virtual class with a virtual method

count that is defined to be refined in child classes of the counter class.

Method names are used to identify methods. There are two kinds of feature
names: identifiers and operator names. The difference between identifiers and
operator names does not affect any properties of the methods, only the way
that a client object may call them. For methods with identifier names, calls use
the ‘dot notation’ as in: obj 1. r ead or obj2.puch(*0001”). In contrast, calls

94

to methods using operator name will be written as: obj 3 + obj4. This

notation is more convenient than a more traditional one using the notation:
obj 3. pl us(obj 4).

3.3.1.4 Class Definition

The definition of a class will be permitted within numerous constructs such as
the package, architecture and block. Their respective declarative items are
extended to include the class specification body. Type definition is extended
to include object type. The BNF representation of class definition is detailed

in Figure 3-7

Class definition consists of a class specification and a class body. Each class
specification will be associated with exactly one class body. It is important to
notice that the package declarative item list does not contain the class body

declaration since this declaration is performed at the package body level.

3.3.2 Declaring Objects
Before it can be used, an object must be declared either inside or outside a
class declaration part. If outside, an object of a class might be declared in the

declarative region of packages, architectures or blocks.

Obijects declared at the package level will be accessible throughout any design
hierarchy referencing this package. When declared at the architecture level it
will only be accessible within this architecture. Finally, objects declared at the

block level will only be accessible by elements inside the block.

95

The object declarations are of the syntactic form:

out si de_cl ass_obj ect _decl aration:: =
object identifier_list : class_indication
[(formal _paraneter list)]
[generic map (generic_association_list)]
[interface map (interface association list)];

When building complex objects, objects are declared inside a class declarative
part. These objects obey the same encapsulation rules as normal instance

variables.

The syntactic form of such a declaration is:

i nside_cl ass_object _declaration::=
[encapsul ation_kind] object identifier_list
class indication [(formal parameter |ist)]
[generic map (generic_association_list)]
[interface map (port_association_list)];

96

architecture declarative item:=
common_decl arati ve_item
| subprogram body
| conponent decl aration
| attribute_declaration
| attribute_specification
| configuration_specification
| class_body
bl ock_decl arative_item: =
common_decl arative_item
| subprogram body
| class_body
| conponent decl aration
| attribute_declaration
| attribute_specification
| configuration_specification
package_decl arative_item:=
common_decl arati ve_item
package_body declarative item: =
common_decl arative_item
| subprogram body
| cl ass_body
comon_decl arative item:=
type_decl arati on
| subtype declaration
| class_declaration
| constant _decl aration
| file_declaration
| alias_declaration
| subprogramdecl aration
| use_cl ause
| object _declaration

Figure 3.7. Class Definition

3.3.2.1 Creators
A successful creation always performs a default initialisation (which may then
be overridden by the creation method) on the variable attribute fields of the

resulting object.

A creator method will have the same name as the class, has optional

parameters and can be overloaded. The creator method of an object will only

97

be called when the object needs to be initialised. It is possible to overload
creator methods to allow a powerful and flexible initialisation of complex
structures. As demonstrated in the following example, this mechanism

relieves the user from an error-prone process.

In the example Figure 3-8, a creator method is defined for the memory class
with an initial value formal parameter. When the user defines the object
mem_1, the value to be set in the memory element at initialisation time is set to

architecture OO of exanple is
type nenory is class
type nemarray is array (0 to 2) of integer;
i nstance variable nemarray_1 : nem.array;

begin
public nethod nmenory(initial_value : integer);
begin
memarray_1 := (others => initial _value);

end net hod nenory;

public nethod read.....
end net hod read;

public nethod wite.....
end nmethod wite;
end cl ass nenory;
object mem1 : menory(255); -- creation
begin
wait for 10 ns;
data_out <= nem 1.read(address);
end OG

255.

Figure 3-8. Class Declaration with a Creator Method

Wait statements are not allowed as part of a creator method since these

functions are executed during initialisation time (before run time).

Obijects can be dynamically created and removed using the VHDL access
type. This mechanism is identical to the one that exists for other VHDL

98

types. The example in Figure 3-9 demonstrates the creation of object

pointers.

process
type counter_access i s access counter;
vari abl e counter 1 : counter_access;
begin
counter_1 := new counter;
for I inO to 10 | oop
counter_1. count;
wait until clk =1";
end | oop;
deal | ocate(counter_1);
end process;

Figure 3-9. Dynamic Creation and Removal of an Object

3.3.2.2 Generic Map Aspect

The generic map aspect is identical to the existing generic map aspect of the
VHDL standard 1076-1993. Its use has been extended to classes. A generic
map aspect will be used to associate actual values with the formal generics of

class.

architecture QO of register_16 is

object reg 1 : reg generic map (size => 16);
begin

A(15 downto 0) <= reg_1.read;
end OG,

Figure 3-10. Object Instantiation with a Generic Map

In Figure 3-10, it is assumed that a class reg with a generic size: integer has
already been defined. An object reg_1 is created and the generic size of this

object of reg class is set to 16 at elaboration time.

99

3.3.2.3 Interface Map Aspect
The interface map semantics is defined as follows :
interface map_aspect:: =

interface map (association_list);

association_list ::=
associ ati on_el enent, { association_el ement }

association_elenment ::=
formal _i denfier_nanme => actual _i denfier_nane

An example of interface mapping is given in Figure 3-11.

architecture RTL of FIFOis
signal : clk4: bit;
obj ect counter_1 : counter interface map (clk =>
cl k4);
begin
-- some code
end RTL;

Figure 3-11. Object Instantiation with an Interface Map

3.3.2.4 Composite Types

An object type can be declared as an array element. Each element can be

accessed individually on an element by element basis or as a whole. Event and

Command behaviours can be directly applied to the whole array by using the

.all notation.

Figure 3-12 gives an example of declarations applied to arrays. This example

assumes that a class Counter with a method write and reset has already been

defined within a package.

Arrays are important elements in the proposed extension as late binding can

take advantage of these complex data structures.

100

architecture Exanple_1 of Exanple
type Counter_array is array (3 downto 0) of Counter
obj ect Single counter : Counter;
obj ect Conpl ex_counter : Counter_array;
begin
wait for 10 ns;
Si ngl e_counter. reset;

Conpl ex_counter.ALL.reset; -- reseting the array of
-- counters
wait for 10 ns;
Conpl ex_counter(2).wite("1010"); -- access to a single
-- el enment

end Exanpl e_1;

Figure 3.12. Declaration of an Array of Objects.

3.3.3 Concurrent and Sequential Messages

Objects can be used within a sequential part in three main ways: message
passing, object assignment and object comparison. For message passing,
methods defined in the class specification (non-virtual) operate on objects of
that class via automatic selection. The prefix denotes the object of the class.
The suffix denotes the method call with optional parameters passed as part of
the call. The syntactic form of a method call has the form:

obj ect _nane{. obj ect _nanme}. net hod _nanme[(argunent list)]
obj ect _nane{->obj ect _nane}- >met hod_nane[(argunent |ist)

The target and argument lists are optional, the method name is required. In
the case of a call using the following form: al u_1. mul ti pl y(3, 5), the call
uses one of the syntactical possibilities, dot notation. The target of the call is
alu_1, the method name of the call is multiply and the actual argument list is 3
and 5.

101

The target is separated from the method name of the call by a period or an
arrow. The this keyword, represents the current object executing, it is possible
to write the call as: t hi s. st or e(ny_val ue) . However, in this case, it is also
possible to write only st ore(ny_val ue). The this notation will only be

found inside a method body.
A call can also be of multiple dots such as in:
Net Cel | (2). Processor(1).instruct_reg.set(jnp, 255)

For features without arguments, the actual argument list will be absent, as in:
acknow edge : = dma. st at us , where the status must either be an instance

variable or a method without arguments.

process
obj ect counter_1 : upcounter
obj ect counter_2 : downcounter
object fifo_1: fifo
begin
if reset =1 then
fifo 1->initialise;
counter_1->reset;
couter_2->reset;
elsif clk’event and clk = 1" then
count er _1->count;
counter_2->count;
fifo_1->push(“0001");
end if;
end process;

Figure 3-13. Non Blocking Object Calls

The use of an arrow in a message infers a non-blocking call. Consequently,
the call is scheduled to occur when the process is suspended. This allows the
user to spawn operations on numerous objects without having to wait for the
completion of an operation before moving on to the next sequential

statement. If multiple non-identical blocking calls are scheduled onto one

102

object inside the process, the last call will prevail. Figure 3-13 shows the use

of the non-blocking call.

3.3.3.1 Object Assignment and Copy
The object assignment is defined as the == sign. This refers to a clone copy
of an objects reference. Examples of the object assignment can be seen in

section 4.3.8.

The object copy is of two forms: as shallow and deep. The shallow copy uses
the keyword copy. The deep copy uses the keyword deepcopy. Examples of are
shown in Figure 3-14. The Deep Copy mechanism is used to copy all the
values of the instance variables contained within an object including those
originating from aggregated objects. Unlike the deep copy, the shallow copy is
restricted to instance variables declared at the object level (not including

aggregated instance variables).

Process(transfer, counter_2)
obj ect counter_1, counter_2 : counter
begin
if transfer = true then
counter_1. copy(counter_2);
end if;
end process;

Figure 3-14. Object Shallow Copy

3.3.4 Encapsulation Control and Visibility

Encapsulation is used to control the visibility of a class properties.

The BNF form for the encapsulation kind is as follows:

encapsul ation_kind ::= private | public | restricted

The example in Figure 3-15 demonstrates the use of encapsulation.

103

type reg is class
private content: bit_vector (7 downto 0);
begin
public method reset is
begin
this.wite(“00000000");
end met hod reset;

public method read return bit_vector is
begin

return content;
end met hod read;

restricted method wite(data : bit_vector) is
begin

content := data;
end method wite;

public method wite(data : bit_vector;
signal clk : bit) is
begin
if (clk'event and clk ="'1") then
this.wite(data);
end if;
end nethod wite;
end cl ass reg;

Figure 3-15. Class Encapsulation Levels

This class definition will be part of a package body, block or architecture
declaration. In this example, a class representing a register abstract data type is
created, an attribute content is declared to implement the stored value in the
register. This element is declared as private since the contents of the reg class

should not be accessed directly but via access methods.

Methods which implement the class features, read, write and reset, are public
(default) to be accessed by client objects. However, an asynchronous version
of write is provided for internal use only so it is declared as restricted. The
restricted declaration will permit the method to be inherited in child classes as
opposed to the private one. In most cases, the private declaration will be used
to specify a property that is only valid for a specific class and not for any of its

descendants.

104

3.3.5 Inheritance

The shift_register class in Figure 3-16 illustrates a public inheritance. This class
definition will be part of a package body, block or architecture declaration. It
is assumed that the parent class reg has been defined at an earlier stage. This
example defines a set of new methods for performing shift right and shift left
operations. An error will be produced when compiling this design since the
content attribute was declared as private in the reg class (see Figure 3-15) and
both methods shr attempt to access it although it has not been exported

during the inheritance mechanism.

type shift_register is class use (public reg)
begin
public nmethod shr(signal clk : bit) is
begi n
if (clk'event and clk ='1") then
this.wite('0" & content(BitsNor-1 downto 1));
end if;
end net hod shr;
public method shl(signal clk : bit) is
begi n
if (clk'event and clk ="'1") then
this.wite(content(BitsNor -2 downto 0) & '0');
end if;
end net hod shl;
end class shift_register;

Figure 3-16. Public Encapsulation during the Inheritance Process

Multiple inheritance is achieved by listing the inherited classes in the type

definition, after the class keyword.

An example of multiple inheritance is shown in Figure 3-17.

type shifting counter is class use(public shift _reg
public counter) is

begin

end class shifting_counter;

105

Figure 3-17. Multiple Inheritance Example

In this example, it is assumed that a class shift_reg and counter have already
been defined. The shifting_counter class is a new abstract data type merging the
functionality of a shift register class and a counter class. Merging is often
useful when inheriting virtual methods with identical notions in the

descendant.

This example suggests that possible conflicts may arise due to merging during
the inheritance process. Such a naming conflict can be removed by the

mapping construct as shown in Figure 3-18.

type UpDownCounter is class use (UpCounter, DownCounter);
generic (delay: time : 3 ns);
feature map (Count of DownCounter => Count Down);

end cl ass UpDownCount er;

Figure 3-18. Class Declaration with a Feature Map

As part of the declarative part, each class can define mapping clauses to adapt

names of inherited features to the local context of the new class.

3.3.6 Polymorphism

The proposed semantics fully support polymorphism. The example shown in
Figure 3-19 demonstrates how polymorphism can be achieved. This example
assumes that a class counter is created with a virtual method count. From this
class counter, two sub-classes are derived: up_counter, down_counter in which the
method count is defined (becomes defined). Figure 3-19 shows the definition
of three objects, one for each class. On a change of the value of A, the
counter_1 object will change its dynamic type from counter to either up_counter or

106

down_counter. After the selection has been performed, the operation
counter_1.count is carried out. This displays a polymorphic behaviour in the
sense that the dynamic type of counter 1 is only defined at run time and can
change during the execution. Depending on that type, the count message, will
either perform a count up operation or a count down operation. The '=="'

symbol is not a copy but a pointer to the same object.

The assignment attempt might in some cases require knowledge of the type
of the source. What is needed in this case is a way to perform the assignment,
but conditional on its applicability: if the type of the source object turns out
not to be compatible with the type of the target object, then no reattachment
should occur. The ‘class attribute provides information regarding the dynamic
type of an object and can therefore be used to perform a validity check before

assignments.

107

Count

Counter

Count

Up
Counter

Down
Counter

architecture pol ynmorphic of exanple is
obj ect counter_1 : counter;
obj ect counter_2 : up_counter
obj ect counter_3 : down_counter

begin
process
begin
if A= true then
counter 1 == counter_2;
el se
counter 1 == counter_3;
end if;
counter_1.count;
wait on A;

end process;
end pol ynor phi c;

Count

Figure 3-19. Polymorphic Behaviour

3.3.7 Visibility

The declaration part of a class has a visibility over the declaration found

within the scope of the Package, Architecture and Block depending on where

the class has been defined.

For the example in Figure 3-20, a class uses an enumerated type called opcode
as part of its method execution and parameter list. This user-defined type, if
only declared inside the class declarative part, could not be used in its method

108

argument list since the client object would not know about its declaration.

Allowing it to be declared outside the class definition allows both the class

and the design instantiating the package to use the same common type

declaration.

package p_alu is
type opcode is (add, sub, div, mlt);
type alu is class
content : integer
begin

met hod send(operation : opcode; val ue

return integer
end cl ass al u;
end package;

package body p_alu is
type alu is class
begin

met hod send(operation : opcode; val ue

return integer is
begin
-- sone statements
end net hod send;
end cl ass al u;
end package p_al u;

use work.p_alu. all;
entity dsp is
-- sone ports declaration

end dsp;
architecture QO of dsp is

signal comrand : opcode;

object alu 1 : alu;

signal result : integer
begin

result <= alu_1.send(command, 7);
end OO

i nt eger)

i nt eger)

Figure 3-20. Class Using a Type Declared Within a Package

3.3.8 Attributes

A list of attributes allowed with objects and methods follows:

1. ‘event: Will return true when a method call occurs on an object or the

referenced method.

109

‘last_event :Will return the time since a previous method call occurred

on an object or the referenced method.

"active :Will return true when an object has at least one or more methods

or the referenced method currently processing.

‘last_active: Will return the time since the last method processing activity

occurred on an object or the referenced method.

‘stable [(time)] : Will return true whenever the referenced object or
method has had no call for the time specified by the optional time

expression.

‘quiet [(time)] : Will return true whenever the referenced object or
method has not been processing any methods for the time specified by

the optional time expression.

"transaction: Will create a signal of type bit that toggles its value for every

method call that occurs on the referenced object or method.

‘class: This attribute will only be used by objects and will return the class

type of the referenced object.

110

process
begin

DVA 1->Start _transfer;-- DMA 1 is an object

-- of class DVA

wait until DMA 1' stabl e(135 ns);

DVA 1. Load_source("0001");

wai t;
end process;

Figure 3-21. Wait Statement Synchronised on a ‘stable Attribute

Figure 3-21 illustrates the use of the ‘stable attribute. This example assumes
that a class DMA with a method Start transfer and Load source has been
defined earlier in the code. The attribute ‘stable is used on an object of abstract
data type DMA and is performing a test on the non-activity of the object
DMA 1. Once the period of inactivity has elapsed, the message Load_source is

sent to the object DMA_1 with a given argument.

Like VHDL'’s signals, object activities can also be monitored as part of a

sensitivity list.

3.3.9 Assertions

The improved assertion mechanism uses the following syntactic form:

cl ass_assertion_statenent::=
[contract _condition] assert condition
[report expression]
[severity expression];

contract _condition::=

pre
| post

111

The example in Figure 3-22 shows the use of a pre assert statement.

type counter is class
value : integer range 0 to 9;
begin
pre assert (value <= 9)
report “You have reached the maxi num val ue”
severity warning;

nmet hod count is
begin
count := count + 1;
end net hod count;
end cl ass counter;

Figure 3-22. Use of Pre Assertions

For the example in Figure 3-22, a pre-assertion is used to check the status of
the instance variable value for each access to the class. When value reaches 10,

the assert statement issues a warning message.
3.4 Conclusions

Three main objectives are addressed in this proposal: a better encapsulation
mechanism, inheritance and late binding. Although a number of different
styles can be used to implement the latter mechanisms, we believe that
classification orientation represents the most appropriate style in terms of its
integration within both the language philosophy and the Object-Oriented
paradigm. The proposed semantics illustrated in this chapter rely on a three-
level encapsulation control which extends the VHDL visible/non visible
mechanism and provides a flexible means of selection for the inheritance

process.

Inheritance will here be selective, single or multiple and enhanced by a
powerful redefinition construct called the feature map in addition to
genericity. Furthermore, creator methods are added to classes allowing a

straightforward initialisation sequence for instances of classes.

112

The proposed extension redefines the assignment rules to allow more
flexibility in the type system, i.e. objects of a derived class type can be
assigned to objects of an ancestor class type thereby allowing dynamic binding

and therefore polymorphism to take place.

This chapter defined the language constructs created to tackle the three main
requirements set in section 2.4 namely: encapsulation, inheritance and
polymorphism. The following chapters will highlight the flexibility of these
constructs to build complex hardware descriptions and will compare the
proposed extension with other proposed Object-Oriented extensions to
VHDL.

113

Chapter 4

COMPARATIVE STUDY OF PROPOSED EXTENSIONS

4.1 Introduction

Having introduced the proposed extensions (see section 2.6 and chapter 4)
we will now compare the extensions according to the language design
objectives set by the IEEE OOVHDL study group (detailed section 2.4). The
extensions that will be examined are the VISTA, the Oldenburg, the SUAVE
the Objective VHDL and our proposal (Cabanis 1995).

The VISTA proposal (Ramesh 1994.2) is the earliest extension to the
language and to some extents the less sophisticated too. Although this

proposal has been abandoned, we will briefly study the mechanisms used for

implementing data abstraction, inheritance, and polymorphism.

The SUAVE proposal is in effect a superset of the Oldenburg (Shumacher
1995) proposal. Consequently, in an effort to reduce the amount of
redundancy in this comparative study, we will focus on the SUAVE extension

and mention the areas where the two proposals differ from one another.
4.2 Study of the VISTA Proposal

4.2.1 Abstract Data Type

The Vista proposal is based on a component like abstract data type: the
EntityObject. This represents a sensible and straightforward implementation of
an abstract data type. This approach is similar in its principle to other existing

object-oriented programming languages such as C++ or Eiffel (Meyer 1992).

114

EntityQoject <identifier>is [new <identifier>]
[generic <generic_list>]
[port <port_list>]
{ operation <operation_nane> <interface |ist>}
[begin]
[entity statenent _part]
end EntityCbject [<identifier>]

Figure 4-1. The EntityObject Abstract Data Type

The EntityObject represents a real abstract data type, in the sense that attributes
and related operations are gathered in one design entity. The splitting of the
abstract interface and its associated implementation is an important feature
for achieving design maintainability. The Vista proposal achieves this here by
the separation of the EntityObject and the Architecture. However, we believe that
the Vista extension is restricted in its scope of use. The creation of ADTs
based on a type instead of a design unit is more suited to dynamic typing and
encapsulation control. Furthermore, the creation of a new design unit makes
design organisation and management far more complex. The VHDL language
(DASC 1993) consists of five design units comprising three primary and two
secondary units. The concept of design units represents a powerful yet
complex means of structuring a design. The use of design units requires
significant efforts in design management; they are still not fully understood by
most experienced designers, nor supported by a wide number of synthesis
tools. HDLs like the Verilog language (Verilog std 1364-1995) owe their
popularity to their simplified use and also partly to the absence of design
units. Furthermore, while the VHDL'93 version of the language allows
designers to reduce the number of design units via the direct instantiation
mechanism, the Vista proposal introduces one more design unit, bringing the
total to six. Although we do not contest the importance of design units, we
believe that the addition of more design units will increase the design
organisation complexity for no extra gain. The splitting of the abstract data
type into an interface is necessary, but the use of multiple architectures

115

conflicts with the Object-Oriented inheritance principle. Different versions of
a design should not have a common EntityObject but rather a common
generalised parent class in order to allow an extended version of the language

to better map to Object-Oriented design methodologies.

In addition to declarations of operations, the EntityObject can hold the
declaration of ports and generics. Port declarations are used to create global
signals throughout the abstract data type. These signals are generally reserved
for synchronisation. This feature is relevant since it simplifies the modelling
of synchronous devices; for example the clock signal of a synchronous design
does not have to be part of the sensitivity list in a call but merely declared as a

common port for the given abstract data type.

4.2.2 Inheritance with the EntityObject.
The Vista Object-Oriented extension supports a public single inheritance
mechanism. Both instance variable and operations are exported to the

inheriting EntityObject.

Neither a clear inheritance control mechanism or redefinition mechanisms
have been implemented. With the Vista proposal, redefinition is merely
achieved through a new declaration and definition of a given operation.
Furthermore, with the Vista proposal, an operation parameter list can only
contain VHDL standard types. This limitation, which is not an issue in all
applications, comes from the use of ComponentObjects as abstract data type

instances instead of type representations.

In addition to this limitation, the use of a super mechanism to access previous
versions of redefined operations does not exploit the full capabilities of the
inheritance hierarchy. This highlights two issues: no support for multiple
inheritance and loss of previous versions of redefined operations. To illustrate
the latter issue, one can imagine a situation where a given operation has been
defined at three levels of the inheritance hierarchy: in such a case, the lowest

116

level will not be able to access the first definition but only the definition of its

direct parents.

4.2.3 Polymorphism and Object Handles

EntityObject handles represent a convenient means of handling dynamic types.
An EntityObject handle as defined in the Vista proposal can take any
EntityObject type at run-time, allowing polymorphic operations to be

implemented.

However, the scheme proposed in the Vista extension, undermines and to
some extent jeopardises, the VHDL type system. Maintaining the consistency
of the VHDL type system is a crucial aspect of the building of an Object-
Oriented extension to the language. The EntityObject handle does not respect
any sub-typing relationship; thus it is possible to assign objects of any type
(abstract type) to a handle at run time. For instance, an array of EntityObject
handles could contain a shift register, a counter and an ALU object at the
same time. Although the counter and the shift register may have a common
root (such as a register), the ALU has little in common with the other devices
in the EntityObject handles array. Allowing such a grouping of abstract data
types could lead to a situation where the array’s elements contained
inconsistent operations. This is only one example of the issues related to the
phenomenon of ‘direct object reattachment’. In general, it is conceptually
wrong to allow the grouping of non-related types in an array. This can be
illustrated by, considering the example in Figure 4-2. In this example, the first
two elements of the EntityObject handle array are assigned to a basic counter

and a bounded counter.

117

variabl e Counter _list is array (0 to 2) of EO Handl e
begin

counter list(0) := Basic_counter ;

counter _list(1l) := Bounded_counter ;

send Counter list(0) Reset ; -- linel

send Counter _list(1l) Reset ; -- line 2

send Counter |ist(0) load last (15); -- line 3
send Counter_list(1) load last (15); -- line 4

Figure 4-2. Grouping of Un-related Types in an Array.

On line 1 and line 2, Reset operations are successfully sent to both counter
elements. Line 3 performs a load_last operation on the element zero of the
EntityObject Handle: this is an illegal operation since the element zero is of
basic_counter type and does not implement a load_last operation. Unlike line 3,
line 4 successfully performs the load_last operation since, this time, the
element one of the EntityObject handle array is of type bounded_counter.
Although the expected behaviour is achieved, the drawback of this method is
that the operation load_last is allowed at compile time and the actual error
would not be reported until run time (if ever). Allowing each object of the
EntityObject handle array to run specific commands allows bad coding styles
and compromises the VHDL type system. In a well-planned Object-Oriented
design, these cases should only arise when dealing with complex problems. In
most cases, the rationale for using a generic structure (array) is to abstract the
details of specific variants, and concentrate on what is common to all. If it is
known that an element of such a structure has special properties, then it is
possible to access it separately, through an object of the right type. Ideally,
both line 3 and line 4 (in Figure 4-2) should be disallowed, assuming that the
common set of array elements is made of basic counters. This limitation of
the EntityObject handle results from the limitations of components being used

as abstract data types in the proposed Vista extension.

118

4.2.4 Vista Study Conclusions

The Vista proposal implements all the required objectives defined by the
OOVHDL study group. However, because of its choice of ADT
implementation (component object), this proposal offers very limited scope
for abstraction. Furthermore the creation of an extra VHDL design unit
makes design organisation and management a more complex task. The use of
object containers for implementing dynamic type is valid; however since no
assignments rules are defined for the ObjectHandle, this will lead to some
design inconsistencies. This extension was a good first attempt for the
implementation of an object-oriented extension to the VHDL. It showed the
limits of a component-like ADT and allowed the research community to

focus on composite type based (record like) ADT alternatives.
4.3 Study of the Active Proposals

This analysis of competing proposal is conducted using a number of
comparison points derived from the OOVHDL study group requirements
list. These are: Class interface definition, method definition, abstract classes,
encapsulation and visibility control, inheritance, instantiation, initialisation,
assignment and copying, aggregation, method invocation, polymorphism and

genericity.

4.3.1 Class Interface Definition

The SUAVE (Ashenden 1997.2)/0ldenburg proposal uses the VHDL
language feature namely: The package. Furthermore the functionality of the
package is modified to suit the requirements of a flexible abstract data type.
The package in the SUAVE extension no longer needs to be a design unit and
can be declared in other declarative parts. An example of a class describing a

counter is given in Figure 4-3:

119

package counter is
-- Declarations
end package counter;

Figure 4-3. ADT Declaration in SUAVE/Oldenburg.

Packages in the SUAVE proposal are no longer design units when they are
used as ADTSs. As a result, one can question the need for using the existing
package since, such a language decision will create an overlap with the existing
VHDL semantics as well as inconstancies. We do not believe that any benefits
are grained from selecting existing language constructs if they are not adapted

to the implementation of an orthogonal extension to the VHDL.

The Objective VHDL (Radetziki 1997.2) proposal relies on the creation of a
new kind of composite type: The class. A class type is parented to the VHDL
record type and contains both fields (instance variables) and their associated
subprograms. The example in Figure 4-4 describes a counter using both the

Objective VHDL and our proposal:

type counter is class
-- Declarations
end cl ass counter;

Figure 4-4. ADT Declaration in Objective VHDL and our Proposal.

All proposals provide similar mechanisms for data encapsulation and method
implementation. The SUAVE and Oldenburg proposals are alike and the

Objective VHDL class is identical to our proposal.

4.3.2 Method Definition

While SUAVE/Oldenburg as well as Objective VHDL use the VHDL
subprograms, their formal parameter list differs. For the SUAVE/Oldenburg
proposal, any method requires at least one formal parameter that carries the

120

object (or data structure) on which the operation is to be performed. The

example in Figure 4-5 demonstrates the declaration of two methods:

package counter is
type value t is tagged record
val ue: integer;

end record;

function read(val : value_t) return integer;

procedure wite(val: inout value_t;
signal clk: in std_|logic;
value_in: in integer);

end package counter;

Figure 4-5. Method Declarations in SUAVE/Oldenburg.

The objective VHDL gives the methods, implicit access to the attributes of
the class that declares them. As a result the formal parameter list only
contains useful input/output arguments. This style of method declaration is
the most commonly implemented in other object-oriented programming
languages. An example of method declaration in Objective VHDL is given in

type counter is class
class attribute value : integer;
function read return integer;
procedure wite(signal clk: in std_logic;
value_in: in integer);
end class counter;

Figure 4-6:

Figure 4-6. Method Declaration in Objective VHDL.

Our proposed extension does not rely on subprogram calls for implementing
method calls. Although this requires the addition of the new keyword
‘method’, the motivations are justified. In VHDL and numerous other
programming languages there are two kinds of subprograms: functions and
procedures. While both subprograms share a large amount of common
features, their small differences justify their unique identity. The main

121

differences between functions and procedures are execution time, number of
output parameters and their usage as part of an expression. The procedure
permits the suspension of processes (to perform signal update) whilst
executing. In other words, one can use the VHDL wait statement inside a
procedure body. The execution of a function is considered instantaneous;
therefore no waiting is permitted inside the function body. Furthermore the
function is not allowed to call internally a procedure contains a wait
statement. Similarly, the proposed ‘method’ construct gathers some of the
singular properties of both VHDL subprograms and rejects others. The
method accepts any number of input parameters of signal constant and file
class; however only one return value is allowed. This resembles the function
call and was implemented to allow method calls to be used as part of
expressions. Unlike Objective VHDL or SUAVE, there are no distinctions
made on which type of subprogram to use (function or procedure):
depending on the application (statement or expression) the method
constructor is used independently. This method style simplifies the creation
of classes and broadens the class’ applications. Furthermore this relates
directly to most object oriented programming languages. A ‘method’ in the
proposed extension allows the use of wait statements. This feature is akin to
the VHDL procedure and allows expressions/statements to be executed in
no time or after a user definable delay. Consequently, the functionality
required for the creation of a well-suited method implementation justifies the
building of a new separate language mechanism. The solutions offered by the
SUAVE and Objective VHDL represent a compromise that promotes

ambiguities with existing and different VHDL constructs.

An example of a counter class with the proposed extension is given in Figure
4-7:

122

type counter is class
i nstance variable value : integer
nmet hod read return integer
met hod write(signal clk: std_logic;
val ue_in: integer);
end cl ass counter

Figure 4-7. Method Declaration in our Proposal.

4.3.3 Non Instantiable (abstract) Classes

All proposals support the creation of abstract classes. Whereas SUAVE
requires an explicit declaration using the keyword ‘abstract’ (not specified in
the Oldenburg proposal), both our proposed extension and the Objective
VHDL one use an implicit definition. When a class is defined with methods
that have not yet been defined, the class becomes an abstract class. An

example of an abstract class declaration in SUAVE is given in Figure 4-8:

package packet t is
type abstract newdata t with record
parity: bool ean;
end record val ue_t;
procedure process_packet (val ue: inout data_ t);
end package packet t;

Figure 4-8. Abstract Class Declaration in SUAVE .

The benefit of using an extra keyword to qualify if a class is ‘abstract’ or not is
minor. With SUAVE, the user may get an error earlier in the compilation
sequence since the compiler will check if all methods are defined in a non-
"abstract’ class. However, with the Oldenburg, Objective VHDL and our
proposed extension, the error issued when the user attempts to instantiate
objects of an abstract class type. Similar behaviour is found in standard
VHDL when using a non-fully defined ‘deferred’ constant. An example of an

abstract class declaration in Objective VHDL is given in Figure 4-9:

123

type packet is class
class attribute parity: integer
procedure process_packet;

end cl ass packet;

Figure 4-9. Abstract Class Declaration in Objective VHDL.

The equivalent code using our proposed extension is given in Figure 4-10:

type packet is class
i nstance variable parity: integer;
met hod process_packet ;

end cl ass packet;

Figure 4-10. Abstract Class Declaration in our Proposal.

4.3.4 Encapsulation Control and Visibility Control

Encapsulation control is implemented at different levels in the three
proposals. The SUAVE/Oldenburg version relies on two separate
mechanisms: the package body and the definition of a private area in the
package header (not in the Oldenburg proposal). The package body is used to
hide sub-programs from the class user. The private part of a package header is
used to hide the implementation of a type. Types and sub-programs declared
outside the private part of a package header are visible by the class user
without any restrictions. The declaration of a class containing both visible and

non-visible declarations is given in Figure 4-11:

124

package fifo is
type fifo_t is tagged record
value : std_logic_vector(7 downto 0);
is full : bool ean
is_enpty : bool ean
end record fifo t;
procedure push(val: inout fifo_t;
signal clk: in std_logic;
value_in: in std_logic);
end package fifo;
package body fifo is
procedure push(val: inout fifo_t;
signal clk: in std_logic;
value_in: in std_ logic) is
-- some code
end procedure push
procedure async_wite(val: inout fifo t) is
-- sone code
end procedure async_wite;
end package fifo;

Figure 4-11. Visible an Non-Visible Declaration in SUAVE.

In this example, the type fifo_t and the procedure push are visible, whereas the

procedure async_write isn’t.

The semantics in Figure 4-12 would hide the type fifo_t:

125

package fifo is
type fifo_t is tagged private;
procedure push(val: inout fifo_t;
signal clk: in std_logic;
value_in: in std_logic);
private
type fifo_t is tagged record
value : std |l ogic vector(7 downto 0);
is full : bool ean;
is_enpty : bool ean;
end record fifo t;
end package fifo;

Figure 4-12. Hidden Type Declaration in SUAVE.

For the example in Figure 4-12, the type fifo_t is declared as a private type and
defined in the private part of the package header.

The Objective VHDL proposal implements encapsulation via: an
encapsulation rule and the use of a class body. The encapsulation rule in
Objective VHDL defines that none of the ‘class attributes’ are visible outside
the class that defines them. Any access to the ‘class attributes’ has to be made
through the use of sub-programs. However, unlike the SUAVE/Oldenburg
proposals, the designer can specify if a given ‘class attribute’ is to be visible
inside child classes or not. The visibility of a ‘class attribute’ after inheritance
is achieved by declaring the ‘class attribute’ inside the header part of a class.
The declaration of a ‘class attribute’ inside the body part of a class will cause
the ‘class attribute’ to be lost during the inheritance process. Similarly, a sub-
program in Objective VHDL is visible if declared inside the class header.
Alternatively, a sub-program can be hidden if declared in a class body. This
mechanism is identical to the existing package header / package body in
standard VHDL. Figure 4-13 demonstrates the declaration of visible and non-

visible sub-programs and class attributes.

126

type fifo is class
class attribute value: std_|logic_vector(7 dowto 0);
class attribute is_enpty: bool ean;
class attribute is full : bool ean
procedure push(signal clk: in std_|ogic;
value_in: in std_logic);
end class fifo;

type fifo is class body
procedure push(signal clk: in std_|ogic;
value_in: in std logic) is
-- sone code
end procedure push
procedure async_wite(value in: in std |ogic);
end class body;

Figure 4-13. Visible and Non Visible Declarations in Objective VHDL.

For the example in Figure 4-13, the sub-program push is visible and the sub-
program async_write is hidden. None of the ‘class attributes’ are visible outside
the class fifo; however, since they have been declared inside the class header,
they will be inherited by all child classes. The code in Hgure 4-14 illustrates

how to exclude the ‘class attributes’ is_empty and is_full during derivation.

type fifo is class
class attribute value: std_|logic_vector(7 dowto 0);
procedure push(signal clk: in std_|ogic;
value_in: in std_logic);
end class fifo;

type fifo is class body

class attribute is_enpty: bool ean

class attribute is full : bool ean

procedure push(signal clk: in std_|ogic;

value_in: in std logic) is
-- sone code

end procedure push

procedure async_wite(value in: in std |ogic);
end class body;

Figure 4-14. Hidden Attribute Declarations in Objective VHDL.

Both ‘class attributes’ have been moved to the class body part hence they will

not be inherited by any of the child classes.

127

The proposed extension implements a thorough encapsulation mechanism
for ‘instance variables’, method access and inheritance control. Encapsulation
uses three identifiers ‘public’, ‘private’ and ‘restricted’. As with Objective
VHDL and SUAVE (Oldenburg relies only on VHDL'’s package visibility
mechanisms), ‘instance variables’ can be hidden from the class user by using
the keyword ‘private’ in front of the variables’ definition. Nevertheless, unlike
Objective VHDL any ‘instance variables’ can be made visible to the class user
by using the keyword ‘public’ instead of ‘private’. Furthermore the proposed
extension allows each individual ‘instance variable’ of the class to have a
different encapsulation control; this cannot be done with the
SUAVE/Oldenburg proposal. In SUAVE, all or none of the fields of the
record type are set to be visible or hidden. The example in Figure 4-15
illustrates the declaration of ‘instance variables’ and methods with different

encapsulation controls:

type fifo is class
public instance variable is _full : bool ean;
public instance variable is_enpty : bool ean
restricted i nstance vari abl e val ue :
std | ogic_vector (7 downto 0);
public method push(signal clk : std_|ogic;
value in : std logic) is
-- some code
end net hod push;
restricted nmethod async_wite(value in : std logic) is
--sone code
end net hod async_write;
end class fifo;

Figure 4-15. Encapsulation Control in our Proposal.

Figure 4-15 demonstrates the flexibility of the proposed extension over
competing proposals. As shown in this example, both variables is_full and
is_empty have been declared as public hence visible outside the class that
defines them; whereas the variable value is hidden inside the class fifo. We
believe that this flexibility, only present in our proposal, is essential for the

128

construction of a versatile ADT. Figure 4-16 demonstrates the use of a public

instance variable:

architecture rtl of data line is
object fifo_ 1 : fifo;
begin
process
begin
wait until clk =*1";
if fifo 1l.is enpty then
fifo_1.push(clk, inl);
-- nore code

Figure 4-16. Use of Public Instance Variables in our Proposal.

In Figure 4-16, the state §s_full) of the fifo_ 1 object is accessed through a
‘method-like’ message. This style presents two main benefits: consistency and
increased maintainability level. Since the access to a public instance variable is
semantically identical to a method call, object access remains consistent.
Furthermore, if the user decides at a later stage to implement the query (is_full,
is_empty) using methods instead of ‘instance variables’, the supporting code
used to access an instance of the fifo class is not required to be updated since

the calls will be identical.

The use of three distinct encapsulation kinds in the proposed extension has
added benefits during the inheritance process. By specifying if an ‘instance

private, public or restricted, the class designer has
full control over what should and what should not be present in a derived
child class. This inheritance control is similar to what is found in the
Obijective VHDL extension. However, the distinction between a public type
and a restricted type in the proposed extension offers further levels of
flexibility. This distinction will be detailed during the study of inheritance

across proposed extensions.

129

In addition to the limits encountered in the definition of encapsulation in
SUAVE/Oldenburg and Objective VHDL, these proposals rely on a
confusing and over complicated data hiding mechanism. The encapsulation
mechanism found relies on a standard VHDL package-body ‘like’ hiding
mechanism. The standard VHDL language defines that declarations made at
the package-body level are only visible within the package that declares them.
This definition has an important role in the context of the separation of
VHDL'’s primary and secondary design units and design units’ compilation
rules. Pragmatically this rule allows a designer to make changes to the content
of a package-body, without having to recompile any other design units that
might be referencing the altered package. The VHDL language permits this
since the content of the package body is hidden from the rest of the design.
Although, this is a complex encapsulation mechanism, it is justified by the
existence of two separate design units (primary and secondary). However, the
complexity involved in the use of a similar mechanism in SUAVE and
Objective VHDL is not justified. In SUAVE, the new package ADT is no
longer a design unit hence will not be compiled on its own if the package has
been declared as part of an architecture declarative part. Consequently the
need for a distinct package-body for implementing parts of an ADT is over
complex and irrelevant. It can be assumed that this package-header/ package-
body split has been kept in SUAVE to resemble the original standard VHDL
package construct at the expense of conciseness. Furthermore the SUAVE
extension adds extra overlap in the VHDL language by declaring a private
part of a package-header. From these observations we conclude that the use
of the package construct and encapsulation mechanism does not represent a

suitable implementation of an ADT.

Unlike the SUAVE/Oldenburg extensions, Objective VHDL relies on a new
ADT construct. However, the encapsulation mechanism is still similar to the
SUAVE proposal with the distinction between a header and a body part of a
non-design unit. For the same reasons developed for the SUAVE proposal

130

we do not believe that this represent a useful complication of the VHDL

language.

4.3.5 Inheritance

Single inheritance and method overloading are provided in all the proposed
extensions; however, multiple inheritance is only present in our proposed
extension. The discussions over the benefits of single versus multiple
inheritance are beyond the scope of this study. Nevertheless, we believe that
the use of multiple inheritance in conjunction with flexible mapping
mechanisms, offers designers a higher level of reuse than the one achieved
through single inheritance. To highlight the benefits of using multiple
inheritance, we will use a simple case study. The study assumes the existence

of the class structure in Figure 4-17:

4 Register N
Restricted Vaue: bit_vector
Public Reset
Public Read
Public Write
. /
)\Public)\Public
4 Counter) 4 Shift_register N
Public Is_empty: boolean
Public Count public Is _full: boolean
Public Shift_left
Public Shift_right
\ J \ 9 Y,

Figure 4-17. Example Class Structure.

131

The case study also assumes that the designer is required to create a new class
called Add_shift. The Add_shift class is an aggregation of both, a counter and
a shift register functionalities and should contain the methods and instance

variables shown in Figure 4-18:

7~ Add_shift N

restricted Value: bit_vector
Publicls empty: boolean

public Reset
public Read
public Load
public Count
public Shift

N /

Figure 4-18. Example Add_shift Class.

Using the proposed extension, the creation of such a class requires the
inheritance of the two existing classes counter and shift_register. However, a
number of elements of the inherited classes are not needed by the Add_shift
class; furthermore, some of the inherited methods require different names. As
a result, the undesired elements should be hidden from the user and the
methods with different identifiers should be renamed. The code in Figure 4-
19 illustrates the implementation of the Add_shift class using our proposed

extension:

132

type add_shift is class use (public COUNTER,
restricted shift_register) is
feature map (WRI TE => LQAD,
is_enpty => public is_enpty;
shift _left => public shift);
begin
end class add_shift;

Figure 4-19. Feature Mapping in our Proposal.

In Figure 4-19, add_shift is created from a public inheritance of the counter class
and a restricted inheritance of the shift_register class. Since both the counter and
shift_register class come from the same origin (register class), all common
features are collapsed into single elements. The merging of common features
insures the availability of only one version of: value, read, write and reset inside
the add_shift class. Furthermore, the language extension defines that the
encapsulation kind with the highest visibility (public) is chosen for collapsed
features. Thus, the collapsed methods read, write and reset will be publicly

visible due to the inheritance encapsulation kind of the counter class.

The inheritance encapsulation kind for the two parent classes, was chosen
according the required features in the add_shift class. A public inheritance of
the counter class insures the visibility and inheritance of all the public and
restricted features of that class. A restricted inheritance of the shift_register class,
sets the default encapsulation kind of all public features of that class to be

restricted in the derived add_shift class. This allows the features is_full, is_empty,
shift_right and shift_left to be hidden in the add_shift class.

The feature map construct in this example, is used for two purposes. name
mapping and encapsulation kind overwrite. The name mapping is used to
rename both write and shift_left into load and shift respectively. In addition, the
keyword public is used in front of shift and is_empty in order to overwrite the

133

default encapsulation kind, set by the restricted inheritance kind of the

shift_register class.

The implementation of the same add_shift class with the SUAVE/Oldenburg
and Objective VHDL extensions would present a number of problems. Due
to their lack of support for multiple inheritance, the designer would have to
select a unique parent and add manually the missing code required for the full
implementation of the add_shift class. This will lead to code redundancy hence
making the design more error prone and less maintainable. Furthermore the
SUAVE/Oldenburg and Objective VHDL extensions support a limited
encapsulation mechanism which does not allow them to adapt inherited
features to the needs of the child class. In contrast, the proposed extension
implements a feature mapping mechanism. This makes the ability to hide,
make visible, or rename features before and after inheritance a simple and
flexible process. The example in Figure 4-20 illustrates an implementation of
the add_shift class using the SUAVE/Oldenburg proposals.

134

package add _shift is
type add_shift _t is new counter_t with record
is_enpty: bool ean

end record;

procedure | oad(val ue : inout add_shift _t;
value_in : in bit_vector);

procedure shift(value : inout add_shift _t;
value_in : in bit_vector)

procedure enpty(value : inout add_shift _t;

val ue_out : out bool ean);
end package add_shift;

package body add shift is

procedure | oad(value : inout add_shift _t;
value in : in bit_vector) is
-- some code
end procedure | oad;
procedure shift(value : inout add_shift _t;
value_in : in bit_vector) is
-- sone code
end procedure shift;
procedure enpty(value : inout add _shift t;
value_out : out boolean) is
-- sone code

end procedure enpty;
end package add_shift;

Figure 4-20. Inheritance Limits in SUAVE/Oldenburg.

Some of the limits of the SUAVE/Oldenburg extensions inheritance/
encapsulation mechanisms are demonstrated in Figure 4-20. Since the

shift_register class could not be inherited at the same time as the counter class,

the shift procedure had to be re-implemented in the add_shift class. The load

procedure has been created to conform to the specifications. However, with

this implementation, both the newly defined load procedure and the inherited

write procedure will exist inside the add_shift class and have the same

behaviour. Another limitation found in the SUAVE/Oldenburg extension is

the non-ability to mix encapsulation kinds within the class’s data structure.

For this reason we had to create a procedure empty to access to the new private

instance variable is_empty.

135

The example in Figure 4-21 demonstrates similar limitations found with the
Objective VHDL proposal.

type add_shift is new class counter with
class attribute is_enpty: bool ean;
procedure load(value_in : bit_vector);
procedure shift(value_in : bit_vector);
function enpty return bool ean;
end class add_shift;
type add_shift is class body
procedure load(value_in : bit_vector) is
-- sone code
end procedure | oad;
procedure shift(value in : bit_vector) is
-- some code
end procedure shift;
function enpty return boolean is
-- sone code
end function enpty;
end class body add_shift;

Figure 4-21. Inheritance Limits in Objective VHDL.

The Objective VHDL implementation has similar limitations to the
SUAVE/Oldenburg extensions. The class attribute is empty and the
procedure shift were created due to the lack of multiple inheritance support.
The load procedure was created to conform to the class’s specifications:
however, since feature mapping is not allowed in Objective VHDL, the write
procedure inherited from the counter class becomes redundant in the add_shift
class. As with the SUAVE/Oldenburg example, the function empty had to be

built to allow access to the is_empty class attribute.

Along with multiple inheritance, our proposed extension supports repeated
inheritance. Repeated inheritance occurs whenever (as a result of multiple
inheritance), two or more ancestors of a class have a common parent. This
class is often called a repeated descendant. Figure 4-22 (Left) shows a

repeated inheritance for an hand-bell counter.

136

Bounded

Counter
Counter

Down
Counter

Up
Counter

HandBell
Counter

Complex
Counter

Figure 4.22. Repeated Inheritance for an Hand-bell Counter.

This simple form is called repeated inheritance and corresponds to the case
when the hand-bell counter is a repeated child of the bounded counter. Another
form of repeated inheritance is shown in Figure 4-22 (Right) in which the
parent UpCounter of ComplexCounter is a proper descendant of the Counter class
and one or more other parents (such as the DownCounter are descendants of
the Counter class. With repeated inheritance, in our extension, if no feature
mapping is performed, the multiple inherited features are merged in a single

one.

Repeated inheritance is not supported by any of the other proposed

extensions.

137

4.3.6 Instantiation

The instantiation of a class’s object is a requirement to the implementation of
an object-oriented extension to the VHDL programming language. However,
the realisation of object’s instantiation varies significantly between both the
SUAVE/Oldenburg and Objective VHDL proposals, when compared to our
extension. With the SUAVE/Oldenburg and Objective VHDL, signals,
variables and constants are used for the creation of a class instance (object)
whereas, our proposed extension, promotes the creation of a new VHDL
building element, the ‘object’. The examples in Figure 4-23 and Figure 4-24

demonstrate the instantiation of objects in the three proposals:

architecture rtl of edge is
signal countl : counter
begin
process
variable fifol : fifo;
begi n
-- sone code
end process;
end rtl;

Figure 4-23. Instantiation in SUAVE/Oldenburg & Objective VHDL.

architecture rtl of edge is
object countl : counter
begin
process
object fifol : fifo;
begi n
-- sone code
end process;
end rtl;

Figure 4-24. Object Instantiation in our Proposal.

There are numerous considerations in the choice of a mechanism for
implementing classes instantiations (objects). The selection of one

138

implementation over another depends on the means defined within the

language extension for accessing an object.

Pragmatically, objects can be considered as resources that can be queried or
altered by a client. This is implemented by most programming language via
two kind of resources: constants and variables. Both kinds carry mechanisms
used to read and assign values; specifically, constant can only be read and

variable can be read as well as altered without any notion of time delay.

Nevertheless, due to its concurrent and sequential nature, the VHDL
language has to feature a new kind of assignment mechanism, which allows
the description of deterministic concurrent assignments. Consequently, the

signal kind was created to implement a non-blocking assignment mechanism.

The existence of the blocking and non-blocking assignment mechanisms
inside the VHDL language is a determining factor in the creation of a class
instance (object). The proposed instantiation mechanisms in both
SUAVE/Oldenburg and Objective VHDL is identical. Objects in those two
proposals can be accessed in a blocking or non-blocking fashion depending
on the kind of declaration used (signal, variable or constant). The figure 4.23
illustrates the declaration of an object using a signal; therefore this implies that
the ‘counterl’ object can only be assigned using a non-blocking assignment
style. Similarly, if the designer needs to access to an object using a blocking
assignment style, the declaration of this object should be of the variable kind.
This implementation of object declaration represents a compromise between

minimal language change and a flexible object-oriented extension to VHDL.

From the two existing kinds of assignment in the VHDL language, we argue
that only the blocking kind is useful for the implementation of class instance.
For that reason our proposed extension only features one kind of element
akin to the VHDL’93 shared variable.

139

Although the use of signals for implementing object updates through a non-
blocking mechanism is a sensible approach, we do not believe that the
complexity of the non-blocking mechanism brings any significant benefits
over the use of blocking assignments in the context of an object oriented

extension.

In a non object oriented version of the VHDL language, non-blocking
assignments are used for conveying information between concurrently
interacting processes or entities (ports) in a deterministic way. This
mechanism was introduced to VHDL in order to overcome the phenomenon
of HDL race found in languages such as Verilog. A HDL race condition
occurs on a shared resource when two distinct values are assigned (blocking
assignment) at the same simulation time (eg.25 ns) but on different delta
cycles. The end result is non-deterministic since the order in which the two
assignments are performed can not be established. Unlike the blocking
assignment, non-blocking assignments will always guarantee a deterministic
value on a common resource according to the output of a resolution function.
An example of the behaviour of blocking assignments is shown in Figure 4-
25:

‘1 else ‘7 ;
‘1 else ‘7 ;

data <= datal when enl
dat a <= dat a2 when en2

Figure 4-25. Multiple Drivers Assignment in VHDL.

140

In this example, the common resource ‘data’ is of a resolved type such as
std_logic. Nevertheless, aside from this application, hardware resources are
never accessed (written to) by multiple concurrent processes. This rule is
dictated by safe design practice as well as synthesis tools restrictions. Figure 4-

26 and Figure 4-27 demonstrate improper and proper VHDL descriptions for

a counter.

process(reset)

begin
if reset = ‘1 then
count <= 0O;
end if;

end process;

process(cl k)
begin
if clk =1 then
count <= count + 1;
end if;
end process;

Figure 4-26. Improper Description of a Counter.

process(cl k, reset)
begin
if reset = ‘1 then
count <= 0O;
elsif clk’event and clk = *1" then
count <= count +1
end if;
end process;

Figure 4-27. Proper Description of a Counter.

141

Although syntactically correct, the solution shown in Figure 4-26 cannot be
exploited as, the style used in this example Figure 4-26 will be regarded as
non-deterministic and will not be accepted by synthesis tools. This is due to

the two processes are concurrently accessing a common resource count.

Since coding styles based on concurrent non-blocking assignments are
forbidden in a VHDL design flow, we argue that objects should not be
accessed (written too) by multiple concurrent processes in order to avoid

non-deterministic behaviours.

Unlike non-blocking assignments, the creation of a class instance through a
variable-like (blocking) declaration is supported by all proposals. The
SUAVE/Oldenburg and Objective VHDL variable declarations and visibility
scopes are restricted to the process. With our proposed extension, object
declaration is permitted at the package, architecture, block, and process level,
hence giving a greater variation in accessibility scopes. However, unlike
VHDL ‘shared variables’, objects do not support multiple concurrent access
(writing) to their ‘instance variables’. As demonstrated, the need for multiple
instantiation mechanisms found in SUAVE/Oldenburg and Objective
VHDL (signal, variable and constant) is not justified. A single and versatile
new mechanism provides a more suitable solution to object instantiation in an

object-oriented extension to VHDL.

Besides static objects, the instantiation of dynamically allocated objects is

implemented in all proposals through the use of VHDL acess types.

4.3.7 Initialisation

Objective VHDL and our proposed extension allow class attribute
initialisation. This follows the VHDL standard initialisation mechanism being
either “(type’left)” or a user defined value. Nevertheless our proposed
extension supports a more sophisticated initialisation mechanism with creator
methods. Creator methods use the same names as the class that defines them.

142

A creator method can be overloaded and will be executed at elaboration time.
The argument for more advanced initialisation mechanisms is based on the
potential complexity of object-oriented data structures in comparison to the

VHDL scalar or composite types.

Unlike Objective VHDL or our proposed extension, the SUAVE/Oldenburg

extensions does not support user defined initialisation.

4.3.8 Assignment and Controlling Copying
All proposals support deep copy. The Shallow copy is implemented in both
SUAVE and our proposed extension; however, the Objective VHDL

proposal allows the overloading of objects’ operators.

Object assignments are also supported by all proposals providing the
assignments comply with the inheritance rules for implementing dynamic
types. With the SUAVE/Oldenburg and Objective VHDL proposals, object
assignment follows VHDL'’s signals, variables and constant mechanisms.
With the proposed extension, only one mechanism is used: '==". This

assignment assigns references to objects as opposed to the object themselves.

4.3.9 Aggregation
Object aggregation is supported equally in all the proposed extensions.

Classes are permitted to declare instance variables of other class types.

4.3.10 Method Invocation
Method invocation has been implemented differently in SUAVE/Oldenburg,

Obijective VHDL and our proposed extension.

The implementation of methods in SUAVE/Oldenburg relies on VHDL's
subprograms. Consequently, method invocation in those proposals is in effect
a VHDL subprogram call. Although this mechanism provides a solution to
message passing, we argue that this style is not a practical implementation of
message passing in an Object-Oriented programming language. Most OOPLs

143

aside from ADA 95, implement message passing through the use of the ‘dot’
notation. This notation is consistent and permits the use of a method call
either as a statement or as an expression; this represents a significant
advantage as detailed in section 3.2.11. The wbprogram style of message
passing forces the class designer to take decisions regarding the nature of
message calls: either statements (procedures) or expressions (functions).
Unlike method calls using the ‘dot’ notation, once the style of subprogram
message call is set, the given message will only be used following the chosen

definition style.

In addition to the restricted use of subprogram calls, the SUAVE/Oldenburg
proposal requires the destination object for a call, to be passed as an inout
actual parameter. Although this style follows VHDL'’s semantics, it represents
a cumbersome implementation. Lastly, the SUAVE/Oldenburg
implementation of message passing violates the VHDL LRM definition for
the formal parameter class (file, signal, variable, constant). This is due to the
fact that the SUAVE/OIldenburg proposals allow the creation of variable,
signal and constant objects. To fix this violation, the VHDL language would
have to be modified to allow the sub-programs parameter classes (signal,
constant, and variable) to be part of the selection mechanism during
overloading. Figure 4-28 illustrates message passing with the
SUAVE/Oldenburg proposals.

144

package reg is
type reg t is tagged record
value : std_logic_vector(7 downto 0);
end record reg_t;

procedure wite(signal val: inout fifo_t;
signal clk: in std_logic;
value_in : in std_|logic);

function read(signal val: inout fifo_t)

return std_| ogic;
end package reg_t;

architecture rtl of sanple is
signal reg_1: reg_t;

begin
wite(reg_1, clock, 33); -- statenent style
out _a <= ‘1 when read(reg_1) = 10 -- expression style
else ‘0O
-- nore code

Figure 4-28. Message Passing in SUAVE/Oldenburg .

The Objective VHDL solution to message passing resembles the
SUAVE/Oldenburg insofar that it uses sub-program calls. However, this
proposal relies on the ‘dot’ notation to associate the target object with a
message. Although this style is more suited for the implementation of an
Object-Oriented message mechanism, the use of sub-program calls as
statements or expressions restricts the message passing abilities of the
proposed extension. Furthermore, to support the use of different object
implementations (signals, variables, constants), the Objective VHDL proposal
requires the building of a complex object configuration mechanism. This
configuration mechanism defines the behaviour of methods according to the
object declaration (signal, variable and constant). This creates a significant

amount of code redundancy for the creation of a versatile class.

The example in Figure 4-29 demonstrates the use of message passing with the

Objective VHDL proposal.

145

type reg is class
class attribute value : std_ | ogic_vector(7 dowto 0);

for signal
procedure wite(signal clk: in std_|ogic;
value_in : in std_logic);
function read return std_| ogic;
end for;

end cl ass reg;

architecture rtl of sanple is
signal reg_1: reg;

begi n
reg_l.wite(clock, 33); -- statenment style
out_a <=1 whenreg_l.read = 10 -- expression style
else 'O
-- nore code
end rtl;

Figure 4-29. Message Passing in Objective VHDL.

Unlike SUAVE/Oldenburg or Objective VHDL, our proposed extension
implements a truly Object-Oriented-like message call mechanism. This is
achieved by using a newly defined method mechanism as opposed to VHDL
sub-programs. This style enables us to create flexible method calls that do not
need to be identified and previously defined as statements or procedures.
Method calls are used as both statements and expressions on a single type of
element: the object. Unlike the SUAVE/OIldenburg or Objective VHDL
proposals, the use of a unified object mechanism instead of signals, variables
and constants largely simplifies the creation of methods. No special
configuration or complex and redundant overloading operation is required for
the use of objects through message passing. Furthermore, our proposed
extension defines two kinds of message calls: blocking and non-blocking.
These call variations present a significant modelling advantage over other
proposed extensions (as detailed in section 3.3.3). This mechanism is

borrowed from the Verilog world and enables sequential activities to be

146

spawned in parallel as well as sequentially. An example of message passing

with our proposed extension is given in Figure 4-30.

type reg is class
i nstance variable value : std | ogic_vector (7 downto 0);
met hod wite(signal clk: in std_logic;
value_in : in std_|logic);
met hod read return std_| ogic;
end cl ass reg;

architecture rtl of sanple is
object reg_1: reg;

begin
reg_l.wite(clock, 33); -- statement style
out_a <=1 whenreg_l.read = 10 -- expression style
else 'O
-- nore code
end rtl;

Figure 4-30. Message Passing in our Proposed Extension.

4.3.11 Polymorphism/Dynamic Types

All proposed extensions support polymorphism. The SUAVE/Oldenburg
and Objective VHDL, require the definition of signals, variables, constants or
parameters of class wide types. With our proposed extension, no specific

indications are required for implementing a class-wide type.

Errors regarding dynamic type mismatches will occur during run time for all

proposed extensions.

4.3.12 Genericity.

All' proposals implement class genericity. The SUAVE proposal allows
creation of generic types as well as generic constants. Generic types are akin
to C++ templates and can be seen as a significant benefit for the creation of
reusable classes. However, we do not feel that such a mechanism is suited for
a strongly typed language such as VHDL. The use of template-like
mechanisms might compromise the type system of the language and confuse

the language users.

147

4.4 Conclusions

This chapter has defined the approach taken by the main OOVHDL
proposals. It highlighted the strengths and weaknesses of the languages
through examples based on applications and suggested novel mechanisms to
tackle modelling issues not supported by current extensions. A number of
conclusions can be drawn from this assessment. Although all proposals are
implementing the language design requirements specified by the IEEE
OOVHDL study group, the implementation choices have a significant effect
on the usability of the different proposals. The SUAVE/Oldenburg proposals
require a minimum number of syntactic constructs to implement a form of
Obiject-Orientation. However, the support is minimal: dynamic typing and
single inheritance. Furthermore we demonstrated that the choice of existing
VHDL constructs (Packages, sub-programs, signals, constants) was
inadequate. Such constructs added an overlap with the existing VHDL
mechanisms as well as restricting the implementation of Object-Orientation
inside VHDL. The Objective VHDL solution takes a more pragmatic
approach to the implementation of an OOVHDL. The creation of a new
ADT gives an advantage to this solution over the SUAVE/Oldenburg
proposals. However although this proposal demonstrates a level of
independence from the ADAGY5, it still relies on non adapted mechanisms for
object implementations. Furthermore, like the SUAVE/Oldenburg proposals
no class adaptation mechanisms are provided in Objective VHDL. Our
proposed extension has shown its superiority in terms of language integration
and Object-Orientation implementation. In our proposal, further mechanisms
are provided to implement encapsulation control, multiple inheritance, run

time validity checking, feature mapping, and dynamic typing.

148

Chapter 5.

CASE STUDY: THE EDGE FILTER DESIGN

5.1 Introduction.

This chapter documents a test case object-oriented VHDL model, designed
to include the characteristics found in a typical hardware design.

The test case implements an Edge Filtering image processing function on a
raster scan input image, using 3X3 pixel masks. This chapter contains an
overview of the Edge Filtering function; defines the partitioning of the design
and includes a description of the supporting class structure implementation. It
concludes with a discussion of the benefits of using object-oriented VHDL
models compared to equivalent standard VHDL models.

5.2 Overview of Function.

An Edge Filter is an Image Processing function which identifies the edges of
objects within an image, where the image is defined in terms of a pixel array
of intensity values. An object within the image is defined as an area of pixels
with little variation in intensity. Edges of objects are represented by pixels
with a wide variation in intensity, and the direction of the object edge is

perpendicular to the direction of intensity variation.

The operation of the edge filter circuit chosen is summarised below. A more
detailed description is given in (IEEE 1982).

The edge strength for each pixel is calculated by comparison with all adjacent
pixels in the image using a 3X3-pixel mask. Mask coefficients determine the
contribution of each pixel to the central pixel's edge strength, i.e.

149

¢l ¢ c+l
r-1 a b c
r d e f
r+1 |g h i

For a particular pixel (c,r), the edge strength is given by:

E(cr)= [axP(c-1,r-1)+bxP(c,r1) +cxP(c+1,r-1) +
dxP(c-1,r) +exP(c,r) +fxP(c+lr)+
gxP(c-1, r+1) + hx P(c, r+1)+ix P(c+1,r+1)] /|

Where ‘@’ to ‘I' are mask coefficients, " is the mask divisor, and P(xy) are
pixel intensities in the adjacent rows and columns to the current pixel.

Two masks are used to detect edges in the West/East direction (WE) and in
the North/South direction (NS) using the following coefficients.

-1 -2 -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1

NS edge mask WE edge mask

For both masks, the mask divisor is 4.

These masks serve to filter out low variations of intensity over the pixel area
covered by the mask. The greater the intensity variation in the direction

covered by the mask, the greater the edge strength generated by the mask.

Each mask (WE, NS) generates edge strengths for each pixel location. The
strength can be either positive or negative depending on the direction of

increasing intensity for the edge. The absolute value of edge strengths is

150

compared to a threshold. The binary result of the comparison signifies the
presence of an edge on either the NS, WE or both directions of the image.

5.3 Filter External Interface.

enable
wr nrd
data i0(15:0)
address(2:0

ack

scene(7:0) ifclk
fs .
Is Edge Filter

edge
reset g
clk
clka edge fs

Figure 5-1. Edge Filter Top Level.

Image intensity data is input as an 8-bit unsigned bit vector (scene) in a raster
scan format, synchronised to a pixel clock (clk). Also synchronised to the
pixel clock are single bit frame (fs) and line sync (ls) inputs for the image data,
and a quad-speed clock (clk4). A reset input bit is also used (reset).

Binary edge data (edge) is output in a raster scan format, together with a
single bit frame sync output (edge_fs) which is set for the last pixel edge data
in a frame. The edge data can be read out in short bursts (one line maximum)
at a higher rate than the pixel clock. An output status bit (fifo_empty) is
cleared when edge data is available for output.

Information is written to and read from the filter via a bi-directional 16-bit
databus (data_io), using a 3-bit address input (address) to access internal
registers and a read/write input bit (wr_nrd) to control dataflow direction. An

151

input interface enable bit (enable) and an output acknowledge bit (ack) are
used to synchronise input and output of data. A separate clock (ifclk) is
required by the interface.

5.4 Filter Partitioning.

Filter Core
|
RAM Write Mult-Mask Threshold Interface
NS Mask WE Mask Line Store
RAM

Figure 5-2. Edge Filter Decomposition.

The filter is partitioned into a mask block, a threshold and an interface block
as shown in Figure 5.2. The partitioning of the filter is based on functional
decomposition. This style of decomposition is the most commonly used in
VLSI design and was chosen to illustrate how the proposed semantic
improvements can be beneficial when used in typical VHDL based designs.
Alternatively, a completely object oriented design decomposition could be
used; however, we do not believe that this would be a pragmatic approach to
a Register Transfer Level style of design.

5.4.1 Mult-Mask.

This block implements the two 3X3 pixel mask filters and two Line Store
FIFO's. The block contains two instances of a mask model (NS Mask, WE
Mask) and two instances of a generic FIFO model (Line Store). The FIFO's

152

are required to store the pixel intensity data from previous image lines for the
top and middle rows of the mask filters.

Mult Mask also contains a small state machine which uses the frame and line
sync inputs to synchronise the Edge Filter to the start of a new frame after
reset, and to generate new frame and result blanking signals for the output
data. Result blanking sets the mask result data to a default value over areas of
the image where not all the mask data is valid, e.g. the first two lines of an
image where the top and middle rows of the mask do not contain current

image data.

5.4.1.1 Mask blocks (wemask, nsmask).

top_in(7:0)
middle in(7:0

bottom in(7:0) MASK \mask_out(15:0)

reset
clk
clk3

Figure 5-3. Mult-Mask Top Level.

The Mask block inputs 8-bit intensity data from the external data input and
from both Line Store FIFO's and it shifts each data input through a register
bank representing the three rows and three columns of the mask. On each
shift, the mask will multiply each mask location by the appropriate coefficient
and sum the results.

153

5.4.1.2 Ling Store.

wr data(7:0)
reset LINESTORE rd data(7:0)
Is clk

Figure 5-4. Line-Store Top Level.

Each Line Store is a FIFO based on a RAM with eight-bit words for the
intensity data and six bit addresses representing the maximum image length

allowable.

5.4.2 Threshold Multiplexor.

threshold(14:0)

data sel(1:0)

ns result(14:0) average(14:0)

geiresult(M:O) Thre_shold r .
rceiiet Multiplexor t frame_sync
new_frame

Figure 5-5. Threshold Multiplexor Top Level.

This block converts the 15 bit unsigned edge strength data, from the two
mask filters, into a single binary output bit. Both mask results are compared
to a threshold value to convert them into binary. The specific binary data to
be output is determined by the 2-bit data_sel input according to the following
table:

154

data_sel Output comment

01 NS NS (row) edges

10 WE WE (column) edges
11 NS OR WE row and column edges
00 NS AND WE "diagonal” edges

Table 5-1. Threshold Decoding Table Top Level.

This block also contains an “averager” function, which calculates a running
average of the 15-bit edge strength data from the masks. The averager uses
data_sel to determine which mask output to average, i.e. if only one of the
mask outputs is selected, the averager only uses that output. If both masks are
selected, the largest edge strength is used. In all cases, zero edge strengths are
ignored to avoid skewing the average result. In a real application, average

information would be important in deciding a suitable value for the threshold.
The threshold and data select values are written into the filter via a

microprocessor interface. The running average value is read out via the
microprocessor interface.

155

5.4.3 Interface.

average(14:0) enable
] wr nrd
data sel(1:0) Interface data io(15:0)

address(2:0
ack

reset
ifclk

Figure 5-6. Interface Top Level.

The interface handles read and write cycles initiated by the asynchronous
microprocessor interface bus. There are two write and one read cycle

operations as follows:

cycle Data address Databus bits
write Threshold 010 Oto 14

Data select | 001 Otol
read Average 100 0to 14

Table 5-2. Detail of Write and Read Operations.

All input/output data communication is with the threshold multiplexor block.
Interface must detect read or write cycle initiation on the microprocessor

interface and input or output data as required using the acknowledge output.

544 RAM.

156

address(4:0) g(7:0)
data(7:0)

RAM

we
we C

Figure 5-7. RAM Top Level.

The RAM is a synchronous memory, with registered address lines. Two
separate data ports are used for reading from and writing to the RAM block.
The RAM block is used as part of the Line Store block for implementing a
line FIFO. Two RAM blocks are used in the Edge Filter design for the
storing the top and middle lines.

5.4.5 RAM Write

reset WI pUISe >
clk4

RAM Write

Figure 5-8. Ram Write Top Level.

The RAM-write block produces the write enabling signals for the FIFO
RAME.

157

5.4.6 Filter Core

SCEN NEW FRAM | EDGE
Ls NS RESUL) tHRESH MU EDGE F
FS 3 MULT mas WE_RESUL
RESE
CLK | AVERAG | DATA_SE THRESHOL
CLK4
HELT ADDRE
i \DDREg| | Ack
ENABL

WR PULS DATAI

- - WR NRJ| INTERFACE [¢ »
RESE | IFCLK
CLK4 RAM_WRITE —
“ERT RESE

Figure 5-9. Filtercore Top Level.

The Filter Core module connects all the sub-components of the Edge Filter

Design.

5.5 Supporting Class Structure

In order to create the edge filter design, a generic class structure was created
(see Appendix B.1). The initial classes were made as abstract as possible, to
allow the class structure to grow as new objects were created during the
building of the edge filter sub-blocks. Generic parameters and virtual classes

were used for this purpose.

158

5.5.1 Storage Element

fStorage Element \

Generic: Width
Value: Value_t

Read
Write(Value_in)

. /

The storage element class is the base element of the class structure. It was

decided to use the std_logic_vector type for the value instance variable. The
integer type would have been more suited for most arithmetic operations,
however using the Synopsys ‘std_logic_unsigned’ package

(www.synopsys.com) compensates for the limitations of VHDL'’s vector

arithmetic. A subtype value_t was created to simplify the sizing of the value
instance variable throughout the entire class tree. The Generic parameter depth
is used to set the dimension of value and provide a flexible data structure for
the class.

Two methods were created a read and write method both publicly accessible.
The read method only returns the content of the instance variable value. The
write method changes the content of the instance variable value. The default
mode of operation for both read and write was set to be asynchronous to allow
the definition of classes that feature both a synchronous and an asynchronous
behaviour later in the design stage.

159

5.5.2 Synchronous Storage Element

4 Sync SE

~

Global CLK

Write(Value_in)

The derived synchronous storage element class is a small variation of the
previous class. This time the write method has been overloaded to provide a
synchronous version. The inherited write method was mapped into a new
name: write_async, this will protect from ambiguities in the two styles of
operations. The global element clk was created to allow the visibility of a
common control signal throughout all the subsequently derived classes.
Although the use of a global element can be seen as a violation of the
encapsulation principle; pragmatically when modelling hardware modules,
synchronisation signals are often required and do not represent information
(part of the data flow) as such. For this reason, control and synchronisation

signals should be declared as global.

5.5.3 Shift Register

/

Shift Register

\

N

Shift(Value_in)

/

The virtual class shift register is one of the variations of the sync_se class. This
class only defines one virtual method shift. The method is said to be virtual

since its implementation will be defined in later classes. The shift register class

will be used in designs where late binding is required.

160

5.5.4 Shift Right Logic & Shift Left Logic

(" Shift Left Logic

Shift(Value_in)
-

%

(" Shift Right Logic

Shift(Value_in)
N

J

Both classes are derived from the virtual shift register class. The two classes
are defined since they both implement their own version of the virtual shift

method defined in their parent class.

5.5.5 Counter

[

Counter

~

Generic Terminal_Count

Count

)

The virtual counter class is derived from the synchronous storage element. This class

defines a virtual method count as well as a generic parameter terminal_count. The

generic will be used to set the top boundary for the counter.

5.5.6 Up Counter & Down Counter

Down

L Count

/

Up Counter

-

Count

The two classes up counter and down counter are derived from the virtual counter

class; Both classes implement variations of the virtual count method.

161

5.5.7 Up-Down Counter

/ Up Down Counter N

Up_Counter.Count => Count_Up
Down_Counter.Count => Count_Down

N /

The up down counter class is derived from both the up counter and down counter
classes. The method map construct was used to map the count method of both
parent classes into a count_up and count_down method. The remaining elements
of both classes are merged into unique elements inside the up down counter
class. No code is required for the creation of this class since all the required

functionality is already inherited from both parents.

5.5.8 Register Array

/ Register Array \

Generic: Depth

Value: Value t
Read(Address)
Write(Value_in)
Write_Async(Value_in)

Write(Address) /

The register array class is based on the synchronous element class; it defines a new

generic parameter: depth. In addition, the class redefines all the inherited
methods as well as the instance variable value. The value instance variable is
defined as an array of std _logic_vector of dimensions width*depth. The

write_async method will asynchronously write its formal parameter (value_in) to

162

all locations of the array. The writt method is overloaded and can
synchronously either fill the array with the value of its formal parameter or
write a single element by using the address formal parameter. The read method
performs a read at a defined location of the array. The register array class
should be used to model a synchronous RAM or a register bank.

Although this class redefines all of its inherited properties, it is still useful to
categorise it as a child of the synchronous storage element class since they

share common behaviours such as the synchronous and asynchronous write.

5.5.9 Queue

4 Queue N

Push(Value_in)
Read
_ J

The virtual queue class is derived from the register array class; it defines two
virtual methods: push and read. The two methods were identified as common
to most queues regardless of their implementations. The queue class will only
be used in designs to promote late binding and polymorphism.

5.5.10 First In First Out (FIFO)

" FIFO I

Push(Value_in)
Read

The fifo class is a child of the queue class. It defines the implementation of
both push and read methods. The push method will write sequentially the

163

formal parameter value_in to the value array. The read method will extract the
first value written to the value array and point to the next element in the
sequence.

Two instance variables is_full and is_empty have been declared. These two
public variables are used as flags to display the fifo’s current status. The user of
the FIFO class can directly interrogate (no method calls needed) the fifo status
by reading the values of those two flags.

The fifo uses an up_down_counter object to implement the address pointer. This
dependence is represented in the class structure diagram by a connection line
ended by a circle.

5.6 Edge Filter implementation

5.6.1 Mult Mask

Division of the sum of the mask coefficient and pixel intensity products by
the mask divisor is carried out in this model.

Two objects of the shift left logic class are used in the process data reg for
creating a latency of two clock cycles on the two signals Is_sync and fs_sync.

The two objects are defined with a generic set to 2 and a global connection to
the clk signal. The initialisation of the objects is done asynchronously on the
reset signal. The shift operation is done synchronously on the edge of the
signal clk. Two concurrent method calls (last two statements) continuously
update the value of the Is_sync and fs_sync signals.

5.6.2 Mask Blocks (NS mask, WE mask)

The masks must carry out nine multiplications and sum nine results within a
single clock period. In order to save on arithmetical resources, the calculation
is carried out over three clock periods using a quad-speed clock clk4, with a
specific phase relationship to the input data clock clk. The mask calculation is

164

carried out on three banks of three 8 bit registers. The register banks are
implemented as FIFO objects of size 3*8 bits namely: top, mid and bot.

The three FIFOS are gathered into an array (fifo_array) to facilitate global
operations. The process mask_shift resets the FIFOs asynchronously on the
reset signal. The reset operation is done globally by sending the write_async
request to the fifo_array. Furthermore, the mask shift process updates the
contents of the top, mid and hot FIFOs on an edge of the clk signal.

The content of the three FIFOs is read inside the calcomb process in order to
perform the required arithmetic operations. Although a normal FIFO would
only allow read access to its first element, in our case, the fifo class is derived
from the register array class which permits access to its elements by providing

an address.

5.6.3 Line Store

A dual port RAM is used for the FIFO. An output from the RAM Write
block is used as the RAM write-enable. Read and write pointers are set one line
length apart on reset, and increment on the positive and negative edges
respectively of the pixel clock, wrapping to zero at the end of the line. The
two counters (rd_ptr, wr_ptr) are implemented using instances of the up counter
class. The global clk signals are mapped to the signals Is_clk and not_Is_clk
respectively. This allows the counter to increment their value on the negative
and positive edges of the Is_clk signal. The two counters have been aggregated
into a counter array add_ptr to facilitate the execution of common operations.
The process ‘read_wite_pointer’ asynchronously resets the counters on the
reset signal and increments them on a change of the Is_clk signal. The internal
values of the two counters are then multiplexed into the int_ad (memory
address) signal depending on the value of the Is_clk signal.

5.6.4 Threshold Multiplexor
The threshold and multiplexor functions are straightforward. The averager
function is slightly more complicated, since three separate comparison

165

operations are required. Inequality comparators check NS and WE edge
strengths are not equal to zero, and a "less than" comparator checks if NS
edge strength is greater than WE. No objects were used in this block since the
functionality implemented is very specific and cannot benefit from the use of

predefined classes.

5.6.5 Interface

Interface uses a clock input (iftlk) to synchronise the read/write cycle
operations. Address, read/write enable, and the databus are registered on the
falling edge of enable. The registered data, plus enable, are then synchronised to
the clock using double registers to avoid meta-stability problems. The
interface clock is not assumed to be synchronous to the input data pixel
clock, so the average data input from the threshold multiplexor block is
double registered to the interface clock at the inputs. The interface block
defines three fifo objects for the address, data and average. In addition, two shift
register objects for the write and enable signals are declared. Both the fifo and shift
register objects are used to introduce a latency of two clock cycles into the data
path. The process sync_reg resets all the objects synchronously and updates
their value on a positive edge of the clk signal. A number of intermediate
signals (wnr, date2, addr2 and enable) have been declared to facilitate access to
objects’ content. Concurrent assignments are made to the intermediate signals
at the beginning of the architecture block; this allows access to part of the
signals (slices of an array) when needed by the rest of the design.

5.6.6 RAM Write
The RAM Write module relies on a Gray counter active on clk4. The wr_pulse
is created by combining two bits of the counter’s output. This

implementation did not require the use of any objects.

166

5.6.7 RAM

The RAM block uses a clocked process to synchronise the reading and
writing to the signal clk The Register Array object is used to implement the
RAM. Additional statements are used to enable the writing operations using

the we signal.

5.7 Comparative Study

This study compares the implementation of the same edge filter design using
both, the proposed object-oriented extension and standard RTL VHDL. This
analysis highlights the differences in terms of number of lines of code per
process as well as an estimate of the amount of code reuse in the object-
oriented version of the design. Both design files can be found in Appendix B.
From a first look at the comparative table, it can be seen that some modules
benefit more than others from the use of the proposed semantics extension.
Modules with a small number of statements such as: Filter Core, RAM Write
and RAM do not show improvements in terms of number of lines.
Depending on their application specificity, those modules are either almost
completely created from reusable code (RAM) or not at all. This result is to be
expected of any higher-level design method. Similar results can be observed
when comparing the building of low level gate primitives such as a
multiplexor at both the transistor level and the gate level. Remarkably,
although it would require more silicon to construct a multiplexor using a
higher level modelling method @QUT = I N1 AND NOTI SELECT OR
| N2 AND SELECT), with the proposed object-oriented models, no
additional implementation effort (aside from the building of the original class
structure) is required.

Modules of a larger size have a more varied level of code reuse. The Line Store
module has the highest level of reuse amongst large size modules. This level
of reuse is due to efficient use of object instances, polymorphism and a low
level of application specific code. In this example the number of sequential

167

statements is lowered by 60 percent. However, the number of concurrent
statements has slightly increased in order to implement the polymorphism
(array of counters).

In contrast, the level of reuse in the Mult Mask module is limited. This is the
result of the high level of specificity of that module.

Similarly, the Threshold module is specific to the Edge Filter design and cannot
benefit from the use of generic objects.

The remaining modules: Interface, WE Mask and NS Mask use an estimated 30
percent of reused code. This is an expected level of reuse for less application-
specific modules. When the object oriented extensions to the semantics are
used, a 30 to 50 percent code reduction is observed at the process level.
However, the number of concurrent statements is constantly higher when
using the new semantics. This increase in the number of concurrent
statements is due to the use of temporary signals to access objects’ instance
variables. This can be easily avoided by changing the encapsulation control of
instance variables from restricted to public. Although the change of
encapsulation level would represent the simplest solution to instance variable
access, this would go against the principle of data hiding.

Looking at the overall design, the size of the version using the proposed
semantic enhancements has been reduced by 11 percent. Although this
represents a small improvement in terms of numbers of lines of code, 22
percent of the code needed for the creation of the object-oriented version of
the design is made of reusable components. This suggests a faster design
capture and a higher level of reliability.

168

Module Standard VHDL OO Extension
Sync_ram 10 10
Concurrent

Readwrite pointer

Concurrent

Calcseq

Calcomb 22 22
Maskshift 27 13
Concurrent

Calcseq

Calcomb 14 14
Maskshift 27 13
Concurrent

ns_complete

we_complete 15 15
state_reg 11 11
state_assign 58 58
data_reg 25 21
Concurrent

Averager
Cont_regs 16 16
Thresh_reg 23 23

169

Reuse (%)

Concurent 3 3

gray_code 9 9

Concurrent 1 1

Async 13 13
if_wr 26 26
Sync_reg 29 19
Store_reg 11 11
Concurrent 4 9

Concurrent 4 4

Table 5-3. Case Study Comparative Table.

5.8 Conclusions

This design study compared two functionally identical implementations of a
moderately complex design using both the standard VHDL RTL style and
our proposed object-oriented semantic extensions. This design represented a
real example and contained a balanced amount of control logic and data path
logic.

From the functional decomposition, basic building blocks were identified. A
class structure was created to support the requirements of the Edge Filter
design. The design of the class structure was a top-down and bottom up
process. Numerous virtual classes were created to facilitate inheritance and
promote the use of polymorphism and late binding. The depth of the class
tree was voluntarily kept to a maximum of 4, so as to ease the use of the
classes. After the creation of the design, a comparative study was carried out
to highlight the strengths and weaknesses of the proposed extension. The
study has shown that the benefits of using an object oriented implementation

170

depends greatly on the level of specificity of a given module. For the example
chosen, a 30 to 50 percent code reduction was achieved at the process level.
In addition, the amount of reused code reached 22 percent on the overall
design. Consequently, this study demonstrated the benefits of the enhanced
semantics in terms of faster design capture, better reliability and reduced

verification effort.

The calculation of the given reuse figure was derived from the count of the
number of both sequential and concurrent statements inside the standard
VHDL description as well as the Object-oriented description. This study did
not consider the creation of the test harness. Nevertheless, due to the
behavioural nature of a VHDL simulation test harness, similar or further
levels of reuse are expected. The creation of classes of pattern generators such
as preset, random, sequential or file-based could be envisaged. Furthermore
existing objects created for the edge filter design may also be used in the
creation of a complex test harness.

171

Chapter 6.

PREPROCESSOR DESIGN

6.1 Introduction

A number of small test cases were developed during elaboration of the
Object-oriented VHDL semantics. These test cases were validated by
manually translating Object-oriented VHDL code into standard VHDL then
simulating the results using generic VHDL simulators. Although this
translation process was sufficient for validating individual test cases, it soon
became apparent that the creation of an automated translation mechanism or
“pre-processor” was required for larger projects. The development of the pre-
processor is described in this appendix. The semantics for the proposed
extension presented in this appendix use an earlier style used during the
refinement process of the final language extension. However, the translation
mechanism presented can equally be applied the latest version of the language

extension.

6.2 Requirements

Since VHDL is a platform and tool independent language, the manual
translation of Object-oriented VHDL to standard VHDL produced code
suitable for any standard VHDL simulator. However, the choice of operating
system and development language used for the pre-processor limited its
portability. Since IBM sponsored this research project, there was a
requirement for the pre-processor to be executable on RS6000 workstations,
using the AIX (UNIX like) operating system. Nevertheless, since the
accessibility of RS6000 workstation is scarce in the engineering world, the
pre-processor also had to be developed on SUN and Hewlett Packard
workstations. A PC (LINUX) based version of the pre-processor was also
created at a later stage. The UNIX based development tools were: GNU C,

172

(flex , (b)yacc and sed. Lex and Yacc were used for the creation of the
scanner and parser part of the pre-processor. GNU C was used for the
creation of the object-oriented to standard VHDL translator. Sed was used

for text file processing and formatting.
6.3 System Design

The functions required by the pre-processor can be split into three categories:

1. Creation of the abstract syntax tree (treebuild.lex, treebuild.yacc,
treebuild.c).

2. Extraction/Creation of supporting design units (file_handling.c).

3. Formatting of the original code into standard VHDL code (process.c,

top.c).

The activities are summarised in Figure 6-1.

Object-Oriented VHDL File

Sa

— T

- Duplicate Design
Create Design Units & Generate
Parse Uglts Output Files
1 3
Abstract Translated

Syntax Tree Design Units Q.

Standard VHDL Result Files

Figure 6-1. Operation of Pre-Processor

173

6.4 Specification of the Translation Mechanism

The main issue in the design of the pre-processor was the creation of human
readable standard VHDL code. The results found from the language study
(detailed in chapter 2) were used and expanded for the creation of the

translator part of the pre-processor.

In order to implement classes, VHDL packages were used. Methods were
translated into procedures whose visibility depended on their encapsulation
(public/private/restricted). Similarly, *“shared variables” were used to
implement the class’s instance variables. Figures 6-1 and 6-2 illustrate the

translation mechanism for a basic class.

class SHFT REGis
type vector is array (9 downto 0) of integer
val ue : vector;

begin
public method reset is
begin

value := (others => 0);

end met hod reset;
public method shift(signal clk: bit; value_in: integer);

public method read return vector is
begin
return val ue
end net hod read;
end class SH FT_REG

Figure 6-2. Class Declaration

174

package shift_reg is
type vector is array (9 downto 0) of integer
shared vari able value : vector;

procedure reset;
procedure read(return_1 : out vector);

end shift_reg;
package body shift_reg is

procedure reset is
begi n

value := (others => 0);
end reset;

procedure read(return_1 : out vector) is
begi n

return_1: = val ue
end read;

end shift_reg;

Figure 6-3. Translated Version of the Class Declaration.

The translation of a derived class requires information to be collected from
the parents’ classes (multiple inheritance). The translation is done according
to the encapsulation attribute of the inherited items, as well as the type of
inheritance specified. Furthermore, due to the mapping capabilities defined in
the extension, the translator has to perform a number of name changes and
merging (instance variables, methods, etc.) in the derived class. These changes
are done according to the mappings formally specified. Table 6-1 summarises
the translation process according to the encapsulation attribute and the type

of inheritance.

175

nheritance Type
capsulation Type Public Private Restricted
blic PH/PB PB PB
\vate PB PB PB
stricted PB PB PB

Table 6-1. Translation Process According to Inherited Attributes

PH: Signifies the declaration of the translated element in the Package Header.

PB: Signifies the declaration of the translated element in the Package Body.

In the proposed extension, the inherited code from parent classes does not
physically appear in a child class. However, when the translation of a child
class is performed, all the code required for the creation of the corresponding
standard VHDL package is required. This explains why, elements of private
and restricted encapsulation type have to be copied to the package bodies

after an inheritance takes place. The translation of a derived class is shown in

class ShiftR ghtReg use public shift_reg is
begin
public nethod shift(signal clk: bit; value_in: integer) is
begin

if clk'event and clk="1" then

value := value_in & val ue(9 downto 1);

end if;
end net hod shift;
end cl ass ShiftR ght Reg;

Figures 6-4 6-5.

Figure 6-4. Child Class of the ‘shift_reg’ Class.
The VHDL language reference manual (DASC 1993) specifies that a package

is shared across the design units that declare it. Consequently, for a number of
objects N of a given class declared inside a design, there should be N

176

different instances of the same package defined. The translator gathers the
number of objects of the same class from the abstract syntax tree. As a result,

separate copies of the original package are created, each with a unique name.

package shiftrightreg is
type vector is array (9 downto 0) of integer
shared variable value : vector;
procedure shift(signal clk: bit ; value_in: integer);
procedure reset;
procedure read(return_2 : out vector);
end shiftrightreg

package body shiftrightreg is

procedure shift(signal clk: bit ; value_in: integer) is
begi n

if clk'event and clk="1" then

value := value_in & val ue(9 downto 1);

end if;
end shift;
procedure reset is
begi n

value := (others => 0);
end reset;

procedure read(return_2 : out vector) is
begi n
return_2: = val ue
end read;
end shiftrightreg

Figure 6-5. Translated Version of a Child Class.

The last step of the translation consists in converting object-oriented method
calls to standard VHDL procedure calls. Once the translation is performed,

the remaining standard VHDL code is appended to the translated code.

An example of object use is shown in Figure 6-6.

177

process
variable tenp: integer := 33;
begin
shift_regl.reset;
shift_reg2.reset;
shift_reg3.reset;
counterl.reset;
wait for 30 ns;
for i in 0 to 3 |loop
wait until clk="1";
shift_regl.shift(clk, 10);
count erl1. count;
end | oop;
-- tenp := shift_regl.read;
shift_reg2.shift(clk, tenp);
shift_reg3. ShiftR ght (clk, tenp);
wait until clk ="'1";
shift_reg3. ShiftLeft(clk, tenp);
wait for 20 ns;
end process;

Figure 6-6. Object-Oriented Method Calls.

process
variable tenp: integer := 33;
begin
wor k. shift_regl.reset;
wor k. shift_reg2.reset;
wor k. shift_reg3.reset;
wor k. count er 1. reset ;
wait for 30 ns;
for i in 0 to 3 |loop
wait until clk="1";
wor k. shift_regl.shift(clk, 10);
wor k. count er 1. count ;
end | oop;
-- work.shift_regl.read(tenp);
wor k. shift_reg2.shift(clk, tenp);
wor k. shift_reg3.shiftright(clk, tenp);
wait until clk ="'1";
wor k. shift_reg3.shiftleft(clk, tenp);
wait for 20 ns;
end process;

Figure 6-7. Translation for Method Calls.

178

6.5 Full Application Example

This example features all of the mechanisms presented in this section. A base
class ‘shift_reg’ is declared with two defined methods: ‘reset’ and ‘read’ and a
virtual method ‘shift’. Two classes are directly derived from the virtual class
‘shift_reg’, namely: ‘ShiftRightReg’ and ‘ShiftLeftReg’. These two child classes
define the virtual method ‘shift’ inherited for the ‘shift_reg’ class. Two
additional child classes are defined: ‘Counter’ and ‘BidirShiftReg’ using single
and multiple inheritance respectively. In addition to multiple inheritance, the

‘BidirShiftReg’ class illustrates the feature-mapping mechanism.

In this example, four different objects are declared. The declared objects are

then used in a process to illustrate different method call styles.

The following code shows both the original Object-Oriented code and the

translated version.

The Original Object-Oriented Code is shown in figure 6-8.

179

entity ny_design is
end ny_desi gn;

architecture OO of ny_design is
class SHFT REGis

type vector is array (9 downto 0) of integer;
val ue : vector;

begi n
public nmethod reset is
begin

value := (others => 0);

end net hod reset;
public method shift(signal clk: bit; value_in: integer);

public method read return vector is
begi n

return val ue;
end net hod read;

end cl ass SH FT_REG

class ShiftRi ghtReg use public shift_reg is
begin

public method shift(signal clk: bit; value_in: integer) is
begi n
if clk' event and cl k="1" then
value := value_in & value(9 downto 1);
end if;
end nethod shift;

end class ShiftR ght Reg;

class ShiftLeftReg use public shift_reg is
begin

public method shift(signal clk: bit; value_in: integer) is
begi n
if clk' event and cl k="1" then
value := value(8 downto 0) & value_in;
end if;
end nethod shift;

end class ShiftLeftReg;

180

cl ass counter use public shiftrightreg is

begi n
public method count is
begi n
for i in O to 7 |oop
value(i) := value(i) + 1;
end | oop;

end net hod count;
end class counter;
class BidirshiftReg use public ShiftR ghtReg, public ShiftLeftReg
is

generic (delay: tine := 3 ns);

met hod map (Shift of ShiftR ght Reg => ShiftRight;

Shift of ShiftLeftReg => ShiftlLeft);

begi n

-- no delta coding required
end class BidirShiftReg;

-- (bjects declaration wusing CLASS types and generic naps.

obj ect shift_regl : ShiftRi ghtReg;
object shift_reg2 : ShiftlLeftReg;
obj ect shift_reg3 : BidirShiftReg;
obj ect counterl : counter;

clk <= not clk after 10 ns;

181

process
vari abl e tenp: integer := 33;
begi n
shift_regl.reset;
shift_reg2.reset;
shift_reg3.reset;
counterl.reset;
wait for 30 ns;
for i in 0to 3 |oop
wait until clk="1";
shift_regl.shift(clk, 10);
counterl. count;
end | oop;

-- temp := shift_regl.read;
shift_reg2.shift(clk, tenp);
shift_reg3. ShiftR ght (clk, tenp);
wait until clk ="'1";
shift_reg3. ShiftLeft(clk, temp);
wait for 20 ns;

end process;

end OO

Figure 6-8. Object-Oriented Version of the Example.

The translated version of the ShiftRightReg is shown in figure 6-9.

182

package shift_regl is

type vector is array (9 downto 0) of integer
shared variable value : vector

procedure shift(signal clk: bit ; value_in: integer);
procedure reset;
procedure read(return_2 : out vector);

end shift_regl

package body shift_regl is

procedure shift(signal clk: bit ; value_in: integer) is
begi n

if clk' event and cl k="1" then

value := value_in & value(9 downto 1);

end if;
end shift;
procedure reset is
begi n

value := (others => 0);
end reset;

procedure read(return_2 : out vector) is
begi n
return_2: = val ue;
end read;
end shift_regl

Figure 6-9. Translated Version of the ShiftRightReg.

The translated version of the ShifLLefReg is shown in Figure 6-10.

183

package shift_reg2 is

type vector is array (9 downto 0) of integer
shared variable value : vector

procedure shift(signal clk: bit ; value_in: integer);
procedure reset;
procedure read(return_3 : out vector);

end shift_reg2;

package body shift_reg2 is

procedure shift(signal clk: bit ; value_in: integer) is
begi n

if clk' event and clk="1" then

value := value(8 downto 0) & value_in;

end if;
end shift;
procedure reset is
begi n

value := (others => 0);
end reset;

procedure read(return_3 : out vector) is
begi n

return_3: = val ue;
end read;

end shift_reg2;

Figure 6-10. Translated Version of the ShiftLeftReg.

The translated version of the BidirShiftReg is shown in figure 6-11.

184

package shift_reg3 is

type vector is array (9 downto 0) of integer
constant delay : tine ;
shared variable value : vector

procedure shiftright(signal clk: bit
procedure reset;

procedure read(return_5 : out vector);

procedure shiftleft(signal clk: bit ; value_in: integer);

; value_in: integer);

end shift_reg3

package body shift_reg3 is

constant delay : tine := 3 ns;
procedure shiftright(signal clk: bit ; value_in: integer
is
begi n
if clk'event and cl k="1" then
value := value_in & val ue(9 downto 1);
end if;

end shiftright;

procedure reset is
begi n

value := (others => 0);
end reset;

procedure read(return_5 : out vector) is

begi n

return_5: = val ue;
end read;
procedure shiftleft(signal clk: bit ; value_in: integer)
begi n

if clk'event and cl k="1" then

value := value(8 downto 0) & value_in;
end if;

end shiftleft;

end shift_reg3

)

is

Figure 6-11. Translated Version of the BidirShiftReg.

The translated version of the Counter is given in figure 6-12.

185

package counterl is

type vector is array (9 downto 0) of integer
shared variable value : vector

procedure count;
procedure shift(signal clk: bit ; value_in: integer);
procedure reset;
procedure read(return_4 : out vector);
end counterl

package body counterl is

procedure count is

begi n

for i in O to 7 |oop

value(i) := value(i) + 1;

end | oop;
end count;
procedure shift(signal clk: bit ; value_in: integer) is
begi n

if clk' event and clk="1" then

value := value_in & val ue(9 downto 1);

end if;
end shift;
procedure reset is
begi n

value := (others => 0);
end reset;

procedure read(return_4 : out vector) is
begi n

return_4: = val ue;
end read,;

end counterl

Figure 6-12. Translated Version of the Counter.

186

6.6 Conclusions

A demonstration pre-processor that runs on SUN, HP, RS6000 and LINUX
workstations has been developed. This enables larger Object-Oriented
VHDL descriptions to be validated in an automated way. The Object-
Oriented constructs supported by the pre-processor, are limited to the
capabilities of the Standard VHDL language. As a result, the pre-processor

does not support polymorphism.

Further work should concentrate on creating a full compiler and simulator to

enable the demonstration of all proposed enhancements

187

Chapter 7

OVERALL CONCLUSIONS AND RECOMMENDATION FOR
FURTHER WORK
The aim of this research project was to demonstrate the benefits of applying
Object-Orientation to HDL based design and to propose a new hardware
description language semantics based on inheritance, encapsulation and late
binding. To validate this methodology a pre-processor was created and

applications were developed.

A study of design techniques used for the creation of large hardware devices
was carried out. It revealed that although design methods evolved to cope
with the ever-growing level of complexity of silicon chips a design
methodology that focuses on aspects such as reusability and maintainability
had yet to be introduced to the hardware design world. The latest design-
capture methods use hardware description languages created from software
languages such as C or ADA. As a result, a number of approaches for tackling
reusability and maintainability in software programming languages were
identified and further researched. These included the use and extension of
composite data structures to create higher-level data abstraction. This
approach was selected as a base for the creation of a new Objet-Oriented

hardware description language semantics.

The existence and wide support for the VHDL hardware description
languages in the EDA industry lead us to consider this language for the

creation of an Object-Oriented hardware description language.

In order to limit the impact on existing designs and minimise the changes to
the VHDL semantics, the VHDL language and its use to achieve higher levels

of abstraction was studied.

188

Various means for achieving data abstraction with the VHDL language were
found. It was determined that the ‘component’, ‘block’ and ‘package’ syntactic
constructs can be suitable for implementing abstract data types when used in

specific ways.

The VHDL ‘component’, although considered as the most obvious
mechanism for promoting object abstraction, was also proven to be the least
well suited due to its encapsulation limits. Using ‘block’ statements for
building of ADTSs is particularly suitable for architecture level reuse, however,
our study highlighted that blocks have a very limited accessibility scope since
they are not classified as VHDL design units. This led us to consider other
available syntactic constructs such as the VHDL ‘package’. The package
proved to outperform the other solutions when comparing the building of
abstract components. We demonstrated that the use of packages allowed
loose data-function binding. In addition, unlike components, packages
provided a way to reach higher levels of abstraction through the separation of
declarations in both the package header and the package body. We concluded
that when used as abstract data types, packages represented the only
substantial option for implementing an Object-Oriented-like hardware
description as part of an overall object-based design methodology.
Nevertheless the use of packages when considering inheritance has proven
unsuccessful. Implementing Object-Orientation concepts such as
encapsulation and inheritance with packages could only be achieved at the
expense of code clarity. This meant compromising the concept of

maintainability to the benefit of reusability.

It was demonstrated that forms of 'binding' could only be achieved in
standard VHDL through the use of the configuration mechanism. As a
language requirement, all VHDL design units have to be elaborated before
any simulation run. Consequently, it was found that configuration only
represented a static version of polymorphism and could not serve the full

189

purpose of a true Object-Oriented abstract data type. After study and
comparison of available standard VHDL constructs, it was decided that new
abstract data typing abilities were required to be added to the VHDL language
to provide full Object-Orientation support.

From the study of the VHDL language and the requirement list set by the
IEEE OOVHDL Study Group, we derived an extension to the language.

A new-referenced type ‘class’, was created to implement flexible abstract data
typing. It differed from the basic VHDL types in the sense that, an object
declared of a referenced type did not represent a value of type but a reference
to an object containing a value. Operations on this object were defined as part
of the properties of the referenced type. The class semantics were deliberately
made similar to those for a package. However, from the conclusions drawn in
chapter 2 it was decided not to make the class a design unit but rather a
composite type. The proposed ADT supported genericity, feature mapping,
virtual definition, three encapsulation levels and contract based
communications support. Message passing was implemented though method
calls. Methods were designed to resemble VHDL subprograms and hence
supported sequential statements as well as blocking and non-blocking calls.
This last feature proved to be particularly useful for modelling object activities
for both the sequential and the concurrent mode. Furthermore, an extra set of

attributes was added to the language to provide for better documentation.

Late binding support on the newly created ADT was added to the language,
backed up by a selective multiple inheritance mechanism. Selective multiple
inheritance was chosen to enable better control over encapsulation of derived

features.

The new semantic for our proposed extension was evaluated by comparing it
to other existing proposals. A set of benchmarks derived from the design
objectives was used to that effect. Our study showed that our semantic

190

presented a clearer and more versatile implementation of Object-Orientation.
Inheritance was restricted to single in the VISTA, Oldenburg, SUAVE, and
Objective VHDL proposals and did not offer mapping capabilities.
Encapsulation was only of public or private mode in the other competing
proposals, hence demonstrating a weaker support for derivation operations.
No contract based communication mechanisms were implemented outside

our proposed extension,

In order to highlight the benefits of our proposed extension when compared
the standard VHDL code, we implemented a complex case study. The chosen
design was implemented using both VHDL and the proposed extension to
the language. This study demonstrated an average of 22 % gain in

productivity achieved with our proposal through design reuse.

A demonstration pre-processor that ran on SUN, RS6000, HP and Linux
environments was created to validate the semantics and test their
performance. This enabled our Object-Oriented description to be tested via
conventional VHDL simulators. The generated code used shared variables
and packages (ADT form) as core syntactic constructs. Consequently, the
resulting VHDL code could not be synthesised. This however did not
diminish the level of achievement since the main objective of this research
was to demonstrate the benefits of an Object-Oriented hardware description
language for addressing design maintainability and reusability issues. Late
binding could not be implemented due to the existing VHDL simulator

limitations.

A number of recommendations for future enhancements have been made.
Key recommendations include the development of classes of components
inspired from the Library Parameterisable Modules standard, to promote
design reuse. An Object-Oriented VHDL to C or C++ pre-processor would
have to be created to allow a more seamless integration of the proposed

extension with commercial simulators and the implementation of full

191

polymorphism. Mechanisms such as the PLI (Programming Language
Interface) or the foreign code interface would provide the required platform

for such integration.

The emerging Dynamically Re-configurable Field Programmable Gate Array
devices represent another area of applications. Due the nature of dynamically
re-configurable FPGA, a hardware programming language providing dynamic
allocation of hardware components (referred as objects) represents the ideal
design approach. As a result further research is required on the creation of
synthesis algorithms that will exploit scheduling and automatic resources

sharing on dynamic hardware logic blocks.

Results from this research have been published at five international
conference proceedings and presented to the IEEE OOVHDL study group.
Furthermore, the research community has acknowledged this work though
numerous references to our publications. As a longer-term goal, the
recognition of the proposed extension by the IEEE Design Automation
Standardisation Committee would represent the acceptance by the hardware
design world of an alternative and better-suited design methodology to cope
with large sub-micron VLSI chip designs. This thesis document is already
being examined by the Cadence EDA research group and will be submitted
to the IEEE DASC for review.

192

REFERENCES

Armstrong, R. M. (1994). “Uses and abuses of inheritance.”, Software
Engineering(January 1994), pp 19-26.

Ashenden P., Wilsey P., (1997). “SUAVE: Painless Extension for an Object-
Oriented VHDL.”, VIUF Fall 97 Conference, pp 60-67.

Ashenden P., Wilsey P., (1998). “SUAVE: Extending VHDL to Improve
Data Modelling Support.”, IEEE Design and Test of Computers 1998 ,
Vol.15, no 2, pp 34-44.

Ashenden P., Wilsey P., (1998.2). “SUAVE: Object-Oriented and Genericity
Extensions to VHDL for High-Level Modeling” pp 34-41.

Atkinson, C. (1990). “DRAGOON: An Object-Oriented Notations
supporting the reuse and distribution of ADA software.” ADA Letters X(9):
50-59.

Bakowski, J. C. (1992). “System performance modelling with the functional
scheme on VHDL.”, Microprocessing, Microprogramming Conference 1992,
pp 23-36.

Barbacci (1981). “Syntax and semantics of CHDLs.”, IFIP Computer
hardware description languages and their applications, pp 243-257.

Berger, W. N, et al. (1995). “Requirements and design objectives for an
Object-Oriented extension of VHDL.”, IEEE Object-Oriented VHDL Study
Group (http://vhdl.org).

Booch, G. (1991). “Object-Oriented design with applications.”, Benjamin/
Cummings.

Cabanis D., Medhat S. (1995). “Object-Orientation Applied to VHDL
Descriptions.”, VIUF Spring 95 Conference pp. 3.9-3.15.

Cabanis D., Medhat S. (1996). “Object-Orientated Extensions to VHDL.: The
Classification Orientation.”, SIG-VHDL Spring 96, pp 9-19.

Cabanis D., Medhat S. (1996). “Classification-Orientation for VHDL: A
Specification.”, VIUF Spring 96 Conference pp.265-274.

Cabanis D., Medhat S. (1996). “Perspectives of Object-Oriented Technology
Applied to Hardware Description Language Based Designs.”, Proceedings of
3" International Conference on Concurrent Engineering and Electronic
Design Automation, Poole, UK Jan 18-19 1996, pp. 448-453.

193

Cabanis D. (1997) “Proposed Object-Oriented Extensions to VHDL.”
Report Version 1.0, Bournemouth University available by email at
dcabanis@cadence.com.

Cabanis D., Medhat S. (1997) “From Structured to Object-Oriented Design
Methods” VIUF spring 1997, pp 5.11-5.22.

Cargill, T. (1991). “Controversy. The case against multiple inheritance in
, Computing System 4(1), pp 69-83.

Chu (1965). “An algol like computer design language.”, ACM 1965 pp 3.10-
3.25.

Chu, H. C. (1993). “An executable specification language for mixed timing
control circuits.”, CHDL and their applications, IFIP, pp 96-103.

Coad, E. Y. (1991). “Object-Oriented analysis”, 2nd Edition, Prentice Hall.
Coen-Porisini, A. M. (1991). "Specification and verification of hardware
systems using the temporal logic language TRIO.", CHDL and their
applications IFIP, pp 27-39.

Covnot, D. H., S. Swang (1994). "OOVHDL-AN Object-Oriented VHDL.",
VIUF'94, pp 126-135.

Cox, B. (1990). “Planning the software industrial revolution.”, IEEE
Software, pp 25-33.

Cyre (1989). "Towards synthesis from English descriptions.”, 26th
ACM/IEEE Design Automation Conference, pp 5.22-5.35.

Dahl, K. N. (1966). “Simula - an algol based simulation language.” ACM
9(9), pp 671-672.

DASC, 1. (1993). "IEEE Standard VHDL Language Reference Manual",
IEEE Std 1076-1993, IEEE Publications.

Dargupta (1981). "S*A: a language for describing computer architectures.",
5th International conference on CHDL, pp 151-159.

Douglas, D. (1994). "Object-Oriented extensions to VHDL.", VIUF'94 Fall,
pp 4.43-4.51.

Duley, D. D. (1968). “A digital system design language.”, IEEE transactions
on computer(September), pp 12.21-12.37.

194

Ecker, W. (1996). "An Object-Oriented view of structural VHDL
descriptions.”, VIUF'96 Spring, pp 178-190.

Eliens, A. (1994). "Object-Oriented Software Development.”, Addison-
Wesley.

Faura, J. M. e. a. (1997). "VHDL modelling of fast dynamic reconfiguration
on novel multi-context RAM based field programmable devices.", VIUF
Europe '97, Toledo, Spain, pp 34-46.

Glunz, W. (1998). "Integrating SDL VHDL for system hardware design.",
CHDL and their applications IFIP 1998, pp 7.41-7.56.

Goldberg, D. R. (1989). "Smalltalk-80: the language its implementation."
Reading, MA.

Gourgand, S. N. (1993). “Petri net based technology for task scheduling on
, Simulations(September), pp 67-80.

Harel (1987). "STATECHARTS: a virtual formalism for complex systems.",
Science of computer programming. North Holland pp 6.9-6.21.

Kartsu (1991). "UDL/1 standardisation effort another approach to HDL
standard.”, Euro ASIC'91, pp 173-182.

Keating, P. B. (1998). "Reuse Methodology Manual for System on a Chip
Design", KAP Publications.

Khoshafian (1989). "Concepts, Languages, Data Bases, User Interfaces.”,
New York, wiley.

Kumar, J. A, et al. (1993). “A framework for hardware/software co-design.”
IEEE Computer(December) pp 9.37-9.50.

Kurup, T. A, et al. (1998). "It's the methodology stupid.”, Bytek Designs, inc.

Lahitis, M. S., et al. (1991). "SADE: A graphical tool for VHDL based on
system analysis.", ICCAD'91, pp 59-70.

Lanffy, L. V. (1968). "General system theory, foundation, development,
applications.”, New York, G. Braziller Publishing.

Leung (1979). "ADL an architecture description language for packet

communication systems.”, 4th International Symposium on computer
hardware description languages, pp 4.93-4.104.

195

Lieber herr, S. K. (1981). "ZEUS: an hardware description language.”, 5th
international conference on CHDL, pp 3.59-3.71.

IEEE: Patern Recognition and Image Processing (1982). IEEE Publications
ISBN 9993772313

Mammen, W. T. (1994). "Object-Oriented macro-modelling of analogue
devices.", CEEDA'94, pp 342-354.

Meyer, B. (1992). "Eiffel: The language", Prentice, Hall.

Mills, M. (1993). "Programming Enhancements to the very high speed
integrated circuit hardware description language”, Wright Laboratory, can be
obtained at http://vhdl.org.

Morison, N. P. (1985). "The design rational ELLA, a hardware description
language.”, 7th international conference on CHDL, pp 4.45-4.57.

Muller, W. (1990). "ODICE: Object-Oriented hardware descriptions in CAD
environment.”, CHDL and their applications, IFIP, pp 2.12-2.26.

Nelson, G. M. (1992). “Concurrent Object-Oriented programming in classic
, ACM Letters XI1(5), pp 77-81.

Nixon, S. W. (1986). "A micro architecture description language for
retargetting firmware tools.”, 19th Annual workshop on programming pp
231-243.

Oczko, A. (1990). "Hardware design with VHDL at a very high level
abstraction.”, European conference on VHDL methods, pp 127-136.

OOVHDL Study Group, O. S. (1995). "Participation in the definition of
needs and requirements and analysis of existing proposals in the definition of
Object-Oriented extensions to VHDL", IEEE DASC can be obtained at
http://vhdl.org.

Pawlak, J. J. (1981). "MODLAND a language for multi-level description and
modelling of digital systems."”, 5th international conference on CHDL 1981,
pp 6.12-6.24.

Pawlak, A. (1987). "Modern Object-Oriented programming language as an
HDL." CHDLs and their applications, IFIP pp 4.45-4.57.

Perry, D. (1992). "Applying Object-Oriented techniques to VHDL.",
VIUF'92 Spring pp 191- 200.

196

Ramesh, C. (1994). "Object-Orienting VHDL for component modelling."
VIUF'94 Fall, pp 198-211.

Radetzki, M , Putzke W. (1997) "Objective VHDL Language Definition",
OFFIS Research Institute, Oldenburg, Germany, REQUEST Deliverable 2.1
A (http://eis.informatik.uni-oldenburg.de/research/objective_vhdl.shtml.

Radetzki M, Putzke W, Nebel W, Maginot S, Berge J-M, Targant (1997.2) A.
"VHDL Language Extensions to Support Abstraction and Reuse.”,
Proceedings of Workshop on Libraries, Component Modelling and Quality
Assurance , Toledo, Spain 1997 pp 17-30.

Rosenberg, J. (1994). Hardware acceleration using cache logic FPGAs. Silicon
Design Show. can be obtained at http://www.atmel.com.

Seidewitz, E. (1991). “Object-Oriented programming through type extension
in ADA (X)), ADA Letters XI(2) pp 86-97.

Shelor, C. (1994). “New philosophy aids shift from schematic-based to HDL-
Publication, pp 119-124.

Shumacher, W. N. (1995). "Inheritance concept for signals in Object-
Oriented Extensions to VHDL.", Euro-DAC'95, IEEE Computer Society
Press pp 2.12-2.23.

Shumacher, W. N., W. Putzke, M. Wilmes (1996). "Applying Object-Oriented
techniques to hardware modelling-A case study." VHDL-Forum for CAD in
Europe / Sig VHDL spring pp 211-223.

Smith, R. G. (1986). “Technology transfer between, VLSI design and
software engineering: CAD tools and design methodologies.” Proceedings of
the IEEE 74(6) pp 875-885.

Taft, S. T. (1993). "ADA 9X: From abstraction-oriented to object-oriented.",
OOPSLA"93, pp 64-75.

Takeuchi, A. (1981). "Object-Oriented description environment for computer
hardware." Computer hardware description languages and their applications,
IFIP, pp 3.21-3.35.

Vahid, S. N. (1991). "SpecChart: A language for system level synthesis.”,
CHDL and their applications, IFIP pp 6.42-6.54.

Vasilko, D. C. (1999). "A technique for modelling dynamic reconfiguration
with improved simulation accuracy.” IEICE Transactions, pp 77-90.

197

Vista OOVHDL Language reference (1994.2), IEEE RASSP Technical
report, can be obtained at http://www.vhdl.org.

Vista (1994). "OOVHDL: Obiject-Oriented Extensions for VHDL", IEEE
DAC 1994 pp 33-41.

Waldo, J. (1991). “Controversy: The case for multiple inheritance in C++.”
Computing systems 4(2) pp 157-171.

Willis, J. (1994). "A proposal for minimally extend VHDL to achieve data
encapsulation, late binding and inheritance." VIUF Fall, pp 118-131.

Wirth, N. (1998). “Hardware Compilation Translating Programs into
Circuits.” IEEE Computer(June 1998), pp 25-31.

Xilinx (1997). "Xilinx XC6200 field programmable gate array, advanced
product informations version 18", can be obtained at
http://www.xilinx.com.

Zippelius, M. G. (1992). "An Object-Oriented extension of VHDL." VHDL
Forum Europe Spring, pp 212-224.

198

APPENDIX A: EDGE FILTER SUPPORTING CLASSES

Appendix A-1. Edge Filter Class Structure

pray
(mange p gsng

(s 1E]

and

peay
(e pgsng

SRy

qnd

[=PIV NI
[urange p RSy auIpg
(oI ange A Jonam
(EEaappy jpuay

LLAGCH ™ JEIME) s JUITHOR T SQITRO.Y T L]
dnTme) w= wmolyTaumoe)ydny

L

suney useg dny

A

oy

YR e
mdeq avRUERD

feLy 1msiday

od

runay dry

R

/_\ A
qng 7 gng H

Jno Ty

EEaitiiteny Ren tely)|

I

oy

Py
(- anjes s

—
(™ 20e A S

N0 RIS | IR0y

Iammog

qng

T WAy WS

qng

i) g Pus

qng

I S

CIE LTINS

ImEidyy g

qnd

I

(m=anu A BaT Ay

AT 1PGRD

A5 kg

and

{m™anpes oudsy SR
peay

PRI L U LR
A, IS0

R FECING

199

Appendix A-2. Class Structure Code

library | EEE;
use | EEE. STD LOd C 1164. al | ;
use | EEE. STD LOd C UNSI GNED. al | ;

package STD CLASS is

0);

SH

type STORAGE ELEMENT is cl ass
generic (DEPTH : integer := 1);
subtype VALUE T is std | ogic vector (DEPTH 1 downto

begin

nmet hod READ return VALUE T;

met hod WRI TE(VALUE IN : VALUE T);
end cl ass STORAGE_ELEMENT;

type SYNC SE is class use (public STORAGE ELEMENT)
interface (CLK : std_logic);
feature map (WRI TE => WRI TE_ASYNC) ;

begin
met hod WRI TE(VALUE IN : VALUE T);

end cl ass SYN SE;

type SH F_REA STER i s class use (public SYNC SE)
begin

net hod SH FT(VALUE IN : std logic);
end class SH FT_REQ STER

type SHFT_ RIGHT LOA Cis class use (public
FT_REGQ STER)
begin
net hod SH FT(VALUE IN : std_logic);
end class SH FT_R GHT_LOd C,

type SH FT_LEFT LOd Cis class use public SH FT_REdJ STER
begin

net hod SH FT(VALUE IN : std logic);
end class SH FT_LEFT LC4d C,

type COUNTER is class use (public SYNC SE)

generic (TERM NAL_COUNT : VALUE T := (others => "1"));
begin

net hod COUNT;
end cl ass COUNTER

type UP_COUNTER is class use (public COUNTER)
begin

net hod COUNT;
end class UP_COUNTER;

type DOM_COUNTER i s class use(public COUNTER)

begin
nmet hod COUNT;

200

end cl ass DOM COUNTER,

type UP_DOM COUNTER i s class use (public UP_COUNTER,
publ i c DOMN_COUNTER)
feature map (COUNT of UP_COUNTER => COUNT_UP,
COUNT of DOAN_COUNTER => COUNT_DOWN) ;
begin
end cl ass UP_DOM_COUNTER

type REA STER ARRAY is class use (PR VATE SYNC SE)
generic (WDTH : integer := 1);

begin
met hod WRI TE_ASYNC(VALUE I N: VALUE T);
net hod WRI TE(VALUE IN: VALUE T);
met hod WRI TE(ADDRESS: integer; VALUE IN VALUE T);
net hod READ(ADDRESS: integer) return VALUE T,

end cl ass REQ STER_ARRAY;

type QUEUE is class use (public REA STER ARRAY)
begin

met hod PUSH(VALUE IN : VALUE T);

net hod READ return VALUE T;
end cl ass;

type FIFO is class use (public QUEUE)
begin
met hod PUSH VALUE IN : VALUE T);
net hod READ return VALUE T;
end cl ass FI FQ

end package STD CLASS;

package body STD CLASS is

type STORAGE ELEMENT is cl ass
i nstance variable VALUE : VALUE T := (others => '0");
begin
met hod READ return VALUE T is
begi n
return VALUE;
end met hod READ

net hod WRITE(VALUE IN : VALUET) is
begi n
VALUE : = VALUE I N
end met hod WR TE;
end cl ass STORAGE ELMENT,;

type SYNC SE is cl ass
begin
net hod WRI TE(VALUE IN : VALUE T) is
begi n
if CLK event and CLK = "1' then
VALUE : = VALUE I N,

201

end if;
end cl ass SYN SE;

type SHFT_ RIGHT LOAd Cis class
begin
net hod SH FT(VALUE IN : std logic) is
begi n
this. WRI TE(VALUE_IN & VALUE(DEPTH 1 downto 1));
end net hod SH FT;
end class SH FT_RI GHT_LO4d G

type SH FT_LEFT LOGCis
begin
nmet hod SH FT(VALUE IN : std_logic) is
begi n
t hi s. WRl TE(VALUE(DEPTH-2 downto 0) & VALUE IN);
end met hod SH FT;
end class SH FT_LEFT LC4d C,

type UP_COUNTER is cl ass
begin
nmet hod COUNT is
begi n
i f VALUE = TERM NAL_COUNT t hen
this. WRI TE(to_std_| ogi c_vector (0,
VALUE | ength));
el se
this. WRI TE(std_| ogi c_vect or (unsi gned(VALUE) +
1));
) end if;
end met hod COUNT;
end cl ass UP_COUNTER,

type DOM _COUNTER i s cl ass
begin
nmet hod COUNT i s
begi n
if VALUE = 0 then
this. WRI TE(to_std_| ogi c_vect or (TERM NAL_COUNT,
VALUE | ength));
el se
this. WRI TE(std_| ogi c_vect or (unsi gned(VALUE) -
1));
end if;
end net hod COUNT;
end cl ass DOMNN COUNTER;

type REA STER ARRAY is cl ass
type REG ARRAY T is array (0 to DEPTH 1) of VALUE T;
i nstance variable VALUE : REG ARRAY T,
begin
method WRI TE ASYNC(VALUE IN: VALUET) is
begi n
for I in VALUE range | oop
VALUE(l) := VALUE IN

202

end | oop;
end et hod WRI TE_ASYNC,

nmethod WRI TE(VALUE IN : VALUE T) is
begi n
if CLK event and CLK = "1' then
for I in VALUE range | oop
VALUE(I) := VALUE_IN,
end | oop;
end if;
end net hod WRI TE;

met hod WRI TE(ADDRESS: integer; VALUE IN. VALUE T);
begi n
if CLK event and CLK = '1' then
VALUE(ADDRESS) : = VALUE IN
end if;
end net hod WR TE;

net hod READ(ADDRESS: integer) return VALUE T is
begi n

return VALUE(ADDRESS);
end met hod READ

end cl ass REQ STER _ARRAY,

type FIFO is class
public instance variable IS FULL: bool ean : = FALSE;
public instance variable IS EMPTY: bool ean : = TRUE
obj ect READ PO NTER UP_DOM COUNTER
generic map(TERM NAL_COUNT => DEPTH 1);
begin
met hod PUSH(VALUE IN: VALUE T) is
variabl e FIRST : BOOLEAN : = TRUE;
begi n
for I in DEPTH 1 downto O | oop
this -> WRITE(I, VALUE(I-1), CLK);:
end | oop;
this -> WRI TE(O, VALUE_IN, CLK);
if not FIRST then
i f READ PO NTER READ /= DEPTH 1 then
READ PO NTER. COUNT_UP;
IS FULL : = FALSE;
el se
IS FULL : = TRUE;
end if;
el se
FI RST : = FALSE;
IS FULL : = FALSE;
end if;
end met hod PUSH

net hod READ return VALUE T is

begi n
return VALUE(READ PO NTER READ) ;

203

i f READ PO NTER READ /= 0 then
READ PO NTER. COUNT _DOAN;
IS EMPTY : = FALSE;

el se
IS EMPTY : = TRUE;

end if;

end net hod READ;
end cl ass FI FQ

end package STD CLASS;

204

APPENDIX B: EDGE FILTER CODE
Appendix B-1. Mult Mask Code Using the Proposed Extension

-- Description: Dual mask, dual linestore controller

-- File nanme: nult_mask. vhd
-- Version : 1.0
-- Aut hor . Davi d Cabani s

LI BRARY f | owl ab;
USE fl ow ab. mask_t ypes. ALL;

LI BRARY | EEE;

USE | EEE. STD LOQ C 1164. ALL;
USE | EEE. std_logic_arith.all;
USE WORK. std_cl ass. ALL;

ENTITY mult_mask IS
PORT(scene IN slv8;
I's,fs IN STD_LOG C,
reset : IN STD_LOGE G
clk IN STD LOd C,
cl k4 IN STD_LOG C,
w_pulse : IN STD LOA C

new frame : QUT STD LCAE C
ns_ result : QUT slvl5;
we result : QUT slvls;
Is_ out : QUJT slv8);

END nmul t _nask;

ARCH TECTURE rtl OF mult _mask IS

-- mult mask states
constant sync fs : std logic vector(1ll downto 0):=
"000000000001";

constant sync |Is : std |logic_vector(1ll downto 0):=
"000000000010";

constant last_pxl : std_logic_vector(1ll dowto 0):=
"000000000100";

constant first _line : std_|ogic_vector(11 downto 0): =
"000000001000";

constant end _first : std_|logic_vector(11 downto 0): =
"000000010000";

205

constant sec_line : std logic vector(1ll downto 0)
"000000100000";

constant end line : std logic vector(1ll dowto 0)
"000001000000";

constant blank : std_|logic_vector(1ll downto 0):=
"000010000000";

constant valid : std_|logic_vector(1ll downto 0):=
"000100000000";

constant frame_sync : std_l ogic_vector (11 downto 0):

"001000000000";

constant start_| ast std_logi c_vector(11l downto 0):
"010000000000";

constant last_line : std_logic_vector(11 downto 0):=
"100000000000";

mult mask state vari abl es
si gnal
SI GNAL

current_state,
next _state :
next new frane,
scene_reg :image_dat a;

top_data, m ddl e _data:inage_dat a;
top_data_reg,
bl ankop, bl ankop_cap : BOOLEAN;
SIGNAL ns_nask_out, we_mask out:filt data;
SIGNAL ns_filt, we_filt:abs_filt;

SI GNAL
SI GNAL
Sl GNAL
SI GNAL
S| GNAL

std logic_vector(1ll dowto 0);
new frame_sync: STD LOd C,

m ddl e_dat a_r eg: i mage_dat a;

L SYNC, F SYNC. std logic vector(1l dowto 0);

object LS SH FT, FS SH FT :

SH FT_LEFT_LOG C

CLK) ;
COVPONENT nsnask
PORT(bottom.in :
mddle_in :
top_in
reset
cl k
cl k4
mask_out
END COVPONENT;
COVPONENT wenask
PORT(bottom.in :
mddle_in :
top_in
reset
cl k
cl k4
mask_out
END COVPONENT;
COVPONENT | i nestore
PORT (w _data
rd_data
reset
wr_pul se :
Is clk
cl k4

GENERI C MAP(DEPTH => 2)
| NTERFACE MAP (CLK =>

i mage_dat a;
i mage_dat a;

STD LOG G,
filt _data);

i mage_dat a;
i mage_dat a;
i mage_dat a;
STD LOAE G

ST
STD LG4 G
filt _data);

I N i mage_dat a;
i mage_dat a;

END COVPONENT
BEG N
m drow | i nestore
PORT MAP (w_data => scene_reg
rd data => nmiddl e data
reset => reset, w_pulse => w_pul se
Is clk => clk, clk4 => clkd);

toprow | i nestore
PORT MAP (w_data => mddl e_data reg
rd_data => top_data, reset => reset,
w _pul se => wr_pul se,
Is_clk => clk, clk4 => clk4);

nt hst h: nsmask
PORT MAP (bottom.in => scene_reg
mddle_in => mddl e_data_reg,
top_in => top_data reg,
reset => reset, clk => clk, clk4 =>
cl k4,
mask_out => ns_mask_out);
wst est : wenask
PORT MAP (bottom.in => scene_reg
mddle_in => mddl e_data_reg,
top_in => top_data reg,
reset => reset, clk => clk,
cl k4 => cl k4, mask_out => we_mask_out);

-- conpl ete mask operation by normalising absol ute nask
-- result

ns_conpl et e:
PROCESS (ns_nask_out, bl ankop_cap)
VARl ABLE ns filt : slvile;
BEG N
ns_filt := conv_std_|ogic_vector(ns_nmask out, 16);
IF ns_filt(15) = '1'" THEN
ns_ filt := unsigned(NOT(ns_filt)) + "1';
END | F;
ns filt :="00" & ns filt(1l5 downto 2);
| F bl ankop_cap THEN
ns result <= (OTHERS => '0");
ELSE
ns result <= ns filt(14 downto 0);
END | F;
END PROCESS ns_conpl et e;

we_conpl et e:
PROCESS (we_nask_out, bl ankop_cap)
VARl ABLE we filt : slvile;

BEG N
we_filt := conv_std_| ogi c_vector(we_nask out, 16);
IF we filt(15) = '1'" THEN
we filt := unsigned(NOT(we_filt)) + "'1';
END | F;

207

we_filt :="00" & we_filt(15 downto 2);
| F bl ankop_cap THEN
we result <= (OTHERS => '0');
ELSE
we_result <= we_filt(14 downto 0);
END I F;
END PROCESS we_conpl et e;

-- wite linestore o/p to external port for RAMtest read
-- access
Is_out <= conv_std_logic_vector(top_data, 8);

state_reg:
PROCESS(CLK, RESET)
BEG N

IF reset ='1" THEN
current_state <= sync_fs;
bl ankop_cap <= TRUE;

ELSIF cl k' event AND clk = "1" THEN
current_state <= next_state;
bl ankop_cap <= bl ankop;

END | F;

END PROCESS st ate_reg;

state_assign:
PROCESS (current_state, fs_sync, |s_sync)

BEG N
next _state <= current_state;
bl ankop<=t r ue; -- default is input is
bl anked
next _new frane <= '0'; -- default is not new frame

IF current_state = sync_fs THEN
IF fs_sync = '0" THEN
next_state <= sync_|s;
END | F;
ELSIF current_state = sync_|s THEN
IF Is_sync ='0" THEN
next _state <= last_pxl;
next new frame <= '1';
END | F;
ELSIF current_state = last_pxl THEN
IFIs sync ='1" THEN
next state <= first _line;
END | F;
ELSIF current _state = first _|ine THEN
IF Is_sync ='0" THEN
next state <= end first;
END | F;
ELSIF current_state = end first THEN
IF Is_sync ='1" THEN
next _state <= sec_line;
END | F;
ELSIF current_state = sec_line THEN
IF Is_sync ='0" THEN
next state <= end_li ne;

208

END | F;
ELSIF current_state = end_|line THEN
IFIs sync ='1' THEN
next state <= bl ank;
END | F;
ELSI F current_state = bl ank THEN
next state <= valid;
ELSIF current_state = valid THEN
bl ankop<=f al se;
IF (Is_sync ='0" AND fs_sync ="'0") THEN
next _state <= franme_sync;
ELSIF (Is_sync = '0") THEN
next _state <= end_li ne;
END | F;
ELSIF current_state = frame_sync THEN
IF(Is_sync ='1'" AND fs_sync = '1'") THEN
next state <= start | ast;
END | F;
ELSIF current_state = start_| ast THEN
next state <= last _line;
ELSIF current _state = last_|ine THEN
bl ankop<=f al se;
IF Is_sync ='0" THEN
next _state <= last_pxl;
next new frame <= '1';
END | F;
END if;
END PROCESS st at e_assi gn

data_reg:
PROCESS(cl k, reset)
BEG N
IF reset ='1'" THEN
scene_reg <= 0;
m ddl e data reg <= 0;
top_data reg <= 0;
LS SH FT. WRI TE_ASYNQ(" 11") ;
FS SH FT. WRI TE_ASYNC(" 11") ;
new frane <= '0';
new frane_sync <= '0";
ELSIF cl k' event AND clk = "'1'" THEN
scene_reg <= conv_i nteger (unsi gned(scene));
m ddl e_data _reg <= m ddl e_dat a;
top_data reg <= top_data;
LS SH FT. SH FT(LS);
FS_SHI FT. SH FT(FS);
new frane_sync <= next_new franeg;
new frane <= new frane_sync;
END | F;
END PROCESS dat a_reg;

L_SYNC <= LS _SHI FT. READ
F_SYNC <= FS_SH FT. READ
LS SYNC <= L_SYNC(1);
FS _SYNC <= F_SYNC(1);

209

END rtl;

210

Appendix B-2. NS & WE Mask Code Using the Proposed Extension

-- Description: custom sed nsnmask

-- File nane: nsmask. vhd
-- Version : 1.0
-- Aut hor . Davi d Cabani s

LI BRARY fl ow ab;
USE fl ow ab. mask_t ypes. ALL;

LI BRARY | EEE;
USE | EEE. STD _LOd C_1164. ALL;

USE WORK. std_cl ass. ALL;

ENTITY nsmask | S

PORT(bottomin : INinage_data;
mddle_in : INinage_data;
top_in I N i mrage_dat a;
reset IN STD LOA G
clk IN STD_LCA G
cl k4 : IN STD_LCA G
mask_out : QUT filt_data);

END nsnask;

ARCH TECTURE rtl OF nsnmask IS
TYPE mask_row | S ARRAY (0 TO nmask_size) OF inmage_dat a;
TYPE FI FO ARRAY_T IS ARRAY (0 TO 2) OF FIFQ
OBJECT TOP, M D, BOT: FIFO
GENERI C MAP(DEPTH => 3, WDTH =>

8)
| NTERFACE map(CLK => CLK);

OBJECT FI FO ARRAY : Fl FO ARRAY T,

SIGNAL prelim prelimreg :filt_data;

TYPE calc_state t IS (init, top, mddle, bottom
pause) ;

SIGNAL calc_state:calc_state t;

BEG N

FI FO ARRAY == (TOP, M D, BOT);

maskshi ft:

-- shift mask scene data and read i n new val ues

-- fromtop and niddle linestores, and scene data
i nput

211

PROCESS(cl k, reset)
BEA N
IF reset ='1 THEN
FI FO_ARRAY. ALL. WRI TE_ASYNC(CONV_STD LCd C VECTOR

(0,8));

mask_out <=0;

ELSIF (clk'event AND clk = '1') THEN
TOP->PUSH(TOP_I N) ;
M D >PUSH M DDLE I N);
BOT- >PUSH(M DDLE I N);

-- output mask calculation result
mask_out <=prelim

END | F;

END PROCESS maskshift;

cal cseq:
-- state machine to calculate nmask arithmetic row by
r ow
-- prelimto store running total
PROCESS (cl k4, reset)
BEG N
IF reset ='1" THEN
calc_state<=init;
prel i mreg<=0;
ELSIF (cl k4'event AND clk4 = '1') THEN
prelimreg<=prelim
CASE calc_state IS
VWHEN init =>
cal c_st at e<=pause;
WHEN pause =>
cal c_st at e<=t op;
prelimreg<=0;
VWHEN top =>
cal c_st at e<=ni ddl e;
VWHEN mi ddl e =>
cal c_st at e<=bot t om
VWHEN bott om =>
cal c_st at e<=pause;
WHEN OTHERS =>
calc_state <= init;
END CASE;
END | F;
END PROCESS cal cseq;
cal conb:

PROCESS(cal c_state, FI FO ARRAY, prelimreg)
VARI ABLE left_v, right_v : INTEGER RANGE 0 TO
(((2**i mage_wi dth)-1)*2);
BEA N
left v :=0;
right v := 0;
CASE calc_state IS
WHEN top =>
left_v := BOT. READ(2);
right v := TOP. READ(2) ;

212

WHEN m ddl e =>
left_v := BOT. READ(0) ;
right_v := TOP. READ(0);
WHEN bott om =>
left_v := 2*BOT. READ(1) ;
right_v := 2*TCP. READ(1) ;
WHEN OTHERS =>
left v :=0;
right v := 0;
END CASE;
prelim<= (left_v - right_v) + prelimreg;
END PROCESS cal conb;
END rtl;

-- Description: custom sed wenmask

-- File nane: wenask. vhd
-- Version : 1.0
-- Aut hor . David Cabanis

LI BRARY fl ow ab;
USE fl ow ab. mask_t ypes. ALL;

LI BRARY | EEE;
USE | EEE. STD _LOd C_1164. ALL;

USE WORK. std_cl ass. ALL;

ENTI TY wenmask | S

PORT(bottomin : INinage_data;
mddle_in : INinage_data;
top_in I N i mrage_dat a;
reset IN STD LOA G
clk IN STD_LCA G
cl k4 : IN STD LOA C,
mask_out : QUT filt_data);

END wenask;

ARCH TECTURE rtl OF wenask IS

TYPE mask_row | S ARRAY (0 TO nmask_size) OF inmage_dat a;

TYPE FI FO ARRAY_ T IS ARRAY (0 TO 2) OF FIFQ
OBJECT TCP, M D, BOT : FIFO GENER C MAP(DEPTH => 3,
WDTH => 8)

| NTERFACE MAP(CLK => CLK):

OBJECT FI FO ARRAY : FI FO ARRAY T;

213

SIGNAL prelim prelimreg :filt_data;

TYPE calc_state t IS (init, top, mddle, bottom
pause) ;

SIGNAL calc_state:calc_state t;

BEG N
FI FO_ARRAY == (TCP, M D, BOI);

maskshi ft:
-- shift mask scene data and read i n new val ues
-- fromtop and niddle linestores, and scene data
i nput
PROCESS(RESET, CLK)
BEGA N
IF reset ='1'" THEN
FI FO_ARRAY. ALL. WRI TE_ASYNC(CONV_STD LOGE C VECTCR

(0,8));

mask _out <=0;

ELSIF (clk'event AND clk = "'1") THEN
TOP->PUSH(TOP_IN) ;
M D >PUSH M DDLE I N) ;
BOT- >PUSH(M DDLE I N);

-- output mask cal cul ation result

mask_out <=prelim

END | F;

END PROCESS maskshift;

cal cseq:
-- state machine to cal cul ate nask arithnetic row by
r ow
-- prelimto store running total
PROCESS (cl k4, reset)
BEA N
IF reset ='1'" THEN
calc_state<=init;
prel i mreg<=0;
ELSI F (cl k4" event AND cl k4 = '1') THEN
prelimreg<=prelim
CASE calc_state IS
VWHEN i nit =>
cal c_st at e<=pause;
WHEN pause =>
cal c_st at e<=t op;
prelimreg<=0;
WHEN top =>
cal c_st at e<=ni ddl e;
VWHEN mi ddl e =>
cal c_st at e<=bot t om
WHEN bot t om =>
cal c_st at e<=pause;
VWHEN OTHERS =>
calc_state <= init;
END CASE;
END | F;
END PROCESS cal cseq;

214

cal conb:
-- of clk4
PROCESS(cal c_state, FI FO ARRAY, prelimreg)
BEG N
CASE calc_state IS
WHEN top =>
prelim<= (BOTl. READ(2) - TOP. READ(2))
+ prelimreg;
WHEN nmiddl e =>
prelim<= (BOT. READ(0) - TOP. READ(0))
+ prelimreg;
WHEN bott om =>
prelim<= (2*BOTl. READ(1) - 2*TOP. READ(1))
+ prelimreg;
WHEN OTHERS =>
prelim<=prelimreg;
END CASE;
END PROCESS cal conb;
END rtl;

215

Appendix B-3. Line Store Code Using the Proposed Extension

-- Description: 8 bit, 32 word FIFO, based on dual -port RAM

-- File nane: linestore.vhd
-- Version : 1.0
-- Aut hor . Davi d Cabani s

LI BRARY | EEE;
USE | EEE. STD LOd C 1164. ALL;
USE | EEE. std_l ogi c_arith. ALL;

LI BRARY fl ow ab;
USE fl ow ab. mask_t ypes. ALL;
USE WORK. std_cl ass. ALL;

ENTITY linestore IS

PORT (w _data : IN image_data;
rd_data : QOUT inage_dat a;
reset IN STD_LOGE G
w_pulse : IN STD LO3 C
I's_clk IN STD_LOGE G
cl k4 IN STD_LOGE O);

END | i nest ore;

ARCH TECTURE struct OF linestore IS
SUBTYPE | i ne_pointer IS | NTEGER RANGE 0 TO
i ne_Il ength;
SIGNAL rd_slv, w_slv:STD LOd C VECTOR(i nage_wi dth — 1
DOMTO 0) := (others =>'0");
SIGNAL logic 0 : STD LOAC
SIGNAL NOT_LS CLK : STD LOGE G
COVPONENT generic_ram

port (
d : IN STD LOJ C VECTOR(7 DOMTO 0) ;
address : IN STD LOd C VECTOR(4 DOMTO 0) ;
we, clk IN STD LOA C ;
q : QUT STD_LOGE C_VECTOR(7 DOANTO 0)

END COVP)O\IEI\IT;
OBJECT RD_PTR : UP_CQOUNTER
GENERI C MAP(DEPTH =>
LI NE_DATA W DTH)
| NTERFACE MAP(CLK =>
LS CLK);

216

CBJECT WR PTR : UP_COUNTER
GENERI C MAP(DEPTH

>
LI NE_DATA_ W DTH)
| NTERFACE MAP(CLK => NOT_LS CLK);
TYPE ADDR PTR T : |S ARRAY (0 TO 1) OF COUNTER
OBJECT ADDR PTR : ADDR PTR T;
BEG N
ADDR PTR == (RD_PTR VR PTR);

logic 0 <='0';

nenory: generi c_ram
PORT MAP(q => rd_slv, d => w_slv,
address => int_ad,
we => w_pul se, clk => clk4);

rd_data <= conv_integer(unsigned(rd_slv));
w_slv <= conv_std | ogic_vector(w _data, inage w dth);
NOT LS CLK <= NOT LS CLK;

read_wite_pointers:
PROCESS(LS CLK, NOT_LS CLK, RESET)
BEA N
|F RESET = '1'" THEN
ADDR _PTR. ALL. WRI TE(CONV_STD _LOG C_VECTOR(0,
LI NE_DATA WDTH));
ELSE
ADDR_PTR. ALL. COUNT;
END | F;
END PROCESS;

int_ad <= WR PTR READ WHEN |s clk = '1" ELSE RD PTR READ;
END struct;

217

Appendix B-4. Threshold Mult Code Using the Proposed Extension

Descri ption:
cal cul ation. .

Threshol d, mnul tipl ex and average

-- File name: thresh_mux. vhd

-- Version 1.0
-- Aut hor Davi d Cabani s
LI BRARY | EEE;

USE | EEE. STD LOd C 1164. ALL;
USE | EEE. std_l ogi c_arith. ALL;

LI BRARY f | owl ab;
USE fl ow ab. mask_t ypes. ALL;
USE WORK. std_cl ass. ALL;

ENTITY thresh mux IS

PORT(ns_resul t IN sl v15;
we _result IN slvi5;
new franme : IN STD LOG C,
cl k IN STD_LGA C,
reset . IN STD LG4 G,
threshold : IN slvl5;
dat a_sel IN slv2;
frame_sync: QUT STD LOAQ C
aver age QJT sl vlbs;
mux_bi t QUT STD_ LOd C
);

END t hresh_nux;

ARCHI TECTURE rt|

SIGNAL thresh_reg :
SI GNAL aver age_
SI GNAL t hresh_we,

OF thresh mux IS

sl v15;

average reg : abs filt;
thresh_ns: STD LO4Q C;

SI GNAL dat a_sel _reg:slv2;
CONSTANT zero: sl vl5: =(OTHERS => '0');

BEG N
aver ager:

PROCESS (ns_resul t,

we result, data sel reg, reset,

average_reg, new framne)
BEG N
IF reset ='1'" THEN
average i <= 0;

218

ELSIF new frame = '1' THEN
average i <= 0;
ELSE
average_i <= average_reg;
CASE data_sel _reg IS
WHEN nsbi nary =>
IF ns result /= zero THEN
average i <= (average reg / 2) +
(conv_integer(unsigned(ns_result)) / 2);
END I F;
VWHEN webi nary =>
IF we result /= zero THEN
average i <= (average reg / 2) +
(conv_integer (unsigned(we_result)) / 2);
END I F;
WHEN OTHERS =>
IF (ns_result /= zero)
AND (ns_result > we result) THEN
average i <= (average reg / 2) +
(conv_integer(unsigned(ns_result)) / 2);
ELSIF we result /= zero THEN
average i <= (average reg / 2) +
(conv_integer(unsigned(we_result)) / 2);
END I F;
END CASE;
END I F;
END PRCCESS

-- threshold ns result
thresh_ns <= '1'" WHEN ns_result > thresh_reg
ELSE ' 0';

-- threshold we result
thresh we <= '1'" WHEN we_result > thresh_reg
ELSE '0';

cont _regs:
-- update threshold and data _sel on new frame
PROCESS (reset, clKk)
BEG N
IF reset ='1'" THEN
thresh_reg <= zero;
data_sel _reg <= "00";
ELSIF cl k' event AND clk = '1'" THEN
IF new frame = '1' THEN
thresh_reg <= threshol d;
data_sel reg <= data_sel
ELSE
thresh reg <= thresh_reg;
data_sel _reg <= data_sel reg;
END | F;
END | F;
END PROCESS

-- register mult_mask result outputs

219

thresh_regs:
PROCESS
BEG N
WAIT UNTIL cl k' event AND cl k="1";
IF reset ='1'" THEN
average_reg <= 0;
frame_sync <= '0';
mux_bit <= "'0";
ELSE
average reg <= average_i;
frame_sync <= new franmne;
-- select bit value to output
CASE data sel reg IS
VWHEN nsbi nary =>
mux_bit <= thresh_ns;
VWHEN webi nary =>
mux_bit <= thresh_we;
WHEN nsorwe =>
mux_bit <= thresh_ns OR thresh_we;
WHEN OTHERS =>
mux_bit <= thresh _ns AND thresh _we;
END CASE;
END | F;
END PROCESS,

-- wite average out put

average <= conv_std_|l ogi c_vector(average_reqg,
END rtl;

220

15);

Appendix B-5. Interface Code Using the Proposed Extension

-- Description: Asynchronous processor interface nodel.
-- Part of edge filter testcase nodel.

-- File nane: interface.vhd
-- Version : 1.0
-- Aut hor : David Cabanis

LI BRARY f | owl ab;
USE fl ow ab. mask_types. al | ;

LI BRARY | EEE;
USE | EEE. STD LOd C 1164. ALL;
USE | EEE. std_l ogic_arith. ALL;

ENTITY interface IS

PORT(cl k IN STD LOd G
reset IN STD LA G,
addr ess : IN slv3;
dataio ;I NQUT sl v16;
w_nrd IN STD LOGQ G
enabl e IN STD LOGQ G
aver age IN slvi5;
ack : QUT STD LG43 G
threshold : QUT slvlb5;
data sel : QUT slv2
).

ENDinte,rface;
ARCH TECTURE rtl OF interface IS

S| GNAL addr _reg, addrl, addr2 : slv3;

SI GNAL data_reg, datal, data2 : slvle6;

SIGNAL wnr _reg, wnrl, wnr2 : std_|ogic;

SI GNAL enabl el, enable2 : std_|ogic;

SI GNAL averl, aver2, thresh_reg, threshold_i : slvl5;
SI GNAL datasel _reg, data_sel i : slv2;

SIGNAL data in : slvie;

SIGNAL tri_bus : STD LC4Q G,

BEG N

-- internmediate signals used to read output ports
threshold <= threshold i;

221

data_sel <= data_sel _i;

async:
PRCCESS (reset, enable)
BEG N
-- async reset
IF reset ="'1" THEN
addr_reg <= (OTHERS => '0');
data_reg <= (OTHERS => '0');
wnr_reg <= '0";
ELSI F (enabl e event AND enabl e='0'") THEN
-- register input on falling edge of enable
addr _reg <= address;
data_reg <= data_in;
wnr_reg <= w_nrd;
END | F;
END PROCESS async;

if rw

PROCESS(wnr 2, data2, addr2, enable2, thresh_ reg,
dat asel _reg)

BEG N

ack <= "'1'; -- default is
unacknow edged

tri_bus <= "'1'; -- default is tristated
bus

threshold_i <= thresh_reg

data_sel i <= datasel reg;

| F enable2 = '0" THEN
-- bus activity - inputs valid
IFwr2 ="'1" THEN
-- wite cycle
CASE addr2 1S
WHEN " 010" =>
-- threshol d data
threshol d_i <= data2(14 DOANTO 0);
WHEN " 001" =>
-- data sel ect,
data_sel i <= data2(1 DOMTO 0);
VWHEN OTHERS =>
nul | ;
END CASE;
ack <= '0'; -- acknow edge wite
ELSE
-- read cycle
| F addr2 = "100" THEN
-- read average result val ue
-- un-tristate buffers
tri_bus <='0";
END | F;
ack <= '0'; -- acknow edge read cycle

222

END | F;
END | F;
END PRCCESS,;

sync_reg:
PROCESS (cl k)

-- double buffer i/p data to sync to interface clk

BEG N
IF clk'event AND cl k="1" THEN
IF reset ='1'" THEN

-- reset signal sync'ed to clk, so sync reset

averl <= (OTHERS => '0'
aver2 <= (OTHERS => '0'
addrl <= (OTHERS => "'
datal <= (OTHERS =>"
wnrl <="'0";
enablel <= "'1';
addr2 <= (OTHERS => '0");
data2 <= (OTHERS => '0");
wnr2 <= "'0";
enable2 <= "'1";
ELSE
averl <= average,
aver2 <= averl;
addrl <= addr_reg;
datal <= data_reg;
wnrl <= wnr_reg;
enabl el <= enabl e;
addr 2 <= addr 1;
dat a2 <= datal;
wnr2 <= wnrl;
enabl e2 <= enabl el;
END | F;
END | F;
END PROCESS sync_reg;

)
)
")
l).

[eNeNe)

store_reg:
PROCESS (reset, clk)

-- register threshold and data_sel

BEG N

-- reset signal not sync'ed to clk,

IF reset ='1'" THEN
thresh_reg <= (OTHERS => '0");
datasel reg <= (OTHERS => '0');

ELSIF cl k' event AND cl k="1" THEN
thresh_reg <= threshol d_i;
dat asel _reg <= data_sel i;

END | F;

END PROCESS store_reg;

-- only data output is average data
WTH tri_bus SELECT

dataio <= ('0' & aver2) WHEN '0',

between wite cycles

SO async reset

(OTHERS => ' Z') WHEN OTHERS;

223

data_i n <= NOT(datai 0);

END rtl;

224

Appendix B-6. RAM Write Code Using the Proposed Extension

-- Description: Read/wite pul se generator for linestore and
bitstore
-- FI FO nodel s

-- File nane: ramwite.vhd
-- Version : 1.0
-- Aut hor . Davi d Cabani s

LI BRARY fl ow ab;
USE fl ow ab. mask_t ypes. ALL;

LI BRARY | EEE;

USE | EEE. STD LOd C 1164. ALL;
USE | EEE. STD LOd C AR TH. ALL;
USE WORK. std_cl ass. ALL;

ENTITY ranwite IS
PORT(clk4 : IN STD LOd G
reset : IN STD LOGE G
w _pulse : QUT STD LOA O);
END rammri t e;

ARCH TECTURE rtl OF ramwite IS
SI GNAL count : sl v2;
TYPE t_| ookup IS ARRAY (0 to 3) of std logic vector(1l
downto 0);
CONSTANT table : t_Ilookup := ("10", "00", "11", "O01");
BEG N
gray_code:
PROCESS(cl k4, reset)
BEG N
IF reset ='1'" THEN
count <= "00";
ELSIF cl k4' event AND cl k4 = '1'" THEN
count <= tabl e(CONV_I NTEGER(UNSI GNED(count))) ;
END | F;
END PROCESS gray_code;
w_pul se <= count (1) AND NOT count (0);
END rtl;

225

Appendix B-7. RAM Code Using the Proposed Extension

-- Description: 8 bit, 32 word synchronous single port RAM

-- File nanme: generic_ramvhd
-- Version : 1.0
-- Aut hor . David Cabanis

Li brary | EEE ;

use | EEE. std_l ogic_1164.all ;

use |EEE. std_logic_arith.all ;
--use | EEE. std_| ogi c_unsi gned. al | ;

ENTI TY generic_ram|S

PORT (
d : IN STD LOd C VECTOR(7 DOMTO 0) ;
addr ess : IN STD LOd C VECTOR(4 DOMTO 0) ;
we, clk : IN STD LCAC;

q QUT STD LCd C VECTOR(7 DOMTO 0) : =
(others =>"'0")
);

END generic_ram;

ARCHI TECTURE rtl OF generic_ramlS
TYPE mem type IS ARRAY (2**5 DOMITO 0) OF
STD LOd C_VECTOR(7 DOMNTO 0) ;
SIGNAL mem : nmemtype := (others=>(others=>'0")) ;

SIGNAL int_ad : STD LOG C VECTOR(4 DOMTO 0) : =
(others =>'0");

BEG N

-- Synchronous RAM
PROCESS (cl k)

226

BEA N
| F clk' EVENT AND clk ="1" THEN
int_ad <= address;
IF (we ="'1") THEN
men(CONV_| NTEGER(UNSI GNED(address))) <= d ;
END I F ;
END | F;
END PRCCESS;

q <= men(CONV_I NTEGER(UNSI GNED(i nt _ad))) ;

END RTL ;

227

Appendix B-8. Filtercore Code Using the Proposed Extension

-- Description: Top |level structural nodel for
-- edge filter testcase nodel.

-- File nane: filtercore.vhd

-- \Version 1.0

-- Aut hor Davi d Cabani s

LI BRARY | EEE;
USE | EEE. STD LOd C 1164. ALL;
USE | EEE. std_l ogic_arith. ALL;

LI BRARY fl ow ab;
USE fl ow ab. mask_t ypes. ALL;

ENTITY filtercore IS

PORT(
dataio : inout slvle;
address: IN slv3; -- proc i/f r/w address
| sram op: QUT slv8; -- linestore RAM out put for

t est
scene IN slvs; -- input intensity data
ifclk INSITDLOAdC -- fast clk for i/f
cl k IN STD LGG C,
cl k4 : IN STD LOA G
edge fs : QUT STD LOAC, -- o/p data franme sync
fs : IN STD_LCOA G, -- image sync control
ack QUT STD LG4d G -- proc i/f acknow edge
enable : IN STD LO3 C, -- proc i/f enable
w_nrd : IN STD LOG C, -- proc i/f rlw
edge : QUT STD LOA C -- o/p binary edge data
I's IN STD LO4d C, -- image sync control
reset IN STD LOA C -- reset control
)

END filtercore;
ARCH TECTURE struct OF filtercore IS

SI GNAL
S| GNAL
SI GNAL
Sl GNAL
Sl GNAL
S| GNAL

ns_result, we result
new frame, w_pul se :
aver age: sl v15;

dat a_sel : sl v2;
data_out: sl v16;

t hreshol d: sl v15;

sl v15;
STD LO4A G

228

COVPONENT ramwite

PORT(cl k4
reset

w_pul se :

END COVPONENT;

IN STD LOG G
IN STD LOG G

OUT STD LOG O);

COVPONENT mul t _mask
PORT(scene IN slvsg;
I's,fs IN STD_LOd G,
reset IN STD LOGE C,
cl k IN STD_LQOA C,
cl k4 IN STD_LOA G,
w_pul se IN STD LCd G,
new frame : QUT STD LOG G
ns_result QUT sl vls;
we_result QJT sl v15;
I s_out QJT slv8);
END COVPONENT;
COVPONENT t hresh_mux
PORT(ns_resul t IN sl v15;
we _result IN slvl5;
new franme : IN STD LOGQ C,
clk IN STD LOG C
reset . IN STD_LOA G
threshold : I N slvl5;
dat a_sel IN slv2;
frane_sync: QUT STD LO4d C
aver age QJT sl vis;
mux_bi t QUT STD LOG C

)

END COVPONENT;

COVPONENT i nterface

PORT(cl k

r eset

addr ess
datai o
w_nrd
enabl e

aver age
ack :
threshol d :
dat a_sel

)

END COVPONENT;

BEG N

rammu .
PORT MAP(cl k4,

rammite

doubl e: mul t _nask

PORT MAP(scene,

reset,

ls, fs,

229

reset,

w_pul se);

cl k,

cl k4,

w_pul se,

new frame, ns result, we_result, |sramop);

t hr mux: t hr esh_nux
PORT MAP(ns_result, we_result, new frame, clk, reset,
threshol d, data_sel, edge fs, average, edge);

procif:interface
PORT MAP(ifclk, reset, address, dataio, w_nrd
enabl e,
average, ack, threshold, data_sel);

END struct;

230

Appendix B-9. Mult Mask Code Using RTL VHDL

-- Description: Dual nmask, dual linestore controller and
instantiator.
-- Part of edge filter testcase nodel.

-- File nanme: nult_mask. vhd
-- Version : 1.0
-- Aut hor . Davi d Cabani s

USE fl ow ab. mask_t ypes. ALL;

LI BRARY | EEE;
USE | EEE. STD LOd C 1164. ALL;
USE | EEE. std_logic_arith.all;

ENTITY mult _mask IS
PORT(scene IN sl v8;
s, fs . IN STD LGGE C,
reset IN STD_LOG C,
cl k IN STD LOG G,
cl k4 IN STD_LOG C,
w_pulse : IN STD LOGE C
new frame : QUT STD LOd C
ns_result : QUT slvl5;
we result : QUT slvils;

s out : QUJT slv8);
END mul t _mask;

ARCHI TECTURE rtl OF mult _mask IS

-- nult mask states
constant sync_fs : std_logic_vector(1ll downto 0)

: = "000000000001";
constant sync_ls : std_logic_vector(1ll dowto 0)
: = "000000000010";
constant last_pxl : std_|ogic_vector(11 downto 0)
: = "000000000100";
constant first_line : std_|logic_vector(11 downto 0)
: = "000000001000";
constant end first : std |logic _vector(1ll downto 0)
: = "000000010000";
constant sec_line : std |ogic_vector (11 downto 0)
: = "000000100000";

constant end |ine : std |ogic_vector(11 downto 0)

231

: = "000001000000";

constant blank : std_|ogic_vector(11 downto 0)
: = "000010000000";

constant valid : std_|logic_vector(11l downto 0)
: = "000100000000";

constant frame_sync : std | ogic vector (11 downto 0)
: = "001000000000";

constant start last : std |ogic vector(11 downto 0)
: = "010000000000";

constant last line : std |ogic _vector(1ll downto 0)
: = "100000000000";

-- mult mask state vari abl es
SIGNAL current _state,
next state : std _|ogic_vector(1l downto 0);

SIGNAL |s_cap, fs_cap, |s_sync, fs_sync: STD LO3 G
SI GNAL next _new frame, new frame_sync: STD LOG G,
SI GNAL scene_reg :inmage_dat a;

SI GNAL top_data, m ddl e_data:image_dat a;

SIGNAL top_data reg, niddl e data reg:inmage_data;
SI GNAL bl ankop, bl ankop_cap : BOOLEAN,

SIGNAL ns_nask out, we mask out:filt _data;

SIGNAL ns_filt, we_filt:abs_filt;

COVPONENT nsmask

PORT(bottomin : IN imge_dat a;
mddle_in : INimge_data;
top_in I N i mage_dat a;
reset IN STD LOd G
cl k IN STD_LOA G
cl k4 . IN STD LQ4d G,
mask_out : QUT filt _data);
END COVPONENT;
COVPONENT werrask
PORT(bottomin : IN inmage_dat a;
mddle_in : INimge_data;
top_in I N i mage_dat a;
reset IN STD_LOd G,
cl k IN STD LOG C,
cl k4 IN STD_LOA G

mask _out : OUT fil_t_dat a);
END COVPONENT;

COVPONENT | i nestore

PORT (w_data : IN inmage_data;
rd_data : QUT inmage_dat a;
reset IN STD_LOA G,
w_pulse : IN STD LOA C
Is _clk IN STD_LOA G,
cl k4 IN STD LCd O);

END COVPONENT;

BEG N

m drow. | i nestore
PORT MAP (w_data => scene reg, rd_data =>
m ddl e_data, reset => reset, w _pul se => w _pul se,
Is clk => clk, clk4 => clkd);

toprow | i nestore
PORT MAP (w_data => mddl e data reg, rd _data =>
top_data, reset => reset, w_pulse => w_pul se,
Is_clk => clk, clk4 => clk4);

nt hst h: nsnask
PORT MAP (bottom.in => scene_reg, mddle_ in =>
m ddl e_data reg, top_in => top_data_reg,
reset => reset, clk => clk, clk4 => cl k4,
mask_out => ns_nask_out);
wst est : wermask
PORT MAP (bottomin => scene_reg, mddle in =>
m ddl e _data reg, top_in => top_data reg,
reset => reset, clk => clk, clkd4d => cl k4,
mask_out => we_nask_out);

-- conpl ete mask operation by nornalising absol ute mask
resul t

ns_conpl et e:
PROCESS (ns_nask_out, bl ankop_cap)
VARI ABLE ns_filt : slvl16;
BEGA N
ns_filt := conv_std_|logic_vector(ns_nask _out, 16);
IF ns_filt(15) ="'1" THEN
ns_filt := unsigned(NOT(ns_filt)) + '1';
END I F;
ns filt :="00" & ns_filt(15 downto 2);

| F bl ankop_cap THEN
ns result <= (OTHERS => '0");
ELSE
ns result <= ns filt(14 downto 0);
END I F;
END PROCESS ns_conpl et e;

we_conpl et e:
PROCESS (we_nask_out, bl ankop_cap)
VARl ABLE we filt : slvile;

BEG N
we filt := conv_std | ogic_vector(we _nmask out, 16);
IF we filt(15) = '1' THEN
we_filt := wunsigned(NOT(we_filt)) + '1';
END | F;
we filt :="00" & we_filt(15 downto 2);

| F bl ankop_cap THEN
we_result <= (OTHERS => '0');
ELSE

233

we result <= we filt(14 downto 0);
END | F;
END PROCESS we_conpl et €;

-- wite linestore o/p to external port for RAMtest
I's out <= conv_std |ogic_vector(top_data, 8);

state_reg:
PROCESS(CLK, RESET)
BEG N

IF reset ='1'" THEN
current_state <= sync_fs;
bl ankop_cap <= TRUE;

ELSIF cl k' event AND clk = '1'" THEN
current_state <= next_state;
bl ankop_cap <= bl ankop;

END | F;

END PROCESS st ate_reg;

state_assign:
PROCESS (current_state, fs_sync, |s_sync)

BEG N
next _state <= current_state;
bl ankop<=t r ue; -- default is input is
bl anked
next _new frane <= '0'; -- default is not new frame

IF current_state = sync_fs THEN
IF fs_sync = '0" THEN
next_state <= sync_|s;
END | F;

ELSIF current_state = sync_|s THEN
IF Is_sync ='0" THEN
next _state <= last_pxl;
next_new frame <= '1';
END | F;

ELSIF current_state = last_pxl THEN
IFIs sync ='1" THEN
next state <= first _line;
END | F;

ELSIF current _state = first _|ine THEN
IF Is_sync ='0" THEN
next state <= end first;
END | F;

ELSIF current_state = end first THEN
IF Is_sync ='1" THEN
next _state <= sec_line;
END | F;

234

ELSIF current_state = sec_line THEN
IF Is_sync ='0" THEN
next _state <= end_li ne;
END | F;

ELSIF current_state = end_|line THEN
IF Is_sync ='1" THEN
next _state <= bl ank;
END I F;

ELSIF current _state = bl ank THEN
next _state <= valid;

ELSIF current _state = valid THEN
bl ankop<=f al se;
IF (Is_sync ='0" AND fs_sync = '0") THEN
next _state <= frame_sync;
ELSIF (Is_sync = '0") THEN
next _state <= end_li ne;
END I F;

ELSIF current_state = frame_sync THEN
IF(Is_sync ='1" AND fs_sync ='1'") THEN
next state <= start | ast;
END | F;

ELSIF current _state = start | ast THEN
next state <= last_|ine;

ELSIF current _state = last_|ine THEN
bl ankop<=f al se;
IF Is_sync ='0" THEN
next _state <= last_pxl;
next new frame <= '1';
END | F;

END if;
END PROCESS st at e_assi gn

dat a_reg:
PROCESS(cl k, reset)
BEG N
IF reset ='1'" THEN
scene_reg <= 0;
m ddl e_data_reg <= 0;
top_data reg <= 0;
Is cap <= '1";
fs_cap <= '"1';
s _sync <= "'1'";
fs_sync <= '1';
new frane <= '0';
new frane_sync <= '0";
ELSIF cl k' event AND clk = '1'" THEN
scene_reg <= conv_i nteger (unsi gned(scene));

235

m ddl e_data reg <= m ddl e_dat a;
top_data reg <= top_data;
I's cap <= Is;
fs_cap <= fs;
I s_sync <= | s_cap;
fs_sync <= fs_cap;
new frane_sync <= next_new frang;
new franme <= new frane_sync;
END | F;
END PROCESS dat a_reg;

END rtl;

236

Appendix B-10. NS Mask and WE Mask Code Using RTL VHDL

-- Description: custom sed nsnmask

-- File nane: nsmask. vhd
-- Version : 1.0
-- Aut hor . Davi d Cabani s

LI BRARY fl ow ab;
USE fl ow ab. mask_t ypes. ALL;

LI BRARY | EEE;
USE | EEE. STD _LOd C_1164. ALL;

ENTITY nsmask | S

PORT(bottom.in : |IN inage_data;
mddle_ in : INinage_data;
top_in . IN inage_dat a;
reset : IN STD LG4 G,
clk . IN STD_LCA G
cl k4 IN STD LOG C,
mask _out : QUT filt_data);

END nsnask;

ARCH TECTURE rtl OF nsmask IS
TYPE nmask_row IS ARRAY (0 TO nmask_si ze) OF image_dat a;

SI GNAL topl data, topmdata, topr_data:inmge_dat a;
SIGNAL midl _data, mdmdata, nidr_data:inmge_dat a;

SI GNAL botl| _data, botmdata, botr_data:inmage_dat a;
SIGNAL prelim prelimreg :filt_data;

TYPE calc_state t IS (init, top, nmiddle, bottom pause);
SIGNAL calc_state:calc_state_t;

BEG N

maskshi ft:
-- shift nmask scene data and read in new val ues
-- fromtop and niddle linestores, and scene data input
PROCESS(cl k, reset)
BEG N
IF reset ='1'" THEN
topl _data <= 0;
topmdata <= 0;

237

topr_data <=

mdl _data <=

m dmdata <=

mdr_data <=

botl data <=

botmdata <=

botr data <=

nmask_out <=0;
ELSIF (cl k' event AND clk = "1'") THEN

topl data <= topmdat a;

topmdata <= topr_data;

topr_data <= top_in;

m dl _data <= m dm dat a;

m dm data <= nidr_data;

mdr_data <= mddl e_in;

bot| data <= botm dat a;

bot m data <= botr_dat a;

botr data <= bottomin;

eLeLeeeee

-- output mask cal culation result
mask_out <=prelim

END | F;
END PROCESS naskshift;

cal cseq:
-- state nachine to calculate mask arithmetic row by row
-- prelimto store running total
PROCESS (cl k4, reset)
BEG N
IF reset ="'1'" THEN
calc_state<=init;
prelimreg<=0;
ELSIF (cl k4' event AND clk4 = '1") THEN
prelimreg<=prelim
CASE calc_state IS
WHEN init =>
cal c_st at e<=pause;
WHEN pause =>
cal c_st at e<=t op;
prel i mreg<=0;
WHEN top =>
cal c_st at e<=m ddl e;
VWHEN m ddl e =>
cal c_st at e<=bott om
WHEN bott om =>
cal c_st at e<=pause;
WHEN OTHERS =>
calc_state <= init;
END CASE;
END | F;
END PROCESS cal cseq;

cal conb:
PROCESS(cal c_state, topl _data, topmdata, botl _data,

238

topr_data, botmdata, botr_data, prelimreg)
VAR ABLE left_v, right_v : INTEGER RANGE 0 TO
(((2**i mage_w dth)-1)*2);
BEG N
left v := 0;
right v := 0;
CASE calc_state IS
WHEN top =>
left v := botl data;
right v := topl _data;
WHEN mi ddl e =>
left v := botr_data;
right v := topr_data;
WHEN bott om =>
left v := 2*bot m dat a;
right_v := 2*topm dat a;
WHEN OTHERS =>
left v := 0;
right _v := 0;
END CASE;
prelim<= (left_v - right_v) + prelimreg;
END PROCESS cal conb;

END rtl;

-- Description: custom sed wemask

-- File nane: wemask. vhd
-- Version : 1.0
-- Aut hor : David Cabanis

LI BRARY f | owl ab;
USE fl ow ab. mask_t ypes. ALL;

LI BRARY | EEE;
USE | EEE. STD LOd C_1164. ALL;

ENTI TY wenask | S

PORT(bottom.in : I N inage_data;
mddle in : INinage data;
top_in . IN image_dat a;
reset : IN STD_LOG C,
clk IN STD LOG C,
cl k4 : IN STD_LOG G,
mask _out : QUT filt_data);

END wemnask;

239

ARCHI TECTURE rtl OF wemask IS
TYPE mask_row IS ARRAY (0 TO mask_si ze) OF inmage_dat a;

SI GNAL topl data, topmdata, topr_data:inmge_dat a;
SIGNAL midl _data, mdmdata, nidr_data:inmge_dat a;

SI GNAL botl| _data, botmdata, botr_data:image_dat a;
SIGNAL prelim prelimreg :filt_data;

TYPE calc_state t IS (init, top, mddle, bottom pause);

SIGNAL calc_state:calc_state_t;

BEG N

nmaskshi ft:
-- shift mask scene data and read in new val ues
-- fromtop and niddle linestores, and scene data input
PROCESS
BEG N
WAIT UNTIL (clk'event AND clk ="'1");
IF reset ="'1'" THEN
topl _data <=
topmdata <=
topr_data <=
mdl _data <=
m dmdata <=
mdr_data <=
bot|l data <=
botmdata <=
botr data <=
mask_out <=0;
ELSE
topl _data <= topmdat a;
topmdata <= topr_data;
topr_data <= top_in;
m dl _data <= m dm dat a;
m dm data <= m dr_dat a;
mdr data <= niddle_in;
bot| data <= bot m dat a;
botm data <= botr_dat a;
botr _data <= bottom.i n;

CLRLELeLLeLeee

-- output mask cal culation result
mask_out <=prelim

END | F;
END PROCESS naskshi ft;

cal cseq:
-- state machine to calculate mask arithmetic row by row
-- prelimto store running total
PROCESS (cl k4, reset)
BEG N
IF reset ='1'" THEN

240

calc_state<=init;
prelimreg<=0;

ELSI F (cl k4' event AND cl k4 = "1") THEN
prelimreg<=prelim
CASE calc_state IS

WHEN init =>
cal c_st at e<=pause;
WHEN pause =>
cal c_st at e<=t op;
prel i mreg<=0;
WHEN top =>
cal c_st at e<=m ddl e;
VWHEN m ddl e =>
cal c_st at e<=bott om
WHEN bott om =>
cal c_st at e<=pause;
WHEN OTHERS =>
calc_state <= init;
END CASE;
END I F;
END PROCESS cal cseq;

cal conb:

-- of clk4

PROCESS(cal c_state, topl _data, mdl _data, botl _data,
topr_data, mdr_data, botr_data, prelimreg)

BEG N
CASE calc_state IS
WHEN top =>

prelim<= (botr_data - botl_data) + prelimreg;
WHEN mi ddl e =>

prelim<= (topr_data - topl_data) + prelimreg;
WHEN bott om =>

prelim<= (2*mdr_data - 2*mdl _data) + prelimreg;
WHEN OTHERS =>

prelim<=prelimreg;

END CASE;
END PROCESS cal conb;

END rtl;

241

Appendix B-11. Line Store Code Using the RTL VHDL

-- Description: 8 bit, 32 word FIFO, based on dual -port RAM
-- Part of edge filter testcase nodel.

-- File nane: linestore.vhd
-- Version : 1.0
-- Aut hor : David Cabanis

LI BRARY | EEE;
USE | EEE. STD LOd C 1164. ALL;
USE | EEE. std_l ogic_arith. ALL;

LI BRARY fl ow ab;
USE fl ow ab. mask_t ypes. ALL;

ENTITY linestore IS

PORT (w _data : IN inage_data;
rd_data : QUT inmage_dat a;
reset IN STD LOd G
w_pulse : IN STD LOG C,
Is clk IN STD LOGQ G
cl k4 IN STD LCd O ;

END | i nestore;

ARCHI TECTURE struct OF linestore IS
SUBTYPE |ine_pointer IS |NTEGER RANGE O TO |ine_l engt h;
SIGNAL w_ad, rd_ad,

int_ad: STD LOd C VECTOR(| i ne_data_wi dth-1 DOMTO 0) : =

(others =>'0");

SIGNAL rd_slv, w_slv:STD LOd C VECTOR(i mage_width - 1
DOMTO 0) := (others =>'0");

SIGNAL logic_ 0 : STD LGGE C

COVPONENT generic_ram

port (
d : IN STD LOd C VECTOR(7 DOMTO 0) ;
address : IN STD LCd C VECTOR(4 DOMTO 0) ;
we, clk IN STD LOJ C ;
q : QUT STD LCE C VECTOR(7 DOANTO 0)
)i

242

END COVPONENT;

BEG N
logic 0 <='0';
nenory: generi c_ram

PORT MAP(gq => rd_slv, d => w _slv,
address => int_ad,

we => w_pul se, clk => clkd);

rd_data <= conv_i nteger (unsigned(rd_slv));

w_slv <= conv_std | ogic vector(w data, image_w dth);

read_pointer:
PROCESS

VAR ABLE rd_ptr:line_pointer := 0;
BEGA N

VWAIT UNTIL (Is_clk'event AND Is_clk ="1");

IF reset ="'1" THEN

rd_ptr: =0;

rd_ad <= CONV_STD LOG C VECTOR(rd_ptr,
ELSE
-- read cycle finished

IF rd_ptr = line_length-1 THEN
rd_ptr:= 0;

ELSE
rd_ptr:=rd_ptr + 1;

END | F;

rd ad <= CONV_STD LOG C VECTOR(rd_ptr,
END | F;

END PROCESS read_poi nter;

wite_pointer:
PROCESS

VARI ABLE wr_ptr:line_pointer := 0;
BEGA N

[ine_data w dth);

l'ine_data w dth);

VWAIT UNTIL (Is_clk'event AND Is_clk ="'0");

IF reset ='1" THEN

w_ptr:= 0;

w_ad <= CONV_STD LOd C VECTOR(wr _ptr,
ELSE
-- wite cycle finished

IF w_ptr =1line_length-1 THEN
w_ptr: =0;
ELSE
wW_ptr:=w_ptr + 1,
END | F;

w _ad <= conv_std | ogic_vector(w ptr,
END | F;

243

[ine_data w dth);

l'ine_data w dth);

END PROCESS write_pointer
int_ad <= w_ad WHEN Is_clk = '1'" ELSE rd_ad;

END struct;

244

Appendix B-12. Threshold Multiplexor Code Using the RTL VHDL

Descri ption:
cal cul ation. .

Threshol d, mul tipl ex and aver age

-- File name: thresh_mux. vhd

-- Version 1.0
-- Aut hor Davi d Cabani s
LI BRARY | EEE;

USE | EEE. STD LOd C 1164. ALL;
USE | EEE. std_l ogi c_arith. ALL;

LI BRARY f | owl ab;
USE fl ow ab. mask_t ypes. ALL;

ENTITY thresh _mux IS

PORT(ns_resul t IN slv15;
we_resul t IN sl v15;
new frane : IN STD LOd C,
clk IN STD LOd G,
reset : IN STD_LCA G
threshold : I N slvl5;
dat a_sel IN slv2;
franme_sync: QUT STD LOA C
aver age QJT sl v15;
mux_bit QUT STD LGE C
)s

END t hresh_nux;

ARCH TECTURE rtl

SIGNAL thresh_reg :
SI GNAL aver age_
SI GNAL t hresh_we,

O thresh_mux IS

sl v15;
average reg : abs filt;
thresh _ns: STD LO4d C;

S| GNAL dat a_sel _reg:slv2;

CONSTANT zero: sl vl5: =(OTHERS => '0');

BEG N

aver ager :

PRCCESS (ns_result,
aver age_reg,

we_result, data_sel reg,

new_frane)

reset,

245

BEG N
IF reset ='1'" THEN
average i <= 0;
ELSIF new frame = '1' THEN
average i <= 0;
ELSE
average_i <= average_reg;
CASE data _sel reg IS
VWHEN nsbi nary =>
IF ns_result /= zero THEN
average i <= (average_reg / 2) +
(conv_integer(unsigned(ns_result)) / 2);
END | F;
VWHEN webi nary =>
IF we result /= zero THEN
average i <= (average_reg / 2) +
(conv_integer(unsigned(we_result)) / 2);
END | F;
WHEN OTHERS =>
IF (ns_result /= zero) AND
(ns_result > we_result) THEN
average i <= (average reg / 2)
(conv_integer(unsigned(ns_result)) / 2);
ELSIF we_result /= zero THEN
average i <= (average_reg / 2) +
(conv_integer(unsigned(we_result)) / 2);
END | F;
END CASE;
END | F;
END PROCESS

=+

-- threshold ns result
thresh_ns <= '1'" WHEN ns_result > thresh_reg
ELSE '0';

-- threshold we result
thresh we <= '1'" WHEN we result > thresh_reg
ELSE '0';

cont _regs:
-- update threshold and data_sel on new frane
PROCESS (reset, clk)
BEG N
IF reset ='1'" THEN
thresh_reg <= zero;
data_sel _reg <= "00";
ELSIF cl k' event AND clk = '1' THEN
IF new frame = '1' THEN
thresh_reg <= threshol d;
data_sel reg <= data_sel
ELSE
thresh_reg <= thresh_reg;
data_sel reg <= data _sel reg;
END | F;
END | F;

246

END PRCCESS,;

-- register nult_mask result outputs
t hresh_regs:
PROCESS
BEG N
WAIT UNTIL cl k' event AND cl k="1";
IF reset ='1'" THEN
average_reg <= 0;
frame_sync <= '0";
mux_bit <="'0";
ELSE
average reg <= average_i;
frame_sync <= new franme;
-- select bit value to output
CASE data_sel _reg IS
WHEN nsbi nary =>
mux_bit <= thresh _ns;
WHEN webi nary =>
mux_bit <= thresh we;
WHEN nsorwe =>
mux_bit <= thresh_ns OR thresh_we;
WHEN OTHERS =>
mux_bit <= thresh_ns AND thresh_we;
END CASE;
END | F;
END PROCESS;

-- wite average out put
average <= conv_std_|l ogi c_vector(average_reqg,

END rtl;

247

15);

Appendix B-13. Interface Code Using RTL VHDL

-- Description: Asynchronous processor interface nodel.
-- Part of edge filter testcase nodel.

-- File nane: interface.vhd
-- Version : 1.0
-- Aut hor : David Cabanis

LI BRARY f | owl ab;
USE fl ow ab. mask_types. al | ;

LI BRARY | EEE;
USE | EEE. STD LOd C 1164. ALL;
USE | EEE. std_l ogic_arith. ALL;

ENTITY interface IS

PORT(cl k IN STD LOd G
reset IN STD LA G,
addr ess : IN slv3;
dataio ;I NQUT sl v16;
w_nrd IN STD LOGQ G
enabl e IN STD LOGQ G
aver age IN slvi5;
ack : QUT STD LG43 G
threshold : QUT slvlb5;
data sel : QUT slv2
).

ENDinte,rface;
ARCH TECTURE rtl OF interface IS

S| GNAL addr _reg, addrl, addr2 : slv3;

SI GNAL data_reg, datal, data2 : slvle6;
SIGNAL wnr _reg, wnrl, wnr2 : std_|ogic;
SI GNAL enabl el, enable2 : std_|ogic;

SI GNAL averl, aver2, thresh_reg, threshold_i : slvl5;
SI GNAL datasel _reg, data_sel i : slv2;
SIGNAL data in . slvie;
SIGNAL tri_bus . STD LG4E G
BEG N

-- internmediate signals used to read output ports
threshold <= threshold i;

248

data_sel <= data_sel _i;

async:
PRCCESS (reset, enable)
BEG N
-- async reset
IF reset ="'1" THEN
addr_reg <= (OTHERS => '0');
data_reg <= (OTHERS => '0');
wnr_reg <= '0";
ELSI F (enabl e event AND enabl e='0'") THEN
-- register input on falling edge of enable
addr _reg <= address;
data_reg <= data_in;
wnr_reg <= w_nrd;
END | F;
END PROCESS async;

if rw

PROCESS(wnr 2, data2, addr2, enable2, thresh_ reg,
dat asel _reg)

BEG N

ack <= "'1'; -- default is
unacknow edged

tri_bus <= "'1'; -- default is tristated
bus

threshold_i <= thresh_reg

data_sel i <= datasel reg;

| F enable2 = '0" THEN
-- bus activity - inputs valid
IFwr2 ="'1" THEN
-- wite cycle
CASE addr2 1S
WHEN " 010" =>
-- threshol d data
threshol d_i <= data2(14 DOANTO 0);
WHEN " 001" =>
-- data sel ect,
data_sel i <= data2(1 DOMTO 0);
VWHEN OTHERS =>
nul | ;
END CASE;
ack <= '0'; -- acknow edge wite
ELSE
-- read cycle
| F addr2 = "100" THEN
-- read average result val ue
-- un-tristate buffers
tri_bus <='0";
END | F;
ack <= '0'; -- acknow edge read cycle

249

END | F;
END | F;
END PRCCESS,;

sync_reg:
PROCESS (cl k)
-- double buffer i/p data to sync to interface clk
BEG N
IF clk'event AND cl k="1' THEN
IF reset ='1'" THEN
-- reset signal sync'ed to clk, so
sync reset
averl <= (OTHERS => '0")
aver2 <= (OTHERS => '0")
addrl <= (OTHERS => '0")
datal <= (OTHERS => '0")
wirl <= "'0";
enablel <="'1";
addr2 <= (OTHERS => '0');
data2 <= (OTHERS => '0');
wnr2 <= '0";
enable2 <= "'1';
ELSE
aver1l <= average;
aver2 <= averl;
addr1l <= addr _reg;
datal <= data_reg;
wirl <= wnr_reg;
enabl el <= enabl e;
addr2 <= addr1;
data2 <= datal;
wnr2 <= wnrl;
enabl e2 <= enabl el;
END | F;
END | F;
END PROCESS sync_r eg;

store_reg:
PROCESS (reset, clk)
-- register threshold and data_sel between wite cycles
BEG N
-- reset signal not sync'ed to clk, so async reset
IF reset ='1'" THEN
thresh reg <= (OTHERS => '0');
datasel _reg <= (OTHERS => '0");
ELSIF cl k' event AND cl k="1'" THEN
thresh reg <= threshol d i;
dat asel _reg <= data_sel _i;
END | F;
END PROCESS store_reg;

-- only data output is average data
WTH tri _bus SELECT
dataio <= ('0' & aver2) WHEN '0', (OTHERS => 'Z')

250

VWHEN OTHERS;
data_in <= NOT(datai 0);

END rtl;

251

Appendix B-14. RAM Write Code Using RTL VHDL

-- Description: Read/wite pul se generator for linestore
-- FI FO nodel
-- Part of edge filter testcase nodel.

-- File nane: ramwite.vhd
-- Version : 1.0
-- Aut hor . Davi d Cabani s

LI BRARY fl ow ab;
USE fl ow ab. mask_t ypes. ALL;

LI BRARY | EEE;
USE | EEE. STD LOd C_1164. ALL;
USE | EEE. STD LCA C_AR TH. ALL;

ENTITY rammite IS
PORT(clk4 : IN STD LCdA C,
reset : IN STD LGGE C
w_pulse : QUT STD LOJ O);
END rammrite;

ARCH TECTURE rtl OF ranwite IS

SI GNAL count : sl v2;

TYPE t_| ookup IS ARRAY (0 to 3) of std_logic_vector(1
downto 0);

CONSTANT table : t_Ilookup := ("10", "00", "11", "O01");

BEG N

gray_code:
PROCESS(cl k4, reset)
BEG N
IF reset ='1' THEN
count <= "00";
ELSIF cl k4' event AND cl k4 = '1'" THEN
count <= tabl e(CONV_I NTEGER(UNSI GNED(count)));
END I F;
END PROCESS gray_code;

w _pul se <= count (1) AND NOT count(0);

END rtl;

252

253

Appendix B-15. RAM Code Using RTL VHDL

-- Description: 8 bit, 32 word synchronous single port RAM

-- File nanme: generic_ramvhd
-- Version : 1.0
-- Aut hor . David Cabanis

Li brary | EEE ;

use | EEE. std_l ogic_1164.all ;

use |EEE. std_logic_arith.all ;
--use | EEE. std_l ogi c_unsi gned. al | ;

ENTI TY generic_ram|S

PORT (
d : IN STD LOd C VECTOR(7 DOMTO 0) ;
addr ess : IN STD LOd C VECTOR(4 DOMTO 0) ;
we, clk : IN STD LCAC;

q QUT STD LCd C VECTOR(7 DOMTO 0) : =
(others =>"'0")
);

END generic_ram;

ARCHI TECTURE rtl OF generic_ramlS
TYPE mem type IS ARRAY (2**5 DOMITO 0) OF
STD LOCd C_VECTOR(7 DOMTO 0) ;
SIGNAL mem : nmemtype := (others=>(others=>'0")) ;

SIGNAL int_ad : STD LOd C VECTOR(4 DOMTO 0) := (others
=>' O'),

BEG N

-- Synchronous RAM
PROCESS (cl k)

254

BEA N
| F clk' EVENT AND clk ="1" THEN
int_ad <= address;
IF (we ="'1") THEN
men(CONV_| NTEGER(UNSI GNED(address))) <= d ;
END I F ;
END | F;
END PRCCESS;

q <= men(CONV_I NTEGER(UNSI GNED(i nt _ad))) ;

END RTL ;

255

Appendix B-16. Filtercore Code Using RTL VHDL

-- Description: Top |level structural nodel for
-- edge filter testcase nodel.

-- File nane: filtercore.vhd

-- Version : 1.0
-- Aut hor : David Cabanis
LI BRARY | EEE;

USE | EEE. STD LOd C 1164. ALL;
USE | EEE. std_l ogic_arith. ALL;

LI BRARY fl ow ab;
USE fl ow ab. mask_t ypes. ALL;

ENTITY filtercore IS

PORT(
datai o : inout slvlé;
addr ess : IN slv3; -- proc i/f r/w address
sramop : QUT slvs; -- linestore RAM out put
access
scene IN slv8; -- input intensity data
ifclk IN STD LCd G, -- fast clk for i/f
clk IN STD LOd C
cl k4 IN STD LOG G
edge fs QUT STD LG4d G -- o/p data frane sync
fs IN STD LO4A C, -- image sync control
ack QUT STD LGd G -- proc i/f acknow edge
enabl e IN STD LOGE G -- proc i/f enable
w_nrd IN STD_LOGE G -- proc i/f rlw
edge QUT STD LOd G -- o/p binary edge data
I's IN STD LOGE G -- image sync control
rese IN STD LCd C -- reset control
)

END filtercore;
ARCH TECTURE struct OF filtercore IS

SIGNAL ns_result, we result : slvil5;
SIGNAL new frame, w_pulse : STD LOd C
S| GNAL aver age: sl v15;

S| GNAL dat a_sel : sl v2;

SI GNAL data out: sl v16;

SI GNAL t hreshol d: sl v15;

256

COVPONENT ramwite

PORT(cl k4
reset

w_pul se :

END COVPONENT;

IN STD LOG G
IN STD LOG G

OUT STD LOG O);

COVPONENT mul t _mask
PORT(scene IN slvsg;
I's,fs IN STD_LOd G,
reset IN STD LOGE C,
cl k IN STD_LQOA C,
cl k4 IN STD_LOA G,
w_pul se IN STD LCd G,
new frame : QUT STD LOG G
ns_result QUT sl vls;
we_result QJT sl v15;
I s_out QJT slv8);
END COVPONENT;
COVPONENT t hresh_mux
PORT(ns_resul t IN sl v15;
we _result IN slvl5;
new franme : IN STD LOGQ C,
clk IN STD LOG C
reset . IN STD_LOA G
threshold : I N slvl5;
dat a_sel IN slv2;
frane_sync: QUT STD LO4d C
aver age QJT sl vis;
mux_bi t QUT STD LOG C

)

END COVPONENT;

COVPONENT i nterface

PORT(cl k

r eset

addr ess
datai o
w_nrd
enabl e

aver age
ack :
threshol d :
dat a_sel

)

END COVPONENT;

BEG N

rammu .
PORT MAP(cl k4,

rammite

doubl e: mul t _nask

PORT MAP(scene,

reset,

ls, fs,

257

reset,

w_pul se);

cl k,

cl k4,

w_pul se,

new frame, ns result, we_result, |sramop);

t hr mux: t hr esh_nux
PORT MAP(ns_result, we_result, new frame, clk, reset,
threshol d, data_sel, edge_fs, average, edge);

procif:interface
PORT MAP(ifclk, reset, address, dataio, w_nrd
enabl e,
average, ack, threshold, data_sel);

END struct;

258

Appendix B-17. Mask Types Code Using RTL VHDL

-- Description: Package of constant and type decl arations

-- edge filter testcase nodel.

-- File name: nask_types. vhd

-- Version : 3.0
-- Aut hor . Davi d Cabani s
LI BRARY | EEE;

USE | EEE. STD LOQ C 1164. ALL;
PACKACGE nmask_types IS

CONSTANT |ine_data wi dt h: NATURAL: =5;
CONSTANT |ine_l ength : NATURAL: =2**| i ne_dat a_wi dt h;
CONSTANT frane_| engt h: NATURAL: =l i ne_| engt h;

CONSTANT i nage_wi dt h: NATURAL: =8;
SUBTYPE i mage_data |'S | NTEGER RANGE 0 TO (2**i mage_wi dt h) -
1

CONSTANT nask_| engt h: NATURAL: =3;
CONSTANT nask_si ze: NATURAL: =(mask_| engt h- 1) ;

CONSTANT nask_di vi sor: NATURAL: =4;

SUBTYPE filt_data IS | NTEGER RANGE - 32768 TO 32767;
SUBTYPE abs_filt IS | NTEGER RANGE 0 TO 32767,

SUBTYPE sl v2 |'S STD LOA C VECTOR(1 DOWTO 0);
SUBTYPE sl v3 |'S STD_LOG C_VECTOR(2 DOWNTO 0) ;
SUBTYPE sl v8 |'S STD LOGA C_VECTOR(7 DOWTO 0) ;
SUBTYPE sl v15 |'S STD LOG C VECTOR(14 DOMNTO 0);
SUBTYPE sl v16 |'S STD LOA C_VECTOR(15 DOMNTO 0):

-- data select nmultiplexor values

CONSTANT nsbi nary: sl v2: ="01";
CONSTANT webi nary: sl v2: ="10";
CONSTANT nsorwe :slv2:="11";
CONSTANT nsandwe : sl v2:="00";

END mask_types;

259

